Add output as an option in CUTLASS grouped GEMM (#4931) #16739
build_wheels_linux_x86.yml
on: push
generate-matrix
/
generate
5s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cpu_x86_64
|
5.76 MB |
sha256:2d506ab6fe3969da2b00d0ed814b4644cbdf3c7579746cc6c6abbc2c1e3ba1c6
|
|
pytorch_FBGEMM__3.10_cu126_x86_64
|
551 MB |
sha256:e9100f7d88f3cfa85fcf5c10b7c8fdb1cdf8081cb1ea2dcd3b073e3d4bc72dd5
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
852 MB |
sha256:c06231ddec87f03278b2325970cc1f5b22f64f9986dcba7f6f436db59bbeb11d
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
79.2 MB |
sha256:05be6b841ba5974f63704174227d0b4c498224cf7c27185eee339e0ec6392159
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
78.2 MB |
sha256:8e59e6d9b89c98e0ae954035a8f61fbba8a970a08c9e97377577af493cb89533
|
|
pytorch_FBGEMM__3.11_cpu_x86_64
|
5.76 MB |
sha256:921eaefb675b798646e9db60a1cf0fde1eeec0886d9964c2fbbb724fbed26c89
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
551 MB |
sha256:c1c35d87c14d3870264252db32007ab1f05a5b46f8bbd406a5756751f1f418f0
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
852 MB |
sha256:ac4e572c096965b7fa02862a5cd6bf074715456e3109859d2fe7513ef87b6f04
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
79.2 MB |
sha256:46fa674a3a69a5c6beade5db8d51a80bc3106e1982c0e78ebb3bed2521eea3c2
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
78.2 MB |
sha256:b980a31c3ded8edc94ffb8dedfb16d07dde91c7dee41b516c56b165f73112c10
|
|
pytorch_FBGEMM__3.12_cpu_x86_64
|
5.76 MB |
sha256:acd71168c3950e7222edb0cb7011aba5d8af2059ea3c2acf0fb4e406f9edd6f0
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
551 MB |
sha256:679c5cb9c99efefbd27dfa843d37eb4d3385f69574936ffc5b403f4b7e35d516
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
852 MB |
sha256:b95a67f235541a03cdc73f8f0479fdd14bb1432bb43c3b6c40695290fa10fa7d
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
79.2 MB |
sha256:49ce8b50d6d9b7fda362429feefea5e75a42b31800d8bdd81dfbad7bc7a2661a
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
78.2 MB |
sha256:f320283e28d69da14f5e70b595e593b90e2f12e8771aa7d084fe0d26f8d053a8
|
|
pytorch_FBGEMM__3.13_cpu_x86_64
|
5.76 MB |
sha256:67d1980e0deaee52d5775da0177fcd8b7ad7de183fb3e3f55e0e614a72e47c49
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
551 MB |
sha256:9210ceadaa626ab61e5c9d6c4aa9e33487dc2277722fe9abbd9b797bc2199d43
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
852 MB |
sha256:9a2c51eccc603cdff6c131cf8437aaaf8025ccc004e30c6a09f7ba5b75d32296
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
79.2 MB |
sha256:b4b3cddf5a864e1ad937e2a2a9f12746eba470c1be99e60c72c601356465ebc9
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
78.2 MB |
sha256:fbcb6e7e81506722081e7cb4fdefc5e7ea5e85f5e2277537437a1f4d3dc8b795
|
|
pytorch_FBGEMM__3.13t_cpu_x86_64
|
5.76 MB |
sha256:a3a90447e59227520978a9fe184cf0d0cc788d024913f98cc0c98ec385f91a02
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
551 MB |
sha256:aa7eab34329183c71e97a86633b090c6b4c1b466b248231f3989842ae1ddcfe5
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
852 MB |
sha256:79e25a8e4fd6cc0b4233af266303f8426b1b13653c78478672f9c36614252f2b
|
|
pytorch_FBGEMM__3.14t_cpu_x86_64
|
5.76 MB |
sha256:a1d22554fe526493309d601ce7b31b00d175c1d09636e65d169b6a30ce7dc85d
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
551 MB |
sha256:f2b412769b37102ddf292113979a13fb6545295b6cc3e15b373e4d62c5945363
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
852 MB |
sha256:e8c904315e59a9952c9b01d2bdcf813b39da959b103574bd41f462171feb37dd
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
79.2 MB |
sha256:51b9ecead055934358a30d8f333bff31fbda13fa574ddb18b06f976a63d77113
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
78.2 MB |
sha256:0a333dc2916db7f68211be65f48fd663ddb3c7bfd5abdc69f1f18cc702742384
|
|