@@ -364,18 +364,18 @@ class takes as input the parameter ``model_regressor``, which is an arbitrary sc
364364 est.fit(y, T, X=X, W=None)
365365
366366 >>> est.const_marginal_effect(X[:2])
367- array([[0.516931 ..., 0.995704 ...],
368- [0.356427 ..., 0.671870 ...]])
367+ array([[0.516888 ..., 0.995747 ...],
368+ [0.356386 ..., 0.671889 ...]])
369369 >>> est.effect(X[:2], T0=0, T1=1)
370- array([0.516931 ..., 0.356427 ...])
370+ array([0.516888 ..., 0.356386 ...])
371371 >>> est.score_
372- 2.84365756 ...
372+ np.float64(2.845660 ...)
373373 >>> est.score(y, T, X=X)
374- 1.06259465 ...
374+ np.float64(1.062668 ...)
375375 >>> est.model_cate(T=1).coef_
376- array([ 0.447095 ..., -0.001013 ... , 0.018982 ...])
376+ array([ 0.447146 ..., -0.001025 ..., 0.018984 ...])
377377 >>> est.model_cate(T=2).coef_
378- array([ 0.925055 ..., -0.012357 ... , 0.033489 ...])
378+ array([ 0.925064 ..., -0.012351 ..., 0.033480 ...])
379379 >>> est.cate_feature_names()
380380 ['X0', 'X1', 'X2']
381381
@@ -399,19 +399,19 @@ class takes as input the parameter ``model_regressor``, which is an arbitrary sc
399399 est.fit(y, T, X=X, W=None)
400400
401401 >>> est.score_
402- 1.7 ...
402+ np.float64(1.73 ...)
403403 >>> est.const_marginal_effect(X[:3])
404404 array([[0.68..., 1.10...],
405405 [0.56..., 0.79... ],
406406 [0.34..., 0.10... ]])
407407 >>> est.model_cate(T=2).coef_
408408 array([0.74..., 0. , 0. ])
409409 >>> est.model_cate(T=2).intercept_
410- 1.9...
410+ np.float64( 1.9...)
411411 >>> est.model_cate(T=1).coef_
412412 array([0.24..., 0.00..., 0. ])
413413 >>> est.model_cate(T=1).intercept_
414- 0.94...
414+ np.float64( 0.94...)
415415
416416 Attributes
417417 ----------
@@ -1015,17 +1015,19 @@ class LinearDRLearner(StatsModelsCateEstimatorDiscreteMixin, DRLearner):
10151015 est.fit(y, T, X=X, W=None)
10161016
10171017 >>> est.effect(X[:3])
1018- array([ 0.432476 ..., 0.359739 ..., -0.085326 ...])
1018+ array([ 0.432365 ..., 0.359694 ..., -0.085428 ...])
10191019 >>> est.effect_interval(X[:3])
1020- (array([ 0.084145... , -0.178020..., -0.734688...]), array([0.780807..., 0.897500..., 0.564035...]))
1020+ (array([ 0.084048..., -0.177951... , -0.734747...]),
1021+ array([0.780683..., 0.897341..., 0.563889...]))
10211022 >>> est.coef_(T=1)
1022- array([ 0.450620 ..., -0.008792 ..., 0.075242 ...])
1023+ array([ 0.450666 ..., -0.008821 ..., 0.075271 ...])
10231024 >>> est.coef__interval(T=1)
1024- (array([ 0.156233... , -0.252177..., -0.159805...]), array([0.745007..., 0.234592..., 0.310290...]))
1025+ (array([ 0.156245..., -0.252216..., -0.159709...]),
1026+ array([0.745086..., 0.234572..., 0.310252...]))
10251027 >>> est.intercept_(T=1)
1026- 0.90916103 ...
1028+ np.float64(0.909121 ...)
10271029 >>> est.intercept__interval(T=1)
1028- (0.66855287 ..., 1.14976919 ...)
1030+ (np.float64(0.668518 ...), np.float64(1.149723 ...) )
10291031
10301032 Attributes
10311033 ----------
@@ -1321,17 +1323,17 @@ class SparseLinearDRLearner(DebiasedLassoCateEstimatorDiscreteMixin, DRLearner):
13211323 est.fit(y, T, X=X, W=None)
13221324
13231325 >>> est.effect(X[:3])
1324- array([ 0.43..., 0.35..., -0.08... ])
1326+ array([ 0.43..., 0.35..., -0.08...])
13251327 >>> est.effect_interval(X[:3])
13261328 (array([-0.01..., -0.26..., -0.81...]), array([0.87..., 0.98..., 0.65...]))
13271329 >>> est.coef_(T=1)
13281330 array([ 0.44..., -0.00..., 0.07...])
13291331 >>> est.coef__interval(T=1)
13301332 (array([ 0.19... , -0.24..., -0.17...]), array([0.70..., 0.22..., 0.32...]))
13311333 >>> est.intercept_(T=1)
1332- 0.90...
1334+ np.float64( 0.90...)
13331335 >>> est.intercept__interval(T=1)
1334- (0.66..., 1.14...)
1336+ (np.float64( 0.66...), np.float64( 1.14...) )
13351337
13361338 Attributes
13371339 ----------
0 commit comments