MI350X FP8 triton patch (#4889) #6144
build_wheels_genai_linux_x86.yml
on: push
generate-matrix
/
generate
5s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cu126_x86_64
|
17.2 MB |
sha256:9db031c9690dfd4c5d0f57d1c176c3ce2aca25cd22a3ad2ad9369f61ed5922da
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
55.9 MB |
sha256:b60c706d84908bf6a6ef12a0fc7028a5bc22a9fd102c5171edd030612699b0bf
|
|
pytorch_FBGEMM__3.10_cu130_x86_64
|
48.7 MB |
sha256:0c5e847dd0057d42ba2f962db6c7e614293b759d9de137a1841da1d37f2aef74
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
11.2 MB |
sha256:de919378ba39c86ea1d20f04d81a83b0d0476e569db016dbfc320431ef9b2fc5
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
11.2 MB |
sha256:b47d6734ab367415838018dafa0b8ab7d6376be4b3cb5fefc8124e08cfc35a4a
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
17.3 MB |
sha256:ac01f32c9983c975f2d98032e482648f19dadca30fa74aac4cd831a7d9547c01
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
55.9 MB |
sha256:25dab8a1b6f8c9f2adbdea8753c19eefd9d024482497ef2e9ea6fc4d1c2f1d7f
|
|
pytorch_FBGEMM__3.11_cu130_x86_64
|
48.7 MB |
sha256:5457a5032c7b4f987e8fce42a83e2b63d5e2489970837044736ce1b1b5d2b5ce
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
11.2 MB |
sha256:100a7c76e41f5916668ce9bd9c046ccad9fee16e55307fde35fd99a1428f81ac
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
11.3 MB |
sha256:5232e55dde929604a11f4cf0722b65acff06492389d8ca91e8bdb092c05c2c08
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
17.2 MB |
sha256:1519347ed85833e446f6724158b986657a3d885b73d19168a78b70ac48c2b84b
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
55.9 MB |
sha256:ee6fd4d95d105304b2d2a0b450c0fba8339bfbdcf9c274bb6875f46a0ff334e3
|
|
pytorch_FBGEMM__3.12_cu130_x86_64
|
48.7 MB |
sha256:4f97e16bf0553dd49818739dc60a129971a14f472bb4f3efc9d7ff62203b9d72
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
11.2 MB |
sha256:7e50cb327e85e526033f3572625c509b61c769a68a279b213e6f7edd94288f0e
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
11.3 MB |
sha256:0954ef2fa831ee01baf6673645698009ed02569be5a3f6c5d1955d19e9a9fa75
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
17.2 MB |
sha256:3a2eb1d133569e98f4593b2aa4d25de73582094b083eed270beee01259d09fb2
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
55.9 MB |
sha256:dcbad7f529fb76bd6cadba8832a5b6d20003913f60df2520d00abdb91ab400d4
|
|
pytorch_FBGEMM__3.13_cu130_x86_64
|
48.7 MB |
sha256:de79fcfd303b59df64156a7cb59e40ca314c2cd487cc38e1344138da2c24ff29
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
11.2 MB |
sha256:ad7f3053e86826e7c16eabc2f2af87fd8e42d8d9d666e1bd62e68796c8ca247d
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
11.3 MB |
sha256:f31028fd6d434e9db79dace0f8e976c67e80ab045fb099d70da86b18e7f38b00
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
17.2 MB |
sha256:88d5489a5d93b22880a893a687d2a101009d45ba69812e98a2701ac4c0bc6978
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
56 MB |
sha256:d53a2c08b9c0eacfe8bf8e3721e3ee5b3c4a8c2edfb9b7a3bfe9e008f3b775e6
|
|
pytorch_FBGEMM__3.13t_cu130_x86_64
|
48.7 MB |
sha256:13c773eec9b16ce0a035b2572893f597b6bda9471e28bf53508bc48bec786215
|
|
pytorch_FBGEMM__3.14_cu126_x86_64
|
17.2 MB |
sha256:5bfb6d1ac01026e85777cf5a12735668fa881024dbe45cdc687a200b90115c14
|
|
pytorch_FBGEMM__3.14_cu128_x86_64
|
55.9 MB |
sha256:c3885af259c3489a5904463e5c6b435886939ca869dd1822cb30c2e40c2e0593
|
|
pytorch_FBGEMM__3.14_cu130_x86_64
|
48.7 MB |
sha256:903d9ade3ece0947117e34d3930403f2937d8188c49cc77f24c4790b1ba5b834
|
|
pytorch_FBGEMM__3.14_rocm6.3_x86_64
|
11.2 MB |
sha256:1032240602374aea0ee2e3a304a580cab8653d0aa26d2317967209fb84c567f1
|
|
pytorch_FBGEMM__3.14_rocm6.4_x86_64
|
11.3 MB |
sha256:39c91a09bf17f447dcc885c6daee6e79be16d6ed17cf3a3ac65ecd4bc145fa73
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
17.2 MB |
sha256:edb1c0b5f27f80e7b8544309e76d584e58c9ee0c41bbfd7840ee892456d9a844
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
56 MB |
sha256:ea11f55611071865060db40bc4240adc27dca445d7e6ac7b85e1898e020e8dc8
|
|
pytorch_FBGEMM__3.14t_cu130_x86_64
|
48.7 MB |
sha256:430aeb6015d9843f2c4a9d4eb254e2ee112e8c060f8cd01b98ee1954b9c00a5d
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
11.2 MB |
sha256:3451e7489c7820592bbcb3e51e80d92db02289c6fdd3144a29f1a5723e7a09ea
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
11.2 MB |
sha256:2712bf70bff96d906201d963f0a2521e7bf7a6ead63b54d7fc820fae9a57f617
|
|