|
| 1 | +# Copyright (c) Meta Platforms, Inc. and affiliates. |
| 2 | +# |
| 3 | +# This source code is licensed under the MIT license found in the |
| 4 | +# LICENSE file in the root directory of this source tree. |
| 5 | +from __future__ import annotations |
| 6 | + |
| 7 | +import argparse |
| 8 | +import importlib.util |
| 9 | + |
| 10 | +import numpy as np |
| 11 | +import pytest |
| 12 | +import torch |
| 13 | +from mocking_classes import DummyStrDataLoader |
| 14 | + |
| 15 | +from tensordict import lazy_stack, set_capture_non_tensor_stack, TensorDict |
| 16 | +from torchrl.data import LazyStackStorage, ReplayBuffer, Unbounded |
| 17 | +from torchrl.envs import Transform |
| 18 | +from torchrl.envs.llm import LLMEnv |
| 19 | +from torchrl.modules.llm import TransformersWrapper |
| 20 | +from torchrl.objectives import ClipPPOLoss |
| 21 | +from torchrl.objectives.llm.grpo import GRPOLoss, GRPOLossOutput, MCAdvantage |
| 22 | + |
| 23 | +_has_transformers = importlib.util.find_spec("transformers") is not None |
| 24 | +prompts = [ |
| 25 | + "Lorem ipsum dolor sit amet,", |
| 26 | + "consectetur adipiscing elit,", |
| 27 | + "sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.", |
| 28 | + "Ut enim ad minim veniam, quis nostrud exercitation", |
| 29 | + "ullamco laboris nisi ut aliquip ex ea commodo consequat.", |
| 30 | + "Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore", |
| 31 | + "eu fugiat nulla pariatur.", |
| 32 | +] |
| 33 | + |
| 34 | + |
| 35 | +@pytest.mark.parametrize("ndim", [1, 2]) |
| 36 | +def test_mc_advantage(ndim): |
| 37 | + # make trajectories |
| 38 | + def make_silly_trajectory(n_steps=None): |
| 39 | + while True: |
| 40 | + if n_steps is None: |
| 41 | + n_steps = torch.randint(low=2, high=100, size=(1,)).item() |
| 42 | + tds = [] |
| 43 | + for _ in range(n_steps): |
| 44 | + n_tokens = torch.randint(low=1, high=100, size=(1,)).item() |
| 45 | + rewards = [torch.randn(n_tokens, 1)] |
| 46 | + prompt = np.random.choice(prompts) |
| 47 | + td = TensorDict( |
| 48 | + text=prompt, |
| 49 | + next=TensorDict( |
| 50 | + reward=rewards, done=torch.zeros(1, dtype=torch.bool) |
| 51 | + ), |
| 52 | + ) |
| 53 | + tds.append(td) |
| 54 | + tds[-1]["next", "done"] = torch.ones(1, dtype=torch.bool) |
| 55 | + yield lazy_stack(tds) |
| 56 | + |
| 57 | + rb = ReplayBuffer(storage=LazyStackStorage(100)) |
| 58 | + rb.append_transform(MCAdvantage(grpo_size=4)) |
| 59 | + if ndim == 1: |
| 60 | + gen = make_silly_trajectory() |
| 61 | + for _ in range(100): |
| 62 | + trajectory = next(gen) |
| 63 | + rb.extend(trajectory) |
| 64 | + assert len(rb) |
| 65 | + s = rb.sample(1) |
| 66 | + assert "advantage" in s.keys() |
| 67 | + else: |
| 68 | + gen = make_silly_trajectory(n_steps=5) |
| 69 | + for _ in range(100): |
| 70 | + trajectory = lazy_stack([next(gen) for _ in range(3)]) |
| 71 | + trajectory = trajectory.view(-1) |
| 72 | + rb.extend(trajectory) |
| 73 | + assert len(rb) |
| 74 | + s = rb.sample(1) |
| 75 | + assert "advantage" in s.keys() |
| 76 | + |
| 77 | + |
| 78 | +def test_grpo(): |
| 79 | + ... |
| 80 | + |
| 81 | + |
| 82 | +class TestPPO4LLMs: |
| 83 | + @pytest.mark.skipif( |
| 84 | + not _has_transformers, reason="transformers lib required to test PPO with LLMs" |
| 85 | + ) |
| 86 | + @set_capture_non_tensor_stack(False) |
| 87 | + @pytest.mark.parametrize("from_text", [True, False]) |
| 88 | + @pytest.mark.parametrize("cls", [ClipPPOLoss, GRPOLoss]) |
| 89 | + def test_hf(self, from_text, cls): |
| 90 | + from transformers import AutoTokenizer, OPTConfig, OPTForCausalLM |
| 91 | + |
| 92 | + tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m") |
| 93 | + tokenizer.pad_token = tokenizer.eos_token |
| 94 | + |
| 95 | + model = OPTForCausalLM(OPTConfig()).eval() |
| 96 | + policy_inference = TransformersWrapper( |
| 97 | + model, |
| 98 | + tokenizer=tokenizer, |
| 99 | + generate=True, |
| 100 | + from_text=from_text, |
| 101 | + return_log_probs=True, |
| 102 | + ) |
| 103 | + policy_train = TransformersWrapper( |
| 104 | + model, tokenizer=tokenizer, generate=False, from_text=False |
| 105 | + ) |
| 106 | + for p in policy_train.parameters(): |
| 107 | + assert p.requires_grad |
| 108 | + # Create some fake data |
| 109 | + dl = DummyStrDataLoader(batch_size=32) |
| 110 | + llm_env = LLMEnv.from_dataloader( |
| 111 | + dl, |
| 112 | + tokenizer=tokenizer if not from_text else None, |
| 113 | + batch_size=(32,), |
| 114 | + from_text=True, |
| 115 | + eos_token_id=tokenizer.eos_token_id, |
| 116 | + ) |
| 117 | + |
| 118 | + class RewardTransform(Transform): |
| 119 | + def _step(self, td, next_td): |
| 120 | + next_td["reward"] = torch.randn_like( |
| 121 | + td["tokens_response"], dtype=torch.float |
| 122 | + ).unsqueeze(-1) |
| 123 | + return next_td |
| 124 | + |
| 125 | + def transform_reward_spec(self, reward_spec): |
| 126 | + return reward_spec.set( |
| 127 | + "reward", Unbounded((*reward_spec.shape, -1, 1), dtype=torch.float) |
| 128 | + ) |
| 129 | + |
| 130 | + llm_env = llm_env.append_transform(RewardTransform()) |
| 131 | + with torch.no_grad(): |
| 132 | + data = llm_env.rollout(3, policy_inference) |
| 133 | + data = data.view(-1) |
| 134 | + assert data["tokens_response"].shape[-1] == 20 |
| 135 | + # Make some fake advantages: |
| 136 | + data["advantage"] = torch.randn_like(data["next", "reward"]) |
| 137 | + |
| 138 | + loss = cls( |
| 139 | + actor_network=policy_train, |
| 140 | + ) |
| 141 | + loss_vals = loss(data) |
| 142 | + if cls is ClipPPOLoss: |
| 143 | + assert "loss_objective" in loss_vals |
| 144 | + assert "loss_entropy" in loss_vals |
| 145 | + assert loss_vals["loss_objective"].requires_grad |
| 146 | + assert loss_vals["loss_entropy"].requires_grad |
| 147 | + assert "clip_fraction" in loss_vals |
| 148 | + assert "kl_approx" in loss_vals |
| 149 | + assert "entropy" in loss_vals |
| 150 | + assert "ESS" in loss_vals |
| 151 | + assert "loss_critic" not in loss_vals |
| 152 | + else: |
| 153 | + assert isinstance(loss_vals, GRPOLossOutput) |
| 154 | + |
| 155 | + |
| 156 | +if __name__ == "__main__": |
| 157 | + args, unknown = argparse.ArgumentParser().parse_known_args() |
| 158 | + pytest.main([__file__, "--capture", "no", "--exitfirst"] + unknown) |
0 commit comments