Skip to content

Add ability to pad the rowwise quantized tensors #551

Add ability to pad the rowwise quantized tensors

Add ability to pad the rowwise quantized tensors #551

Re-run triggered September 17, 2025 22:21
Status Failure
Total duration 30m 12s
Artifacts 20
Matrix: build_artifact
Matrix: torchrec_cpu_tests
Fit to window
Zoom out
Zoom in

Annotations

10 errors
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.13, clang)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.12, gcc)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.10, gcc)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.9, gcc)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.11, gcc)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.13, gcc)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.12, clang)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.11, clang)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.9, clang)
Process completed with exit code 1.
torchrec_cpu_tests (x86, linux.4xlarge, 20, default, 3.10, clang)
Process completed with exit code 1.

Artifacts

Produced during runtime
Name Size Digest
fbgemm_default_arm_clang_py3.10_cpu.whl
4.44 MB
sha256:27c3377c98ae5386f7d38c146ec198bbaac17ff54b195fda7a9ac92c8f1fcd3e
fbgemm_default_arm_clang_py3.11_cpu.whl
4.44 MB
sha256:cb96f55081ee9dffebd78365b92db88b5b8921d65cb5b634af1715d6a259bad6
fbgemm_default_arm_clang_py3.12_cpu.whl
4.44 MB
sha256:2477c7d7267bb167912ba57ffd72e137f58bd97664e64ffc0509ef71834ddaf6
fbgemm_default_arm_clang_py3.13_cpu.whl
4.44 MB
sha256:393a639a1b5e54217fed2ce5399398367d8f42c91a86a44ccb24697829f07826
fbgemm_default_arm_clang_py3.9_cpu.whl
4.41 MB
sha256:bfc146e60b4f9451875ea1cfc268b62d7fd9359a3b1875bd884029ebbde24db3
fbgemm_default_arm_gcc_py3.10_cpu.whl
4.2 MB
sha256:e1c5f367b011f5aed42e1ee4ef0decf6b2e19af1e7a0cb2fcf1f1bb259beebce
fbgemm_default_arm_gcc_py3.11_cpu.whl
4.2 MB
sha256:51a360ed0d6f0c483da05e69d56a40ed4caa4bfdf6146d860ee58ea138d62c16
fbgemm_default_arm_gcc_py3.12_cpu.whl
4.2 MB
sha256:62bc7cf20ecf9cda7c250b32e883b4bb2986320d4b92e585c8593d95b4eae612
fbgemm_default_arm_gcc_py3.13_cpu.whl
4.2 MB
sha256:36fe2576f522b157ec17af1ad0a407e68991c084e36a721ccc15a05fa7de7c90
fbgemm_default_arm_gcc_py3.9_cpu.whl
4.2 MB
sha256:3a685100a75d815ad5bc1f491a9499f5486c00f3da0f56463cbf51679c5fd9f1
fbgemm_default_x86_clang_py3.10_cpu.whl
5.84 MB
sha256:c30aaf928589fbaf0f90aeafb0d4f1db307d9beb5609e9ef2c11e383f8c09496
fbgemm_default_x86_clang_py3.11_cpu.whl
5.84 MB
sha256:4fa1388b549e5a5600e85c34da2d8cff62107c3777925c144ce421b8b8642096
fbgemm_default_x86_clang_py3.12_cpu.whl
5.84 MB
sha256:d51164ebee36ae60a3d0f100810b2996506b1b2870d07f56ae42d67a7a868cb5
fbgemm_default_x86_clang_py3.13_cpu.whl
5.84 MB
sha256:336a75fc9fddcc6efec6d0c37fa64c666bf2c05e66a125ad02016983797e4958
fbgemm_default_x86_clang_py3.9_cpu.whl
5.81 MB
sha256:fedcffb2a071f6befa7fcd14148f7cd7d355839ef63ef182d60478190928b4c7
fbgemm_default_x86_gcc_py3.10_cpu.whl
5.35 MB
sha256:4d053b36b104fb246d3d2eb42c84e11c8fc3ac9eac240599d6a7bda583a42024
fbgemm_default_x86_gcc_py3.11_cpu.whl
5.35 MB
sha256:91b74cd2691e696d3c70fb291d3e70b4ad38af70f9a40cb54da53a9c7c6e8bff
fbgemm_default_x86_gcc_py3.12_cpu.whl
5.35 MB
sha256:e52e653096b06312b58ab046833859670c5bbd30b01f278aa54f8ffc6a719c15
fbgemm_default_x86_gcc_py3.13_cpu.whl
5.35 MB
sha256:5b207a9381b354633e1a549ef8a068960717299f385b5a8df88158e846068ecb
fbgemm_default_x86_gcc_py3.9_cpu.whl
5.34 MB
sha256:90c44b8eed71ac8d9faddfed12bd0059e5057d2487a91e54400c55dae3cd1ae7