Skip to content

Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 and H100 #5963

Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 and H100

Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 and H100 #5963

Triggered via pull request September 17, 2025 03:09
Status Success
Total duration 2h 27m 26s
Artifacts 5
generate-matrix  /  generate
4s
generate-matrix / generate
filter-matrix
6s
filter-matrix
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Fit to window
Zoom out
Zoom in

Annotations

1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.

Artifacts

Produced during runtime
Name Size Digest
pytorch_FBGEMM__3.10_cu126_x86_64
17.5 MB
sha256:1f1445aa0863f4c0a3204d47d87feda6b98a3f0a88c9e4aa451152d097aba62d
pytorch_FBGEMM__3.10_cu128_x86_64
49.3 MB
sha256:06c66a3234a27bb23cf13116a65e35fbbe1fb245ecb0282c3c8a1f52a8c0cca3
pytorch_FBGEMM__3.10_cu130_x86_64
47.3 MB
sha256:06633e79d1e86427804ce1182752022cd804a5c0363eba272f9997aa1bc6c80d
pytorch_FBGEMM__3.10_rocm6.3_x86_64
11.2 MB
sha256:abbcd0db81f9966f8f69be5f7a0514660cf76151f6c402fe04690ea802e774bd
pytorch_FBGEMM__3.10_rocm6.4_x86_64
11.2 MB
sha256:1e4d7bafe67d332ac2b7c41a10644f104416a513b559932e02e668b746120ca9