|
14 | 14 | {
|
15 | 15 | "cell_type": "code",
|
16 | 16 | "execution_count": 1,
|
17 |
| - "metadata": { |
18 |
| - "ExecuteTime": { |
19 |
| - "end_time": "2021-01-04T16:36:50.179530Z", |
20 |
| - "start_time": "2021-01-04T16:36:50.121692Z" |
21 |
| - } |
22 |
| - }, |
23 |
| - "outputs": [ |
24 |
| - { |
25 |
| - "name": "stdout", |
26 |
| - "output_type": "stream", |
27 |
| - "text": [ |
28 |
| - "Last updated: 2021-01-04T11:36:50.162976-05:00\n", |
29 |
| - "\n", |
30 |
| - "Python implementation: CPython\n", |
31 |
| - "Python version : 3.8.6\n", |
32 |
| - "IPython version : 7.19.0\n", |
33 |
| - "\n", |
34 |
| - "Compiler : Clang 11.0.0 \n", |
35 |
| - "OS : Darwin\n", |
36 |
| - "Release : 20.2.0\n", |
37 |
| - "Machine : x86_64\n", |
38 |
| - "Processor : i386\n", |
39 |
| - "CPU cores : 8\n", |
40 |
| - "Architecture: 64bit\n", |
41 |
| - "\n" |
42 |
| - ] |
43 |
| - } |
44 |
| - ], |
45 |
| - "source": [ |
46 |
| - "%load_ext watermark\n", |
47 |
| - "%watermark" |
48 |
| - ] |
49 |
| - }, |
50 |
| - { |
51 |
| - "cell_type": "code", |
52 |
| - "execution_count": 2, |
53 | 17 | "metadata": {
|
54 | 18 | "ExecuteTime": {
|
55 | 19 | "end_time": "2021-01-04T16:36:53.158014Z",
|
56 | 20 | "start_time": "2021-01-04T16:36:50.182287Z"
|
57 | 21 | }
|
58 | 22 | },
|
59 |
| - "outputs": [ |
60 |
| - { |
61 |
| - "name": "stdout", |
62 |
| - "output_type": "stream", |
63 |
| - "text": [ |
64 |
| - "Watermark: 2.1.0\n", |
65 |
| - "\n", |
66 |
| - "spreg : 1.2.0.post1\n", |
67 |
| - "libpysal: 4.3.0\n", |
68 |
| - "numpy : 1.19.4\n", |
69 |
| - "\n" |
70 |
| - ] |
71 |
| - } |
72 |
| - ], |
| 23 | + "outputs": [], |
73 | 24 | "source": [
|
74 | 25 | "import numpy\n",
|
75 | 26 | "import libpysal\n",
|
76 |
| - "import spreg\n", |
77 |
| - "\n", |
78 |
| - "%watermark -w\n", |
79 |
| - "%watermark -iv" |
| 27 | + "import spreg" |
80 | 28 | ]
|
81 | 29 | },
|
82 | 30 | {
|
|
94 | 42 | },
|
95 | 43 | {
|
96 | 44 | "cell_type": "code",
|
97 |
| - "execution_count": 3, |
| 45 | + "execution_count": 2, |
98 | 46 | "metadata": {
|
99 | 47 | "ExecuteTime": {
|
100 | 48 | "end_time": "2021-01-04T16:36:53.489678Z",
|
|
138 | 86 | },
|
139 | 87 | {
|
140 | 88 | "cell_type": "code",
|
141 |
| - "execution_count": 4, |
| 89 | + "execution_count": null, |
142 | 90 | "metadata": {
|
143 | 91 | "ExecuteTime": {
|
144 | 92 | "end_time": "2021-01-04T16:36:59.736302Z",
|
|
147 | 95 | },
|
148 | 96 | "outputs": [],
|
149 | 97 | "source": [
|
150 |
| - "fe_lag = spreg.Panel_FE_Lag(\n", |
151 |
| - " y, x, w, name_y=name_y, name_x=name_x, name_ds=\"NAT\"\n", |
152 |
| - ")" |
| 98 | + "fe_lag = spreg.Panel_FE_Lag(y, x, w, name_y=name_y, name_x=name_x, name_ds=\"NAT\")" |
153 | 99 | ]
|
154 | 100 | },
|
155 | 101 | {
|
156 | 102 | "cell_type": "code",
|
157 |
| - "execution_count": 5, |
| 103 | + "execution_count": 4, |
158 | 104 | "metadata": {
|
159 | 105 | "ExecuteTime": {
|
160 | 106 | "end_time": "2021-01-04T16:36:59.741882Z",
|
|
201 | 147 | },
|
202 | 148 | {
|
203 | 149 | "cell_type": "code",
|
204 |
| - "execution_count": 6, |
| 150 | + "execution_count": 5, |
205 | 151 | "metadata": {
|
206 | 152 | "ExecuteTime": {
|
207 | 153 | "end_time": "2021-01-04T16:36:59.753663Z",
|
|
217 | 163 | " [ 0.1903]])"
|
218 | 164 | ]
|
219 | 165 | },
|
220 |
| - "execution_count": 6, |
| 166 | + "execution_count": 5, |
221 | 167 | "metadata": {},
|
222 | 168 | "output_type": "execute_result"
|
223 | 169 | }
|
|
226 | 172 | "numpy.around(fe_lag.betas, decimals=4)"
|
227 | 173 | ]
|
228 | 174 | },
|
| 175 | + { |
| 176 | + "cell_type": "markdown", |
| 177 | + "metadata": {}, |
| 178 | + "source": [ |
| 179 | + "### Data can also be in 'long' format:" |
| 180 | + ] |
| 181 | + }, |
| 182 | + { |
| 183 | + "cell_type": "code", |
| 184 | + "execution_count": 6, |
| 185 | + "metadata": {}, |
| 186 | + "outputs": [ |
| 187 | + { |
| 188 | + "name": "stdout", |
| 189 | + "output_type": "stream", |
| 190 | + "text": [ |
| 191 | + "REGRESSION\n", |
| 192 | + "----------\n", |
| 193 | + "SUMMARY OF OUTPUT: MAXIMUM LIKELIHOOD SPATIAL LAG PANEL - FIXED EFFECTS\n", |
| 194 | + "-----------------------------------------------------------------------\n", |
| 195 | + "Data set : NAT\n", |
| 196 | + "Weights matrix : unknown\n", |
| 197 | + "Dependent Variable : HR Number of Observations: 9255\n", |
| 198 | + "Mean dependent var : 0.0000 Number of Variables : 3\n", |
| 199 | + "S.D. dependent var : 3.9228 Degrees of Freedom : 9252\n", |
| 200 | + "Pseudo R-squared : 0.0319\n", |
| 201 | + "Spatial Pseudo R-squared: 0.0079\n", |
| 202 | + "Sigma-square ML : 14.935 Log likelihood : -67936.533\n", |
| 203 | + "S.E of regression : 3.865 Akaike info criterion : 135879.066\n", |
| 204 | + " Schwarz criterion : 135900.465\n", |
| 205 | + "\n", |
| 206 | + "------------------------------------------------------------------------------------\n", |
| 207 | + " Variable Coefficient Std.Error z-Statistic Probability\n", |
| 208 | + "------------------------------------------------------------------------------------\n", |
| 209 | + " RD 0.8005886 0.1614474 4.9588189 0.0000007\n", |
| 210 | + " PS -2.6003523 0.4935486 -5.2686851 0.0000001\n", |
| 211 | + " W_HR 0.1903043 0.0159991 11.8947008 0.0000000\n", |
| 212 | + "------------------------------------------------------------------------------------\n", |
| 213 | + "Warning: Assuming panel is in long format.\n", |
| 214 | + "y[0:N] refers to T0, y[N+1:2N] refers to T1, etc.\n", |
| 215 | + "x[0:N] refers to T0, x[N+1:2N] refers to T1, etc.\n", |
| 216 | + "================================ END OF REPORT =====================================\n" |
| 217 | + ] |
| 218 | + } |
| 219 | + ], |
| 220 | + "source": [ |
| 221 | + "y_long = y.reshape((y.shape[0]*y.shape[1],1), order='F')\n", |
| 222 | + "x_long = x.reshape((x.shape[0]*3,2), order='F')\n", |
| 223 | + "\n", |
| 224 | + "fe_lag_long = spreg.Panel_FE_Lag(y_long, x_long, w, name_y=name_y, name_x=name_x, name_ds=\"NAT\")\n", |
| 225 | + "print(fe_lag_long.summary)" |
| 226 | + ] |
| 227 | + }, |
229 | 228 | {
|
230 | 229 | "cell_type": "markdown",
|
231 | 230 | "metadata": {},
|
|
295 | 294 | " Variable Coefficient Std.Error z-Statistic Probability\n",
|
296 | 295 | "------------------------------------------------------------------------------------\n",
|
297 | 296 | " RD 0.8697923 0.1718029 5.0627323 0.0000004\n",
|
298 |
| - " PS -2.9660674 0.5444784 -5.4475397 0.0000001\n", |
299 |
| - " lambda 0.1943460 0.0160253 12.1274222 0.0000000\n", |
| 297 | + " PS -2.9660674 0.5444783 -5.4475397 0.0000001\n", |
| 298 | + " lambda 0.1943460 0.0160253 12.1274197 0.0000000\n", |
300 | 299 | "------------------------------------------------------------------------------------\n",
|
301 | 300 | "Warning: Assuming panel is in wide format.\n",
|
302 | 301 | "y[:, 0] refers to T0, y[:, 1] refers to T1, etc.\n",
|
|
346 | 345 | ],
|
347 | 346 | "metadata": {
|
348 | 347 | "kernelspec": {
|
349 |
| - "display_name": "Python [conda env:py38_spreg]", |
| 348 | + "display_name": "Python [conda env:myenv] *", |
350 | 349 | "language": "python",
|
351 |
| - "name": "conda-env-py38_spreg-py" |
| 350 | + "name": "conda-env-myenv-py" |
352 | 351 | },
|
353 | 352 | "language_info": {
|
354 | 353 | "codemirror_mode": {
|
|
360 | 359 | "name": "python",
|
361 | 360 | "nbconvert_exporter": "python",
|
362 | 361 | "pygments_lexer": "ipython3",
|
363 |
| - "version": "3.8.6" |
| 362 | + "version": "3.6.10" |
364 | 363 | }
|
365 | 364 | },
|
366 | 365 | "nbformat": 4,
|
|
0 commit comments