2025-09-25 nightly release (c1f22a94ffcfd84b1f863ca90c1b0921aad12bee) #16747
build_wheels_linux_x86.yml
on: push
generate-matrix
/
generate
8s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cpu_x86_64
|
5.76 MB |
sha256:ff5fca88425f5ce9c689dc30ccfda7d39cd1d559bf475bb3102f21423e472d60
|
|
pytorch_FBGEMM__3.10_cu126_x86_64
|
551 MB |
sha256:6b8c060ee4e57dbe33947820cbb2f2e6ff2950099b7686952271265542bc0da4
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
852 MB |
sha256:a59cf56ba35c8bc0dd8ef948b9592e670d88dde6de954274f7854a2164110568
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
79.2 MB |
sha256:3d6dfe11b3b8281a5b55568fc8f689a9f2886c7508aa401439e6119a499882c0
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
78.2 MB |
sha256:18ef28499bdf94603791eccce11dac88f8feaa5ce8321526873274b75c2c3c83
|
|
pytorch_FBGEMM__3.11_cpu_x86_64
|
5.76 MB |
sha256:ad0a37353e5c405c508e5d8c2930e43c5a376c996a97f718fddd01b2755b4bfc
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
551 MB |
sha256:508d530b3215e0972fbb0e8b859503727aac7e31acb92b2b2dacfaf1a2d880e2
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
852 MB |
sha256:299339900bd9f7f286a0cf81f69159780c6492715daf20089109297c926b9636
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
79.2 MB |
sha256:5da8c162d84c5add9583a04dac31cd3cdc93435e2a80cb66272925835c016a6b
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
78.2 MB |
sha256:0f86855907d1790561b721baab36db58b02c161b25866a9b042beb73ce21825c
|
|
pytorch_FBGEMM__3.12_cpu_x86_64
|
5.76 MB |
sha256:b5bb6a2b8a004f787a354d464120115ee563568b97a30b8b892ec407b9f15fb5
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
551 MB |
sha256:e35f2241538e476bb797ba5bde565d4a3d5352e70a3d6677ab8bc992d683e318
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
852 MB |
sha256:b90886de0989fe065978615cf40f4bd6c14b154639194e9b0bc95e0c1a2de6df
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
79.2 MB |
sha256:56649f2f299aea08ab0298a0b6b5d62075a90a852f6dcae5b4ac5f881c15e64b
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
78.2 MB |
sha256:c8e4b1bbc18a9f6ab44712e93770c077e97cdd21ac4d983468e2b1f33beb6dd2
|
|
pytorch_FBGEMM__3.13_cpu_x86_64
|
5.76 MB |
sha256:3cbaaa070fded853c34802c736ade39b67cb037e33dd9e88fd30028986b923ef
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
551 MB |
sha256:74e24393423f712c9f320c66323f4a8d4ce870f86f971967cf259a911bc29de7
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
852 MB |
sha256:073f1e2c8d52433a1b2370663effc2f49eda0d0a7d91336f89f9db004dbf7769
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
79.2 MB |
sha256:7dcf95704b1f0d50c2b88ef921deadd4dc9d8cfaa0f24fc41fdbbc2a4c3cca37
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
78.2 MB |
sha256:9e18b9f733e1dc3b499f816c69fc9582e893ccba5d8fed25e4df59e4d363195d
|
|
pytorch_FBGEMM__3.13t_cpu_x86_64
|
5.76 MB |
sha256:781103eb7f468c59ba89e6debbda33fd3d93f36e5f97f83d4d013228c5005c48
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
551 MB |
sha256:2b79e4bb99d2443f653cabfaaed839150347731cf27a3fae2d6c3cb64ebedcc2
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
852 MB |
sha256:918e7fa041467bf4d7f5deaed5ce4f8bb5f07ed6b8e103253dcfde2f92e28f1d
|
|
pytorch_FBGEMM__3.14t_cpu_x86_64
|
5.76 MB |
sha256:78d47c186c3a7423cca8d0be26fa9f294be7dc0a92d9e97aae995310b75597e3
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
551 MB |
sha256:817ae936f6d0b612d4635ac5f4bab9a5d901de2769519413b33ea188afa032ba
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
852 MB |
sha256:6b20c25e75cf027f05b2a3c19a281701ac611336de9d3ce6717485f80a7a89e1
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
79.2 MB |
sha256:3f57abc03e7dcffbdd6189e10da427fb4fca081f03f361998fd947150d86461d
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
78.2 MB |
sha256:2bd85b849c03b359e2581b01f57a4b036dcf92817c900a45daded3750c8d5063
|
|