Skip to content

Back out "Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 … #5999

Back out "Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 …

Back out "Enable CUTLASS grouped GEMM for pretraining wgrad on GB200 … #5999

Triggered via push September 18, 2025 18:33
Status Success
Total duration 2h 33m 28s
Artifacts 33
generate-matrix  /  generate
4s
generate-matrix / generate
filter-matrix
5s
filter-matrix
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Fit to window
Zoom out
Zoom in

Annotations

1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.

Artifacts

Produced during runtime
Name Size Digest
pytorch_FBGEMM__3.10_cu126_x86_64
15.8 MB
sha256:991f8c258aa4e2a57696e105f285a2553b3a1424470d05adbf1598fb0816ef17
pytorch_FBGEMM__3.10_cu128_x86_64
44.9 MB
sha256:8624ddb1ba7281d39535ffa32de966eef113a9e4cd16c77f9c01d8f08deb6383
pytorch_FBGEMM__3.10_cu130_x86_64
42.8 MB
sha256:2266192a6eaccccaa9050c1b03b524e8c692fbae8e29833a2dc3810b7da00343
pytorch_FBGEMM__3.10_rocm6.3_x86_64
11.2 MB
sha256:f24b145cbe1c2629e5d6f1fba183df9fe37b87dc867361e033a084ebf3a138b2
pytorch_FBGEMM__3.10_rocm6.4_x86_64
11.2 MB
sha256:b86089ddee26f237f822be98b2bc18b3f71b999288fb1b25056719dadc422db3
pytorch_FBGEMM__3.11_cu126_x86_64
15.8 MB
sha256:f7801e890d926c13084014403c3c6bcf90e0d0f806e3c0b4be5b78b7feb04fb8
pytorch_FBGEMM__3.11_cu128_x86_64
44.9 MB
sha256:f9a24eaa09504c5cd2a83dbba5dba268c893930b5a073f83ba555964c74b7d3a
pytorch_FBGEMM__3.11_cu130_x86_64
42.8 MB
sha256:bb639db8ef698de2329caecf764d044f091d0de949fe83eef7e27db93d6442ba
pytorch_FBGEMM__3.11_rocm6.3_x86_64
11.2 MB
sha256:00475bb804fd93904920aadcadf4c4809ad45a9485d742af435bda0112b7e0ed
pytorch_FBGEMM__3.11_rocm6.4_x86_64
11.2 MB
sha256:1a06645313ce12bfeda99852b1c3d759d7cd01ee1494ecc8f80fae40aac0b558
pytorch_FBGEMM__3.12_cu126_x86_64
15.8 MB
sha256:d3b4f4df95ce2a5a4bc47f8a9f3ce47d14b68ab59d4c18bdb6f7fc2560256125
pytorch_FBGEMM__3.12_cu128_x86_64
44.9 MB
sha256:fa0c928a17271db1c53167890304f1e1973ca72d0abba1613a0f24797e1a6482
pytorch_FBGEMM__3.12_cu130_x86_64
42.8 MB
sha256:8b9d0ab2c73577067c4e6f658e7e3403d6b11362e48963795e9458fc6f506b85
pytorch_FBGEMM__3.12_rocm6.3_x86_64
11.2 MB
sha256:e912d08c411dd93cc9f1b24fb34fd403e71c2b92d013afd001bc206b25ecbbc3
pytorch_FBGEMM__3.12_rocm6.4_x86_64
11.2 MB
sha256:289c948383299f9c2290f6d8529b08bfb255cb81d40ce9a7fabbcd6964b58c20
pytorch_FBGEMM__3.13_cu126_x86_64
15.8 MB
sha256:4376b22074346188fc50c3cb33ad00353ef228caa2db62540e97b871c4dbd94a
pytorch_FBGEMM__3.13_cu128_x86_64
44.9 MB
sha256:cccea2ded17ec17b7ca1d7fac39cb9f78a44de26e7b161318c32580c3f75da23
pytorch_FBGEMM__3.13_cu130_x86_64
42.8 MB
sha256:c43fc648e877ffbd3a61f160ede5d23e1e3dfa2c2b82d09a147da9a546306cdf
pytorch_FBGEMM__3.13_rocm6.3_x86_64
11.2 MB
sha256:b85695f49bb4b4db246186b69867348d26a82472facfa665cb16f3d46a0215d1
pytorch_FBGEMM__3.13_rocm6.4_x86_64
11.2 MB
sha256:3e5f45d4ff7b9ca4a04fc473be014b21f80f11517bd9386618820da8c1e9c59c
pytorch_FBGEMM__3.13t_cu126_x86_64
15.8 MB
sha256:7c8d54c335ec3b5b3cd2dd65fbfe98162738181cffe3ed46e29b45e310a99563
pytorch_FBGEMM__3.13t_cu128_x86_64
44.9 MB
sha256:6b6f78680df7a48518cce9986f1b133ed236591ea7a6b92570770d8a36c27dc8
pytorch_FBGEMM__3.13t_cu130_x86_64
42.8 MB
sha256:a709597c49511f9eeaf905e53727ea5cb6c47c35d32dd348b6e4f1d815b109ac
pytorch_FBGEMM__3.14_cu126_x86_64
15.8 MB
sha256:9d3180f62e20d13f59b70cf7dc282d7bbd2bfb975aa9183dea3f4d5da00e396f
pytorch_FBGEMM__3.14_cu128_x86_64
44.9 MB
sha256:93fbd373204a4959ec795e4903e7efa7e18f49e5d0babd50f778ec22f2671933
pytorch_FBGEMM__3.14_cu130_x86_64
42.8 MB
sha256:ca2f9dd087c79b21866c4473b98f386b4c0ac3ed5e1770bce94994e75a5c02fb
pytorch_FBGEMM__3.14_rocm6.3_x86_64
11.2 MB
sha256:c5c211b531ebd88d639197e861f1fc5c05d34c84f7d20333c801dbba68952d5e
pytorch_FBGEMM__3.14_rocm6.4_x86_64
11.2 MB
sha256:0548cfa6236f27cd7049da83758e4251dfac16a4adc95467551dffebf741c11b
pytorch_FBGEMM__3.14t_cu126_x86_64
15.8 MB
sha256:82568f6f0a839a5a02df69349493e305f5b57925079eecd123f3eec735c15ce3
pytorch_FBGEMM__3.14t_cu128_x86_64
44.9 MB
sha256:b0f22ed1d9d963aa769b7e0170e5123e7c643a401862fc20dc28e0bf52809057
pytorch_FBGEMM__3.14t_cu130_x86_64
42.8 MB
sha256:ef4b7bf2b728291460f2fbcbd1488e0917b7ec4f2b53d1019136992347889821
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
11.2 MB
sha256:79f2793d0887c6c06b98a4099ae9ba179e7fac3f081fd2eaddd3cab76fb8d65a
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
11.2 MB
sha256:46baf0275e90b5d48020a995cb9e6f06e9e0b8312524c12279bc80f3e47ee13a