Back out "Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 and H100" #575
fbgemm_gpu_torchrec_ci_cpu.yml
on: pull_request
Matrix: build_artifact
Matrix: torchrec_cpu_tests
Annotations
9 errors
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.10, clang)
The operation was canceled.
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.10, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4892 exists
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.11, clang)
The operation was canceled.
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.11, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4892 exists
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.13, clang)
The operation was canceled.
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.13, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4892 exists
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.12, clang)
The operation was canceled.
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.12, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4892 exists
|
FBGEMM_GPU_TORCHREC-CPU CI
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4892 exists
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
fbgemm_default_arm_clang_py3.9_cpu.whl
|
4.41 MB |
sha256:6051e4d5a4704601e3c99b34f51dbfd24d0dc809e732f9de9017578d5ca674c3
|
|
fbgemm_default_arm_gcc_py3.10_cpu.whl
|
4.2 MB |
sha256:c8c6af9ef3df5fb561d2c59445dfa18442f49a67a75124a73cfa6d5dca000a88
|
|
fbgemm_default_arm_gcc_py3.11_cpu.whl
|
4.2 MB |
sha256:f4a5d48fe3ed131eb17776814e998f60823f769edaf7e59d5c62d4ae09a213d9
|
|
fbgemm_default_arm_gcc_py3.12_cpu.whl
|
4.2 MB |
sha256:f2ea6d491e70614b0fa812282b65425e965a8e6dcfbff64b7ebf0a4e80ad67c2
|
|
fbgemm_default_arm_gcc_py3.13_cpu.whl
|
4.2 MB |
sha256:a6b1961fc4aee65193af5c907095c3b5c211fa6c069f53890d772b869fcd7eb6
|
|
fbgemm_default_arm_gcc_py3.9_cpu.whl
|
4.2 MB |
sha256:cc546dfb13c24fef655a8217efc603cb0a39d6d4f4df44ee5f4561ec1beb8a04
|
|
fbgemm_default_x86_clang_py3.10_cpu.whl
|
5.84 MB |
sha256:34d7d7f3a0d967a1ecb9ac323a352f9304a0637b941c81a059857cddeddf7a5d
|
|
fbgemm_default_x86_clang_py3.11_cpu.whl
|
5.84 MB |
sha256:19fc00f059a55bd92493f0889ee11adfa3cd80c0f7acc5e76948952bfece0c9d
|
|
fbgemm_default_x86_clang_py3.12_cpu.whl
|
5.84 MB |
sha256:b04a01c86a1967d1bf4a557f86995aec49b322336dba9a4a7884ff49eb41d383
|
|
fbgemm_default_x86_clang_py3.13_cpu.whl
|
5.84 MB |
sha256:9071cc5e947cbae94b1e036aa8c3715f211549c33f324288d5394c78fcb38495
|
|
fbgemm_default_x86_clang_py3.9_cpu.whl
|
5.81 MB |
sha256:66b2b7e8bada3de9ed475fd4323eca4e9f7a326c936460093a110dd26c8fad48
|
|
fbgemm_default_x86_gcc_py3.10_cpu.whl
|
5.35 MB |
sha256:069a790f513f2fa9507ec6c31ce44e10d6b9f34ea141963aaa9df0013b161602
|
|
fbgemm_default_x86_gcc_py3.11_cpu.whl
|
5.35 MB |
sha256:20a4c983afac43ef899ce97712cb47d02fc1c9eb802799ea89dd9244b7634bfa
|
|
fbgemm_default_x86_gcc_py3.12_cpu.whl
|
5.35 MB |
sha256:f63a69a0743acdf399f0b1150936616d84f810e109439484618ec67a8c7db655
|
|
fbgemm_default_x86_gcc_py3.13_cpu.whl
|
5.35 MB |
sha256:c1264a3d0224bc671f71c965b197844b9cd2bd2e866387e282244627198c7ba8
|
|
fbgemm_default_x86_gcc_py3.9_cpu.whl
|
5.34 MB |
sha256:181b6dc29b8e171c2130819d410048b5af17e0943d61900b88049a1617a5c791
|
|