Fix clang-tidy and nvcc warnings #651
fbgemm_gpu_torchrec_ci_cpu.yml
on: pull_request
Matrix: build_artifact
Matrix: torchrec_cpu_tests
Annotations
6 errors
build_artifact (x86, linux.4xlarge, default, 3.13, gcc)
The job was not acquired by Runner of type self-hosted even after multiple attempts
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.12, clang)
The job was not acquired by Runner of type self-hosted even after multiple attempts
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.9, gcc)
The job was not acquired by Runner of type self-hosted even after multiple attempts
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.12, gcc)
The job was not acquired by Runner of type self-hosted even after multiple attempts
|
build_artifact (arm, linux.arm64.m7g.4xlarge, default, 3.10, clang)
The job was not acquired by Runner of type self-hosted even after multiple attempts
|
FBGEMM_GPU_TORCHREC-CPU CI
Internal server error. Correlation ID: 9a3bf966-eb70-46d7-b950-43c456a4ebba
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
fbgemm_default_arm_clang_py3.11_cpu.whl
|
4.52 MB |
sha256:46ddbe8d96a8418f88db7f4f4cb575dd4f67b4ae96e9c568a18da5d9f615a3a5
|
|
fbgemm_default_arm_clang_py3.13_cpu.whl
|
4.52 MB |
sha256:d5970c119a9e7bfcc17c84b710fc69b3e0ce9708b9fde8c24b2f394f12a39f93
|
|
fbgemm_default_arm_clang_py3.9_cpu.whl
|
4.41 MB |
sha256:2efb0276e39686bf9c08a49a5e55dc0d4ed8341c4e5d007c1daedbe92d1d4760
|
|
fbgemm_default_arm_gcc_py3.10_cpu.whl
|
4.18 MB |
sha256:0620374c0604d8f7f21dd64dceeda32d3557058e5138d77288af46cca5b1208a
|
|
fbgemm_default_arm_gcc_py3.11_cpu.whl
|
4.18 MB |
sha256:9ee09995d9ff03d602915d2f3a17b60da27af693f0d10a0a10faf6c787d44313
|
|
fbgemm_default_arm_gcc_py3.13_cpu.whl
|
4.18 MB |
sha256:262ae8bb28cc6a560e49d895da8b1348d252e98979fdf4a4906ff87578bbee81
|
|
fbgemm_default_x86_clang_py3.10_cpu.whl
|
5.98 MB |
sha256:3cab3cdb06eaf1f574868277943b87aebcf53ae66036071d8be27da66362a5f7
|
|
fbgemm_default_x86_clang_py3.11_cpu.whl
|
5.98 MB |
sha256:e06597967ee54d85ea18884235c7b4f82268a03a2f01dd0e5e813741362311a7
|
|
fbgemm_default_x86_clang_py3.12_cpu.whl
|
5.98 MB |
sha256:501653b84dcece3c2a0135e0f11ad69d990d635edfe8ebc2377fdafd6dd4a88f
|
|
fbgemm_default_x86_clang_py3.13_cpu.whl
|
5.98 MB |
sha256:4fcf30fb6e89a466061ad65149109c70339628f2ef814a5c97a79c1b1e5ca9c5
|
|
fbgemm_default_x86_clang_py3.9_cpu.whl
|
5.81 MB |
sha256:c5a1310fb0d3981c5fd211771e7109b7c71290b358f894bff849c2d2560e3da6
|
|
fbgemm_default_x86_gcc_py3.10_cpu.whl
|
5.36 MB |
sha256:2a601266b3e7e803cf2f84b28d4fe5bb489c91640589ea0b1432fa3451276b93
|
|
fbgemm_default_x86_gcc_py3.11_cpu.whl
|
5.36 MB |
sha256:03c081601b54c820241edfd6b76885f43fa57649260724cbacce0ae6a84cf31f
|
|
fbgemm_default_x86_gcc_py3.12_cpu.whl
|
5.36 MB |
sha256:0ec69c080d6e1b82cb5ef63e4ce2186e2b639f7d27a932aa46f500a04816bef3
|
|
fbgemm_default_x86_gcc_py3.9_cpu.whl
|
5.33 MB |
sha256:901b7e32b1a27c1a9d78df93b3a198486e9a7e815b5d8162a9ae5c4512217823
|
|