Support multiple total-k and total-m in quantize bench #641
fbgemm_gpu_torchrec_ci_cpu.yml
on: pull_request
Matrix: build_artifact
Matrix: torchrec_cpu_tests
Annotations
11 errors
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.9, gcc)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.9, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.12, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.13, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.12, gcc)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.11, gcc)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.10, clang)
The operation was canceled.
|
build_artifact (x86, linux.4xlarge, default, 3.10, clang)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
build_artifact (x86, linux.4xlarge, default, 3.13, gcc)
The operation was canceled.
|
build_artifact (x86, linux.4xlarge, default, 3.13, gcc)
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
FBGEMM_GPU_TORCHREC-CPU CI
Canceling since a higher priority waiting request for FBGEMM_GPU_TORCHREC-CPU CI-4890 exists
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
fbgemm_default_arm_clang_py3.10_cpu.whl
|
4.44 MB |
sha256:0bbefdb42ff8c1fe7a97545b5787c441be7ada524be060cde7892467513bbaa3
|
|
fbgemm_default_arm_clang_py3.11_cpu.whl
|
4.44 MB |
sha256:63038b92b27d0922a03430eaa1916c401117ddc91da516800497cff055079c9b
|
|
fbgemm_default_arm_clang_py3.12_cpu.whl
|
4.44 MB |
sha256:b4dd4a51c9ec12733ba4c0fe96f63f6f0749cfd69a1af18d3cd9fa043bb4bea5
|
|
fbgemm_default_arm_clang_py3.13_cpu.whl
|
4.44 MB |
sha256:0235fed6e1f5bbe6ab9f0c00a7e5db8ecb4c6e84dbe5d1b90603781572c6cba4
|
|
fbgemm_default_arm_clang_py3.9_cpu.whl
|
4.41 MB |
sha256:d59b571a16f736078a67d1ba665b293c7f6c306f93a29c809b554e99ca12e811
|
|
fbgemm_default_arm_gcc_py3.10_cpu.whl
|
4.2 MB |
sha256:2004ac2cbb58f534e3effff5081cf87527a34b3dc517cc40492b79e98579032e
|
|
fbgemm_default_arm_gcc_py3.11_cpu.whl
|
4.2 MB |
sha256:200175fa51c2b137f4756fd65347a5ad7d607dbf38c2b185d3c8180d856bf4d8
|
|
fbgemm_default_arm_gcc_py3.12_cpu.whl
|
4.2 MB |
sha256:eb327ad3a81aca92088f719937793c160fbc6843e41752d335bb4905e62e7c25
|
|
fbgemm_default_arm_gcc_py3.13_cpu.whl
|
4.2 MB |
sha256:ab63bab82e74ea6591abdca6b40eaee9b6637fdbc046ef81dbb2331262683e06
|
|
fbgemm_default_arm_gcc_py3.9_cpu.whl
|
4.2 MB |
sha256:b0e8a03aece6d0d2e73ba30a9497c5e917106b2f53fc75d0d2c59d4c4cc7119b
|
|
fbgemm_default_x86_clang_py3.11_cpu.whl
|
5.84 MB |
sha256:73caa8fe11d0d8aea75fb9fa6a5c00e7ca630a12ff73869f10353eac70fde660
|
|
fbgemm_default_x86_clang_py3.12_cpu.whl
|
5.84 MB |
sha256:917e563da8855f190776be63f57e2d6624b4385bfbffd912087cd1f9077c4f7e
|
|
fbgemm_default_x86_clang_py3.13_cpu.whl
|
5.84 MB |
sha256:73e1ffc29485c743ebfd1956993cc6c0be7cebd504977337b9239632e20fdfff
|
|
fbgemm_default_x86_clang_py3.9_cpu.whl
|
5.81 MB |
sha256:fc59433ca751a4ed26be5436d343b07f2551b601a70968e398acebd4a392650f
|
|
fbgemm_default_x86_gcc_py3.10_cpu.whl
|
5.35 MB |
sha256:54f3f13eb17d0cb7ed4c79e19e42be903922be456a9c14359535d70daa77d38b
|
|
fbgemm_default_x86_gcc_py3.11_cpu.whl
|
5.35 MB |
sha256:5a7252719d9e4f924244803d200931d88ec8fff80b478a751b9305d6a5dbba17
|
|
fbgemm_default_x86_gcc_py3.12_cpu.whl
|
5.35 MB |
sha256:0839fc57c86d52e7d5a4e6f0dd4a455049b04058efec4cd8114ec1aee022fa00
|
|
fbgemm_default_x86_gcc_py3.9_cpu.whl
|
5.34 MB |
sha256:5b4acccc26701a632bdc842c033f86bda451ee28e5d7908d375b7d3808bbbca5
|
|