2025-09-26 nightly release (10354f9b54150f58e6a887102caea4e8656a52da) #16763
build_wheels_linux_x86.yml
on: push
generate-matrix
/
generate
7s
Matrix: pytorch/FBGEMM / build
Matrix: pytorch/FBGEMM / upload / upload
Annotations
1 warning
filter-matrix
The `python-version` input is not set. The version of Python currently in `PATH` will be used.
|
Artifacts
Produced during runtime
Name | Size | Digest | |
---|---|---|---|
pytorch_FBGEMM__3.10_cpu_x86_64
|
5.75 MB |
sha256:f02aa292e13cd86fbaf703aeb3d5cd1366379266de90c35fba32a3752194b0f0
|
|
pytorch_FBGEMM__3.10_cu126_x86_64
|
551 MB |
sha256:b6adea3a5f07afad6b62fe30801bac3ffc60f4527c6e4d7dfcb74aa56ddaa030
|
|
pytorch_FBGEMM__3.10_cu128_x86_64
|
852 MB |
sha256:b3078c74133fec99ae44e4c36e0e86af199f2f5062f6580ce6afa89d7166b3ee
|
|
pytorch_FBGEMM__3.10_rocm6.3_x86_64
|
79.2 MB |
sha256:d50200672b78f3b68787719a5b58cb7adc20c5ed9571260c1761339cfa782abb
|
|
pytorch_FBGEMM__3.10_rocm6.4_x86_64
|
78.3 MB |
sha256:c49ca11b752fb5f142abe55285f56772ae3daef3b9de212275301535275ba3bc
|
|
pytorch_FBGEMM__3.11_cpu_x86_64
|
5.75 MB |
sha256:af83eb313117358b11b03e0ddc9685d87b6dce6fb329cbe4d2caf25d7a2ce43b
|
|
pytorch_FBGEMM__3.11_cu126_x86_64
|
551 MB |
sha256:f3156f5ae4e0334086ee3c0df739829b36a1d8a94c265171793ef97edcaf24a8
|
|
pytorch_FBGEMM__3.11_cu128_x86_64
|
852 MB |
sha256:48af012745a0b1edc951ef7fb38fe837896fdd3ff36dee00b784d2f04a7a9a0d
|
|
pytorch_FBGEMM__3.11_rocm6.3_x86_64
|
79.2 MB |
sha256:da96dda82f47f95a5e3eb7bdae3087c7d5d619f3a784375401d9118434cdf3fe
|
|
pytorch_FBGEMM__3.11_rocm6.4_x86_64
|
78.2 MB |
sha256:a48b179e82077e75162939ee417190ead5b9a57127349a71916693a892700bcd
|
|
pytorch_FBGEMM__3.12_cpu_x86_64
|
5.75 MB |
sha256:2869e73975e961fc6d54a88c66ec07ac65b5cfa242f1757c8ac8052e76c13b0b
|
|
pytorch_FBGEMM__3.12_cu126_x86_64
|
551 MB |
sha256:09b8853d5db94321eb4b409a97480a556447bd4f685fbe6d9553946003869ddc
|
|
pytorch_FBGEMM__3.12_cu128_x86_64
|
852 MB |
sha256:bda4aa1ce8a24bdfbaa207e22b3ca523b4cbb69b6b9f5cd07e88d8dbc17dfaf1
|
|
pytorch_FBGEMM__3.12_rocm6.3_x86_64
|
79.2 MB |
sha256:e2c213b8ce48b34896eb1cba06a6acb2fff51dd1b37e2ef0ba09356c5853a819
|
|
pytorch_FBGEMM__3.12_rocm6.4_x86_64
|
78.2 MB |
sha256:916a25ee1bb231976e7c46ed5631ff9fafec7f761fcab3014ca257e8c1abd748
|
|
pytorch_FBGEMM__3.13_cpu_x86_64
|
5.75 MB |
sha256:6e1f73e2ed04257280aeaefd3f7c73c8f7932d43993b4ba70a735ce8bc65ecfe
|
|
pytorch_FBGEMM__3.13_cu126_x86_64
|
551 MB |
sha256:d575a6a0fc32729593db28366f6f9474a3a849656f82e75f3919f6a2d6da56d7
|
|
pytorch_FBGEMM__3.13_cu128_x86_64
|
852 MB |
sha256:dbc89eda7db41979fa0c84a253e395649556906fa1b1124d65618b05b59ab5b2
|
|
pytorch_FBGEMM__3.13_rocm6.3_x86_64
|
79.2 MB |
sha256:b97f1ac1c522dfb99d7c498a8bed2a6d6fcf00b3187647960a6b767daff483dd
|
|
pytorch_FBGEMM__3.13_rocm6.4_x86_64
|
78.2 MB |
sha256:e50d0efed7217b81ae56f9a316e7f76402cf3acb5cff8d8ba0407bd2d407c5c8
|
|
pytorch_FBGEMM__3.13t_cpu_x86_64
|
5.75 MB |
sha256:a8dc16f1f85d2c14e777f179a4e41d47baaf16ea063d11b5491f6ad745a33d25
|
|
pytorch_FBGEMM__3.13t_cu126_x86_64
|
550 MB |
sha256:53b4e6c2ba7f3aae229ec41d3c7eddd8bf16a654fb86adf5e2fe3bb63e917225
|
|
pytorch_FBGEMM__3.13t_cu128_x86_64
|
852 MB |
sha256:39d75427c30b6f42fc436d4d883ebbbcdf0fc56928dbaeebdad06187c0655317
|
|
pytorch_FBGEMM__3.14t_cpu_x86_64
|
5.75 MB |
sha256:4e8d4c9b1e9a7dcec0bc43027063036757d29a121752454d5ffb62ad7e7ea6e2
|
|
pytorch_FBGEMM__3.14t_cu126_x86_64
|
550 MB |
sha256:44f18b9487fcaf58aa0218f7b4dd3aaf44fcee2370d543d25c74bdec89365c98
|
|
pytorch_FBGEMM__3.14t_cu128_x86_64
|
852 MB |
sha256:0dd8127d19b2bf3ea1b0eef6ce49f62c5aada64cacadcb39493e2fe9d47a6e5b
|
|
pytorch_FBGEMM__3.14t_rocm6.3_x86_64
|
79.2 MB |
sha256:06a8076266c0d39cc0c330663c88385045a605a79e35308944ddeeae313ef0c0
|
|
pytorch_FBGEMM__3.14t_rocm6.4_x86_64
|
78.2 MB |
sha256:691ce3ba8c5a56846fe24664fcf3711e689b60b660537798f36f1db731655069
|
|