MI350X FP8 triton patch (#4889) #16751
build_wheels_linux_x86.yml
on: push
generate-matrix
/
generate
5s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cpu_x86_64
|
5.76 MB |
sha256:9fb8520e5163444988b5432695ae0da5a924c6041709d14fa05ad43b3db3838d
|
|
pytorch_FBGEMM__3.10_cu126_x86_64
|
551 MB |
sha256:71ee24a742bf75b398da2ededd5b7344739b8b91c0e71aa940328ca2a5c53f02
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
852 MB |
sha256:5ed63fde462fe6c9a8c5a86ed87ee1d9882484d88cbcfce509218dfb11a75bab
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
79.2 MB |
sha256:5ec1451e6f796acc3f9d8a66ffd8138ac9a854b29178dba359277098e4e29cfa
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
78.2 MB |
sha256:a530d21d9ad95e54c53a8b5308cc0b946f2be96d0190e4251de963d6078a104d
|
|
pytorch_FBGEMM__3.11_cpu_x86_64
|
5.76 MB |
sha256:d81d5d955051ed1526239ffbd75dd7d079004594e054ada9d75b044687a68241
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
551 MB |
sha256:e8d4c2389ff0c50ff91a0727a225c6fc4d669d38f4be2f849d70402859da0a03
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
852 MB |
sha256:b5f937b2c795769036d88d3c94eee43e99960c70b44af3f590e17bcac238e083
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
79.2 MB |
sha256:b96f9cec23384d5689c23bfca2c3d4c6796f179c6f253f181a07b82cf4c12d9c
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
78.2 MB |
sha256:52315b3df2cac513661bb7b2408ba31efdd720809eb66d29a46e5bbea330908c
|
|
pytorch_FBGEMM__3.12_cpu_x86_64
|
5.76 MB |
sha256:a641044828208dc0a35cc093d136fb17a52d07ccb8065c72eb918d2f6d1e4334
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
551 MB |
sha256:6ca85f32d38d0e12ea54da09905fe8d5775c0da9ddcedb65e2864d665b0d9287
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
852 MB |
sha256:279b932c9fcb3e464de5fd46429432fe58f89cfb4f64d0ee5896e24007cf43f8
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
79.1 MB |
sha256:f23d7da18112510d66e886865833536c79b43cde5cb932a18e945f22f59117fd
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
78.2 MB |
sha256:f7edc785e380f78fb718c118af3a937d29cd204071f0ec45833ae4865a60bc7b
|
|
pytorch_FBGEMM__3.13_cpu_x86_64
|
5.76 MB |
sha256:a3a49a53b09db142c97c9667b5472cfbd1dff963cc664e7c9d3f18cdfe13eb28
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
550 MB |
sha256:cf1b5294f4c74c9f0274718f4f67b4ffeb1d5ac16a699b167bdf912ad0b8abfd
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
852 MB |
sha256:1bb1d2206dba437a2056eac5f21b616dfa85d5c1b837b3ebcab93d4dbf385055
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
79.2 MB |
sha256:212e30fbc1780dabb69aba0abb573b500a8390844d44824e1223940c6755f8b1
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
78.3 MB |
sha256:9d213fe55acb8603ed1c7fc0d00fbf6ec3aa3e00606d452baad15c27dd001456
|
|
pytorch_FBGEMM__3.13t_cpu_x86_64
|
5.76 MB |
sha256:fcaedb50c83072ba4b860f4a174406e6d17af380cc4f9ad814a3cac8fe1cbaf4
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
551 MB |
sha256:44212353ec575d39922ef3f46a9091d9390ea387e86159f9d3dfd8770ec92edf
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
852 MB |
sha256:6dafa9be01d6b41353b99ee8ad5862070fd5ea33bd34f67df1c8d66f9f7cae37
|
|
pytorch_FBGEMM__3.14t_cpu_x86_64
|
5.76 MB |
sha256:c961ca3b0c205413c4cdf678906c1e686ce99a251063fe7841d98b67cf901556
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
551 MB |
sha256:d364b56f37214ab139dc414f4356ecfb8defe75ea0c675650755e37a4980987f
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
852 MB |
sha256:280e03e05bb7b35600a01e8f10029b029000d3c8230321ed0c8bf787a2f28c56
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
79.2 MB |
sha256:e2b8f1e9efbcad39b8b17ef5463e18bfd03cf65ce107b2ef6de2567a34098dbc
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
78.2 MB |
sha256:32ffb233b3b30e557ad037d55551d12c09b8a1dd4e8a2bab2dc363b788c34007
|
|