Add Inference Feature to Skip Pinned Memory Creation (#4924) #16762
build_wheels_linux_x86.yml
on: push
generate-matrix
/
generate
6s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cpu_x86_64
|
5.76 MB |
sha256:93b9880ad6eb6140eb14e26543b460d6747f45278b4615a5797340eb433ef131
|
|
pytorch_FBGEMM__3.10_cu126_x86_64
|
550 MB |
sha256:fc381f7d17f56e3d9a64f07ac8e1ff1ef95d0c703a767eeece85c0e7e9c6e4ac
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
852 MB |
sha256:7c5426018ec1cdbb4c4a4db948062839c46a7a08c872f5e7a06f03078550792a
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
79.2 MB |
sha256:7ced4c93faf2ece3cfb29f534283c58eb03cbc3e1019e3bb9f82db7f2e5ab856
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
78.2 MB |
sha256:de9e44281001408ef6e366d7c249824fd70c216571e15b5dd5cff12247acb99e
|
|
pytorch_FBGEMM__3.11_cpu_x86_64
|
5.76 MB |
sha256:d0449ccf0bbd00436e8251662c51178386842487dec70ace725ef3705d8baaec
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
551 MB |
sha256:07f85fd5c435dfea8a7a3d5ff8277bb4c1162ffeca7f22f39c67dc0e9b0c06bd
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
852 MB |
sha256:cd38c1c56ecc39d4ff10ecb6bf5095a26614649ac06d9bb1548e6c13420fbdca
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
79.2 MB |
sha256:5e81982b35ecfe843d9ed5c0df506eb1db1f179d5050b920bad301e5be825e19
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
78.2 MB |
sha256:e92ccb3b9491471a5245b1387b787009a920e47ea07b53448570c9e24f2c3953
|
|
pytorch_FBGEMM__3.12_cpu_x86_64
|
5.76 MB |
sha256:c0afd402c14a674c0f8bedc61e29a8f71654aa5d76aab65a0b027b51c7acdede
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
551 MB |
sha256:eae1fa74cbdbe91b39bcf227365127b6a6953abde5430a47daf32c8da044ba35
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
852 MB |
sha256:9cc0869cd5e15af7c3e87a6f3868e3d24993819e4b582a9ee077d9b7cb3db312
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
79.2 MB |
sha256:e3be56c50788a3cd30cd0e4f5664a7df3d1cc298b45c146717111fb50fc33d11
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
78.2 MB |
sha256:e05277be49a6ccde28ad969077548f3d203f863d19a6554ca302d60e9872466f
|
|
pytorch_FBGEMM__3.13_cpu_x86_64
|
5.76 MB |
sha256:b4aad34df7776bee74a994f18ae8f24c1b5e8293c58101c418d89e690d95ce93
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
551 MB |
sha256:1b7266f62611f38173088eaa9f04f7d058a7d853315c575cddde5edca2f536fa
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
852 MB |
sha256:3ff714208fc3643951997b6bd7b37a1c4fcc056f3f9fcc2e60df506198744b43
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
79.2 MB |
sha256:61c9918009ec60f7a7271c41679e7bb4ca8c823d4728e85eb906966563c22b08
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
78.2 MB |
sha256:abdae04a1f527836b16b3cdbf8c53da4c97c459f83a89c0520826c822c3732f4
|
|
pytorch_FBGEMM__3.13t_cpu_x86_64
|
5.76 MB |
sha256:9f729efcbee00912aa19d95f9d0d35c7ea05e376a64d5b3399ada3de799d68c1
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
551 MB |
sha256:b2dfb3b33c4d21d3c4c57b943f30078e95c0a6c981a710181ec43d0877ea904f
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
852 MB |
sha256:db377af9258f7902dc6c592567b5a6e69d0c6cc4328461857d85c6111f27ae51
|
|
pytorch_FBGEMM__3.14t_cpu_x86_64
|
5.76 MB |
sha256:2463a4cf2606012d1ab46b80e8181e52fa54132aac5137e69919143d6a32ba9c
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
551 MB |
sha256:95359d879aadaba959114c604e9250fda7f077d9b42c19dbd40f7b9ab0fc6901
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
852 MB |
sha256:4fb4141d8cbe1d3ee050620a94b3e5865efbd723ebb96209ab5e7c68bfb219d7
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
79.2 MB |
sha256:887b8b962ecb75a390ce8b2f10ceedf93d7ed0f02b04a0268a1cefc42e8f8429
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
78.2 MB |
sha256:bf66a254e2a8947f74365e207e07bc4c00fd9a0b57b9c77ab77d36ea33033474
|
|