diff --git a/.pylintdict b/.pylintdict index f8ac2c55..3de7b09e 100644 --- a/.pylintdict +++ b/.pylintdict @@ -145,6 +145,7 @@ hopkins hoyer https hyperparameters +iae idx im imag @@ -155,6 +156,7 @@ interatomic ints iprint iqft +isa ising iteratively iz @@ -333,6 +335,7 @@ spsa sqrt statefn statevector +statevectorestimator statevectors stddev stdout @@ -367,8 +370,11 @@ trainability transpilation transpile transpiled +transpiler +transpiler's trotterization trotterized +tweedledum uncompute unitaries univariate diff --git a/docs/tutorials/01_algorithms_introduction.ipynb b/docs/tutorials/01_algorithms_introduction.ipynb index 01c3e7b2..61ae9bcb 100644 --- a/docs/tutorials/01_algorithms_introduction.ipynb +++ b/docs/tutorials/01_algorithms_introduction.ipynb @@ -29,10 +29,10 @@ "outputs": [], "source": [ "from qiskit_algorithms.optimizers import SLSQP\n", - "from qiskit.circuit.library import TwoLocal\n", + "from qiskit.circuit.library import n_local\n", "\n", "num_qubits = 2\n", - "ansatz = TwoLocal(num_qubits, \"ry\", \"cz\")\n", + "ansatz = n_local(num_qubits, \"ry\", \"cz\")\n", "optimizer = SLSQP(maxiter=1000)" ] }, @@ -54,7 +54,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAACuCAYAAADDNYx2AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAfl0lEQVR4nO3deXxU9b3/8deE7CRAwha2kABhC5slIFvxhwWVsoi2VCyitFC0gnh7uWBtf61VW1nE4kLrT60+vCpQLKCsdamIrCLcgLJElkACWQYICZKEbJOZ3x9zDaQJMpNk5uSceT8fDx41Z0k+6feTM+85y3dsLpfLhYiIiIhJBRldgIiIiEh9KMyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipBRtdgNTkcrlwlJQZXYZXgiPCsNlsRpdhGeoBUQ+IesCLn+v3nyg35CgpY0XX+4wuwytT098hJDLc6DIsQz0g6gFRD3hOl5lERETE1BRmRERExNQUZkRERMTUFGZERETE1BRmRERExNQUZkRERMTUFGZERETE1DTPjIXEDU3mjnVPVltWUVzC5VO5pK/ZTtrrW3BVOg2qTvxBPSDqgcAWqOOvMGNBp9btIGtrKthsRLRuQbfJtzD4yek0T+rAnvmvGF2e+IF6QNQDgS3Qxl9hxoIuHjrNqbU7qr4+9uaH3LXjBbr/9AekLlpF2cXLBlYn/qAeEPVAYAu08dc9MwHAUVLGhdQT2IKCaNa5rdHliAHUA6IeCGxWH3+FmQARneBu3rJLRQZXIkZRD4h6ILBZefx1mcmCgiNCCYuNrrpW2uP+22jZtwsXUk9w+VSu0eWJH6gHRD0Q2AJt/C0fZvLy8liyZAnr1q0jKyuL1q1bc/fdd/PMM88wd+5c3njjDV566SXmzJljdKkN5qYFU7hpwZRqyzI2f87ex/9mUEXGq3DC4QL4phxCm0CXaIiLMLoq31EP1HS5HNK+gRIHRARDcguICjG6Kt9RD9SUewVOF0F5JbQIhT4xEGzR6xOBNv6WDjMHDx5k7Nix2O12mjZtSu/evcnJyeHFF18kPT2d/Px8AAYMGGBsoQ3s2NsfkbFxD0EhwcT0jKfP7Ek0bdeSyrLyqm1ueflXEGTjswf/XLUstEUUk7YtY/9Tb3Fq3Y7avrXp5JXCPzLg/Uy4WHZ1uQ0Y0RbuSYQhbYyqznfUA1ed+Ab+fho+yIKya55IDW8CYzvClETo2sy4+nxFPeDmcsGu8/DuadhzHlzXrGsVBnd1hsmJEBtmWIk+EWjjb9FM6j4jM2HCBOx2O/PmzSM3N5fU1FTsdjuLFy9m8+bN7Nu3D5vNRr9+/Ywut0FdPmUnd8chsrce4PBf1/PJA4toNaArQxc/WLXNnsdfo82gHiROGl61bMgzMzn/xdemauDv8vU3MPUzeP149SAD7gPajnMw53N44Yj7gGcl6gG3LWdh2nZYf6Z6kAEorYT3MuG+7fBxtjH1+ZJ6AJwueO4w/Mde2P1vQQYgrwxeOw73fQYnrfVwT8CNv2XDzNy5c8nKymLOnDksXbqU6OjoqnULFiygf//+OBwOEhISaNbMgm/LrnFh/zHS12wncdJwWqf0AKD8UhG7573MzX+aSUTbGDqPG0LcsGT2PGaN+QfOFsGcPTVDTG3eTodXj/m+JiMFYg98Zoc/HADHDYJqhRN+m+p+sbOyQOyBv6S5z8rdyPlSmL0Hcq74viajWH38LRlm0tLSWL16Na1atWLhwoW1bjNw4EAA+vfvX2356dOnmThxItHR0cTExHD//fdz8eJFn9fsa18uW4PTUclN8++pWpb96UEyNu5m5PK5DFn0C3bPe5myAmvc5b48DS6V33i7b/3tuLUPZBBYPeBwwqKvwNN5Tp0uWPwVVFrsDN2/C6QeyCiC/z7p+fYXy+Dlr31XT2Ng5fG3ZJhZtWoVTqeTqVOnEhUVVes2ERHuuz+vDTOFhYWMGjWKrKwsVq1axauvvsqOHTsYP348Tqe5p38uzLBzev0u2o/sR5ube1Ut3//kW0QnxpG99QBZn6QaWGHDuVAK2+ze7eMC1mX4oprGI5B6YLvd3QfeyL7ivqfCygKpB9ZmeL/Pv3KgwIOzuWZl5fG3ZJjZunUrAKNGjbruNllZWUD1MPPqq6+SnZ3N+++/z/jx45k8eTIrV67k888/Z8OGDb4t2g++emEtzsrqqdxRUkZR5nkK0s4YWFnD+iCrbu+wN55t+Foam0DpgU1ZddxPPWBgZQ3H5YLNdRjLCid8lNPw9TQmVh1/Sz7NlJmZCUDnzp1rXe9wONi1axdQPcxs2rSJESNGEB8fX7Vs6NChdOnShY0bNzJp0qQ61ZOSkoLd7vmpghBXEE8w2OufY99zhDfb/fi66785kc1bHe+57vr66J7UnQpb4zh7FT35SZqOmuH1fhfLoGN8AjgdDV+Ul9QD9dPy1/8kJL6v1/tt2fk/vDPpTh9U5D31QN3ZQiNo+/yJOu37xJ9fZt57f2rgiuqmLj1g5PhD/XogLi6O/fv312lfS4aZ4uJiAEpKSmpdv3r1avLy8oiOjiYxMbFq+dGjR5k8eXKN7ZOTkzl69Gid67Hb7WRne/64RKitCZhstumc3BzKXZVGlwFAx8JCmtZx3+zsLHAa/3uoB+qnWUUFdZlCpry8zKu/VV9SD9RdUFhknf+vK7p8WT1QD0b1gCXDTFxcHAUFBaSmpjJ06NBq63Jzc5k/fz4A/fr1w2azVa0rKCigRYsWNb5fbGwsx47V/XGXuLg4r7YPcQV5fudiI9G+XftG8Y4MIKKibs9YVl6y06Gdd2PlK+qB+gkqqtvNL02K8+jQoUMDV1M36oH6cRYVEBQV4/V+kY5C9UA91KcHvH2tvJYlw8zo0aNJS0tj8eLFjBkzhu7duwOwb98+pk2bRl5eHuC/yfK8PW1WcaWUFV3v81E1NX3woyfq/T2OnzhOSGR4A1RTf3mlMO5j7++bmTkojtlZdbzZooGpB+pnWy781z7v93tt9kSGPTmx4QuqA/VA/Sw7DCtOebdPaBB88cYfaRH2R98U5SV/9kBDjD8Y1wOWvAF4wYIFtGzZkrNnz5KcnEzfvn1JSkpi8ODBdOnShVtvvRWo+Vh2TEwMly5dqvH98vPziY2N9Ufp0gBahcOt7bzbJwi4u/ZbrMSERrSFtl4eTztEwpDWvqlH/O9HCd7vM6Y9tLDYTMCBwpJhpmPHjuzYsYNx48YRHh5ORkYGsbGxvPLKK2zevJnjx48DNcNMr169ar035ujRo/Tq1avGcmm85vSC2FDPt5/VA9pF+q4e8a/gIHi8v+cHuCY2eLwfBNluvK2YQ3wU/DzJ8+1bh8MvdZg3LUuGGXAHk02bNlFYWEhhYSF79+5l1qxZFBcXk5GRQVBQEH369Km2z/jx49m5c2fVY9sAe/fuJT09nQkTJvj7V5B66NAU/jLUfYC6kZ8lwYzuvq9J/GtEW/jjQAi5wVEuNAgWpVjzM7oC3S97wrSuN94uLsJ9vLDyh89anWXDzPUcOXIEl8tFUlISkZHV34rPmjWLdu3aceedd7Jp0ybWrFnDvffey+DBg7nzzsbxuKZ4Lqk5rLgFHuoBbWoJNaPawf8bBrN7gU3vyC3ptg7uHvhRZ4hoUn1d02CYnAArb3H3gliPzQaPJsPyIXBLXM0XvLYR8HBPeGckdImu9VuISVjyBuDvcujQIaDmJSaAZs2asXXrVh599FGmTJlCcHAw48ePZ9myZQQFBVzus4TYMJjZA6YnwdFLMGOne7ZfG/DsIIOLE7/oEu2+5PRIbxj1z6vjv+U2d6AR6xvSxv3vXAmM//hqD6z/gfuSpJhfwP0pf1eYAejatSubNm3yZ0niB8FB0C/WfQD79kAmgSUqpPr4K8gEnrYR1XtAQcY6Au7P+UZhxsxiendm2NKHCImKoDjrAtsfeYmY7p0YveI3XE7P4aMpT1N68TJNIkIZ/tzDtBrQFZfTRerClWRu/hyAlN9NI+HOYeQfOs3Wny0x+DcSb3g6/t97/Kd0/uHNVJZV4HRUkrpoJTnbvgSg96zx9Jx+O47iUjaMmW/wbyTe8rQHvtU8qQMTPlzC8Xc+5ovfvwmoB8zOmx7o8cDt9JoxFpejEpfTxeZxj1NZVmHK14GACzPffm6TFY14fg67fvUX8o9k0G3KrQz6/f2c/PunXE7PqXZQ6vPQRJzlFawb9ghRndowbstC7LsPU1ZQxP6n3+bSsbPEj/V+GnUxlqfjf25vGl8uW0NlaTkxvTsz9r2neHfALBwlZRx9dRP5h04z+Knpxv0iUmee9gCALbgJw559iMx/flFtuXrA3DztgU63D6LL3d9n87jfUFF4hbCWzXBWuGfuNePrgE6yWURsn0QcV0rJP5IBQPq72+h0WwpBoTXzasKdwzn21kcAFJ09j333EeLH3uzPcqWBeTP+2VsPUFlaDuD+YDmbjfCWzfxZrviANz0AMOA/J5OxcQ+Fp3L9WKX4kjc90OfhiXz5539QUXgFgLKLl3E5TTbd8DUC7syMVUXFtyGmZzwTP362allwRBiRcTUn+4vq0IqirAtVXxedPU/TDq38Uqf4hjfjf62kKaMoyjxXrR/EnLzpgVY3JdF6YHc+uucpBsz7iT/LFB/ypgdaJHWkZf+u9P/PyTQJCyH9H5+R9voWf5bboBRmLOTCgRN8fO/VabinHH7dwGrE37wd/3Yj+tJ/3mQ+uudpX5cmfuJJDzSJCGXIoplsm/mcP0sTP/H0OGALbkJ0fBs+uOv3hLZoyh3rnqIw8xxZ//off5XaoBRmLKIo81y1syshUREER4ZzxZ5fc9vsPKI6tqbk/CUAojq1IeezL/1VqviAN+MP0HZob4Y//zCf3L+Iy+k5/ipTfMjTHojuHEdUh1bcsfYPAIQ2awpBNkKbR7Hz0eX+LFkamDfHgeLsPE69txOX00lZfiHZn6TSemCSacOM7pmxiPwjGTgrKmk3sh8APaffzun1u3CWO2psm7lxDz3uvw1wB5m4Ycmc+eCLGtuJeXgz/m2H9OL7Lz3C1ulLKDia6e9SxUc87YFLX5/h731msGbww6wZ/DBHX9vMyb9vVZCxAG+OA6fe20mHUQMAaBIeStywZPKPmPd4oDMzFrJ99guMeH42oYt+QWGGne1zXiSmR3yN7Q7/dT3Dlz3M3XuW46p0svc3f6Msv9CAiqUheTr+w597mCahIYxY9vDVfR95iUtfn/FnueIDnvaAWJenPXD0lY0MXfIgkz5bhssFmZs/J3PTHgMqbhgKMxZy6eszbLrjsRtu5ygp47OHlvmhIvEnT8d/3fBH/FCNGMHTHrjWwefe9VE1YgRPe6CyrMJSZ+N0mcniKischMVEM/HjZz16/Dbld9Po+8hdlF0q8kN14mvejn/vWeMZsmgmpTpTZxnqAQmE1wGby+VyGV2EVFdxpZQVXe8zugyvTE1/h5BIDz6i2mCDN4ATd4r/YqLR1VyfesA3zDL+oB7wFfWAbxnVAzozIyIiIqamMCMiIiKmpstMjZDL5cJRUmZ0GV4JjgjDZmv8n0VtllPM6gHfMMv4g3rAV9QDvmVUD+hppkbIZrM1+uvO4lvqAVEPiHrAc7rMJCIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmFmx0AVKTy+XCUVJmdBleCY4Iw2azGV2GZagHRD0g6gEvfq7ff6LckKOkjBVd7zO6DK9MTX+HkMhwo8uwDPWAqAdEPeA5XWYSERERU1OYEREREVNTmBERERFTU5gRERERU1OYEREREVNTmBERERFTU5gRERERU1OYEREREVPTpHkWEjc0mTvWPVltWUVxCZdP5ZK+Zjtpr2/BVek0qDrxB/WAqAcCW6COv8KMBZ1at4OsralgsxHRugXdJt/C4Cen0zypA3vmv2J0eeIH6gFRDwS2QBt/hRkLunjoNKfW7qj6+tibH3LXjhfo/tMfkLpoFWUXLxtYnfiDekDUA4Et0MZf98wEAEdJGRdST2ALCqJZ57ZGlyMGUA+IeiCwWX38FWYCRHSCu3nLLhUZXIkYRT0g6oHAZuXxD4gwk5eXx4IFC+jWrRvh4eF06tSJRx99lOLiYmbMmIHNZmP58uVGl9lggiNCCYuNJqxlM1r0jOfmZ2bSsm8XLqSe4PKpXKPLEz9QD4h6ILAF2vhb/p6ZgwcPMnbsWOx2O02bNqV3797k5OTw4osvkp6eTn5+PgADBgwwttAGdNOCKdy0YEq1ZRmbP2fv438zqCJjZRXD2gz4NBe+vYffifvr77eFYAtGevXAVS4XfJkPazKqj//vU2FyAvSJAZvNuPp8RT1wlcMJ2+ywLqN6D7x0FO7uDB2aGlicjwTa+Fs6zOTl5TFhwgTsdjvz5s3jiSeeIDo6GoAlS5bw2GOPERwcjM1mo1+/fgZX23COvf0RGRv3EBQSTEzPePrMnkTTdi2pLCuv2uaWl38FQTY+e/DPVctCW0Qxadsy9j/1FqfW7ajtW5tKhRMWfgUbztS+fv4+iIuAJYOgdwu/luZz6gG3vFJYsA++Kqi5bkuW+9/3WsKiFIgN8399vqQecPsqHx7fD+dKa67775Pw1km4qzMs6GutNzaBNv4WGrqa5s6dS1ZWFnPmzGHp0qVVQQZgwYIF9O/fH4fDQUJCAs2aNTOw0oZ1+ZSd3B2HyN56gMN/Xc8nDyyi1YCuDF38YNU2ex5/jTaDepA4aXjVsiHPzOT8F1+bqoGvx+F0h5XrBZlv2Utg1i44XMuLnZmpB9xBZsbO2oPMtVIvwsydcKnMP3X5i3oADl6Eh3bXHmS+5QLWZboDT6XLb6X5XKCNv2XDTFpaGqtXr6ZVq1YsXLiw1m0GDhwIQP/+/auWfRt+Bg8eTFhYGDYLnH++sP8Y6Wu2kzhpOK1TegBQfqmI3fNe5uY/zSSibQydxw0hblgyex6zxvwDb56Anec827a0EuZ94f5fqwrEHnjiAGRf8WzbM8Xw5EGflmO4QOuBKw7333W5h/PDfWqHFem+rclIVh9/y4aZVatW4XQ6mTp1KlFRUbVuExERAVQPMydPnmTt2rXExcUxaNAgv9TqD18uW4PTUclN8++pWpb96UEyNu5m5PK5DFn0C3bPe5myAvPf5V7hhH9keLfPxTL4V7ZPymk0AqkHThXC3gve7bPjHJw1/6/+nQKpBz7Igm8qvNtn9WlrnZ35d1Yef8uGma1btwIwatSo626TlZUFVA8zI0eOJDc3lw0bNjB69GjfFulHhRl2Tq/fRfuR/Whzc6+q5fuffIvoxDiytx4g65NUAytsONty3eHEW94GILMJpB5Yk1G3/dZmNmgZjY564LudK/H8jK4ZWXn8LXsDcGam+6jUuXPnWtc7HA527doFVA8zQUENn+9SUlKw2+0ebx/iCuIJBjd4HV+9sJbEScO5af49fPjjPwDuiZSKMs9TkHaDm0tuoHtSdypsjePzPqLu+i1RY37p9X6HLzro2DGh4QuqA/VA/cT+13pCuwz0er83/rmHpbdP9kFF3lMP1ENQMHHLM+q064N/eJ6iTUsbtp468kUP+HL8oX49EBcXx/79++u0r2XDTHFxMQAlJSW1rl+9ejV5eXlER0eTmJjo01rsdjvZ2Z5fwwi1NYE6TNBo33OEN9v9+LrrvzmRzVsd77nu+vrIyc2h3NU4bjrpVF5J7RcWv5utSTA55/NwVRh/J6h6oH6aBYUQWof9KmzBXv2t+pJ6oO6CIpsRV8d9i8srTd0DRo4/GNcDlg0zcXFxFBQUkJqaytChQ6uty83NZf78+QD069fP5zf5xsV592cV4gq6OhmCSbRv175xvCMDIpvUrQ5XRSnt27Rq4GrqRj1QP8EVHt75++/7OUro0KFDA1dTN+qBerDZcDkrsQU18XrXyCZO9UA91KcHvH2tvJZlw8zo0aNJS0tj8eLFjBkzhu7duwOwb98+pk2bRl5eHuCfyfK8PW1WcaWUFV3v81E1vnH8xHFCIsONLgNwP445c5f3+93aKZxn//c+KqOpB+rnzROwPM37/X7945FMfUw9UFeNqQce/Rx2nfd+v/efnU+v1+Y3fEF1oB7wnGXDzIIFC1i5ciVnz54lOTmZnj17UlpaysmTJxk7diwJCQl8+OGH1e6XCVQf/OgJo0toUP1jIakZnPDyQ2F/7NurjY2a1XpgYjy8csz9ZJunwoJgQiff1dTYWa0HJid6H2aSW0CvFr6opvEz+/hb9mmmjh07smPHDsaNG0d4eDgZGRnExsbyyiuvsHnzZo4fPw6gMGNBNhvM6O7dPv1iYFDjuMIkDSA2zD1NvTd+kgjN6nKjjTRKQ9tAr+be7fNzL48b0nhY9swMQK9evdi0aVON5UVFRWRkZBAUFESfPn0MqEx8bXR7mNPLs0sNiVGwdDAEmX9+RLnGr5IhtwS2e/Ag4Q/awZzevq9J/KeJDZbd7J7h+0zxjbf/j2S4pe63bIjBLB1mrufIkSO4XC66d+9OZGRkjfVr1qwB4OjRo9W+TkhIICUlxX+FSr1MT4I24e7LDbXNBBtsgzEdYH4fvSO3ouAgWJICrx5zzyFUWMsEas1D3GdkZvZwv/iJtbQKhzdGwLOH4V85tU+I16kp/LIn3NY47vmVOgrIMHPo0CHg+peYJk+eXOvXDzzwAG+++aZPa5OG9cNOcEdH2HPe/am535S7743o2sx9X4XVPlxQqgsOgod7wc+T4MMcOHARih3QNBhSWsLoDhDu/QMvYiItwuBPA91n6jacgdOFUOaE5qHuM3KDW+usrBUozNTC5bLwfNYBKMgGw9u6/0lgCg+GO+Pd/yQwtQrXPTFWpjBjITG9OzNs6UOEREVQnHWB7Y+8REz3Toxe8Rsup+fw0ZSnKb14mW5TbiV51jiaJ3Vk/1NvcfS1zVXfI+V300i4cxj5h06z9WdLDPxtxFuejv9Nv76X+NtScFW6H/U5tPx9Tq93P8uu8Tc3T3tgxPOzaTeyH2UX3Y/85Wz/iv1Pvw2oB8zO0x4Y9cZ8oju1qbbf1p8t4exH++k9azw9p9+Oo7iUDWMax2PqNxKQYebbz22ymhHPz2HXr/5C/pEMuk25lUG/v5+Tf/+Uy+k51Rry4lfpbHvwz/R95O4a32P/029z6dhZ4sc2/DTq4luejv+Rv67nwKJVAETGxTJp+/Pk7PiKsvxCjb/JedoDAEde3lDtjcy31APm5mkPfPrzZ6v+u2X/roxZ+VuyPz0IwNFXN5F/6DSDn5ru5+rrzrKPZgea2D6JOK6Ukn8kA4D0d7fR6bYUgkJr5tWCo5l8cyIbnCabWlKuy5vxL7989W7o4Kbh2Gw2n8+CLb7nTQ+INdW1B5LuvZVTa7fjrHD4oUrfUJdbRFR8G2J6xjPx46tpOzgijMi4WAOrEn/xdvx7zfghPaffTmT7luye9zKlF72cYVAaHa97YOYP6TblVoqz8ziweFXVC6CYV11eB5qEh9Jl0gi2TPqdP0r0GYUZC7lw4AQf3/vHqq+nHH7dwGrE37wZ/7TXt5D2+hZiendm5PK55Hz2JWUFRf4oU3zI0x5IXbSKK+cKwOUifuxgRq/4LeuGPYLjSqm/ShUf8fZ1oPP4IXxzKodLX9f/E7ONpMtMFlGUeY6mHa5OYRsSFUFwZDhX7PkGViX+UtfxLziayRV7PnHDkn1doviYNz1wxZ4P//vU5pl/fkFF4RWad2vvt1rFN+pyHOh+7w84scr895EqzFhE/pEMnBWVtBvZD4Ce02/n9PpdOMvNew1UPOfN+Dfv3rHqv6M7tyW2TyKXjjeOD1eUuvOmByLbXb3s0Pp7SYTFRnP5tAdTJUuj5u3rQHRCHC37d+H0ezv9WaZP6DKThWyf/QIjnp9N6KJfUJhhZ/ucF4npUXNijW4/+T/c9Ni9hLZoSvwdg0l+aCKfPLCI/MOnDahaGoqn45/yf6cRFd8GV4UDZ6WTz3/zuvuGcDE9T3tgxPNziGjdHFelE0dpOdt+8RwVhbVMky2m42kPgPvG38zNe6koKvFzlQ1PYcZCLn19hk13PHbD7U6+u42T727zfUHiV56O/yf3L/RDNWIET3vgo3ue8kM1YgRPewAgdeFKH1fjP7rMZHGVFQ7CYqKZ+PGzhLdsdsPtU343jb6P3EXZJd0MagUaf1EPiLc90HvWeIYsmklpfqEfqmsYNpfm7m90Kq6UsqLrfUaX4ZWp6e8QEhludBmWoR4Q9YCoBzynMzMiIiJiagozIiIiYmq6zNQIuVwuHCVlRpfhleCIME2J34DUA6IeEPWA5xRmRERExNR0mUlERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERM7f8DnS7qDL1tYM4AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjMAAACuCAYAAADDNYx2AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAH5dJREFUeJzt3Xl8VPW9//HXhOwkQMIWtpAAYQubJSBb8YcFlbKItlQsorRQtIJ4e7lgbX+tVVtZxOJC60+tPrwqUCygrHWpiKwi3ICyRJZAAlkGCAmShGyTmd8fcw2kCTKTZObknHk/Hw8eNWdJPun3kzPvOct3bC6Xy4WIiIiISQUZXYCIiIhIfSjMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqSnMiIiIiKkpzIiIiIipKcyIiIiIqQUbXYDU5HK5cJSUGV2GV4IjwrDZbEaXYRnqAVEPiHrAi5/r958oN+QoKWNF1/uMLsMrU9PfISQy3OgyLEM9IOoBUQ94TpeZRERExNQUZkRERMTUFGZERETE1BRmRERExNQUZkRERMTUFGZERETE1BRmRERExNQ0z4yFxA1N5o51T1ZbVlFcwuVTuaSv2U7a61twVToNqk78QT0g6oHAFqjjrzBjQafW7SBrayrYbES0bkG3ybcw+MnpNE/qwJ75rxhdnviBekDUA4Et0MZfYcaCLh46zam1O6q+Pvbmh9y14wW6//QHpC5aRdnFywZWJ/6gHhD1QGALtPHXPTMBwFFSxoXUE9iCgmjWua3R5YgB1AOiHghsVh9/hZkAEZ3gbt6yS0UGVyJGUQ+IeiCwWXn8dZnJgoIjQgmLja66Vtrj/tto2bcLF1JPcPlUrtHliR+oB0Q9ENgCbfwtH2by8vJYsmQJ69atIysri9atW3P33XfzzDPPMHfuXN544w1eeukl5syZY3SpDeamBVO4acGUassyNn/O3sf/ZlBFxqtwwuEC+KYcQptAl2iIizC6Kt9RD9R0uRzSvoESB0QEQ3ILiAoxuirfUQ/UlHsFThdBeSW0CIU+MRBs0esTgTb+lg4zBw8eZOzYsdjtdpo2bUrv3r3JycnhxRdfJD09nfz8fAAGDBhgbKEN7NjbH5GxcQ9BIcHE9Iynz+xJNG3Xksqy8qptbnn5VxBk47MH/1y1LLRFFJO2LWP/U29xat2O2r616eSVwj8y4P1MuFh2dbkNGNEW7kmEIW2Mqs531ANXnfgG/n4aPsiCsmueSA1vAmM7wpRE6NrMuPp8RT3g5nLBrvPw7mnYcx5c16xrFQZ3dYbJiRAbZliJPhFo42/RTOo+IzNhwgTsdjvz5s0jNzeX1NRU7HY7ixcvZvPmzezbtw+bzUa/fv2MLrdBXT5lJ3fHIbK3HuDwX9fzyQOLaDWgK0MXP1i1zZ7HX6PNoB4kThpetWzIMzM5/8XXpmrg7/L1NzD1M3j9ePUgA+4D2o5zMOdzeOGI+4BnJeoBty1nYdp2WH+mepABKK2E9zLhvu3wcbYx9fmSegCcLnjuMPzHXtj9b0EGIK8MXjsO930GJ631cE/Ajb9lw8zcuXPJyspizpw5LF26lOjo6Kp1CxYsoH///jgcDhISEmjWzIJvy65xYf8x0tdsJ3HScFqn9ACg/FIRu+e9zM1/mklE2xg6jxtC3LBk9jxmjfkHzhbBnD01Q0xt3k6HV4/5viYjBWIPfGaHPxwAxw2CaoUTfpvqfrGzskDsgb+kuc/K3cj5Upi9B3Ku+L4mo1h9/C0ZZtLS0li9ejWtWrVi4cKFtW4zcOBAAPr3719t+enTp5k4cSLR0dHExMRw//33c/HiRZ/X7GtfLluD01HJTfPvqVqW/elBMjbuZuTyuQxZ9At2z3uZsgJr3OW+PA0uld94u2/97bi1D2QQWD3gcMKir8DTeU6dLlj8FVRa7AzdvwukHsgogv8+6fn2F8vg5a99V09jYOXxt2SYWbVqFU6nk6lTpxIVFVXrNhER7rs/rw0zhYWFjBo1iqysLFatWsWrr77Kjh07GD9+PE6nuad/Lsywc3r9LtqP7Eebm3tVLd//5FtEJ8aRvfUAWZ+kGlhhw7lQCtvs3u3jAtZl+KKaxiOQemC73d0H3si+4r6nwsoCqQfWZni/z79yoMCDs7lmZeXxt2SY2bp1KwCjRo267jZZWVlA9TDz6quvkp2dzfvvv8/48eOZPHkyK1eu5PPPP2fDhg2+LdoPvnphLc7K6qncUVJGUeZ5CtLOGFhZw/ogq27vsDeebfhaGptA6YFNWXXcTz1gYGUNx+WCzXUYywonfJTT8PU0JlYdf0s+zZSZmQlA586da13vcDjYtWsXUD3MbNq0iREjRhAfH1+1bOjQoXTp0oWNGzcyadKkOtWTkpKC3e75qYIQVxBPMNjrn2Pfc4Q32/34uuu/OZHNWx3vue76+uie1J0KW+M4exU9+Umajprh9X4Xy6BjfAI4HQ1flJfUA/XT8tf/JCS+r9f7bdn5P7wz6U4fVOQ99UDd2UIjaPv8iTrt+8SfX2bee39q4Irqpi49YOT4Q/16IC4ujv3799dpX0uGmeLiYgBKSkpqXb969Wry8vKIjo4mMTGxavnRo0eZPHlyje2Tk5M5evRoneux2+1kZ3v+uESorQmYbLbpnNwcyl2VRpcBQMfCQprWcd/s7CxwGv97qAfqp1lFBXWZQqa8vMyrv1VfUg/UXVBYZJ3/ryu6fFk9UA9G9YAlw0xcXBwFBQWkpqYydOjQautyc3OZP38+AP369cNms1WtKygooEWLFjW+X2xsLMeO1f1xl7i4OK+2D3EFeX7nYiPRvl37RvGODCCiom7PWFZestOhnXdj5SvqgfoJKqrbzS9NivPo0KFDA1dTN+qB+nEWFRAUFeP1fpGOQvVAPdSnB7x9rbyWJcPM6NGjSUtLY/HixYwZM4bu3bsDsG/fPqZNm0ZeXh7gv8nyvD1tVnGllBVd7/NRNTV98KMn6v09jp84TkhkeANUU395pTDuY+/vm5k5KI7ZWXW82aKBqQfqZ1su/Nc+7/d7bfZEhj05seELqgP1QP0sOwwrTnm3T2gQfPHGH2kR9kffFOUlf/ZAQ4w/GNcDlrwBeMGCBbRs2ZKzZ8+SnJxM3759SUpKYvDgwXTp0oVbb70VqPlYdkxMDJcuXarx/fLz84mNjfVH6dIAWoXDre282ycIuLv2W6zEhEa0hbZeHk87RMKQ1r6pR/zvRwne7zOmPbSw2EzAgcKSYaZjx47s2LGDcePGER4eTkZGBrGxsbzyyits3ryZ48ePAzXDTK9evWq9N+bo0aP06tWrxnJpvOb0gthQz7ef1QPaRfquHvGv4CB4vL/nB7gmNni8HwTZbrytmEN8FPw8yfPtW4fDL3WYNy1LhhlwB5NNmzZRWFhIYWEhe/fuZdasWRQXF5ORkUFQUBB9+vSpts/48ePZuXNn1WPbAHv37iU9PZ0JEyb4+1eQeujQFP4y1H2AupGfJcGM7r6vSfxrRFv440AIucFRLjQIFqVY8zO6At0ve8K0rjfeLi7Cfbyw8ofPWp1lw8z1HDlyBJfLRVJSEpGR1d+Kz5o1i3bt2nHnnXeyadMm1qxZw7333svgwYO5887G8bimeC6pOay4BR7qAW1qCTWj2sH/Gwaze4FN78gt6bYO7h74UWeIaFJ9XdNgmJwAK29x94JYj80GjybD8iFwS1zNF7y2EfBwT3hnJHSJrvVbiElY8gbg73Lo0CGg5iUmgGbNmrF161YeffRRpkyZQnBwMOPHj2fZsmUEBQVc7rOE2DCY2QOmJ8HRSzBjp3u2Xxvw7CCDixO/6BLtvuT0SG8Y9c+r47/lNnegEesb0sb971wJjP/4ag+s/4H7kqSYX8D9KX9XmAHo2rUrmzZt8mdJ4gfBQdAv1n0A+/ZAJoElKqT6+CvIBJ62EdV7QEHGOgLuz/lGYcbMYnp3ZtjShwiJiqA46wLbH3mJmO6dGL3iN1xOz+GjKU9TevEyTSJCGf7cw7Qa0BWX00XqwpVkbv4cgJTfTSPhzmHkHzrN1p8tMfg3Em94Ov7fe/yndP7hzVSWVeB0VJK6aCU5274EoPes8fScfjuO4lI2jJlv8G8k3vK0B77VPKkDEz5cwvF3PuaL378JqAfMzpse6PHA7fSaMRaXoxKX08XmcY9TWVZhyteBgAsz335ukxWNeH4Ou371F/KPZNBtyq0M+v39nPz7p1xOz6l2UOrz0ESc5RWsG/YIUZ3aMG7LQuy7D1NWUMT+p9/m0rGzxI/1fhp1MZan439ubxpfLltDZWk5Mb07M/a9p3h3wCwcJWUcfXUT+YdOM/ip6cb9IlJnnvYAgC24CcOefYjMf35Rbbl6wNw87YFOtw+iy93fZ/O431BReIWwls1wVrhn7jXj64BOsllEbJ9EHFdKyT+SAUD6u9vodFsKQaE182rCncM59tZHABSdPY999xHix97sz3KlgXkz/tlbD1BZWg7g/mA5m43wls38Wa74gDc9ADDgPyeTsXEPhady/Vil+JI3PdDn4Yl8+ed/UFF4BYCyi5dxOU023fA1Au7MjFVFxbchpmc8Ez9+tmpZcEQYkXE1J/uL6tCKoqwLVV8XnT1P0w6t/FKn+IY343+tpCmjKMo8V60fxJy86YFWNyXRemB3PrrnKQbM+4k/yxQf8qYHWiR1pGX/rvT/z8k0CQsh/R+fkfb6Fn+W26AUZizkwoETfHzv1Wm4pxx+3cBqxN+8Hf92I/rSf95kPrrnaV+XJn7iSQ80iQhlyKKZbJv5nD9LEz/x9DhgC25CdHwbPrjr94S2aMod656iMPMcWf/6H3+V2qAUZiyiKPNctbMrIVERBEeGc8WeX3Pb7DyiOram5PwlAKI6tSHnsy/9Var4gDfjD9B2aG+GP/8wn9y/iMvpOf4qU3zI0x6I7hxHVIdW3LH2DwCENmsKQTZCm0ex89Hl/ixZGpg3x4Hi7DxOvbcTl9NJWX4h2Z+k0npgkmnDjO6ZsYj8Ixk4KyppN7IfAD2n387p9btwljtqbJu5cQ897r8NcAeZuGHJnPngixrbiXl4M/5th/Ti+y89wtbpSyg4munvUsVHPO2BS1+f4e99ZrBm8MOsGfwwR1/bzMm/b1WQsQBvjgOn3ttJh1EDAGgSHkrcsGTyj5j3eKAzMxayffYLjHh+NqGLfkFhhp3tc14kpkd8je0O/3U9w5c9zN17luOqdLL3N3+jLL/QgIqlIXk6/sOfe5gmoSGMWPbw1X0feYlLX5/xZ7niA572gFiXpz1w9JWNDF3yIJM+W4bLBZmbPydz0x4DKm4YCjMWcunrM2y647EbbucoKeOzh5b5oSLxJ0/Hf93wR/xQjRjB0x641sHn3vVRNWIET3ugsqzCUmfjdJnJ4iorHITFRDPx42c9evw25XfT6PvIXZRdKvJDdeJr3o5/71njGbJoJqU6U2cZ6gEJhNcBm8vlchldhFRXcaWUFV3vM7oMr0xNf4eQSA8+otpggzeAE3eK/2Ki0dVcn3rAN8wy/qAe8BX1gG8Z1QM6MyMiIiKmpjAjIiIipqbLTI2Qy+XCUVJmdBleCY4Iw2Zr/J9FbZZTzOoB3zDL+IN6wFfUA75lVA/oaaZGyGazNfrrzuJb6gFRD4h6wHO6zCQiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIipqYwIyIiIqamMCMiIiKmpjAjIiIiphZsdAFSk8vlwlFSZnQZXgmOCMNmsxldhmWoB0Q9IOoBL36u33+i3JCjpIwVXe8zugyvTE1/h5DIcKPLsAz1gKgHRD3gOV1mEhEREVNTmBERERFTU5gRERERU1OYEREREVNTmBERERFTU5gRERERU1OYEREREVNTmBERERFT06R5FhI3NJk71j1ZbVlFcQmXT+WSvmY7aa9vwVXpNKg68Qf1gKgHAlugjr/CjAWdWreDrK2pYLMR0boF3SbfwuAnp9M8qQN75r9idHniB+oBUQ8EtkAbf4UZC7p46DSn1u6o+vrYmx9y144X6P7TH5C6aBVlFy8bWJ34g3pA1AOBLdDGX/fMBABHSRkXUk9gCwqiWee2RpcjBlAPiHogsFl9/BVmAkR0grt5yy4VGVyJGEU9IOqBwGbl8Q+IMJOXl8eCBQvo1q0b4eHhdOrUiUcffZTi4mJmzJiBzWZj+fLlRpfZYIIjQgmLjSasZTNa9Izn5mdm0rJvFy6knuDyqVyjyxM/UA+IeiCwBdr4W/6emYMHDzJ27FjsdjtNmzald+/e5OTk8OKLL5Kenk5+fj4AAwYMMLbQBnTTginctGBKtWUZmz9n7+N/M6giY2UVw9oM+DQXvr2H34n76++3hWALRnr1wFUuF3yZD2syqo//71NhcgL0iQGbzbj6fEU9cJXDCdvssC6jeg+8dBTu7gwdmhpYnI8E2vhbOszk5eUxYcIE7HY78+bN44knniA6OhqAJUuW8NhjjxEcHIzNZqNfv34GV9twjr39ERkb9xAUEkxMz3j6zJ5E03YtqSwrr9rmlpd/BUE2Pnvwz1XLQltEMWnbMvY/9Ran1u2o7VubSoUTFn4FG87Uvn7+PoiLgCWDoHcLv5bmc+oBt7xSWLAPviqouW5Llvvf91rCohSIDfN/fb6kHnD7Kh8e3w/nSmuu+++T8NZJuKszLOhrrTc2gTb+Fhq6mubOnUtWVhZz5sxh6dKlVUEGYMGCBfTv3x+Hw0FCQgLNmjUzsNKGdfmUndwdh8jeeoDDf13PJw8sotWArgxd/GDVNnsef402g3qQOGl41bIhz8zk/Bdfm6qBr8fhdIeV6wWZb9lLYNYuOFzLi52ZqQfcQWbGztqDzLVSL8LMnXCpzD91+Yt6AA5ehId21x5kvuUC1mW6A0+ly2+l+Vygjb9lw0xaWhqrV6+mVatWLFy4sNZtBg4cCED//v2rln0bfgYPHkxYWBg2C5x/vrD/GOlrtpM4aTitU3oAUH6piN3zXubmP80kom0MnccNIW5YMnses8b8A2+egJ3nPNu2tBLmfeH+X6sKxB544gBkX/Fs2zPF8ORBn5ZjuEDrgSsO9991uYfzw31qhxXpvq3JSFYff8uGmVWrVuF0Opk6dSpRUVG1bhMREQFUDzMnT55k7dq1xMXFMWjQIL/U6g9fLluD01HJTfPvqVqW/elBMjbuZuTyuQxZ9At2z3uZsgLz3+Ve4YR/ZHi3z8Uy+Fe2T8ppNAKpB04Vwt4L3u2z4xycNf+v/p0CqQc+yIJvKrzbZ/Vpa52d+XdWHn/LhpmtW7cCMGrUqOtuk5WVBVQPMyNHjiQ3N5cNGzYwevRo3xbpR4UZdk6v30X7kf1oc3OvquX7n3yL6MQ4srceIOuTVAMrbDjbct3hxFveBiCzCaQeWJNRt/3WZjZoGY2OeuC7nSvx/IyuGVl5/C17A3Bmpvuo1Llz51rXOxwOdu3aBVQPM0FBDZ/vUlJSsNvtHm8f4griCQY3eB1fvbCWxEnDuWn+PXz44z8A7omUijLPU5B2g5tLbqB7UncqbI3j8z6i7votUWN+6fV+hy866NgxoeELqgP1QP3E/td6QrsM9Hq/N/65h6W3T/ZBRd5TD9RDUDBxyzPqtOuDf3ieok1LG7aeOvJFD/hy/KF+PRAXF8f+/fvrtK9lw0xxcTEAJSUlta5fvXo1eXl5REdHk5iY6NNa7HY72dmeX8MItTWBOkzQaN9zhDfb/fi66785kc1bHe+57vr6yMnNodzVOG466VReSe0XFr+brUkwOefzcFUYfyeoeqB+mgWFEFqH/SpswV79rfqSeqDugiKbEVfHfYvLK03dA0aOPxjXA5YNM3FxcRQUFJCamsrQoUOrrcvNzWX+/PkA9OvXz+c3+cbFefdnFeIKujoZgkm0b9e+cbwjAyKb1K0OV0Up7du0auBq6kY9UD/BFR7e+fvv+zlK6NChQwNXUzfqgXqw2XA5K7EFNfF618gmTvVAPdSnB7x9rbyWZcPM6NGjSUtLY/HixYwZM4bu3bsDsG/fPqZNm0ZeXh7gn8nyvD1tVnGllBVd7/NRNb5x/MRxQiLDjS4DcD+OOXOX9/vd2imcZ//3PiqjqQfq580TsDzN+/1+/eORTH1MPVBXjakHHv0cdp33fr/3n51Pr9fmN3xBdaAe8Jxlw8yCBQtYuXIlZ8+eJTk5mZ49e1JaWsrJkycZO3YsCQkJfPjhh9XulwlUH/zoCaNLaFD9YyGpGZzw8kNhf+zbq42NmtV6YGI8vHLM/WSbp8KCYEIn39XU2FmtByYneh9mkltArxa+qKbxM/v4W/Zppo4dO7Jjxw7GjRtHeHg4GRkZxMbG8sorr7B582aOHz8OoDBjQTYbzOju3T79YmBQ47jCJA0gNsw9Tb03fpIIzepyo400SkPbQK/m3u3zcy+PG9J4WPbMDECvXr3YtGlTjeVFRUVkZGQQFBREnz59DKhMfG10e5jTy7NLDYlRsHQwBJl/fkS5xq+SIbcEtnvwIOEP2sGc3r6vSfyniQ2W3eye4ftM8Y23/49kuKXut2yIwSwdZq7nyJEjuFwuunfvTmRkZI31a9asAeDo0aPVvk5ISCAlJcV/hUq9TE+CNuHuyw21zQQbbIMxHWB+H70jt6LgIFiSAq8ec88hVFjLBGrNQ9xnZGb2cL/4ibW0Coc3RsCzh+FfObVPiNepKfyyJ9zWOO75lToKyDBz6NAh4PqXmCZPnlzr1w888ABvvvmmT2uThvXDTnBHR9hz3v2pud+Uu++N6NrMfV+F1T5cUKoLDoKHe8HPk+DDHDhwEYod0DQYUlrC6A4Q7v0DL2IiLcLgTwPdZ+o2nIHThVDmhOah7jNyg1vrrKwVKMzUwuWy8HzWASjIBsPbuv9JYAoPhjvj3f8kMLUK1z0xVqYwYyExvTszbOlDhERFUJx1ge2PvERM906MXvEbLqfn8NGUpym9eJluU24ledY4mid1ZP9Tb3H0tc1V3yPld9NIuHMY+YdOs/VnSwz8bcRbno7/Tb++l/jbUnBVuh/1ObT8fU6vdz/LrvE3N097YMTzs2k3sh9lF92P/OVs/4r9T78NqAfMztMeGPXGfKI7tam239afLeHsR/vpPWs8PaffjqO4lA1jGsdj6jcSkGHm289tspoRz89h16/+Qv6RDLpNuZVBv7+fk3//lMvpOdUa8uJX6Wx78M/0feTuGt9j/9Nvc+nYWeLHNvw06uJbno7/kb+u58CiVQBExsUyafvz5Oz4irL8Qo2/yXnaAwBHXt5Q7Y3Mt9QD5uZpD3z682er/rtl/66MWflbsj89CMDRVzeRf+g0g5+a7ufq686yj2YHmtg+iTiulJJ/JAOA9He30em2FIJCa+bVgqOZfHMiG5wmm1pSrsub8S+/fPVu6OCm4dhsNp/Pgi2+500PiDXVtQeS7r2VU2u346xw+KFK31CXW0RUfBtiesYz8eOraTs4IozIuFgDqxJ/8Xb8e834IT2n305k+5bsnvcypRe9nGFQGh2ve2DmD+k25VaKs/M4sHhV1QugmFddXgeahIfSZdIItkz6nT9K9BmFGQu5cOAEH9/7x6qvpxx+3cBqxN+8Gf+017eQ9voWYnp3ZuTyueR89iVlBUX+KFN8yNMeSF20iivnCsDlIn7sYEav+C3rhj2C40qpv0oVH/H2daDz+CF8cyqHS1/X/xOzjaTLTBZRlHmOph2uTmEbEhVBcGQ4V+z5BlYl/lLX8S84mskVez5xw5J9XaL4mDc9cMWeD//71OaZf35BReEVmndr77daxTfqchzofu8POLHK/PeRKsxYRP6RDJwVlbQb2Q+AntNv5/T6XTjLzXsNVDznzfg3796x6r+jO7cltk8il443jg9XlLrzpgci21297ND6e0mExUZz+bQHUyVLo+bt60B0Qhwt+3fh9Hs7/VmmT+gyk4Vsn/0CI56fTeiiX1CYYWf7nBeJ6VFzYo1uP/k/3PTYvYS2aEr8HYNJfmginzywiPzDpw2oWhqKp+Of8n+nERXfBleFA2elk89/87r7hnAxPU97YMTzc4ho3RxXpRNHaTnbfvEcFYW1TJMtpuNpD4D7xt/MzXupKCrxc5UNT2HGQi59fYZNdzx2w+1OvruNk+9u831B4leejv8n9y/0QzViBE974KN7nvJDNWIET3sAIHXhSh9X4z+6zGRxlRUOwmKimfjxs4S3bHbD7VN+N42+j9xF2SXdDGoFGn9RD4i3PdB71niGLJpJaX6hH6prGDaX5u5vdCqulLKi631Gl+GVqenvEBIZbnQZlqEeEPWAqAc8pzMzIiIiYmoKMyIiImJquszUCLlcLhwlZUaX4ZXgiDBNid+A1AOiHhD1gOcUZkRERMTUdJlJRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETE1hRkRERExNYUZERERMTWFGRERETO3/A50u6gy9bWDOAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -65,7 +65,7 @@ } ], "source": [ - "ansatz.decompose().draw(\"mpl\")" + "ansatz.draw(\"mpl\")" ] }, { @@ -83,7 +83,7 @@ "\n", "Algorithms rely on the primitives to evaluate expectation values or sample circuits. The primitives can be based on a simulator or real device and can be used interchangeably in the algorithms, as they all implement the same interface.\n", "\n", - "In the VQE, we have to evaluate expectation values, so for example we can use the [qiskit.primitives.Estimator](https://quantum.cloud.ibm.com/docs/api/qiskit/qiskit.primitives.Estimator) which is shipped with the default Qiskit installation." + "In the VQE, we have to evaluate expectation values, so for example we can use the [qiskit.primitives.StatevectorEstimator](https://quantum.cloud.ibm.com/docs/api/qiskit/qiskit.primitives.StatevectorEstimator) which is shipped with the default Qiskit installation." ] }, { @@ -92,16 +92,16 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit.primitives import Estimator\n", + "from qiskit.primitives import StatevectorEstimator\n", "\n", - "estimator = Estimator()" + "estimator = StatevectorEstimator()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "This estimator uses an exact, statevector simulation to evaluate the expectation values. We can also use a shot-based and noisy simulators or real backends instead. For more information of the simulators you can check out [Qiskit Aer](https://qiskit.github.io/qiskit-aer/apidocs/aer_primitives.html) and for the actual hardware [Qiskit IBM Runtime](https://quantum.cloud.ibm.com/docs/api/qiskit-ibm-runtime).\n", + "This estimator uses an exact, statevector simulation to evaluate the expectation values. We can also use a noisy simulator or real backends instead. For more information of the simulators you can check out [Qiskit Aer](https://qiskit.github.io/qiskit-aer/apidocs/aer_primitives.html) and for the actual hardware [Qiskit IBM Runtime](https://quantum.cloud.ibm.com/docs/api/qiskit-ibm-runtime).\n", "\n", "With all the ingredients ready, we can now instantiate the VQE:" ] @@ -171,23 +171,23 @@ "output_type": "stream", "text": [ "{ 'aux_operators_evaluated': None,\n", - " 'cost_function_evals': 65,\n", - " 'eigenvalue': -1.8572749648726616,\n", - " 'optimal_circuit': ,\n", - " 'optimal_parameters': { ParameterVectorElement(θ[0]): -1.8728053741446136,\n", - " ParameterVectorElement(θ[1]): -1.1391138641128078,\n", - " ParameterVectorElement(θ[2]): 5.869131287606581,\n", - " ParameterVectorElement(θ[3]): 6.351926438071783,\n", - " ParameterVectorElement(θ[4]): 4.99489396352954,\n", - " ParameterVectorElement(θ[5]): -0.5439930158788345,\n", - " ParameterVectorElement(θ[6]): -5.992252149482055,\n", - " ParameterVectorElement(θ[7]): -1.6792234013467686},\n", - " 'optimal_point': array([-1.87280537, -1.13911386, 5.86913129, 6.35192644, 4.99489396,\n", - " -0.54399302, -5.99225215, -1.6792234 ]),\n", - " 'optimal_value': -1.8572749648726616,\n", + " 'cost_function_evals': 63,\n", + " 'eigenvalue': np.float64(-1.8572750119612484),\n", + " 'optimal_circuit': ,\n", + " 'optimal_parameters': { ParameterVectorElement(θ[0]): np.float64(-5.9408536494366535),\n", + " ParameterVectorElement(θ[1]): np.float64(-3.1365037749849196),\n", + " ParameterVectorElement(θ[2]): np.float64(0.40315636989206965),\n", + " ParameterVectorElement(θ[3]): np.float64(0.040838515719402696),\n", + " ParameterVectorElement(θ[4]): np.float64(-0.7366684094415614),\n", + " ParameterVectorElement(θ[5]): np.float64(-0.3563755272480734),\n", + " ParameterVectorElement(θ[6]): np.float64(2.3695127483557044),\n", + " ParameterVectorElement(θ[7]): np.float64(-2.923831618614656)},\n", + " 'optimal_point': array([-5.94085365, -3.13650377, 0.40315637, 0.04083852, -0.73666841,\n", + " -0.35637553, 2.36951275, -2.92383162]),\n", + " 'optimal_value': np.float64(-1.8572750119612484),\n", " 'optimizer_evals': None,\n", - " 'optimizer_result': ,\n", - " 'optimizer_time': 0.13650894165039062}\n" + " 'optimizer_result': ,\n", + " 'optimizer_time': 0.400493860244751}\n" ] } ], @@ -209,9 +209,9 @@ "source": [ "## Updating the primitive inside VQE\n", "\n", - "To close off let's also change the estimator primitive inside the a VQE. Maybe you're satisfied with the simulation results and now want to use a shot-based simulator, or run on hardware!\n", + "To close off let's also change the estimator primitive inside the a VQE. Maybe you're satisfied with the simulation results and now want to use a noisy simulator, or run on hardware!\n", "\n", - "In this example we're changing to a shot-based estimator, still using Qiskit's reference primitive. However, you could replace the primitive by e.g. Qiskit Aer's estimator ([qiskit_aer.primitives.Estimator](https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.primitives.Estimator.html#qiskit_aer.primitives.Estimator)) or even a real backend ([qiskit_ibm_runtime.Estimator](https://quantum.cloud.ibm.com/docs/api/qiskit-ibm-runtime/estimator)).\n", + "In this example we're changing to a noisy estimator, still using Qiskit's reference primitive. However, you could replace the primitive by e.g. Qiskit Aer's estimator ([qiskit_aer.primitives.EstimatorV2](https://qiskit.github.io/qiskit-aer/stubs/qiskit_aer.primitives.EstimatorV2.html#qiskit_aer.primitives.EstimatorV2)) or even a real backend ([qiskit_ibm_runtime.EstimatorV2](https://quantum.cloud.ibm.com/docs/api/qiskit-ibm-runtime/estimator-v2)).\n", "\n", "For noisy loss functions, the SPSA optimizer typically performs well, so we also update the optimizer. See also the [noisy VQE tutorial](03_vqe_simulation_with_noise.ipynb) for more details on shot-based and noisy simulations." ] @@ -227,29 +227,29 @@ "text": [ "{ 'aux_operators_evaluated': None,\n", " 'cost_function_evals': 200,\n", - " 'eigenvalue': -1.8574199402954465,\n", - " 'optimal_circuit': ,\n", - " 'optimal_parameters': { ParameterVectorElement(θ[0]): -5.113683583175044,\n", - " ParameterVectorElement(θ[1]): 4.853118586793109,\n", - " ParameterVectorElement(θ[2]): 2.166347648663523,\n", - " ParameterVectorElement(θ[3]): 2.3924391958613804,\n", - " ParameterVectorElement(θ[4]): 4.624991727523756,\n", - " ParameterVectorElement(θ[5]): 5.951561020018319,\n", - " ParameterVectorElement(θ[6]): -2.811815937510964,\n", - " ParameterVectorElement(θ[7]): 1.7438519034671542},\n", - " 'optimal_point': array([-5.11368358, 4.85311859, 2.16634765, 2.3924392 , 4.62499173,\n", - " 5.95156102, -2.81181594, 1.7438519 ]),\n", - " 'optimal_value': -1.8574199402954465,\n", + " 'eigenvalue': np.float64(-1.8411410738644922),\n", + " 'optimal_circuit': ,\n", + " 'optimal_parameters': { ParameterVectorElement(θ[0]): np.float64(-5.010481418937876),\n", + " ParameterVectorElement(θ[1]): np.float64(4.084948025114193),\n", + " ParameterVectorElement(θ[2]): np.float64(-1.2854410955169764),\n", + " ParameterVectorElement(θ[3]): np.float64(-2.4366460344798195),\n", + " ParameterVectorElement(θ[4]): np.float64(1.6632270367532922),\n", + " ParameterVectorElement(θ[5]): np.float64(0.9161367536943381),\n", + " ParameterVectorElement(θ[6]): np.float64(4.848217162275058),\n", + " ParameterVectorElement(θ[7]): np.float64(5.271511564592285)},\n", + " 'optimal_point': array([-5.01048142, 4.08494803, -1.2854411 , -2.43664603, 1.66322704,\n", + " 0.91613675, 4.84821716, 5.27151156]),\n", + " 'optimal_value': np.float64(-1.8411410738644922),\n", " 'optimizer_evals': None,\n", - " 'optimizer_result': ,\n", - " 'optimizer_time': 0.6039888858795166}\n" + " 'optimizer_result': ,\n", + " 'optimizer_time': 0.9564361572265625}\n" ] } ], "source": [ "from qiskit_algorithms.optimizers import SPSA\n", "\n", - "estimator = Estimator(options={\"shots\": 1000})\n", + "estimator = StatevectorEstimator(default_precision=1e-2)\n", "\n", "vqe.estimator = estimator\n", "vqe.optimizer = SPSA(maxiter=100)\n", @@ -283,7 +283,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:17:24 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 11:18:58 2025 CEST
" ], "text/plain": [ "" @@ -295,7 +295,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -330,7 +330,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" }, "vscode": { "interpreter": { diff --git a/docs/tutorials/02_vqe_advanced_options.ipynb b/docs/tutorials/02_vqe_advanced_options.ipynb index b5fb4b3d..3783e1c4 100644 --- a/docs/tutorials/02_vqe_advanced_options.ipynb +++ b/docs/tutorials/02_vqe_advanced_options.ipynb @@ -72,9 +72,9 @@ }, "outputs": [], "source": [ - "from qiskit.primitives import Estimator\n", + "from qiskit.primitives import StatevectorEstimator\n", "\n", - "estimator = Estimator()" + "estimator = StatevectorEstimator()" ] }, { @@ -102,7 +102,7 @@ "source": [ "import numpy as np\n", "\n", - "from qiskit.circuit.library import TwoLocal\n", + "from qiskit.circuit.library import n_local\n", "\n", "from qiskit_algorithms import VQE\n", "from qiskit_algorithms.optimizers import COBYLA, L_BFGS_B, SLSQP\n", @@ -116,7 +116,7 @@ "for i, optimizer in enumerate(optimizers):\n", " print(\"\\rOptimizer: {} \".format(type(optimizer).__name__), end=\"\")\n", " algorithm_globals.random_seed = 50\n", - " ansatz = TwoLocal(rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", + " ansatz = n_local(2, rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", "\n", " counts = []\n", " values = []\n", @@ -151,7 +151,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAK9CAYAAABlx0xMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC6VUlEQVR4nOzdd5hU9dn/8c+Zvo1Fl0VAEAQUFFEJVmzYexfR2LDFEuOjIRY0UbGRqLHkMdaQgPlpgkZR8xhLVOwaK3awREEQqbJ9+vn9MXPOzrDtzOzsTtn367r2Cpw9M/PdWTaXn73v7/01TNM0BQAAAAAAio4r3wsAAAAAAADZIdQDAAAAAFCkCPUAAAAAABQpQj0AAAAAAEWKUA8AAAAAQJEi1AMAAAAAUKQI9QAAAAAAFClCPQAAAAAARYpQDwAAAABAkSLUAwCAHvHXv/5VY8eOldfrVf/+/fO9nJyZNm2aRowYke9l5N1LL70kwzD00ksv5ew558yZI8Mw9O233+bsOQGg1BHqAaBAWf9x29HHW2+9le8lAh1atGiRpk2bplGjRun+++/Xfffdl+8lIUt33XWX5syZk+9lAAA6YJimaeZ7EQCAtubMmaPTTz9d1157rTbffPM2nz/ooIM0YMCAPKwM6No999yj8847T19++aVGjx6d7+XkVCQSUTwel9/vz/dSesU222yjAQMGtKnIx+NxhcNh+Xw+uVy5qRPFYjFFIhH5/X4ZhpGT5wSAUufJ9wIAAJ07+OCDtcMOO+R7GWpqalJFRUW+l1H0gsFgTkNQoVq1apUk5bTtvrm5WeXl5Tl7vkxZPwNerzdvaygkLpdLgUAgp8/pdrvldrtz+pydMU1TwWBQZWVlvfaaAJBrpf1fFADQB3z77bcyDEO33HKL7rvvPo0aNUp+v1877rij3nnnnTb3L1q0SMcdd5w23nhjBQIB7bDDDnryySfT7rFa/19++WWdf/75GjhwoIYOHWp//o9//KNGjhypsrIy7bTTTnr11Vc1efJkTZ48WZLU2NioiooK/c///E+b11+2bJncbrdmzZrV6dcVj8d1xx13aPz48QoEAqqtrdVBBx2kd999174nGo3quuuus7/mESNG6IorrlAoFEp7rhEjRuiwww7Ta6+9pp122kmBQEAjR47UAw88YN/z7rvvyjAMzZ07t81ann32WRmGof/7v/+zry1fvlxnnHGGNtlkE/n9fo0bN05//vOf0x5n7Tn++9//rl//+tfadNNNVV5ervr6eknSI488oq233lqBQEDbbLON5s+f3+5+7Xg8rttvv13jxo1TIBDQJptsonPOOUc//vhjxl+nZf369br44os1YsQI+f1+DR06VKeeeqrWrFlj3xMKhXT11Vdr9OjR8vv9GjZsmC699NI27++GRowYoauvvlqSVFtbK8MwdM0119ifv+uuuzRu3Dj5/X4NGTJEP//5z7V+/fq055g8ebK22WYbvffee9pzzz1VXl6uK664ot3Xu+WWW2QYhpYsWdLmczNmzJDP57Pfq1dffVVTpkzRZpttZn9NF198sVpaWtIeN23aNFVWVurrr7/WIYccoqqqKp100kn25zb8HjU1NWn69OkaNmyY/H6/xowZo1tuuUWpDZHWz2p7rewbvkcNDQ266KKL7O/PwIEDtf/+++v9999v9z1I9cEHH+jggw9Wv379VFlZqX333bfNdh3rZ/yVV17ROeeco5qaGvXr10+nnnpq2r+rESNG6NNPP9XLL79sb/2xfs7b21Nvfd8++ugj7bXXXiovL9fo0aP1j3/8Q5L08ssva+edd1ZZWZnGjBmj559/vt11WXvqr7nmmg63IE2bNs1+XKY/I88++6x22GEHlZWV6d5775Uk/fvf/9buu++u/v37q7KyUmPGjOnw3xwAFBIq9QBQ4Orq6tKClpQIADU1NWnXHnroITU0NOicc86RYRi66aabdMwxx+i///2vXVn89NNPtdtuu2nTTTfV5ZdfroqKCj388MM66qij9Oijj+roo49Oe87zzz9ftbW1uuqqq9TU1CRJuvvuu3XBBRdojz320MUXX6xvv/1WRx11lDbaaCM7+FdWVuroo4/WvHnzdOutt6ZV3v72t7/JNE07IHXkzDPP1Jw5c3TwwQfrrLPOUjQa1auvvqq33nrL7lw466yzNHfuXB133HGaPn26/vOf/2jWrFn6/PPPNX/+/LTn++qrr3TcccfpzDPP1GmnnaY///nPmjZtmiZOnKhx48Zphx120MiRI/Xwww/rtNNOS3vsvHnztNFGG+nAAw+UJK1cuVK77LKLDMPQBRdcoNraWj399NM688wzVV9fr4suuijt8dddd518Pp9+9atfKRQKyefz6amnntLUqVM1fvx4zZo1Sz/++KPOPPNMbbrppm3ei3POOcfejnHhhRfqm2++0Z133qkPPvhAr7/+elrluKuvU0r80mWPPfbQ559/rjPOOEM/+clPtGbNGj355JNatmyZBgwYoHg8riOOOEKvvfaafvazn2mrrbbSxx9/rNtuu01ffPGFHn/88Q6/d7fffrseeOABzZ8/X3fffbcqKyu17bbbSkqEtJkzZ2q//fbTeeedp8WLF+vuu+/WO++80+ZrWbt2rQ4++GCdcMIJOvnkk7XJJpu0+3rHH3+8Lr30Uj388MO65JJL0j738MMP64ADDtBGG20kKfGLlObmZp133nmqqanR22+/rf/93//VsmXL9Mgjj6Q9NhqN6sADD9Tuu++uW265pcMuAdM0dcQRR2jBggU688wztf322+vZZ5/VJZdcouXLl+u2227r8L3qyLnnnqt//OMfuuCCC7T11ltr7dq1eu211/T555/rJz/5SYeP+/TTT7XHHnuoX79+uvTSS+X1enXvvfdq8uTJdqBOdcEFF6h///665ppr7O/FkiVL7MB+++236xe/+IUqKyt15ZVXSlKH3wfLjz/+qMMOO0wnnHCCpkyZorvvvlsnnHCCHnzwQV100UU699xz9dOf/lQ333yzjjvuOH333Xeqqqpq97mOOeaYNts33nvvPd1+++0aOHCgfS2Tn5HFixfrxBNP1DnnnKOzzz5bY8aM0aeffqrDDjtM2267ra699lr5/X599dVXev311zv9WgGgIJgAgIL0l7/8xZTU7off77fv++abb0xJZk1Njblu3Tr7+hNPPGFKMv/5z3/a1/bdd19z/PjxZjAYtK/F43Fz0qRJ5hZbbNHmtXfffXczGo3a10OhkFlTU2PuuOOOZiQSsa/PmTPHlGTutdde9rVnn33WlGQ+/fTTaV/Xtttum3Zfe1588UVTknnhhRe2+Vw8HjdN0zQXLlxoSjLPOuustM//6le/MiWZL774on1t+PDhpiTzlVdesa+tWrXK9Pv95vTp0+1rM2bMML1eb9r7GAqFzP79+5tnnHGGfe3MM880Bw8ebK5ZsybttU844QSzurrabG5uNk3TNBcsWGBKMkeOHGlfs4wfP94cOnSo2dDQYF976aWXTEnm8OHD7WuvvvqqKcl88MEH0x7/zDPPtLnu9Ou86qqrTEnmY489Zm7Ien//+te/mi6Xy3z11VfTPn/PPfeYkszXX3+9zWNTXX311aYkc/Xq1Wlr8fl85gEHHGDGYjH7+p133mlKMv/85z/b1/baay9TknnPPfd0+jqWXXfd1Zw4cWLatbffftuUZD7wwAP2tQ2/D6ZpmrNmzTINwzCXLFliXzvttNNMSebll1/e5v7TTjst7Xv0+OOPm5LM66+/Pu2+4447zjQMw/zqq69M02z9Wf3LX/7S5jklmVdffbX99+rqavPnP/95p19ze4466ijT5/OZX3/9tX3t+++/N6uqqsw999zTvmb9jE+cONEMh8P29ZtuusmUZD7xxBP2tXHjxrX7M2v9+16wYIF9zfq+PfTQQ/a1RYsWmZJMl8tlvvXWW/Z16/8jUt8Pa13ffPNNu1/f6tWrzc0228wcP3682djYaJpmdj8jzzzzTNq9t912W5t/rwBQLGi/B4AC98c//lH//ve/0z6efvrpNvdNnTrVrkZK0h577CFJ+u9//ytJWrdunV588UUdf/zxamho0Jo1a7RmzRqtXbtWBx54oL788kstX7487TnPPvvstCr7u+++q7Vr1+rss8+Wx9Pa7HXSSSelvbYk7bfffhoyZIgefPBB+9onn3yijz76SCeffHKnX/Ojjz4qwzDsFu5U1vCsf/3rX5KkX/7yl2mfnz59uiTpqaeeSru+9dZb2++JlGgLHzNmjP3+SIn3MBKJ6LHHHrOvPffcc1q/fr2mTp0qKVGVffTRR3X44YfLNE37fVyzZo0OPPBA1dXVtWmRPu2009L27H7//ff6+OOPdeqpp6qystK+vtdee2n8+PFpj33kkUdUXV2t/fffP+21Jk6cqMrKSi1YsCDjr/PRRx/Vdttt16YzQ2p9fx955BFttdVWGjt2bNrr7rPPPpLU5nWdeP755xUOh3XRRRelzRQ4++yz1a9fvzbfM7/fr9NPP93Rc0+dOlXvvfeevv76a/vavHnz5Pf7deSRR9rXUr8PTU1NWrNmjSZNmiTTNPXBBx+0ed7zzjuvy9f+17/+JbfbrQsvvDDt+vTp02WaZrs/r13p37+//vOf/+j77793/JhYLKbnnntORx11lEaOHGlfHzx4sH7605/qtddes7d+WH72s5+lVbHPO+88eTwe++crG5WVlTrhhBPsv48ZM0b9+/fXVlttldYpYP059d9mZ2KxmE488UQ1NDRo/vz59oyPTH9GNt98c7vrxmLNfnjiiScUj8cz/poBIJ8I9QBQ4HbaaSftt99+aR977713m/s222yztL9bIdvaU/rVV1/JNE395je/UW1tbdqHFZ6t4WaWDafuW3uWN2yH9Xg8bfYYu1wunXTSSXr88cfV3NwsSXrwwQcVCAQ0ZcqUTr/mr7/+WkOGDNHGG2/c4T1LliyRy+Vqs5ZBgwapf//+bfZXb/j+SIn3KHXP7XbbbaexY8dq3rx59rV58+ZpwIABdphdvXq11q9fr/vuu6/N+2gF0Gzfx/auffnll6qrq9PAgQPbvF5jY2Ob13LydX799dfaZptt2ty34et++umnbV5zyy23bPdrdML6useMGZN23efzaeTIkW2+Z5tuuql8Pp+j554yZYpcLpf9vTNNU4888oi9t9yydOlSTZs2TRtvvLEqKytVW1urvfbaS1Jiq0sqj8eTNkuis69ryJAhbVrIt9pqK/vzmbrpppv0ySefaNiwYdppp510zTXXdBl+V69erebm5jbvr7WWeDyu7777Lu36Fltskfb3yspKDR48uFvnxA8dOrTN5Prq6moNGzaszTVJbfa9d+TXv/61XnzxRT300EMaNWqUfT3Tn5H2ThOZOnWqdtttN5111lnaZJNNdMIJJ+jhhx8m4AMoCuypB4AS0dHEaDM5qMv6j9Nf/epXbapUlg0DZXcnQp966qm6+eab9fjjj+vEE0/UQw89pMMOO8z+j/lccHrsVVfvj2Xq1Km64YYbtGbNGlVVVenJJ5/UiSeeaHcmWO/jySef3GbvvcXaP27pzvsYj8c1cODAtI6HVLW1tWl/d/p1Onnd8ePH69Zbb2338xsGtJ6Qyfs2ZMgQ7bHHHnr44Yd1xRVX6K233tLSpUv1u9/9zr4nFotp//3317p163TZZZdp7Nixqqio0PLlyzVt2rQ2Ac7v9+f0lIKO/q3GYrE2144//njtsccemj9/vp577jndfPPN+t3vfqfHHntMBx98cM7W1BM6+jfYnX+bjz/+uH73u9/puuuu00EHHZT2uUx/Rtr7d1VWVqZXXnlFCxYs0FNPPaVnnnlG8+bN0z777KPnnnuuVyfyA0CmCPUA0EdY7bher1f77bdfVs8xfPhwSYmqf2q3QDQa1bffftsmzG6zzTaaMGGCHnzwQQ0dOlRLly7V//7v/3b5OqNGjdKzzz6rdevWdVitHz58uOLxuL788ku7IiolhtitX7/eXmumpk6dqpkzZ+rRRx/VJptsovr6+rRW4traWlVVVSkWi+XkfdzQhtdGjRql559/XrvttlvOjt0aNWqUPvnkky7v+fDDD7Xvvvvm7Lxw6+tevHhxWnt4OBzWN998k/X7aZk6darOP/98LV68WPPmzVN5ebkOP/xw+/Mff/yxvvjiC82dO1ennnqqff3f//53t153+PDhev7559XQ0JBWrV+0aJH9eam1e2bDSf8dVfIHDx6s888/X+eff75WrVqln/zkJ7rhhhs6DPW1tbUqLy/X4sWL23xu0aJFcrlcbX4Z8+WXX6b9LDc2NmrFihU65JBD7Gv5Pi/+iy++0Gmnnaajjjqq3Wn0ufoZcblc2nfffbXvvvvq1ltv1Y033qgrr7xSCxYs6Pa/TQDoSbTfA0AfMXDgQE2ePFn33nuvVqxY0ebzq1ev7vI5dthhB9XU1Oj+++9XNBq1rz/44IMdttCecsopeu6553T77berpqbGUZXx2GOPlWmamjlzZpvPWVU9K3TcfvvtaZ+3KsuHHnpol6/Tnq222krjx4/XvHnzNG/ePA0ePFh77rmn/Xm3261jjz1Wjz76aLvB2Mn7OGTIEG2zzTZ64IEH1NjYaF9/+eWX9fHHH6fde/zxxysWi+m6665r8zzRaLRNQHTi2GOP1YcfftjmhACp9f09/vjjtXz5ct1///1t7mlpabFPQ8jEfvvtJ5/Ppz/84Q9p1dnZs2errq4u6++Z5dhjj5Xb7dbf/vY3PfLIIzrssMPsfddSa6U49bVN09Qdd9zRrdc95JBDFIvFdOedd6Zdv+2222QYhv1vvl+/fhowYIBeeeWVtPvuuuuutL/HYrE2WwEGDhyoIUOGdHqcoNvt1gEHHKAnnngirX1+5cqVeuihh7T77runbUWQpPvuu0+RSMT++913361oNJr2c1pRUZHVv7NcaGxs1NFHH61NN91Uc+fObfcXDLn4GVm3bl2ba9tvv70kdXmEIwDkG5V6AChwTz/9tF3xSzVp0qS0aqcTf/zjH7X77rtr/PjxOvvsszVy5EitXLlSb775ppYtW6YPP/yw08f7fD5dc801+sUvfqF99tlHxx9/vL799lvNmTNHo0aNavc/uH/605/q0ksv1fz583XeeeelDeXqyN57761TTjlFf/jDH/Tll1/qoIMOUjwe16uvvqq9995bF1xwgbbbbjuddtppuu+++7R+/XrttddeevvttzV37lwdddRR7c4dcGrq1Km66qqrFAgEdOaZZ7Zpwf7tb3+rBQsWaOedd9bZZ5+trbfeWuvWrdP777+v559/vt2AsKEbb7xRRx55pHbbbTedfvrp+vHHH3XnnXdqm222SQv6e+21l8455xzNmjVLCxcu1AEHHCCv16svv/xSjzzyiO644w4dd9xxGX19l1xyif7xj39oypQpOuOMMzRx4kStW7dOTz75pO655x5tt912OuWUU/Twww/r3HPP1YIFC7TbbrspFotp0aJFevjhh+1zvjNRW1urGTNmaObMmTrooIN0xBFHaPHixbrrrru04447djlAsSsDBw7U3nvvrVtvvVUNDQ32cEPL2LFjNWrUKP3qV7/S8uXL1a9fPz366KOO93R35PDDD9fee++tK6+8Ut9++6222247Pffcc3riiSd00UUXpe3/Puuss/Tb3/5WZ511lnbYYQe98sor+uKLL9Ker6GhQUOHDtVxxx2n7bbbTpWVlXr++ef1zjvv6Pe//32na7n++uvt89bPP/98eTwe3XvvvQqFQrrpppva3B8Oh7Xvvvvq+OOPt78Xu+++u4444gj7nokTJ+ruu+/W9ddfr9GjR2vgwIH2jImeNnPmTH322Wf69a9/rSeeeCLtc6NGjdKuu+6ak5+Ra6+9Vq+88ooOPfRQDR8+XKtWrdJdd92loUOHavfdd+/JLxEAuq/3B+4DAJzo7Eg7pRwDZR2TdfPNN7d5Dm1wTJZpmubXX39tnnrqqeagQYNMr9drbrrppuZhhx1m/uMf/2jz2u+88067a/vDH/5gDh8+3PT7/eZOO+1kvv766+bEiRPNgw46qN37DznkEFOS+cYbbzj++qPRqHnzzTebY8eONX0+n1lbW2sefPDB5nvvvWffE4lEzJkzZ5qbb7656fV6zWHDhpkzZsxIO7LPNBPHWB166KFtXmOvvfZq96iuL7/80n6fX3vttXbXt3LlSvPnP/+5OWzYMNPr9ZqDBg0y9913X/O+++6z77GO/HrkkUfafY6///3v5tixY02/329us8025pNPPmkee+yx5tixY9vce99995kTJ040y8rKzKqqKnP8+PHmpZdean7//fdZfZ1r1641L7jgAnPTTTc1fT6fOXToUPO0005LO6YvHA6bv/vd78xx48aZfr/f3GijjcyJEyeaM2fONOvq6tr9miztHWlnufPOO82xY8eaXq/X3GSTTczzzjvP/PHHH9usedy4cZ2+Rnvuv/9+U5JZVVVltrS0tPn8Z599Zu63335mZWWlOWDAAPPss882P/zwwzZHq5122mlmRUVFu6+x4ZF2pmmaDQ0N5sUXX2wOGTLE9Hq95hZbbGHefPPN9hGBlubmZvPMM880q6urzaqqKvP44483V61alfazGgqFzEsuucTcbrvtzKqqKrOiosLcbrvtzLvuusvRe/D++++bBx54oFlZWWmWl5ebe++9d5ufPetn/OWXXzZ/9rOfmRtttJFZWVlpnnTSSebatWvT7v3hhx/MQw891Kyqqko7urKjI+3a+7519G9TUtrRfRseaWcdLdjex2mnnZb2XN35GXnhhRfMI4880hwyZIjp8/nMIUOGmCeeeKL5xRdftPseA0AhMUwzw8k5AABsIB6Pq7a2Vsccc0y77dpHH320Pv7443b3kCPd9ttvr9ra2m7v8wY6M2fOHJ1++ul65513Mu64AAAUFvbUAwAyEgwG20yrfuCBB7Ru3TpNnjy5zf0rVqzQU089pVNOOaWXVlgcIpFI2lwCSXrppZf04Ycftvs+AgAAtIc99QCAjLz11lu6+OKLNWXKFNXU1Oj999/X7Nmztc0226SdP//NN9/o9ddf15/+9Cd5vV6dc845eVx14Vm+fLn2228/nXzyyRoyZIgWLVqke+65R4MGDdK5556b7+UBAIAiQagHAGRkxIgRGjZsmP7whz/YR86deuqp+u1vfyufz2ff9/LLL+v000/XZpttprlz52rQoEF5XHXh2WijjTRx4kT96U9/0urVq1VRUaFDDz1Uv/3tb1VTU5Pv5QEAgCLBnnoAAAAAAIoUe+oBAAAAAChShHoAAAAAAIoUe+q7EI/H9f3336uqqkqGYeR7OQAAAACAEmeaphoaGjRkyBC5XJ3X4gn1Xfj+++81bNiwfC8DAAAAANDHfPfddxo6dGin9xDqu1BVVSUp8Wb269cvz6sBAAAAAJS6+vp6DRs2zM6jnSHUd8Fque/Xrx+hHgAAAADQa5xsAWdQHgAAAAAARYpQDwAAAABAkSLUAwAAAABQpNhTDwAAAABFIBaLKRKJ5HsZyAG32y2Px5OTY9MJ9QAAAABQ4BobG7Vs2TKZppnvpSBHysvLNXjwYPl8vm49D6EeAAAAAApYLBbTsmXLVF5ertra2pxUd5E/pmkqHA5r9erV+uabb7TFFlvI5cp+ZzyhHgAAAAAKWCQSkWmaqq2tVVlZWb6XgxwoKyuT1+vVkiVLFA6HFQgEsn4uBuUBAAAAQBGgQl9aulOdT3uenDwLAAAAAADodYR6AAAAAACKFKEeAAAAAIAiRagHAAAAAPSYH374Qb/4xS80cuRI+f1+DRs2TIcffrheeOEF+5433nhDhxxyiDbaaCMFAgGNHz9et956q2KxWNpzGYZhf3g8Hm222Wb65S9/qVAopJdffller1evvfZa2mOampo0cuRI/epXv5IkTZ48WRdddFGX637zzTfldrt16KGHdv9N6EGEegAAAABAj/j22281ceJEvfjii7r55pv18ccf65lnntHee++tn//855Kk+fPna6+99tLQoUO1YMECLVq0SP/zP/+j66+/XieccIJM00x7zr/85S9asWKFvvnmG911113661//quuvv1577bWXfvGLX2jatGlqamqy77/00ktVVlam66+/PqO1z549W7/4xS/0yiuv6Pvvv+/+m9FDONIOAAAAAIqIaZpqicS6vrEHlHndGU3hP//882UYht5++21VVFTY18eNG6czzjhDTU1NOvvss3XEEUfovvvusz9/1llnaZNNNtERRxyhhx9+WFOnTrU/179/fw0aNEiSNGzYMB155JF6//33JUk33nijnnnmGV122WW68847tWDBAv3pT3/SG2+8kdGxcY2NjZo3b57effdd/fDDD5ozZ46uuOIKx4/vTYR6AAAAACgiLZGYtr7q2by89mfXHqhyn7MYuW7dOj3zzDO64YYb0gK9pX///po/f77Wrl1rt8anOvzww7Xlllvqb3/7W1qoT/XFF1/oxRdf1LRp0yRJgUBADzzwgCZNmqT9999fF110ka644gpNnDjR+Rcp6eGHH9bYsWM1ZswYnXzyybrooos0Y8aMgjxWkPZ7AAAAAEDOffXVVzJNU2PHju3wni+++EKStNVWW7X7+bFjx9r3WE488URVVlYqEAhozJgxGjdunGbMmGF/focddtCMGTN0zDHHqKamRldeeWXGa589e7ZOPvlkSdJBBx2kuro6vfzyyxk/T2+gUg8AAAAARaTM69Zn1x6Yt9d2asO98Lm697bbbtN+++2nWCymr776Sr/85S91yimn6O9//7t9z29+8xtde+21uvzyy+XxZBZ7Fy9erLffflvz58+XJHk8Hk2dOlWzZ8/W5MmTM3qu3kCoBwAAAIAiYhiG4xb4fNpiiy1kGIYWLVrU4T1bbrmlJOnzzz/XpEmT2nz+888/19Zbb512bdCgQRo9erQkacyYMWpoaNCJJ56o66+/3r5uBflMA72UqNJHo1ENGTLEvmaapvx+v+68805VV1dn/Jw9ifZ7AAAAAEDObbzxxjrwwAP1xz/+MW0avWX9+vU64IADtPHGG+v3v/99m88/+eST+vLLL3XiiSd2+jpud6J7oKWlpdtrjkajeuCBB/T73/9eCxcutD8+/PBDDRkyRH/729+6/Rq5Vvi/3gEAAAAAFKU//vGP2m233bTTTjvp2muv1bbbbqtoNKp///vfuvvuu/X555/r3nvv1QknnKCf/exnuuCCC9SvXz+98MILuuSSS3Tcccfp+OOPT3vO9evX64cfflA8HteXX36pa6+9VltuuWWH+/Lbs3r1ai1cuDDt2uDBg/Xmm2/qxx9/1JlnntmmIn/sscdq9uzZOvfcc7N+P3oCoR4AAAAA0CNGjhyp999/XzfccIOmT5+uFStWqLa2VhMnTtTdd98tSTruuOO0YMEC3XDDDdpjjz0UDAa1xRZb6Morr9RFF13UZuL86aefLimxDWHQoEHac889deONN2bUav/QQw/poYceSrt23XXX6T//+Y/222+/dlvsjz32WN1000366KOPtO2222b6VvQYw8xkIkEfVF9fr+rqatXV1alfv375Xg4AAACAPiYYDOqbb77R5ptvntFZ6yhsnX1fM8mh7KkHAAAAAKBI0X5fIuYvuEur1i/XJtUBVRbBJMxCMKD/cG239QkyXPxuCwAAAEBxIv2ViL9/eb8+80el+nyvpLjMjUX1k+1OzfcyAAAAACArhPoSsXFsI41uWaOA1y2vm8pzV74yQ2pwGVq+dpF+ku/FAAAAAECWCPUlIlZxkz74bKVuOHobnbTz8Hwvp+D9z19304vxerVE256XCQAAAADFgpJuiQh43ZKkYCSe55UUB7/LK0kKRVryvBIAAAAAyB6hvkQEvIlvZTASy/NKikOZyydJCkaDeV4JAAAAAGSPUF8irEp9iFDviN+dDPUxQj0AAACA4kWoLxF2+32U9nsnAm6/JCkUC+V5JQAAAACQPUJ9iQh4aL/PRMAdkCQFCfUAAAAAihihvkT47UF5hHon/J4ySVIwFs7zSgAAAIDSNG3aNB111FEZP27EiBEyDEOGYcjtdmvIkCE688wz9eOPP9r3vPTSS/Y9qR+//vWv7XtM09T999+vXXfdVf369VNlZaXGjRun//mf/9FXX31l39fc3KwZM2Zo1KhRCgQCqq2t1V577aUnnnjC0XonT56ctoZNNtlEU6ZM0ZIlSzL+2rNBqC8RfrtST/u9EwFvolIfikfyvBIAAAAAG7r22mu1YsUKLV26VA8++KBeeeUVXXjhhW3uW7x4sVasWGF/XH755ZISgf6nP/2pLrzwQh1yyCF67rnn9Nlnn2n27NkKBAK6/vrr7ec499xz9dhjj+l///d/tWjRIj3zzDM67rjjtHbtWsfrPfvss7VixQp9//33euKJJ/Tdd9/p5JNP7v4b4QDn1JeIAJX6jAQ85ZKkIKEeAAAAxcY0pUhzfl7bWy4ZRo+/TFVVlQYNGiRJ2nTTTXXaaafpb3/7W5v7Bg4cqP79+7e5Pm/ePP3973/XE088oSOOOMK+vtlmm2mXXXaRaZr2tSeffFJ33HGHDjnkEEmJToGJEydmtN7y8nJ7vYMHD9YFF1ygc845J6PnyBahvkQwKC8zfm8y1JvRPK8EAAAAyFCkWbpxSH5e+4rvJV9Fr77k8uXL9c9//lM777yz48f87W9/05gxY9ICfSoj5RcTgwYN0r/+9S8dc8wxqqqq6vZ6161bp4cffjij9XYH7fclgnPqM1PmrZQkBU3eLwAAAKDQXHbZZaqsrFRZWZmGDh0qwzB06623trlv6NChqqystD+slvkvvvhCY8aMSbv3oosusu8bOnSoff2+++7TG2+8oZqaGu244466+OKL9frrr2e03rvuukuVlZWqqKhQTU2NFi9erD//+c9ZfOWZo1JfIgIezqnPhD/528UQoR4AAADFxlueqJjn67V7wSWXXKJp06bJNE199913uuKKK3TooYfqlVdekdvttu979dVX06rrG220UYfPeeWVV+qCCy7QY489phtvvNG+vueee+q///2v3nrrLb3xxht64YUXdMcdd2jmzJn6zW9+42i9J510kq688kpJ0sqVK3XjjTfqgAMO0HvvvZeT6n9nCPUlonVPPe33Tvh9iR+soMwu7gQAAAAKjGH0egt8bxswYIBGjx4tSdpiiy10++23a9ddd9WCBQu033772fdtvvnm7e6p32KLLbR48eK0a7W1taqtrdXAgQPb3O/1erXHHntojz320GWXXabrr79e1157rS677DL5fL4u11tdXW2vd/To0Zo9e7YGDx6sefPm6ayzzsrkS89Y0bTf33DDDZo0aZLKy8vb/aa157HHHtMBBxygmpoaGYahhQsX9uga88luv49SeXaizN9PkhQUvwQBAAAACp1VnW9paXF0/4knnqjFixc7PpZuQ1tvvbWi0aiCwWBWj890vd1RNJX6cDisKVOmaNddd9Xs2bMdPaapqUm77767jj/+eJ199tk9vML8Yvp9ZqxKfSjP6wAAAABKWV1dXZviak1NjYYNG9bp4xoaGvTDDz/Y7feXXnqpamtrNWnSJEeve8IJJ+ixxx7TCSecoBkzZujAAw/UJptsoiVLlmjevHlpLfyTJ0/WiSeeqB122EE1NTX67LPPdMUVV2jvvfdWv379HL1ec3OzfvjhB0mJ9vvrrrtOgUBABxxwgKPHd0fRhPqZM2dKkubMmeP4Maeccook6dtvv+2BFRWW1kF5VJ6dCAT6S5KChhJHgvTCsRwAAABAX/PSSy9pwoQJadfOPPNM/elPf+r0cVdddZWuuuoqSYm2+R133FHPPfecampqHL2uYRiaN2+e7r//fv3lL3/RTTfdpEgkoqFDh2rfffdNG7p34IEHau7cubriiivU3NysIUOG6LDDDrNf34n7779f999/v6TEvv5tt91W//rXv9oM6+sJRRPqe0soFFIo1Fq/ra+vz+NqnPNbg/Jov3ckYLXfG4bMaEiGN5DnFQEAAAClZc6cORkVZS1OirKTJ09OO2u+PS6XS+ecc06X58XPmDFDM2bMyGSJaV566aWsH5sLRbOnvrfMmjVL1dXV9kdXbSGFInVQXlf/uCH5A4mpmHHDUDRUHL+4AQAAAIAN5TXUX3755TIMo9OPRYsW9eqaZsyYobq6Ovvju+++69XXz5bVfi9JoSgt+F0p87UeK9ESXJ+/hQAAAAB9yIMPPph2rnzqx7hx4/K9vDZeffXVDtdbWVmZ7+VJynP7/fTp0zVt2rRO7xk5cmTvLCbJ7/fL7/f36mvmglWpl6RQJJ72d7TlcXnkMk3FDUOhUF2+lwMAAAD0CUcccYR23nnndj/n9Xp7eTVd22GHHQr+FLW8hnrrnEB0n9ftkttlKBY3FYzGVK3C+4EoJIZhyC+pRVKQUA8AAAD0iqqqKlVVVXV9Y4EoKyuzz58vVEWzp37p0qVauHChli5dqlgspoULF2rhwoVqbGy07xk7dqzmz59v/33dunVauHChPvvsM0nS4sWLtXDhQvuogVIT8FgT8BmW50SZmZh4H2RPPQAAAIAiVTSh/qqrrtKECRN09dVXq7GxURMmTNCECRP07rvv2vcsXrxYdXWtVdcnn3xSEyZM0KGHHiopcVbhhAkTdM899/T6+nuDP2VYHrrmVyLUh8INeV4JAAAAAGSnaI60c3IcwoZT36dNm9blnv1SQqU+MwHDJSmmYLixy3sBAAAAoBAVTaUeXWs91o5Q70RAyfeLSj0AAACAIkWoLyF2+z1H2jniNxLvVyjSnOeVAAAAAEB2CPUlxDqrnkq9MwFXYvdJS6QpzysBAAAAgOwQ6ktIwEP7fSasUB+KtOR5JQAAAEBpWr16tc477zxtttlm8vv9GjRokA488EC9/vrrkqQRI0bo9ttv7/Dx8+fP1y677KLq6mpVVVVp3Lhxuuiii9LuaWlp0dVXX60tt9xSfr9fAwYM0JQpU/Tpp5+m3XfNNdfIMAwZhiGPx6MRI0bo4osvTjtRrRgVzaA8dM2q1IeYfu+I3+WTJAWjhHoAAACgJxx77LEKh8OaO3euRo4cqZUrV+qFF17Q2rVru3zsCy+8oKlTp+qGG27QEUccIcMw9Nlnn+nf//63fU8oFNJ+++2npUuX6ve//7123nlnrVy5UrNmzdLOO++s559/Xrvssot9/7hx4/T8888rGo3q9ddf1xlnnKHm5mbde++9PfL19wZCfQmxB+VFqdQ7EXAT6gEAAFB8TNNUS57+G7bMUybDMBzdu379er366qt66aWXtNdee0mShg8frp122snR4//5z39qt9120yWXXGJf23LLLXXUUUfZf7/99tv15ptv6oMPPtB2221nv8ajjz6qnXfeWWeeeaY++eQTe80ej0eDBg2SJE2dOlUvvPCCnnzySUI9CgPT7zMTSFbqQ7FQnlcCAAAAONcSbdHOD+2cl9f+z0//o3JvuaN7KysrVVlZqccff1y77LKL/H5/Rq81aNAgPfTQQ/rkk0+0zTbbtHvPQw89pP33398O9BaXy6WLL75YJ510kj788ENtv/327T6+rKxM4XA4o3UVGvbUlxDa7zPjdyf+TyVIqAcAAAByzuPxaM6cOZo7d6769++v3XbbTVdccYU++ugjR4//xS9+oR133FHjx4/XiBEjdMIJJ+jPf/6zQqHW/37/4osvtNVWW7X7eOv6F1980e7n33vvPT300EPaZ599MvzKCguV+hLi99B+n4mAp0wSoR4AAADFpcxTpv/89D95e+1MHHvssTr00EP16quv6q233tLTTz+tm266SX/60580bdq0Th9bUVGhp556Sl9//bUWLFigt956S9OnT9cdd9yhN998U+XliY4B0zQ7fR6fz2f/+eOPP1ZlZaVisZjC4bAOPfRQ3XnnnRl9TYWGUF9CWtvvqdQ7EfAEJEmheCTPKwEAAACcMwzDcQt8IQgEAtp///21//776ze/+Y3OOussXX311V2GesuoUaM0atQonXXWWbryyiu15ZZbat68eTr99NO1xRZb6PPPP2/3cdb1Lbfc0r42ZswYPfnkk/J4PBoyZEha4C9WtN+XEM6pz0zAk/g/wiChHgAAAOg1W2+9tZqamrJ67IgRI1ReXm4//sQTT9Tzzz+vDz/8MO2+eDyu2267TTvssIO23npr+7rP59Po0aM1YsSIkgj0EpX6kkKlPjN+rxXqo3leCQAAAFB61q5dqylTpuiMM87Qtttuq6qqKr377ru66aabdOSRR9r3LV++XAsXLkx77PDhw3XHHXeoublZhxxyiIYPH67169frD3/4gyKRiPbff39J0sUXX6wnnnhChx9+eNqRdjfeeKO+/PJLvfHGG735JecFob6EBDzJSj176h0JeCskSSGTUA8AAADkWmVlpXbeeWfddttt+vrrrxWJRDRs2DCdffbZuuKKK+z7brnlFt1yyy1pj/3rX/+qvfbaS3/84x916qmnauXKldpoo400YcIEPffccxozZoykRGv/Cy+8oFmzZmnGjBlasmSJotGoRo8erU8++URDhw7t1a85Hwyzq6kCfVx9fb2qq6tVV1enfv365Xs5nfr720t1+WMfa7+tBupPp+2Y7+UUvOfe+YOmf3a/fhI1NPdMZxM4AQAAgN4WDAb1zTffaPPNN1cgEMj3cgre008/raOPPlq33HKLLrjggnwvp0OdfV8zyaHsqS8hfntPPe33TgR8lZKkkHi/AAAAgFJx8MEH6+mnn9a6deu0Zs2afC+nx9F+X0IC1pF2DMpzxO+rkiSFTEI9AAAAUEr23ntv7b333vleRq+gUl9C7EF57Kl3JOBLtLG0GHleCAAAAABkiVBfQmi/z0zAXy1JCklSnPcMAAAAQPEh1JeQ1iPtqNQ7EQgkQ71hSNFgnlcDAAAAdI4Z56UlV99PQn0Jad1TT9XZCX+yUt/iMqRIS55XAwAAALTP7U78d344HM7zSpBLzc3NkiSv19ut52FQXgkJJNvvQ1TqHQl4yyVJUcNQNNQgT0VNnlcEAAAAtOXxeFReXq7Vq1fL6/XK5aI2W8xM01Rzc7NWrVql/v3727+0yRahvoQwKC8zAU/rWZChUB0/DAAAAChIhmFo8ODB+uabb7RkyZJ8Lwc50r9/fw0aNKjbz0OOKSFWqI/ETMXiptwuxrp3xu/2238OhtarIo9rAQAAADrj8/m0xRZb0IJfIrxeb7cr9BZCfQmx2u8lKRSNqdzHt7czhmHIb0ohQwqFGvK9HAAAAKBTLpdLgUCg6xvRp7AZo4RYg/IkhuU5FVCimyEYqsvzSgAAAAAgc4T6EuJyGfK5rbPq2VfvhN8K9eHGPK8EAAAAADJHqC8xfi+hPhMBwzoxoCnPKwEAAACAzBHqS4w9AZ/2e0cCSrxfLVTqAQAAABQhQn2JsYblcaydMwFXYphgKNKc55UAAAAAQOYI9SXGGpZH+70zASMR6oO03wMAAAAoQoT6EmPtqQ/Rfu+I3+WVJAWjLXleCQAAAABkjlBfYqjUZybgToT6EKEeAAAAQBEi1JcYe1Aee+odCbj8kqRgNJjnlQAAAABA5gj1JcYelEf7vSN+TzLUx0J5XgkAAAAAZI5QX2L8XtrvMxFwByRJIUI9AAAAgCJEqC8xrXvqqdQ7EfAkQn0wHs7zSgAAAAAgc4T6EtPafk+l3gm/p0wSoR4AAABAcSLUlxgG5WWmzFsuSQrGo3leCQAAAABkjlBfYgKcU58RfzLUhwj1AAAAAIoQob7EWHvqQ1TqHfF7KyVJQZP3CwAAAEDxIdSXGLv9nkq9I2U+Qj0AAACA4kWoLzEMysuMPxnqQ+KXIAAAAACKD6G+xHBOfWb8vipJUlBmnlcCAAAAAJkj1JcY2u8zU+avliQFDUkxhuUBAAAAKC6E+hIT8CTb7xmU54jf30+SFDQMKdqS59UAAAAAQGYI9SXGT6U+IwFfItSHDEOKEOoBAAAAFBdCfYmxKvUh9tQ7EvCWSUpW6iPNeV4NAAAAAGSGUF9iAgzKy4jf7ZckhVwuxcNNeV4NAAAAAGSGUF9i7FAfpf3eiTJPmf3nUKgujysBAAAAgMwR6ksM59RnxqrUS1Io1JDHlQAAAABA5gj1JSa1/d40OXu9K26XW57k2xQk1AMAAAAoMoT6EhPwJEJ93JQiMUK9E2UyJEnBcH2eVwIAAAAAmSHUlxi/t/Vbyln1zviN5IkB4cY8rwQAAAAAMkOoLzF+j0tGovDMvnqH/Mkfg2CY9nsAAAAAxYVQX2IMw5DfPqueCfhOlBkeSVIwwpF2AAAAAIoLob4EWcPyQrTfO+J3JUJ9KNKc55UAAAAAQGYI9SXIGpYXpFLviBXqW9oJ9ZwgAAAAAKCQEepLEGfVZ6bM5ZUkhaItadfXNYW1y6wXNPOfn+ZjWQAAAADQJUJ9CWo9q55KvRN+l1+SFNwg1H++ol4r60N6efHqfCwLAAAAALpEqC9BfjvUU6l3IuD2SZKCsVDa9Ugs8UuRSJxfjgAAAAAoTIT6EhRITr/nnHpnAu5EpT7UJtQn9tNHouyrBwAAAFCYiibU33DDDZo0aZLKy8vVv3//Lu+PRCK67LLLNH78eFVUVGjIkCE69dRT9f333/f8YvPMT/t9RvyegCQpGAunXbcr9THeRwAAAACFqWhCfTgc1pQpU3Teeec5ur+5uVnvv/++fvOb3+j999/XY489psWLF+uII47o4ZXmn12pp/3ekYCnTJIUjLcf6sOEegAAAAAFypPvBTg1c+ZMSdKcOXMc3V9dXa1///vfadfuvPNO7bTTTlq6dKk222yzXC+xYATYU5+RgKdckhSKR9Kuh6OJMB+N0X4PAAAAoDAVTajPhbq6OhmG0Wn7figUUijUure6vr6+F1aWW9aRdqEoFWYn/N5EqG+JR9OuR+PJPfVU6gEAAAAUqKJpv++uYDCoyy67TCeeeKL69evX4X2zZs1SdXW1/TFs2LBeXGVuUKnPTMBbIUkKmemh3grz0bgp06RaDwAAAKDw5DXUX3755TIMo9OPRYsWdft1IpGIjj/+eJmmqbvvvrvTe2fMmKG6ujr747vvvuv26/c2Qn1mAj4r1Ke/X+GUTocILfgAAAAAClBe2++nT5+uadOmdXrPyJEju/UaVqBfsmSJXnzxxU6r9JLk9/vl9/u79Zr51jooj7ZxJwK+SklSi5n+fqUG+UgsLp+nzzS2AAAAACgSeQ31tbW1qq2t7bHntwL9l19+qQULFqimpqbHXquQ+KnUZyTgq5IkhRSXTFMyDEnpe+nZVw8AAACgEBVN6XHp0qVauHChli5dqlgspoULF2rhwoVqbGy07xk7dqzmz58vKRHojzvuOL377rt68MEHFYvF9MMPP+iHH35QOBzu6GVKgt1+z6A8R/y+RPdGyDCkWOsE/GhKkOdYOwAAAACFqGim31911VWaO3eu/fcJEyZIkhYsWKDJkydLkhYvXqy6ujpJ0vLly/Xkk09Kkrbffvu050p9TCmyp99TqXck4K+WJLUYhhRpljw+SVI4pf2eY+0AAAAAFKKiCfVz5szp8oz61AnlI0aM6LMTywMeKvWZsAfluQwp0iKV9ZdE+z0AAACAwlc07fdwjun3mfF7ApKkoGFI0Rb7OqEeAAAAQKEj1Jcg2u8zE0gN9ZGOQn3f7PoAAAAAUNgI9SWotVJPddmJgDsR6kOGITPcbF/f8Eg7AAAAACg0hPoSZFXqg1Eq9U74PX5JUtwwFAnX29dpvwcAAABQ6Aj1JcjvYU99JsrcZfafg6EG+8+pQT4cpf0eAAAAQOEh1Jcgu1JP+70jHpdHrmRmD4VaK/WpQT4a570EAAAAUHgI9SWISn1mDMNQwDAkScFw+5V62u8BAAAAFCJCfQmyBuWFonGZJm3jTgSU/EVISqhPrc7Tfg8AAACgEBHqS5DVfi8lgj265jesYwCb7GuRKNPvAQAAABQ2Qn0Jsir1Ei34TgUMjySpJdJ6pF04Jcizpx4AAABAISLUlyCv2yW3K7lHnGF5jgRciVCfVqlP3VNP+z0AAACAAkSoL1EBjzUBn0q9E36XV5IUjLTY16Kx1iAfpv0eAAAAQAEi1JcoqwU/GCXUOxFw+SRJwWhrqE+t1EcJ9QAAAAAKEKG+RNkT8Gm/dyTgToT6UCxoXwunHWlH+z0AAACAwkOoL1F+L+33mQi4/ZKkYDRkX0ut1NN+DwAAAKAQEepLVMBjtd8TRp3wewKSpGA8NdRzpB0AAACAwkaoL1EBKvUZCbgToT4UC9vX0vfU034PAAAAoPAQ6kuUPSiPUO9IwFsuSQrG2w/1VOoBAAAAFCJCfYliUF5m/J4ySVIwHrWvRTjSDgAAAECBI9SXKLv9niPtHLEr9WYi1MfipmLx1lBP+z0AAACAQkSoL1F+D+33mQh4KyVJwXji/dqw3Z72ewAAAACFiFBfoloH5RFGnfD7KiRJISVCfTSeXpmn/R4AAABAISLUlygq9ZkJ+KokSUEzLpmmItENK/W03wMAAAAoPJ58LwA9o3X6PRVmJwL+ZKh3GVI0qEjMSPt8lEo9AAAAgAJEpb5EMSgvMwFvP0lSyDCkSEubdnv21AMAAAAoRIT6EsU59ZkJJPfUB5OhfsN2+zDt9wAAAAAKEKG+RAU8iW8t59Q74/f4JUlBwyVFWtq022+4xx4AAAAACgF76ksUlfrMBNwBSValvllhMz3ER+OEegAAAACFh1BfouxQz556RwKeRKgPuZLt9wbt9wAAAAAKH+33JcoalEf7vTN+t9V+n6jUbzgYj/Z7AAAAAIWIUF+i/FTqM2K130cNQ9FwY5sQT/s9AAAAgEJEqC9RAQ/n1GfCar+XpFCoXpF4erv9htPwAQAAAKAQEOpLlH1OPYPyHLHa7yUpGG6wK/WGkbgWpv0eAAAAQAEi1Jeo1un3hFEnDMNQQIkEHww12nvqy5Pv44Z77AEAAACgEBDqS5QV6kNU6h3zG9Z71qiwFer9iQMionHa7wEAAAAUHkJ9ibLb7xmU55gV6lsiTfYe+gpfslJP+z0AAACAAkSoL1F+j9U2bipGldmRMiNRlQ9FmhRNVurLfIlrYdrvAQAAABQgQn2Jsir1EsPynPK7vJKkYMo59eXJSj3t9wAAAAAKEaG+RFlH2kmEeqcCVqiPtiicbL+3Qn0sTscDAAAAgMJDqC9RLpchn9vaV0/ruBMBt0+SFIoG21TqJSbgAwAAACg8hPoS5ues+oz4XYlQH4wF7cF4Fck99RKhHgAAAEDhIdSXsNaz6gn1TgQ8AUlSMBZSJNlqX5ZSqY/GaL8HAAAAUFgI9SXMPtYuQoXZiYA7EepDsbBdlfd73HK7DElU6gEAAAAUHkJ9CbOG5YWo1DviT1bqW2Jhu/3e6zHkSYZ6jrUDAAAAUGgI9SXMar8PMSjPkYC3XJIUikfsqrzP7bIHDkZovwcAAABQYAj1JSzAoLyMBDzJUG9G7SPtvG6XvJ7E+xilUg8AAACgwBDqS5g9KC9KqHfC762QJLWYUTvAe90u2u8BAAAAFCxCfQnze6zp94RRJ8p8lZKkkBm32++9bkNe2u8BAAAAFChCfQmj/T4zfivUK65osrvB63bJR/s9AAAAgAJFqC9hrefUE0adsEJ9i2HIjLZISu6pd9N+DwAAAKAwEepLGJX6zJT5qiRJIcOQyw71hjwu2u8BAAAAFCZCfQmz99QzKM8Rv6dMkhXqg5Ikn6d1+n2EowEBAAAAFBhCfQmzKvUh2u8dCXgCkqQWV2ul3uNyyZdsv4/GeR8BAAAAFBZCfQkL2NPvqdQ7YYX6kGHIFWttv7em34dpvwcAAABQYAj1Jax1UB6h3gm/2y9JChqGPFao97jkcdN+DwAAAKAwEepLWOugPMKoE1alPhHqQ5Ikn5v2ewAAAACFi1BfwvxeBuVlIuBubb93x1KPtKP9HgAAAEBhItSXMNrvM2O134dcLrnjyUF5boP2ewAAAAAFi1BfwgIe2u8zUZY80k6SXMlQ73O75E2230divI8AAAAACguhvoRRqc+MVamXJMNslpRov/clK/XROO33AAAAAApL0YT6G264QZMmTVJ5ebn69+/v6DHXXHONxo4dq4qKCm200Ubab7/99J///KdnF1pArFAfpm3cEbfLLY8SVXlDVqhPOdKO9xEAAABAgSmaUB8OhzVlyhSdd955jh+z5ZZb6s4779THH3+s1157TSNGjNABBxyg1atX9+BKC0fr9Hsq9U6VGYlfhLgUlJSo1HtovwcAAABQoDz5XoBTM2fOlCTNmTPH8WN++tOfpv391ltv1ezZs/XRRx9p3333zeXyCpLdfk+F2TG/4VaDGZXUOv3ear8n1AMAAAAoNEUT6rsrHA7rvvvuU3V1tbbbbrsO7wuFQgqFQvbf6+vre2N5PSLgYU99pgIurxQPyWUk/g2ktt9HONIOAAAAQIEpmvb7bP3f//2fKisrFQgEdNttt+nf//63BgwY0OH9s2bNUnV1tf0xbNiwXlxtbqW235smgdSJgMsrSXK5wpIkr4f2ewAAAACFK6+h/vLLL5dhGJ1+LFq0qFuvsffee2vhwoV64403dNBBB+n444/XqlWrOrx/xowZqqursz++++67br1+PvmT7fdxkyqzU/5kqDeMRKhPHGlH+z0AAACAwpTX9vvp06dr2rRpnd4zcuTIbr1GRUWFRo8erdGjR2uXXXbRFltsodmzZ2vGjBnt3u/3++X3+9v9XLGxKvWSFIzG5POUfGNGtwWSx9oZRlTSBkfa8YsRAAAAAAUmr6G+trZWtbW1vfqa8Xg8bc98KfO5XTIMyTQTLfj9At58L6ngBdw+SZLhisgwJLfLkDfZfh+mUg8AAACgwBRN6Xbp0qVauHChli5dqlgspoULF2rhwoVqbGy07xk7dqzmz58vSWpqatIVV1yht956S0uWLNF7772nM844Q8uXL9eUKVPy9WX0KsMw5E9W50MRAqkTfndAkmS6InbbvYf2ewAAAAAFqmim31911VWaO3eu/fcJEyZIkhYsWKDJkydLkhYvXqy6ujpJktvt1qJFizR37lytWbNGNTU12nHHHfXqq69q3Lhxvb7+fAl43QpG4kzAdyjgKZMkmUbMbrv3Mf0eAAAAQIEqmlA/Z86cLs+oT53wHggE9Nhjj/Xwqgpf4li7iIJU6h2xQn3MiNlt914P0+8BAAAAFKaiab9Hduxj7aJU6p3wexOhPu6K2e33TL8HAAAAUKgI9SUukDzWjvZ7ZwLeCklS3Ii37ql30X4PAAAAoDAR6kuc3w71VJmdsEJ9xNXafu9Ltt9HqdQDAAAAKDCE+hIXSE6/p1LvTMBXKUmKGFLAlQjxVsU+TKUeAAAAQIEh1Jc42u8z4/cmQn3IMFThjkpKbb+nUg8AAACgsBDqS5w1KC8UJZA6EfAl2u+DLpcq3WFJre33hHoAAAAAhYZQX+Ko1GfGOtIuaBiqUCLUW+33UdrvAQAAABQYQn2JS5xTT6XeqYA7ICkZ6l0RSal76nkPAQAAABQWQn2Js8+pp1LviN/jl5TcU++yKvW03wMAAAAoTIT6Ekf7fWbSKvVGSFJrpT5CtwMAAACAAkOoL3GcU5+ZgCcZ6l2Gyoz0PfWROHvqAQAAABQWQn2Jo/0+M1alPmS0hnpPSvu9aRLsAQAAABQOQn2J8ycH5QVpHXfE2lMfNAyVKdF+70tW6k1TilGtBwAAAFBACPUljkp9ZlL31AeUvqdekqKEegAAAAAFhFBf4qwj7Qj1zlh76k3DkFdBSemhnmPtAAAAABQSQn2Js6bfhxiU54hVqZckl1oktR5pJzEBHwAAAEBhIdSXOLv9Pkql3gmPyyMj2WFvmIlQbxiGPC5rWB7t9wAAAAAKB6G+xHFOfWYMw5BPiffMSLbfSynH2tF+DwAAAKCAEOpLXOugPMKoU97kj0XcTA31rcfaAQAAAEChINSXOD+D8jLmMT3JP7XY11or9bTfAwAAACgchPoSZw/KY8CbYx4lQn3cDNvXaL8HAAAAUIgI9SWOc+oz50qG+ljqnnoP7fcAAAAACg+hvsSlVupNk9ZxJ9ymV5IUS63Uu2i/BwAAAFB4CPUlzgr1Ei34ThlKhPqoGbGv0X4PAAAAoBAR6ktcwNP6LaYF3yHTJ0mKpIZ62u8BAAAAFCBCfYnzuF3yuBKBlGPtHGov1DP9HgAAAEABItT3AVYLPpV6Z8xkqA8ral9r3VPPL0YAAAAAFA5CfR/gT7bgB6OEeificb8kKWymhHra7wEAAAAUIEJ9H9BaqSeQOhEzk6FeMSl5YgDt9wAAAAAKEaG+D/BzVn1GoslKfdCQFEsca+eh/R4AAABAASLU9wEBD3vqMxGOByRJIcOQIs2SJB/t9wAAAAAKEKG+DwjYlXoCqRPReGJQXtAwpEiLJNrvAQAAABQmQn0fYO2pDzEoz5F4zCOpo1DPL0YAAAAAFA5CfR/AkXaZicW8ktLb773uZPt9lFAPAAAAoHAQ6vsA2u8zE7Uq9S4q9QAAAAAKG6G+D2BQXmZiseT7lVapT4b6OHvqAQAAABQOQn0f4Lf31FNl7oppmopGU9vvN6jU8x4CAAAAKCCE+j4gwDn1jkVipsx4ItQHDVfbPfW03wMAAAAoIIT6PqB1UB6BtCvReFwyO55+H+ZIOwAAAAAFhFDfB9h76jnSrkuRqCkzeU59qJ1BeVEq9QAAAAAKCKG+D6D93rlwLC6ZVvt9O0faEeoBAAAAFBBCfR9gtd+HaL/vUiQWt/fURw1DkXCTpNQj7Wi/BwAAAFA4CPV9QKaV+tUNIS1YtErxPnh8WySlUi9JoXCDJM6pBwAAAFCYCPV9gD/DPfVXzP9Yp895R69+taYnl1WQIjHTHpQnScGIVamn/R4AAABA4SHU9wGtlXpngfSjZeslSV+ubOipJRWsRGg35Ikn3rMQ7fcAAAAAChihvg/w20fadV2pbwhGtLI+JEn6oS7Yo+sqRFYl3m1a3Q3WoDzrSDsq9QAAAAAKB6G+D7CPtHMQ6r9e3WT/+Yf6PhzqZb1niffAar/nSDsAAAAAhYRQ3wdk0n7/9apG+899sVIfjiba693JffWhDSr1tN8DAAAAKCSE+j7APtLOwaC8r1e3hvoVfTDUR+OJX3y4kqE+GLMq9Uy/BwAAAFB4CPV9QMDeU991IP0qpVK/sj7Y5461a22/90mSgtHEfAGm3wMAAAAoRIT6PiCTc+pTK/XRuKk1TaEeW1chstrvXUqcVR+MJUO9h/Z7AAAAAIWHUN8HWIPyonGz00FvkVhcS9Ym9pD7ku3mfW1fvVWJdxmJSn0oHpYkeV203wMAAAAoPIT6PsBqv5ekULTjULpkbbOicVPlPre2Glwlqfv76oORmP6bUv0vdK2hPiBJCsYjkiSvh/Z7AAAAAIWHUN8H+D2t3+bOWvCt1vtRtZUaXF0mqfuV+ivmf6x9fv+y3lvyY7eep7dEY1b7/Qahnun3AAAAAAoQob4PcLkM+ZLBPthJpd4akjd6YKUGVSdCbXcr9R9+t16S9M2apm49T28JW5V6VzLUm1EpHre3I1CpBwAAAFBIPPleAHpHwONSOBp3WKmvkMfeU9+S9WuapqllPyYe3xyOZv08vcluv3eVSaYUMgwpGpSH6fcAAAAAChCV+j6i9Vi7TkL9qtT2++5X6tc0hu09/M3hrifvFwL7SDtXuSQpaLikSEta+71p0oIPAAAAoDAQ6vuIrs6qN01TX69OtMiPHlipQf0Sof6H+uxD/fL1rVX+4gn1icDusdrvDUOKNNuhXkqcIgAAAAAAhYD2+z7COqs+1EGlflVDSI2hqNwuQ8NrKuRPHoP3Q11QpmnKMIyMX3PZj832n1uKrP3e5/ZLESnkMhKV+nIj7Z7UkA8AAAAA+UIy6SOskB6Mth/qrSF5wzcul8/j0sB+fkmJI/DWN0eyek1rP71UTJX6ZKh3Jb7+9ir1kSiVegAAAACFgVDfR1iV+o7a760heSNrK5P3u1VT4ZOU/b765SmhvqVoQn0isPvcqe33LfK4Uir1cYblAQAAACgMRRPqb7jhBk2aNEnl5eXq379/xo8/99xzZRiGbr/99pyvrRh0NSjPqtSPGlhhX7OOtfuhPrsJ+Knt98VSqQ9HrUp94hcaVqXeMAyOtQMAAABQcIom1IfDYU2ZMkXnnXdexo+dP3++3nrrLQ0ZMqQHVlYc7Pb7Lir1o5OVekndnoCfNiivk6n7hcQK7P5kpT6UrNRLaj3WjvZ7AAAAAAWiaAblzZw5U5I0Z86cjB63fPly/eIXv9Czzz6rQw89tAdWVhxa2+/bD9dfr0pMvh81sDXU25X6LEJ96hn1UvEMyosm2+8DnmT7vas11Cf21ccUplIPAAAAoEAUTajPRjwe1ymnnKJLLrlE48aNc/SYUCikUChk/72+vr6nlter7Pb7dgblNQQj9tF1o9Iq9WWSsqvU/9gcSWu5L5b2e6tSH3CnH2knyR6WF2VPPQAAAIACUTTt99n43e9+J4/HowsvvNDxY2bNmqXq6mr7Y9iwYT24wt7T2aC8/ybPp6+t8qu6zGtft8+qzyLUpw7Jk4pnUF7Ybr9PTv83Uiv1tN8DAAAAKCx5DfWXX365DMPo9GPRokVZPfd7772nO+64Q3PmzMnojPUZM2aorq7O/vjuu++yev1CE0juqW/vnHp7SF5tRdr11j31mQ/Ks4bk+T2Jf2JNRdJ+b1XqyzwdV+ppvwcAAABQKPLafj99+nRNmzat03tGjhyZ1XO/+uqrWrVqlTbbbDP7WiwW0/Tp03X77bfr22+/bfdxfr9ffr8/q9csZFb7fSjaNpDaQ/JS9tNLrXvqV9QFZZpmRr8csYbkjR5YqU+/ry+i9vtEFb411LvaVOqjhHoAAAAABSKvob62tla1tbU98tynnHKK9ttvv7RrBx54oE455RSdfvrpPfKahayzQXlWqE/dTy+1hvrmcEwNoaj6BbxtHtsRa0jeFslQXyzt91alvtyX+NrDLkPxcJNcaq3UW8EfAAAAAPKtaAblLV26VOvWrdPSpUsVi8W0cOFCSdLo0aNVWZkIo2PHjtWsWbN09NFHq6amRjU1NWnP4fV6NWjQII0ZM6a3l593nZ1T39p+nx7qy30e9Qt4VB+M6oe6YIahPtGyvsUmVZKkaNxUOBqXz1PYYxxa2+/L7GvBaJPKlRrqqdQDAAAAKAxFE+qvuuoqzZ071/77hAkTJEkLFizQ5MmTJUmLFy9WXV1dPpZX8Pze9s+pj8TiWrI2EcA3bL+XEhPw64MNWlEX1JbJgO6EValPfUxLOFYEoT69/V6SQuHmZKhPtN+zpx4AAABAoSiaUD9nzpwuz6g3zc7bojvaR98XBJJhesMj7ZasbVY0bqrc57YH46UaVB3Q4pUNWpnhBHxr+v3mA8rlcRmKxk01R6KqlvNqfz7YR9p5PfIaLkXMuEKRxOkA9pF2tN8DAAAAKBCFXTZFznTUfp+6n769QXiDU4blOVXXElFDKDHtftP+5Sr3JV67GIblWZV6r9ulgJH4BURLNNHJYHUZ0H4PAAAAoFAQ6vuIQAft962hvqLNY6TWYXk/1Ds/1s7aT19T4VOZz61yX6IhpBiG5VmB3et2ye9KhPpQMtR7XLTfAwAAACgsRdN+j+6xzovfsFLf0ZA8SzaVems//dCNEsPmiqtS3xrqA26fFJWCoUapeZ36q0H91SCjZZ3U3P4vQfo8w5DKNsr3KgAAAIA+g1DfR3R0Tv3XqxP7xdsbkidJg6oTwfyHDEK9tZ9+02SoL7NDfTSDFedHJGqFeiMR6iUF130l3bS5bpOkgKQXkh9o309Ok474Q75XAQAAAPQJtN/3Ee2dU2+apr62KvUdhPruVerLJbVW6ouh/T6csqfe76+WJIXamTWATvz3pXyvAAAAAOgzqNT3Ee0NylvVEFJjKCq3y9DwmvJ2H2ftqa9riag5HLX3x3dm+frEHvShdqU+8ZimIgj10XhK+70v8YuOlilzpBEH6tJ/fKhH3l+mSw4co/P3Gp3HVRao1Yuku3eVQvX5XgkAAADQZxDq+4iAp+2gPKtKv9nG5fInP7+hKr9HFT63msIx/VAX1MgO9t6nsir1m/ZP7qn3WpX64mm/97ldCrgTv9AIxcOSyyWP1yNTLkXjhuSiyaWNQKKzQcF6yTQT++sBAAAA9CiSSR9ht99HYzLNRIv5V11MvpckwzBaJ+A7bMHvqP2+OAblJdvvPYYCnmSoj4UkJYJ+4h6m37cr0C/xv2ZMijTndy0AAABAH0Go7yP8yWq5abYeydbVfnrL4OSwPCf76huCEdW1RCS1NyivsEO9aZr2e+NxueR3+yVJLdGW5DWOtOuUr1Iykv+XEqQFHwAAAOgNhPo+wqrUS60t+K2V+s5D/Sb9rLPquw71y9cnAnD/cq8q/YndHfagvEhhh/po3LT/7HO72lTqvcljASNRs+2DkWi391cl/hxqyO9aAAAAgD6CUN9H+Nwue4tzKJoI11+v6vw4O0vrBPyWLl9n+QZn1Euyh+sV+pF20VhrWPd6DHtPfTCa+GWGN9l+bw3TQzuSJwYwLA8AAADoHYT6PsIwDHtYXigSV2MoalfeRw3oPNRnsqd+wyF5UvHsqU9tq/e6XfJ7Eu33wVgy1Cfb79lT3wlrX32wLr/rAAAAAPoIQn0fknpWvbWffkClX9Xl3k4fZ1XqnbTfL/vROs6u9Yi8YjmnPjWse1ytlfpQNL39Pkz7fcf8yVBPpR4AAADoFYT6PqT1rPq4vk7upx89sOPJ95ZMKvXWnvrUSn2Z3X5fHKHe6zaSnQ3J9vsY7feO2ZV6Qj0AAADQGwj1fYgd6qMxfbXK2ZA8qXX6/ZrGsL0fvyPL2t1TXySV+mQF3grv1vR7a0+9z037fZeo1AMAAAC9ilDfh/g9Ke33dqW+61C/UblXvuRjV9WHOr13+QZn1EutR9o1FfigvEjcqtQnvtYyT+IXE9b0e4+b9vsuUakHAAAAehWhvg9Jb79PTL53Uqk3DCNlAn7HLfjN4ajWNoUltZ5RL0nl3iKp1MfSQ/2GlXrrOpX6TlCpBwAAAHoVob4PsQblNYWi+nZNMtQ7qNRL0qB+XR9rZ1XpqwIeVZe1Dt8rL5Y99ckKvNVmbx9pZ++pT1xnT30nqNQDAAAAvcqT7wWg9/iTR9otXtmgaNxUuc+twcmw3pXBDoblLWtnSJ7U2n5f6OfUW0faWW321qC8L378Qif/62Stb46ofHijvnR5dPK/qvK2zkLmalyl4yvKdRiVegAAAKBXZBXqm5qaVFHR9dR0FBarUv/p94nANbK2Qq7k2etdGZQcltdZ+/2ydvbTSymD8iIFXqlPmX4vSZtWbipJaom26MPVH0qS3OVSi6QPV+dliUWhrn+1DuOcegAAAKBXZBXqN9lkEx1//PE644wztPvuu+d6Tegh1p76T5cnAtdoB/vpLU4q9cvbmXwvtYb6SMxUJBa396YXmmgsffr9iOoR+sfh/9CyxmWSpE+W1+l/X/hKwzYu068P2zpv6yxUyxqW6ZZ3b1GTy2BPPQAAANBLsgr1/+///T/NmTNH++yzj0aMGKEzzjhDp556qoYMGZLr9SGHAsn2e2uYnZMheRbrrPoV9Z1V6psltRfqW/+ZNYdjqi4rzFBvVeqtSf+SNGbjMRqz8RhJUll4jaKNfvkqqrTvZnvmZY2F7L/r/6tb3r1FLYbBnnoAAACgl2SVro466ig9/vjjWr58uc4991w99NBDGj58uA477DA99thjikYLe+90X2W131ucDsmTWgfl/dDJoLz2zqiXEiHZk2zzL+QJ+OENpt9vyMP0+05ZRwC2uFxU6gEAAIBe0q2SaW1trX75y1/qo48+0q233qrnn39exx13nIYMGaKrrrpKzc3NuVoncsBqv7c4OaPeYrXfr2oIdRhql69vf0+9VBzD8qyvy9PBnAFrr32YUN8uK9RHDEPRUEOeVwMAAAD0Dd0K9StXrtRNN92krbfeWpdffrmOO+44vfDCC/r973+vxx57TEcddVSOlolc8KeEepchDa9pG747UlPpl8dlyDSl1Q2hNp8PRmL29Q2n30ut++oL+Vi79trvU1kVfGvvPdKVeVu/7y3xiBTpeKsGAAAAgNzIak/9Y489pr/85S969tlntfXWW+v888/XySefrP79+9v3TJo0SVtttVWu1okcSG2/H15TYR9x54TbZWiTfgEtX9+iH+qDGrJBcP8+WaWv8LnVv9zb5vGJffWhgp6AH9lgUN6GrLBP+337fC6fXIZLcTOuFpdLVaF6yevsyEQAAAAA2ckq1J9++uk64YQT9Prrr2vHHXds954hQ4boyiuv7NbikFuBlBA/qjbzIwkHVSdDfTsT8K399JtuVCbDaNu+XpbsEmgKFX77vdVmvyGrLZ/2+/YZhqEyT5maIk2tw/IqB+Z7WQAAAEBJyyrUr1ixQuXlnbdul5WV6eqrr85qUegZqXvqM5l8b7En4HcS6tvbTy+lnFVfyO330c4H5XkZlNclO9S7DCnEWfUAAABAT8sq1EejUdXXt51ubRiG/H6/fD5ftxeG3Ettv89k8r1lcCcT8Jevb/84O0tZUeypd9Z+z576jtkT8DnWDgAAAOgVWYX6/v37t9tibRk6dKimTZumq6++Wi5XYZ5J3hf1RqW+vSF5UsqgvALeUx922H4fjZuKx025OpiS35dxrB0AAADQu7IK9XPmzNGVV16padOmaaeddpIkvf3225o7d65+/etfa/Xq1brlllvk9/t1xRVX5HTByF5qpX50FqF+cHUisLW3p355l+33iX9qLQV8pF20i0q9N2UqfiQel9/lfNBgX0GlHgAAAOhdWYX6uXPn6ve//72OP/54+9rhhx+u8ePH695779ULL7ygzTbbTDfccAOhvoBYlfoBlX5VtzOhviuOKvVF3X7f+Z56X8r1aMyUP6ufntJmhfpmw6BSDwAAAPSCrHrj33jjDU2YMKHN9QkTJujNN9+UJO2+++5aunRp91aHnNp+WH/tMnJj/WzPzbN6/OBkqF9ZH1Q83rqvPByNa2VDIuh3tKe+ohgG5Tk8pz71XqRLa7+nUg8AAAD0uKxC/bBhwzR79uw212fPnq1hw4ZJktauXauNNtqoe6tDTpX7PPr7z3bVz/YcldXja6v8chmJPeVrmkL29RV1LTLNRHt/TUX7QxLLku33hVypt/bUezrYK+92GbJGSXCsXfvS2u+p1AMAAAA9LqsG4ltuuUVTpkzR008/bZ9T/+6772rRokX6xz/+IUl65513NHXq1NytFHnndbtUW+XXyvqQfqgLamBVonKfOiSvowGK5SXQfm99LhyN25Pyka61Us+eegAAAKA3ZBXqjzjiCC1evFj33nuvFi9eLEk6+OCD9fjjj2vEiBGSpPPOOy9ni0ThGNQvoJX1Ia2oC2rboYlrXQ3Jk1LOqY8U/qC8jtrvpcS++nA0riiV+nalV+o5px4AAADoaRmH+kgkooMOOkj33HOPZs2a1RNrQgEbVB3Qh8vq0ibgL/sxcUZ9R0PyJKnMW/iV+q6OtEv9HHvq29ca6tlTDwAAAPSGjPfUe71effTRRz2xFhQB+1i7+tRQb1XqOw711pF2zaHCDfWRLo60kyRP8nPhKO337Sn3Jro1WlyGFGrI82oAAACA0pfVoLyTTz653UF5KH3WsXZplfr1ztvvmwu4/T4STQ7K6yTUW8faUalvH4PyAAAAgN6V1Z76aDSqP//5z3r++ec1ceJEVVRUpH3+1ltvzcniUHgG22fVt9jXlqcMyutIMZxTH40nj7Rz0H5v3Yt0aUfaNRPqAQAAgJ6WVaj/5JNP9JOf/ESS9MUXX6R9rqPp5ygNg/qlV+qjsbjdij+s0/b7wj+nPkz7fbdRqQcAAAB6V1ahfsGCBbleB4qEtad+RV1QpmlqRV1Qsbgpn9ulAZX+Dh9XFEfaRZ0daSfRft+RtCPtokEpGpY8vjyvCgAAAChdWe2pt3z11Vd69tln1dKSaL82TaqXpW5gv0RwD0XjWt8caT2jfqMyuVwdd2lYg/IKuVLv5Jx6H+33nUqr1EtU6wEAAIAellWoX7t2rfbdd19tueWWOuSQQ7RixQpJ0plnnqnp06fndIEoLAGvWzUVicrrirqglq/vevK91FqpD8cK94z3iKMj7Wi/70xrpT7x/VaQs+oBAACAnpRVqL/44ovl9Xq1dOlSlZe3TjyfOnWqnnnmmZwtDoXJnoBf39J6Rn0nQ/Kk1kF5ktQcKcxqvbMj7TinvjNpg/IkKvUAAABAD8tqT/1zzz2nZ599VkOHDk27vsUWW2jJkiU5WRgK1+DqgD79vj5RqXdwRr2UOArO7TIUi5tqCcfUL+DtjaVmxEn7PXvqO9em/T5IqAcAAAB6UlaV+qamprQKvWXdunXy+zselobSkHpW/bIfuz6jXkqcilDuLexheVZQ93k6br+3zqmPxmi/b48V6oOGFJeo1AMAAAA9LKtQv8cee+iBBx6w/24YhuLxuG666SbtvffeOVscClPqBPxl65Pt911U6qXUs+qjPbe4bsik/T5Mpb5dVqiXpKBhUKkHAAAAelhW7fc33XST9t13X7377rsKh8O69NJL9emnn2rdunV6/fXXc71GFJhNkmfVL/+xRSvWJ86o76r9Xir8Y+2soO5x0X6frYAnYP+52TBUTqUeAAAA6FFZVeq32WYbffHFF9p999115JFHqqmpScccc4w++OADjRo1KtdrRIEZnGy//2R5naJxUx6XoYFVgS4eJZUlj7Ur1FAfzaD9nlDfPpfhSj+rnko9AAAA0KOyqtRLUnV1ta688spcrgVFwtpT3xBKtNEP6V8mdydn1FusSn1LEbfft1bq2VPfkTJPmVqiLWoxXOypBwAAAHpY1qF+/fr1evvtt7Vq1SrF4+lVy1NPPbXbC0PhGtQvvSrvpPVeKp72e4606560Sj2hHgAAAOhRWYX6f/7znzrppJPU2Niofv36yTBaq7SGYRDqS1yF36N+AY/qg4mKe1dn1FvKCnj6vWmadlC3gnt72FPftbRj7Wi/BwAAAHpUVnvqp0+frjPOOEONjY1av369fvzxR/tj3bp1uV4jCpA1AV/q+jg7S4U/8TuklgIM9bG4KTPZUe/rpFLv83CkXVdaK/W03wMAAAA9LatQv3z5cl144YXtnlWPvsHaVy85O85OSj3SrvBCfTTeGtI731PPkXZdoVIPAAAA9J6sQv2BBx6od999N9drQREZnBLqHe+pt9rvI4U3KC81pHe6p95F+31X0kI9lXoAAACgR2W1p/7QQw/VJZdcos8++0zjx4+X1+tN+/wRRxyRk8WhcA3KJtTb0+8Lr1IfiaaG+k6OtEu230eitN93JK39nko9AAAA0KOyCvVnn322JOnaa69t8znDMBSLFV5oQ25ZlXq3y2gzDb8jhXxOvXVEncdlpA1+3JAV+CNxKvUdoVIPAAAA9J6sQv2GR9ih77EG5Q3qF5Cnk3b1VAVdqXdwnJ2U2n5Ppb4jaUfaRZqlWERye7t4FAAAAIBsZLSn/pBDDlFdXZ3999/+9rdav369/fe1a9dq6623ztniULh2Hrmxjtp+iH65/5aOH2MNymsKF96e+tZQ33GVXpK8dvs9v9jqSFqlXpJCDXlcDQAAAFDaMgr1zz77rEKhkP33G2+8Me0Iu2g0qsWLF+dudSluuOEGTZo0SeXl5erfv7+jx0ybNk2GYaR9HHTQQT2yvr7G73Hr9hMm6NiJQx0/pryAp99blXdrz3xHfMnQH6VbpUN2qLeq88G6Tu4GAAAA0B0Ztd+bptnp33tSOBzWlClTtOuuu2r27NmOH3fQQQfpL3/5i/13v9/fE8uDA6XQfm99Pkz7fYesUN/s8SUusK8eAAAA6DFZ7anPh5kzZ0qS5syZk9Hj/H6/Bg0a1AMrQqbKvNagvMJrv7eOtPN00X5vzQ+g/b5j5d5ySamVekI9AAAA0FMyar+3Wtg3vFbIXnrpJQ0cOFBjxozReeedp7Vr13Z6fygUUn19fdoHcqOgK/VRZ5V6q/2ec+o71tp+n/h+U6kHAAAAek7G7ffTpk2zW9iDwaDOPfdcVVRUSFLafvtCcNBBB+mYY47R5ptvrq+//lpXXHGFDj74YL355ptyW4FjA7NmzbK7ApBbFf7knvpI4YX6aDy5p95h+30kTvt9R9LOqZeo1AMAAAA9KKNQf9ppp6X9/eSTT25zz6mnnur4+S6//HL97ne/6/Sezz//XGPHjnX8nKlOOOEE+8/jx4/Xtttuq1GjRumll17Svvvu2+5jZsyYoV/+8pf23+vr6zVs2LCsXh/pCvmc+rDTI+1ov++Svaee6fcAAABAj8so1KcOnMuF6dOna9q0aZ3eM3LkyJy93siRIzVgwAB99dVXHYZ6v9/PML0eUu5NVOrD0bhicVNuV+Fs3Whtv+/iSDva77vUeqRd8kKI6fcAAABAT8nroLza2lrV1tb22ustW7ZMa9eu1eDBg3vtNdHKOqdeSgzLqwp487iadNaRdp4u99QnK/WE+g7ZoV7J94j2ewAAAKDHZDQoL5+WLl2qhQsXaunSpYrFYlq4cKEWLlyoxsZG+56xY8dq/vz5kqTGxkZdcskleuutt/Ttt9/qhRde0JFHHqnRo0frwAMPzNeX0af5PS5ZxflCG5ZnhXTHe+o50q5D5Z7k9HszGeoZlAcAAAD0mKI50u6qq67S3Llz7b9PmDBBkrRgwQJNnjxZkrR48WLV1SVafd1utz766CPNnTtX69ev15AhQ3TAAQfouuuuo70+TwzDULnPo8ZQVE0FGuq7ar/30H7fpTJvolIfNKMyJRlU6gEAAIAeUzShfs6cOV2eUW+ardXTsrIyPfvssz28KmSqzOdWYyhacGfVW5X3ro+0o/2+K1b7vSkpaBgqo1IPAAAA9Jiiab9HaSjUs+rtSr3HWft9lPb7DgXcAfvPLYbBnnoAAACgBxHq0avKkhPwC+1YOzvUdzGR3wr9YSr1HXK73PK7E1tcWlwGe+oBAACAHkSoR6+yKvWFFuqdnlNvhX7a7zvXeqydi0o9AAAA0IMI9ehVFf7EGIeWSGHtqbfa6Z2238dNKRanBb8jraGeSj0AAADQkwj16FWF3n7f5ZF2KaGfan3H7FDvMqRwoxQvrO83AAAAUCoI9ehVhTooL+z0SLuUPfeE+o6lVeolqvUAAABADyHUo1eV+RLt9wVXqY8mWuk9XVXq3amVetrvO2KHeo8vcYF99QAAAECPINSjVxXqoLyIw0F5bpchd7JaH6VS3yE71PvKExeo1AMAAAA9glCPXtXafl9gg/Li1p76ztvvpdYWfY6165gV6pu9yTPrQw15XA0AAABQugj16FVlyVDfVGCV+nCy/b6rSr0keV2Je2i/75hdqbdCPe33AAAAQI8g1KNXlXsLc1Ce0/Z7qXUCPoPyOtZmTz3t9wAAAECPINSjV5Xbg/IKq/0+4nD6feo9hPqOlXmTod6d+H4rWJfH1QAAAACli1CPXlVWsIPynLffe2i/75JdqbdCPZV6AAAAoEcQ6tGr7EF5kUIL9c7b732033ep3JOYet/iSny/2VMPAAAA9AxCPXpVeaGeU2+Feo+DPfVW+32UUN8Ru1JvJLczUKkHAAAAegShHr2q9Ui7wgz1zo60S1bq47Tfd6Q11CcvUKkHAAAAegShHr2q3N5TX1iD8sLJ/fHWfvnOeKxQT6W+Q3aoV/I9olIPAAAA9AhCPXpVoQ7Ki2bQfu9j+n2X7FBvJt8jKvUAAABAjyDUo1dZe+pD0bhiBdS+ntmRdrTfd6U11Cc7MqjUAwAAAD2CUI9eZbXfS4U1Ad86ns7nYPq9l/b7LtmhPp4M9VTqAQAAgB5BqEev8ntcsgaiN4cy21f/3bpmzf9gWY9U+MNR50faeWm/71JrqA8nLlCpBwAAAHqEJ98LQN9iGIbKvW41hWMZ76u/5slP9cKiVdqo3KfJYwbmdF1WQPdk0n5PqO+QHepjQZmSjFCDFI9LDgYRAgAAAHCO/8JGryvL8qz6JeuaJUkr64M5X1M0nkX7fYw99R0p8yZCfcyMKyJJMqVwYz6XBAAAAJQkQj16nX1WfSSz9vu1jSFJUlMo93vxIxm033tov++SVamXpBaPL/EHWvABAACAnCPUo9eVZ3GsXSQW14/NiZpvU4Z78Z0IZ3SkHe33XfG6vPK4Eh0ZLYF+iYsMywMAAAByjlCPXpdNqP+xKWz/uTGc+1Cf1ZF2tN93yqrWN/srExeo1AMAAAA5R6hHr7POqm/JINSvaWwN9bmu1MfipqyB+l4Hg9wYlOeMPSzPX5G4QKUeAAAAyDlCPXpdWRaV+jXJ/fRS7vfUp4ZzJ+33HGnnTLmnXJLU4kv8L5V6AAAAIPcI9eh1re33zivua5taQ31jjiv1aaGe9vucsSv1yUn4CtblcTUAAABAaSLUo9fZ0+8zqdQ39Fz7fWo4p/0+d1pDfSBxgUo9AAAAkHOEevS6Mm/ynPpIBqG+KbX9vmcq9R6XIZer60o9R9o5Y4d6jzdxgT31AAAAQM4R6tHr7Pb7DMJ5WqU+gwq/E+HkGfUeB633UuqRdrTfd8YO9e5kqKdSDwAAAOQcoR69LptBeWt7sFIfTY6+t9rqu2Ltuw9Tqe9Ua6hPdGZQqQcAAAByj1CPXmdX6jNov1+bcqRdTw3K8zkN9ckJ+VFCfafsUO9KfL+p1AMAAAC5R6hHr8tqUF5jeqXeNHPX+m613zuu1Ltov3eiNdQntzVQqQcAAAByjlCPXlfuSw7Kc3iknWmaaZX6uCkFI7mrkluVeq/H2Z566z4G5XWuLHmUXYuRfF9DDXlcDQAAAFCaCPXodZlW6uuD0Tb713PZgm9V3J0cZydxpJ1TdqVeyY6GEOfUAwAAALlGqEevy3RQ3tpk632l36OK5GNzOSzP2hvvfFAe7fdOtIb65C8/aL8HAAAAco5Qj17X2n7vLNSvSbbe11T6VOFPPDaXlfpwpu33nFPviBXqm83k9yrUIOVwFgIAAAAAQj3ywG6/dzj93qrUD6j0q9Kf2S8EnLDb7zOs1FsD9tA+u1IfT4Z6MyaFm/K4IgAAAKD0EOrR68q8Vvu9s2r7mqZkpb6itVKfy/b7SJbt99b59mifHepjIcngWDsAAACgJxDq0eusSn0wElfMQTBe05Cs1Ff5VeFPPDa3g/KsUE/7fS7ZoT7aIgX6JS6yrx4AAADIKUI9ep21p15y1oK/tikZ6it8dvt9biv12bXfR2i/71S5p1xSMtT7k6GeSj0AAACQU4R69LqA1yXr6HInLfhrGhLt9wOq/PYvBHqmUp9hqKf9vlNU6gEAAICeR6hHrzMMw95X7+SseqtSX1PhT9lTn8tBeYlQ78v4SDsq9Z1JC/V2pZ6z6gEAAIBcItQjL8ozOKs+9Ui7yuSe+iaHQ/acsKbYZ7ynnvb7TlmhPhKPKOqrSlykUg8AAADkFKEeeZHJWfVrUo6064lz6q099Z6MK/W033emzFtm/7klUJH4A3vqAQAAgJwi1CMv7LPquwj1oWhMDcFEgB9Q2ToorzmHoT6a9Z76uEyTYN8Rn8snl5F4r1q8iaF5VOoBAACA3CLUIy/KfM7Oql+bbL33uAxVl3lTKvU9sac+s/Z705SjI/n6KsMwWvfV+5JVeyr1AAAAQE4R6pEXdqW+iyPt1qbspzcMI2VQXg731Gd5pJ1EC35X7FDvDSQuhBryuBoAAACg9BDqkRdlXmd76lP300vqkUF59pF2nsxDfZgJ+J1qDfW+xAXa7wEAAICcItQjL5xOv7dCfU0y1PfoOfWuzNrvpdb9+GifHerdyVBP+z0AAACQU4R65IUd6rsI59ZxdgMqEqGwsgfa7yMZtt8bhiFP8hcAtN93rjXUJ75vCnJOPQAAAJBLhHrkhT0or8s99cn2+6pEpb51T33uB+U5bb+XUo+1o1LfGSvUN7sS328q9QAAAEBuEeqRF06PtFvblByUl6zUV6Tsqc/VcXKRDI+0S9xrVeoJ9Z2xK/Wu5HvLnnoAAAAgpwj1yAtrb3xXR9q1HZSXeJxpdj0536lMj7STJJ/HqtTTft8ZO9Rbb22oPvHNAwAAAJAThHrkhfNBea1H2klSmdcta55droblWcHck0Gl3uOi/d4JO9RbF+JRKdLS4f0AAAAAMkOoR144bb/fsFJvGIYqfLndV59V+70n8ZsFjrTrnB3qzZik5G9j2FcPAAAA5AyhHnlR5uv6nPp43NS65J56K9RLqcPyclWpt0K98/Z76xcAUdrvO2WH+liL5O+XuMi+egAAACBnCPXIi3Jv19Pv17dEFIsnQvPGyUF5klSeHJaXs/b7aOI1fJlU6mm/d6TcWy5Jaom2SIFkqKdSDwAAAOQMoR550dp+33Ewt46zqy7z2oPppNyfVR+m/b7H2JX6aGqlnrPqAQAAgFwpmlB/ww03aNKkSSovL1f//v0dP+7zzz/XEUccoerqalVUVGjHHXfU0qVLe26hcKTMwaC81clQbw3Js1h76nNVqY/GE8Hck0X7fSRKqO9MWqinUg8AAADkXNGE+nA4rClTpui8885z/Jivv/5au+++u8aOHauXXnpJH330kX7zm98oEAj04ErhhHWkXWeD8tY2tt1PL7Xuqe9qcr5TWbXfW3vq4+yp70z7lXpCPQAAAJArnnwvwKmZM2dKkubMmeP4MVdeeaUOOeQQ3XTTTfa1UaNG5XppyILVft/koP1+wAaV+srknvqcD8rzZBLqjbTHon12qI+kVuob8rgiAAAAoLQUTaU+U/F4XE899ZS23HJLHXjggRo4cKB23nlnPf74450+LhQKqb6+Pu0DuWe13wcjccU7qHav6aJSn6v2+6z21CfvDdN+36l2K/W03wMAAAA5U7KhftWqVWpsbNRvf/tbHXTQQXruued09NFH65hjjtHLL7/c4eNmzZql6upq+2PYsGG9uOq+w6rUS1JLBxPw1zYl99RXpIf6XA/K69aRdrTfd6rdPfW03wMAAAA5k9dQf/nll8swjE4/Fi1alNVzx5PDz4488khdfPHF2n777XX55ZfrsMMO0z333NPh42bMmKG6ujr747vvvsvq9dG5gKc11He0N351Q7JSX7XBoDy7Up+bPfXWWfOZVeppv3eCSj0AAADQs/K6p3769OmaNm1ap/eMHDkyq+ceMGCAPB6Ptt5667TrW221lV577bUOH+f3++X3+zv8PHLD5TJU7nOrORzrcFheR5V6ez8+7fcFr/1KPUfaAQAAALmS11BfW1ur2traHnlun8+nHXfcUYsXL067/sUXX2j48OE98prIjBXqmyPth/M1HQ7KK5z2+0iM9vvOWKE+GAsq7uuXaA2iUg8AAADkTNFMv1+6dKnWrVunpUuXKhaLaeHChZKk0aNHq7KyUpI0duxYzZo1S0cffbQk6ZJLLtHUqVO15557au+999Yzzzyjf/7zn3rppZfy9FUgVVdn1Xd1pF2uBuVZwTyrI+1ov++UFeolKegLqFxiTz0AAACQQ0UT6q+66irNnTvX/vuECRMkSQsWLNDkyZMlSYsXL1ZdXWtr79FHH6177rlHs2bN0oUXXqgxY8bo0Ucf1e67796ra0f7yr0dn1XfHI7aYb+mg0p9Ls6pj8dNxZLD7jzsqc+5gCdg/7nZ40+Eeir1AAAAQM4UTaifM2dOl2fUm2bbVugzzjhDZ5xxRg+tCt3RWaXeqtL7PS47xFsqcth+H4m3hvJs2u/DtN93ymW4VOYpU0u0RS0eb+IilXoAAAAgZ0r2SDsUvnI71LcN56376f0yjPSwXeFPPC4X7fepe+KzGZRH+33X7GF57uQvZ6jUAwAAADlDqEfeWKG+vfb7NfZ+el+bz+VyUF4kmlqpd/7j4KP93jE71LuSxxjGwlIkmMcVAQAAAKWDUI+8KfMlw3m77ffJ4+wq2x4vaLffh2OKx7vX/m6FcrfLkNvlvP3eQ/u9Y3aoT+24oFoPAAAA5AShHnlT7rUq9R2339dUtK3UV/ha99g3R7o3LM86o96TQaCXUo+0o1LfFTvUx0KSrypxkX31AAAAQE4Q6pE3nQ3Ks9vvq9pW6gNel6wM3t0W/GgWx9lJrUP12FPfNTvUR1ukQL/ExVBdJ48AAAAA4BShHnlT3tn0+6ZEqG+vUm8YRs7Oqrcq7V5PpqHeqtTTft+VtFDvt0J9Qx5XBAAAAJQOQj3yxgrm7Q7Ka0i039e2U6mXUs6qD+Wm/T6T4+wS91t76qnUd6XdSj3t9wAAAEBOEOqRN2XJPfXt7Ytf22TtqW8/1OeuUp+otGcy+T5xP9PvnWq/Uk+oBwAAAHKBUI+8aT3Srr1Bedae+rbt91LKBPxctd9nGOp9Huucetrvu0KlHgAAAOg5hHrkTUeD8qKxuH5stvbUd9R+n3hsUzu/EMhEJMv2e4+L9nunqNQDAAAAPYdQj7wpTx5Nt2GoX9cclmlKhiFtVO5t97HWsXa03xc+KvUAAABAzyHUI29a2+/TQ/3aZOv9xuU+eToI2zlrv49m137vpf3eMSvUN0ebUyr1HGkHAAAA5AKhHnljt99H0oO5FeprKtvfTy9JFcn2+8ZuTr+3Ku0Zn1Pvso60o1LflTJvaqW+OnGRSj0AAACQE4R65I19Tv0GwXxNY2Ly/YDK9vfTS7mr1Ft74j0ZH2lnpD0eHWNPPQAAANBzCPXIm3Jv+3vqrVBf00mor7T343cv1Eez3VPvoVLvVHqor0pcpFIPAAAA5AShHnljtd+3RGKKx1v3ptvH2XXafm8NystN+33GR9q52VPvVLmnXNIGg/Ko1AMAAAA5QahH3lj74iUpGG0N52sdtN9X5vicep8nwyPtmH7vmF2pj6S031OpBwAAAHKCUI+8CXhaQ31qC77dfl/hpFLf3T312R5plzynPkqo70q7R9pRqQcAAAByglCPvHG5DJV52x5rt7bJar/vbFBe4nG5qtR7XFm238dpv+9KWvu9VamPBqVoOI+rAgAAAEoDoR55ZU/ATw31jo60y037fTTL9nurUk/7fddSj7QzfVWtnwg15GlFAAAAQOkg1COv7LPqk1PsTdPUaidH2vlyMygv2/b71j31pkyTan1nrPZ7U6aCikreisQnQnV5XBUAAABQGgj1yCurUm+13zeGovY+9d4clJftnvrEcxDqOxNwB+w/p+2rZ1geAAAA0G2efC8AfVuZL/2seus4uwqf267it8faU98SiSkWN+V2ZdY+b4lEu3eknSRF43H5+P1Yh9wut/xuv0KxUOu++oYV0g8fSa6Ov8dIUT5A6jc436sAAABAASLUI6/Kk4PymiOJUG8dZ1fTSZVeat1TLyVa96sC3qxe3xp053Vnd6SdJEWiptTx9n8o0YIfioUSx9pZlfonf5HfRRUVQzr7BWnTifleCAAAAAoMoR55ZQ/KS7bR28fZdTIkT5L8Hpc8LkPRuKmmUCzrUB/Osv3ek9IZEGZYXpfKPGVaH1qfqNT/5FSpfoUU797WiT4j1CBFmqRFTxHqAQAA0AahHnlVtsH0e6v9vrP99JJkGIYq/B7VtUS6dVZ9tu33hmHI53YpHIszAd+BtLPqf3Jq4gPOvP9AoqthyRv5XgkAAAAKEBuBkVf2oDy7/d4K9V33s+diWF7roLzM9+Rbj4kyKK9LaaEemRm+W+J/l78nRXj/AAAAkI5Qj7wqtwflpbffd1WpTzw28QuB7oX6RCD3eTL/UfAkq/u033eNUN8NG4+UKgdJsbC07J18rwYAAAAFhlCPvCrfoP1+bVNyT31F15V6a1het9rvk4Hc48r8R8Fq2af9vmuE+m4wDGlEslpPCz4AAAA2QKhHXm14Tv2ahmT7fVXXlXqr/d76hUA2utN+76P93jEr1DdHm/O8kiJlteB/+1p+1wEAAICCQ6hHXrU5p96u1Hcd6q2z6rtXqaf9vjdQqe8mK9Qve0eKhvK7FgAAABQUQj3yasP2+zUNicBSW+W8/b47e+qzPdIu8ZhEpZ72+64R6rupdoxUPkCKBqXvP8j3agAAAFBACPXIq9bp91GFo3HVBxMB3UmlPrfT79lT35PKvIT6bjEMafikxJ9pwQcAAEAKQj3yqszbWqm3huS5XYaqy7xdPrZ1UF72e+qt/fCebPbUJ1v22VPfNSr1OWC14C95Pb/rAAAAQEEh1COvrCPtWsIx+4z6mgqfXK6uQ3YuK/W+LCr1nuQa2VPftXJPuSRCfbdYE/CX/keKZf9vHgAAAKWFUI+8KrPOmg9H7TPqaxycUS+1tu43hvO1p572e6fsSn2EUJ+1geOkQLUUaZJWfJjv1QAAAKBAEOqRV6lH2q1JVuoHVHY9JE/KzaC8bh1pR/u9Y7Tf54DLJW2W3Fe/hH31AAAASCDUI69Sp9+vTVbqBzis1Nvn1HdjT30kmgjk3anU037fNUJ9jlgt+EveyO86AAAAUDAI9cgre099JKbVDVaoz6xS351z6qPx7NvvrT31tN93jVCfI/awvDelePa/zAIAAEDpINQjr6xKvWlKy9cnAp/TPfWV/tb9+NkKR7Nvv/cm2+8jUUJ9Vwj1OTJoW8lXJYXqpJWf5Hs1AAAAKACEeuSVdaSdJH33Y7OkxPR7J3Kzpz779ntrYn40zp76rhDqc8TtkTbbOfHnbznaDgAAAIR65JnLZSjgTfwzXLo2EeoHVDmr1Ff4ut9+bx9p5+FIu55EqM8hzqsHAABACkI98s7aV18fTITzARWZDcoLRuKKZhGsTdO0q+xZDcqz2++p1HclNdSbJu9XtwxPGZYX5xdKAAAAfR2hHnmX2oIvSQOqnLXfl/tbH9cUznxoWCTlKDpPNkfacU69Y2XeRKiPmTFF4pE8r6bIDZkgecqklnXS6kX5Xg0AAADyjFCPvLOG5Vk2drin3u9x2wPustlXnxrGfVkdaZecfk+1tEtWpV6iBb/bPD5p2E6JP9OCDwAA0OcR6pF3qaG+X8Ajv8fdyd3prGF5zVlMwE8N9Vkdaeem/d4pr8srjyt5fCGhvvvYVw8AAIAkQj3yriwl1A9weJydpXVYXubt99aAO5chuV1ZHGlH+31GrGp9c7Q5zyspASOSof7b1xPnQQIAAKDPItQj76xBeZJUU+ms9d5S2Y1j7bpznJ0k+ZLt91Ha7x1hAn4ObbqD5PZJTauktV/nezUAAADII0I98q68O5X65LC8bI61sybmZxvqrfb7MO33jpR7yiVJLRFCfbd5A4lgL0lLXsvvWgAAAJBXhHrkXWqoz7RSX9GtSr0V6jNvvU88jvb7TFCpz7HUFnwAAAD0WYR65F1q+32mlfrutN9bFfbutt8T6p0h1OdY6rA89tUDAAD0WYR65F1ZWqU+s1Bf3o1BeZFutt+3VuoJVE4Q6nNs2E6SyyPVL5fWL8n3agAAAJAnhHrkXbm3NdTXZjwoL/HY7rTf+zzd21NPpd4ZQn2O+SqkIRMSf6YFHwAAoM8i1CPvulOpt/fUZ3VOfaLC7sniODupdS8+od4ZQn0PsFvw38jvOgAAAJA3hHrkXdqRdhX5GJSX7Z76xOOitN87QqjvASN2T/wvE/ABAAD6LEI98i7tSLuqbAfldWNPfZbt99YvA8JU6h0h1PeAYTtLhkv68Vupbnm+VwMAAIA8INQj76z2e5/bpSq/p4u701mV+mzOqbf31Gd5pJ2H9vuMlHkJ9TkX6CcN2jbxZ1rwAQAA+iRCPfLOqtQPqPTJMDIL2N0ZlBeOdfdIOwblZYJKfQ+hBR8AAKBPI9Qj78ZvWq1hG5fpkPGDM35s65F2mYf6aDKMe7I90s7DnvpMEOp7yPBJif9lAj4AAECflFmvM9AD+pf79Mole2dcpZe6O/2+m+33yan57Kl3xgr1zdHmPK+kxGy2qyRDWvul1LhKqhyY7xUBAACgFxVNpf6GG27QpEmTVF5erv79+zt6jGEY7X7cfPPNPbtYZCybQC91b1Bed9vvvbTfZ8Su1Eeo1OdU+cbSJuMSf15CtR4AAKCvKZpKfTgc1pQpU7Trrrtq9uzZjh6zYsWKtL8//fTTOvPMM3Xsscf2xBKRBxXd2FMfiXbzSDuPFeppv3eC9vseNHyStPIT6YP/J4Ua8r2a4mC4pFH7SP2G5HslAAAA3VI0oX7mzJmSpDlz5jh+zKBBg9L+/sQTT2jvvffWyJEjc7k05JFVqQ9F44rG4hntj+/uOfVU6jNDqO9BI3aX3r5P+ur5xAecGb67dPpT+V4FAABAtxRNqO+ulStX6qmnntLcuXM7vS8UCikUCtl/r6+v7+mloRsqUo7AawrFVF3uPKBH41b7fff21BPqnSn3lEsi1PeILQ+WdjxbqluW75UUh3Cj9O2r0tqv8r0SAACAbuszoX7u3LmqqqrSMccc0+l9s2bNsrsCUPi8bpd8HpfC0bgaw1FVl3sdPzZM+32volLfgzw+6dBb8r2K4lG3XLpta6l5jRSPS66iGS8DAADQRl7/S+byyy/vcJid9bFo0aKcvNaf//xnnXTSSQoEAp3eN2PGDNXV1dkf3333XU5eHz2ndVheZvvqc9V+H4ubiscJ9l0h1KNgVAxI/G88KgXX53UpAAAA3ZXXSv306dM1bdq0Tu/Jxf73V199VYsXL9a8efO6vNfv98vv93f7NdF7yn1urWvK/Kx6O9R7smy/T2nbj8Tj8rvcWT1PX2GF+kg8omg8Ko+rzzQKodB4/JK/WgrVSc1rEycIAAAAFKm8/ld1bW2tamtre/x1Zs+erYkTJ2q77bbr8ddC78u+Up+orvuybb9PeVwkZspPRu1UmbfM/nNLtEVVvqo8rgZ9XkVNItQ3rZYGbJHv1QAAAGStaDYSLl26VAsXLtTSpUsVi8W0cOFCLVy4UI2NjfY9Y8eO1fz589MeV19fr0ceeURnnXVWby8ZvaQiy7PqrUq9J8v9tKlt+9bxeOiYz+WTy0i8Z7TgI+8qkr9Qblqd33UAAAB0U9HUFq+66qq0yfUTJkyQJC1YsECTJ0+WJC1evFh1dXVpj/v73/8u0zR14okn9tpa0bsqurunPsv2e7fLkMuQ4mai/R6dMwxDZZ4yNUWaCPXIP0I9AAAoEUVTqZ8zZ45M02zzYQV6STJNs80e/Z/97Gdqbm5WdXV17y4YvabSn9jL3hTu3fZ7SfK4mYCfCYbloWBYw/Ka1uR3HQAAAN1UNKEe6EiFL1Gpz3RQXrib0++l1l8I0H7vDKEeBcOu1BPqAQBAcSPUo+hl234fzUGo9yYn4Edpv3fEDvURQj3yrNyq1NN+DwAAihuhHkWvMutBeYmW+dSj6TJl/UIgHKX93gkq9SgYtN8DAIASQahH0StP7qnP9pz67uyp99p76qnUO2GF+uZoc55Xgj6PQXkAAKBEEOpR9LI9pz4czV37PaHeGSr1KBhWqG+mUg8AAIoboR5FzxqU1xTO7px6bw7a75l+7wyhHgXDDvXrpFhmvxAEAAAoJIR6FL2sB+XFE0Hc68nFkXZU6p0g1KNglG8syZBkSi3r8r0aAACArBHqUfS63X7v6s6Rdrltv1/8Q4Nmv/aNgpHMug6KBaEeBcPlTgZ7sa8eAAAUNU++FwB0V0U3B+Xlpv2++6HeNE39z98/0KIfGvT+0h/1vydMkMuV/doKEaEeBaWiVmpeS6gHAABFjUo9il62lXprH3x32u9zuaf+0+/rteiHBknSUx+t0O3Pf9Ht5yw05d5ySYR6FAh7Aj7D8gAAQPEi1KPoVWR9Tn33j7Tz5LD9/h/vLZMkbbZxIvj+4cWvNP+DZd1+3kJCpR4FhbPqAQBACSDUo+hZ0+/Dsbi9T94Ju1LfjVDvy1H7fTga1xMLl0uSrj1ynM6bPEqSdNk/Pta735bOEC9CPQpKuRXqab8HAADFi1CPomftqZcya8G3grinAI60W7B4lX5sjmhglV97bFGrSw4Yo4PGDVI4FtfP/vqelq5t7tbzFwpCPQqK3X5PqAcAAMWLUI+i53G75E/ui28KZx7qC6H93mq9P/onm8rtMuRyGbp16nYav2m11jWFdcbcd1QfjHTrNQqBHeojhHoUANrvAQBACSDUoyRUZrGvvnX6fX7b79c2hrRg0SpJ0nE/GWpfL/d59KfTdtCgfgF9tapRP3/wfUVzdHRevlCpR0GxKvXNhHoAAFC8CPUoCdawPKfH2pmmmbKnPr/t908s/F7RuKnthlZri02q0j63Sb+A/nTaDirzuvXql2t0zT8/lWl2f9J+vhDqUVBovwcAACWAUI+SUJHhsXbReGsw7taRdp7ut98/+n6i9f7YiUPb/fw2m1br9hO2l2FI/++tpZrzxrdZv1a+EepRUGi/BwAAJYBQj5JQmRyW5zTUp4Zwr6sbe+pd3Wu//+z7en36fb18bpcO33ZIh/cdOG6QLj9orCTpuv/7zG7XLzaEehQUK9SH6qVIML9rAQAAyBKhHiUh0/b7SDSlUt+N9nufp3vt91aVft+tBmqjCl+n9/5sz5GausMwxU3pF3/7QIt+qM/qNfPJCvXBWFBxs7jnA6AEBPpLrsT/d7CvHgAAFCtCPUqCdVa900p9OFlZNwzJ7erOnvrEY8PRzANqJNZ6Nv1xHbTepzIMQ9cdtY12HVmjxlBUlz/6ccavmW9WqJekYJTKKPLMMFL21RPqAQBAcSLUoyRYZ9U3hZ1Nv0+dfG8Y3R+UF41nHupfXrxaaxrDGlDp055b1jp6jM/j0q1Tt5Mkfbhsveqai+uYu4AnYP+5Odqcx5UASeyrBwAARY5Qj5KQ8aA8a/J9N6r0Usr0+2jm7fdW6/1R22+a0bF6g6vLNLK2QqYpvf3tuoxfN59chot99Sgs5VaoZwI+AAAoToR6lITKDEO91X7fncn3Umv7faaD8n5sCuv5z1dK6njqfWd23rxGkvSf/67N+LH5RqhHQeFYOwAAUOQI9SgJrYPyMm+/7w67Uh/PrFL/z4++VyRmatyQftpqcL+MX3eXkRtLkv7zTXFV6iVCPQoMoR4AABQ5Qj1KQqbt91ao93Uz1Hvs9vvMKvX/eC/Reu9kQF57rEr9p9/XqT5YXPvqCfUoKNae+ubi63oBAACQJE++FwDkgn1OfTizUN+d4+wkyZdF+/0XKxv00bI6eVyGjtiu47PpOzOoOqARNeX6dm2z3v12nfYZu0lWz5MPVqi/5OVL5HN3fowfEvr7++vsbc/WgcMP7NZgR7SDSj0AAChyhHqUBOtIO8fn1CcH5Xly1H4fziDUP5qs0u8zdqBqKv1Zv/bOm9fo27XN+s9/iyvUj9l4jD5e87HWh9bneylFY1XzKl3y8iV6dPCjumLnK7R59eb5XlLpqGBQHgAAKG6EepSEbNvvc7Wn3pqm35VoLK75HyTOps9mQF6qnUdurHnvfqe3imxf/W92+Y1OHHuiYnFn8w8gvfTdS/rTx3/SWyve0jFPHqNp46bp7PFnq9xbnu+lFT/OqQcAAEWOUI+S0BrqMxuU5+tm+32m0+9f/WqNVjWEtHGFT3uPGdit1955ZGJf/SfL69QYitonABQ6l+HSlhttme9lFJWtarbSYSMP06y3Z+nV5a/qTx//SU/99yldtuNl2mezfWjJ747USr1pSryXAACgyDAoDyUh0z314eS58jmbfu8w1Fut90dsN0S+bh6nt2n/Mg3buEyxuKl3i+y8emRuWL9h+uO+f9Qde9+hIRVDtKJphS566SKd/8L5Wlq/NN/LK15WpT4alMJN+V0LAABAFgj1KAn5br+POGi/r2uO6LnPEmfTZzv1fkP2efVF1oKP7BiGoX0220ePH/W4zh5/trwur15b/pqOfuJo/XHhHxWMBvO9xOLjq5CsbQzsqwcAAEWIUI+SYIX6SMxUKNp1C340ngj1nm6233syaL//50ffKxyNa+ygKo0bkvnZ9O3ZefPkefX/5TiuvqTMU6YLf3KhHjviMe06eFeF42Hd8+E9uubNa/K9tOJUbrXgs68eAAAUH0I9SoI1/V5ytq8+kmy/7+459b4M2u8ffb/1bPpc7YHeJbmv/qNldWp2uPUApWNE9Qjdu/+9mjlppiTpteWv5XlFRYoJ+AAAoIgR6lES3C5DZd7kvnoHLfjhXm6//3Jlgz5Yul5ul6Ejt9+0W6+ZauhGZRpSHVA0buq9JT/m7HlRPAzD0EEjDpIk1YXqVB+uz/OKihBn1QMAgCJGqEfJsFrwnZxVb++p7+awOqeD8u595b+SpP22GqjaquzPpt+QYRh2tf4//2VffV9V7i1XTSDx7+C7hu/yvJoiZIX6ZtrvAQBA8SHUo2RU+J1X6lsH5fX8kXbL17fo8eTZ9OdNHt2t12vPziOT++q/YV99X7ZZv80kSd/VE+ozVsGeegAAULwI9SgZ1r76prCDPfXJdnmvq+fb7+9/5b+Kxk1NGlWj7Yf179brtceagL/wu/VqcfC1ozQNqxomiUp9VthTDwAAihihHiWjMoNj7Vrb77tZqU+274c7qNSvbQzp7+8kzhA/vweq9JI0vKZcm/TzKxIz9cFS9tX3VVaoX9rAmfUZY089AAAoYoR6lAyr/T6jPfXdHpSX+KVAtINQ/5fXv1UwEtd2Q6u12+iabr1WR1L31b/FefV9FpX6brAr9WxhAQAAxYdQj5JRkVGlPjdH2lnt+3FTisXTW/AbghHNffNbSYm99Lk6xq49Vgs+59X3XZtVsac+a1TqAQBAESPUo2Rk1X7f3VCfMj1/w2F5/++tpWoIRjV6YKUO2HqTbr1OV6xheR98t17BCPvq+yKrUr+qZZVaoi15Xk2RSZ1+H+/8JAsAAIBCQ6hHyWg90s7JoLzEf7h7cjT9PvU5JSkYiWn2a99Iks7da5Rcrp6r0kvSyAEVGlDpVzga18Lv1vfoa6EwVfurVeWrkiQta1iW59UUmfJk+308KgXX53UpAAAAmSLUo2Rk1H4fTU6/z1H7vZQ+Af+R95ZpTWNIm/Yv05HbD+nWaziR2FefPNqO8+r7JMMw2FefLY9P8lcn/syxdgAAoMgQ6lEyKnyZn1Pf3T31Lpchtyv9rPpoLK57X/5akvSzPUd2+xcHTu2cHJbHefV9l72vnlCfOWtYXjOhHgAAFBdCPUqGXakPdx3qw/ae+u63xVvPEY4mnvOfH32vZT+2qKbCp+N3GNbt53dql80Tlfr3l/6oUJR99X0RlfpuYFgeAAAoUoR6lIzWQXldB9poslU+ddBdtqxKfDRuKh43dfdLiSr9GbtvrrJk90BvGD2wUjUVPgUjcX20rK7XXheFwz6rvp6z6jNmH2tHqAcAAMWFUI+S0TooL4Pp967chfpILK4XFq3SFysbVeX36ORdhnf7uTNh/P/27jw+qvre//jrzGRmsq9kTyCshh0UQcCKFioqoiKKV6lCtfVa0Qr0+hNt1WvrUrX2tqIVsa3WuqJWAetSRKQu7BoE2QUMZCEBsm8zmTm/P5IMREJIQmBykvfz8ZhHMmfOnPOZyUngPd/NMBjZs2Fcvbrgd0VqqT8J/pZ6db8XERERa1Gol04jzNXyMfX+7vdB7dv9/ukVuwD48egeRIU4TvrYrXWOf1y9JsvrirpH1o2pz6vIw+PzBLgai1FLvYiIiFiUQr10Gi1dp97rM8k+XAlAiCPopM/b0FL/6c6DZO0rxhVk48axPU/6uG3RsF79+r1FjZbYa86G7w5TUFp9KsuS0yQ+JJ5gezBe00teeV6gy7EWtdSLiIiIRSnUS6fR0u73736dy3eHKokOdTC2T9xJn7ch1D/36W4Apo1IJz7CddLHbYt+CRFEhzqo8nhPOK7e5zN58N0tTH1mFTf+fd1pqlBOJcMwSItIAyC7TOPqW8XfUq9QLyIiItaiUC+dhr+l3u3FNM0m9/H6TP60fCcAP/tBLyKCT76LfEP3+8MVbuw2g5vP63XSx2wrm81gZEb9uPpmlrarqfVyx+tZ/OWzPQBszilla17paalRTi2Nq28jzX4vIiIiFqVQL51GaP1M816fSU1t013P3/06l92FFUSHOrhhdPtMZHf0OvSXD00hPTa0XY7bVv5x9bubHldfWu1h5t/WsXRjLkE2g17dwgBYnJV72mqUU0cz4LeRQr2IiIhYlEK9dBphziPj45saV38qWumhcai/5fze7XLMk3FkXP1har83rv5AaTXTFqxi1e5DhDntPP+Ts7lz4hkALN2Yi8/XdA8HsY7uEXWT5e0v2x/gSiwmtL77fdVh8J54sk0RERGRjkKhXjoNm83wt9Y3tVb90o1HWulnjMlot/M2dL+/cEAi/RIj2u24bZWZFElkcBAVbi+bc490qd9VUMaVf/6CbflldAt38fp/j+YHfeO5IDOBCFcQOcVVbMguCmDl0h78LfUaU986obFA/WoYVVo9QkRERKxDoV46leNNluf1mTx5VCt9w/j79vDDzEQSI13MvbBfux3zZNhtx65Xv+G7w1y1YBU5xVX07BbGP38+hkGpUQAEO+xMHJQEwDtf5QSmaGk36ZF1oX5/2X58ZstWQBDAZofQ+okz1QVfRERELEShXjqVI5PlNQ71SzbmsPtgBTHt3EoP8PPze7P67vFkJkW263FPxtHr1f/7m3yue24NxZUehqVH89bPx9A9rvG4/yuGpQLwr015uI8zH4FYQ3JYMkFGEG6fm4LKgkCXYy0aVy8iIiIWpFAvnUqYq677/dEt9bVeH/OX7wLgZ+e1byt9A8Mw2v2YJ2NUz7pQ/9nOg9zy0gZqan2Mz0zglZ+NIjbMecz+o3vH0S3cRXGlh892KdBYWZAtiJTwFEAz4LealrUTERERC1Kol06lYbK8oyfKW7Ix199Kf8PojABVdnoNSIkkwhWE2+vDZ8I1I9J59vqzCHU2/YGG3WYweWgyoFnwOwPNgN9G/lCvD7ZERETEOhTqpVPxd7+vD/W1Xh/zPz61rfQdkd1mML5/AgC/GN+X300dTJC9+V/3y+u74P/7mwNNrh4g1qG16tvI3/1eLfUiIiJiHQr10qmE+ifKq5v9fsnGXPZ0sVb6Bo9dNZTP7rqAuT/q16LhAUPTougRF0qVx8tHWw+chgrlVNEM+G2kMfUiIiJiQQr10qmE14+pr6yppdbr8894f/N5vbtMK30DZ5CNtJjQE+9YzzAMf2u9uuBbW/dIrVXfJhpTLyIiIhZkmVD/0EMPMWbMGEJDQ4mOjm7Rc8rLy7nttttIS0sjJCSEAQMGsGDBglNbqARUw5j6cncti7Ny2Xuosr6VvkeAK7OGy4bWTbD2nx2FHK5wB7gaaauju9+bphngaixELfUiIiJiQZYJ9W63m6uvvpqf//znLX7O3Llz+eCDD3jppZfYunUrs2fP5rbbbmPJkiWnsFIJpIZ16kurPMz/+EgrfVgXa6Vvqz4J4QxKjaTWZ/KvTXmBLkfaKC0iDQODck85RTVFgS7HOkI1UZ6IiIhYj2VC/QMPPMCcOXMYPHhwi5/zxRdfMGPGDM4//3wyMjK4+eabGTp0KGvXrj2FlUogNXSx/9fXeew9VElsmFOt9K10+dC6LvhLsnICXIm0lcvuIiG0bqJETZbXCg0t9ZWHAluHiIiISCtYJtS3xZgxY1iyZAk5OTmYpsmKFSvYsWMHF1544XGfU1NTQ2lpaaObWIe/pb66bvb2m8/rpVb6Vpo8NAXDgHV7i9hfVBnocqSNGsbVa1m7VmgYU19TCp7qwNYiIiIi0kKdOtTPnz+fAQMGkJaWhtPp5KKLLuLpp5/mvPPOO+5zHnnkEaKiovy39PT001ixnKyw+onyAGLDnFx/jlrpWyspKphzesYBsHSjuuBbVcO4ek2W1wrBUWBz1H1fqcnyRERExBoCGurnzZuHYRjN3rZt29bm48+fP5/Vq1ezZMkSNmzYwBNPPMGsWbP46KOPjvucu+++m5KSEv9t3z51XbWSo2e4Vyt9210+rG7CvMXqgm9ZWtauDQxDk+WJiIiI5QQ08fzyl79k5syZze7Tq1evNh27qqqKe+65h7fffptJkyYBMGTIELKysvj973/PhAkTmnyey+XC5XK16ZwSeAkRwQAaS3+SLh6UzL2LN7Mtv4xt+aVkJkUGuiRppaNnwJdWCIuDslwtayciIiKWEdBQHx8fT3x8/Ck5tsfjwePxYLM17oxgt9vx+Xyn5JwSeINSI3n8qiEMTIki1KlW+raKCnVw/hkJLNtygCVZuWRepFBvNd0j6sbUK9S3kr+lXqFeRERErMEyY+qzs7PJysoiOzsbr9dLVlYWWVlZlJeX+/fJzMzk7bffBiAyMpJx48Zx55138sknn7Bnzx5eeOEFXnzxRaZMmRKolyGnmGEYXD0inQEpCqEn64phdbPgL87K1VrnFtTQUn+4+jDl7vIT7C1+6n4vIiIiFmOZpsz77ruPv//97/77w4cPB2DFihWcf/75AGzfvp2SkhL/Pq+99hp3330306dP5/Dhw/To0YOHHnqIW2655bTWLmJF4/snEOa0k1NcxYbvihiRERvokqQVwp3hxLhiKKopYl/ZPvrH9Q90SdagUC8iIiIWY5lQ/8ILL/DCCy80u8/3WxOTkpJ4/vnnT2FVIp1XsMPOxEFJ/PPLHBZn5SrUW1B6ZDpFhQr1rdKwrJ2634uIiIhFWKb7vYicfpfXd8H/16Y8PF7NRWE1mgG/DULrQ72WtBMRERGLUKgXkeMa2zuObuFODle4+WyXQo7VNEyWp7XqW0Hd70VERMRiFOpF5LiC7DYuHVK/Zv1XWrPeatRS3waa/V5EREQsRqFeRJp12bC6UP/vLQeodNcGuBppDa1V3wb+MfWFoFUfRERExAIU6kWkWcPTo+keG0ql28uLq74LdDnSCg2h/kDFAWq8NQGuxiIaQn1tNWgpQBEREbEAhXoRaZZhGMy6oDcAf/j3DnYcKAtwRYFVUunBXWuNSQNjg2MJc4RhYpJTpuETLeIMA0do3ffqgi8iIiIWoFAvIic0bUQ6558Rj9vr45eLNnbZmfC355cx6pGP+PlLGwJdSosYhqFx9W2hZe1ERETEQhTqReSEDMPg0alDiApxsCmnhD+v+DbQJQXEc5/uptrjY/m2AnYVWKNrtsbVt4FmwBcRERELUagXkRZJjAzmN5cPBGD+xzvZnFMS4IpOr0PlNSzZmOu/v2i9NUKyv6W+VC31LaZQLyIiIhaiUC8iLXbZ0BQuGZxErc9k7qIsamq9gS7ptHlt3T7ctT4iXEEA/PPL/ZYYhtCwVv2+cmt8CNEhHD0DvoiIiEgHp1AvIi1mGAa/vXwQ3cKd7DhQzv8t2xnokk4Lj9fHP+pn/r9v8gC6hbs4WO5m+daCAFd2Yv7u96UK9S0WWh/qKw8Ftg4RERGRFlCoF5FWiQt38dCUwQAs/M+3bPjucIArOvU+/Caf/NJquoW7uGxYClPPSgXg9XUdv0t798i6lvrc8lxqfbUBrsYi1P1eRERELEShXkRabeLAJK48MxWfCb9ctJFKd+cOiy98vheA6aO64wqyc82IutbvlTsKyS+pDmBlJ5YQmoDT5qTWrCWvIi/Q5ViDQr2IiIhYiEK9iLTJ/ZMHkhQZzN5DlTz6/rYWPaegrJrff7idm19cb5n17jftL2H9d0U47AbTR9W1eveKD2dkRiw+E97c0LG7tdsMG2kRaYBmwG8xLWknIiIiFqJQLyJtEhXi4LGrhgDw91Xf8fmu4wegbwvLmffW15z7uxU8tWIX/95ygMuf+pw3N+w/XeW22Qtf7AVg0uBkEiKD/dunnV3XWv/6+n34fGYgSmsxjatvJbXUi4iIiIUo1ItIm53XL97fev3/3vya0mpPo8fX7z3MT/++nvFPrKybPd7r48zu0YzpHUeVx8v/vLGRO9/YSJW7bbPor959iAUrv+U/Owopr2n/IQAHy2tYWr+M3cyxPRs9dsngJCJcQew7XMXq3R17QjWtVd9KYUdNlOfr+CsciIiISNcWFOgCRMTa7rmkP5/uPEj24UoefHcLj1w5hGVbDrDwP9/yZXaxf78fDUjkv8/rxYiMWHw+k6dX7OL/PtrBGxv28/X+Ep6efiZ9EsJbdM4vs4v4/Yfb+eLbI2HaZsCAlEjOzojl7IxYRmTEkBAR3MxRTuzVNdm4vT6GpUczLD260WOhziAmD0vhlTXZvL5+H2P6dDupc51KCvWt1DD7va8WqoshNDag5YiIiIg0R6FeRE5KmCuI3189lGsWrmLR+v18vusQOcVVADjtNq48M5Wf/qBXo8BusxncPr4vZ2XEcMdrWWw/UMZlT33Gw1MGc8Xw1OOe65vcEp749w4+3la3lJzDbnBe33h2FJSx73AVm3NK2ZxTyvP1E9tlxIX6Q/7EgUlEhTpa/Lo8Xh//WF23jN1PxmY0uc81I9J5ZU0272/O5zeVnlYd/3RqmAE/u6zjz9bfIQQ5ITgKqkvqxtUr1IuIiEgHplAvIidtZM9YfnpuT577dA85xVVEhTj48TndmTEmo9nW8jG9u/GvX5zLHa9msWr3IWa/nsWaPYe4f/JAgh12/367Csr4v2U7+demutnb7TaDq85M4/bxfUiLCQUgv6SadXsP19+K2JZfyt5Dlew9VMkbG/bz5Mc7efOWMSRFtaz1/v3N+RSU1RAf4eLiQclN7jMkLYrMpAi25ZfxTlYOM8ZktPAdO70aWur3l+3HNE0MwwhwRRYQFl8f6gshvl+gqxERERE5LoV6EWkXv7zwDFxBdrqFO7l6RDphrpb9eUmICOaln47iT8t3Mv/jnby6dh9Z+0p4+rrhBNls/HH5Dt75KgefCYYBk4ekMHtCX3rFN+6qnxQVzOShKUwemgJASZWHL7OLWLfnMIuzctlfVMX1f13Dov8eTUyY84R1vfD5HgB+PKoHzqCmpx8xDINrzk7ngaVbeH3dvg4b6lPCUrAZNqq91RRWFZIQmhDokjq+sHg4tEuT5YmIiEiHp1AvIu0i2GHnfyae0abn2m0Gc3/Uj7MzYpj9WhZb80q5dP5nuGt91NbPLH/hgETmXtiPzKTIFh0zKsTBBWckcMEZCVw7sjtXLfiCnQXlzHxhHa/8dFSzHzp8vb+YL7OLcdgNrh2V3ux5rhiWyiPvbWNLXimbc0oYlBrV8hd+mjjsDpLDkskpz2Ff2T6F+pYIjav7Wqll7URERKRj0+z3ItJh/KBvPO/d8QNG9oyl0u2l1mdyXr94Fs8ay8IbRrQ40H9femwoL900iuhQBxv3FXPzP9ZTU3v8GfcblrG7dEjKCSfbiwlzMnFQEgCvreu4Y9YbuuBnl3bcGjsU/7J2CvUiIiLSsSnUi0iHkhgZzCs/HcUTVw/lzVtG8+KNIxn6vZnn26JvYgQv/GQkoU47n+86xB2vZlHrPXa5ssKyGt7dWDd2f2YLu9NfM6IuMC/OyqXa07bl+U617hF1k+VpBvwW0lr1IiIiYhEK9SLS4QTZbUw9K40RGe076/iw9Gieu2EETruND77J5563N2GaZqN9Xl1bt4zd8O7RLf4wYUzvONJiQiirruX9zXntWnN70bJ2raRQLyIiIhahUC8iXcrYPt148trh2AxYtH4/D7+31R/s3bU+Xqpfxq6lrfRQt0TftPrW+tfWdszQnB6pUN8qYfVr1av7vYiIiHRwCvUi0uVcNCiJ3105BIDnPt3Dnz/5FoD3N+dRUFZDQjPL2B3PVWelYRiwZs9h9h6saPeaT5Z/TH0za9WbpsnyrQeY9uwqfrN0CxU1taervI5HoV5EREQsQqFeRLqkaWen8+tJ/QF4/MPtvLT6O/8EeT8+5/jL2B1PSnQI4/rVddletL7jtYanhacBUOYuo6Sm5JjHv8ou4pqFq7np7+tZu+cwf/t8Dxf/6VPW7jl8ukvtGNT9XkRERCxCS9qJSJf10x/0orjSw1MrdvHrdzYD4LTbuHZk9zYd75oR6XyyvZA3N+xn7o/6EWTvOJ+bhjpCiQ+Jp7CqkPu/uJ9IZ91KAuXVtXydU8K+osq6/VIMenYLI6+4igMeLzcsgX6JEQxOjcJuMwL5Ek6v2mroFovDNEneuJC0yO6khqeSGpFKjCsGw+hC74WIiIh0aAr1ItKl/fLCfhRVunl5TV239EuHJhMf4WrTscb3TyQuzElBWQ2fbC9kwoDE9iz1pPWN6UthVSHLs5cf85gz+sj32R4gDJz19/fUwJ7dp6PCDiYivO5r1vxGm0OCQkgNTyUtPI2U8BTSItI4O+lsMmMzA1CkiIiIdHUK9SLSpRmGwW8uH0St1+TDLfncMq53m4/lDLJx5ZmpPPfpHl5fv++Uh3qvz2TPwXK+yS1lW34ZdsMgIdJFfLiL+Igjt1Bn3Z/6e8+5l3/t/pA1uw+yZs8hPN66CQJ7dQtj3BnxTX6Y8W1hOR9szqeixothwDk94xjTJ+70tdqbUFTpIftwBbnFVUQEO8hMiqBbuAtaW4IJOcVVbM4tZVdBGRHBDgalRNI/OZIQp/3Y/f/ze6o9leQOvJSc2gr2l++nsLKQqtoqdhXvYlfxrka7D4gbwNS+U7mk5yWEO8Pb/ppFREREWsEwv7+ekzRSWlpKVFQUJSUlREZGBrocETmFTNM86W7VuwrKmPCH/2C3GVw5PJWYMCfRoQ5iQp1EhziIDnUSE1Z/P9SBK6iJMNmEKreXrfmlbMktZUteKd/klrI9v5Rqj++Ezw1z2kmIDCY+3MWeQxUUltUAMCQtinkXZzKmd7dmn19c6eb+Jd+wOCsXgMykCP4wbRgDUpr+m1jr9XGowk1hWQ2F5TWEOuwkR4WQGOVq0evdd7iSVd8eYtXuQ6z69hD5pdXH7NMnIZxLBidz6ZBk+iVGNHu87EOV/POr/bz9VQ7fHao85nGH3WBC/0SmnpnGuDPicTQMm/jzaCjYArG9wBkGgBuTXMNHjv9mstvm5XNbLZ76SyfEhIleB1O9Tob67Bit/vSheQ3/aHfIAQCOMOg+CjJ+AN3PAVfzPxsRERFpWmtyqEL9CSjUi0hrTVuwirV7WzbBnM0Ah92G027DEWTDYTeO3LfbcAQZVLq97D1Yga+Jv9ahTjv9kyPpnxyBgeEP0oVlNRSUVTcZ+tNjQ/h/EzOZNDgZWyta3N/flMev3tnM4Qo3DrvB9edk4AyyUVBWXXfeshoOltdwqMLN8f5liQtzkhgZTHJUMElRDV9D8Jkma3YfZvXuQ+QUVzV6jtNuY1j3aEb0iGHHgTL+s+Mgbu+R19UnIZxJg5OZdFTAL6ny8N6mPP755X7W7S1q9H5dPCiZyUOT2XOwgjc37Oeb3FL/493CnVwxLJWrRqSR+dkc2Pxmi96bIpuNpeFhvBURzm6nw7+9t9vNlWUVXFZeQbTvxB/AdCqGHVKGQ8a5R4V89WAQERFpCYX6dqRQLyKtVVBWzUdbCiiqdFNU4aao0kNxpZviKg9FlW6K6+83FdKbEx/hYkByJANTIhmQEsmA5Egy4sKOG8xN06TC7fUH7sKyGmxG3dj/1s7u3+BgeQ2/ensTH35zoNn97DaDuDAn3cJdVLprySuppqa2ZaE2yGYwND2a0b3iGN07jjO7xzTqHl9a7eGjLQd4b1PeMQG/b0I4Gd3CWLmjEHf9+QwDzu3TjSvPTGXiwCT/cIQGW/NKeWvDft7JyuFgudu//cwUFzekHsBlB59pYlL3npom/p+dzzQxTZNKt5fS6lpKq91k1+ayy7mFgpC9+Gzeuhp8NiIqk7D5jpzbbjMIshs4bDaC7AZBdhsOm4Hb66PK46Xa7cN3Ev9EO+wGPrNumMbJcNhtOINs2Azq34O67Q3/fWjYZmLiND3EUkq0WUyw2biHhYlBdVAk1c5YvHaX/7nf2+monggGDmw4seMwguq/2nFhx0kQQYYdJ3aCjKavZQPqfvgNh66v98jPsv5cpln/8zQBA5tR9zxb/dNthoFhGHXf1x/Y8J/g6B4T7dV34kjfjobyTcA0bJgYmBiADZ9h1N+v335ML6OmKzMafWM0Os/RjxsYx/584KgP7I561Gy8pannNbx3YPjPd+RcBKTryYlO2eRvznF+nXo7Uoixf+9Dq++foP73pOHaM+uvO5//vul/mmEYR74aDdvqfi6G0fhndtz6m6i1pX8NOmRPoA6iPedJDXEEkZmkHk0BERwFvcYFuopmKdS3I4V6ETkVfD6Tsppaajxe3F4fHq+Jx+vDXevDc/R9rw+HzUa/pHASIoIDXTZQ9x/Pd7/OY8W2AqJCHSREBPvH7yfUf40JdTYad2+aJsWVHvJLq8kvqSavpJr8kqq6r6XV1Hh8nNkjhtG94xjRI4YwV8umfGku4PdLDGfqmWlcPiyVpKgTv3cer4+V2wt568v9fLT1gH/OgTazVeOIzMIVsx4jeP/JHUtEOrQ/HSjkh5VVJ95RRDqG5GHw3ysDXUWzFOrbkUK9iIg1NAT8/UVV/DAzgYEpkW2eI6Gows2Sjblk7Sv2tyLajLpWXFtDy1n9fQODiOAgYsOcxIU7iQ1zERvqJDbcSVyYk2CHna2HtpJVmOVv6a+p9VJRU0ul20uFu5aKGi+Vbi+V7lpCnUHERziJD3cRE+bE1obXUOXxUlzpwWE3iAh24Gpjz4xKt5eSKg8lVR58PtPfct3wHhz9taElv+GDKXetz/+BlbvWi72mmIjKbKKr9xPk8xxp8f6ehm0+wGOYuA0fbkxqMPEYPtxG3fduw4fHMFvd4+VE5z36cOb3Npgtbuc8Ccc2gNfXZh7Vsm02+fUkT9fstgbt0Uhpnf94trzS6SUu+rtbMEdKQ2+Fozcd5001j7kWTCu9edICLoednnFhgS6ja+rWBy5/OtBVNEuhvh0p1IuIiIiIiMjp1Joc2raP7kVEREREREQk4BTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEooICXUBHZ5omAKWlpQGuRERERERERLqChvzZkEebo1B/AmVlZQCkp6cHuBIRERERERHpSsrKyoiKimp2H8NsSfTvwnw+H7m5uURERGAYRkBqKC0tJT09nX379hEZGRmQGkRON1330hXpupeuSNe9dEW67uVETNOkrKyMlJQUbLbmR82rpf4EbDYbaWlpgS4DgMjISP3SS5ej6166Il330hXpupeuSNe9NOdELfQNNFGeiIiIiIiIiEUp1IuIiIiIiIhYlEK9BbhcLu6//35cLlegSxE5bXTdS1ek6166Il330hXpupf2pInyRERERERERCxKLfUiIiIiIiIiFqVQLyIiIiIiImJRCvUiIiIiIiIiFqVQLyIiIiIiImJRCvUd3NNPP01GRgbBwcGMGjWKtWvXBrokkXbzyCOPcPbZZxMREUFCQgJXXHEF27dvb7RPdXU1s2bNIi4ujvDwcKZOncqBAwcCVLFI+/vd736HYRjMnj3bv03XvXRGOTk5/PjHPyYuLo6QkBAGDx7M+vXr/Y+bpsl9991HcnIyISEhTJgwgZ07dwawYpGT4/V6uffee+nZsychISH07t2b3/72txw9T7mue2kPCvUd2Ouvv87cuXO5//77+fLLLxk6dCgTJ06koKAg0KWJtIuVK1cya9YsVq9ezbJly/B4PFx44YVUVFT495kzZw5Lly7ljTfeYOXKleTm5nLllVcGsGqR9rNu3TqeffZZhgwZ0mi7rnvpbIqKihg7diwOh4P333+fLVu28MQTTxATE+Pf57HHHuPJJ59kwYIFrFmzhrCwMCZOnEh1dXUAKxdpu0cffZRnnnmGp556iq1bt/Loo4/y2GOPMX/+fP8+uu6lXZjSYY0cOdKcNWuW/77X6zVTUlLMRx55JIBViZw6BQUFJmCuXLnSNE3TLC4uNh0Oh/nGG2/499m6dasJmKtWrQpUmSLtoqyszOzbt6+5bNkyc9y4ceYdd9xhmqaue+mc7rrrLvPcc8897uM+n89MSkoyH3/8cf+24uJi0+Vyma+++urpKFGk3U2aNMm88cYbG2278sorzenTp5umqete2o9a6jsot9vNhg0bmDBhgn+bzWZjwoQJrFq1KoCViZw6JSUlAMTGxgKwYcMGPB5Po9+DzMxMunfvrt8DsbxZs2YxadKkRtc36LqXzmnJkiWMGDGCq6++moSEBIYPH85zzz3nf3zPnj3k5+c3uu6joqIYNWqUrnuxrDFjxrB8+XJ27NgBwMaNG/nss8+4+OKLAV330n6CAl2ANO3gwYN4vV4SExMbbU9MTGTbtm0Bqkrk1PH5fMyePZuxY8cyaNAgAPLz83E6nURHRzfaNzExkfz8/ABUKdI+XnvtNb788kvWrVt3zGO67qUz2r17N8888wxz587lnnvuYd26dfziF7/A6XQyY8YM/7Xd1P97dN2LVc2bN4/S0lIyMzOx2+14vV4eeughpk+fDqDrXtqNQr2IdAizZs1i8+bNfPbZZ4EuReSU2rdvH3fccQfLli0jODg40OWInBY+n48RI0bw8MMPAzB8+HA2b97MggULmDFjRoCrEzk1Fi1axMsvv8wrr7zCwIEDycrKYvbs2aSkpOi6l3al7vcdVLdu3bDb7cfMdnzgwAGSkpICVJXIqXHbbbfx7rvvsmLFCtLS0vzbk5KScLvdFBcXN9pfvwdiZRs2bKCgoIAzzzyToKAggoKCWLlyJU8++SRBQUEkJibqupdOJzk5mQEDBjTa1r9/f7KzswH817b+3yOdyZ133sm8efP4r//6LwYPHsz111/PnDlzeOSRRwBd99J+FOo7KKfTyVlnncXy5cv923w+H8uXL2f06NEBrEyk/ZimyW233cbbb7/Nxx9/TM+ePRs9ftZZZ+FwOBr9Hmzfvp3s7Gz9HohljR8/nk2bNpGVleW/jRgxgunTp/u/13Uvnc3YsWOPWbJ0x44d9OjRA4CePXuSlJTU6LovLS1lzZo1uu7FsiorK7HZGsctu92Oz+cDdN1L+1H3+w5s7ty5zJgxgxEjRjBy5Ej++Mc/UlFRwU9+8pNAlybSLmbNmsUrr7zC4sWLiYiI8I8fi4qKIiQkhKioKG666Sbmzp1LbGwskZGR3H777YwePZpzzjknwNWLtE1ERIR/3ogGYWFhxMXF+bfrupfOZs6cOYwZM4aHH36YadOmsXbtWhYuXMjChQsBMAyD2bNn8+CDD9K3b1969uzJvffeS0pKCldccUVgixdpo8mTJ/PQQw/RvXt3Bg4cyFdffcUf/vAHbrzxRkDXvbSjQE+/L82bP3++2b17d9PpdJojR440V69eHeiSRNoN0OTt+eef9+9TVVVl3nrrrWZMTIwZGhpqTpkyxczLywtc0SKnwNFL2pmmrnvpnJYuXWoOGjTIdLlcZmZmprlw4cJGj/t8PvPee+81ExMTTZfLZY4fP97cvn17gKoVOXmlpaXmHXfcYXbv3t0MDg42e/XqZf7qV78ya2pq/Pvoupf2YJimaQbyQwURERERERERaRuNqRcRERERERGxKIV6EREREREREYtSqBcRERERERGxKIV6EREREREREYtSqBcRERERERGxKIV6EREREREREYtSqBcRERERERGxKIV6EREREREREYtSqBcREZFW27t3L4ZhkJWVFehSREREujSFehERkU5m5syZGIZxzO2iiy4KdGmn3SeffIJhGBQXFwe6FBERkVMiKNAFiIiISPu76KKLeP755xttc7lcAapGREREThW11IuIiHRCLpeLpKSkRreYmBgArrvuOq655ppG+3s8Hrp168aLL74IwAcffMC5555LdHQ0cXFxXHrppXz77betqqGmpoa77rqL9PR0XC4Xffr04a9//av/8ZUrVzJy5EhcLhfJycnMmzeP2tpa/+MZGRn88Y9/bHTMYcOG8b//+7/++4Zh8Je//IUpU6YQGhpK3759WbJkCVA3ROCCCy4AICYmBsMwmDlzZqteg4iISEenUC8iItLFTJ8+naVLl1JeXu7f9uGHH1JZWcmUKVMAqKioYO7cuaxfv57ly5djs9mYMmUKPp+vxee54YYbePXVV3nyySfZunUrzz77LOHh4QDk5ORwySWXcPbZZ7Nx40aeeeYZ/vrXv/Lggw+2+vU88MADTJs2ja+//ppLLrmE6dOnc/jwYdLT03nrrbcA2L59O3l5efzpT39q9fFFREQ6MnW/FxER6YTeffddf4BucM8993DPPfcwceJEwsLCePvtt7n++usBeOWVV7jsssuIiIgAYOrUqY2e+7e//Y34+Hi2bNnCoEGDTnj+HTt2sGjRIpYtW8aECRMA6NWrl//xP//5z6Snp/PUU09hGAaZmZnk5uZy1113cd9992GztbzdYebMmVx77bUAPPzwwzz55JOsXbuWiy66iNjYWAASEhKIjo5u8TFFRESsQi31IiIindAFF1xAVlZWo9stt9wCQFBQENOmTePll18G6lrlFy9ezPTp0/3P37lzJ9deey29evUiMjKSjIwMALKzs1t0/qysLOx2O+PGjWvy8a1btzJ69GgMw/BvGzt2LOXl5ezfv79Vr3XIkCH+78PCwoiMjKSgoKBVxxAREbEqtdSLiIh0QmFhYfTp0+e4j0+fPp1x48ZRUFDAsmXLCAkJaTQ7/uTJk+nRowfPPfccKSkp+Hw+Bg0ahNvtbtH5Q0JCTvo12Gw2TNNstM3j8Ryzn8PhaHTfMIxWDRMQERGxMrXUi4iIdEFjxowhPT2d119/nZdffpmrr77aH44PHTrE9u3b+fWvf8348ePp378/RUVFrTr+4MGD8fl8rFy5ssnH+/fvz6pVqxqF9s8//5yIiAjS0tIAiI+PJy8vz/94aWkpe/bsaVUdTqcTAK/X26rniYiIWIVCvYiISCdUU1NDfn5+o9vBgwcb7XPdddexYMECli1b1qjrfUxMDHFxcSxcuJBdu3bx8ccfM3fu3FadPyMjgxkzZnDjjTfyzjvvsGfPHj755BMWLVoEwK233sq+ffu4/fbb2bZtG4sXL+b+++9n7ty5/vH0P/zhD/nHP/7Bp59+yqZNm5gxYwZ2u71VdfTo0QPDMHj33XcpLCxsNDmgiIhIZ6BQLyIi0gl98MEHJCcnN7qde+65jfaZPn06W7ZsITU1lbFjx/q322w2XnvtNTZs2MCgQYOYM2cOjz/+eKtreOaZZ7jqqqu49dZbyczM5Gc/+xkVFRUApKam8t5777F27VqGDh3KLbfcwk033cSvf/1r//Pvvvtuxo0bx6WXXsqkSZO44oor6N27d6tqSE1N5YEHHmDevHkkJiZy2223tfp1iIiIdGSG+f3BaiIiIiIiIiJiCWqpFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbGo/w/I4ev7vBwTXwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAK9CAYAAABlx0xMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAuktJREFUeJzs3XeYVPXZ//HPmb6NRZdFQBAEFBRRCVZs2HsX0diwxRLjoyEWNFGxkaix5DHWkID5aYJGUfMYS1TsGit2sERBEKmyffr5/TFzzs6w7czs7E7Z9+u69gqcPTPz3Vk2l5+97+/9NUzTNAUAAAAAAIqOK98LAAAAAAAA2SHUAwAAAABQpAj1AAAAAAAUKUI9AAAAAABFilAPAAAAAECRItQDAAAAAFCkCPUAAAAAABQpQj0AAAAAAEWKUA8AAAAAQJEi1AMAgB7x17/+VWPHjpXX61X//v3zvZycmTZtmkaMGJHvZeTdSy+9JMMw9NJLL+XsOefMmSPDMPTtt9/m7DkBoNQR6gGgQFn/cdvRx1tvvZXvJQIdWrRokaZNm6ZRo0bp/vvv13333ZfvJSFLd911l+bMmZPvZQAAOmCYpmnmexEAgLbmzJmj008/Xddee60233zzNp8/6KCDNGDAgDysDOjaPffco/POO09ffvmlRo8ene/l5FQkElE8Hpff78/3UnrFNttsowEDBrSpyMfjcYXDYfl8PrlcuakTxWIxRSIR+f1+GYaRk+cEgFLnyfcCAACdO/jgg7XDDjvkexlqampSRUVFvpdR9ILBYE5DUKFatWqVJOW07b65uVnl5eU5e75MWT8DXq83b2soJC6XS4FAIKfP6Xa75Xa7c/qcnTFNU8FgUGVlZb32mgCQa6X9XxQA0Ad8++23MgxDt9xyi+677z6NGjVKfr9fO+64o95555029y9atEjHHXecNt54YwUCAe2www568skn0+6xWv9ffvllnX/++Ro4cKCGDh1qf/6Pf/yjRo4cqbKyMu2000569dVXNXnyZE2ePFmS1NjYqIqKCv3P//xPm9dftmyZ3G63Zs2a1enXFY/Hdccdd2j8+PEKBAKqra3VQQcdpHfffde+JxqN6rrrrrO/5hEjRuiKK65QKBRKe64RI0bosMMO02uvvaaddtpJgUBAI0eO1AMPPGDf8+6778owDM2dO7fNWp599lkZhqH/+7//s68tX75cZ5xxhjbZZBP5/X6NGzdOf/7zn9MeZ+05/vvf/65f//rX2nTTTVVeXq76+npJ0iOPPKKtt95agUBA22yzjebPn9/ufu14PK7bb79d48aNUyAQ0CabbKJzzjlHP/74Y8Zfp2X9+vW6+OKLNWLECPn9fg0dOlSnnnqq1qxZY98TCoV09dVXa/To0fL7/Ro2bJguvfTSNu/vhkaMGKGrr75aklRbWyvDMHTNNdfYn7/rrrs0btw4+f1+DRkyRD//+c+1fv36tOeYPHmyttlmG7333nvac889VV5eriuuuKLd17vllltkGIaWLFnS5nMzZsyQz+ez36tXX31VU6ZM0WabbWZ/TRdffLFaWlrSHjdt2jRVVlbq66+/1iGHHKKqqiqddNJJ9uc2/B41NTVp+vTpGjZsmPx+v8aMGaNbbrlFqQ2R1s9qe63sG75HDQ0Nuuiii+zvz8CBA7X//vvr/fffb/c9SPXBBx/o4IMPVr9+/VRZWal99923zXYd62f8lVde0TnnnKOamhr169dPp556atq/qxEjRujTTz/Vyy+/bG/9sX7O29tTb33fPvroI+21114qLy/X6NGj9Y9//EOS9PLLL2vnnXdWWVmZxowZo+eff77ddVl76q+55poOtyBNmzbNflymPyPPPvusdthhB5WVlenee++VJP373//W7rvvrv79+6uyslJjxozp8N8cABQSKvUAUODq6urSgpaUCAA1NTVp1x566CE1NDTonHPOkWEYuummm3TMMcfov//9r11Z/PTTT7Xbbrtp00031eWXX66Kigo9/PDDOuqoo/Too4/q6KOPTnvO888/X7W1tbrqqqvU1NQkSbr77rt1wQUXaI899tDFF1+sb7/9VkcddZQ22mgjO/hXVlbq6KOP1rx583TrrbemVd7+9re/yTRNOyB15Mwzz9ScOXN08MEH66yzzlI0GtWrr76qt956y+5cOOusszR37lwdd9xxmj59uv7zn/9o1qxZ+vzzzzV//vy05/vqq6903HHH6cwzz9Rpp52mP//5z5o2bZomTpyocePGaYcddtDIkSP18MMP67TTTkt77Lx587TRRhvpwAMPlCStXLlSu+yyiwzD0AUXXKDa2lo9/fTTOvPMM1VfX6+LLroo7fHXXXedfD6ffvWrXykUCsnn8+mpp57S1KlTNX78eM2aNUs//vijzjzzTG266aZt3otzzjnH3o5x4YUX6ptvvtGdd96pDz74QK+//npa5birr1NK/NJljz320Oeff64zzjhDP/nJT7RmzRo9+eSTWrZsmQYMGKB4PK4jjjhCr732mn72s59pq6220scff6zbbrtNX3zxhR5//PEOv3e33367HnjgAc2fP1933323Kisrte2220pKhLSZM2dqv/3203nnnafFixfr7rvv1jvvvNPma1m7dq0OPvhgnXDCCTr55JO1ySabtPt6xx9/vC699FI9/PDDuuSSS9I+9/DDD+uAAw7QRhttJCnxi5Tm5madd955qqmp0dtvv63//d//1bJly/TII4+kPTYajerAAw/U7rvvrltuuaXDLgHTNHXEEUdowYIFOvPMM7X99tvr2Wef1SWXXKLly5frtttu6/C96si5556rf/zjH7rgggu09dZba+3atXrttdf0+eef6yc/+UmHj/v000+1xx57qF+/frr00kvl9Xp17733avLkyXagTnXBBReof//+uuaaa+zvxZIlS+zAfvvtt+sXv/iFKisrdeWVV0pSh98Hy48//qjDDjtMJ5xwgqZMmaK7775bJ5xwgh588EFddNFFOvfcc/XTn/5UN998s4477jh99913qqqqave5jjnmmDbbN9577z3dfvvtGjhwoH0tk5+RxYsX68QTT9Q555yjs88+W2PGjNGnn36qww47TNtuu62uvfZa+f1+ffXVV3r99dc7/VoBoCCYAICC9Je//MWU1O6H3++37/vmm29MSWZNTY25bt06+/oTTzxhSjL/+c9/2tf23Xdfc/z48WYwGLSvxeNxc9KkSeYWW2zR5rV33313MxqN2tdDoZBZU1Nj7rjjjmYkErGvz5kzx5Rk7rXXXva1Z5991pRkPv3002lf17bbbpt2X3tefPFFU5J54YUXtvlcPB43TdM0Fy5caEoyzzrrrLTP/+pXvzIlmS+++KJ9bfjw4aYk85VXXrGvrVq1yvT7/eb06dPtazNmzDC9Xm/a+xgKhcz+/fubZ5xxhn3tzDPPNAcPHmyuWbMm7bVPOOEEs7q62mxubjZN0zQXLFhgSjJHjhxpX7OMHz/eHDp0qNnQ0GBfe+mll0xJ5vDhw+1rr776qinJfPDBB9Me/8wzz7S57vTrvOqqq0xJ5mOPPWZuyHp///rXv5oul8t89dVX0z5/zz33mJLM119/vc1jU1199dWmJHP16tVpa/H5fOYBBxxgxmIx+/qdd95pSjL//Oc/29f22msvU5J5zz33dPo6ll133dWcOHFi2rW3337blGQ+8MAD9rUNvw+maZqzZs0yDcMwlyxZYl877bTTTEnm5Zdf3ub+0047Le179Pjjj5uSzOuvvz7tvuOOO840DMP86quvTNNs/Vn9y1/+0uY5JZlXX321/ffq6mrz5z//eadfc3uOOuoo0+fzmV9//bV97fvvvzerqqrMPffc075m/YxPnDjRDIfD9vWbbrrJlGQ+8cQT9rVx48a1+zNr/ftesGCBfc36vj300EP2tUWLFpmSTJfLZb711lv2dev/I1LfD2td33zzTbtf3+rVq83NNtvMHD9+vNnY2GiaZnY/I88880zavbfddlubf68AUCxovweAAvfHP/5R//73v9M+nn766Tb3TZ061a5GStIee+whSfrvf/8rSVq3bp1efPFFHX/88WpoaNCaNWu0Zs0arV27VgceeKC+/PJLLV++PO05zz777LQq+7vvvqu1a9fq7LPPlsfT2ux10kknpb22JO23334aMmSIHnzwQfvaJ598oo8++kgnn3xyp1/zo48+KsMw7BbuVNbwrH/961+SpF/+8pdpn58+fbok6amnnkq7vvXWW9vviZRoCx8zZoz9/kiJ9zASieixxx6zrz333HNav369pk6dKilRlX300Ud1+OGHyzRN+31cs2aNDjzwQNXV1bVpkT7ttNPS9ux+//33+vjjj3XqqaeqsrLSvr7XXntp/PjxaY995JFHVF1drf333z/ttSZOnKjKykotWLAg46/z0Ucf1XbbbdemM0NqfX8feeQRbbXVVho7dmza6+6zzz6S1OZ1nXj++ecVDod10UUXpc0UOPvss9WvX7823zO/36/TTz/d0XNPnTpV7733nr7++mv72rx58+T3+3XkkUfa11K/D01NTVqzZo0mTZok0zT1wQcftHne8847r8vX/te//iW3260LL7ww7fr06dNlmma7P69d6d+/v/7zn//o+++/d/yYWCym5557TkcddZRGjhxpXx88eLB++tOf6rXXXrO3flh+9rOfpVWxzzvvPHk8HvvnKxuVlZU64YQT7L+PGTNG/fv311ZbbZXWKWD9OfXfZmdisZhOPPFENTQ0aP78+faMj0x/RjbffHO768ZizX544oknFI/HM/6aASCfCPUAUOB22mkn7bfffmkfe++9d5v7Nttss7S/WyHb2lP61VdfyTRN/eY3v1FtbW3ahxWereFmlg2n7lt7ljdsh/V4PG32GLtcLp100kl6/PHH1dzcLEl68MEHFQgENGXKlE6/5q+//lpDhgzRxhtv3OE9S5YskcvlarOWQYMGqX///m32V2/4/kiJ9yh1z+12222nsWPHat68efa1efPmacCAAXaYXb16tdavX6/77ruvzftoBdBs38f2rn355Zeqq6vTwIED27xeY2Njm9dy8nV+/fXX2mabbdrct+Hrfvrpp21ec8stt2z3a3TC+rrHjBmTdt3n82nkyJFtvmebbrqpfD6fo+eeMmWKXC6X/b0zTVOPPPKIvbfcsnTpUk2bNk0bb7yxKisrVVtbq7322ktSYqtLKo/HkzZLorOva8iQIW1ayLfaaiv785m66aab9Mknn2jYsGHaaaeddM0113QZflevXq3m5uY276+1lng8ru+++y7t+hZbbJH298rKSg0ePLhb58QPHTq0zeT66upqDRs2rM01SW32vXfk17/+tV588UU99NBDGjVqlH0905+R9k4TmTp1qnbbbTedddZZ2mSTTXTCCSfo4YcfJuADKArsqQeAEtHRxGgzOajL+o/TX/3qV22qVJYNA2V3J0Kfeuqpuvnmm/X444/rxBNP1EMPPaTDDjvM/o/5XHB67FVX749l6tSpuuGGG7RmzRpVVVXpySef1Iknnmh3Jljv48knn9xm773F2j9u6c77GI/HNXDgwLSOh1S1tbVpf3f6dTp53fHjx+vWW29t9/MbBrSekMn7NmTIEO2xxx56+OGHdcUVV+itt97S0qVL9bvf/c6+JxaLaf/999e6det02WWXaezYsaqoqNDy5cs1bdq0NgHO7/fn9JSCjv6txmKxNteOP/547bHHHpo/f76ee+453Xzzzfrd736nxx57TAcffHDO1tQTOvo32J1/m48//rh+97vf6brrrtNBBx2U9rlMf0ba+3dVVlamV155RQsWLNBTTz2lZ555RvPmzdM+++yj5557rlcn8gNApgj1ANBHWO24Xq9X++23X1bPMXz4cEmJqn9qt0A0GtW3337bJsxus802mjBhgh588EENHTpUS5cu1f/+7/92+TqjRo3Ss88+q3Xr1nVYrR8+fLji8bi+/PJLuyIqJYbYrV+/3l5rpqZOnaqZM2fq0Ucf1SabbKL6+vq0VuLa2lpVVVUpFovl5H3c0IbXRo0apeeff1677bZbzo7dGjVqlD755JMu7/nwww+177775uy8cOvrXrx4cVp7eDgc1jfffJP1+2mZOnWqzj//fC1evFjz5s1TeXm5Dj/8cPvzH3/8sb744gvNnTtXp556qn393//+d7ded/jw4Xr++efV0NCQVq1ftGiR/XmptXtmw0n/HVXyBw8erPPPP1/nn3++Vq1apZ/85Ce64YYbOgz1tbW1Ki8v1+LFi9t8btGiRXK5XG1+GfPll1+m/Sw3NjZqxYoVOuSQQ+xr+T4v/osvvtBpp52mo446qt1p9Ln6GXG5XNp3332177776tZbb9WNN96oK6+8UgsWLOj2v00A6Em03wNAHzFw4EBNnjxZ9957r1asWNHm86tXr+7yOXbYYQfV1NTo/vvvVzQata8/+OCDHbbQnnLKKXruued0++23q6amxlGV8dhjj5Vpmpo5c2abz1lVPSt03H777WmftyrLhx56aJev056tttpK48eP17x58zRv3jwNHjxYe+65p/15t9utY489Vo8++mi7wdjJ+zhkyBBts802euCBB9TY2Ghff/nll/Xxxx+n3Xv88ccrFovpuuuua/M80Wi0TUB04thjj9WHH37Y5oQAqfX9Pf7447V8+XLdf//9be5paWmxT0PIxH777Sefz6c//OEPadXZ2bNnq66uLuvvmeXYY4+V2+3W3/72Nz3yyCM67LDD7H3XUmulOPW1TdPUHXfc0a3XPeSQQxSLxXTnnXemXb/ttttkGIb9b75fv34aMGCAXnnllbT77rrrrrS/x2KxNlsBBg4cqCFDhnR6nKDb7dYBBxygJ554Iq19fuXKlXrooYe0++67p21FkKT77rtPkUjE/vvdd9+taDSa9nNaUVGR1b+zXGhsbNTRRx+tTTfdVHPnzm33Fwy5+BlZt25dm2vbb7+9JHV5hCMA5BuVegAocE8//bRd8Us1adKktGqnE3/84x+1++67a/z48Tr77LM1cuRIrVy5Um+++aaWLVumDz/8sNPH+3w+XXPNNfrFL36hffbZR8cff7y+/fZbzZkzR6NGjWr3P7h/+tOf6tJLL9X8+fN13nnnpQ3l6sjee++tU045RX/4wx/05Zdf6qCDDlI8Hterr76qvffeWxdccIG22247nXbaabrvvvu0fv167bXXXnr77bc1d+5cHXXUUe3OHXBq6tSpuuqqqxQIBHTmmWe2acH+7W9/qwULFmjnnXfW2Wefra233lrr1q3T+++/r+eff77dgLChG2+8UUceeaR22203nX766frxxx915513aptttkkL+nvttZfOOecczZo1SwsXLtQBBxwgr9erL7/8Uo888ojuuOMOHXfccRl9fZdccon+8Y9/aMqUKTrjjDM0ceJErVu3Tk8++aTuuecebbfddjrllFP08MMP69xzz9WCBQu02267KRaLadGiRXr44Yftc74zUVtbqxkzZmjmzJk66KCDdMQRR2jx4sW66667tOOOO3Y5QLErAwcO1N57761bb71VDQ0N9nBDy9ixYzVq1Cj96le/0vLly9WvXz89+uijjvd0d+Twww/X3nvvrSuvvFLffvuttttuOz333HN64okndNFFF6Xt/z7rrLP029/+VmeddZZ22GEHvfLKK/riiy/Snq+hoUFDhw7Vcccdp+22206VlZV6/vnn9c477+j3v/99p2u5/vrr7fPWzz//fHk8Ht17770KhUK66aab2twfDoe177776vjjj7e/F7vvvruOOOII+56JEyfq7rvv1vXXX6/Ro0dr4MCB9oyJnjZz5kx99tln+vWvf60nnngi7XOjRo3SrrvumpOfkWuvvVavvPKKDj30UA0fPlyrVq3SXXfdpaFDh2r33XfvyS8RALqv9wfuAwCc6OxIO6UcA2Udk3XzzTe3eQ5tcEyWaZrm119/bZ566qnmoEGDTK/Xa2666abmYYcdZv7jH/9o89rvvPNOu2v7wx/+YA4fPtz0+/3mTjvtZL7++uvmxIkTzYMOOqjd+w855BBTkvnGG284/vqj0ah58803m2PHjjV9Pp9ZW1trHnzwweZ7771n3xOJRMyZM2eam2++uen1es1hw4aZM2bMSDuyzzQTx1gdeuihbV5jr732aveori+//NJ+n1977bV217dy5Urz5z//uTls2DDT6/WagwYNMvfdd1/zvvvus++xjvx65JFH2n2Ov//97+bYsWNNv99vbrPNNuaTTz5pHnvssebYsWPb3HvfffeZEydONMvKysyqqipz/Pjx5qWXXmp+//33WX2da9euNS+44AJz0003NX0+nzl06FDztNNOSzumLxwOm7/73e/McePGmX6/39xoo43MiRMnmjNnzjTr6ura/Zos7R1pZ7nzzjvNsWPHml6v19xkk03M8847z/zxxx/brHncuHGdvkZ77r//flOSWVVVZba0tLT5/GeffWbut99+ZmVlpTlgwADz7LPPNj/88MM2R6uddtppZkVFRbuvseGRdqZpmg0NDebFF19sDhkyxPR6veYWW2xh3nzzzfYRgZbm5mbzzDPPNKurq82qqirz+OOPN1etWpX2sxoKhcxLLrnE3G677cyqqiqzoqLC3G677cy77rrL0Xvw/vvvmwceeKBZWVlplpeXm3vvvXebnz3rZ/zll182f/azn5kbbbSRWVlZaZ500knm2rVr0+794YcfzEMPPdSsqqpKO7qyoyPt2vu+dfRvU1La0X0bHmlnHS3Y3sdpp52W9lzd+Rl54YUXzCOPPNIcMmSI6fP5zCFDhpgnnnii+cUXX7T7HgNAITFMM8PJOQAAbCAej6u2tlbHHHNMu+3aRx99tD7++ON295Aj3fbbb6/a2tpu7/MGOjNnzhydfvrpeueddzLuuAAAFBb21AMAMhIMBttMq37ggQe0bt06TZ48uc39K1as0FNPPaVTTjmll1ZYHCKRSNpcAkl66aWX9OGHH7b7PgIAALSHPfUAgIy89dZbuvjiizVlyhTV1NTo/fff1+zZs7XNNtuknT//zTff6PXXX9ef/vQneb1enXPOOXlcdeFZvny59ttvP5188skaMmSIFi1apHvuuUeDBg3Sueeem+/lAQCAIkGoBwBkZMSIERo2bJj+8Ic/2EfOnXrqqfrtb38rn89n3/fyyy/r9NNP12abbaa5c+dq0KBBeVx14dloo400ceJE/elPf9Lq1atVUVGhQw89VL/97W9VU1OT7+UBAIAiwZ56AAAAAACKFHvqAQAAAAAoUoR6AAAAAACKFHvquxCPx/X999+rqqpKhmHkezkAAAAAgBJnmqYaGho0ZMgQuVyd1+IJ9V34/vvvNWzYsHwvAwAAAADQx3z33XcaOnRop/cQ6rtQVVUlKfFm9uvXL8+rAQAAAACUuvr6eg0bNszOo50h1HfBarnv168foR4AAAAA0GucbAFnUB4AAAAAAEWKUA8AAAAAQJEi1AMAAAAAUKTYUw8AAAAARSAWiykSieR7GcgBt9stj8eTk2PTCfUAAAAAUOAaGxu1bNkymaaZ76UgR8rLyzV48GD5fL5uPQ+hHgAAAAAKWCwW07Jly1ReXq7a2tqcVHeRP6ZpKhwOa/Xq1frmm2+0xRZbyOXKfmc8oR4AAAAAClgkEpFpmqqtrVVZWVm+l4McKCsrk9fr1ZIlSxQOhxUIBLJ+LgblAQAAAEARoEJfWrpTnU97npw8CwAAAAAA6HWEegAAAAAAihShHgAAAACAIkWoBwAAAAD0mB9++EG/+MUvNHLkSPn9fg0bNkyHH364XnjhBfueN954Q4cccog22mgjBQIBjR8/XrfeeqtisVjacxmGYX94PB5tttlm+uUvf6lQKKSXX35ZXq9Xr732WtpjmpqaNHLkSP3qV7+SJE2ePFkXXXRRl+t+88035Xa7deihh3b/TehBhHoAAAAAQI/49ttvNXHiRL344ou6+eab9fHHH+uZZ57R3nvvrZ///OeSpPnz52uvvfbS0KFDtWDBAi1atEj/8z//o+uvv14nnHCCTNNMe86//OUvWrFihb755hvddddd+utf/6rrr79ee+21l37xi19o2rRpampqsu+/9NJLVVZWpuuvvz6jtc+ePVu/+MUv9Morr+j777/v/pvRQzjSDgAAAACKiGmaaonEur6xB5R53RlN4T///PNlGIbefvttVVRU2NfHjRunM844Q01NTTr77LN1xBFH6L777rM/f9ZZZ2mTTTbREUccoYcfflhTp061P9e/f38NGjRIkjRs2DAdeeSRev/99yVJN954o5555hlddtlluvPOO7VgwQL96U9/0htvvJHRsXGNjY2aN2+e3n33Xf3www+aM2eOrrjiCseP702EegAAAAAoIi2RmLa+6tm8vPZn1x6ocp+zGLlu3To988wzuuGGG9ICvaV///6aP3++1q5da7fGpzr88MO15ZZb6m9/+1taqE/1xRdf6MUXX9S0adMkSYFAQA888IAmTZqk/fffXxdddJGuuOIKTZw40fkXKenhhx/W2LFjNWbMGJ188sm66KKLNGPGjII8VpD2ewAAAABAzn311VcyTVNjx47t8J4vvvhCkrTVVlu1+/mxY8fa91hOPPFEVVZWKhAIaMyYMRo3bpxmzJhhf36HHXbQjBkzdMwxx6impkZXXnllxmufPXu2Tj75ZEnSQQcdpLq6Or388ssZP09voFIPAAAAAEWkzOvWZ9cemLfXdmrDvfC5uve2227Tfvvtp1gspq+++kq//OUvdcopp+jvf/+7fc9vfvMbXXvttbr88svl8WQWexcvXqy3335b8+fPlyR5PB5NnTpVs2fP1uTJkzN6rt5AqAcAAACAImIYhuMW+HzaYostZBiGFi1a1OE9W265pSTp888/16RJk9p8/vPPP9fWW2+ddm3QoEEaPXq0JGnMmDFqaGjQiSeeqOuvv96+bgX5TAO9lKjSR6NRDRkyxL5mmqb8fr/uvPNOVVdXZ/ycPYn2ewAAAABAzm288cY68MAD9cc//jFtGr1l/fr1OuCAA7Txxhvr97//fZvPP/nkk/ryyy914okndvo6bneie6ClpaXba45Go3rggQf0+9//XgsXLrQ/PvzwQw0ZMkR/+9vfuv0auVb4v94BAAAAABSlP/7xj9ptt92000476dprr9W2226raDSqf//737r77rv1+eef695779UJJ5ygn/3sZ7rgggvUr18/vfDCC7rkkkt03HHH6fjjj097zvXr1+uHH35QPB7Xl19+qWuvvVZbbrllh/vy27N69WotXLgw7drgwYP15ptv6scff9SZZ57ZpiJ/7LHHavbs2Tr33HOzfj96AqEeAAAAANAjRo4cqffff1833HCDpk+frhUrVqi2tlYTJ07U3XffLUk67rjjtGDBAt1www3aY489FAwGtcUWW+jKK6/URRdd1Gbi/Omnny4psQ1h0KBB2nPPPXXjjTdm1Gr/0EMP6aGHHkq7dt111+k///mP9ttvv3Zb7I899ljddNNN+uijj7Tttttm+lb0GMPMZCJBH1RfX6/q6mrV1dWpX79++V4OAAAAgD4mGAzqm2++0eabb57RWesobJ19XzPJoeypBwAAAACgSNF+XyLmL7hLq9Yv1ybVAVUWwSTMQjCg/3Btt/UJMlz8bgsAAABAcSL9lYi/f3m/PvNHpfp8r6S4zI1F9ZPtTs33MgAAAAAgK4T6ErFxbCONblmjgNctr5vKc1e+MkNqcBlavnaRfpLvxQAAAABAlgj1JSJWcZM++Gylbjh6G5208/B8L6fg/c9fd9OL8Xq1RNuelwkAAAAAxYKSbokIeN2SpGAknueVFAe/yytJCkVa8rwSAAAAAMgeob5EBLyJb2UwEsvzSopDmcsnSQpGg3leCQAAAABkj1BfIqxKfYhQ74jfnQz1MUI9AAAAgOJFqC8Rdvt9lPZ7JwJuvyQpFAvleSUAAAAAkD1CfYkIeGi/z0TAHZAkBQn1AAAAAIoYob5E+O1BeYR6J/yeMklSMBbO80oAAACA0jRt2jQdddRRGT9uxIgRMgxDhmHI7XZryJAhOvPMM/Xjjz/a97z00kv2Pakfv/71r+17TNPU/fffr1133VX9+vVTZWWlxo0bp//5n//RV199Zd/X3NysGTNmaNSoUQoEAqqtrdVee+2lJ554wtF6J0+enLaGTTbZRFOmTNGSJUsy/tqzQagvEX67Uk/7vRMBb6JSH4pH8rwSAAAAABu69tprtWLFCi1dulQPPvigXnnlFV144YVt7lu8eLFWrFhhf1x++eWSEoH+pz/9qS688EIdcsgheu655/TZZ59p9uzZCgQCuv766+3nOPfcc/XYY4/pf//3f7Vo0SI988wzOu6447R27VrH6z377LO1YsUKff/993riiSf03Xff6eSTT+7+G+EA59SXiACV+owEPOWSpCChHgAAAMXGNKVIc35e21suGUaPv0xVVZUGDRokSdp000112mmn6W9/+1ub+wYOHKj+/fu3uT5v3jz9/e9/1xNPPKEjjjjCvr7ZZptpl112kWma9rUnn3xSd9xxhw455BBJiU6BiRMnZrTe8vJye72DBw/WBRdcoHPOOSej58gWob5EMCgvM35vMtSb0TyvBAAAAMhQpFm6cUh+XvuK7yVfRa++5PLly/XPf/5TO++8s+PH/O1vf9OYMWPSAn0qI+UXE4MGDdK//vUvHXPMMaqqqur2etetW6eHH344o/V2B+33JYJz6jNT5q2UJAVN3i8AAACg0Fx22WWqrKxUWVmZhg4dKsMwdOutt7a5b+jQoaqsrLQ/rJb5L774QmPGjEm796KLLrLvGzp0qH39vvvu0xtvvKGamhrtuOOOuvjii/X6669ntN677rpLlZWVqqioUE1NjRYvXqw///nPWXzlmaNSXyICHs6pz4Q/+dvFEKEeAAAAxcZbnqiY5+u1e8Ell1yiadOmyTRNfffdd7riiit06KGH6pVXXpHb7bbve/XVV9Oq6xtttFGHz3nllVfqggsu0GOPPaYbb7zRvr7nnnvqv//9r9566y298cYbeuGFF3THHXdo5syZ+s1vfuNovSeddJKuvPJKSdLKlSt144036oADDtB7772Xk+p/Zwj1JaJ1Tz3t9074fYkfrKDMLu4EAAAACoxh9HoLfG8bMGCARo8eLUnaYostdPvtt2vXXXfVggULtN9++9n3bb755u3uqd9iiy20ePHitGu1tbWqra3VwIED29zv9Xq1xx57aI899tBll12m66+/Xtdee60uu+wy+Xy+LtdbXV1tr3f06NGaPXu2Bg8erHnz5umss87K5EvPWNG0399www2aNGmSysvL2/2mteexxx7TAQccoJqaGhmGoYULF/boGvPJbr+PUnl2oszfT5IUFL8EAQAAAAqdVZ1vaWlxdP+JJ56oxYsXOz6WbkNbb721otGogsFgVo/PdL3dUTSV+nA4rClTpmjXXXfV7NmzHT2mqalJu+++u44//nidffbZPbzC/GL6fWasSn0oz+sAAAAASlldXV2b4mpNTY2GDRvW6eMaGhr0ww8/2O33l156qWprazVp0iRHr3vCCSfoscce0wknnKAZM2bowAMP1CabbKIlS5Zo3rx5aS38kydP1oknnqgddthBNTU1+uyzz3TFFVdo7733Vr9+/Ry9XnNzs3744QdJifb76667ToFAQAcccICjx3dH0YT6mTNnSpLmzJnj+DGnnHKKJOnbb7/tgRUVltZBeVSenQgE+kuSgoYSR4L0wrEcAAAAQF/z0ksvacKECWnXzjzzTP3pT3/q9HFXXXWVrrrqKkmJtvkdd9xRzz33nGpqahy9rmEYmjdvnu6//3795S9/0U033aRIJKKhQ4dq3333TRu6d+CBB2ru3Lm64oor1NzcrCFDhuiwww6zX9+J+++/X/fff7+kxL7+bbfdVv/617/aDOvrCUUT6ntLKBRSKNRav62vr8/japzzW4PyaL93JGC13xuGzGhIhjeQ5xUBAAAApWXOnDkZFWUtToqykydPTjtrvj0ul0vnnHNOl+fFz5gxQzNmzMhkiWleeumlrB+bC0Wzp763zJo1S9XV1fZHV20hhSJ1UF5X/7gh+QOJqZhxw1A0VBy/uAEAAACADeU11F9++eUyDKPTj0WLFvXqmmbMmKG6ujr747vvvuvV18+W1X4vSaEoLfhdKfO1HivRElyfv4UAAAAAfciDDz6Ydq586se4cePyvbw2Xn311Q7XW1lZme/lScpz+/306dM1bdq0Tu8ZOXJk7ywmye/3y+/39+pr5oJVqZekUCSe9ne05XF55DJNxQ1DoVBdvpcDAAAA9AlHHHGEdt5553Y/5/V6e3k1Xdthhx0K/hS1vIZ665xAdJ/X7ZLbZSgWNxWMxlStwvuBKCSGYcgvqUVSkFAPAAAA9IqqqipVVVV1fWOBKCsrs8+fL1RFs6d+6dKlWrhwoZYuXapYLKaFCxdq4cKFamxstO8ZO3as5s+fb/993bp1WrhwoT777DNJ0uLFi7Vw4UL7qIFSE/BYE/AZludEmZmYeB9kTz0AAACAIlU0of6qq67ShAkTdPXVV6uxsVETJkzQhAkT9O6779r3LF68WHV1rVXXJ598UhMmTNChhx4qKXFW4YQJE3TPPff0+vp7gz9lWB665lci1IfCDXleCQAAAABkp2iOtHNyHMKGU9+nTZvW5Z79UkKlPjMBwyUppmC4sct7AQAAAKAQFU2lHl1rPdaOUO9EQMn3i0o9AAAAgCJFqC8hdvs9R9o54jcS71co0pznlQAAAABAdgj1JcQ6q55KvTMBV2L3SUukKc8rAQAAAIDsEOpLSMBD+30mrFAfirTkeSUAAABAaVq9erXOO+88bbbZZvL7/Ro0aJAOPPBAvf7665KkESNG6Pbbb+/w8fPnz9cuu+yi6upqVVVVady4cbrooovS7mlpadHVV1+tLbfcUn6/XwMGDNCUKVP06aefpt13zTXXyDAMGYYhj8ejESNG6OKLL047Ua0YFc2gPHTNqtSHmH7viN/lkyQFo4R6AAAAoCcce+yxCofDmjt3rkaOHKmVK1fqhRde0Nq1a7t87AsvvKCpU6fqhhtu0BFHHCHDMPTZZ5/p3//+t31PKBTSfvvtp6VLl+r3v/+9dt55Z61cuVKzZs3SzjvvrOeff1677LKLff+4ceP0/PPPKxqN6vXXX9cZZ5yh5uZm3XvvvT3y9fcGQn0JsQflRanUOxFwE+oBAABQfEzTVEue/hu2zFMmwzAc3bt+/Xq9+uqreumll7TXXntJkoYPH66ddtrJ0eP/+c9/arfddtMll1xiX9tyyy111FFH2X+//fbb9eabb+qDDz7QdtttZ7/Go48+qp133llnnnmmPvnkE3vNHo9HgwYNkiRNnTpVL7zwgp588klCPQoD0+8zE0hW6kOxUJ5XAgAAADjXEm3Rzg/tnJfX/s9P/6Nyb7mjeysrK1VZWanHH39cu+yyi/x+f0avNWjQID300EP65JNPtM0227R7z0MPPaT999/fDvQWl8uliy++WCeddJI+/PBDbb/99u0+vqysTOFwOKN1FRr21JcQ2u8z43cn/k8lSKgHAAAAcs7j8WjOnDmaO3eu+vfvr912201XXHGFPvroI0eP/8UvfqEdd9xR48eP14gRI3TCCSfoz3/+s0Kh1v9+/+KLL7TVVlu1+3jr+hdffNHu59977z099NBD2meffTL8ygoLlfoS4vfQfp+JgKdMEqEeAAAAxaXMU6b//PQ/eXvtTBx77LE69NBD9eqrr+qtt97S008/rZtuukl/+tOfNG3atE4fW1FRoaeeekpff/21FixYoLfeekvTp0/XHXfcoTfffFPl5YmOAdM0O30en89n//njjz9WZWWlYrGYwuGwDj30UN15550ZfU2FhlBfQlrb76nUOxHwBCRJoXgkzysBAAAAnDMMw3ELfCEIBALaf//9tf/+++s3v/mNzjrrLF199dVdhnrLqFGjNGrUKJ111lm68sorteWWW2revHk6/fTTtcUWW+jzzz9v93HW9S233NK+NmbMGD355JPyeDwaMmRIWuAvVrTflxDOqc9MwJP4P8IgoR4AAADoNVtvvbWampqyeuyIESNUXl5uP/7EE0/U888/rw8//DDtvng8rttuu0077LCDtt56a/u6z+fT6NGjNWLEiJII9BKV+pJCpT4zfq8V6qN5XgkAAABQetauXaspU6bojDPO0Lbbbquqqiq9++67uummm3TkkUfa9y1fvlwLFy5Me+zw4cN1xx13qLm5WYcccoiGDx+u9evX6w9/+IMikYj2339/SdLFF1+sJ554QocffnjakXY33nijvvzyS73xxhu9+SXnBaG+hAQ8yUo9e+odCXgrJEkhk1APAAAA5FplZaV23nln3Xbbbfr6668ViUQ0bNgwnX322briiivs+2655RbdcsstaY/961//qr322kt//OMfdeqpp2rlypXaaKONNGHCBD333HMaM2aMpERr/wsvvKBZs2ZpxowZWrJkiaLRqEaPHq1PPvlEQ4cO7dWvOR8Ms6upAn1cfX29qqurVVdXp379+uV7OZ36+9tLdfljH2u/rQbqT6ftmO/lFLzn3vmDpn92v34SNTT3TGcTOAEAAIDeFgwG9c0332jzzTdXIBDI93IK3tNPP62jjz5at9xyiy644IJ8L6dDnX1fM8mh7KkvIX57Tz3t904EfJWSpJB4vwAAAIBScfDBB+vpp5/WunXrtGbNmnwvp8fRfl9CAtaRdgzKc8Tvq5IkhUxCPQAAAFBK9t57b+299975XkavoFJfQuxBeeypdyTgS7SxtBh5XggAAAAAZIlQX0Jov89MwF8tSQpJUpz3DAAAAEDxIdSXkNYj7ajUOxEIJEO9YUjRYJ5XAwAAAHSOGeelJVffT0J9CWndU0/V2Ql/slLf4jKkSEueVwMAAAC0z+1O/Hd+OBzO80qQS83NzZIkr9fbredhUF4JCSTb70NU6h0JeMslSVHDUDTUIE9FTZ5XBAAAALTl8XhUXl6u1atXy+v1yuWiNlvMTNNUc3OzVq1apf79+9u/tMkWob6EMCgvMwFP61mQoVAdPwwAAAAoSIZhaPDgwfrmm2+0ZMmSfC8HOdK/f38NGjSo289DjikhVqiPxEzF4qbcLsa6d8bv9tt/DobWqyKPawEAAAA64/P5tMUWW9CCXyK8Xm+3K/QWQn0JsdrvJSkUjancx7e3M4ZhyG9KIUMKhRryvRwAAACgUy6XS4FAoOsb0aewGaOEWIPyJIblORVQopshGKrL80oAAAAAIHOE+hLichnyua2z6tlX74TfCvXhxjyvBAAAAAAyR6gvMX4voT4TAcM6MaApzysBAAAAgMwR6kuMPQGf9ntHAkq8Xy1U6gEAAAAUIUJ9ibGG5XGsnTMBV2KYYCjSnOeVAAAAAEDmCPUlxhqWR/u9MwEjEeqDtN8DAAAAKEKE+hJj7akP0X7viN/llSQFoy15XgkAAAAAZI5QX2Ko1Gcm4E6E+hChHgAAAEARItSXGHtQHnvqHQm4/JKkYDSY55UAAAAAQOYI9SXGHpRH+70jfk8y1MdCeV4JAAAAAGSOUF9i/F7a7zMRcAckSSFCPQAAAIAiRKgvMa176qnUOxHwJEJ9MB7O80oAAAAAIHOE+hLT2n5Ppd4Jv6dMEqEeAAAAQHEi1JcYBuVlpsxbLkkKxqN5XgkAAAAAZI5QX2ICnFOfEX8y1IcI9QAAAACKEKG+xFh76kNU6h3xeyslSUGT9wsAAABA8SHUlxi7/Z5KvSNlPkI9AAAAgOJFqC8xDMrLjD8Z6kPilyAAAAAAig+hvsRwTn1m/L4qSVJQZp5XAgAAAACZI9SXGNrvM1Pmr5YkBQ1JMYblAQAAACguhPoSE/Ak2+8ZlOeI399PkhQ0DCnakufVAAAAAEBmCPUlxk+lPiMBXyLUhwxDihDqAQAAABQXQn2JsSr1IfbUOxLwlklKVuojzXleDQAAAABkhlBfYgIMysuI3+2XJIVcLsXDTXleDQAAAABkhlBfYuxQH6X93okyT5n951CoLo8rAQAAAIDMEepLDOfUZ8aq1EtSKNSQx5UAAAAAQOYI9SUmtf3eNDl7vStul1ue5NsUJNQDAAAAKDKE+hIT8CRCfdyUIjFCvRNlMiRJwXB9nlcCAAAAAJkh1JcYv7f1W8pZ9c74jeSJAeHGPK8EAAAAADJDqC8xfo9LRqLwzL56h/zJH4NgmPZ7AAAAAMWFUF9iDMOQ3z6rngn4TpQZHklSMMKRdgAAAACKC6G+BFnD8kK03zvidyVCfSjSnOeVAAAAAEBmCPUlyBqWF6RS74gV6lvaCfWcIAAAAACgkBHqSxBn1WemzOWVJIWiLWnX1zWFtcusFzTzn5/mY1kAAAAA0CVCfQlqPaueSr0TfpdfkhTcINR/vqJeK+tDennx6nwsCwAAAAC6RKgvQX471FOpdyLg9kmSgrFQ2vVILPFLkUicX44AAAAAKEyE+hIUSE6/55x6ZwLuRKU+1CbUJ/bTR6LsqwcAAABQmIom1N9www2aNGmSysvL1b9//y7vj0QiuuyyyzR+/HhVVFRoyJAhOvXUU/X999/3/GLzzE/7fUb8noAkKRgLp123K/Ux3kcAAAAAhaloQn04HNaUKVN03nnnObq/ublZ77//vn7zm9/o/fff12OPPabFixfriCOO6OGV5p9dqaf93pGAp0ySFIy3H+rDhHoAAAAABcqT7wU4NXPmTEnSnDlzHN1fXV2tf//732nX7rzzTu20005aunSpNttss1wvsWAE2FOfkYCnXJIUikfSroejiTAfjdF+DwAAAKAwFU2oz4W6ujoZhtFp+34oFFIo1Lq3ur6+vhdWllvWkXahKBVmJ/zeRKhviUfTrkfjyT31VOoBAAAAFKiiab/vrmAwqMsuu0wnnnii+vXr1+F9s2bNUnV1tf0xbNiwXlxlblCpz0zAWyFJCpnpod4K89G4KdOkWg8AAACg8OQ11F9++eUyDKPTj0WLFnX7dSKRiI4//niZpqm7776703tnzJihuro6++O7777r9uv3NkJ9ZgI+K9Snv1/hlE6HCC34AAAAAApQXtvvp0+frmnTpnV6z8iRI7v1GlagX7JkiV588cVOq/SS5Pf75ff7u/Wa+dY6KI+2cScCvkpJUouZ/n6lBvlILC6fp880tgAAAAAoEnkN9bW1taqtre2x57cC/ZdffqkFCxaopqamx16rkPip1Gck4KuSJIUUl0xTMgxJ6Xvp2VcPAAAAoBAVTelx6dKlWrhwoZYuXapYLKaFCxdq4cKFamxstO8ZO3as5s+fLykR6I877ji9++67evDBBxWLxfTDDz/ohx9+UDgc7uhlSoLdfs+gPEf8vkT3RsgwpFjrBPxoSpDnWDsAAAAAhahopt9fddVVmjt3rv33CRMmSJIWLFigyZMnS5IWL16suro6SdLy5cv15JNPSpK23377tOdKfUwpsqffU6l3JOCvliS1GIYUaZY8PklSOKX9nmPtAAAAABSiogn1c+bM6fKM+tQJ5SNGjOizE8sDHir1mbAH5bkMKdIilfWXRPs9AAAAgMJXNO33cI7p95nxewKSpKBhSNEW+zqhHgAAAEChI9SXINrvMxNIDfWRjkJ93+z6AAAAAFDYCPUlqLVST3XZiYA7EepDhiEz3Gxf3/BIOwAAAAAoNIT6EmRV6oNRKvVO+D1+SVLcMBQJ19vXab8HAAAAUOgI9SXI72FPfSbK3GX2n4OhBvvPqUE+HKX9HgAAAEDhIdSXILtST/u9Ix6XR65kZg+FWiv1qUE+Gue9BAAAAFB4CPUliEp9ZgzDUMAwJEnBcPuVetrvAQAAABQiQn0JsgblhaJxmSZt404ElPxFSEqoT63O034PAAAAoBAR6kuQ1X4vJYI9uuY3rGMAm+xrkSjT7wEAAAAUNkJ9CbIq9RIt+E4FDI8kqSXSeqRdOCXIs6ceAAAAQCEi1Jcgr9sltyu5R5xheY4EXIlQn1apT91TT/s9AAAAgAJEqC9RAY81AZ9KvRN+l1eSFIy02NeisdYgH6b9HgAAAEABItSXKKsFPxgl1DsRcPkkScFoa6hPrdRHCfUAAAAAChChvkTZE/Bpv3ck4E6E+lAsaF8Lpx1pR/s9AAAAgMJDqC9Rfi/t95kIuP2SpGA0ZF9LrdTTfg8AAACgEBHqS1TAY7XfE0ad8HsCkqRgPDXUc6QdAAAAgMJGqC9RASr1GQm4E6E+FAvb19L31NN+DwAAAKDwEOpLlD0oj1DvSMBbLkkKxtsP9VTqAQAAABQiQn2JYlBeZvyeMklSMB61r0U40g4AAABAgSPUlyi7/Z4j7RyxK/VmItTH4qZi8dZQT/s9AAAAgEJEqC9Rfg/t95kIeCslScF44v3asN2e9nsAAAAAhYhQX6JaB+URRp3w+yokSSElQn00nl6Zp/0eAAAAQCEi1JcoKvWZCfiqJElBMy6ZpiLRDSv1tN8DAAAAKDyefC8APaN1+j0VZicC/mSodxlSNKhIzEj7fJRKPQAAAIACRKW+RDEoLzMBbz9JUsgwpEhLm3Z79tQDAAAAKESE+hLFOfWZCST31AeToX7Ddvsw7fcAAAAAChChvkQFPIlvLefUO+P3+CVJQcMlRVratNtvuMceAAAAAAoBe+pLFJX6zATcAUlWpb5ZYTM9xEfjhHoAAAAAhYdQX6LsUM+eekcCnkSoD7mS7fcG7fcAAAAACh/t9yXKGpRH+70zfrfVfp+o1G84GI/2ewAAAACFiFBfovxU6jNitd9HDUPRcGObEE/7PQAAAIBCRKgvUQEP59Rnwmq/l6RQqF6ReHq7/YbT8AEAAACgEBDqS5R9Tj2D8hyx2u8lKRhusCv1hpG4Fqb9HgAAAEABItSXqNbp94RRJwzDUECJBB8MNdp76suT7+OGe+wBAAAAoBAQ6kuUFepDVOod8xvWe9aosBXq/YkDIqJx2u8BAAAAFB5CfYmy2+8ZlOeYFepbIk32HvoKX7JST/s9AAAAgAJEqC9Rfo/VNm4qRpXZkTIjUZUPRZoUTVbqy3yJa2Ha7wEAAAAUIEJ9ibIq9RLD8pzyu7ySpGDKOfXlyUo97fcAAAAAChGhvkRZR9pJhHqnAlaoj7YonGy/t0J9LE7HAwAAAIDCQ6gvUS6XIZ/b2ldP67gTAbdPkhSKBttU6iUm4AMAAAAoPIT6EubnrPqM+F2JUB+MBe3BeBXJPfUSoR4AAABA4SHUl7DWs+oJ9U4EPAFJUjAWUiTZal+WUqmPxmi/BwAAAFBYCPUlzD7WLkKF2YmAOxHqQ7GwXZX3e9xyuwxJVOoBAAAAFB5CfQmzhuWFqNQ74k9W6ltiYbv93usx5EmGeo61AwAAAFBoCPUlzGq/DzEoz5GAt1ySFIpH7Kq8z+2yBw5GaL8HAAAAUGAI9SUswKC8jAQ8yVBvRu0j7bxul7yexPsYpVIPAAAAoMAQ6kuYPSgvSqh3wu+tkCS1mFE7wHvdLtrvAQAAABQsQn0J83us6feEUSfKfJWSpJAZt9vvvW5DXtrvAQAAABQoQn0Jo/0+M34r1CuuaLK7wet2yUf7PQAAAIACRagvYa3n1BNGnbBCfYthyIy2SEruqXfTfg8AAACgMBHqSxiV+syU+aokSSHDkMsO9YY8LtrvAQAAABQmQn0Js/fUMyjPEb+nTJIV6oOSJJ+ndfp9hKMBAQAAABQYQn0Jsyr1IdrvHQl4ApKkFldrpd7jcsmXbL+PxnkfAQAAABQWQn0JC9jT76nUO2GF+pBhyBVrbb+3pt+Hab8HAAAAUGAI9SWsdVAeod4Jv9svSQoahjxWqPe45HHTfg8AAACgMBHqS1jroDzCqBNWpT4R6kOSJJ+b9nsAAAAAhYtQX8L8XgblZSLgbm2/d8dSj7Sj/R4AAABAYSLUlzDa7zNjtd+HXC6548lBeW6D9nsAAAAABYtQX8ICHtrvM1GWPNJOklzJUO9zu+RNtt9HYryPAAAAAAoLob6EUanPjFWplyTDbJaUaL/3JSv10Tjt9wAAAAAKS9GE+htuuEGTJk1SeXm5+vfv7+gx11xzjcaOHauKigpttNFG2m+//fSf//ynZxdaQKxQH6Zt3BG3yy2PElV5Q1aoTznSjvcRAAAAQIEpmlAfDoc1ZcoUnXfeeY4fs+WWW+rOO+/Uxx9/rNdee00jRozQAQccoNWrV/fgSgtH6/R7KvVOlRmJX4S4FJSUqNR7aL8HAAAAUKA8+V6AUzNnzpQkzZkzx/FjfvrTn6b9/dZbb9Xs2bP10Ucfad99983l8gqS3X5Phdkxv+FWgxmV1Dr93mq/J9QDAAAAKDRFE+q7KxwO67777lN1dbW22267Du8LhUIKhUL23+vr63tjeT0i4GFPfaYCLq8UD8llJP4NpLbfRzjSDgAAAECBKZr2+2z93//9nyorKxUIBHTbbbfp3//+twYMGNDh/bNmzVJ1dbX9MWzYsF5cbW6ltt+bJoHUiYDLK0lyucKSJK+H9nsAAAAAhSuvof7yyy+XYRidfixatKhbr7H33ntr4cKFeuONN3TQQQfp+OOP16pVqzq8f8aMGaqrq7M/vvvuu269fj75k+33cZMqs1P+ZKg3jESoTxxpR/s9AAAAgMKU1/b76dOna9q0aZ3eM3LkyG69RkVFhUaPHq3Ro0drl1120RZbbKHZs2drxowZ7d7v9/vl9/vb/VyxsSr1khSMxuTzlHxjRrcFksfaGUZU0gZH2vGLEQAAAAAFJq+hvra2VrW1tb36mvF4PG3PfCnzuV0yDMk0Ey34/QLefC+p4AXcPkmS4YrIMCS3y5A32X4fplIPAAAAoMAUTel26dKlWrhwoZYuXapYLKaFCxdq4cKFamxstO8ZO3as5s+fL0lqamrSFVdcobfeektLlizRe++9pzPOOEPLly/XlClT8vVl9CrDMORPVudDEQKpE353QJJkuiJ2272H9nsAAAAABapopt9fddVVmjt3rv33CRMmSJIWLFigyZMnS5IWL16suro6SZLb7daiRYs0d+5crVmzRjU1Ndpxxx316quvaty4cb2+/nwJeN0KRuJMwHco4CmTJJlGzG679zH9HgAAAECBKppQP2fOnC7PqE+d8B4IBPTYY4/18KoKX+JYu4iCVOodsUJ9zIjZbfdeD9PvAQAAABSmomm/R3bsY+2iVOqd8HsToT7uitnt90y/BwAAAFCoCPUlLpA81o72e2cC3gpJUtyIt+6pd9F+DwAAAKAwEepLnN8O9VSZnbBCfcTV2n7vS7bfR6nUAwAAACgwhPoSF0hOv6dS70zAVylJihhSwJUI8VbFPkylHgAAAECBIdSXONrvM+P3JkJ9yDBU4Y5KSm2/p1IPAAAAoLAQ6kucNSgvFCWQOhHwJdrvgy6XKt1hSa3t94R6AAAAAIWGUF/iqNRnxjrSLmgYqlAi1Fvt91Ha7wEAAAAUGEJ9iUucU0+l3qmAOyApGepdEUmpe+p5DwEAAAAUFkJ9ibPPqadS74jf45eU3FPvsir1tN8DAAAAKEyE+hJH+31m0ir1RkhSa6U+QrcDAAAAgAJDqC9xnFOfmYAnGepdhsqM9D31kTh76gEAAAAUFkJ9iaP9PjNWpT5ktIZ6T0r7vWkS7AEAAAAUDkJ9ifMnB+UFaR13xNpTHzQMlSnRfu9LVupNU4pRrQcAAABQQAj1JY5KfWZS99QHlL6nXpKihHoAAAAABYRQX+KsI+0I9c5Ye+pNw5BXQUnpoZ5j7QAAAAAUEkJ9ibOm34cYlOeIVamXJJdaJLUeaScxAR8AAABAYSHUlzi7/T5Kpd4Jj8sjI9lhb5iJUG8Yhjwua1ge7fcAAAAACgehvsRxTn1mDMOQT4n3zEi230spx9rRfg8AAACggBDqS1zroDzCqFPe5I9F3EwN9a3H2gEAAABAoSDUlzg/g/Iy5jE9yT+12NdaK/W03wMAAAAoHIT6EmcPymPAm2MeJUJ93Azb12i/BwAAAFCICPUljnPqM+dKhvpY6p56D+33AAAAAAoPob7EpVbqTZPWcSfcpleSFEut1LtovwcAAABQeAj1Jc4K9RIt+E4ZSoT6qBmxr9F+DwAAAKAQEepLXMDT+i2mBd8h0ydJiqSGetrvAQAAABQgQn2J87hd8rgSgZRj7RxqL9Qz/R4AAABAASLU9wFWCz6VemfMZKgPK2pfa91Tzy9GAAAAABQOQn0f4E+24AejhHon4nG/JClspoR62u8BAAAAFCBCfR/QWqknkDoRM5OhXjEpeWIA7fcAAAAAChGhvg/wc1Z9RqLJSn3QkBRLHGvnof0eAAAAQAEi1PcBAQ976jMRjgckSSHDkCLNkiQf7fcAAAAAChChvg8I2JV6AqkT0XhiUF7QMKRIiyTa7wEAAAAUJkJ9H2DtqQ8xKM+ReMwjqaNQzy9GAAAAABQOQn0fwJF2mYnFvJLS2++97mT7fZRQDwAAAKBwEOr7ANrvMxO1KvUuKvUAAAAAChuhvg9gUF5mYrHk+5VWqU+G+jh76gEAAAAUDkJ9H+C399RTZe6KaZqKRlPb7zeo1PMeAgAAACgghPo+IMA59Y5FYqbMeCLUBw1X2z31tN8DAAAAKCCE+j6gdVAegbQr0XhcMjuefh/mSDsAAAAABYRQ3wfYe+o50q5LkagpM3lOfaidQXlRKvUAAAAACgihvg+g/d65cCwumVb7fTtH2hHqAQAAABQQQn0fYLXfh2i/71IkFrf31EcNQ5Fwk6TUI+1ovwcAAABQOAj1fUCmlfrVDSEtWLRK8T54fFskpVIvSaFwgyTOqQcAAABQmAj1fYA/wz31V8z/WKfPeUevfrWmJ5dVkCIx0x6UJ0nBiFWpp/0eAAAAQOEh1PcBrZV6Z4H0o2XrJUlfrmzoqSUVrERoN+SJJ96zEO33AAAAAAoYob4P8NtH2nVdqW8IRrSyPiRJ+qEu2KPrKkRWJd5tWt0N1qA860g7KvUAAAAACgehvg+wj7RzEOq/Xt1k//mH+j4c6mW9Z4n3wGq/50g7AAAAAIWEUN8HZNJ+//WqRvvPfbFSH44m2uvdyX31oQ0q9bTfAwAAACgkhPo+wD7SzsGgvK9Xt4b6FX0w1EfjiV98uJKhPhizKvVMvwcAAABQeAj1fUDA3lPfdSD9KqVSv7I+2OeOtWttv/dJkoLRxHwBpt8DAAAAKESE+j4gk3PqUyv10bipNU2hHltXIbLa711KnFUfjCVDvYf2ewAAAACFh1DfB1iD8qJxs9NBb5FYXEvWJvaQ+5Lt5n1tX71ViXcZiUp9KB6WJHldtN8DAAAAKDyE+j7Aar+XpFC041C6ZG2zonFT5T63thpcJan7++qDkZj+m1L9L3StoT4gSQrGI5Ikr4f2ewAAAACFh1DfB/g9rd/mzlrwrdb7UbWVGlxdJqn7lfor5n+sfX7/st5b8mO3nqe3RGNW+/0GoZ7p9wAAAAAKEKG+D3C5DPmSwT7YSaXeGpI3emClBlUnQm13K/UffrdekvTNmqZuPU9vCVuVelcy1JtRKR63tyNQqQcAAABQSDz5XgB6R8DjUjgad1ipr5DH3lPfkvVrmqapZT8mHt8cjmb9PL3Jbr93lUmmFDIMKRqUh+n3AAAAAAoQlfo+ovVYu05C/arU9vvuV+rXNIbtPfzN4a4n7xcC+0g7V7kkKWi4pEhLWvu9adKCDwAAAKAwEOr7iK7OqjdNU1+vTrTIjx5YqUH9EqH+h/rsQ/3y9a1V/uIJ9YnA7rHa7w1DijTboV5KnCIAAAAAAIWA9vs+wjqrPtRBpX5VQ0iNoajcLkPDayrkTx6D90NdUKZpyjCMjF9z2Y/N9p9biqz93uf2SxEp5DISlfpyI+2e1JAPAAAAAPlCMukjrJAejLYf6q0hecM3LpfP49LAfn5JiSPw1jdHsnpNaz+9VEyV+mSodyW+/vYq9ZEolXoAAAAAhYFQ30dYlfqO2u+tIXkjayuT97tVU+GTlP2++uUpob6laEJ9IrD73Knt9y3yuFIq9XGG5QEAAAAoDEUT6m+44QZNmjRJ5eXl6t+/f8aPP/fcc2UYhm6//facr60YdDUoz6rUjxpYYV+zjrX7oT67Cfip7ffFUqkPR61KfeIXGlal3jAMjrUDAAAAUHCKJtSHw2FNmTJF5513XsaPnT9/vt566y0NGTKkB1ZWHOz2+y4q9aOTlXpJ3Z6AnzYor5Op+4XECuz+ZKU+lKzUS2o91o72ewAAAAAFomgG5c2cOVOSNGfOnIwet3z5cv3iF7/Qs88+q0MPPbQHVlYcWtvv2w/XX69KTL4fNbA11NuV+ixCfeoZ9VLxDMqLJtvvA55k+72rNdQn9tXHFKZSDwAAAKBAFE2oz0Y8Htcpp5yiSy65ROPGjXP0mFAopFAoZP+9vr6+p5bXq+z2+3YG5TUEI/bRdaPSKvVlkrKr1P/YHElruS+W9nurUh9wpx9pJ8kelhdlTz0AAACAAlE07ffZ+N3vfiePx6MLL7zQ8WNmzZql6upq+2PYsGE9uMLe09mgvP8mz6evrfKrusxrX7fPqs8i1KcOyZOKZ1Be2G6/T07/N1Ir9bTfAwAAACgseQ31l19+uQzD6PRj0aJFWT33e++9pzvuuENz5szJ6Iz1GTNmqK6uzv747rvvsnr9QhNI7qlv75x6e0hebUXa9dY99ZkPyrOG5Pk9iX9iTUXSfm9V6ss8HVfqab8HAAAAUCjy2n4/ffp0TZs2rdN7Ro4cmdVzv/rqq1q1apU222wz+1osFtP06dN1++2369tvv233cX6/X36/P6vXLGRW+30o2jaQ2kPyUvbTS6176lfUBWWaZka/HLGG5I0eWKlPv68vovb7RBW+NdS72lTqo4R6AAAAAAUir6G+trZWtbW1PfLcp5xyivbbb7+0awceeKBOOeUUnX766T3ymoWss0F5VqhP3U8vtYb65nBMDaGo+gW8bR7bEWtI3hbJUF8s7fdWpb7cl/jawy5D8XCTXGqt1FvBHwAAAADyrWgG5S1dulTr1q3T0qVLFYvFtHDhQknS6NGjVVmZCKNjx47VrFmzdPTRR6umpkY1NTVpz+H1ejVo0CCNGTOmt5efd52dU9/afp8e6st9HvULeFQfjOqHumCGoT7Rsr7FJlWSpGjcVDgal89T2GMcWtvvy+xrwWiTypUa6qnUAwAAACgMRRPqr7rqKs2dO9f++4QJEyRJCxYs0OTJkyVJixcvVl1dXT6WV/D83vbPqY/E4lqyNhHAN2y/lxIT8OuDDVpRF9SWyYDuhFWpT31MSzhWBKE+vf1ekkLh5mSoT7Tfs6ceAAAAQKEomlA/Z86cLs+oN83O26I72kffFwSSYXrDI+2WrG1WNG6q3Oe2B+OlGlQd0OKVDVqZ4QR8a/r95gPK5XEZisZNNUeiqpbzan8+2EfaeT3yGi5FzLhCkcTpAPaRdrTfAwAAACgQhV02Rc501H6fup++vUF4g1OG5TlV1xJRQygx7X7T/uUq9yVeuxiG5VmVeq/bpYCR+AVESzTRyWB1GdB+DwAAAKBQEOr7iEAH7fetob6izWOk1mF5P9Q7P9bO2k9fU+FTmc+tcl+iIaQYhuVZgd3rdsnvSoT6UDLUe1y03wMAAAAoLEXTfo/usc6L37BS39GQPEs2lXprP/3QjRLD5oqrUt8a6gNunxSVgqFGqXmd+qtB/dUgo2Wd1Nz+L0H6PMOQyjbK9yoAAACAPoNQ30d0dE7916sT+8XbG5InSYOqE8H8hwxCvbWfftNkqC+zQ300gxXnRyRqhXojEeolBdd9Jd20uW6TpICkF5IfaN9PTpOO+EO+VwEAAAD0CbTf9xHtnVNvmqa+tir1HYT67lXqyyW1VuqLof0+nLKn3u+vliSF2pk1gE7896V8rwAAAADoM6jU9xHtDcpb1RBSYygqt8vQ8Jrydh9n7amva4moORy198d3Zvn6xB70oXalPvGYpiII9dF4Svu9L/GLjpYpc6QRB+rSf3yoR95fpksOHKPz9xqdx1UWqNWLpLt3lUL1+V4JAAAA0GcQ6vuIgKftoDyrSr/ZxuXyJz+/oSq/RxU+t5rCMf1QF9TIDvbep7Iq9Zv2T+6p91qV+uJpv/e5XQq4E7/QCMXDksslj9cjUy5F44bkosmljUCis0HBesk0E/vrAQAAAPQokkkfYbffR2MyzUSL+VddTL6XJMMwWifgO2zB76j9vjgG5SXb7z2GAp5kqI+FJCWCfuIept+3K9Av8b9mTIo053ctAAAAQB9BqO8j/MlquWm2HsnW1X56y+DksDwn++obghHVtUQktTcor7BDvWma9nvjcbnkd/slSS3RluQ1jrTrlK9SMpL/lxKkBR8AAADoDYT6PsKq1EutLfitlfrOQ/0m/ayz6rsO9cvXJwJw/3KvKv2J3R32oLxIYYf6aNy0/+xzu9pU6r3JYwEjUbPtg5Fot/dXJf4casjvWgAAAIA+glDfR/jcLnuLcyiaCNdfr+r8ODtL6wT8li5fZ/kGZ9RLsofrFfqRdtFYa1j3egx7T30wmvhlhjfZfm8N00M7kicGMCwPAAAA6B2E+j7CMAx7WF4oEldjKGpX3kcN6DzUZ7KnfsMheVLx7KlPbav3ul3yexLt98FYMtQn2+/ZU98Ja199sC6/6wAAAAD6CEJ9H5J6Vr21n35ApV/V5d5OH2dV6p203y/70TrOrvWIvGI5pz41rHtcrZX6UDS9/T5M+33H/MlQT6UeAAAA6BWE+j6k9az6uL5O7qcfPbDjyfeWTCr11p761Ep9md1+Xxyh3us2kp0Nyfb7GO33jtmVekI9AAAA0BsI9X2IHeqjMX21ytmQPKl1+v2axrC9H78jy9rdU18klfpkBd4K79b0e2tPvc9N+32XqNQDAAAAvYpQ34f4PSnt93alvutQv1G5V77kY1fVhzq9d/kGZ9RLrUfaNRX4oLxI3KrUJ77WMk/iFxPW9HuPm/b7LlGpBwAAAHoVob4PSW+/T0y+d1KpNwwjZQJ+xy34zeGo1jaFJbWeUS9J5d4iqdTH0kP9hpV66zqV+k5QqQcAAAB6FaG+D7EG5TWFovp2TTLUO6jUS9Kgfl0fa2dV6asCHlWXtQ7fKy+WPfXJCrzVZm8faWfvqU9cZ099J6jUAwAAAL3Kk+8FoPf4k0faLV7ZoGjcVLnPrcHJsN6VwQ6G5S1rZ0ie1Np+X+jn1FtH2llt9tagvC9+/EIn/+tkrW+OqHx4o750eXTyv6ryts5C5mpcpeMrynUYlXoAAACgV2QV6puamlRR0fXUdBQWq1L/6feJwDWytkKu5NnrXRmUHJbXWfv9snb200spg/IiBV6pT5l+L0mbVm4qSWqJtujD1R9KktzlUoukD1fnZYlFoa5/tQ7jnHoAAACgV2QV6jfZZBMdf/zxOuOMM7T77rvnek3oIdae+k+XJwLXaAf76S1OKvXL25l8L7WG+kjMVCQWt/emF5poLH36/YjqEfrH4f/Q8sblkqRPltfpDy98qWEbl+s3h22d8fObMmXI2S9RepMp54P/Olv/dw3f6ZZ3b1GTy2BPPQAAANBLsgr1/+///T/NmTNH++yzj0aMGKEzzjhDp556qoYMGZLr9SGHAsn2e2uYnZMheRbrrPoV9Z1V6psltRfqW/+ZNYdjqi4rzFBvVeqtSf+SNGbjMRqz8RhJUiC8RtFGn3wVVdpnsz3zssZC9t/1/9Ut796iFsNgTz0AAADQS7JKV0cddZQef/xxLV++XOeee64eeughDR8+XIcddpgee+wxRaOFvXe6r7La7y1Oh+RJrYPyfuhkUF57Z9RLiZDsSbb5F/IE/PAG0+835GH6faesIwBbXC4q9QAAAEAv6VbJtLa2Vr/85S/10Ucf6dZbb9Xzzz+v4447TkOGDNFVV12l5ubmXK0TOWC131ucnFFvsdrvVzWEOgy1y9e3v6deKo5hedbX5elgzoC11z5MqG+XFeojhqFoqCHPqwEAAAD6hm6F+pUrV+qmm27S1ltvrcsvv1zHHXecXnjhBf3+97/XY489pqOOOipHy0Qu+FNCvcuQhte0Dd8dqan0y+MyZJrS6oZQm88HIzH7+obT76XWffWFfKxde+33qawKvrX3HunKvK3f95Z4RIp0vFUDAAAAQG5ktaf+scce01/+8hc9++yz2nrrrXX++efr5JNPVv/+/e17Jk2apK222ipX60QOpLbfD6+psI+4c8LtMrRJv4CWr2/RD/VBDdkguH+frNJX+NzqX+5t8/jEvvpQQU/Aj2wwKG9DVtin/b59PpdPLsOluBlXi8ulqlC95HV2ZCIAAACA7GQV6k8//XSdcMIJev3117Xjjju2e8+QIUN05ZVXdmtxyK1ASogfVZv5kYSDqpOhvp0J+NZ++k03KpNhtG1fL0t2CTSFCr/93mqz35DVlk/7ffsMw1CZp0xNkabWYXmVA/O9LAAAAKCkZRXqV6xYofLyzlu3y8rKdPXVV2e1KPSM1D31mUy+t9gT8DsJ9e3tp5dSzqov5Pb7aOeD8rwMyuuSHepdhhTirHoAAACgp2UV6qPRqOrr2063NgxDfr9fPp+v2wtD7qW232cy+d4yuJMJ+MvXt3+cnaWsKPbUO2u/Z099x+wJ+BxrBwAAAPSKrEJ9//79222xtgwdOlTTpk3T1VdfLZerMM8k74t6o1Lf3pA8KWVQXgHvqQ87bL+Pxk3F46ZcHUzJ78s41g4AAADoXVmF+jlz5ujKK6/UtGnTtNNOO0mS3n77bc2dO1e//vWvtXr1at1yyy3y+/264oorcrpgZC+1Uj86i1A/uDoR2NrbU7+8y/b7xD+1lgI+0i7aRaXemzIVPxKPy+9yPmiwr6BSDwAAAPSurEL93Llz9fvf/17HH3+8fe3www/X+PHjde+99+qFF17QZpttphtuuIFQX0CsSv2ASr+q25lQ3xVHlfqibr/vfE+9L+V6NGbKn9VPT2mzQn2zYVCpBwAAAHpBVr3xb7zxhiZMmNDm+oQJE/Tmm29KknbffXctXbq0e6tDTm0/rL92Gbmxfrbn5lk9fnAy1K+sDyoeb91XHo7GtbIhEfQ72lNfUQyD8hyeU596L9Kltd9TqQcAAAB6XFahftiwYZo9e3ab67Nnz9awYcMkSWvXrtVGG23UvdUhp8p9Hv39Z7vqZ3uOyurxtVV+uYzEnvI1TSH7+oq6Fplmor2/pqL9IYllyfb7Qq7UW3vqPR3slXe7DFmjJDjWrn1p7fdU6gEAAIAel1UD8S233KIpU6bo6aefts+pf/fdd7Vo0SL94x//kCS98847mjp1au5Wirzzul2qrfJrZX1IP9QFNbAqUblPHZLX0QDF8hJov7c+F47G7Un5SNdaqWdPPQAAANAbsgr1RxxxhBYvXqx7771XixcvliQdfPDBevzxxzVixAhJ0nnnnZezRaJwDOoX0Mr6kFbUBbXt0MS1robkSSnn1EcKf1BeR+33UmJffTgaV5RKfbvSK/WcUw8AAAD0tIxDfSQS0UEHHaR77rlHs2bN6ok1oYANqg7ow2V1aRPwl/2YOKO+oyF5klTmLfxKfVdH2qV+jj317WsN9eypBwAAAHpDxnvqvV6vPvroo55YC4qAfaxdfWqotyr1HYd660i75lDhhvpIF0faSZIn+blwlPb79pR7E90aLS5DCjXkeTUAAABA6ctqUN7JJ5/c7qA8lD7rWLu0Sv165+33zQXcfh+JJgfldRLqrWPtqNS3j0F5AAAAQO/Kak99NBrVn//8Zz3//POaOHGiKioq0j5/66235mRxKDyD7bPqW+xry1MG5XWkGM6pj8aTR9o5aL+37kW6tCPtmgn1AAAAQE/LKtR/8skn+slPfiJJ+uKLL9I+19H0c5SGQf3SK/XRWNxuxR/Waft94Z9TH6b9vtuo1AMAAAC9K6tQv2DBglyvA0XC2lO/oi4o0zS1oi6oWNyUz+3SgEp/h48riiPtos6OtJNov+9I2pF20aAUDUseX55XBQAAAJSurPbUW7766is9++yzamlJtF+bJtXLUjewXyK4h6JxrW+OtJ5Rv1GZXK6OuzSsQXmFXKl3ck69j/b7TqVV6iWq9QAAAEAPyyrUr127Vvvuu6+23HJLHXLIIVqxYoUk6cwzz9T06dNzukAUloDXrZqKROV1RV1Qy9d3Pfleaq3Uh2OFe8Z7xNGRdrTfd6a1Up/4fivIWfUAAABAT8oq1F988cXyer1aunSpystbJ55PnTpVzzzzTM4Wh8JkT8Cvb2k9o76TIXlS66A8SWqOFGa13tmRdpxT35m0QXkSlXoAAACgh2W1p/65557Ts88+q6FDh6Zd32KLLbRkyZKcLAyFa3B1QJ9+X5+o1Ds4o15KHAXndhmKxU21hGPqF/D2xlIz4qT9nj31nWvTfh8k1AMAAAA9KatKfVNTU1qF3rJu3Tr5/R0PS0NpSD2rftmPXZ9RLyVORSj3FvawPCuo+zwdt99b59RHY7Tft8cK9UFDiktU6gEAAIAellWo32OPPfTAAw/YfzcMQ/F4XDfddJP23nvvnC0OhSl1Av6y9cn2+y4q9VLqWfXRnltcN2TSfh+mUt8uK9RLUtAwqNQDAAAAPSyr9vubbrpJ++67r959912Fw2Fdeuml+vTTT7Vu3Tq9/vrruV4jCswmybPql//YohXrE2fUd9V+LxX+sXZWUPe4aL/PVsATsP/cbBgqp1IPAAAA9KisKvXbbLONvvjiC+2+++468sgj1dTUpGOOOUYffPCBRo0ales1osAMTrbff7K8TtG4KY/L0MCqQBePksqSx9oVaqiPZtB+T6hvn8twpZ9VT6UeAAAA6FFZVeolqbq6WldeeWUu14IiYe2pbwgl2uiH9C+Tu5Mz6i1Wpb6liNvvWyv17KnvSJmnTC3RFrUYLvbUAwAAAD0s61C/fv16vf3221q1apXi8fSq5amnntrthaFwDeqXXpV30novFU/7PUfadU9apZ5QDwAAAPSorEL9P//5T5100klqbGxUv379ZBitVVrDMAj1Ja7C71G/gEf1wUTFvasz6i1lBTz93jRNO6hbwb097KnvWtqxdrTfAwAAAD0qqz3106dP1xlnnKHGxkatX79eP/74o/2xbt26XK8RBciagC91fZydpcKf+B1SSwGG+ljclJnsqPd1Uqn3eTjSriutlXra7wEAAICellWoX758uS688MJ2z6pH32Dtq5ecHWcnpR5pV3ihPhpvDemd76nnSLuuUKkHAAAAek9Wof7AAw/Uu+++m+u1oIgMTgn1jvfUW+33kcIblJca0jvdU++i/b4raaGeSj0AAADQo7LaU3/ooYfqkksu0Weffabx48fL6/Wmff6II47IyeJQuAZlE+rt6feFV6mPRFNDfSdH2iXb7yNR2u87ktZ+T6UeAAAA6FFZhfqzzz5bknTttde2+ZxhGIrFCi+0IbesSr3bZbSZht+RQj6n3jqizuMy0gY/bsgK/JE4lfqOUKkHAAAAek9WoX7DI+zQ91iD8gb1C8jTSbt6qoKu1Ds4zk5Kbb+nUt+Rcm9i1kaLy5AizVIsIrm9XTwKAAAAQDYy2lN/yCGHqK6uzv77b3/7W61fv97++9q1a7X11lvnbHEoXDuP3FhHbT9Ev9x/S8ePsQblNYULb099a6jvuEovSV67/Z5fbHUkrVIvSaGGPK4GAAAAKG0Zhfpnn31WoVDI/vuNN96YdoRdNBrV4sWLc7e6FDfccIMmTZqk8vJy9e/f39Fjpk2bJsMw0j4OOuigHllfX+P3uHX7CRN07MShjh9TXsDT763Ku7VnviO+ZOiP0q3SITvUW9X5YF0ndwMAAADojoza703T7PTvPSkcDmvKlCnaddddNXv2bMePO+igg/SXv/zF/rvf7++J5cGBUmi/tz4fpv2+Q1aob/b4EhfYVw8AAAD0mKz21OfDzJkzJUlz5szJ6HF+v1+DBg3qgRUhU2Vea1Be4bXfW0faebpov7fmB9B+37G2lXpCPQAAANBTMmq/t1rYN7xWyF566SUNHDhQY8aM0Xnnnae1a9d2en8oFFJ9fX3aB3KjoCv1UWeVeqv9nnPqO9Ya6hPfbyr1AAAAQM/JuP1+2rRpdgt7MBjUueeeq4qKCklK229fCA466CAdc8wx2nzzzfX111/riiuu0MEHH6w333xTbitwbGDWrFl2VwByq8Kf3FMfKbxQH40n99Q7bL+PxGm/70jaOfUSlXoAAACgB2UU6k877bS0v5988slt7jn11FMdP9/ll1+u3/3ud53e8/nnn2vs2LGOnzPVCSecYP95/Pjx2nbbbTVq1Ci99NJL2nfffdt9zIwZM/TLX/7S/nt9fb2GDRuW1esjXSGfUx92eqQd7fddsvfUM/0eAAAA6HEZhfrUgXO5MH36dE2bNq3Te0aOHJmz1xs5cqQGDBigr776qsNQ7/f7GabXQ8q9iUp9OBpXLG7K7SqcrRut7fddHGlH+32XWo+0S14IMf0eAAAA6Cl5HZRXW1ur2traXnu9ZcuWae3atRo8eHCvvSZaWefUS4lheVUBbx5Xk8460s7T5Z76ZKWeUN8hO9Qr+R7Rfg8AAAD0mIwG5eXT0qVLtXDhQi1dulSxWEwLFy7UwoUL1djYaN8zduxYzZ8/X5LU2NioSy65RG+99Za+/fZbvfDCCzryyCM1evRoHXjggfn6Mvo0v8clqzhfaMPyrJDueE89R9p1qNxTLklqMZOhnkF5AAAAQI8pmiPtrrrqKs2dO9f++4QJEyRJCxYs0OTJkyVJixcvVl1dotXX7Xbro48+0ty5c7V+/XoNGTJEBxxwgK677jra6/PEMAyV+zxqDEXVVKChvqv2ew/t910q8yYq9UEzKlOSQaUeAAAA6DFFE+rnzJnT5Rn1ptlaPS0rK9Ozzz7bw6tCpsp8bjWGogV3Vr1Vee/6SDva77titd+bkoKGoTIq9QAAAECPKZr2e5SGQj2r3q7Ue5y130dpv+9QwB2w/9xiGOypBwAAAHoQoR69qiw5Ab/QjrWzQ30XE/mt0B+mUt8ht8stvzuxxaXFZbCnHgAAAOhBhHr0KqtSX2ih3uk59Vbop/2+c63H2rmo1AMAAAA9iFCPXlXhT4xxaIkU1p56q53eaft93JRicVrwO9Ia6qnUAwAAAD2JUI9eVejt910eaZcS+qnWd8wO9S5DCjdK8cL6fgMAAAClglCPXlWog/LCTo+0S9lzT6jvWFqlXqJaDwAAAPQQQj16VZkv0X5fcJX6aKKV3tNVpd6dWqmn/b4jdqj3+BIX2FcPAAAA9AhCPXpVoQ7KizgclOd2GXInq/VRKvUdskO9rzxxgUo9AAAA0CMI9ehVre33BTYoL27tqe+8/V5qbdHnWLuOWaG+2Zs8sz7UkMfVAAAAAKWLUI9eVZYM9U0FVqkPJ9vvu6rUS5LXlbiH9vuO2ZV6K9TTfg8AAAD0CEI9elW5tzAH5Tltv5daJ+AzKK9jbfbU034PAAAA9AhCPXpVuT0or7Da7yMOp9+n3kOo71iZNxnq3Ynvt4J1eVwNAAAAULoI9ehVZQU7KM95+72H9vsu2ZV6K9RTqQcAAAB6BKEevcoelBcptFDvvP3eR/t9l8o9ian3La7E95s99QAAAEDPINSjV5UX6jn1Vqj3ONhTb7XfRwn1HbEr9UZyOwOVegAAAKBHEOrRq1qPtCvMUO/sSLtkpT5O+31HWkN98gKVegAAAKBHEOrRq8rtPfWFNSgvnNwfb+2X74zHCvVU6jtkh3ol3yMq9QAAAECPINSjVxXqoLxoBu33Pqbfd8kO9WbyPaJSDwAAAPQIQj16lbWnPhSNK1ZA7euZHWlH+31XWkN9siODSj0AAADQIwj16FVW+71UWBPwrePpfA6m33tpv++SHerjyVBPpR4AAADoEYR69Cq/xyVrIHpzKLN99d+ta9b8D5b1SIU/HHV+pJ2X9vsutYb6cOIClXoAAACgR3jyvQD0LYZhqNzrVlM4lvG++mue/FQvLFqljcp9mjxmYE7XZQV0Tybt94T6DtmhPhaUKckINUjxuORgECEAAAAA5/gvbPS6sizPql+yrlmStLI+mPM1ReNZtN/H2FPfkTJvItTHzLgikiRTCjfmc0kAAABASSLUo9fZZ9VHMmu/X9sYkiQ1hXK/Fz+SQfu9h/b7LlmVeklq8fgSf6AFHwAAAMg5Qj16XXkWx9pFYnH92Jyo+TZluBffiXBGR9rRft8Vr8srjyvRkdES6Je4yLA8AAAAIOcI9eh12YT6H5vC9p8bw7kP9VkdaUf7faesan2zvzJxgUo9AAAAkHOEevQ666z6lgxC/ZrG1lCf60p9LG7KGqjvdTDIjUF5ztjD8vwViQtU6gEAAICcI9Sj15VlUalfk9xPL+V+T31qOHfSfs+Rds6Ue8olSS2+xP9SqQcAAAByj1CPXtfafu+84r62qTXUN+a4Up8W6mm/zxm7Up+chK9gXR5XAwAAAJQmQj16nT39PpNKfUPPtd+nhnPa73OnNdQHEheo1AMAAAA5R6hHryvzJs+pj2QQ6ptS2+97plLvcRlyubqu1HOknTN2qPd4ExfYUw8AAADkHKEevc5uv88gnKdV6jOo8DsRTp5R73HQei+lHmlH+31n7FDvToZ6KvUAAABAzhHq0euyGZS3tgcr9dHk6Hurrb4r1r77MJX6TrWG+kRnBpV6AAAAIPcI9eh1dqU+g/b7tSlH2vXUoDyf01CfnJAfJdR3yg71rsT3m0o9AAAAkHuEevS6rAblNaZX6k0zd63vVvu940q9i/Z7J1pDfXJbA5V6AAAAIOcI9eh15b7koDyHR9qZpplWqY+bUjCSuyq5Van3epztqbfuY1Be58qSR9m1GMn3NdSQx9UAAAAApYlQj16XaaW+Phhts389ly34VsXdyXF2EkfaOWVX6pXsaAhxTj0AAACQa4R69LpMB+WtTbbeV/o9qkg+NpfD8qy98c4H5dF+70RrqE/+8oP2ewAAACDnCPXoda3t985C/Zpk631NpU8V/sRjc1mpD2fafs859Y5Yob7ZTH6vQg1SDmchAAAAACDUIw/s9nuH0++tSv2ASr8q/Zn9QsAJu/0+w0q9NWAP7bMr9fFkqDdjUrgpjysCAAAASg+hHr2uzGu13zurtq9pSlbqK1or9blsv49k2X5vnW+P9tmhPhaSDI61AwAAAHoCoR69zqrUByNxxRwE4zUNyUp9lV8V/sRjczsozwr1tN/nkh3qoy1SoF/iIvvqAQAAgJwi1KPXWXvqJWct+GubkqG+wme33+e2Up9d+32E9vtOlXvKJSVDvT8Z6qnUAwAAADlFqEevC3hdso4ud9KCv6Yh0X4/oMpv/0KgZyr1GYZ62u87RaUeAAAA6HmEevQ6wzDsffVOzqq3KvU1Ff6UPfW5HJSXCPW+jI+0o1LfmbRQb1fqOaseAAAAyCVCPfKiPIOz6lOPtKtM7qlvcjhkzwlrin3Ge+ppv++UFeoj8YiivqrERSr1AAAAQE4R6pEXmZxVvyblSLueOKfe2lPvybhST/t9Z8q8ZfafWwIViT+wpx4AAADIKUI98sI+q76LUB+KxtQQTAT4AZWtg/Kacxjqo1nvqY/LNAn2HfG5fHIZifeqxZsYmkelHgAAAMgtQj3yoszn7Kz6tcnWe4/LUHWZN6VS3xN76jNrvzdNOTqSr68yDKN1X70vWbWnUg8AAADkFKEeeWFX6rs40m5tyn56wzBSBuXlcE99lkfaSbTgd8UO9d5A4kKoIY+rAQAAAEoPoR55UeZ1tqc+dT+9pB4ZlGcfaefJPNSHmYDfqdZQ70tcoP0eAAAAyClCPfLC6fR7K9TXJEN9j55T78qs/V5q3Y+P9tmh3p0M9bTfAwAAADlFqEde2KG+i3BuHWc3oCIRCit7oP0+kmH7vWEY8iR/AUD7fedaQ33i+6Yg59QDAAAAuUSoR17Yg/K63FOfbL+vSlTqW/fU535QntP2eyn1WDsq9Z2xQn2zK/H9plIPAAAA5BahHnnh9Ei7tU3JQXnJSn1Fyp76XB0nF8nwSLvEvValnlDfGbtS70q+t+ypBwAAAHKKUI+8sPbGd3WkXdtBeYnHmWbXk/OdyvRIO0nyeaxKPe33nbFDvfXWhuoT3zwAAAAAOUGoR144H5TXeqSdJJV53bLm2eVqWJ4VzD0ZVOo9LtrvnbBDvXUhHpUiLR3eDwAAACAzhHrkhdP2+w0r9YZhqMKX2331WbXfexK/WeBIu87Zod6MSUr+NoZ99QAAAEDOEOqRF2W+rs+pj8dNrUvuqbdCvZQ6LC9XlXor1Dtvv7d+ARCl/b5TdqiPtUj+fomL7KsHAAAAcoZQj7wo93Y9/X59S0SxeCI0b5wclCdJ5clheTlrv48mXsOXSaWe9ntHyr3lkqSWaIsUSIZ6KvUAAABAzhDqkRet7fcdB3PrOLvqMq89mE7K/Vn1Ydrve4xdqY+mVuo5qx4AAADIlaIJ9TfccIMmTZqk8vJy9e/f3/HjPv/8cx1xxBGqrq5WRUWFdtxxRy1durTnFgpHyhwMyludDPXWkDyLtac+V5X6aDwRzD1ZtN9HooT6zqSFeir1AAAAQM4VTagPh8OaMmWKzjvvPMeP+frrr7X77rtr7Nixeumll/TRRx/pN7/5jQKBQA+uFE5YR9p1NihvbWPb/fRS6576ribnO5VV+721pz7OnvrOtF+pJ9QDAAAAueLJ9wKcmjlzpiRpzpw5jh9z5ZVX6pBDDtFNN91kXxs1alSul4YsWO33TQ7a7wdsUKmvTO6pz/mgPE8mod5IeyzaZ4f6SGqlviGPKwIAAABKS9FU6jMVj8f11FNPacstt9SBBx6ogQMHauedd9bjjz/e6eNCoZDq6+vTPpB7Vvt9MBJXvINq95ouKvW5ar/Pak998t4w7fedardST/s9AAAAkDMlG+pXrVqlxsZG/fa3v9VBBx2k5557TkcffbSOOeYYvfzyyx0+btasWaqurrY/hg0b1our7jusSr0ktXQwAX9tU3JPfUV6qM/1oLxuHWlH+32n2t1TT/s9AAAAkDN5DfWXX365DMPo9GPRokVZPXc8OfzsyCOP1MUXX6ztt99el19+uQ477DDdc889HT5uxowZqqursz++++67rF4fnQt4WkN9R3vjVzckK/VVGwzKsyv1udlTb501n1mlnvZ7J6jUAwAAAD0rr3vqp0+frmnTpnV6z8iRI7N67gEDBsjj8WjrrbdOu77VVlvptdde6/Bxfr9ffr+/w88jN1wuQ+U+t5rDsQ6H5XVUqbf349N+X/Dar9RzpB0AAACQK3kN9bW1taqtre2R5/b5fNpxxx21ePHitOtffPGFhg8f3iOvicxYob450n44X9PhoLzCab+PxGi/74wV6oOxoOK+fonWICr1AAAAQM4UzfT7pUuXat26dVq6dKlisZgWLlwoSRo9erQqKyslSWPHjtWsWbN09NFHS5IuueQSTZ06VXvuuaf23ntvPfPMM/rnP/+pl156KU9fBVJ1dVZ9V0fa5WpQnhXMszrSjvb7TlmhXpKCvoDKJfbUAwAAADlUNKH+qquu0ty5c+2/T5gwQZK0YMECTZ48WZK0ePFi1dW1tvYeffTRuueeezRr1ixdeOGFGjNmjB599FHtvvvuvbp2tK/c2/FZ9c3hqB32azqo1OfinPp43FQsOezOw576nAt4Avafmz3+RKinUg8AAADkTNGE+jlz5nR5Rr1ptm2FPuOMM3TGGWf00KrQHZ1V6q0qvd/jskO8pSKH7feReGsoz6b9Pkz7fadchktlnjK1RFvU4vEmLlKpBwAAAHKmZI+0Q+Ert0N923Deup/eL8NID9sV/sTjctF+n7onPptBebTfd80eludO/nKGSj0AAACQM4R65I0V6ttrv19j76f3tflcLgflRaKplXrnPw4+2u8ds0O9K3mMYSwsRYJ5XBEAAABQOgj1yJsyXzKct9t+nzzOrrLt8YJ2+304pni8e+3vVih3uwy5Xc7b7z203ztmh/rUjguq9QAAAEBOEOqRN+Veq1Lfcft9TUXbSn2Fr3WPfXOke8PyrDPqPRkEein1SDsq9V2xQ30sJPmqEhfZVw8AAADkBKEeedPZoDy7/b6qbaU+4HXJyuDdbcGPZnGcndQ6VI899V2zQ320RQr0S1wM1XXyCAAAAABOEeqRN+WdTb9vSoT69ir1hmHk7Kx6q9Lu9WQa6q1KPe33XUkL9X4r1DfkcUUAAABA6SDUI2+sYN7uoLyGRPt9bTuVeinlrPpQbtrvMznOLnG/taeeSn1X2q3U034PAAAA5AShHnlTltxT396++LVN1p769kN97ir1iUp7JpPvE/cz/d6p9iv1hHoAAAAgFwj1yJvWI+3aG5Rn7alv234vpUzAz1X7fYah3uexzqmn/b4rVOoBAACAnkOoR950NCgvGovrx2ZrT31H7feJxza18wuBTESybL/3uGi/d4pKPQAAANBzCPXIm/Lk0XQbhvp1zWGZpmQY0kbl3nYfax1rR/t94aNSDwAAAPQcQj3yprX9Pj3Ur0223m9c7pOng7Cds/b7aHbt917a7x2zQn1ztDmlUs+RdgAAAEAuEOqRN3b7fSQ9mFuhvqay/f30klSRbL9v7Ob0e6vSnvE59S7rSDsq9V0p86ZW6qsTF6nUAwAAADlBqEfe2OfUbxDM1zQmJt8PqGx/P72Uu0q9tSfek/GRdkba49Gxck+5JPbUAwAAAD2BUI+8Kfe2v6feCvU1nYT6Sns/fvdCfTTbPfUeKvVOpQ/Kq0pcpFIPAAAA5AShHnljtd+3RGKKx1v3ptvH2XXafm8NystN+33GR9q52VPvVLuD8qjUAwAAADlBqEfeWPviJSkYbQ3nax2031fm+Jx6nyfDI+2Yfu+YHeojKe33VOoBAACAnCDUI28CntZQn9qCb7ffVzip1Hd3T322R9olz6mPEuq7QqUeAAAA6DmEeuSNy2WozNv2WLu1TVb7fWeD8hKPy1Wl3uPKsv0+Tvt9V9odlBcNStFwHlcFAAAAlAZCPfLKnoCfGuodHWmXm/b7aJbt91alnvb7rqUeaWf6qlo/EWrI04oAAACA0kGoR17ZZ9Unp9ibpqnVTo608+VmUF627fete+pNmSbV+s5Y7femTAUVlbwViU+E6vK4KgAAAKA0EOqRV1al3mq/bwxF7X3qvTkoL9s99YnnINR3JuAO2H9O21fPsDwAAACg2zz5XgD6tjJf+ln11nF2FT63XcVvj7WnviUSUyxuyu3KrH3eEol270g7SYrG4/Lx+7EOuV1u+d1+hWKh1n31DSukHz6SXB1/j5GifIDUb3C+VwEAAIACRKhHXpUnB+U1RxKh3jrOrqaTKr3UuqdeSrTuVwW8Wb2+NejO687uSDtJikRNqePt/1CiBT8UCyWOtbMq9U/+Ir+LKiqGdPYL0qYT870QAAAAFBhCPfLKHpSXbKO3j7PrZEieJPk9LnlchqJxU02hWNahPpxl+70npTMgzLC8LpV5yrQ+tD5Rqf/JqVL9Cineva0TfUaoQYo0SYueItQDAACgDUI98qpsg+n3Vvt9Z/vpJckwDFX4PapriXTrrPps2+8Nw5DP7VI4FmcCvgNpZ9X/5NTEB5x5/4FEV8OSN/K9EgAAABQgNgIjr+xBeXb7vRXqu+5nz8WwvNZBeZnvybceE2VQXpfSQj0yM3y3xP8uf0+K8P4BAAAgHaEeeVVuD8pLb7/vqlKfeGziFwLdC/WJQO7zZP6j4ElW92m/7xqhvhs2HilVDpJiYWnZO/leDQAAAAoMoR55Vb5B+/3apuSe+oquK/XWsLxutd8nA7nHlfmPgtWyT/t91wj13WAY0ohktZ4WfAAAAGyAUI+82vCc+jUNyfb7qq4r9Vb7vfULgWx0p/3eR/u9Y1aob44253klRcpqwf/2tfyuAwAAAAWHUI+8anNOvV2p7zrUW2fVd69ST/t9b6BS301WqF/2jhQN5XctAAAAKCiEeuTVhu33axoSgaW2ynn7fXf21Gd7pF3iMYlKPe33XSPUd1PtGKl8gBQNSt9/kO/VAAAAoIAQ6pFXrdPvowpH46oPJgK6k0p9bqffs6e+J5V5CfXdYhjS8EmJP9OCDwAAgBSEeuRVmbe1Um8NyXO7DFWXebt8bOugvOz31Fv74T3Z7KlPtuyzp75rVOpzwGrBX/J6ftcBAACAgkKoR15ZR9q1hGP2GfU1FT65XF2H7FxW6n1ZVOo9yTWyp75r5Z5ySYT6brEm4C/9jxTL/t88AAAASguhHnlVZp01H47aZ9TXODijXmpt3W8M52tPPe33TtmV+gihPmsDx0mBainSJK34MN+rAQAAQIEg1COvUo+0W5Os1A+o7HpInpSbQXndOtKO9nvHaL/PAZdL2iy5r34J++oBAACQQKhHXqVOv1+brNQPcFipt8+p78ae+kg0Eci7U6mn/b5rhPocsVrwl7yR33UAAACgYBDqkVf2nvpITKsbrFCfWaW+O+fUR+PZt99be+ppv+8aoT5H7GF5b0rx7H+ZBQAAgNJBqEdeWZV605SWr08EPqd76iv9rfvxsxWOZt9+702230eihPquEOpzZNC2kq9KCtVJKz/J92oAAABQAAj1yCvrSDtJ+u7HZkmJ6fdO5GZPffbt99bE/GicPfVdIdTniNsjbbZz4s/fcrQdAAAACPXIM5fLUMCb+Ge4dG0i1A+oclapr/B1v/3ePtLOw5F2PYlQn0OcVw8AAIAUhHrknbWvvj6YCOcDKjIblBeMxBXNIlibpmlX2bMalGe331Op70pqqDdN3q9uGZ4yLC/OL5QAAAD6OkI98i61BV+SBlQ5a78v97c+rimc+dCwSMpRdJ5sjrTjnHrHyryJUB8zY4rEI3leTZEbMkHylEkt66TVi/K9GgAAAOQZoR55Zw3Ls2zscE+93+O2B9xls68+NYz7sjrSLjn9nmppl6xKvUQLfrd5fNKwnRJ/pgUfAACgzyPUI+9SQ32/gEd+j7uTu9NZw/Kas5iAnxrqszrSzk37vVNel1ceV/L4QkJ997GvHgAAAEmEeuRdWUqoH+DwODtL67C8zNvvrQF3LkNyu7I40o72+4xY1frmaHOeV1ICRiRD/bevJ86DBAAAQJ9FqEfeWYPyJKmm0lnrvaWyG8fadec4O0nyJdvvo7TfO8IE/BzadAfJ7ZOaVklrv873agAAAJBHhHrkXXl3KvXJYXnZHGtnTczPNtRb7fdh2u8dKfeUS5JaIoT6bvMGEsFekpa8lt+1AAAAIK8I9ci71FCfaaW+oluVeivUZ956n3gc7feZoFKfY6kt+AAAAOizCPXIu9T2+0wr9d1pv7cq7N1tvyfUO0Ooz7HUYXnsqwcAAOizCPXIu7K0Sn1mob68G4PyIt1sv2+t1BOonCDU59iwnSSXR6pfLq1fku/VAAAAIE8I9ci7cm9rqK/NeFBe4rHdab/3ebq3p55KvTOE+hzzVUhDJiT+TAs+AABAn0WoR951p1Jv76nP6pz6RIXdk8VxdlLrXnxCvTOE+h5gt+C/kd91AAAAIG8I9ci7tCPtKvIxKC/bPfWJx0Vpv3eEUN8DRuye+F8m4AMAAPRZhHrkXdqRdlXZDsrrxp76LNvvrV8GhKnUO0Ko7wHDdpYMl/Tjt1Ld8nyvBgAAAHlAqEfeWe33PrdLVX5PF3ensyr12ZxTb++pz/JIOw/t9xkp8xLqcy7QTxq0beLPtOADAAD0SYR65J1VqR9Q6ZNhZBawuzMoLxzr7pF2DMrLBJX6HkILPgAAQJ9GqEfejd+0WsM2LtMh4wdn/NjWI+0yD/XRZBj3ZHuknYc99Zkg1PeQ4ZMS/8sEfAAAgD4ps15noAf0L/fplUv2zrhKL3V3+n032++TU/PZU++MFeqbo815XkmJ2WxXSYa09kupcZVUOTDfKwIAAEAvKppK/Q033KBJkyapvLxc/fv3d/QYwzDa/bj55pt7drHIWDaBXureoLzutt97ab/PiF2pj1Cpz6nyjaVNxiX+vIRqPQAAQF9TNJX6cDisKVOmaNddd9Xs2bMdPWbFihVpf3/66ad15pln6thjj+2JJSIPKrqxpz4S7eaRdh4r1NN+7wTt9z1o+CRp5SfSB/9PCjXkezXFwXBJo/aR+g3J90oAAAC6pWhC/cyZMyVJc+bMcfyYQYMGpf39iSee0N57762RI0fmcmnII6tSH4rGFY3FM9of391z6qnUZ4ZQ34NG7C69fZ/01fOJDzgzfHfp9KfyvQoAAIBuKZpQ310rV67UU089pblz53Z6XygUUigUsv9eX1/f00tDN1SkHIHXFIqputx5QI/Grfb77u2pJ9Q7U+4pl0So7xFbHizteLZUtyzfKykO4Ubp21eltV/leyUAAADd1mdC/dy5c1VVVaVjjjmm0/tmzZpldwWg8HndLvk8LoWjcTWGo6ou9zp+bJj2+15Fpb4HeXzSobfkexXFo265dNvWUvMaKR6XXEUzXgYAAKCNvP6XzOWXX97hMDvrY9GiRTl5rT//+c866aSTFAgEOr1vxowZqqursz++++67nLw+ek7rsLzM9tXnqv0+FjcVjxPsu0KoR8GoGJD433hUCq7P61IAAAC6K6+V+unTp2vatGmd3pOL/e+vvvqqFi9erHnz5nV5r9/vl9/v7/ZroveU+9xa15T5WfV2qPdk2X6f0rYficfld7mzep6+wgr1kXhE0XhUHlefaRRCofH4JX+1FKqTmtcmThAAAAAoUnn9r+ra2lrV1tb2+OvMnj1bEydO1Hbbbdfjr4Xel32lPlFd92Xbfp/yuEjMlJ+M2qkyb5n955Zoi6p8VXlcDfq8ippEqG9aLQ3YIt+rAQAAyFrRbCRcunSpFi5cqKVLlyoWi2nhwoVauHChGhsb7XvGjh2r+fPnpz2uvr5ejzzyiM4666zeXjJ6SUWWZ9VblXpPlvtpU9v2rePx0DGfyyeXkXjPaMFH3lUkf6HctDq/6wAAAOimoqktXnXVVWmT6ydMmCBJWrBggSZPnixJWrx4serq6tIe9/e//12maerEE0/stbWid1V0d099lu33bpchlyHFzUT7PTpnGIbKPGVqijQR6pF/hHoAAFAiiqZSP2fOHJmm2ebDCvSSZJpmmz36P/vZz9Tc3Kzq6ureXTB6TaU/sZe9Kdy77feS5HEzAT8TDMtDwbCG5TWtye86AAAAuqloQj3QkQpfolKf6aC8cDen30utvxCg/d4ZQj0Khl2pJ9QDAIDiRqhH0cu2/T6ag1DvTU7Aj9J+74gd6iOEeuRZuVWpp/0eAAAUN0I9il5l1oPyEi3zqUfTZcr6hUA4Svu9E1TqUTBovwcAACWCUI+iV57cU5/tOfXd2VPvtffUU6l3wgr1zdHmPK8EfR6D8gAAQIkg1KPoZXtOfTiau/Z7Qr0zVOpRMKxQ30ylHgAAFDdCPYqeNSivKZzdOfXeHLTfM/3eGUI9CoYd6tdJscx+IQgAAFBICPUoelkPyosngrjXk4sj7ajUO0GoR8Eo31iSIcmUWtblezUAAABZI9Sj6HW7/d7VnSPtctt+v/iHBs1+7RsFI5l1HRQLQj0KhsudDPZiXz0AAChqnnwvAOiuim4OystN+333Q71pmvqfv3+gRT806P2lP+p/T5gglyv7tRUiQj0KSkWt1LyWUA8AAIoalXoUvWwr9dY++O603+dyT/2n39dr0Q8NkqSnPlqh25//otvPWWjKveWSCPUoEPYEfIblAQCA4kWoR9GryPqc+u4faefJYfv9P95bJknabONE8P3Di19p/gfLuv28hYRKPQoKZ9UDAIASQKhH0bOm34djcXufvBN2pb4bod6Xo/b7cDSuJxYulyRde+Q4nTd5lCTpsn98rHe/LZ0hXoR6FJRyK9TTfg8AAIoXoR5Fz9pTL2XWgm8FcU8BHGm3YPEq/dgc0cAqv/bYolaXHDBGB40bpHAsrp/99T0tXdvcrecvFIR6FBS7/Z5QDwAAihehHkXP43bJn9wX3xTOPNQXQvu91Xp/9E82ldtlyOUydOvU7TR+02qtawrrjLnvqD4Y6dZrFAI71EcI9SgAtN8DAIASQKhHSajMYl996/T7/Lbfr20MacGiVZKk434y1L5e7vPoT6ftoEH9AvpqVaN+/uD7iubo6Lx8oVKPgmJV6psJ9QAAoHgR6lESrGF5To+1M00zZU99ftvvn1j4vaJxU9sNrdYWm1SlfW6TfgH96bQdVOZ169Uv1+iaf34q0+z+pP18IdSjoNB+DwAASgChHiWhIsNj7aLx1mDcrSPtPN1vv3/0/UTr/bETh7b7+W02rdbtJ2wvw5D+31tLNeeNb7N+rXwj1KOg0H4PAABKAKEeJaEyOSzPaahPDeFeVzf21Lu6137/2ff1+vT7evncLh2+7ZAO7ztw3CBdftBYSdJ1//eZ3a5fbAj1KChWqA/VS5FgftcCAACQJUI9SkKm7feRaEqlvhvt9z5P99rvrSr9vlsN1EYVvk7v/dmeIzV1h2GKm9Iv/vaBFv1Qn9Vr5pMV6oOxoOJmcc8HQAkI9Jdcif/vYF89AAAoVoR6lATrrHqnlfpwsrJuGJLb1Z099YnHhqOZB9RIrPVs+uM6aL1PZRiGrjtqG+06skaNoaguf/TjjF8z36xQL0nBKJVR5JlhpOyrJ9QDAIDiRKhHSbDOqm8KO5t+nzr53jC6PygvGs881L+8eLXWNIY1oNKnPbesdfQYn8elW6duJ0n6cNl61TUX1zF3AU/A/nNztDmPKwGS2FcPAACKHKEeJSHjQXnW5PtuVOmllOn30czb763W+6O23zSjY/UGV5dpZG2FTFN6+9t1Gb9uPrkMF/vqUVjKrVDPBHwAAFCcCPUoCZUZhnqr/b47k++l1vb7TAfl/dgU1vOfr5TU8dT7zuy8eY0k6T//XZvxY/ONUI+CwrF2AACgyBHqURJaB+Vl3n7fHXalPp5Zpf6fH32vSMzUuCH9tNXgfhm/7i4jN5Yk/eeb4qrUS4R6FBhCPQAAKHKEepSETNvvrVDv62ao99jt95lV6v/xXqL13smAvPZYlfpPv69TfbC49tUT6lFQrD31zcXX9QIAACBJnnwvAMgF+5z6cGahvjvH2UmSL4v2+y9WNuijZXXyuAwdsV3HZ9N3ZlB1QCNqyvXt2ma9++067TN2k6yeJx+sUH/Jy5fI5+78GD8k9Pf319nbnq0Dhx/YrcGOaAeVegAAUOQI9SgJ1pF2js+pTw7K8+So/T6cQah/NFml32fsQNVU+rN+7Z03r9G3a5v1n/8WV6gfs/EYfbzmY60Prc/3UorGquZVuuTlS/To4Ed1xc5XaPPqzfO9pNJRwaA8AABQ3Aj1KAnZtt/nak+9NU2/K9FYXPM/SJxNn82AvFQ7j9xY8979Tm8V2b763+zyG5049kTF4s7mH0B66buX9KeP/6S3VrylY548RtPGTdPZ489Wubc830srfpxTDwAAihyhHiWhNdRnNijP1832+0yn37/61Rqtaghp4wqf9h4zsFuvvfPIxL76T5bXqTEUtU8AKHQuw6UtN9oy38soKlvVbKXDRh6mWW/P0qvLX9WfPv6TnvrvU7psx8u0z2b70JLfHamVetOUeC8BAECRYVAeSkKme+rDyXPlczb93mGot1rvj9huiHzdPE5v0/5lGrZxmWJxU+8W2Xn1yNywfsP0x33/qDv2vkNDKoZoRdMKXfTSRTr/hfO1tH5pvpdXvKxKfTQohZvyuxYAAIAsEOpREvLdfh9x0H5f1xzRc58lzqbPdur9huzz6ousBR/ZMQxD+2y2jx4/6nGdPf5seV1evbb8NR39xNH648I/KhgN5nuJxcdXIVnbGNhXDwAAihChHiXBCvWRmKlQtOsW/Gg8Eeo93Wy/92TQfv/Pj75XOBrX2EFVGjck87Pp27Pz5snz6v/LcVx9SZmnTBf+5EI9dsRj2nXwrgrHw7rnw3t0zZvX5HtpxancasFnXz0AACg+hHqUBGv6veRsX30k2X7f3XPqfRm03z/6fuvZ9LnaA71Lcl/9R8vq1Oxw6wFKx4jqEbp3/3s1c9JMSdJry1/L84qKFBPwAQBAESPUoyS4XYbKvMl99Q5a8MO93H7/5coGfbB0vdwuQ0duv2m3XjPV0I3KNKQ6oGjc1HtLfszZ86J4GIahg0YcJEmqC9WpPlyf5xUVIc6qBwAARYxQj5JhteA7Oave3lPfzWF1Tgfl3fvKfyVJ+201ULVV2Z9NvyHDMOxq/X/+y776vqrcW66aQOLfwXcN3+V5NUXICvXNtN8DAIDiQ6hHyajwO6/Utw7K6/kj7Zavb9HjybPpz5s8uluv156dRyb31X/Dvvq+bLN+m0mSvqsn1Gesgj31AACgeBHqUTKsffVNYQd76pPt8l5Xz7ff3//KfxWNm5o0qkbbD+vfrddrjzUBf+F369Xi4GtHaRpWNUwSlfqssKceAAAUMUI9SkZlBsfatbbfd7NSn2zfD3dQqV/bGNLf30mcIX5+D1TpJWl4Tbk26edXJGbqg6Xsq++rrFC/tIEz6zPGnnoAAFDECPUoGVb7fUZ76rs9KC/xS4FoB6H+L69/q2Akru2GVmu30TXdeq2OpO6rf4vz6vssKvXdYFfq2cICAACKD6EeJaMio0p9bo60s9r346YUi6e34DcEI5r75reSEnvpc3WMXXusFnzOq++7NqtiT33WqNQDAIAiRqhHyciq/b67oT5lev6Gw/L+31tL1RCMavTASh2w9Sbdep2uWMPyPvhuvYIR9tX3RValflXLKrVEW/K8miKTOv0+3vlJFgAAAIWGUI+S0XqknZNBeYn/cPfkaPp96nNKUjAS0+zXvpEknbvXKLlcPVell6SRAyo0oNKvcDSuhd+t79HXQmGq9lerylclSVrWsCzPqyky5cn2+3hUCq7P61IAAAAyRahHycio/T6anH6fo/Z7KX0C/iPvLdOaxpA27V+mI7cf0q3XcCKxrz55tB3n1fdJhmGwrz5bHp/kr078mWPtAABAkSHUo2RU+DI/p767e+pdLkNuV/pZ9dFYXPe+/LUk6Wd7juz2Lw6c2jk5LI/z6vsue189oT5z1rC8ZkI9AAAoLoR6lAy7Uh/uOtSH7T313W+Lt54jHE085z8/+l7LfmxRTYVPx+8wrNvP79Qumycq9e8v/VGhKPvq+yIq9d3AsDwAAFCkCPUoGa2D8roOtNFkq3zqoLtsWZX4aNxUPG7q7pcSVfozdt9cZcnugd4wemClaip8Ckbi+mhZXa+9LgqHfVZ9PWfVZ8w+1o5QDwAAiguhHiWjdVBeBtPvXbkL9ZFYXC8s+v/t3Xl4VPXd/vH3mTX7ShZCAgFEA7Iqi4AVFSpWRcUFH0UL1daqaEX6s6Kt+tiq1K1PK1oR22qtK9paQKsWEakLstkgyC5gQhYSyL7OZOb8/phkIMqShITJSe7Xdc01M2fOOfOZcALc892K2L6vimi3g2vP6HPc524NwzAY3bdpXL264HdHaqk/DsGWenW/FxEREWtRqJcuI9Ld8jH1we73jvbtfv/0ip0AXDu2D7HhzuM+d2udERxXr8nyuqPeMYEx9QXVBXj93hBXYzFqqRcRERGLUqiXLqOl69T7/CY5JTUAhDsdx/2+TS31H+/YT3ZuGW6HjevH9z3u87ZF03r16/aUNlti72jWf1NCUUVdR5YlJ0hSeBJh9jB8po+CqoJQl2MtaqkXERERi1Koly6jpd3v3/4yn28O1BAX4WT8SYnH/b5Nof65j3cBMG1kBknR7uM+b1ucnBxNXISTWq/vmOPq/X6TB9/ezOXPrOL6v649QRVKRzIMg/TodAByKjWuvlWCLfUK9SIiImItCvXSZQRb6j0+TNM87D4+v8kflu8A4Cff60d02PF3kW/qfl9S7cFuM7jxrH7Hfc62stkMRmc2jqs/ytJ29Q0+bn89mz99shuATXkVbCmoOCE1SsfSuPo20uz3IiIiYlEK9dJlRDTONO/zm9Q3HL7r+dtf5rOruJq4CCc/HNs+E9kdug79JcPSyEiIaJfztlVwXP2uw4+rr6jzMvMva1m6IR+HzaBfj0gAFmfnn7AapeNoBvw2UqgXERERi1Koly4j0nVwfPzhxtV3RCs9NA/1N53dv13OeTwOjqsvoeFb4+r3VdQxbcEqVu06QKTLzvM/GsWdk08BYOmGfPz+w/dwEOvoHR2YLG9v5d4QV2IxEY3d72tLwHfsyTZFREREOguFeukybDYj2Fp/uLXql2442Eo/Y1xmu71vU/f78walcHJKdLudt62yUmOICXNQ7fGxKf9gl/qdRZVc9sfP2FpYSY8oN6//dCzfG5DEOVnJRLsd5JXVsj6nNISVS3sIttRrTH3rRCQAjath1Gr1CBEREbEOhXrpUo40WZ7Pb/LkIa30TePv28O5WSmkxLiZc97J7XbO42G3fXe9+vXflHDFglXkldXSt0ck/7h5HIN7xQIQ5rQzeXAqAP/8b15oipZ2kxETCPV7K/fiN1u2AoIANjtENE6cqS74IiIiYiEK9dKlHJwsr3moX7Ihj137q4lv51Z6gJvP7s/nd08kKzWmXc97PA5dr/7fXxVyzXOrKavxMjwjjr/fPI7eic3H/V86vBcA72wswHOE+QjEGnpG9sRhOPD4PRTVFIW6HGvRuHoRERGxIIV66VIi3YHu94e21Df4/MxfvhOAn5zVvq30TQzDaPdzHo8xfQOh/pMd+7nppfXUN/iZmJXMKz8ZQ0Kk6zv7j+2fSI8oN2U1Xj7ZqUBjZQ6bg7SoNEAz4LealrUTERERC1Koly6labK8QyfKW7IhP9hK/8OxmSGq7MQalBZDtNuBx+fHb8JVIzN49rrTiXAd/gsNu81gyrCegGbB7wo0A34bBUO9vtgSERER61Coly4l2P2+MdQ3+PzM/7BjW+k7I7vNYOLAZAB+NnEAv718CA770X/dL2nsgv/vr/YddvUAsQ6tVd9Gwe73aqkXERER61Coly4lIjhRXmD2+yUb8tndzVrpmzx6xTA+uesc5nz/5BYNDxiWHkufxAhqvT4+2LLvBFQoHUUz4LeRxtSLiIiIBSnUS5cS1Timvqa+gQafPzjj/Y1n9e82rfRNXA4b6fERx96xkWEYwdZ6dcG3tt4xWqu+TTSmXkRERCzIMqH+oYceYty4cURERBAXF9eiY6qqqrj11ltJT08nPDycQYMGsWDBgo4tVEKqaUx9laeBxdn57DlQ09hK3yfElVnDxcMCE6z9Z3sxJdWeEFcjbXVo93vTNENcjYWopV5EREQsyDKh3uPxcOWVV3LzzTe3+Jg5c+bw3nvv8dJLL7FlyxZmz57NrbfeypIlSzqwUgmlpnXqK2q9zP/wYCt9ZDdrpW+rk5KjGNwrhga/yTsbC0JdjrRRenQ6BgZV3ipK60tDXY51RGiiPBEREbEey4T6Bx54gDvuuIMhQ4a0+JjPPvuMGTNmcPbZZ5OZmcmNN97IsGHDWLNmTQdWKqHU1MX+nS8L2HOghoRIl1rpW+mSYYEu+Euy80JcibSV2+4mOSIwUaImy2uFppb6mgOhrUNERESkFSwT6tti3LhxLFmyhLy8PEzTZMWKFWzfvp3zzjvviMfU19dTUVHR7CbWEWyprwvM3n7jWf3USt9KU4alYRiwdk8pe0trQl2OtFHTuHota9cKTWPq6yvAWxfaWkRERERaqEuH+vnz5zNo0CDS09NxuVycf/75PP3005x11llHPGbevHnExsYGbxkZGSewYjlekY0T5QEkRLq47gy10rdWamwYZ/RNBGDpBnXBt6qmcfWaLK8VwmLB5gw8rtFkeSIiImINIQ31c+fOxTCMo962bt3a5vPPnz+fzz//nCVLlrB+/XqeeOIJZs2axQcffHDEY+6++27Ky8uDt9xcdV21kkNnuFcrfdtdMjwwYd5idcG3LC1r1waGocnyRERExHJCmnh+/vOfM3PmzKPu069fvzadu7a2lnvuuYe33nqLCy+8EIChQ4eSnZ3N448/zqRJkw57nNvtxu12t+k9JfSSo8MANJb+OP1gcE/uXbyJrYWVbC2sICs1JtQlSSsdOgO+tEJkIlTma1k7ERERsYyQhvqkpCSSkpI65Nxerxev14vN1rwzgt1ux+/3d8h7SugN7hXDY1cM5dS0WCJcaqVvq9gIJ2efksyyzftYkp1P1vkK9VbTOzowpl6hvpWCLfUK9SIiImINlhlTn5OTQ3Z2Njk5Ofh8PrKzs8nOzqaqqiq4T1ZWFm+99RYAMTExTJgwgTvvvJOPPvqI3bt388ILL/Diiy8yderUUH0M6WCGYXDlyAwGpSmEHq9LhwdmwV+cna+1zi2oqaW+pK6EKk/VMfaWIHW/FxEREYuxTFPmfffdx1//+tfg8xEjRgCwYsUKzj77bAC2bdtGeXl5cJ/XXnuNu+++m+nTp1NSUkKfPn146KGHuOmmm05o7SJWNHFgMpEuO3lltaz/ppSRmQmhLklaIcoVRbw7ntL6UnIrcxmYODDUJVmDQr2IiIhYjGVC/QsvvMALL7xw1H2+3ZqYmprK888/34FViXRdYU47kwen8o8v8licna9Qb0EZMRmUFivUt0rTsnbqfi8iIiIWYZnu9yJy4l3S2AX/nY0FeH2ai8JqNAN+G0Q0hnotaSciIiIWoVAvIkc0vn8iPaJclFR7+GSnQo7VNE2Wp7XqW0Hd70VERMRiFOpF5IgcdhsXDW1cs/6/WrPeatRS3waa/V5EREQsRqFeRI7q4uGBUP/vzfuo8TSEuBppDa1V3wbBMfXFoFUfRERExAIU6kXkqEZkxNE7IYIaj48XV30T6nKkFZpC/b7qfdT76kNcjUU0hfqGOtBSgCIiImIBCvUiclSGYTDrnP4A/O7f29m+rzLEFYVWeY0XT4M1Jg1MCEsg0hmJiUlepYZPtIgrEpwRgcfqgi8iIiIWoFAvIsc0bWQGZ5+ShMfn5+eLNnTbmfC3FVYyZt4H3PzS+lCX0iKGYWhcfVtoWTsRERGxEIV6ETkmwzB45PKhxIY72ZhXzh9XfB3qkkLiuY93Uef1s3xrETuLrNE1W+Pq20Az4IuIiIiFKNSLSIukxITx60tOBWD+hzvYlFce4opOrANV9SzZkB98vmidNUJysKW+Qi31LaZQLyIiIhaiUC8iLXbxsDQuGJJKg99kzqJs6ht8oS7phHltbS6eBj/RbgcA//hiryWGITStVZ9bZY0vITqFQ2fAFxEREenkFOpFpMUMw+A3lwymR5SL7fuq+L9lO0Jd0gnh9fn5W+PM//dNGUSPKDf7qzws31IU4sqOLdj9vkKhvsUiGkN9zYHQ1iEiIiLSAgr1ItIqiVFuHpo6BICF//ma9d+UhLiijvf+V4UUVtTRI8rNxcPTuPz0XgC8vrbzd2nvHRNoqc+vyqfB3xDiaixC3e9FRETEQhTqRaTVJp+aymWn9cJvws8XbaDG07XD4guf7gFg+pjeuB12rhoZaP1eub2YwvK6EFZ2bMkRybhsLhrMBgqqC0JdjjUo1IuIiIiFKNSLSJvcP+VUUmPC2HOghkfe3dqiY4oq63j8/W3c+OI6y6x3v3FvOeu+KcVpN5g+JtDq3S8pitGZCfhNeHN95+7WbjNspEenA5oBv8W0pJ2IiIhYiEK9iLRJbLiTR68YCsBfV33DpzuPHIC+Lq5i7t+/5MzfruCpFTv59+Z9XPLUp7y5fu+JKrfNXvhsDwAXDulJckxYcPu0UYHW+tfX5eL3m6EorcU0rr6V1FIvIiIiFqJQLyJtdtbJScHW61+8+SUVdd5mr6/bU8KP/7qOiU+sDMwe7/NzWu84xvVPpNbr4/+9sYE739hAradts+h/vusAC1Z+zX+2F1NV3/5DAPZX1bO0cRm7meP7NnvtgiGpRLsd5JbU8vmuzj2hmtaqb6XIQybK83f+FQ5ERESke3OEugARsbZ7LhjIxzv2k1NSw4Nvb2beZUNZtnkfC//zNV/klAX3+/6gFH56Vj9GZibg95s8vWIn//fBdt5Yv5cv95bz9PTTOCk5qkXv+UVOKY+/v43Pvj4Ypm0GDEqLYVRmAqMyExiZGU9ydNhRznJsr67OwePzMzwjjuEZcc1ei3A5mDI8jVdW5/D6ulzGndTjuN6rIynUt1LT7Pf+Bqgrg4iEkJYjIiIicjQK9SJyXCLdDh6/chhXLVzFonV7+XTnAfLKagFw2W1cdlovfvy9fs0Cu81mcNvEAZyeGc/tr2WzbV8lFz/1CQ9PHcKlI3od8b2+yi/niX9v58OtgaXknHaDswYksb2oktySWjblVbApr4LnGye2y0yMCIb8yaemEhvhbPHn8vr8/O3zwDJ2Pxqfedh9rhqZwSurc3h3UyG/rvG26vwnUtMM+DmVnX+2/k7B4YKwWKgrD4yrV6gXERGRTkyhXkSO2+i+Cfz4zL489/Fu8spqiQ13cu0ZvZkxLvOoreXj+vfgnZ+dye2vZrNq1wFmv57N6t0HuH/KqYQ57cH9dhZV8n/LdvDOxsDs7XabwRWnpXPbxJNIj48AoLC8jrV7ShpvpWwtrGDPgRr2HKjhjfV7efLDHbx50zhSY1vWev/upkKKKutJinbzg8E9D7vP0PRYslKj2VpYyT+z85gxLrOFP7ETq6mlfm/lXkzTxDCMEFdkAZFJjaG+GJJODnU1IiIiIkekUC8i7eLn552C22GnR5SLK0dmEOlu2V8vydFhvPTjMfxh+Q7mf7iDV9fkkp1bztPXjMBhs/H75dv553/z8JtgGDBlaBqzJw2gX1LzrvqpsWFMGZbGlGFpAJTXevkip5S1u0tYnJ3P3tJarvvzahb9dCzxka5j1vXCp7sBuHZMH1yOw08/YhgGV43K4IGlm3l9bW6nDfVpkWnYDBt1vjqKa4tJjkgOdUmdX2QSHNipyfJERESk01OoF5F2Eea08/8mn9KmY+02gznfP5lRmfHMfi2bLQUVXDT/EzwNfhoaZ5Y/b1AKc847mazUmBadMzbcyTmnJHPOKclcPbo3Vyz4jB1FVcx8YS2v/HjMUb90+HJvGV/klOG0G1w9JuOo73Pp8F7M+9dWNhdUsCmvnMG9Ylv+wU8Qp91Jz8ie5FXlkVuZq1DfEhGJgfsaLWsnIiIinZtmvxeRTuN7A5L41+3fY3TfBGo8Phr8JmednMTiWeNZ+MORLQ7035aREMFLN4whLsLJhtwybvzbOuobjjzjftMydhcNTTvmZHvxkS4mD04F4LW1nXfMelMX/JyKzltjpxJc1k6hXkRERDo3hXoR6VRSYsJ45cdjeOLKYbx501hevH40w74183xbDEiJ5oUfjSbCZefTnQe4/dVsGnzfXa6suLKetzcExu7PbGF3+qtGBgLz4ux86rxtW56vo/WODkyWpxnwW0hr1YuIiIhFKNSLSKfjsNu4/PR0Rma276zjwzPieO6HI3HZbbz3VSH3vLUR0zSb7fPqmsAydiN6x7X4y4Rx/RNJjw+nsq6BdzcVtGvN7UXL2rWSQr2IiIhYhEK9iHQr40/qwZNXj8BmwKJ1e3n4X1uCwd7T4OelxmXsWtpKD4El+qY1tta/tqZzhuaMGIX6VolsXKte3e9FRESkk1OoF5Fu5/zBqfz2sqEAPPfxbv740dcAvLupgKLKepKPsozdkVxxejqGAat3l7Bnf3W713y8gmPqj7JWvWmaLN+yj2nPruLXSzdTXd9wosprN6XVHjbnVxz/iRTqRURExCI0+72IdEvTRmVQUeflwXe28Nj724gNd/L3L/YCcO0ZR17G7kjS4sKZcHISH20rZtG6XH5xflZHlN1m6VHpAFR6KimvLyfW3XyW/v/mlDLv3a2s2V0CwJrdJXywZR+PXzmM0X3bdxhEe2vw+Vm5vZg31+/lgy378PpMpgxL48FLBhMb4WzbSdX9XkRERCzCML89oFSaqaioIDY2lvLycmJi2jbztoh0Xo+/v42nVuwMPnfZbXw691ySot2tPte7Gwu4+eUvSI5289ncc3HYO1dnqHMXnUtxbTETe08kxhX4+6yqroEv88rJLa0BwG4Y9O0RSUFZLdVeHwZwcko0Q3rFYrcZIaz+uypqvew+UM03B2qoPcwEhRFOO6P7JpASc/QVDA6roQ42voHTNOl51j2kx/SmV1QvekX3It4dj2F0rp+FiIiIdC2tyaFqqReRbu3n551MaY2Hl1cHuqVfNKxnmwI9wMSBKSRGuiiqrOejbcVMGpTSnqUetwHxAyiuLWZ5zvLvvOaKO/g4xwtEgqvx+e562L3rRFTYRofUeqgG4LMioKiN542OCtxnz2+2OdwRTq+oXqRHpZMWlUZ6dDqjUkeRldC5emeIiIhI96BQLyLdmmEY/PqSwTT4TN7fXMhNE/q3+Vwuh43LTuvFcx/v5vV1uR0e6n1+k937q/gqv4KthZXYDYPkGDdJUW6Sog/eIlyBv+rvPeNe3tn1Pqt37Wf17gN4fYGOWv16RDLhlKTDfpnxdXEV720qpLreh2HAGX0TGXdS4olrtTehtMZLTkk1ew7UsLOoCp8/ULfNgH5JUQzpFUu/pMhmNXl9flZsLSY7twyAxEgXFw3r2bpW+/88Tp23hvxTLyKvoZq9VXsprimmtqGWnWU72Vm2s9nugxIHcfmAy7mg7wVEuaKO+6OLiIiItIS63x+Dut+LdB+maR53t+qdRZVM+t1/sNsMLhvRi/hIF3ERTuIjXMSFO4mLcBEf2fg8wonbYW/ReWs9PrYUVrA5v4LNBRV8lV/BtsIK6rz+Yx4b6bKTHBNGUpSb3QeqKa6sB2Boeixzf5DFuP49jnp8WY2H+5d8xeLsfACyUqP53bThDEo7/N+JDT4/B6o9FFfWU1xVT4TTTs/YcFJi3S36vLklNaz6+gCrdh3g810HKCiva/Z6Vmo0V5yezqUjetEj6ui9KlZsK+IXb35JcWU9TrvBHd8/mZ+e1b9lX0r8cSwUbYaEfuCKBMCDSb7hJy94M9ll8/GprQFv4ynDTZjsc3K5z8Uwvx2DbtRV3xkJvcdA5veg9xngjg51RSIiIpbUmhyqUH8MCvUi0lrTFqxizZ6SFu1rM8Bpt+Gy23A6bDjtxsHndhtOh0GNx8ee/dX4D/O3dYTLzsCeMQzsGY2BEQzSxZX1FFXWHTb0ZySE84vJWVw4pCe2VrS4v7uxgF/+cxMl1R6cdoPrzsjE5bBRVFkXeN/KevZX1XOg2sOR/mVJjHSREhNGz9gwUmOb7sPxmyZrdpew6usD5JXVNjvGaTcYkRHPGf0T+f7AFAb3imnVly8l1R7u/seXvP/VPgBGZcbzu2nDyUiIOPqBb94Am95s0XuU2mwsjYrk79FR7HIdnJyvv8fDZZXVXFxVTZz/2F/AdCmGHdJGQOaZh4R89WAQERFpCYX6dqRQLyKtVVRZxwebiyit8VBa7aG0xktZjYeyWi+lNR7KGp8fLqQfTVK0m0E9Yzg1LYZBaTEM6hlDZmLkEYO5aZpUe3zBwF1cWY/NCIz9b+3s/k32V9Xzy7c2BgPykdhtBomRLnpEuanxNFBQXkd9Q8tCrcNmMCwjjrH9EhnbP5HTescT7mpZj4YjMU2TN9fv5YGlm6mqbyDSZefcgSnYjcAQDAPAAAMDwwADcJr19K7aRJ3HQ43HR423gVqPjxqPj1qPD99h/vl02sGMKaMoZid57l34jMCygHbsDHBk4jAdeP0mPp9Jg99Pg9/E5zdpaHzedEq7zcBhN3DYbDiCjw0c9sBzm2HgN038ZuB4nwn+xnM1bQtcXyY09hVo+h6k+ecNPLcZYDMCn93eeG8zjOC2pvcLvNfBmn3+5tucpodEKoinnDCzeQ8LE4N6ZywedwI+uxvTDFQXuDeDn900A39eYOA07Liw4zLsuHDgMuy4seMyHDgNO2GGHVsHrM4b+PkYB39mTduanjTVSvP7pvqDuxoHjzWMpj8DI3idtYZp2DCxBU8UeGzDNAxo2t5m3z22PfuXmN960Nr/eBpHfNLGcxznuQ7nJGca8XZ9aSWtE+50kJWqHk0hERYL/SaEuoqjUqhvRwr1ItIR/H6TyvoG6r0+PD4/Xp+J1+fH0+DHe+hznx+nzcbJqVEkR7dhFvcOYJomb39ZwIqtRcRGOEmODguO309uvI+PcDXr4m6aJmU1Xgor6igsr6OgvI7C8trAfUUd9V4/p/WJZ2z/REb2iSfS3TFTvuSW1DBnUTZr95S2y/lsBkS5HdR5A39WzV+swxmTjTNuLfbwvHZ5PxHpnP6wr5hza2qPvaOIdA49h8NPV4a6iqNSqG9HCvUiIl2Lz2/y7qYCChvH6h/aUuz/VquxYUB0mJOYMAcxYU6iwxzEhAfuo8OcRLrsGIaBaZpU1TdQWu3lQHU9JdWeZrc9ldsp8mwjzGUj3Gkn3GknzGknwhW4D3faCW987POb1HgCvQJqvQd7BtR4fNR6G6jx+GjwmTjtBi6HHZfDwGW3BR43bnM2bmuqzWeamH7wN33OxpZ8k8ZW90N6C3h9Jg2+QC+CwPbAY4fNIMxpx+2wHeHejt0GngY/dQ1+6rw+6ht81Hn91Ht9GHVlxNTkEFe3FxfewM+Xxp4DBt/pLWECHvzUGyYezMBjTDzGwXsPZqtbfdviWO9y9HkTDnO02brWaqPxoEO+JsNoPMN3X2udw9Wh/xg2aflPYnq5m4Ge4+tR1FLt/efTXh0Wuktd7SnMaadvYmSoy+ieepwElzwd6iqOSkvaiYiIHIHdZnDR0LR2PadhGESHOYkOc9I78XBj9Qe26/uJiIiINGn/gWgiIiIiIiIickIo1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEUp1IuIiIiIiIhYlEK9iIiIiIiIiEU5Ql1AZ2eaJgAVFRUhrkRERERERES6g6b82ZRHj0ah/hgqKysByMjICHElIiIiIiIi0p1UVlYSGxt71H0MsyXRvxvz+/3k5+cTHR2NYRghqaGiooKMjAxyc3OJiYkJSQ0iJ5que+mOdN1Ld6TrXrojXfdyLKZpUllZSVpaGjbb0UfNq6X+GGw2G+np6aEuA4CYmBj90ku3o+teuiNd99Id6bqX7kjXvRzNsVrom2iiPBERERERERGLUqgXERERERERsSiFegtwu93cf//9uN3uUJcicsLoupfuSNe9dEe67qU70nUv7UkT5YmIiIiIiIhYlFrqRURERERERCxKoV5ERERERETEohTqRURERERERCxKoV5ERERERETEohTqO7mnn36azMxMwsLCGDNmDGvWrAl1SSLtZt68eYwaNYro6GiSk5O59NJL2bZtW7N96urqmDVrFomJiURFRXH55Zezb9++EFUs0v5++9vfYhgGs2fPDm7TdS9dUV5eHtdeey2JiYmEh4czZMgQ1q1bF3zdNE3uu+8+evbsSXh4OJMmTWLHjh0hrFjk+Ph8Pu6991769u1LeHg4/fv35ze/+Q2HzlOu617ag0J9J/b6668zZ84c7r//fr744guGDRvG5MmTKSoqCnVpIu1i5cqVzJo1i88//5xly5bh9Xo577zzqK6uDu5zxx13sHTpUt544w1WrlxJfn4+l112WQirFmk/a9eu5dlnn2Xo0KHNtuu6l66mtLSU8ePH43Q6effdd9m8eTNPPPEE8fHxwX0effRRnnzySRYsWMDq1auJjIxk8uTJ1NXVhbBykbZ75JFHeOaZZ3jqqafYsmULjzzyCI8++ijz588P7qPrXtqFKZ3W6NGjzVmzZgWf+3w+My0tzZw3b14IqxLpOEVFRSZgrly50jRN0ywrKzOdTqf5xhtvBPfZsmWLCZirVq0KVZki7aKystIcMGCAuWzZMnPChAnm7bffbpqmrnvpmu666y7zzDPPPOLrfr/fTE1NNR977LHgtrKyMtPtdpuvvvrqiShRpN1deOGF5vXXX99s22WXXWZOnz7dNE1d99J+1FLfSXk8HtavX8+kSZOC22w2G5MmTWLVqlUhrEyk45SXlwOQkJAAwPr16/F6vc1+D7Kysujdu7d+D8TyZs2axYUXXtjs+gZd99I1LVmyhJEjR3LllVeSnJzMiBEjeO6554Kv7969m8LCwmbXfWxsLGPGjNF1L5Y1btw4li9fzvbt2wHYsGEDn3zyCT/4wQ8AXffSfhyhLkAOb//+/fh8PlJSUpptT0lJYevWrSGqSqTj+P1+Zs+ezfjx4xk8eDAAhYWFuFwu4uLimu2bkpJCYWFhCKoUaR+vvfYaX3zxBWvXrv3Oa7rupSvatWsXzzzzDHPmzOGee+5h7dq1/OxnP8PlcjFjxozgtX24//fouhermjt3LhUVFWRlZWG32/H5fDz00ENMnz4dQNe9tBuFehHpFGbNmsWmTZv45JNPQl2KSIfKzc3l9ttvZ9myZYSFhYW6HJETwu/3M3LkSB5++GEARowYwaZNm1iwYAEzZswIcXUiHWPRokW8/PLLvPLKK5x66qlkZ2cze/Zs0tLSdN1Lu1L3+06qR48e2O3278x2vG/fPlJTU0NUlUjHuPXWW3n77bdZsWIF6enpwe2pqal4PB7Kysqa7a/fA7Gy9evXU1RUxGmnnYbD4cDhcLBy5UqefPJJHA4HKSkpuu6ly+nZsyeDBg1qtm3gwIHk5OQABK9t/b9HupI777yTuXPn8j//8z8MGTKE6667jjvuuIN58+YBuu6l/SjUd1Iul4vTTz+d5cuXB7f5/X6WL1/O2LFjQ1iZSPsxTZNbb72Vt956iw8//JC+ffs2e/3000/H6XQ2+z3Ytm0bOTk5+j0Qy5o4cSIbN24kOzs7eBs5ciTTp08PPtZ1L13N+PHjv7Nk6fbt2+nTpw8Affv2JTU1tdl1X1FRwerVq3Xdi2XV1NRgszWPW3a7Hb/fD+i6l/aj7ved2Jw5c5gxYwYjR45k9OjR/P73v6e6upof/ehHoS5NpF3MmjWLV155hcWLFxMdHR0cPxYbG0t4eDixsbHccMMNzJkzh4SEBGJiYrjtttsYO3YsZ5xxRoirF2mb6Ojo4LwRTSIjI0lMTAxu13UvXc0dd9zBuHHjePjhh5k2bRpr1qxh4cKFLFy4EADDMJg9ezYPPvggAwYMoG/fvtx7772kpaVx6aWXhrZ4kTaaMmUKDz30EL179+bUU0/lv//9L7/73e+4/vrrAV330o5CPf2+HN38+fPN3r17my6Xyxw9erT5+eefh7okkXYDHPb2/PPPB/epra01b7nlFjM+Pt6MiIgwp06dahYUFISuaJEOcOiSdqap6166pqVLl5qDBw823W63mZWVZS5cuLDZ636/37z33nvNlJQU0+12mxMnTjS3bdsWompFjl9FRYV5++23m7179zbDwsLMfv36mb/85S/N+vr64D667qU9GKZpmqH8UkFERERERERE2kZj6kVEREREREQsSqFeRERERERExKIU6kVEREREREQsSqFeRERERERExKIU6kVEREREREQsSqFeRERERERExKIU6kVEREREREQsSqFeRERERERExKIU6kVERKTV9uzZg2EYZGdnh7oUERGRbk2hXkREpIuZOXMmhmF853b++eeHurQT7qOPPsIwDMrKykJdioiISIdwhLoAERERaX/nn38+zz//fLNtbrc7RNWIiIhIR1FLvYiISBfkdrtJTU1tdouPjwfgmmuu4aqrrmq2v9frpUePHrz44osAvPfee5x55pnExcWRmJjIRRddxNdff92qGurr67nrrrvIyMjA7XZz0kkn8ec//zn4+sqVKxk9ejRut5uePXsyd+5cGhoagq9nZmby+9//vtk5hw8fzv/+7/8GnxuGwZ/+9CemTp1KREQEAwYMYMmSJUBgiMA555wDQHx8PIZhMHPmzFZ9BhERkc5OoV5ERKSbmT59OkuXLqWqqiq47f3336empoapU6cCUF1dzZw5c1i3bh3Lly/HZrMxdepU/H5/i9/nhz/8Ia+++ipPPvkkW7Zs4dlnnyUqKgqAvLw8LrjgAkaNGsWGDRt45pln+POf/8yDDz7Y6s/zwAMPMG3aNL788ksuuOACpk+fTklJCRkZGfz9738HYNu2bRQUFPCHP/yh1ecXERHpzNT9XkREpAt6++23gwG6yT333MM999zD5MmTiYyM5K233uK6664D4JVXXuHiiy8mOjoagMsvv7zZsX/5y19ISkpi8+bNDB48+Jjvv337dhYtWsSyZcuYNGkSAP369Qu+/sc//pGMjAyeeuopDMMgKyuL/Px87rrrLu677z5stpa3O8ycOZOrr74agIcffpgnn3ySNWvWcP7555OQkABAcnIycXFxLT6niIiIVailXkREpAs655xzyM7Obna76aabAHA4HEybNo2XX34ZCLTKL168mOnTpweP37FjB1dffTX9+vUjJiaGzMxMAHJyclr0/tnZ2djtdiZMmHDY17ds2cLYsWMxDCO4bfz48VRVVbF3795WfdahQ4cGH0dGRhITE0NRUVGrziEiImJVaqkXERHpgiIjIznppJOO+Pr06dOZMGECRUVFLFu2jPDw8Gaz40+ZMoU+ffrw3HPPkZaWht/vZ/DgwXg8nha9f3h4+HF/BpvNhmmazbZ5vd7v7Od0Ops9NwyjVcMERERErEwt9SIiIt3QuHHjyMjI4PXXX+fll1/myiuvDIbjAwcOsG3bNn71q18xceJEBg4cSGlpaavOP2TIEPx+PytXrjzs6wMHDmTVqlXNQvunn35KdHQ06enpACQlJVFQUBB8vaKigt27d7eqDpfLBYDP52vVcSIiIlahUC8iItIF1dfXU1hY2Oy2f//+Zvtcc801LFiwgGXLljXreh8fH09iYiILFy5k586dfPjhh8yZM6dV75+ZmcmMGTO4/vrr+ec//8nu3bv56KOPWLRoEQC33HILubm53HbbbWzdupXFixdz//33M2fOnOB4+nPPPZe//e1vfPzxx2zcuJEZM2Zgt9tbVUefPn0wDIO3336b4uLiZpMDioiIdAUK9SIiIl3Qe++9R8+ePZvdzjzzzGb7TJ8+nc2bN9OrVy/Gjx8f3G6z2XjttddYv349gwcP5o477uCxxx5rdQ3PPPMMV1xxBbfccgtZWVn85Cc/obq6GoBevXrxr3/9izVr1jBs2DBuuukmbrjhBn71q18Fj7/77ruZMGECF110ERdeeCGXXnop/fv3b1UNvXr14oEHHmDu3LmkpKRw6623tvpziIiIdGaG+e3BaiIiIiIiIiJiCWqpFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbEohXoRERERERERi1KoFxEREREREbGo/w/6yCLbIb+CXAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -215,7 +215,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAK9CAYAAACUzBfBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyYklEQVR4nOzdd3iTZRfA4V+SNt17LwqlpWVPAdkIsh3IVhQHOFERJ+6BWxH93DhwoYDKUFkKyN57t5TSQvfeM3m/P9JESgdNB2nh3NfVC/rOk7SFnvd5znlUiqIoCCGEEEIIIYQQ4oqgtnQAQgghhBBCCCGEaDiS6AshhBBCCCGEEFcQSfSFEEIIIYQQQogriCT6QgghhBBCCCHEFUQSfSGEEEIIIYQQ4goiib4QQgghhBBCCHEFkURfCCGEEEIIIYS4gkiiL4QQQgghhBBCXEEk0RdCCCGEEEIIIa4gkugLIYQQ4rL64YcfiIiIwNraGldXV0uH02DuvPNOWrZsaekwLO7ff/9FpVLx77//Ntg1Fy5ciEql4uzZsw12TSGEuJJJoi+EEM2M8Rfe6j527txp6RCFqNbJkye58847ad26NQsWLODLL7+0dEiijj799FMWLlxo6TCEEEJUQaUoimLpIIQQQtTewoULueuuu3j11Vdp1apVpf0jRozA09PTApEJcWmff/45DzzwAFFRUYSGhlo6nAZVWlqKXq/HxsbG0qFcFh06dMDT07PSyL1er6ekpAStVota3TBjSjqdjtLSUmxsbFCpVA1yTSGEuJJZWToAIYQQdTNy5Eh69Ohh6TDIz8/HwcHB0mE0e0VFRQ2aGDVVKSkpAA06Zb+goAB7e/sGu565jD8D1tbWFouhKVGr1dja2jboNTUaDRqNpkGvWRNFUSgqKsLOzu6y3VMIIRrSlf3bhBBCXMXOnj2LSqXivffe48svv6R169bY2NhwzTXXsGfPnkrHnzx5kvHjx+Pu7o6trS09evRg5cqVFY4xlg1s2rSJBx98EG9vbwIDA037P/nkE0JCQrCzs6Nnz55s2bKFQYMGMWjQIADy8vJwcHDg0UcfrXT/8+fPo9FoePPNN2t8XXq9ng8//JCOHTtia2uLl5cXI0aMYO/evaZjysrKeO2110yvuWXLljz77LMUFxdXuFbLli0ZM2YMW7dupWfPntja2hISEsL3339vOmbv3r2oVCq+++67SrGsXbsWlUrFn3/+adoWHx/P3XffjY+PDzY2NrRv355vvvmmwnnGGuZffvmF559/noCAAOzt7cnJyQFg6dKltGvXDltbWzp06MCyZcuqrP/W6/XMnz+f9u3bY2tri4+PD/fddx+ZmZlmv06jrKwsHnvsMVq2bImNjQ2BgYHccccdpKWlmY4pLi7mpZdeIjQ0FBsbG4KCgnjqqacqvb8Xa9myJS+99BIAXl5eqFQqXn75ZdP+Tz/9lPbt22NjY4O/vz8PPfQQWVlZFa4xaNAgOnTowL59+xgwYAD29vY8++yzVd7vvffeQ6VSERsbW2nfnDlz0Gq1pvdqy5YtTJgwgRYtWphe02OPPUZhYWGF8+68804cHR2Jjo5m1KhRODk5cdttt5n2Xfw1ys/P5/HHHycoKAgbGxvCw8N57733uHBCpfFntapp8Be/R7m5ucyaNcv09fH29ub6669n//79Vb4HFzpw4AAjR47E2dkZR0dHhgwZUqnUx/gzvnnzZu677z48PDxwdnbmjjvuqPB91bJlS44dO8amTZtMZUPGn/OqavSNX7fDhw8zcOBA7O3tCQ0N5ddffwVg06ZN9OrVCzs7O8LDw/nnn3+qjMtYo//yyy9XW7505513ms4z92dk7dq19OjRAzs7O7744gsA/v77b/r164erqyuOjo6Eh4dX+z0nhBBNhYzoCyFEM5WdnV0h+QJDUuDh4VFh26JFi8jNzeW+++5DpVLxzjvvcMstt3DmzBnTCOSxY8fo27cvAQEBPPPMMzg4OLBkyRJuvvlmfvvtN8aOHVvhmg8++CBeXl68+OKL5OfnA/DZZ58xc+ZM+vfvz2OPPcbZs2e5+eabcXNzMz0McHR0ZOzYsSxevJh58+ZVGKH7+eefURTFlDRV55577mHhwoWMHDmS6dOnU1ZWxpYtW9i5c6dphsP06dP57rvvGD9+PI8//ji7du3izTff5MSJEyxbtqzC9U6fPs348eO55557mDZtGt988w133nkn3bt3p3379vTo0YOQkBCWLFnCtGnTKpy7ePFi3NzcGD58OADJycn07t0blUrFzJkz8fLyYvXq1dxzzz3k5OQwa9asCue/9tpraLVannjiCYqLi9Fqtfz1119MmjSJjh078uabb5KZmck999xDQEBApffivvvuM5VyPPLII8TExPDxxx9z4MABtm3bVmGE+VKvEwwPYvr378+JEye4++676datG2lpaaxcuZLz58/j6emJXq/nxhtvZOvWrdx77720bduWI0eO8MEHHxAZGcny5cur/drNnz+f77//nmXLlvHZZ5/h6OhIp06dAEPi9sorrzB06FAeeOABTp06xWeffcaePXsqvZb09HRGjhzJ5MmTmTp1Kj4+PlXeb+LEiTz11FMsWbKEJ598ssK+JUuWMGzYMNzc3ADDw5WCggIeeOABPDw82L17N//73/84f/48S5curXBuWVkZw4cPp1+/frz33nvVziZQFIUbb7yRjRs3cs8999ClSxfWrl3Lk08+SXx8PB988EG171V17r//fn799VdmzpxJu3btSE9PZ+vWrZw4cYJu3bpVe96xY8fo378/zs7OPPXUU1hbW/PFF18waNAgU5J9oZkzZ+Lq6srLL79s+lrExsaakvj58+fz8MMP4+joyHPPPQdQ7dfBKDMzkzFjxjB58mQmTJjAZ599xuTJk/npp5+YNWsW999/P7feeivvvvsu48eP59y5czg5OVV5rVtuuaVS6ce+ffuYP38+3t7epm3m/IycOnWKKVOmcN999zFjxgzCw8M5duwYY8aMoVOnTrz66qvY2Nhw+vRptm3bVuNrFUIIi1OEEEI0K99++60CVPlhY2NjOi4mJkYBFA8PDyUjI8O0fcWKFQqg/PHHH6ZtQ4YMUTp27KgUFRWZtun1eqVPnz5KWFhYpXv369dPKSsrM20vLi5WPDw8lGuuuUYpLS01bV+4cKECKAMHDjRtW7t2rQIoq1evrvC6OnXqVOG4qmzYsEEBlEceeaTSPr1eryiKohw8eFABlOnTp1fY/8QTTyiAsmHDBtO24OBgBVA2b95s2paSkqLY2Ngojz/+uGnbnDlzFGtr6wrvY3FxseLq6qrcfffdpm333HOP4ufnp6SlpVW49+TJkxUXFxeloKBAURRF2bhxowIoISEhpm1GHTt2VAIDA5Xc3FzTtn///VcBlODgYNO2LVu2KIDy008/VTh/zZo1lbbX9nW++OKLCqD8/vvvysWM7+8PP/ygqNVqZcuWLRX2f/755wqgbNu2rdK5F3rppZcUQElNTa0Qi1arVYYNG6bodDrT9o8//lgBlG+++ca0beDAgQqgfP755zXex+jaa69VunfvXmHb7t27FUD5/vvvTdsu/jooiqK8+eabikqlUmJjY03bpk2bpgDKM888U+n4adOmVfgaLV++XAGUuXPnVjhu/PjxikqlUk6fPq0oyn8/q99++22lawLKSy+9ZPrcxcVFeeihh2p8zVW5+eabFa1Wq0RHR5u2JSQkKE5OTsqAAQNM24w/4927d1dKSkpM29955x0FUFasWGHa1r59+yp/Zo3f3xs3bjRtM37dFi1aZNp28uRJBVDUarWyc+dO03bjvxEXvh/GuGJiYqp8fampqUqLFi2Ujh07Knl5eYqi1O1nZM2aNRWO/eCDDyp9vwohRHMgU/eFEKKZ+uSTT/j7778rfKxevbrScZMmTTKNWgL0798fgDNnzgCQkZHBhg0bmDhxIrm5uaSlpZGWlkZ6ejrDhw8nKiqK+Pj4CtecMWNGhdH4vXv3kp6ezowZM7Cy+m+y2G233Vbh3gBDhw7F39+fn376ybTt6NGjHD58mKlTp9b4mn/77TdUKpVp+veFjA26Vq1aBcDs2bMr7H/88ccB+Ouvvypsb9eunek9AcOU8vDwcNP7A4b3sLS0lN9//920bd26dWRlZTFp0iTAMHr722+/ccMNN6Aoiul9TEtLY/jw4WRnZ1eaXj1t2rQKNcAJCQkcOXKEO+64A0dHR9P2gQMH0rFjxwrnLl26FBcXF66//voK9+revTuOjo5s3LjR7Nf522+/0blz50ozOOC/93fp0qW0bduWiIiICve97rrrACrdtzb++ecfSkpKmDVrVoUeBTNmzMDZ2bnS18zGxoa77rqrVteeNGkS+/btIzo62rRt8eLF2NjYcNNNN5m2Xfh1yM/PJy0tjT59+qAoCgcOHKh03QceeOCS9161ahUajYZHHnmkwvbHH38cRVGq/Hm9FFdXV3bt2kVCQkKtz9HpdKxbt46bb76ZkJAQ03Y/Pz9uvfVWtm7daiobMbr33nsrjHY/8MADWFlZmX6+6sLR0ZHJkyebPg8PD8fV1ZW2bdtWmFFg/PuF35s10el0TJkyhdzcXJYtW2bqGWLuz0irVq1Ms3OMjL0kVqxYgV6vN/s1CyGEpUiiL4QQzVTPnj0ZOnRohY/BgwdXOq5FixYVPjcm3sYa1dOnT6MoCi+88AJeXl4VPowJtbGBmtHF3f6NNdAXT6W1srKqVLOsVqu57bbbWL58OQUFBQD89NNP2NraMmHChBpfc3R0NP7+/ri7u1d7TGxsLGq1ulIsvr6+uLq6VqrXvvj9AcN7dGENb+fOnYmIiGDx4sWmbYsXL8bT09OU4KamppKVlcWXX35Z6X00JqV1fR+r2hYVFUV2djbe3t6V7peXl1fpXrV5ndHR0XTo0KHScRff99ixY5Xu2aZNmypfY20YX3d4eHiF7VqtlpCQkEpfs4CAALRaba2uPWHCBNRqtelrpygKS5cuNdWqG8XFxXHnnXfi7u6Oo6MjXl5eDBw4EDCUyVzIysqqQm+Kml6Xv79/pennbdu2Ne031zvvvMPRo0cJCgqiZ8+evPzyy5dMiFNTUykoKKj0/hpj0ev1nDt3rsL2sLCwCp87Ojri5+dXr3XsAwMDK3XMd3FxISgoqNI2oFIdfXWef/55NmzYwKJFi2jdurVpu7k/I1WtYjJp0iT69u3L9OnT8fHxYfLkySxZskSSfiFEkyc1+kIIcYWrrlO1Ut4MzPgL6xNPPFFpNMvo4iSzvp2o77jjDt59912WL1/OlClTWLRoEWPGjDH9gt8QarsE16XeH6NJkybx+uuvk5aWhpOTEytXrmTKlCmmGQzG93Hq1KmVavmNjPXoRvV5H/V6Pd7e3hVmRlzIy8urwue1fZ21uW/Hjh2ZN29elfsvTtoagznvm7+/P/3792fJkiU8++yz7Ny5k7i4ON5++23TMTqdjuuvv56MjAyefvppIiIicHBwID4+njvvvLNSUmdjY9OgqyNU972q0+kqbZs4cSL9+/dn2bJlrFu3jnfffZe3336b33//nZEjRzZYTI2huu/B+nxvLl++nLfffpvXXnuNESNGVNhn7s9IVd9XdnZ2bN68mY0bN/LXX3+xZs0aFi9ezHXXXce6desu60oAQghhDkn0hRDiKmecymttbc3QoUPrdI3g4GDAMDvgwlkFZWVlnD17tlKC26FDB7p27cpPP/1EYGAgcXFx/O9//7vkfVq3bs3atWvJyMiodlQ/ODgYvV5PVFSUaeQUDI3ysrKyTLGaa9KkSbzyyiv89ttv+Pj4kJOTU2EaspeXF05OTuh0ugZ5Hy928bbWrVvzzz//0Ldv3wZbAqx169YcPXr0ksccOnSIIUOGNNh65sbXferUqQpTy0tKSoiJianz+2k0adIkHnzwQU6dOsXixYuxt7fnhhtuMO0/cuQIkZGRfPfdd9xxxx2m7X///Xe97hscHMw///xDbm5uhVH9kydPmvbDf7NsLl5hoLoRfz8/Px588EEefPBBUlJS6NatG6+//nq1ib6Xlxf29vacOnWq0r6TJ0+iVqsrPaCJioqq8LOcl5dHYmIio0aNMm2z9Hr2kZGRTJs2jZtvvrnKLvgN9TOiVqsZMmQIQ4YMYd68ebzxxhs899xzbNy4sd7fm0II0Vhk6r4QQlzlvL29GTRoEF988QWJiYmV9qempl7yGj169MDDw4MFCxZQVlZm2v7TTz9VO/329ttvZ926dcyfPx8PD49ajUaOGzcORVF45ZVXKu0zjv4ZE5H58+dX2G8cgR49evQl71OVtm3b0rFjRxYvXszixYvx8/NjwIABpv0ajYZx48bx22+/VZks1+Z99Pf3p0OHDnz//ffk5eWZtm/atIkjR45UOHbixInodDpee+21StcpKyurlDTWxrhx4zh06FCllQngv/d34sSJxMfHs2DBgkrHFBYWmlZhMMfQoUPRarV89NFHFUZxv/76a7Kzs+v8NTMaN24cGo2Gn3/+maVLlzJmzBhTHTf8N6J84b0VReHDDz+s131HjRqFTqfj448/rrD9gw8+QKVSmb7nnZ2d8fT0ZPPmzRWO+/TTTyt8rtPpKpUReHt74+/vX+PShhqNhmHDhrFixYoKU++Tk5NZtGgR/fr1q1DGAPDll19SWlpq+vyzzz6jrKysws+pg4NDnb7PGkJeXh5jx44lICCA7777rsqHDg3xM5KRkVFpW5cuXQAuuZykEEJYkozoCyFEM7V69WrTyOCF+vTpU2FUtDY++eQT+vXrR8eOHZkxYwYhISEkJyezY8cOzp8/z6FDh2o8X6vV8vLLL/Pwww9z3XXXMXHiRM6ePcvChQtp3bp1lb+E33rrrTz11FMsW7aMBx54oELjr+oMHjyY22+/nY8++oioqChGjBiBXq9ny5YtDB48mJkzZ9K5c2emTZvGl19+SVZWFgMHDmT37t1899133HzzzVX2MaitSZMm8eKLL2Jra8s999xTafr2W2+9xcaNG+nVqxczZsygXbt2ZGRksH//fv75558qk4aLvfHGG9x000307duXu+66i8zMTD7++GM6dOhQIfkfOHAg9913H2+++SYHDx5k2LBhWFtbExUVxdKlS/nwww8ZP368Wa/vySef5Ndff2XChAncfffddO/enYyMDFauXMnnn39O586duf3221myZAn3338/GzdupG/fvuh0Ok6ePMmSJUtM65Cbw8vLizlz5vDKK68wYsQIbrzxRk6dOsWnn37KNddcc8kmjZfi7e3N4MGDmTdvHrm5uaYGikYRERG0bt2aJ554gvj4eJydnfntt99qXSNenRtuuIHBgwfz3HPPcfbsWTp37sy6detYsWIFs2bNqlBPPn36dN566y2mT59Ojx492Lx5M5GRkRWul5ubS2BgIOPHj6dz5844Ojryzz//sGfPHt5///0aY5k7d65pPfgHH3wQKysrvvjiC4qLi3nnnXcqHV9SUsKQIUOYOHGi6WvRr18/brzxRtMx3bt357PPPmPu3LmEhobi7e1t6lnR2F555RWOHz/O888/z4oVKyrsa926Nddee22D/Iy8+uqrbN68mdGjRxMcHExKSgqffvopgYGB9OvXrzFfohBC1M/lb/QvhBCiPmpaXo8LlqQyLtn17rvvVroGFy3ZpSiKEh0drdxxxx2Kr6+vYm1trQQEBChjxoxRfv3110r33rNnT5WxffTRR0pwcLBiY2Oj9OzZU9m2bZvSvXt3ZcSIEVUeP2rUKAVQtm/fXuvXX1ZWprz77rtKRESEotVqFS8vL2XkyJHKvn37TMeUlpYqr7zyitKqVSvF2tpaCQoKUubMmVNh+UBFMSypNXr06Er3GDhwYJXLhkVFRZne561bt1YZX3JysvLQQw8pQUFBirW1teLr66sMGTJE+fLLL03HGJcfW7p0aZXX+OWXX5SIiAjFxsZG6dChg7Jy5Upl3LhxSkRERKVjv/zyS6V79+6KnZ2d4uTkpHTs2FF56qmnlISEhDq9zvT0dGXmzJlKQECAotVqlcDAQGXatGkVlgwsKSlR3n77baV9+/aKjY2N4ubmpnTv3l155ZVXlOzs7Cpfk1FVy+sZffzxx0pERIRibW2t+Pj4KA888ICSmZlZKeb27dvXeI+qLFiwQAEUJycnpbCwsNL+48ePK0OHDlUcHR0VT09PZcaMGcqhQ4cqLfM2bdo0xcHBocp7XLy8nqIoSm5urvLYY48p/v7+irW1tRIWFqa8++67puUKjQoKCpR77rlHcXFxUZycnJSJEycqKSkpFX5Wi4uLlSeffFLp3Lmz4uTkpDg4OCidO3dWPv3001q9B/v371eGDx+uODo6Kvb29srgwYMr/ewZf8Y3bdqk3HvvvYqbm5vi6Oio3HbbbUp6enqFY5OSkpTRo0crTk5OFZbRrG55vaq+btV9bwIVlhG8eHk94zKHVX1MmzatwrXq8zOyfv165aabblL8/f0VrVar+Pv7K1OmTFEiIyOrfI+FEKKpUCmKmV14hBBCiFrS6/V4eXlxyy23VDnVe+zYsRw5cqTKmnRRUZcuXfDy8qp33bgQNVm4cCF33XUXe/bsMXtmhhBCiKZDavSFEEI0iKKiokpdsr///nsyMjIYNGhQpeMTExP566+/uP322y9ThM1DaWlphT4HAP/++y+HDh2q8n0UQgghhLiY1OgLIYRoEDt37uSxxx5jwoQJeHh4sH//fr7++ms6dOjAhAkTTMfFxMSwbds2vvrqK6ytrbnvvvssGHXTEx8fz9ChQ5k6dSr+/v6cPHmSzz//HF9fX+6//35LhyeEEEKIZkASfSGEEA2iZcuWBAUF8dFHH5mWv7vjjjt466230Gq1puM2bdrEXXfdRYsWLfjuu+/w9fW1YNRNj5ubG927d+err74iNTUVBwcHRo8ezVtvvYWHh4elwxNCCCFEMyA1+kIIIYQQQgghxBVEavSFEEIIIYQQQogriCT6QgghhBBCCCHEFURq9OtIr9eTkJCAk5MTKpXK0uEIIYQQQgghhLjCKYpCbm4u/v7+qNXVj9tLol9HCQkJBAUFWToMIYQQQgghhBBXmXPnzhEYGFjtfkn068jJyQkwvMHOzs4WjkYIIYQQQgghxJUuJyeHoKAgUz5aHUn068g4Xd/Z2VkSfSGEEEIIIYQQl82lyselGZ8QQgghhBBCCHEFkURfCCGEEEIIIYS4gkiiL4QQQgghhBBCXEGkRl8IIYQQQgghmilFUSgrK0On01k6FNEANBoNVlZW9V7CXRJ9IYQQQgghhGiGSkpKSExMpKCgwNKhiAZkb2+Pn58fWq22zteQRF8IIYQQQgghmhm9Xk9MTAwajQZ/f3+0Wm29R4GFZSmKQklJCampqcTExBAWFoZaXbdqe0n0hRBCCCGEEKKZKSkpQa/XExQUhL29vaXDEQ3Ezs4Oa2trYmNjKSkpwdbWtk7XkWZ8QgghhBBCCNFM1XXEVzRdDfE1le8KIYQQQgghhBDiCiKJvhBCCCGEEEIIcQWRRF8IIYQQQgghhLiCSKIvhBBCCCGEEOKySkpK4uGHHyYkJAQbGxuCgoK44YYbWL9+vemY7du3M2rUKNzc3LC1taVjx47MmzcPnU5X4Voqlcr0YWVlRYsWLZg9ezbFxcVs2rQJa2trtm7dWuGc/Px8QkJCeOKJJwAYNGgQs2bNumTcO3bsQKPRMHr06Pq/CY1IEn0hhBBCCCGEEJfN2bNn6d69Oxs2bODdd9/lyJEjrFmzhsGDB/PQQw8BsGzZMgYOHEhgYCAbN27k5MmTPProo8ydO5fJkyejKEqFa3777bckJiYSExPDp59+yg8//MDcuXMZOHAgDz/8MHfeeSf5+fmm45966ins7OyYO3euWbF//fXXPPzww2zevJmEhIT6vxmNRJbXE0IIIYQQQogrgKIoFJbqLn1gI7Cz1qBSqWp17IMPPohKpWL37t04ODiYtrdv3567776b/Px8ZsyYwY033siXX35p2j99+nR8fHy48cYbWbJkCZMmTTLtc3V1xdfXF4CgoCBuuukm9u/fD8Abb7zBmjVrePrpp/n444/ZuHEjX331Fdu3bzdr+bq8vDwWL17M3r17SUpKYuHChTz77LO1Pv9ykkRfCCGEEEIIIa4AhaU62r241iL3Pv7qcOy1l04vMzIyWLNmDa+//nqFJN/I1dWVZcuWkZ6ebppWf6EbbriBNm3a8PPPP1dI9C8UGRnJhg0buPPOOwGwtbXl+++/p0+fPlx//fXMmjWLZ599lu7du5v1GpcsWUJERATh4eFMnTqVWbNmMWfOnFo/4LicZOq+EEIIIYQQQojL4vTp0yiKQkRERLXHREZGAtC2bdsq90dERJiOMZoyZQqOjo7Y2toSHh5O+/btmTNnjml/jx49mDNnDrfccgseHh4899xzZsf+9ddfM3XqVABGjBhBdnY2mzZtMvs6l4OM6AshhBBCCCHEFcDOWsPxV4db7N61cXFtfUMd+8EHHzB06FB0Oh2nT59m9uzZ3H777fzyyy+mY1544QVeffVVnnnmGayszEuFT506xe7du1m2bBkAVlZWTJo0ia+//ppBgwaZda3LQRJ9IYQQQgghhLgCqFSqWk2ft6SwsDBUKhUnT56s9pg2bdoAcOLECfr06VNp/4kTJ2jXrl2Fbb6+voSGhgIQHh5Obm4uU6ZMYe7cuabtxuTe3CQfDKP5ZWVl+Pv7m7YpioKNjQ0ff/wxLi4uZl+zMcnUfSGEEEIIIYQQl4W7uzvDhw/nk08+qdAF3ygrK4thw4bh7u7O+++/X2n/ypUriYqKYsqUKTXeR6MxzDAoLCysd8xlZWV8//33vP/++xw8eND0cejQIfz9/fn555/rfY+G1rQf9wghhBBCCCGEuKJ88skn9O3bl549e/Lqq6/SqVMnysrK+Pvvv/nss884ceIEX3zxBZMnT+bee+9l5syZODs7s379ep588knGjx/PxIkTK1wzKyuLpKQk9Ho9UVFRvPrqq7Rp06baOv+qpKamcvDgwQrb/Pz82LFjB5mZmdxzzz2VRu7HjRvH119/zf3331/n96MxSKIvhBBCCCGEEOKyCQkJYf/+/bz++us8/vjjJCYm4uXlRffu3fnss88AGD9+PBs3buT111+nf//+FBUVERYWxnPPPcesWbMqdbq/6667AEP5gq+vLwMGDOCNN94wa5r+okWLWLRoUYVtr732Grt27WLo0KFVTs8fN24c77zzDocPH6ZTp07mvhWNRqWY0+FAmOTk5ODi4kJ2djbOzs6WDkcIIYQQQghxFSkqKiImJoZWrVqZtRa8aPpq+trWNg+VGn0hhBBCCCGEEOIKIlP3r2AFBWks3vAher1CsLuDpcNpNrq3nYCbR6ilwxBCCCGEEEKIOpFE/wq2/uBe5qUvN3ySadFQmhWXqB9ZPGQBAS0qL+UhhBBCCCGEEE2dJPpXsG6t/Ak/qkanV7BSq7HTaiwdUpMXry8mRaPmiX/u57uJ/6B19LZ0SEIIIYQQQghhFkn0r2ABfp14Z+w2Rn+0lcJSHXNGRnDfwNaWDqtJS0g+zIRVt3JUA+/9dgvPTv0XNPJjIoQQQgghhGg+pBnfFS7Ey5GXbmgHwHvrTnE0PtvCETVt/j6deLP7EwD8TDZr/rin0jE/7DhL6LOr2HUm/XKHJ4QQQgghhBCXJIn+VWDSNUGMaO9LqU7hkV8OUFBSZumQmrQBne7kHt/+ALyUuZeY7R9U2P/rvvOU6RVWHkqwRHhCCCGEEEIIUSNJ9K8CKpWKN2/piK+zLWdS83ntzxOWDqnJm3n9R/Sw8aZArWb2sS8ojN4IQFGpjmMJOQAcPJdlwQiFEEIIIYQQomqS6F8l3By0zJvYGZUKft4dx9pjSZYOqUmzUlvxzg0/44EVp7XWvP73A5B5liPx2ZTpFQBOJuVSVKqzcKRCCCGEEEIIUZEk+leRPqGe3Ns/BIBnfjtMck6RhSNq2rwcvHnnug9RK7DCzpplS8dzJPq8ab9Or0jPAyGEEEIIIUSTI4n+VebxYeF0CHAms6CUx5ccQl8+Oi2q1jNoAA+1mwbA69aFeB56DDV6036Zvi+EEEIIIYR57rzzTm6++Wazz2vZsiUqlQqVSoVGo8Hf35977rmHzMxM0zH//vuv6ZgLP55//nnTMYqisGDBAq699lqcnZ1xdHSkffv2PProo5w+fdp0XEFBAXPmzKF169bY2tri5eXFwIEDWbFiRa3iHTRoUIUYfHx8mDBhArGxsWa/dnNJon+V0VqpmT+pK7bWaraeTuPrrTGXPKdMp2ftsSRmLtrPyyuPkZ5XXO84sgtKyS9uHk0Bp18zm34eHSlWq/nSOZ5HtD9zXYQ3IIm+EEIIIYQQl9Orr75KYmIicXFx/PTTT2zevJlHHnmk0nGnTp0iMTHR9PHMM88AhiT/1ltv5ZFHHmHUqFGsW7eO48eP8/XXX2Nra8vcuXNN17j//vv5/fff+d///sfJkydZs2YN48ePJz299qtvzZgxg8TERBISElixYgXnzp1j6tSp9X8jLkEWCL8KhXo78uKY9jy77AjvrD1Jn1AP2vu7VDrufGYBi/ecY/Gec6Tk/pfcLzsQz1Mjwpl8TQs0apVZ907NLeaj9VEs2h1Hay8H/nqkP9aapv28Sa1S8+bQTxn32yhiySXOdxezfQ6w4WSAJPpCCCGEEKLpUBQoLbDMva3tQWVeblAXTk5O+Pr6AhAQEMC0adP4+eefKx3n7e2Nq6trpe2LFy/ml19+YcWKFdx4442m7S1atKB3794oyn8znleuXMmHH37IqFGjAMOMgu7du5sVr729vSlePz8/Zs6cyX333WfWNepCEv2r1JSeQWw8lcLfx5N55OcD/Plwf+y0Gsp0etafTOHn3XFsikzF+H3u6ajl5i4BbI9O53hiDs8tO8qSPeeYe3NHOgZWfkhwsfziMhZsOcOCzWfILzE0sItMzmPVkURu6hLQmC+1QbjaujK25assiJrN3w72dDs5l/Vae8iHso8csLoM/6g1a1oHuPF/4NfJ0pEIIYQQQly5SgvgDX/L3PvZBMPvfJdRfHw8f/zxB7169ar1OT///DPh4eEVkvwLqS74vd7X15dVq1Zxyy234OTkVO94MzIyWLJkiVnx1pUk+lcplUrF2+M6cejcZqJT83lu+RECXO0qjd73C/VkSs8WXN/OB62VmjKdnh92xjJvXSSHzmdz4ydbmdormCeGheNib13pPmU6PYv3nuODv6NIK5/y3znQhdZejvx+IJ4vN5/hxs7+FX6gmqqUNF8Kk0dh4/sX77s5E+hoLD3It2hczYGDksPry2fQesYWsNJaOhwhhBBCCNFMPf300zz//PPodDqKioro1asX8+bNq3RcYGBghc9jY2Px8PAgMjKS8PDwCvtmzZrFV199BYCrqyvnzxsacH/55ZfcdttteHh40LlzZ/r168f48ePp27dvreP99NNP+eqrr1AUhYKCAtq0acPatWvNfdlmk0T/KubuoOX9iZ25/evd/L4/3rTdw0HLhB5BTL4miJaeFZ/KWWnU3NW3FaM7+vH6qhOsOJjADztjWXUkkWdHteWWbgGoVCoURWHd8WTeXnOSM6mGRLiFuz1PjQhndEc/sgpKWX00iWMJOeyITqdPqOdlfe11sT8uk5LMflwTkc/hrH85q638YENU79vcFOZueR8Gz7F0KEIIIYQQVyZre8PIuqXufRk8+eST3HnnnSiKwrlz53j22WcZPXo0mzdvRqPRmI7bsmVLhVF4Nze3aq/53HPPMXPmTH7//XfeeOMN0/YBAwZw5swZdu7cyfbt21m/fj0ffvghr7zyCi+88EKt4r3tttt47rnnAEhOTuaNN95g2LBh7Nu3r0FmCVRHEv2rXP8wLx65LpSPNpymb6gHt/YMNo3e18Tb2ZYPJ3dl0jVBvLD8KNGp+Ty+9BCL95zjjj7BfLvtLPtiDd0v3R20PHJdKLf2CjZd181By8QegXy3I5Yvt5xp8ol+QUkZJxJzARVvD3ibHP1ZVh46y4ItMXQKdOGFMe0sHWKTFZsTy4vbX+QfB3ue3/oetm1vAN8Olg5LCCGEEOLKo1Jd9unzl5unpyehoaEAhIWFMX/+fK699lo2btzI0KFDTce1atWqyhr9sLAwTp06VWGbl5cXXl5eeHt7Vzre2tqa/v37079/f55++mnmzp3Lq6++ytNPP41We+mZqi4uLqZ4Q0ND+frrr/Hz82Px4sVMnz7dnJduFkn0BbOHhfPQdaHYWGkuffBF+rT2ZPWjA/h6awwfrY9i99kMdp/NAMDWWs30fiHcNzAEJ9vKo99392vFDztj+fdUKqeScgn3bbwnWvV1+Hw2Or2Cj7MNAa52BKraoQ8P4PN1CtHnrOji1RW1mY0JrxZdvLvw+aHPSchPYJONNcNXPATT14NG/vkRQgghhBD1YxzFLywsrNXxU6ZM4dZbb2XFihXcdNNNZt+vXbt2lJWVUVRUVKtE/2LmxltX8pu2AKhTkm+ktVLzwKDW3NjFn1f/OMaGkymM6xbIrKFt8HWxrfa8YA8HRnTwZdWRJBZsOcN7EzrXOYbGZpyd0D3YzdRPINzXCVtrNTlFZcSk59Pay9GSITZZapWaUSGj+OrIV/zp4srwxIOw42PoN8vSoQkhhBBCCAvJzs7m4MGDFbZ5eHgQFBRU43m5ubkkJSWZpu4/9dRTeHl50adPn1rdd/Lkyfz+++9MnjyZOXPmMHz4cHx8fIiNjWXx4sUVpv8PGjSIKVOm0KNHDzw8PDh+/DjPPvssgwcPxtnZuVb3KygoICkpCTBM3X/ttdewtbVl2LBhtTq/rpr2umaiWQlwteOL23tw8rWRvDWuU41JvtGM/iEArDgYT3JOUZ3um5xTRHZBaZ3Ora0DcYZEv1uL/2p7rDVqOpQvS3gwLqtR79/cjW41GoCtdjZkqdWw8Q1Ii7JwVEIIIYQQwlL+/fdfunbtWuHjlVdeueR5L774In5+fvj7+zNmzBgcHBxYt24dHh4etbqvSqVi8eLFzJ8/n1WrVjFkyBDCw8O5++67CQoKYuvWraZjhw8fznfffcewYcNo27YtDz/8MMOHD2fJkiW1fp0LFizAz88PPz8/Bg8eTFpaGqtWrarUELChqZQLFwoUtZaTk4OLiwvZ2dm1fpojqjbh8+3sOZvJA4Na8/SICLPOPRqfzfjPt+Pvasf62QMbpXu/oih0n/sPGfkl/PZAH7oH/5fsz/3zOF9tjeGOa4N59SapO6/JhD8mcDLjJC+ovJh4Zh+0uBbuXAVqed4ohBBCCGGuoqIiYmJiaNWqFba2lx5gE81HTV/b2uah8hu2sLh7B7QG4KedseQVl13i6P/kFZfx8M8HKCrVcyY1n1PJuY0SX2x6ARn5JWg1ajoEVPxh6tLCFYCD57Ia5d5XEuOo/l9u3qB1hLgdsOcrC0clhBBCCCHElUcSfWFxQyK8CfF0IKeojCV7ztX6vBdXHCUm7b817LdGpTVGeOwvn7bfIcC5Ui+DzoGuAJxIzKGoVNco979SjGw1EhUq9mccI37AbMPGf16GzFiLxiWEEEIIISzvp59+wtHRscqP9u3bWzq8SrZs2VJtvI6Olu/dJc34hMWp1Sqm9w/h2WVH+Lp8GryVpuZnUL/vP8/v++NRq2B4e19WH01i2+k0ppfX/DckYyO+C+vzjQLd7PB01JKWV8LxxJwqjxEGPg4+9PTtya6kXaxycmJGiz4Qtx3+eARuX25YDkYIIYQQQlyVbrzxRnr16lXlPmvryit4WVqPHj0qNRNsSiTRF03CLd0CeH/dKeKzCll9NIkbOvtXe2xMWj7PLz8KwKND2nB9Ox9WH01iV0wGJWV6tFYNO1Flf3mjvW7BlZN4lUpFlyBX/jmRwsG4LEn0L2F0yGh2Je3ir5hVTL/xf6g+7wtn/oUDP0K32y0dnhBCCCGEsBAnJyecnJructsXs7OzIzQ01NJhVEum7osmwdZawx3XtgTgy81nqK5HZHGZjod/3k9BiY5erdyZeV0oEb5OeDhoKSjRNXitfF5xGaeScoCqR/Thv+n7Uqd/aUODh6JVa4nOjuaUugwGP2fYsfY5yEm0bHBCCCGEEEJcISTRF03G7dcGY2Ol5kh8NrtiMqo85p01pzgan4ObvTUfTu6KRq1CrVbRJ9QTgK2nG7ZO//C5LPSKYenA6pYLNDbkO3Q+q0HvfSVy0joxMGggAH9G/wm9HwT/blCcDX/NBlkERAghhBBCiHqTqfuiyXB30DKhRyA/7oxjweYz9A6puBbmhpPJfL01BoB3x3eukHj3D/Xkj0MJbI1KZfb1bRosJmN9ftfyZL4qncpH9I3d+d0dtA12/yvR6JDR/B37N6tjVvNY98fQ3PQJfDEATq2CLe+BV1tLh9h8+HUC1xaWjkIIIYQQQjQxkuiLJuWefiH8tCuO9SdTiErOJczHUKeTnFPEE0sPA3Bnn5YMbedT4by+YYYR/UPns8kpKsXZtmEadhg77tdUe+9iZ02IlwNnUvM5dC6LwRHeDXLvK1X/gP44a51JKUxhb/Jeevn1ggFPwr9vwIa5lg6vedFood9j0G82WMv6uUIIIYQQwkASfdGktPJ0YFg7H9YeS+arLTG8Pb4TOr3CrF8OkpFfQjs/Z+aMiqh0XoCrHa08HYhJy2fXmQyuv+hBQF0oisKB8rr7qhrxXahLkCtnUvM5KIn+JWk1Woa1HMavkb/y55k/DYl+v8cgOw7SoiwdXvNRnAcpx2DT23B4CYx+H0KHWDoqIYQQQgjRBEiiL5qceweEsPZYMssOxPP48DYs2XOOHWfSsddq+N+tXSutZW/UN9SDmLR8tp1Oa5BE/0xaPlkFpdhYqWnn51zjsV2DXPl9f7w05Kul0a1G82vkr/wT+w/P934eGysbuOkTS4fVvCgKnFgJq5+GzBj48RZofwuMeBOcfC0dnRBCCCGEsCBpxieanO7B7nRr4UqJTs8zvx3hg38Mo7yv3tSB1l6O1Z7Xr4Eb8hnr8zsFulxyyb7OQa6AoSFfdSsGiP908+mGn4MfeaV5bDq3ydLhNE8qFbS7CWbuMTQ1VKnh2O/w8TWw60vQ6ywdoRBCCCFEtVJTU3nggQdo0aIFNjY2+Pr6Mnz4cLZt2wZAy5YtmT9/frXnL1u2jN69e+Pi4oKTkxPt27dn1qxZFY4pLCzkpZdeok2bNtjY2ODp6cmECRM4duxYheNefvllVCoVKpUKKysrWrZsyWOPPUZeXl5Dv+zLRhJ90STdOyAEgA0nU9DpFW7u4s+4bgE1nnNtiCcqFZxOySMpu6jeMRyoRX2+UYSvM1orNVkFpZxNL6j3va90apWaUa1GAfDnmT8tHE0zZ+NkGMW/99/yFQxyYPWTsOA6SDhg6eiEEEIIIao0btw4Dhw4wHfffUdkZCQrV65k0KBBpKenX/Lc9evXM2nSJMaNG8fu3bvZt28fr7/+OqWlpaZjiouLGTp0KN988w1z584lMjKSVatWUVZWRq9evdi5c2eFa7Zv357ExETOnj3L22+/zZdffsnjjz/e4K/7cpGp+6JJur6dLy097DmbXkCwhz1zx3ZEpVLVeI6LvTWdAlw4dD6bbafTGNc9sF4x7I/NAi5dnw+gtVLTwd+Z/XFZHDqXRStPh3rd+2owOmQ0Xx/9mi3xW8guzsbFxsXSITVvfp1h+j+w71v451VIPGhI9rveDp5hlo6u+bB1hU4TwcrG0pEIIYQQZlMUhcKyQovc287K7pK/rxtlZWWxZcsW/v33XwYONCy9HBwcTM+ePWt1/h9//EHfvn158sknTdvatGnDzTffbPp8/vz57NixgwMHDtC5c2fTPX777Td69erFPffcw9GjR00xW1lZ4etrKH+cNGkS69evZ+XKlXzxxRe1iqmpkURfNEkatYpXburAF5uieX50Oxxtavet2jfUs0ES/ZyiUiJTcoHajeiDYfr+/rgsDp7L4uauNc8+EBDmFka4WzinMk+xLnYdE9pMsHRIzZ9aA9dMh4gbYN1zcGQp7P/O0lE1P4oeuk+zdBRCCCGE2QrLCum1qJdF7r3r1l3YW9vX6lhHR0ccHR1Zvnw5vXv3xsbGvAfsvr6+LFq0iKNHj9KhQ4cqj1m0aBHXX3+9Kck3UqvVPPbYY9x2220cOnSILl26VHm+nZ0dJSUlZsXVlEiiL5qsgW28GNjGy6xz+oV68um/0Ww9nYaiKLV+qnixg3FZKAoEudvh5VS7f3i6lNfpH5CGfLU2OmQ0p/ad4s/oPyXRb0hOPjDuK+hyGxz9FXRllo6oeUg6YljJIPWUpSMRQgghrmhWVlYsXLiQGTNm8Pnnn9OtWzcGDhzI5MmT6dSp0yXPf/jhh9myZQsdO3YkODiY3r17M2zYMG677TbTQ4PIyEgGDx5c5flt27Y1HVNVor9v3z4WLVrEddddV/cXaWGS6IsrSrdgN2yt1aTkFhOVkkcbH6c6XWe/GfX5Rl2DDMeeSMihuExX7eoAdZGcU0RJmZ5At9pPiWoORrYayQf7PmB/yn4S8hLwd/S3dEhXltaDDR+idnYvgFVPQFaspSMRQggh6sTOyo5dt+6y2L3NMW7cOEaPHs2WLVvYuXMnq1ev5p133uGrr77izjvvrPFcBwcH/vrrL6Kjo9m4cSM7d+7k8ccf58MPP2THjh3Y2xtmFlyqSbZWqzX9/ciRIzg6OqLT6SgpKWH06NF8/PHHZr2mpkQSfXFFsbXWcE1Ld7ZEpbE1Kq0eiX4WAN1rUZ9vFORuh7uDloz8Ek4k5ppG+OujoKSMeesi+WZbDHoFAlzt6NPagz6hHvRp7YmPs22972FJvg6+XON7DbuTdrMqZhXTO063dEjiaubawvBnVpxl4xBCCCHqSKVS1Xr6fFNga2vL9ddfz/XXX88LL7zA9OnTeemlly6Z6Bu1bt2a1q1bM336dJ577jnatGnD4sWLueuuuwgLC+PEiRNVnmfc3qZNG9O28PBwVq5ciZWVFf7+/hUeAjRHV3XX/bFjx+Lm5sb48eMtHYpoQMZl9rbVcZk9vV4xq+O+kUqlonOgoaHcwfLz62NzZCrDPtjMV1sNSb5GrSI+q5Cl+87z2OJD9HpjPUPe/5cXlh9lzdFEsgqaZw3R6JDRAPx15i9ZmlBYlkuQ4U9J9IUQQgiLaNeuHfn5+XU6t2XLltjb25vOnzJlCv/88w+HDh2qcJxer+eDDz6gR48etGvXzrRdq9USGhpKy5Ytm32SD1f5iP6jjz7K3XffzXffSbOqK0nf8kR/55l0SnV6rDXmPc86nZpHblEZdtYaInzNmxHQJciNjadSOXQ+26zzLpSZX8Jrfx3n9/3xAPi72PL62I70bOXO3thMtp9OY3t0OkcTsolOzSc6NZ8fdsaiUkHnQFfeGd+pzjMZLGFo8FBe3/k6p7NOE5kZSbh7uKVDElcr1/JEvygLinLA1tmi4QghhBBXqvT0dCZMmMDdd99Np06dcHJyYu/evbzzzjvcdNNNpuPi4+M5ePBghXODg4P58MMPKSgoYNSoUQQHB5OVlcVHH31EaWkp119/PQCPPfYYK1as4IYbbuD999+nV69eJCcn88YbbxAVFcX27dsv50u+7K7qRH/QoEH8+++/lg5DNLB2fs642VuTWVDKoXNZ9Gjpbtb5+2MNo/GdAl2wMvMhQeeg8hH9OjTkUxSFlYcSePWP46Tnl6BSwbRrW/LE8HDTqgMXNijMLihlZ0y6KfGPSsnj4Lks7vluDysf6oebQ/N4EumsdWZg0ED+jv2bH0/8yNjQsZYOqdlwtXUlyCkIa7W1pUO5Mtg4gZ07FGZA9jmwbW/piIQQQogrkqOjI7169eKDDz4gOjqa0tJSgoKCmDFjBs8++6zpuPfee4/33nuvwrk//PADAwcO5JNPPuGOO+4gOTkZNzc3unbtyrp16wgPNwwa2drasn79et58803mzJlDbGwsZWVlhIaGcvToUQID67cUd1PXZBP9zZs38+6777Jv3z4SExNZtmxZhXURAT755BPeffddkpKS6Ny5M//73/9qvfaiuHKp1Sr6hHry1+FEtp5OMz/RL592b059vpGxLj8mLZ+sghJc7WuXbMdnFfL8siNsPJUKQBsfR94a16nG0gEXe2uGt/dleHvDep8JWYVM/nIncRkFPPLLAb698xqzH1RYyuhWo/k79m+Wn17O8tPLLR1Os2KlsiLIOYhWzq0IcQ2hlUsrQlxCaOncEketo6XDa35cWxgS/aw48JFEXwghhGgMNjY2vPnmm7z55pvVHnP27Nkar1FdR/0LOTg4MHfuXObOnQvA6tWrGTt2LMuXL2fmzJmm415++WVefvnlWsXeXDTZRD8/P5/OnTtz9913c8stt1Tav3jxYmbPns3nn39Or169mD9/PsOHD+fUqVN4e3sD0KVLF8rKKi8rtW7dOvz9pbv3laxfeaK/7XQas4a2ufQJFzA24jOnPt/I1V5LK08HYtLyOXQ++5LLA+r0Cj/sOMs7a09RUKJDq1Hz8HWh3DewNVor85J0f1c7vryjO2M/2c6WqDTeXXuKOaPamv0aLGFA4ACuD76eqMwoS4fSbCgopBSkUFhWSEx2DDHZMWw4t6HCMd523kR4RPBC7xfwdfC1UKTNjGsQJB6UOn0hhBDiCjRy5EhWr17Nli1bSEtLw9PT09IhNZomm+iPHDmSkSNHVrt/3rx5zJgxg7vuuguAzz//nL/++otvvvmGZ555BqBSPUd9FBcXU1xcbPo8Jyenwa4tGp6xId+BuCzyistMU98vJaughNMpeQB0beFap3t3DnQhJi2fg3FZNSb6cekFPL70IHvOGmYQXNPSjTdv6USod91HYSN8nXl3QidmLjrAF5vP0D7AhRs7N/2HWtYaa+YNmmfpMJodRVFILkjmTPYZU7Ifkx3DmewzpBWmkVKYQsr5FJadXsYDnR+wdLjNg2uw4U9J9IUQQogr0uDBg2s1G6C5a7KJfk1KSkrYt28fc+bMMW1Tq9UMHTqUHTt2NMo933zzTV555ZVGubZoeEHu9rRwtycuo4BdZ9IZ0tanVucdKK+tb+lhj4ejTZ3u3SXIleUHEzh4rurO+4qisHjPOV778zj5JToctBrmjGrLrT1boFar6nTPC43p5M/R+Bw+3xTNU78eItTLkXb+0lTsSqRSqfB18MXXwZc+/n0q7MspyeHrI1/zzdFvZKaEOWSJPSGEEEJcAZpHAe9F0tLS0Ol0+PhUTN58fHxISkqq9XWGDh3KhAkTWLVqFYGBgTU+JJgzZw7Z2dmmj3PnztU5fnF59AszjOpvNWOZvQPljfi61aE+36hL+ZT/Q+ezKy0Xl5pbzIzv9/LM70fIL9HRs5U7a2YNYGrv4AZJ8o2eHB7OgDZeFJXqufeHvWTmN8+l90TdOWud6e3XG4DIzEgLR9OMyBJ7QgghhLgCNMsR/Ybyzz//1PpYGxsbbGzqNsIrLKNfqCeLdsWxzYxEvz71+UZt/ZzQatRk5JdwLqOQFh72AKw5msSzy46QkV+CVqPmieFtuKdfCJoGTPCNNGoVH03uwo0fbyMuo4CHfz7AwruaT3M+0TDauBn6U8TlxFFQWoC9tb2FI2oGZERfCCFEM3PxwJJo/hria9osf+v39PREo9GQnJxcYXtycjK+vtJwShhcG+KBSgWRyXmk5BRd8vhSnd60LF59En0bKw1ty6fKHziXSU5RKY8vOcT9P+4jI7+Etn7OrHy4L/cOaN0oSb6Rq72WL+/ojp21hq2n03hn7alan1tcpiMuvaDRYhOXh4edBx62HigoRGdFWzqc5sG1fES/MAOK8ywbixBCCFEDa2vD8roFBfI725XG+DU1fo3rolmO6Gu1Wrp378769etNS+7p9XrWr19fYZkEcXVzc9DSwd+FI/HZbItOY2zX6tfKzC4o5cFF+8grLsPV3ppwX6d63btrkCuHzmWxdO953llzivisQtQquG9ga2YNDcPGSlOv69fWhc35vtx8hg41NOcr0+nZeSaDlYfiWXM0iZyiMl4Y0457+rW6LLGKxtHGrQ07EncQmRlJR6+Olg6n6bN1AVtXKMqC7HPg3TxWrhBCCHH10Wg0uLq6kpKSAoC9vT0qVeMNIonGpygKBQUFpKSk4OrqikZT95yhySb6eXl5nD592vR5TEwMBw8exN3dnRYtWjB79mymTZtGjx496NmzJ/Pnzyc/P9/UhV8IgL6hnhyJz2ZrVHq1iX5sej53L9xDdGo+9loNH0zqUu+R9s5BLsB//QFauNszb2JnerR0r9d166Km5nx6vcKBc5msPJjAX0cSScurWMv/1uoT9GzpTsdAl8set2gYFyb6opZcgyApyzB9XxJ9IYQQTZhxNrMx2RdXBldX13rPVG+yif7evXsrLHswe/ZsAKZNm8bChQuZNGkSqampvPjiiyQlJdGlSxfWrFlTqUGfuLr1C/Xk803RbDudhqIolZ5y7j2bwb0/GKbU+7nY8tW0HrT3r39S2yPYHZUKFAWm9Azi+dHtcKjlEn+N4cnh4RxPzGFzZCr3/rCX9yd0ZsOpFP48lEh8VqHpODd7a0Z29OOGTv58t/0sa44l8cgvB/jz4X4WjV/UXRt3Q53+qczal25c9VyDIemI1OkLIYRo8lQqFX5+fnh7e1NaWmrpcEQDsLa2rtdIvlGT/c190KBBl2xCMHPmTJmqL2rUo6UbWis1STlFRKfmV1ijfvmBeJ769TAlOj0dA1z4eloPvJ1tG+S+Qe72LLi9B462VvQO8WiQa9bHxc35Jn2507TPQatheHtfbujsT78wT6zLG/a19XPi0PksYtLyeWnlMd6b0NlS4Yt6MDbki8yMrPJhl6iCNOQTQgjRzGg0mgZJDsWVo1k24xOitmytNVzT0tBYb2tUKmCofZn3dySzFh+kRKdnRHtfFt/Xu8GSfKOh7XyaRJJvZGzO52RrhdZKzcgOvnx6Wzf2vXA98yZ1YXCEtynJNx4/f1IX1Cr4dd95Vh5KsGD0oq5CXELQqDTkluSSXJB86ROEJPpCCCGEaPYk0RdXvH6hXgBsPZ1OUamOR345yEfrowC4f2BrPr2tG/baJju5pUFF+Dqz7ZnrOPDC9Xw2tTujOvpha139099eIR7MHBwKwHO/H+FchnR1bW60Gi2tXAwNFaVOv5ZcyjvvS6IvhBBCiGZKEn1xxesX6gnAzjPp3LpgJ38cSsBKreKdcZ14ZmQE6kZc4q4pcra1Nqve/pEhYXQPdiO3uIxHfzlAmU7fiNGJxhDmFgZIol9rMqIvhBBCiGZOEn1xxWvn74yrvTV5xWXsj8vCxc6a7+/pycRrgiwdWrNgpVEzf1IXnGyt2B+XxYflsyFE82Gq08+QRL9WjIl+QRqUyCwWIYQQQjQ/kuiLK55GrTKN6rf0sGfZg33o09rTwlE1L0Hu9rwx1rAG+8cbT7PzTLqFIxLmCHcLB2REv9bsXMHGsAQl2ecsGooQQgghRF1Ioi+uCs+Oasvzo9uy7MG+hHg5XvoEUckNnf2Z0D0QRYHHFh8kM7/E0iGJWjKO6J/NOUuxrtjC0TQTMn1fCCGEEM2YJPriquDvasf0/iG4OWgtHUqz9vKN7QnxdCAxu4infzt8ySUwRdPgbe+Ni40LOkXHmawzlg6neTAl+rGWjUMIIYQQog4k0RdC1JqDjRUfTemKtUbFuuPJ/LRLRjubA5VK9V+dvkzfrx1Toi9T94UQQgjR/EiiL4QwS4cAF54eEQHAa38eJzI518IRidqQRN9MssSeEEIIIZoxSfSFEGa7u28rBrTxorhMzyM/H6CoVGfpkMQlSKJvJqnRF0IIIUQzJom+EMJsarWK9yd0xtNRy8mkXN5cdcLSIVlUZn4Jv+47T6lOb+lQqiWJvpkk0RdCCCFEMyaJvhCiTrycbHhvQmcAvtsRy9/Hky0ckeW88scxnlh6iJ93N92ksLVra1SoyCjKIK0wzdLhNH3GRD8/BUoLLRuLEEIIIYSZJNEXQtTZoHBvpvdrBcBTvx4iKbvIwhFdfjq9wsZTqQDsPZtp4WiqZ2dlR7BzMACRGTKqf0l2bqAtX4oz+7xlYxFCCCGEMJMk+kKIenlyRDjt/Z3JLCjlscUH0emvriX3jsZnk11Yavh7QraFo6lZmFsYINP3a0WlkiX2hBBCCNFsSaIvhKgXGysN/5vSFXuthh1n0vl8U7SlQ7qstkSlmv4ek5ZPXnGZBaOpmdTpm0nq9IUQQgjRTEmiL4SotxAvR16+sT0A8/6OZH9c053C3tA2R/1X764ocCIxx4LR1CzcLRyQRL/WTIn+OcvGIYQQQghhJkn0hRANYkL3QG7o7I9Or/DoLwfIKSo163xFUVCU5jXtP6+4jP2xhocaEb5OgGEqf1PVxt0woh+dHU2p3ryvz1XJJcjwp4zoCyGEEKKZkURfCNEgVCoVr4/tQKCbHecyCnlh+dFaJe4lZXp+2HGWPm9tYOIXO8jML7kM0TaMndHplOkVWnrYM7y9LwBH45vuiL6/gz8O1g6U6cs4m33W0uE0fTJ1XwghhBDNlCT6QogG42xrzYeTu6JRq1hxMIHf98dXe6xer7DiYDxD523ihRXHSMwuYs/ZTKYs2ElaXvFljLrujPX5/cO86BDgAsCxJtyQT6VSSZ2+OSTRF0IIIUQzJYm+EKJBdQ9247Ghhu7uL6w4SkxafoX9iqLw76kUxvxvK4/+cpC4jAI8HW14cng4no42nEzKZfKXO0nJqdtSfaU6PYv3xPHtthjOXnTvhralvD6/f5gnHQKcAYhKyaOoVNeo960PSfTNYEz085KgrHk8fBJCCCGEALCydABCiCvPA4NC2Xo6jZ1nMnjk5wP89kAftFZq9sdl8vbqk+yKyQDAycaK+waGcHe/VthrrRjZwZdbF+zidEoeE7/YwaIZvfF3tav1fWPS8nn0lwMcPm8YVX/lj+OEeDpwXYQ310V406OlO1qrhnm+eS6jgDNp+WjUKnq39sDJxgpPRy1peSWcTMqlS5Brg9ynoUmibwZ7D7C2h9ICyD4PHq0tHZEQQgghRK1Ioi+EaHAatYr5k7oy4sPNHInP5rllR8guLGXd8WQAtFZqpl0bzIODQnFz0JrOC/FyZMl91zJlwU7Ophcw8Ysd/DyjN0Hu9jXeT1EUluw9x8srj1NYqsPFzpp2fs7sOZvBmbR8zmyN4autMTjZWNG/jSeDw70ZHOGNp6NNnV/j1tOG0fyuQa4421oD0N7fhU2RqRyNz5ZE/0qgUhlG9VNPQlasJPpCCCGEaDYk0RdCNApfF1veGdeJe3/Yx9J95wFQq2BC9yAeHRpW7Uh9Cw97ltx/LbddkOwvmtGbVp4OVR6fmV/CM78fZu0xw0OEa0M8mDepM34uduQUlbI1Ko0NJ1PYeDKF9PwSVh1JYtWRJFQquCbYnQ+ndMHPpfazBowurM836hDgzKbI1CZdpx/qGgpASkEKWUVZuNq6Wjagps6U6EudvhBCCCGaD6nRF0I0mmHtfbl3QAgAI9r7su6xAbw9vtMlp+MHuNqx+L5rae3lQGJ2ERO/2EFUcm6l47ZGpTHiw82sPZaMtUbFnJER/DS9lylxd7a1ZlRHP96b0Jk9zw1l+UN9eeS6UNr7O6MosPtsBu+vM39kW6dX2Gqsz2/jadrewd/QkK8pd9531DoS4BgAQFRWlIWjaQZMS+yds2wcQgghhBBmkERfCNGonh3VluOvDufz27sT6u1U6/N8nG1ZfN+1RPg6kZpbzOQvd3Ii0ZBAF5fpeP2v40z9ehfJOcWEeDmw7MG+3DewNWq1qsrrqdUqugS5MntYOH890p+fZ/QG4I9DCWQVmLek3+HzWeQUleFsa0Wn8m77gKnz/qmkXErK9GZd83KS6ftmkM77QgghhGiGJNEXQjQ6e23dqoQ8HW34eUZvOgQ4k55fwpQFO1l5KIGbP9nOgi0xAEzt3YK/Hu5vSrJrq3eIO239nCku0/NreWlBbRm77fcN9cRK898/o4FudjjbWlGi0xNZxQyEpkISfTNIoi+EEEKIZkgSfSFEk+bmoOWn6b3pEuRKVkEpj/x8gBOJObg7aPnqjh7MvbkjdlqN2ddVqVTc3jsYgB93xqLXK7U+t6r6fOM1jQ8cmnKdfrh7OACnMk5ZOJJmwNXwPUK2TN0XQgghRPMhib4QoslzsbPmx+m96NnSHYABbbxYM6s/Q9v51Ou6N3Xxx9HGirPpBWyLTqvVOblFpeyPywKgf5hnpf3GRL8p1+kbR/RPZ51Gp9dZOJomzrW8Rj8nAcrMK/EQQgghhLAUSfSFEM2Co40Vi2b0Yu2sASy88xq8nWzrfU0HGyvGdTM0pvthR2ytztkRnY5Or9DK06HKZf/a+zsDcLQJj+gHOgZiZ2VHsa6YuFyZkl4jBy+wsgUUyDGvxEMIIYQQwlIk0RdCNBtWGjXhvk7VNtyri9vKp+//cyKZxOzCSx5vrM+vajQf/hvRP5GYQ5muaTbk06g1pmX2pE7/ElQqqdMXQgghRLMjib4Q4qrWxseJXq3c0Svw865LJ3LV1ecbtfJwwEGroahUz5m0/AaNtSFJQz4zmBJ9qdMXQgghRPMgib4Q4qo3tXxU/+c95yitYRT+XEYBZ9MLsFKr6B3iXuUxarWK9v7GOv2mO30/zC0MkES/VlzK6/RlRF8IIYQQzYQk+kKIq97w9r54OtqQmlvMumPJ1R5nnLbfrYUbTrbW1R7XPqC8Tr8ZNOSLyoyycCTNgEzdF0IIIUQzI4m+EOKqp7VSM/kaw6jtjzurb8r337T9quvzjToYR/SbcEM+Y6IfnxdPbkmuhaNp4iTRF0IIIUQzI4m+EEIAU3q1QK2CHWfSOZ1SOfEt0+nZdrq8EV+bquvzjYwN+Y4n5KDXKw0fbANwsXHBx96wPOHprNMWjqaJMyb62VKjL4QQQojmQRJ9IYQAAlztuC7CkPj+uLPyyO3h+GxyispwsbOmY3kiX53WXg7YWKnJKy4jNqOgUeJtCKaGfBlSp18jY6KfEw+6UsvGIoQQQghRC5LoCyFEuam9DQndb/vOU1BSVmHflkjDaH6/UE80l1jez0qjpq2fsU6/6U7fD3cPB2rXkG/xnjh6zP2Hw+ezGjmqJsjBGzQ2oOgNyb4QQgghRBMnib4QQpQbEOZFC3d7covLWHkwocK+2tbnG3UwNuRrBnX6l0r0S3V63lsXSVpeMUv2XoXT19VqcJXO+0IIIYRoPiTRF0KIcmq1itt6GUb1f9gZi6IY6utziko5cC4LgH61TfTLG/Idaw6d97Oi0CvVLyv49/FkUnOLAdh1JuOyxNbkmJbYuwofdAghhBCi2ZFEXwghLjChRxBaKzXHEnI4WJ7c74hOR6dXCPF0INDNvlbXMTbkOxKfbXpg0NQEOwdjrbYmvzSfhLyEao+7cCWCqJQ80vOKL0d4TYt03hdCCCFEMyKJvhBCXMDdQcuYjn6AYVQfzJ+2DxDm44i1RkV2YSnnMwsbPtAGYKW2ItQ1FIBTmaeqPCY6NY/t0emoVODjbAPAnrNX4ai+JPpCCCGEaEYk0RdCiItMvTYYgD8PJ5KZX8KWqPJl9cJqXlbvQjZWGtr4OAFwrAnX6Ye5hQHV1+kv2mVIbK8L92Z4e18Adl6N0/ddDd8TkugLIYQQojmQRF8IIS7SNciVdn7OlJTpef/vU8SmF2ClVtG7tYdZ1zHW6R9tDnX6mVGV9hWV6vh133kApvYOpmcrdwB2xVyNiX55jX62JPpCCCGEaPqsLB2AEEI0NSqVituvDWbO70f4cachsesW7IajjXn/ZHYIdGHx3nPNovP+P7H/cM2P11TYV6ZX0LXQ46SCp/ZqUFBwDNdzDujxo4aaFxm80igQHAjo4cdr6ODZgUe7PUoX7y6WDkwIIYQQohJJ9IUQogo3dfHnjb9OkFtcBsAAM+rzjTr4ly+xV96QT6VqeqlxR8+OuNu6k1GUQZGuqNJ+Vfm8ryJdaYXPi8s/v6qoy1+8roi9yXu5ffXtXB98PbO6zaKFcwvLxiaEEEIIcQFJ9IUQogr2WivGdQ9k4fazgHn1+UZt/ZzRqFWk5ZWQkluMj7NtA0dZf45aR9aOW0t6UXqF7ZFJudz93R6s1Sp+e6Av7o5aAN5Zc4qVh+KZ3COImUPCLBGy5Xw7CrLPUTT2C77PPsry08v5O/ZvNp7byOTwydzX6T5cbV0tHaUQQgghhCT6QghRnam9W/DTrli8HG1My+WZw9ZaQ6iXI6eSczkan90kE30AWytbAhwDKmz7+PARlFJ3hnXyo6NvK9P260Jhxd5CjsZZVTrniuccDOlnobSMV/q8wm1tb2Pevnlsi9/Gjyd+ZMXpFczoNINb296KjcbG0tEKIYQQ4iomzfiEEKIaod5OLH+oL4vvuxaNum7T7tsHGKfvN92GfBfLLSplxcF4wNCE70LGhnzHErLJKbrKpu9ftMReG7c2fD70c764/gvC3cLJLc1l3r553LjsRladWYVe0VswWCGEEEJczSTRF0KIGrT3dyHI3b7O55s67zfhhnwXW3YgnoISHaHejvQqT+yN/FzsaOFuj16BfbGZForQQqpZYq+Pfx8Wj1nM3L5z8bb3JiE/gae3PM3UVVPJLm4+X3chhBBCXDkk0RdCiEZknPJ/LL55JHyKovBT+UoDt/VqUWUDQWPyv+vMVbbMnnGJvazYSrs0ag03hd7En2P/5JGuj2BvZc+RtCP8cvKXyxykEEIIIYQk+kII0ajalXfeT8guIj2v2MLRXNre2ExOJediZ63hlm6BVR7TK8QDgF0x6VXub66iknN5c9UJsgpKqj7AOHU/+1y117CzsmNGpxk82OVBAE5knGjoMIUQQgghLkkSfSGEaESONlaEeDoAcCyh6dfp/7TTMFp9Y2d/XOysqzzGOKJ/5Hw2BSVlly22xjb/nyi+2HyGX/edr/oAU6J/HvS6Gq/V1r0tACczTjZkiEIIIYQQtSKJvhBCNLL2AZap01cUhaTsIhRFqdXx6XnFrDqSBMBtvatfFz7I3Z4AVzvK9IrF6/Q3nEzmlk+3EZueX+9rnUwyPIg5k1bNtZz8QG0F+jLITazxWuHu4QDE58VLnb4QQgghLjtJ9IUQopF18Dd23r+8Cd9LK4/R+8313P/jPtJqUTawdN95SnR6OgW60CnQtcZjm0KdvqIozP3zBPvjsvitulH4WirV6YlNLwCo/qGBWgPO5UsKXtSQ72IuNi6m5QdPZZyqV2xCCCGEEOaSRF8IIRpZR+OI/mVcYu9AXCbf7zBMw197LJlhH2xm9ZHqR6H1eoVFuwzJ69RewdUeZ9QrpDzRt2Cd/v64LNPoe2RyXr2uFZueT5leKf97QfUHmpbYq75O3yjCPQKQOn0hhBBCXH6S6AshRCNrX77EXlxGAdkFjb/2vF6v8NLKYwAMDvciwteJjPwSHvhpP4/+cqDKZnNbTqcRl1GAk60VYzr7XfIePVsZGvIdOpdNUWnN9eqN5dd9/yXbUSm59brW6ZT/HhQkZBVSUqav+sBqltirijHRlzp9IYQQQlxukugLIUQjc7G3JsjdDoBjiY0/fX/J3nMcPp+Nk40Vb4/vxIqZfXlocGvUKlhxMIFhH2xmw8nkCuf8WN6Eb1y3QOy1Vpe8R0sPe7ydbCjR6TkQl9UYL6NGhSU6/jj03wyFs+kFFJfV/YFD1AUzAvQKnM+sZlTfNKJfeYm9i0lDPiGEEEJYiiT6QghxGXQoH9U/1sjT97MLSnlnraEm/NGhYXg72WJjpeHJ4RH89kAfQrwcSMkt5u6Fe3nq10PkFpWSmF3I+hOGxH9qDU34LqRSqSy6zN7aY0nkFZcR6GaHk40VOr3C2bQaptxfwunUilP/YzOqS/SDDH+aMaIfkx1DUVlRnWMTQgghhDDXpYdthBBC1FuHABdWH01q9M778/4+RUZ+CWHejkzr07LCvq4t3Fj1SH/eW3uKr7fFsGTvebadTqdToAt6xdBgL9Tbqdb36tXKnT8OJVikId/S8mn747sHsikylQNxWUQm5xLuW/v4L2Scum9nraGwVEdcdXX6xhH9uJ3wcc8ar+mNgrsDZKh1RH3Zj476q/jZesfxMPApS0chhBBCXDUk0RdCiMugfXnn/d0xGaTkFOHtbNvg9ziRmMMP5VPwX7mxPdaayomlrbWG58e0Y1h7X55Yeoi4jALiswoBmNr70k34LtS7vCHf/rhMist02Fhp6vkKaud8ZgHbow2zCMZ1CyQxq4gDcVlEpdStIZ9erxBdPqLfL8yTv48nc7a6zvve7cDaHkoLIK3mbvoqIELjxXZ7O04UJtIxt34NA5u1Te9Av9mgkV87hBBCiMtB/scVQojLoFuwG2721iRmFzHywy28P7Ezg8K9G+z6iqLw0opj6BUY3dGPPqGeNR7fs5U7qx/tz1urT/LDzlgC3ewY3t7XrHu29nLE01FLWl4Jh89nc01L9/q8hFr7fX88igLXhngQ5G5PmI8jAFHJdWvIF59VSFGpHq1GTb9QQ6Jf7Yi+vTvM3AuZMbW6dsSZZWw/t46THW+CNrfWKb5mTVHgp/FQVgTZceAeYumIhBBCiKuCJPpCCHEZONtas/T+Pjz88wFOJOZw57d7mNG/FU8Oj0BrVf8p3SsPJbD7bAa21mqeHd22Vuc42Fjx2s0duLtfKxxsNGbHoVKp6NnKnVVHkth1Jv2yJPp6vcKv+84DMKFHIABhPobp+nUd0TdO22/l6UBrL8NDg2pr9AFcAgwftdBWyYNz6zhZmgUt+9UpvmbPPQRSjkN6tCT6QgghxGVyFRcMCiHE5RXq7ciyB/twZ3nt/IItMYz/fDux1U0Tr6X84jLeWGVYq33m4FACXO3MOr+VpwPeTnUrJehZntzviql9nX5+cRkbT6WgL1+33hy7z2YQl1GAo40VIzoYZiCEeRuS87Np+dUvi1cDY6If6u1IsIc9YFgKsS7xXczYkC8yM5IyfVm9r9csebQ2/Jl+2rJxCCGEEFcRSfSFEOIysrXW8PKN7fny9u642ltz+Hw2oz/ayoqD8XW+5v82nCY5p5gW7vZM7395R0yNnff3xWZSqrt0kl1Spuf2r3dx17d7eG9dzTXuVTGO5o/u6GdaBtDPxRZHGyvK9Er1tfU1MCb6rb0d8XOxxUqtoqRMT1JO/Tvlt3Bugb2VPcW6Ys5mn6339ZoljzDDn5LoCyGEEJeNJPpCCGEBw9r7suqR/vRs6U5ecRmP/nKQJ5ceoqDEvFHf6NQ8vt56BoAXx7TD1vryNMQzCvdxwtXemoISHUfjL72iwGt/Hmd/XBYAX2w+U6tzjPKLy1h1JBH4b9o+GEoIQstH9SPrUKcflWI4J9TbESuNmiB3w6h+bHV1+mZQq9SEu4cDcCLjRL2v1yx5hBr+lERfCCGEuGwk0RdCCAvxd7Vj0YxePDokDLUKlu47z5j/beV4Qk6tzlcUhVf+OE6pTmFwuBdD2jZcc7/aUqtVptr8S03fX7r3nGlVgPb+zuj0Ck/9erhWMwEA/jqSSEGJjlaeDnQPdquwr42pIZ95dfqKovw3db+8Pr+FKdGvX0mFkXH6/smMkw1yveocjc/mXE29BSzFmOinSaIvhBBCXC6S6AshhAVZadQ8dn0bFs3oja+zLWdS87n5k21M/24Pi3bFkZRd/fTxv48nszkyFa1GzYs3tEelUl3GyP/Tq1V5on8mvdpjjsZn89zyowDMGhrGwrt64mJnzfHEHBZsOVOr+xin7Y/vHljptYZ5GxvymTein5pXTE5RGWoVhHg5AJjq9GtsyGeGtu6G5oiNmejHZxVyy6fbGffZdopKdY12nzoxJvo556GkCT6IEEIIIa5AdUr0o6Ojef7555kyZQopKSkArF69mmPHjjVocEIIcbXoHeLBqkf7M7StDyU6Pf+cSOHZZUfo/eZ6xvxvC/P+juTQuSxTg7iiUh2v/XUcgOn9W9HK08GisQPsPZuJrooGdpn5Jdz3wz5KyvQMifDmkevC8HKy4cUx7QCY/0+UaR376sSm57M7JgO1Cm7pVrnjfVgdR/SNo/lB7vamsgfjiH61S+yZyTiifyLjBIpS/wZ/VdkTk0GJTk9KbjGrjybW+3p6vdJwsdq7g62r4e8ZtXuoI4QQQoj6MTvR37RpEx07dmTXrl38/vvv5OUZfkk6dOgQL730UoMHKIQQVwt3By0L7ujOqkf688SwNnRt4YpKBUfjc/hofRQ3fbKNnm+s56lfD/HcsqOcyyjE19mWhwaHWjTutn7OONlYkVtcVqnsQKdXeOSXA8RnFRLsYc+8SV1Qqw2j8bd0C2BAGy9KyvQ889vhGrvcG0fz+4V54edSeVUB4xJ7MWn5tS4FACpN2wdo6WF4aFKXxn5VCXUNxUptRW5JLgn5CQ1yzYsdiMs0/f2HHbH1ulZ6XjH93t7A1K93NUyyr1JJnb4QQghxmZmd6D/zzDPMnTuXv//+G61Wa9p+3XXXsXPnzgYNTgghrjYqlYp2/s7MvC6MZQ/2Zc9zQ3lvQmdGdfTF0caKtLxiluw9z2/7DYnvc6Pb4mBjZdGYNWoVPVoaauZ3xVScvv/+ulNsiUrDzlrDF7d3x8XO2rRPpVLxxtgO2Gs17DmbyU+7qk5Q9XqF3y6Ytl8VfxdbHLQaQ+f9tNon6BcurWdkWmIvvaBBEl1rjTWhroZE92R640zfP3guy/T3/XFZte7zUJXvdsSSkF3EttPpHDGjWWKNJNEXQgghLiuzE/0jR44wduzYStu9vb1JS0trkKCEEEIYeDraML57IJ/e1p39L1zPj/f04q6+LQn1dmRct0DGdPKzdIjAf8vsXdiQb83RRD79NxqAt8Z1JMLXudJ5gW72PD3CMLX9rdUnic8qrHTM9uh0ErKLcLa1Ylg7nyrvr1KpCPUx1unXfvp+VYm+set+bnEZmQWltb5WTS6cvt/Qikp1HE80JPZdglwB+LGahyaXUlii44cdZ02fGx+w1JunMdGPbpjrCSGEEKJGZif6rq6uJCZWrv87cOAAAQGV6yaFEEI0DK2Vmn5hnrx0Q3v+mT2Q9yd2tlgDvosZG/LtOZuBXm/oZP/4kkMA3NOvFTd1qf7/h9t7B9Mj2I38Eh3PLTtSaRR96b5zANzYxb/G5QPb1GGJvaoSfVtrDX4utkDz6Lx/LCGHUp2Cp6PW9NBk+YF4covMf0ixdN85MgtKsbU2/Hqw4lACxWUN0NxPRvSFEEKIy8rsRH/y5Mk8/fTTJCUloVKp0Ov1bNu2jSeeeII77rijMWIUQgjRxHUIcMFeqyGroJT9cZnc98Ne8kt09GrlzjMjI2o8V61W8da4Tmg1av49lcryg/GmfTlFpaw5mgTA+O5BNV7H1JCvliP62YWlpOQWA9D6gkQfLlxir2E77zfGiL6xPr9LkCu9Q9wJ9XakoETH8gPxlzizIp1e4astMQA8NTwCH2cbsgpK2Xgypf5BmhL9qPpfSwghhBCXZHai/8YbbxAREUFQUBB5eXm0a9eOAQMG0KdPH55//vnGiFEIIUQTZ61Rm9a2v/eHfUSn5uPrbMvHt3bDWnPp/2pCvR15dGgYAK/8cZy0PEMC/uehRIrL9IR5O9I50KXGaxgb8kXVckTfOJrv42yDs611hX2mJfYaKNEPdw9HhYqUghQyijIufYIZDpTX53dt4YZKpWJqrxYA/LAz1qweA2uPJRGXUYCrvTWTewZxc1fDLIxf95n3wKBK7iGGPwszoaBhX78QQgghKjM70ddqtSxYsIDo6Gj+/PNPfvzxR06ePMkPP/yARlP9lEohhBBXNuMyexn5JWg1aj6b2g0vJ5tan3/vgBDa+jmTVVDKK38Ylg40Ttuf0CPwkmUKYeWj8rXtvB9dnuiHeTtV2hdc3nk/NqNhpu47WDvQwtmQgDd0Q76DcVkAdC2vz7+leyB21hoik/PYczaz+hMvoCgKX2w2LH13R+9g7LVWjO9maHz476kU0ssfvNSZ1gGcy8s3ZPq+EEII0ejMTvSNWrRowahRo5g4cSJhYWENGZMQQohmqGd5nT7Ayze2p2sLN7POt9aoeXd8JzRqFX8cSuCLTdEciMtCo1aZRpdrEuBqh4NWQ6lOqVVt/enUyvX5Rg09og+N05AvJbeI+KxCVCroWD7jwdnWmpu6+APw487aNeXbHZPBoXNZ2FipuaNPS8AwQ6JToAtleoUVBxtgWUCP1oY/JdEXQgghGp3ZazLdfffdNe7/5ptv6hyMEEKI5qt7Czfu7NMSH2dbpvSsuZ6+Oh0CXJjRP4TPN0Xz5mrDyPegNl54O9le8lyVSkWotyOHzmcTlZxHaBUj9RcyTt2/uD4fINi9fES/gRP9tWfXNmhDPuNofhtvJ5wuKD+Y2juYX/acY/XRRNLy2uHpWPPMii/LR/PHdQ+scOy4boEcPp/Nb/vPc3e/VvUL1iMUYjZLoi+EEEJcBmaP6GdmZlb4SElJYcOGDfz+++9kZWU1QohCCCGaA7Vaxcs3tueBQa3rtRrArKFhtPJ0MH0+oUdgrc811ulHJl+6IV9UiqGWP9SrcqLfonxEPy2vmPzislrfvybGhnzGRF9RFD5aH8Xv++u+hJ2xPt+4rJ5RhwAXugS5UqpTWLznXI3XOJ2Sy/qTKahUMP2iZP7Gzv5Ya1QcS8jhZFJOneMEwKN89p8k+kIIIUSjM3tEf9myZZW26fV6HnjgAVq3bt0gQQkhhLh62VpreOuWjkxesBMvRxuui/Cp9bnGOn1jEl+dolId5zMLgaqn7rvYWeNmb01mQSmx6QW083c24xVUzTh1PzYnloLSAo6eL2Le35FYa1Rc386nwoh8bZnq81u4Vto3tXcwB89lsWhXHPcPbI1GXfXDlwWbDZ32r2/rQ8hFDz3cHLQMifBhzbEkftt3nudGtzM7RhNT5/3oul9DCCGEELVS5xr9ChdRq5k9ezYffPBBQ1zussjKyqJHjx506dKFDh06sGDBAkuHJIQQolyvEA/+mNmPX+/vg9aq9v9VtTF13q95RD86NQ9FAVd7azwdtVUe06K8IV9cAzXk87DzwNvOGwWFU5mn2HjKsGxdqU5ha1Sa2dfT6RUOn88CoEsVif6YTn642FkTn1XIpsiql8hLySliWfkyfPcNDKnymHHdDTMqlh1IoKwWTQ6rZarRjwZ9Pa4jhBBCiEtqkEQfIDo6mrKyhpneeDk4OTmxefNmDh48yK5du3jjjTdIT0+3dFhCCCHKdQhwMU2hry3j6PyZtLwak1JjfX6ol2O1ZQbB7o3QkM+jvCFf+okK69Ovr8Na9VEpueSX6HDQaqpcOcDWWsOE8iT9x51xVV5j4fazlOj0dA92o3uwe5XHDAr3wsNBS1peMZujUs2O08Q1GNRWUFYIOQ2wZJ8QQgghqmX21P3Zs2dX+FxRFBITE/nrr7+YNm1agwXW2DQaDfb2hl/iiouLURTFrPWGhRBCND0BrnbYazUUlOg4m15Q5bR8uCDRr2Y/QMvyhwxnG7gh3+bzm9mfdJSTSS6m7f+eSkGvV1BXM72+KgfKp+13CnStdlr+bb2D+WprDBtPpXAuo4Ag9/8enOQVl5m68t87oOrRfDCshnBjF3++3XaW3/bFm1VKUYHGCtxaQXqUoU7ftW4NG4UQQghxaWaP6B84cKDCx+HDhwF4//33mT9/foMFtnnzZm644Qb8/f1RqVQsX7680jGffPIJLVu2xNbWll69erF7926z7pGVlUXnzp0JDAzkySefxNPTs4GiF0IIYQlqtcqUvJ+uoU6/Nol+Q0/dh/8a8h1MPg5AxwAXnGysSMsr4XB8tlnXqqk+36iVpwP9wzxRFFi0u+Ko/uI958gpKqOVpwND29acvI/rZpgZ8PfxZLILSs2KswJTnb405BNCCCEak9kj+hs3bmyMOCrJz8+nc+fO3H333dxyyy2V9i9evJjZs2fz+eef06tXL+bPn8/w4cM5deoU3t7eAHTp0qXKcoJ169bh7++Pq6srhw4dIjk5mVtuuYXx48fj41P1LzvFxcUUFxebPs/JqWf3YSGEEI0i1NuRw+eziUzOY0SHqo+pTaIf7NEIU/fLG/KlFJ8FyhjWzocTSTmsOpLEhhPJlbrn1+TAuUygcsf9i93WK5gtUWks2XOOWUPDsLHSUKbT881WQxO+6f1bVTsjwKi9vzMRvk6cTMrlj8MJTO0dXOs4K7iwTl8IIYQQjabBavQb2siRI5k7dy5jx46tcv+8efOYMWMGd911F+3atePzzz/H3t6eb775xnTMwYMHOXr0aKUPf3//Ctfy8fGhc+fObNmypdp43nzzTVxcXEwfQUEy5VAIIZoiU0O+lKob8pXq9JxNN4zS1ybRT8gqpKSsYZrHBTgG4KR1QkGH2iaFwRHepqnwG07Vvk4/t6jU9PqqasR3oaFtvfF1tiU9v4Q1R5MA+OtIIvFZhXg4aE2j9TVRqVSm436rx3KAeMoSe0IIIcTlUKtEv2vXrnTr1q1WH5dDSUkJ+/btY+jQoaZtarWaoUOHsmPHjlpdIzk5mdxcw7TO7OxsNm/eTHh4eLXHz5kzh+zsbNPHuXM1r0sshBDCMkxL7CVXPXU/Nr2AUp2CnbUGfxe7aq/j5WiDvVaDXoHzmQ0zqq9SqfCzNYxqu7im0M7PmUHhXqhUcDQ+h6Tsolpd5/D5bBQFAt3s8HayrfFYK42ayT0ND6d/2hmHoih8ufkMANP6tMTWWlOre97U1R+NWsWBuCyiU2te1aBapqn7UXU7XwghhBC1Uqup+zfffHMjh2GetLQ0dDpdpWn2Pj4+nDx5slbXiI2N5d577zU14Xv44Yfp2LFjtcfb2NhgY2NTr7iFEEI0PuOI/pnUfMp0eqw0FZ9pG6ftt/Z2qLH5nUqlooW7PSeTconNKKi0xnydlQQABwnwzkCtVuHpaEPnQFcOnsti46kUpvRscclLHDyXBVx62r7R5Gta8L8Np9l9NoOF289yLCEHW2s1t5sxBd/byZaBbbzYcDKF3/ad56kREbU+18SY6GfFQVkxWMn/q0IIIURjqFWi/9JLLzV2HJddz549OXjwoKXDEEII0cACXO2ws9ZQWKojNqOA1hcl6MbR6NBaJO7BHuWJflo+VD/pyyyJqe7gBCqbBNO2IRHeHDyXxfoTtUv0D8QZ6vO7tnCr1T19XWwZ1s6H1UeTePVPQyPAiT2CcHPQmhX7uG6BbDiZwrID8Tw+LPyStf2VOPqA1hFK8iDzLHg10JsqhBBCiAqabI1+TTw9PdFoNCQnJ1fYnpycjK+vr4WiEkII0RRc2Hk/KrnyFHPjiH6YT+W15y8WXN55PzajYabux6bnk5TqAUBy8Rn0iqH2/7q2hiay206nUVSqq/EaiqKYltYzp3mfsYGeooBaBdP7Vb+kXnWGtPXG2daKxOwidkSnX/L4kjI9q48kciyhfEUBleqChnxSpy+EEEI0FrMTfZ1Ox3vvvUfPnj3x9fXF3d29wsfloNVq6d69O+vXrzdt0+v1rF+/nmuvvfayxCCEEKLpCqthib2o8m0Xj/RXpUX5uvNxDdR5/99TqeiLvVAp1hSWFXAu19DvpZ2fM77OthSW6th5puYE+nxmIen5JVhrVLT3d671vfu09iDE0/DgYmQHP1qUNxs0h621hhs6Gxra1tSUT6dX+H3/eYbM+5cHftrP1K92/dfQUJbYE0IIIRqd2Yn+K6+8wrx585g0aRLZ2dnMnj2bW265BbVazcsvv9xggeXl5XHw4EHT9PqYmBgOHjxIXJxhHeDZs2ezYMECvvvuO06cOMEDDzxAfn4+d911V4PFIIQQonkyjtZHXjSir9crRKdcuuO+kWmJvQYa0d94KgXQ4GXTEoATGScAQz+AwRGGUf0NJ2vuvr+/fNp+Oz/nWjfSM97j5RvbM6CNF0+NqPuU+XHdDd331xxNIq+44hK2iqKw5mgiI+ZvZvaSQ5zLKAQgs6CU7dFphoM8pPO+EEII0djMTvR/+uknFixYwOOPP46VlRVTpkzhq6++4sUXX2Tnzp0NFtjevXvp2rUrXbt2BQyJfdeuXXnxxRcBmDRpEu+99x4vvvgiXbp04eDBg6xZs6ZSgz4hhBBXH1Pn/YuW2EvILqSwVIeVWmVK4mvSsnzqflxGAXq9Uq+YCkt0punuXXzaA3Ay/b8GskMuSPQVpfp7GRvx1bY+/0ID2njx/d09TSUJddE1yJUQTwcKS3WsOpIIGBL8TZGp3PjxNu7/cT9RKXm42Fnz9IgIxpc/GFh7zLC0338j+tF1jkEIIYQQNTM70U9KSjJ1p3d0dCQ721B3N2bMGP76668GC2zQoEGmjvgXfixcuNB0zMyZM4mNjaW4uJhdu3bRq1evBru/EEKI5svYeT86NQ/dBQm6sT6/lacD1ppL/xfo52KLlVpFSZmepJzaLX1XnR1n0igu0xPgakevAMP/oycz/kv0+4Z6YmOl5nxmYaUHFBeqS31+Q1KpVKZR/V/3nWd3TAaTvtjJtG92cyQ+GwethkeuC2XzU4N5YFBrbu4SAMC6Y8mGr4WxRj9NltgTQgghGovZiX5gYCCJiYYn+K1bt2bdunUA7NmzR5afE0II0SQEutlha62mpExP3AXT7o2Jfm2m7YNhDfpANzsAYutZp7/xZCoAgyO8aOveFjBM3TeO3ttpNVzb2tCob/2JqqfvF5fpOJ6QA0DXFq71iqc+xnYNQKWC3TEZTPxiB7vPZqC1UjO9Xys2PzWY2cPCcbGzBqBXiDsudtak55ew92zGf4l+fgoUZVvsNQghhBBXMrMT/bFjx5qa4D388MO88MILhIWFcccdd3D33Xc3eIBCCCGEuS7svB+Z/F9DPnMTfbig8356fp3jURSlvD4fBod7E+YWhkalIaMog9TCVNNx/03fT67yOscTcijR6XF30JoaBVqCv6sd/UI9AbBSq7itVws2PzmY58e0w8Ox4kN/a42aoW0NZXVrjiWBrQs4GF6nTN8XQgghGoeVuSe89dZbpr9PmjSJ4OBgtm/fTlhYGDfccEODBieEEELUVZi3E0fjczidksdwQ0l8HRP9+jfki07N43xmIVorNde29sDWyopWLq04nXWakxkn8bY3JL6DI7xhxTH2xWaSVVCCq33Fde6N9fldglxRqcxcw76BvT2uEysPJTCqFh38R3Tw5bf951l7NIkXx7RD5RFqGNFPj4aAbpcpYiGEEOLqYfaIflFRxRrF3r17M3v2bEnyhRBCNClhPhVH9BVF4XSq+Yl+QyyxZ5y23zvEA3ut4Rl7hHsEACfST5iOC3SzJ9zHCb0CmyJTK13HWJ/f1UL1+Rfyd7Xj/oGta7VMX/8wT+y1GhKyizgSn/3f9H3pvC+EEEI0CrNH9L29vRk7dixTp05lyJAhqNVmPysQQgghGl2Yt6EhX1T5Envp+SVkFZSiUkFrr9on+sbO+2frMXX/v2n7XqZtEe4R/HnmT46kHSG14L+kvncbayLTc1h1PJI+bSqO6O+Pj0VlVUgrX12Fc5qDPm20rD+ZzO+HTuDnGgAaNaQeBzNfh4edB2qV/O4hhBBC1MTsRP+7775j0aJF3HTTTbi4uDBp0iSmTp1Kjx49GiM+IYQQok7alI/oGzvvGxN+Q6O+2q8/b5y6H5degKIoZk+Zzy0qZc/ZDMBQn29kbMi36fwmrlt6XYVzHMNgeylct/Sii3mBoxfM2QvsNSuMJsExDH5LM3zQIhAKD8JFr/1S+vj34Yvrv2iU+IQQQogrRZ2a8S1dupTk5GTeeOMNjh8/Tu/evWnTpg2vvvpqY8QohBBCmC3QzR4bKzXFZXrOZRT8N23fjNF8gKDyqfu5xWVkFpSaHce202mU6hRCPB1o6fnf+vWdvDoR7haOWqWu9IGiQlFUqPhvmwo1iqICRVXlOc3hQyl/XWpUqBXF8FHLc1UYHrDsTNxJqd78r4MQQghxNTF7RN/IycmJu+66i7vuuovjx49z22238corr/Diiy82ZHxCCCFEnWjKO+8fS8ghMjmX6Do04gOwtdbg52JLYnYRZ9PzcXfQXvqkCxjr8wddMJoPYGtly683/lrlObN+OcDygwncNzCEOSMNI//vrT3FxxtPM6F7IO9O6GxWDE3F3Qv3sOFkCk8NbcmD2/qBoofHT4GT7yXP1St6rvnxGkr0JaQUpBDgGHAZIhZCCCGapzoXuRUVFbFkyRJuvvlmunXrRkZGBk8++WRDxiaEEELUS1h5Uh+VkmfquG+s3TdHXRvyVVhWL8LrEkf/57ry5eg2nkwxbTtwLhOALi1czYqhKRnR3pDQrzqRAa4tDBtr2ZBPrVLj5+gHQEJeQqPEJ4QQQlwpzE70165dy7Rp0/Dx8eGBBx7Ax8eHdevWERsbW2HpPSGEEMLSwnyMDflyiUoxdN9vbeaIPlywxJ6Zif7xxBxScouxs9bQs5V7rc8bGOaFRq0iMjmPcxkF6PQKh85lA9A1yM2sGJqSoe18UKvgaHwOhc6tDBvN6Lzv7+APSKIvhBBCXEqdavQLCwv5/vvvSUpK4osvvmDAgAGNEZsQQghRL8YR/f1xWSTnFAPmT90HCC7vvB9rZuf9f08Zpu33DfXExqr2DQBd7K3pHmxI6DecTCE6NY+84jLsrDWmJoPNkbuDll6tPACI1pVP1zcn0XcsT/TzJdEXQgghamJ2jX5ycjJOTuZPexRCCCEutzblI/pxGYaReC8nG1zsrM2+jmlEP8O8EX3j1Htzpu0bDYnwZndMButPpmBXvkpAp0AXrDTNe2m5ER182XEmnR057nQASI+u9bl+DjJ1XwghhKgNs39bkCRfCCFEcxHkbui8bxRWh9F8gGB344h+7RP9rIIS9scZ6uovbsRXG0PaGs7ZGZ3Otug0ALq2aL7T9o2GtTf0H9iU5mzYUIcR/cS8xAaPSwghhLiSNO9hASGEEKIGGrWK1hcsp1eXafsALcpH9NPyiskrLqvVOZuj0tArEOHrRICrndn3bO3lSJC7HSU6PX8eNiS2XYJczb5OU+PnYkfnIFfO6A2j82TEgK5276lM3RdCCCFqRxJ9IYQQV7Qwn/on+i521rjZG6b817bzvnHafl1G8wFUKhVDIgyj3zq9AkDXZtxx/0Ij2vuSiDslKi3oSyErtlbnGZvxJeYnolf0jRmiEEII0axJoi+EEOKKZqzTBwj1qnsjuxblDfniMi7dkE+nV9gUaWjENzjc/Pp8o+si/ntI4O9ii4+zbZ2v1ZQMb++DgpozOsODjNrW6XvZe6FRaSjTl5FakNqIEQohhBDNW50T/dOnT7N27VoKCwsBw1rBQgghRFNz4Sh+XUf0AYLdDdP3z9ZiRP/w+Swy8ktwsrWiW3Dd6+p7hbhjrzU04rsS6vONQrwcCfdx4oxSPn2/lnX6VmorfB0M3foT8xu/Tr+4TMe+2Az5HUcIIUSzY3ain56eztChQ2nTpg2jRo0iMdHwH+0999zD448/3uABCiGEEPXRIcAFlQq8nWzwcrKp83VaGjvv1yLRX3HQUEM+IMwL63p0ybex0jC4fOp/z1budb5OUzS8gy8xivlL7F3OzvuPLT7IuM928Ou+841+LyGEEKIhmf3bx2OPPYaVlRVxcXHY29ubtk+aNIk1a9Y0aHBCCCFEfQW42vHD3b34/p6eqFSqOl+ntlP3P94QxcLtZwEY08mvzvczeuWm9rw9riO39mpR72s1JSPa+3JGb6i516VFXfL4whIdn2w8ja7EFWj8hnw7z6Sz6kgSAEsl0RdCCNHMWJl7wrp161i7di2BgYEVtoeFhREbW7tmOkIIIcTl1C/Ms97XCL7EiL6iKLy37hSfbDTUmz9+fRtGdqx/ou/paMOka66sJB+grZ8TBU4toRhKkqOoaV2CE4k5PPLzAaJS8tB66rHxatwRfb1e4fW/Tpg+33M2g6TsInxdroweCUIIIa58Zo/o5+fnVxjJN8rIyMDGpu5TIoUQQoimzFijn5BVSElZxY7viqIw968TpiT/uVFteXhI2GWPsTlRqVS0adcVALvCRCipPFNCURS+2RrDTR9vIyolDycbK/Slhl4F22NPN1rt/PKD8RyJz8bRxooIXycUBf460vg9AYQQQoiGYnai379/f77//nvT5yqVCr1ezzvvvMPgwYMbNDghhBCiqfByssHOWoNegfOZ/43q6/UKzy8/ytdbYwB47ab2zBgQYqkwm5UBXcLJVAwNEktSK9bpp+UVc9fCPbz653FKdHqGRHjz75ODmNilEwBxOfG8teZkgyf7hSU63l17CoCHBocy+ZogAP483Pg9AYQQQoiGYvbU/XfeeYchQ4awd+9eSkpKeOqppzh27BgZGRls27atMWIUQgghLE6lUhHsYc/JpFxiMwoI8XJEp1d46tfD/Lb/PCoVvD2uExN7BFk61Gaja5Arx9T+uCmRRB4/SIeAzgD8eyqFJ5YeIi2vBK2VmudHt+X23sGoVCru79uDP5aB2jqTLzZFU1yq56Ub2tWr/8KFvt56hsTsIgJc7birb0tyCkt55c/jHIjL4lxGAUHulWc1CiGEEE2N2SP6HTp0IDIykn79+nHTTTeRn5/PLbfcwoEDB2jdunVjxCiEEEI0CS3Kk7zYtHxKdXoe/eUAv+0/j0atYv6kLpLkm0mtVlHmapj9EH/6CMVlOl794zh3fruHtLwSwn2c+GNmP+64tqUpkTcur6dSl6LS5LNw+1meXXYUvb7+I/spuUV8+q+h/OKpEeHYWmvwdraldysPQKbvCyGEaD7MHtEHcHFx4bnnnmvoWIQQQogmraWnofN+VEoeD/60n7+PJ2OtUfG/Kd0Y0cHXwtE1T+4t2kHmGkqSI7n5k+2cSMwB4M4+LXlmZAS21poKx2s1WrztvEkpTOHREZ58uKqIn3fHUVKm553xndCo6z6y/8HfkRSU6OgS5MqNnf1N28d09mPHmXT+PJzA/QNlUEMIIUTTZ/aI/rfffsvSpUsrbV+6dCnfffddgwQlhBBCNEXGEf1Fu+P4+3gyNlZqvryjhyT59RAQaqi5D9DHcyIxB3cHLV9P68HLN7avlOQb+TkaVjNoF6Rj/qQuaNQqftt/nlmLD1Kq01d5zqWcTMph8Z5zALwwpm2FUoCRHfzQqFUcjc8hJq3m5RWFEEKIpsDsRP/NN9/E07PyMkXe3t688cYbDRKUEEII0RQZl9hTFLCz1vDtndcwONzbwlE1b1ZehtUJWqmS6B/myZpH+zOkrU+N5/g7GEbbE/MTualLAJ/c2hVrjYo/DiUwc9F+ist0Zsfx+l8n0CswqqMv3YPdK+xzd9DSN9Twu8+fh6QpnxBCiKbP7EQ/Li6OVq1aVdoeHBxMXFxcgwQlhBBCNEURvs5oNWocbaz44Z6e9Amt/OBbmMndUKPvpsrju0mt8Xa+9Fr1/o6GRD8hz5B0j+jgx+dTu6PVqFl7LJn7f9hHQUlZrUP491QKW6LS0GrUPD0iospjxnQyzCL4Q7rvCyGEaAbMrtH39vbm8OHDtGzZssL2Q4cO4eHh0VBxCSGEEE2Ol5MNfzzcDxc7a3xdLp2QilrQ2oNzIOScR52wH/y7XvIUf2snABKyz0JeKgBDgtR8N6kVjy89yOFT2Uycd55nR7WjT0jNv5uU6fV8+udOPMhn6jUtCLYpgLyCSseNaKnhfU0O6cnZRMfE0NrL0fzX2pC09qB1sGwMQgghmiyzE/0pU6bwyCOP4OTkxIABAwDYtGkTjz76KJMnT27wAIUQQoimJNzXydIhXHk8WkPOeVg0oVaH+9nZgq83CWf/he2hpu3XAts1gAYoAn6/9LWsgCUAtsDB8o8qOAO7rAFroCm0JNJo4Y4VENzH0pEIIYRogsxO9F977TXOnj3LkCFDsLIynK7X67njjjukRl8IIYQQ5us4AeJ2gq64Vof7lxmm5Sda1WnxoCuDrgTObJJEXwghRJVUiqLUaeHZyMhIDh06hJ2dHR07diQ4OLihY2vScnJycHFxITs7G2dnZ0uHI4QQQlw1CkoL6LWoFwDbpmzDWVv1/8MH4jKZ8/sRTiblAjCwjRevj+1AoJuhqeK7a0/yycZoQjwdWPvYAKw1Nbcuyisuo/trf1NcpufPh/vRIcClAV+VGba8D+tfhc63wtjPLBODEEIIi6htHmp2Mz6jNm3aMGHCBMaMGXPVJflCCCGEsBx7a3vcbNwASMxLrPa4ri3c+OPhfjw5PBytlZpNkakM+2Az32yN4VxGAV9tiQHgmZERl0zyARxtrBjS1rDKgkWb8rmW/96VJU2QhRBCVM3sOW86nY6FCxeyfv16UlJS0Osrrle7YcOGBgtOCCGEEKIqfo5+ZBZnkpCXQLh7eLXHWWvUPDQ4lBEdfJnz+xF2x2Tw6p/HeX/dKYrL9PQOcef6djUv53ehMZ38WXUkib8OJ/LMiAhUKlVDvBzzuAQZ/pREXwghRDXMTvQfffRRFi5cyOjRo+nQoYNl/oMTQgghxFXN38Gf4+nHSciv3ch6ay9HfpnRm1/2nOPNVSfILS5DpYLnR7cz63eZweHe2Gs1nM8s5OC5LLq2cKvrS6g71xaGP3PiQVcGmqu4V4EQQogqmf0/wy+//MKSJUsYNWpUY8QjhBBCCHFJ/o7+QM1T9y+mVqu4tVcLrovw5rN/TxPm42R2nb2dVsP17XxYcTCBPw4lWibRd/QxdN3XlRiSfTcpoRRCCFGR2TX6Wq2W0NDQSx8ohBBCCNFIjIl+bUf0L+TrYssrN3Vgau+6JchjOhnu/deRBPT6OvU0rh+1WqbvCyGEqJHZif7jjz/Ohx9+SB2b9QshhBBC1Jufgx8ACXmXvynegDaeONlakZxTzJ6zGZf9/sB/0/cl0RdCCFEFs6fub926lY0bN7J69Wrat2+PtbV1hf2///57gwUnhBBCCFGVAMcAABLzaz91v6HYWGkY3t6XX/ed58/DifQK8bjsMUiiL4QQoiZmj+i7uroyduxYBg4ciKenJy4uLhU+hBBCCCEam5+jYUQ/oyiDgtKCy37/Gzobpu+vPppImU5/iaMbgST6V41Fu+LYEpVq6TCEEM2M2SP63377bWPEIYQQQghRa85aZxytHckrzSMpP4kQ15DLev8+rT1ws7cmLa+EnWcy6BfmeVnvj2t5f4EaEv30vGJsrDU42khX/ubqRGIOzy47goeDln0vXG/pcIQQzYjZI/oAZWVl/PPPP3zxxRfk5uYCkJCQQF5eXoMGJ4QQQghRHeOofl0a8tWXtUbNiA6G+/95+PLf3zSin111op+SU8Tg9/6l9xvr+XJzNCVlFph1IOrt4LksANLzS8gqKLFsMEKIZsXsRD82NpaOHTty00038dBDD5GaaphK9Pbbb/PEE080eIBCCCGEEFUJcDDU6VuiIR/ADZ0Nif7qo0mXP5E2JfrxoCurtHv9yRRyisrIKy7jjVUnGfHhZjZHWn76d3GZjo83RLHm6OXvrdAcHT6fZfp7bPrlL1ERQjRfZif6jz76KD169CAzMxM7OzvT9rFjx7J+/foGDU4IIYQQojqmEX0LJfq9Wnng5WRDdmEp206nXd6bO/qARguKDnIrv/5NpwxJff8wTzwdtZxJzeeOb3Zz7/d7OZdhmYQxq6CE27/ezXvrIpm1+CBFpTqLxNGcHD6fbfp7rIW+bkKI5snsRH/Lli08//zzaLXaCttbtmxJfHx8gwUmhBBCCFETfwdDQzxLTN0H0KhVjO5oeNjwx+Wevq9Wg0uQ4e8X1emX6vSmBw+PDwtn/eODuLtvKzRqFeuOJzNk3ibmrTtFYcnlS7Rj0/O55bPt7I4xLEdYVKpnR3T6Zbt/c1RUquNUUq7p87j0fAtGI4RobsxO9PV6PTpd5f8Yzp8/j5OTU4MEJYQQQghxKcYR/cQ8y00DN07f//NwIpHJuZc4uoH9v707D2+ySt84fr/pku5py1JooZQd2QUEER1EGVEUBFwYxRFBnHHEcanjghs/nVHAEcRtxH2Z0REdERUVFxRQRNk3ZQcpW6F0pS1dk98faQIVCklJ+jbp93NduZK8eZM8lYC9c855Tg2d91dn5OlwaYUSosLULcUmW2SYHh7WWZ/ffp7OadtIZRV2PfPNNg2esUifrd8vh8Ph1zJX7srVyH/9oB1ZRUq2RWhghyaSpG82HfTr+wa6TZmHVWE/+mfD1H0A3vA66F900UWaOXOm+75hGCosLNTkyZM1dOhQX9YGAABQo5SYqjX6Jo3oS1Kv1AQN7NBEZRV23f7uGpVW1OF09BqC/sLNzgD9uw5NFGIx3Mc7JMXq7Qn99MKYXkqJj9TevCO65e1Vuu7Vn3SosNQvJX66br+ufflH5RSVqWtKnOZOHKDr+zt3DPhm00G/f8kQyFzr811/hkzdB+ANr4P+k08+qSVLlqhz584qKSnRtdde6562P23aNH/UCAAAcJzm0c7R9KziLJVXlptSg2EY+udV3ZUYHa6N+ws048stdffmNQT9RVVN91wj58cyDEOXdGuur9MH6rYL2ys81KIl27I1ac56n4Zuh8OhWYu2a+I7q1RaYdfgM5pq9p/6q2lchM5p21jWUIv25h3RlgPs2FQT1/r8Ae2cWzdmMKIPwAteB/2WLVtq7dq1euCBB3TnnXfqzDPP1NSpU7V69Wo1bdrUHzUCAAAcJzEiUREhEXLIocyiTNPqaBoboamjukmSXvpuh37YXkeN+eKdI+PHBv2Dh0v0874CSdJ57Y8P+i6R4SFK/30HfXjLOQoLMfTVLwf02Xrf/DesqLTrgbkbNPXzTZKkG85J04t/7KNoa6j7vc9p20gS0/dPZn1V0L+su/MLrcyCEhoYAvCYV0G/vLxcbdu21datWzVmzBg98cQT+te//qUJEyZU68APAADgb4ZhHO28b+L0fUm6qEszXdO3pRwO6a731iq/2PsZBg6HQ/M37K+2pdpJuUf0d7kPfbfF+SVD15Q4NYm1nvIluiTbdMv57SRJkz/eoNyi09ur/XBJuca/uULv/JQhw5Aevqyz/m94l2pLCCTpgk7OwaFvCfonVFxWoa0HnT0fBnZootiqL0kymL4PwENeBf2wsDCVlJT4qxYAAACvuDvvm7TF3rEeuqyzWjeO1v78Et0/17up8BWVdt3/4Qbd/J9Vuu6VnzzriB9f1XU/f69UWSHp5NP2a3LLoLbqkBSjQ4Vl+vunv3j8vN/an39EV81aqsVbshQZFqIXr+ut8ee2PuG5g6qC/opdOcorPr0vF4LRz/sKZHdISXFWJcVFKLVRlCQa8gHwnNdT9ydOnKhp06apoqLCH/UAAAB4rL6M6EtSVHionhrdUyEWQ5+u268PV3u27fCRskrd/J+V+u8y5xT8gpIKffGzB9PoY5pJljDJUSkd3qdKu0PfbXUFfc+XU1pDQzT1iu4yDGnOqr3uZn7eyC4s1ZiXf9KmzMNqHGPV7D+frYu6NKvx/BYJUeqQFCO74+iXEzjKtT6/e4t4SVIrd9Bniz0AnvE66C9fvlxz5sxRamqqhgwZolGjRlW7AAAA1JX6NKIvST1bxuuOC9tLkh7+6GftPsVU6+zCUl3z8o/6euNBWUMt+l3VSPz7K3ef+s0slqOj+nkZWrcnT7nF5YqNCFWv1Hiv6u6VmqBx5zhH3x/4cIMKSz0f0CkqrdD4N5Zrx6EipcRH6sNbznEH1JO5oFOSJKbvn8j6quUb3VNskqTUxGhJTN0H4Dmvg358fLyuuOIKDRkyRMnJybLZbNUuAAAAdSU5xhn09xftN7mSo24Z1E59WiWosLRC6e+tUaX9xFP4d2UX6YoXftCa3XmyRYbp7Qn99NiIrpKkJduyT/klgaRqnfddI+Pntmus0BCvf8XT34Z0UIsE57Z7T36x2aPnlFXYdfN/VmrtnnwlRIXpzfF91TIxyqPnutbpL9ySVeN/o4Zq3V7niH63Fs7frdOYug/AS6HePuH111/3Rx0AAABecwX9+jKiLzn3PX9qdE9d8vR3Wv5rrl5YuE23XtC+2jnr9uRp/BvLdaiwTCnxkXpzfF+1axojSRrQrpGWbMvWB6v26I7BHU7+ZtWCvrMLvzfr848VFR6qqaO667pXf9KbS3/VZd2bq09aYo3n2+0O3f2/tfpu6yFFhoXotRvOcv8MnuiVGi9bZJjyisu1OiP3pO/VkBSUlGtHlnOKfjfXiH5V0GdEH4CnvP+6V1JFRYW+/vprvfjiizp82NkRdN++fSosZC9UAABQd5pHO9foHyg6oEp7/dl6rGVilB4Z3kWSNPPrrVq7O8/92LebD+oPL/2oQ4Vl6tw8Th/eck61gHxVb+d0/PdX7JH9VCPdVUG/9NBO93v8rpZBX5LObd9YV/dpIYdDuveDdTVu5+ZwOPSPTzfqozX7FGox9MJ1vXRmaoJX7xUaYnF/KcE2e0dtqBrNT4mPVKMY584JrRo5p+7vyS1m9gMAj3gd9Hft2qVu3brp8ssv18SJE5WV5ZwmNm3aNP3tb3/zeYEAAAA1aRLZRKFGqCocFco6Ur+auo3qlaJLuzdXhd2hO2evUXFZhd5bsVsT3lyh4rJKnde+sWb/+Ww1jYuo9ryLuzZTbESo9uYd0Y87sk/+JvHOUfzDmTtkd0gdkmKUHH96Wx4/MLSzmsRatT2rSM99s+2E58xatEOvLdkpSfrnVd11fkfPm/8dyzV9n6B/1PqqRnw9Wh5dEtssLkLhIRaVVzq0L++IWaUBCCBeB/3bb79dffr0UW5uriIjj/6PZOTIkVqwYIFPiwMAADiZEEuImkU7u7vvLfSsy31dMQxDj43oqmZxEdpxqEhXvLBU9/xvnSrtDo06M0Wvjj1LsRFhxz0vIixEw3s4lyS8t+IUTfmqRvQt+c6O/bUN3MeyRYXp75c7ZyPMWrRdv+wrqPb4eyt2a9r8TZKkBy89QyPPbFHr9xrYoYkshrQp87D2EmAlHbM+PyXefSzEYqhFovP3bqbvA/CE10H/u+++04MPPqjw8PBqx9PS0rR3b/36HywAAAh+9XGdvkt8VLhmXN1DkrRxvzMw33J+W02/uofCQ2v+NeyqPs7p+59vyFRBSflJ3sAZ9OPKDypElbVen/9bF3dtrku6NlOF3aF7P1inikq7JOnrXw5o0pz1kqQ/D2yjCee1Oa33SYgOd0/5p/u+0zpXx/0W1Ztct0qkIR8Az3kd9O12uyorj1+vtWfPHsXGxvqkKAAAAE+51unXp877xzqnXWP97aIOio0I1d8v76J7Lu4kwzBO+pweLWzqkBSj0gq7Pll7ki8wYprJbglTqOxqFVagPmnerZM/mUcu76K4iFCt35uvV7/fqZW7cjTxnVWqtDt0Ra8Wuu/iTj55H9f0fYK+lFtUpt05zpkNXVN+E/Sr1unvyimq87oABB6vg/5FF12kmTNnuu8bhqHCwkJNnjxZQ4cO9WVtAAAAp5QSkyKpfo7ou9x6QXutffgi/bF/mkfnG4bhbsr33oo9NZ9osajA6ly6MCSlVNbQkNMt1a1pbIQeuqyzJGnGV1s0/o0VKq2w64JOTTX1im6n/LLCU66gv2T7oRqb/zUU66um7bduHC1bZPVlHalVI/oZjOgD8IDXQX/69OlasmSJOnfurJKSEl177bXuafvTpk3zR40AAAA1ah7jHNGvz0FfkiwW74LxiDNTFGoxtHZ3nrYcOFzjeRmVjSVJAxr7PgBe2buFzmvfWKUVduUfKVev1Hg9f20vhYXUauOmE+rULFbNbREqKbdr6fZTNB8Mcuvd6/Ntxz3WqhFT9wF4zut/pVu0aKG1a9fqgQce0J133qkzzzxTU6dO1erVq9W06ek3gAEAAPBGcrRzjX59nbpfW01irRpUNdr9fg1N+Q6XlGvjkXhJUtfoPJ/XYBiGHh/ZTc3iItS9hU2v3XCWIsN9N2vA9R5033dybZH42/X50tGgn5FTLIeDLfYAnJxHQb9Xr17Kzc2VJD366KMqKyvTmDFj9MQTT+hf//qXJkyYUK0DPwAAQF1xjejvL9ofdAHo6qqmfB+u3qvyqoZ4x1qyLVsZdmcDvvjSTL/U0DIxSovuOV8fTRyg+KjwUz+hFo4N+sH2Z+iNk43ot0iIkmFIhaUVyi4qq+vSAAQYj4L+xo0bVVTkbPzxyCOPqLCw0K9FAQAAeKpZVDNZDItKK0uVXRJcU7/P79hEjWOsOlRYdsJmdYu2ZGmPwzl1X3m7/FaHNTTEZ2vyT+Scto1lDbVob94RbTnQMH/PPHi4RPvzS2QYxzfik5zbLjaLi5DE9H0ApxbqyUk9e/bUuHHjdO6558rhcOjJJ59UTEzMCc99+OGHfVogAADAyYSFhKlJZBMdKD6gfYX71Diysdkl+UxYiEWjeqXopcU79P7KPbqoSzP3Yw6HQ4u3ZKmZo2pLvbwMk6o8fZHhIerftpEWbs7SN5sOqmOzhreT04aq0fx2TWIUbT3xr+ipiVHan1+ijJwi9W7lux0WAAQfj0b033jjDTVq1Ejz5s2TYRj6/PPP9eGHHx53mTt3rp/LBQAAOF5yjHOd/r6i+t2Qrzau6t1CknNae9bhUvfx7VmF2pt3RAdDkpwHCvZKlRVmlOgTFzbwbfbW7q6atn+C9fkuaa4t9hjRB3AKHo3od+zYUe+++64kyWKxaMGCBTTeAwAA9Ubz6OZardXaXxhcDfkkqX1SrHq2jNea3Xmau3qvbvpdG0nSws1ZkqTWaW2kfWGSvVw6vF+Kb2lmubU2qFNT6aOftTIjV3nFZX7rB1Bfudbndz/BtH2X1EZssQfAM1533bfb7YR8AABQr6TEpEiS9hbuNbkS/3A15XtvxW53s7pFW5xB/3cdkySbc9Q/kKfvt0iIUoekGFXaHe6fraFwOBxat8c1oh9f43nuLfZyCPoATq5Wm6D++9//1oABA5ScnKxdu5yNX5566il99NFHPi0OAADAE8d23g9Gl/Vorogwi7YeLNSa3Xk6Ulapn3bmSHI27FN8qvPEAA76ktzbCTa06fuZBSU6VFiqEIuhLslxNZ7XKpGp+wA843XQf+GFF5Senq6hQ4cqLy9PlZWVkqSEhATNnDnT1/UBAACcUnJ01Rr9wuBboy9JcRFhuqSr88uM91fu0Y87slVWYVdKfKTaNokJmqB/YSdnv4GFW7JUaQ/MbfYq7Q7N+HKz3l+x2+PnuNbnd0iKVURYSI3nuabuHyosVVFp4PZjAOB/Xgf9Z599Vi+//LIeeOABhYQc/YeoT58+Wr9+vU+LAwAA8IRrRH9f4b6g3Yfd1ZTvkzX7NH9DpiTpdx2aOLe9i2/lPCnAg36v1HjZIsOUV1yu1Rm5ZpdTKws2HtAz32zTPR+s0/qq6finsn5vnqSTr8+XJFtkmOKjwiRJGUzfB3ASXgf9nTt36swzzzzuuNVqVVFRkU+KAgAA8IZrRL+4olgFZQUmV+MfZ7dppBYJkTpcWqH3VzpHiwd2qNpazz2iv8uk6nwjNMSi31X9TN8E6PT9//zk/LLF4ZAenLveo5kJR9fnnzzoS1KrxKp1+kzfB3ASXgf91q1ba82aNccdnz9/vs444wxf1AQAAOCViNAIJUYkSgre6fsWi6Grejub8tkdUqjF0IB2jZwPBsnUfenoNnuBGPR3ZRdp8ZYsGYYUHR6itXvy9e7yk/+ZOBwOd8f9HidpxOeSWrXFXkYOA2wAauZ10E9PT9fEiRM1e/ZsORwOLVu2TI899pgmTZqke+65xx81AgAAnJJ7nX5RcAZ9Sbqid4oMw3m7d6sExUY4p3G7g37BXqkysNduD+zQRBZD2pR5WPvyjphdjlfeqRrN/137JvrbkI6SpCfmb1Z2YWmNz9mdc0R5xeUKD7GoQ7OYU76Hv0f0c4vK9Pn6/bIHaI8EAE5eB/0JEyZo2rRpevDBB1VcXKxrr71WL7zwgp5++mn94Q9/8EeNAAAAp5QcE9wN+STnFnTntmss6WiHeklSbDPJEibZK6TDgb3zQEJ0uM5MTZAkjXt9uX7ckW1yRZ4pKa/Ue1UN+K47u5X+eHYrdW4ep/wj5Zo2f1ONz1tXtT6/U/NYWUNrbsTn4mrI5681+pM//ll/eXuV/v1jYC8DARo6r4J+RUWF3nrrLQ0ePFhbt25VYWGhMjMztWfPHt14443+qhEAAOCUGkLQl6QnruyuBy89Q+MGpB09aAmRbM5mfcEwff+eIR2VEBWmzQcO6w8v/ajb/rtamfklZpd1Up9v2K/c4nI1t0VoUMcmCg2x6O8jukqS3luxRyt35Zzwea6Gfd1O0YjPxZ8j+uWVdvfWhnNW7fH56wOoO14F/dDQUN18880qKXH+QxsVFaWmTZue4lkAAAD+1zza2Xl/f1Fgj2ifSnNbpCac1+b40V/X9P18z7d1q6/6tWmkb+46X9ednSrDkD5eu08XTl+oFxdtV1mF3ePXcTgc2nrgsL7dfNDvU9H/86PzC5Zr+qYqNMT5K3bvVgka3cfZV+HBuT+rovL42l2N+DxZny9JrarW6O/NO6LyE7ze6VidkafDVdv2rd2Tr13Z9AEAApXXU/f79u2r1atX+6OWOpeWlqbu3burZ8+eGjRokNnlAACA09BQRvRrFEQN+STnFP5/jOimT249V71S41VUVqkpn2/SxU8v1ndbs2p83uGScs3fkKlJc9br3Gnf6vdPLda415frtSU7/Vbrxv0FWrkrV6EWQ384q2W1x+69pJPio8K0cX+B3lpafTq83e7Qhr2ed9yXpKaxVllDLaq0O7Q317c9DBZtqd4Acd664P7SDAhmod4+4ZZbbtFdd92lPXv2qHfv3oqOjq72ePfu3X1WXF344YcfFBNz6sYnAACgfnMH/SBuxndS8a2c1wG+xd5vdU2x6X83n6M5q/dq6ucbtSOrSH98dZku7tJMD152hlLiI7Up87AWbs7Sws0HtXJXriqOGb23GM5dCl5avEN/7N/Ko3Xw3vpP1Xr2i7okqWlcRLXHEqPDdc+QTrr/w/Wa8dUWXda9ufucndlFOlxaIWuoRe2bevb7qMViKDUxSlsPFmpXTrHSGkef+kkeWrTF+QXK2W0S9eOOHH2ydp8mDmrns9cHUHe8Dvquhnu33Xab+5hhGHI4HDIMQ5WVlb6rDgAAwEOurvv5pfkqLi9WVFiUyRXVsSAb0T+WxWLoyt4tdFGXJD311Ra9tXSX5v+cqYVbDsoWGaYDBdW72rduHK2BHZpoYMcm6pWaoCFPLVZmQYnmrNqra/qm+rS2wtIKzV29V5J0Xb9WJzznD2e11OwVu7V2d54e+2yjnv7DmZKOrs/vkhznnu7viVaNorX1YKEysoskNTm9H6BK1uFSbdhbIEl6bGQ3XTxzsTZlHtaWA4fVISnWJ+8BoO54PXV/586dx1127NjhvvaVxYsXa9iwYUpOTpZhGJo7d+5x5zz//PNKS0tTRESE+vXrp2XLlnn1HoZhaODAgTrrrLP09ttv+6hyAABghpjwGMWGOwNJg5y+H8RB3yUuIkyTh3XRp7edq36tE1VSbteBglJFhFl0QaememR4Fy26+3x9+7fz9X/Du2hQx6ayRYZpwnmtJUkvLtquSh+v1f9w9V4VlVWqTZNo9W/b6ITnWCyG/nF5VxmG9NGaffph+yFJR9fnd/dwfb5Lq0a+b8i3uGo0v2tKnNo2idHADs4+XJ+sbYB/l4Ag4PWIfqtWJ/6m0teKiorUo0cPjR8/XqNGjTru8dmzZys9PV2zZs1Sv379NHPmTA0ZMkSbN292Nwjs2bOnKiqO30v2yy+/VHJysr7//nulpKRo//79Gjx4sLp161bj0oPS0lKVlh79trigoMBHPykAAPCV5OhkbS7brM92fqYO+R3MLqduFedK0VFS+SFpx2eS4dl4js1qU99mfRVi8f2Udn/p1CxO7/7pbP24I0cVdrvOSktURFjN9V/TN1XPfbtNv2YX6/MN+3VZ92Sf1OFwOPR21bT9Mf1ayTCMGs/t1sKmP57dSm8t3aWH5m7Q57f/Tuv25EmSunu4Pt/FHfR9uMWea9r+wA7OGQLDejTX1xsP6JO1+5T++w4n/dkA1D9eB/26cskll+iSSy6p8fEZM2bopptu0rhx4yRJs2bN0qeffqrXXntN9913nyRpzZo1J32PlJQUSVLz5s01dOhQrVq1qsagP2XKFD3yyCO1+EkAAEBdSYlJ0ebczXp5/ctml2KOpo2d19/d69XT/jnwn7o47WI/FOQ/hmHUOIL+W9HWUI3tn6anF2zVCwu369JuzX0SXFdl5GpT5mFFhFl0Za8Wpzz/ros66rP1+7U9q0gvf7dDP+9zDhx5G/RTq7bYy/DRiH6l3eFucOgayR98RpIiwiz6NbtYG/YWeNwsEED9UG+D/smUlZVp5cqVmjRpkvuYxWLR4MGDtXTpUo9eo6ioSHa7XbGxsSosLNQ333yjq6++usbzJ02apPT0dPf9goICtWzZssbzAQBA3RvXdZxKK0tVZi8zuxRz7F4uVZRIzbtLEacOZrvyd+ngkYPalR9cDfxO5IZz0vTSYme4Xrz1kHvk+nS4ttQb1j1ZtqiwU55viwzTpEvO0F3vr9WMr7ao0u5QdHiIWjf2rjG0a4u9jJxid5+s07F+b75yi8sVaw3Vmanxkpxfjgw+I0nz1u3Xx2v3EvSBABOQQf/QoUOqrKxUUlJSteNJSUnatGmTR69x4MABjRw5UpJUWVmpm266SWeddVaN51utVlmt1toXDQAA/K5n056a9ftZZpdhnjeHS3sWSf2vknr84ZSnz1g5Q69veF15pXn+r81kCdHhuqZvql5bslMvLNx22kE/p6hMn1ZtP3fd2Z4vbR3VK0Wzl+/Wsl9zJEldUmwKsXgX1FPiI2UxpCPllco6XHpcp39vLdrsHM0f0K6xwo5pCjisR7Lmrduveev2a9IlZ8jiZZ0AzON1M75g0aZNG61du1Zr167Vhg0bdPvtt5tdEgAAwOmJr5pt6GFDPlu4c5S2oKxh9B666XetFRZi6McdOVqVkXtar/X+it0qq7SrW4pNPVrGe/w8wzD06Igu7nDfoxYj5eGhFiXHR0ryzTr9RVsOSpIGdqz+5cfADk0Uaw3V/vwSrTzN/14A6latg35ZWZn27NmjjIyMape60LhxY4WEhOjAgQPVjh84cEDNmjWrkxoAAADqnfiqkeU8z6bix1vjJTm3JGwImtsiNaKns0fTCwu31/p17HaH3lnm/L33urO9366vU7M4pf++gyLDQjS0W/Na1eCrzvt5xWVasztPkvS738xyiAgL0UVdnL9bf7zG3O772YWl+mTtPpVX2k2tAwgUXgf9rVu36rzzzlNkZKRatWql1q1bq3Xr1kpLS1Pr1q39UeNxwsPD1bt3by1YsMB9zG63a8GCBerfv3+d1AAAAFDveLnFns3qHE1uKEFfkv48sK0MQ/rqlwPaeuBwrV7ju22HtCu7WLERoRrWo3Yd/CcOaqdfHh2iM1MTavX81MSqdfrZRbV6vsv32w7J7pDaN41RStUsgWMN7+n8+T5bv18VJobsB+du0F//u1p/n/eLaTUAgcTrNfo33HCDQkNDNW/ePDVv7puOpSdSWFiobdu2ue/v3LlTa9asUWJiolJTU5Wenq6xY8eqT58+6tu3r2bOnKmioiJ3F34AAIAGp5ZBvyGs0Xdp1zRGQzo30/yfM/XCou2acXVPr1/jP1Vb6l3Rq4Wiwmvf8up0fo/21RZ7rvX5NfUsOKdtIyVGhyu7qExLd2TrvPan38TQWwUl5Vqw0bm84K2luzSoY1MN6tS0zusAAonX/zKtWbNGK1euVKdOnfxRj9uKFSs0aNAg931Xx/uxY8fqjTfe0OjRo5WVlaWHH35YmZmZ6tmzp+bPn39cgz4AAIAGwxX08/dI9krJUvPe8pIUFx4nqeGs0Xf5y/ltNf/nTH28xrlHfIuEKI+fuy/viBZsdC4frc20fV9plXj6U/cdDocWbakK+h1PHODDQiy6pGszvf1Thj5Zu8+UoP/1LwdUdsxsgrv/t1bz7/idGsfQKBuoiddT9zt37qxDhw75o5Zqzj//fDkcjuMub7zxhvucW2+9Vbt27VJpaal++ukn9evXz+91AQAA1FuxzSVLqGSvkA7vP+Xpx67Rdzgcfi6u/ujRMl4D2jVShd2hV77b6dVz312WIbtDOrtNoto1jfVThaeW6l6jX/up+5syD+vg4VJFhFl0Vlpijee5lid8viFTpRWVtX6/2nLtbnDzwLbqkBSjQ4Vluvd/6xrUZxbwltdBf9q0abrnnnu0cOFCZWdnq6CgoNoFAAAAJrGESLYWztseTN93Td2vdFSqqPz01noHmr8MbCdJend5hrILSz16TnmlXe8u3y3Juy31/KFVI+ca/dzichWUlNfqNVyj+f3bNFJEWM2zP/qmJSopzqrDJRVavMX/A37Hyi8u1+Ktzjqv7J2ip/9wpsJDLFqw6aDe/qluGoEDgcjroD948GD9+OOPuvDCC9W0aVMlJCQoISFB8fHxSkioXTMRAAAA+IgX6/QjQiNkDXFOf25I6/QlaUC7RurewqaScrve+OFXj57z4aq9Oni4VI1jrLqos7k7PcVYQ9U4JlySlFHL6funWp/vYrEYuqy7c1T/k7Wed993OBwef4lSky9/yVR5pUOdmsWqXdNYndE8Tvdc3FGS9I9Pf9G2g4Wn9fpAsPJ6jf63337rjzoAAADgC+6gv9uj023hNh08clD5ZflqoRZ+LKx+MQxDfxnYVn95e5Xe/OFX/XlgW8VYj//V2G536OuNB/TS4h1ascu5l/wfzmqp8NBa71LtM6mJUTpUWKZd2cXqmmLz6rmFpRVasStHknR+x1M3thvWI1mvfr9TX/1yQMVlFadsQni4pFwT31mtxVuy9PL1ffT7zrXro/Xpeue0/UuP2YZw/IDWWrg5S99vO6Q7Zq/WnL8MqBd/HkB94nXQHzhwoD/qAAAAgC/EV00pz9vl0elx1jhn0G9AW+y5XNSlmdo0jtaOQ0V656dd+tPv2rofKymv1Ier9+rl73ZoR5ZzWUN4iEWjeqVo4qB2ZpVcTatG0VqVkaddOd4vu1i6PVvllQ61ahSltMbRpzy/RwubUhOjlJFTrAUbD550W8H9+Uc07vXl2pTp3L7w+W+31Sro5xaV6futzqUCQ7sfDfoWi6Enr+qhi59erA17CzTz6y2652L/NgoHAk2tvvrKy8vT9OnTNWHCBE2YMEFPPfWU8vMb3v8cAAAA6h0vt9hzNeQrKG14vZZCLIZuHugM9698t1OlFZXKLSrTswu26txp32jSnPXakVWk2IhQ/eX8tvr+3kGaekV3RYaffDeDupJa1Xm/NlP3F21xbld3qmn7LoZhaFgPZ9g+2fT9X/YVaOTzP2hT5mE1jrEqPMSiNbvztDoj1+sav/wlUxV2h85oHqe2TWKqPdbMFqEpI7tJkl5YtF0/7cj2+vWBYOZ10F+xYoXatm2rp556Sjk5OcrJydGMGTPUtm1brVq1yh81AgAAwFNeBn1XQ76GOKIvSSPOTFGzuAgdPFyq8W8s1zlTv9H0r7boUGGZUuIj9dBlnbV00oW69+JOahoXYXa51bRqVLst9hwOhxZ6uD7/WK5R/IWbs07YAHDRlixd/eJSZRaUqF3TGM2deI77Oa8v+dWrGiVpXlW3/cuOGc0/1iXdmuuq3i3kcEjp761V/pHaNSUEgpHXQf/OO+/U8OHD9euvv2rOnDmaM2eOdu7cqcsuu0x33HGHH0oEAACAx1xBP3+PZD/1VmiuoN/QmvG5hIdaNOG81pKkJduydaS8Up2bx+npP/TUwrvP143ntj7h2v36wBX0M3K8C/o7DxVpT+4RhYdYdHabRh4/r2NSrNo3jVFZpV1fbMis9tjs5Rka/8ZyFZZW6Ow2ifrg5nPUIiFK4wakSZI+W79fmfklHr9XdmGpftjuHKU/dn3+b00e3kWtGkVpb94RPfzRBo9fHwh2tRrRv/feexUaevQfvNDQUN1zzz1asWKFT4sDAACAl2KbS5ZQyV4uHc485em28KoR/bKGOaIvSdf2S9Wgjk10YaementCP31627m6vGeKwkLqd4O31ETn2vp9+Ue82t/eta3eWa0TFO3FlxiGYWh41Qj9J1Wj7Q6HQ09+sVn3frBelXaHRp6ZojfH95UtKkyS1DXFpr5piaqwO/SfHz3rGyFJX/x8QJV2h7qmxJ20h0CMNVRPje6pEIuhj9bs00dr9nr8HkAw8/pfr7i4OGVkHD8VbPfu3YqNjfVJUQAAAKglS4hkq+qe78H0/YY+dV+SosJD9fq4vnr1hrM0oF1jGYZhdkkeaRwTrqjwEDkc0p7cIx4/rzbT9l0uqwr6S7YdUmZ+ie6cvUbPfbtNkvTXC9ppxtU9ZA2t3sPANar/zrIMlZR79oXEp+udfQBc2/qdTK/UBP31AmeDxAc/3KA9ubXbbvC3ducUn3CJAhAIvA76o0eP1o033qjZs2dr9+7d2r17t959911NmDBB11xzjT9qBAAAgDe8WKfvCvoNsRlfoDMMw+uGfCXllfqxqnHdwA6n3lbvt1o3jla3FJsq7Q5d9uz3mrtmn0Ithp64orvuuqjjCb8k+X3nJKXERyqnqEwfr6m5kZ9L1uFSLfVg2v6xbh3UTr1S43W4tEKjX/xRT36xWRv3F8jhcHj18x0oKNEr3+3Qpc98p/Oe+FaXP7dERaUVXr0GUB94veDoySeflGEYuv7661VR4fzQh4WF6S9/+YumTp3q8wIBAADgpVoE/Ya6Rj/QtWoUpU2Zh7Ur27Mt9n7amaPSCruaxUWoQ1LMqZ9wAsN6NNf6vfk6VFiqGGuo/jWml353ktkBoSEWXd+/laZ8vkmvLdmpq/q0OOmsifk/Z8rucG7p17Lqi4xTCQ2xaOboMzXqhR+0N++Invt2m577dpvaNI7Wpd2ba2i35urULPaE73u4pFxf/HxAc1fv1Q/bD8l+zHcDOw8Vadr8TXr08q4e1QHUF14H/fDwcD399NOaMmWKtm/fLklq27atoqI8+0sIAAAAP4tv5bzOO/WaaNboB7ZWjZzr13d52JBv0THT9mu7RGF4jxQ9/fVWxUWG6bUbztIZzeNO+Zw/nJWqmV9v1abMw/pxR476t625CeCn65yj/pfW0G2/JqmNorTw7vO1YOMBfbpuvxZuydKOQ0V69pttevabbWrTJFqXdnOG/nZNY7R4S5Y+XL1XX/1yQKUVdvfr9G6VoBFnpigxKlwT31mlt5bu0iVdm5+0ZqC+qXUL0aioKHXr1s2XtQAAAMAXbC2d16zRD3reTt1ftOWgJGlgR+/X57s0s0Vo8T2DFBUeqsjwkFM/QZItKkyjeqXo7Z8y9PqSnTWG5oOHS/TTzhxJ0lAPp+0fK8Yaqst7pujynik6XFKubzYdPBr6s46GfmuopVq4b9MkWiOrnpfa6OgA5vfbUvXfZRm694N1mn/HeYoKr587MAC/5dEnddSoUXrjjTcUFxenUaNGnfTcOXPm+KQwAAAA1JJr6v7OxdLjKSc91WYxpOYJKjiSLcfjKQqMNnR+0uMa6dInza7CK64t9n71YOr+7pxibc8qUojF0IB2jU/rfRvFWL1+zrgBaXr7pwx9tfGAducUn3Ba/ufrM+VwSGemxqtFwunNGI6NCDsu9M9bt1+LtmSptMKuxjFWDe+RrJFnpqhrStwJZzjcP7STFm0+qIycYj0xf7P+b3iX06oJqCseBX2bzeb+4MfFnfgvAQAAAOqJZl2lyETpSI5UVnjSU22GISlBFYahovIixXjZvCyorHpTuuQJyVK/t9U7VlrV1P3duUdktztksdT8e/rirc5p+2e2jJctMqxO6jtWu6axOq99Y3239ZDe/OFXPXhZ5+PO+bRq2z5Pm/B56rehPyOnWB2TYhV6ii0UYyPCNPWK7rr+tWV644dfdUnXZurXhin8qP88Cvqvv/66+/Ybb7zhr1oAAADgCxE26c4NUuGBU5/qcCj8s6tUZi9X/o2fKyYqqQ4KrGfsdum5PlJlmVR8SIrxvhu9WZrbIhRqMVRWYVdmQYmS4yNrPHfRaWyr5yvjB7TWd1sPafaK3brz9x0UbT0aRzLzS7R8l3Pavrfr870RGxGmLsk2j8//XYcm+sNZLfXu8t2654N1mn/77zxesgCYxetFJhdccIHmzJmj+Pj4ascLCgo0YsQIffPNN76qDQAAALUVHi0ltjnlaYYkmzVeWUeylB9pU4oHzwlKsc2kw/ul/N0BFfRDQyxqkRCpX7OL9em6/UpJiFRRaYXzUlapotIKFZdVqrC0Qt9tPSTp9Nbnn66BHZqoTeNo7ThUpA9W7dH1/dPcj322fr8cDqlPqwQ1t9X8hYUZ7r/0DC3akqVd2cX65xeb9fCw42cjAPWJ10F/4cKFKisrO+54SUmJvvvuO58UBQAAgLpjs9qcQb8hN+SLS6kK+nullN5mV+OV1EbR+jW7WI99tvGU5zaLi1BXL0azfc1iMTT2nDRN/vhnvbHkV13Xr5V7ucGn66um7ftxNL+24iLCNGVUN93w+nK9/sNODe3WTH3SEs0uC6iRx0F/3bp17tu//PKLMjMz3fcrKys1f/58paScvNkLAAAA6h935/2GvMWeLUXau0Iq2Gt2JV67/uxWOpBfohCLoWhriKKtoYoOD1W0NURR4aGKsYYqyhqiGGuozmnb+KTr+OvCFb1b6MkvNmvHoSIt2pqlQR2bal/eEa3clSvDqF23/bpwfsemuqp3C72/co/u/t86fX77eYoIYwo/6iePg37Pnj1lGIYMw9AFF1xw3OORkZF69tlnfVocAAAA/M8WXhX0Sxpy0K/akjB/j7l11MLgzkka3DlweivEWEN19Vkt9er3O/X6kl81qGNTfVY1mn9WWqKS4iJMrrBmD17WWYu3ZmnnoSJN/3KzHriUKfyonzxuKbpz505t375dDodDy5Yt086dO92XvXv3qqCgQOPHj/dnrQAAAPADRvTlnLovBeSIfiAa2z9NhiEt3pKlbQcLNa+q2/5l9XDa/rFskc4p/JL0yvc7tbKqeSBQ33g8ot+qVStJkt1u91sxAAAAqHvx1nhJathr9G1VQT8AR/QDUWqjKA0+I0lf/XJAj3+2UWt258liSBd3bWZ2aad0QackXdGrhT5Y5ZzC/9ltTOFH/eN1M7633nrrpI9ff/31tS4GAAAAdS/OGiepgQf9uBbO63xG9OvKuAFp+uqXA/pm00FJUr/WjdQ0tv5O2z/Ww5d11ndbs7Qjq0hPfbVFk4aeYXZJQDVeB/3bb7+92v3y8nIVFxcrPDxcUVFRBH0AAIAA456635CDvmtEvzBTqqyQQrz+NRle6t+mkTo1i9WmzMOS6me3/ZrYosL0+MhumvDWCr383Q4Vl1VqWI9k9WmVYHqzQ0DyYo2+S25ubrVLYWGhNm/erHPPPVf//e9//VEjAAAA/MjdjK8hr9GPbipZwiSH3bnNHvzOMAyNG5AmSQEzbf9YgzsnaXSflrI7pH//uEtXv7hU50z9Rn+f94tWZ+TK4XCYXSIaMJ98Vdm+fXtNnTpV1113nTZt2uSLlwQAAEAdYURfksUixSVLebucDfniW5pdUYNwec8U/bQjR+2SYtQ4xmp2OV6bMqqbLunWTPPW7dcXGzKVWVCiV7/fqVe/36kWCZG6rHuyhvVors7N42QYjPSj7vhsTlJoaKj27dvnq5cDAABAHaEZXxVbC2fQpyFfnYkIC9GM0T3NLqPWLBZD53dsqvM7NtVjI7tq8ZZD+mTtPn298YD25B7RrEXbNWvRdrVpHK2/XthOI89sYXbJaCC8Dvoff/xxtfsOh0P79+/Xc889pwEDBvisMAAAANSNY7fXczgcDXfkMY7O+6g9a2iIft85Sb/vnKQjZZX6ZtNBzVu3T99sOqgdh4p013trlZoYrd6tEswuFQ2A10F/xIgR1e4bhqEmTZroggsu0PTp031VFwAAAOpIXLiz636FvULFFcWKDos2uSKTuBryFdB5H6cnMjxEl3Zvrku7N1dhaYXu+2Cd5q3br7+9v1af3XaeIsPZjg/+5XXQt9vt/qgDAAAAJokMjVSYJUzl9nLll+Y34KDPFnvwvRhrqB4b0U0rfs3VzkNFeuKLTZo8rIvZZSHIed11HwAAAMHFMAzW6UtSXFXQL2DqPnzLFhWmqVd0kyS9vuRXLd2ebXJFCHYejeinp6d7/IIzZsyodTEAAAAwh81qU9aRrIa9xZ6NNfrwn/M7NtU1fVP132UZuvt/azX/jt8pxuqz3uhANR59slavXu3RizXYxi0AAAABzrVOP680z9xCzORqxlecLZUfkcIiza0HQeeBS8/Qd1uztCf3iB77dKOmjOpmdkkIUh4F/W+//dbfdQAAAMBErs77BaUFJldiosgEKSxKKi+WCvZJjdqaXRGCTIw1VP+8soeueflH/XdZhoZ0SdL5HZuaXRaC0Gmt0d+zZ4/27GFqEwAAQKBjjb4kwzimIR+/48I/+rdtpBvOSZMk3ffBeuUXl5tbEIKS10Hfbrfr0Ucflc1mU6tWrdSqVSvFx8fr73//Ox35AQAAApRrRL9BB33p6PR9ttiDH917cSe1bhytzIISPfLJz2aXgyDkddB/4IEH9Nxzz2nq1KlavXq1Vq9erccff1zPPvusHnroIX/UCAAAAD9zBf0GvUZfoiEf6kRkeIievKqHLIY0Z/VeffFzptklIch43ebxzTff1CuvvKLhw4e7j3Xv3l0pKSm65ZZb9Nhjj/m0QAAAAPifqxlfg+66Lx3dYo+gDz/r3SpBf/pdW81atF0PfLheZ6UlKjE63OyyECS8HtHPyclRp06djjveqVMn5eTk+KQoAAAA1C2a8VWxMXUfdefO37dXh6QYHSos04Nz18vhcJhdEoKE10G/R48eeu655447/txzz6lHjx4+KQoAAAB1i2Z8VdzN+Aj68D9raIhmXN1ToRZDn63P1Cfr9ptdEoKE11P3n3jiCV166aX6+uuv1b9/f0nS0qVLtXv3bn322Wc+LxAAAAD+527Gx9R95zUj+qgjXVNsuvWCdpr59VY9NHeDzm6dqKZxEWaXhQDn9Yj+wIEDtWXLFo0cOVJ5eXnKy8vTqFGjtHnzZp133nn+qBEAAAB+Zgs/2oyvQU8fdk3dLy2QShr4lx6oMxMHtVPXlDjlHynX0wu2ml0OgoDXI/qSlJycTNM9AACAIOIa0a+wV+hIxRFFhUWZXJFJwqOliHipJM85fT/CZnZFaADCQiyaflVPzV6+W3cP6Wh2OQgCXo/oz58/X99//737/vPPP6+ePXvq2muvVW5urk+LAwAAQN2IDI1UmCVMEuv03ev0mb6POtSxWaweHtZZkeEhZpeCIOB10L/77rtVUODsxrp+/Xqlp6dr6NCh2rlzp9LT031eIAAAAPzPMAzW6bvY2GIPQGDzeur+zp071blzZ0nSBx98oGHDhunxxx/XqlWrNHToUJ8XCAAAgLphC7fp0JFDyivNM7sUc8WxxR6AwOb1iH54eLiKi4slSV9//bUuuugiSVJiYqJ7pB8AAACBxz2i3+Cn7lcFfUb0AQQor0f0zz33XKWnp2vAgAFatmyZZs+eLUnasmWLWrRo4fMCAQAAUDfirHGSCPruLfYI+gAClNcj+s8995xCQ0P1v//9Ty+88IJSUpzfeH7++ee6+OKLfV4gAAAA6ka8NV6SVFDWwGdp2pi6DyCweT2in5qaqnnz5h13/KmnnvJJQQAAADCHLdw5dT+vJM/cQszm7rq/T3I4JMMwtx4A8JLXI/oAAAAITnTdrxKbLMmQKkqk4myzqwEArxH0AQAAIIlmfG6h4VJMU+ft/N3m1gIAtUDQBwAAgCSCfjWuLfbyWacPIPAQ9AEAACDpaNBv8M34JBryAQhoBH0AAABIOqYZX2meuYXUB7aWzmu22AMQgLzuul9SUqJnn31W3377rQ4ePCi73V7t8VWrVvmsOAAAANSdY6fuOxwOGQ2523wcI/oAApfXQf/GG2/Ul19+qSuvvFJ9+/Zt2P8DAAAACCLx1nhJUrm9XEcqjigqLMrcgszkmrrPiD6AAOR10J83b54+++wzDRgwwB/1AAAAwCSRoZEKtYSqwl6hgrKChh3041o4r2nGByAAeb1GPyUlRbGxsf6oBQAAACYyDIN1+i6uEf3D+yV7pbm1AICXvA7606dP17333qtdu3b5ox4AAACYiC32qsQkSZZQyVEpHc40uxoA8IrXU/f79OmjkpIStWnTRlFRUQoLC6v2eE5Ojs+KAwAAQN0i6FexhEixyVJ+hnOdvmuEHwACgNdB/5prrtHevXv1+OOPKykpiWZ8AAAAQcQd9MsaeNCXnOE+P0Mq2COpn9nVAIDHvA76P/zwg5YuXaoePXr4ox4AAACYyLVGv8GP6EtHt9ijIR+AAOP1Gv1OnTrpyJEj/qgFAAAAJmPq/jFc0/ULCPoAAovXQX/q1Km66667tHDhQmVnZ6ugoKDaBQAAAIGLoH8MW0vndf4ec+sAAC95PXX/4osvliRdeOGF1Y47HA4ZhqHKSrYfAQAACFTx1nhJBH1Jx0zdJ+gDCCxeB/1vv/3WH3UAAACgHoizxkmiGZ8kpu4DCFheB/2BAwf6ow4AAADUAzTjO0ZcC+d1UZZUUSqFWs2tBwA85HXQl6S8vDy9+uqr2rhxoySpS5cuGj9+vGw2m0+LAwAAQN1ijf4xohKl0AiposQ5qp/YxuyKAMAjXjfjW7Fihdq2baunnnpKOTk5ysnJ0YwZM9S2bVutWrXKHzUCAACgjhy7Rt/hcJhbjNkMQ7JVjeqzxR6AAOL1iP6dd96p4cOH6+WXX1ZoqPPpFRUVmjBhgu644w4tXrzY50UCAACgbrhG9MvsZSqpLFFkaKTJFZksLkXK3kZDPgABxeugv2LFimohX5JCQ0N1zz33qE+fPj4tDgAAAHUrKjRKoUaoKhwVyi/NJ+i7RvQLCPoAAofXU/fj4uKUkZFx3PHdu3crNjbWJ0UBAADAHIZhHO28zzr9Y7bYY+o+gMDhddAfPXq0brzxRs2ePVu7d+/W7t279e6772rChAm65ppr/FEjAAAA6hAN+Y7BFnsAApDXU/effPJJGYah66+/XhUVFZKksLAw/eUvf9HUqVN9XiAAAADqlrshXxlBn2Z8AAKRV0G/srJSP/74o/7v//5PU6ZM0fbt2yVJbdu2VVRUlF8KBAAAQN2yhTOi7xbnCvqs0QcQOLwK+iEhIbrooou0ceNGtW7dWt26dfNXXQAAADCJa41+XmmeuYXUB66p+6X5UulhyUpPKgD1n9dr9Lt27aodO3b4oxYAAADUA641+gWlBSZXUg9YY6Wq/x5M3wcQKLwO+v/4xz/0t7/9TfPmzdP+/ftVUFBQ7RIoNm/erJ49e7ovkZGRmjt3rtllAQAAmI41+r/hbsjH9H0AgcHrZnxDhw6VJA0fPlyGYbiPOxwOGYahyspK31XnRx07dtSaNWskSYWFhUpLS9Pvf/97c4sCAACoB1ij/xu2FtLBXxjRBxAwvA763377rT/qMNXHH3+sCy+8UNHR0WaXAgAAYDrX1H3W6FeJqxrRpyEfgADh0dT9UaNGuafl79q1S2effbYGDhx4wouvLF68WMOGDVNycrIMwzjhtPrnn39eaWlpioiIUL9+/bRs2bJavdd7772n0aNHn2bFAAAAwcHVjI8R/SruqfuM6AMIDB4F/Xnz5qmoqEiSNG7cOOXn+/8f/aKiIvXo0UPPP//8CR+fPXu20tPTNXnyZK1atUo9evTQkCFDdPDgQfc5PXv2VNeuXY+77Nu3z31OQUGBfvjhB/eSBAAAgIbOtUafZnxV2GIPQIDxaOp+p06dNGnSJA0aNEgOh0Pvvfee4uLiTnju9ddf75PCLrnkEl1yySU1Pj5jxgzddNNNGjdunCRp1qxZ+vTTT/Xaa6/pvvvukyT3GvyT+eijj3TRRRcpIiLipOeVlpaqtLTUfT+QGg8CAAB4wzV1n2Z8VRjRBxBgPAr6s2bNUnp6uj799FMZhqEHH3ywWiM+F8MwfBb0T6asrEwrV67UpEmT3McsFosGDx6spUuXevVa7733nv70pz+d8rwpU6bokUce8bpWAACAQONqxldaWaojFUcUGRppckUms7lG9PdKDod0gt+DAaA+8Wjq/jnnnKMff/xRWVlZcjgc2rJli3Jzc4+75OTk+LteSdKhQ4dUWVmppKSkaseTkpKUmZnp8evk5+dr2bJlGjJkyCnPnTRpkvLz892X3bt3e103AABAIIgOi1aIESKJdfqSjjbjqzgiFdfN77sAcDo8CvrH2rlzp5o0aeKPWuqczWbTgQMHFB4efspzrVar4uLiql0AAACCkWEYR6fvE/SlUKsUXfX7bwHr9AHUf14H/VatWp1w2n5daty4sUJCQnTgwIFqxw8cOKBmzZqZVBUAAEDwcAX9gjL6Ekk6Zos91ukDqP+8Dvr1QXh4uHr37q0FCxa4j9ntdi1YsED9+/c3sTIAAIDg4Fqnz4h+Fdc6fRryAQgAHjXjM0NhYaG2bdvmvr9z506tWbNGiYmJSk1NVXp6usaOHas+ffqob9++mjlzpoqKitxd+AEAAFB7rhH9vNI8cwupL2xssQcgcNTboL9ixQoNGjTIfT89PV2SNHbsWL3xxhsaPXq0srKy9PDDDyszM1M9e/bU/Pnzj2vQBwAAAO+xRv833FP3CfoA6r9aBf2KigotXLhQ27dv17XXXqvY2Fjt27dPcXFxiomJ8Ulh559/vhwOx0nPufXWW3Xrrbf65P0AAABwlDvolxH0JUm2qqDP1H0AAcDroL9r1y5dfPHFysjIUGlpqX7/+98rNjZW06ZNU2lpqWbNmuWPOgEAAFCHXGv0C0ppxidJinNN3SfoA6j/vG7Gd/vtt6tPnz7Kzc1VZGSk+/jIkSOrNccDAABA4GKN/m+41ugf3ifZK82tBQBOwesR/e+++04//PDDcXvPp6Wlae9evuEEAAAIBqzR/43YZpIRItkrpMKDUlxzsysCgBp5PaJvt9tVWXn8t5h79uxRbGysT4oCAACAudzb67FG38kSIsVWhXsa8gGo57we0b/ooos0c+ZMvfTSS5IkwzBUWFioyZMna+jQoT4vEAAAAHXPFsGI/nFsKVLBHunLB6VYdnrySGSidOHDUlSi2ZUADYrXQX/69OkaMmSIOnfurJKSEl177bXaunWrGjdurP/+97/+qBEAAAB1jGZ8J9Ckk7T7J2n3j2ZXEliSukh9bzK7CqBB8Trot2jRQmvXrtXs2bO1du1aFRYW6sYbb9SYMWOqNecDAABA4HKt0S+pLFFJRYkiQiNMrqgeGPx/Uos+UkWp2ZUEhl8+kn79TjqcaXYlQIPjddCXpNDQUI0ZM0ZjxozxdT0AAACoB2LCYhRihKjSUan80nyCvuScft7rerOrCBzF2c6gX3zI7EqABsfrZnxTpkzRa6+9dtzx1157TdOmTfNJUQAAADCXYRhHO+/TkA+1EdXIeV1E0AfqmtdB/8UXX1SnTp2OO96lSxfNmjXLJ0UBAADAfHHhcZJoyIdaim7ivC7ONrcOoAHyOuhnZmaqefPj9w1t0qSJ9u/f75OiAAAAYD73iD5BH7UR3dh5XZRlbh1AA+R10G/ZsqWWLFly3PElS5YoOTnZJ0UBAADAfAR9nJYoV9Bn6j5Q17xuxnfTTTfpjjvuUHl5uS644AJJ0oIFC3TPPfforrvu8nmBAAAAMEe8NV4Sa/RRS64R/ZI8qbJcCgkztRygIfE66N99993Kzs7WLbfcorKyMklSRESE7r33Xk2aNMnnBQIAAMAcrNHHaYlMkAyL5LBLxTlSbJLZFQENhtdB3zAMTZs2TQ899JA2btyoyMhItW/fXlar1R/1AQAAwCRM3cdpsYRIkYnO7fWKsgj6QB3yOui7xMTE6KyzzvJlLQAAAKhHCPo4bdGNnUG/mHX6QF3yOugXFRVp6tSpWrBggQ4ePCi73V7t8R07dvisOAAAAJjHFl4V9Fmjj9qiIR9gCq+D/oQJE7Ro0SL98Y9/VPPmzWUYhj/qAgAAgMnczfgY0UdtuRryFWebWwfQwHgd9D///HN9+umnGjBggD/qAQAAQD3B1H2cNlfQL8oytw6ggbF4+4SEhAQlJib6oxYAAADUI3FWuu7jNDF1HzCF10H/73//ux5++GEVFxf7ox4AAADUE64R/ZLKEpVUlJhcDQKSe+o+QR+oS15P3Z8+fbq2b9+upKQkpaWlKSwsrNrjq1at8llxAAAAME9sWKxCjBBVOipVUFagiNAIs0tCoHFP3WeNPlCXvA76I0aM8EMZAAAAqG8Mw1BceJxyS3OVX5qvplFNzS4JgSaKNfqAGbwO+pMnT/ZHHQAAAKiHbFabcktzlVeaZ3YpCERM3QdM4fUafUnKy8vTK6+8okmTJiknJ0eSc8r+3r17fVocAAAAzOVqyFdQWmByJQhIrhH9I7lSZYW5tQANiNcj+uvWrdPgwYNls9n066+/6qabblJiYqLmzJmjjIwMvfXWW/6oEwAAACaIt8ZLkvLL6LyPWohKlGRIckhHcqQYln8AdcHrEf309HTdcMMN2rp1qyIijjZkGTp0qBYvXuzT4gAAAGAuW7iz8z5b7KFWLCFVYV+s0wfqkNdBf/ny5frzn/983PGUlBRlZmb6pCgAAADUD64t9lijj1pzN+RjnT5QV7wO+larVQUFx6/R2rJli5o0aeKTogAAAFA/uNboM6KPWqMhH1DnvA76w4cP16OPPqry8nJJzm1XMjIydO+99+qKK67weYEAAAAwj2vqfkEZzfhQS66gX5Rtbh1AA+J10J8+fboKCwvVtGlTHTlyRAMHDlS7du0UGxurxx57zB81AgAAwCTuZnyM6KO23FP3WaMP1BWvu+7bbDZ99dVXWrJkidauXavCwkL16tVLgwcP9kd9AAAAMJFrjT5BH7XG1H2gznkV9MvLyxUZGak1a9ZowIABGjBggL/qAgAAQD3gCvpbcrfo7HfONrmawBFvjdf8K+abXUb9QDM+oM55FfTDwsKUmpqqyspKf9UDAACAeiQtLk3x1njlleapqLzI7HICRpglzOwS6g/3iD5r9IG64vXU/QceeED333+//v3vfysxMdEfNQEAAKCeiAmP0RdXfKFDRzwbjTVk+OR9HXL45HVcfFWXx+9n1O371WvRrNEH6prXQf+5557Ttm3blJycrFatWik6Orra46tWrfJZcQAAADBfVFiUUsNSzS4DgYqp+0Cd8zrojxgxwg9lAAAAAAhKrhH9I7mSvVKyhJhbD9AAeB30J0+e7I86AAAAAASjyERJhiSHVJwjxTQxuyIg6Flq86S8vDy98sormjRpknJyciQ5p+zv3bvXp8UBAAAACHAhoVJkgvM26/SBOuH1iP66des0ePBg2Ww2/frrr7rpppuUmJioOXPmKCMjQ2+99ZY/6gQAAAAQqKIbS0dypGLW6QN1wesR/fT0dN1www3aunWrIiIi3MeHDh2qxYsX+7Q4AAAAAEGAhnxAnfI66C9fvlx//vOfjzuekpKizMxMnxQFAAAAIIi4GvIVZ5tbB9BAeB30rVarCgoKjju+ZcsWNWlCYw0AAAAAv+EK+qzRB+qE10F/+PDhevTRR1VeXi5JMgxDGRkZuvfee3XFFVf4vEAAAAAAAY6p+0Cd8jroT58+XYWFhWratKmOHDmigQMHql27doqNjdVjjz3mjxoBAAAABDL31H2CPlAXvO66b7PZ9NVXX2nJkiVau3atCgsL1atXLw0ePNgf9QEAAAAIdO6p+6zRB+qCR0E/MTFRW7ZsUePGjTV+/Hg9/fTTGjBggAYMGODv+gAAAAAEuijW6AN1yaOp+2VlZe4GfG+++aZKSkr8WhQAAACAIMLUfaBOeTSi379/f40YMUK9e/eWw+HQbbfdpsjIyBOe+9prr/m0QAAAAAABzjWiX5wj2SslS4i59QBBzqOg/5///EdPPfWUtm/fLknKz89nVB8AAACAZ6IaVd1wSEdyj47wA/ALj4J+UlKSpk6dKklq3bq1/v3vf6tRo0aneBYAAAAASAoJlSITnCG/KIugD/iZR2v0ExMTdeiQcz3NoEGDFB4e7teiAAAAAAQZd0M+1ukD/kYzPgAAAAD+R0M+oM7QjA8AAACA/0Uzog/UFa+b8RmGQTM+AAAAAN5h6j5QZ2jGBwAAAMD/mLoP1BmPgv6xdu7c6Y86AAAAAAQzRvSBOuNR0H/mmWf0pz/9SREREXrmmWdOeu5tt93mk8IAAAAABBH3iH62uXUADYDhcDgcpzqpdevWWrFihRo1aqTWrVvX/GKGoR07dvi0wPqqoKBANptN+fn5iouLM7scAAAAoH7bsVB663KpSSdp4k9mVwMEJE9zqEcj+sdO12fqPgAAAACvMXUfqDMWswsAAAAA0AC4pu4fyZHsdnNrAYKcRyP66enpHr/gjBkzal0MAAAAgCAVVbVrl8MuHcmVotnFC/AXj4L+6tWrq91ftWqVKioq1LFjR0nSli1bFBISot69e/u+QgAAAACBLyRMioiXSvKkoiyCPuBHHgX9b7/91n17xowZio2N1ZtvvqmEhARJUm5ursaNG6fzzjvPP1UCAAAACHzRjZ1Bv5h1+oA/eb1Gf/r06ZoyZYo75EtSQkKC/vGPf2j69Ok+LQ4AAABAEKEhH1AnvA76BQUFysrKOu54VlaWDh8+7JOiAAAAAAQhV0M+RvQBv/I66I8cOVLjxo3TnDlztGfPHu3Zs0cffPCBbrzxRo0aNcofNQIAAAAIBtGM6AN1waM1+seaNWuW/va3v+naa69VeXm580VCQ3XjjTfqn//8p88LBAAAABAkmLoP1Amvg35UVJT+9a9/6Z///Ke2b98uSWrbtq2io6N9XhwAAACAIMLUfaBOeB30XaKjo9W9e3df1gIAAAAgmEU3cV4zog/4lddr9AEAAACgVqIaOa8J+oBfEfQBAAAA1A2m7gN1gqAPAAAAoG64mvEV50h2u7m1AEHM66BfVFTkjzoAAAAABDvX1H1HpVSSZ2opQDDzOugnJSVp/Pjx+v777/1RDwAAAIBgFRouRdict4uyzK0FCGJeB/3//Oc/ysnJ0QUXXKAOHTpo6tSp2rdvnz9qAwAAABBsXNP3acgH+I3XQX/EiBGaO3eu9u7dq5tvvlnvvPOOWrVqpcsuu0xz5sxRRUWFP+oEAAAAEAxoyAf4Xa2b8TVp0kTp6elat26dZsyYoa+//lpXXnmlkpOT9fDDD6u4uNiXdQIAAAAIBtFNnNeM6AN+U+ugf+DAAT3xxBPq3Lmz7rvvPl155ZVasGCBpk+frjlz5mjEiBE+LNP3nnzySXXp0kVdu3bVf/7zH7PLAQAAABoGV0M+gj7gN6HePmHOnDl6/fXX9cUXX6hz58665ZZbdN111yk+Pt59zjnnnKMzzjjDl3X61Pr16/XOO+9o5cqVcjgcGjRokC677LJqPwMAAAAAP2DqPuB3Xo/ojxs3TsnJyVqyZInWrFmjW2+99biAnJycrAceeMBXNfrcxo0b1b9/f0VERCgyMlI9evTQ/PnzzS4LAAAACH404wP8zuugv3//fr344os666yzajwnMjJSkydPrnVRixcv1rBhw5ScnCzDMDR37tzjznn++eeVlpamiIgI9evXT8uWLfP49bt27aqFCxcqLy9Pubm5Wrhwofbu3VvregEAAAB4yLVGnxF9wG+8nrpfUVGhgoKC444bhiGr1arw8PDTLqqoqEg9evTQ+PHjNWrUqOMenz17ttLT0zVr1iz169dPM2fO1JAhQ7R582Y1bdpUktSzZ88T7gDw5ZdfqnPnzrrtttt0wQUXyGaz6eyzz1ZISMhp1w0AAADgFKJZow/4m+FwOBzePMFiscgwjBofb9GihW644QZNnjxZFkute/0dLdAw9OGHH1Zr7tevXz+dddZZeu655yRJdrtdLVu21F//+lfdd999Xr/HhAkTNHLkSF166aU1nlNaWqrS0lL3/YKCArVs2VL5+fmKi4vz+j0BAACABmn/OunF86ToptLdW82uBggoBQUFstlsp8yhXifxN954Q8nJybr//vs1d+5czZ07V/fff79SUlL0wgsv6E9/+pOeeeYZTZ069bR+gJqUlZVp5cqVGjx4sPuYxWLR4MGDtXTpUo9f5+DBg5KkzZs3a9myZRoyZMhJz58yZYpsNpv70rJly9r9AAAAAEBD5m7Gly3Z7ebWAgQpr6fuv/nmm5o+fbquvvpq97Fhw4apW7duevHFF7VgwQKlpqbqscce0/333+/TYiXp0KFDqqysVFJSUrXjSUlJ2rRpk8evc/nllys/P1/R0dF6/fXXFRp68v8UkyZNUnp6uvu+a0QfAAAAgBdczfgclVJJnhSVaGo5QDDyOuj/8MMPmjVr1nHHzzzzTPeI+rnnnquMjIzTr86PvBn9lySr1Sqr1eqnagAAAIAGIjRcstqk0nznOn2CPuBzXk/db9mypV599dXjjr/66qvuEe7s7GwlJCScfnUn0LhxY4WEhOjAgQPVjh84cEDNmjXzy3sCAAAA8CFXQz467wN+4fWI/pNPPqmrrrpKn3/+uXuLvRUrVmjTpk363//+J0lavny5Ro8e7dtKq4SHh6t3795asGCBu0Gf3W7XggULdOutt/rlPQEAAAD4UFRjKWcHnfcBP/E66A8fPlybN2/Wiy++qM2bN0uSLrnkEs2dO1dpaWmSpL/85S+nVVRhYaG2bdvmvr9z506tWbNGiYmJSk1NVXp6usaOHas+ffqob9++mjlzpoqKijRu3LjTel8AAAAAdSC6ifOaEX3AL7wK+uXl5br44os1a9YsTZkyxV81acWKFRo0aJD7vqsJ3tixY/XGG29o9OjRysrK0sMPP6zMzEz17NlT8+fPP65BHwAAAIB6yDV1nxF9wC+8CvphYWFat26dv2pxO//88+VwOE56zq233spUfQAAACAQuTrvE/QBv/C6Gd911113wmZ8AAAAAOCR6Kqgz9R9wC+8XqNfUVGh1157TV9//bV69+6t6Ojoao/PmDHDZ8UBAAAACEKuNfqM6AN+4XXQ37Bhg3r16iVJ2rJlS7XHDMPwTVUAAAAAglcUa/QBf/I66H/77bf+qAMAAABAQ8HUfcCvvF6j77Jt2zZ98cUXOnLkiCSdsnkeAAAAAEg62oyvOFsiRwA+53XQz87O1oUXXqgOHTpo6NCh2r9/vyTpxhtv1F133eXzAgEAAAAEGdeIvr1CKskztRQgGHkd9O+8806FhYUpIyNDUVFR7uOjR4/W/PnzfVocAAAAgCAUapWscc7brNMHfM7rNfpffvmlvvjiC7Vo0aLa8fbt22vXrl0+KwwAAABAEItqJJUWOIN+4/ZmVwMEFa9H9IuKiqqN5Lvk5OTIarX6pCgAAAAAQY6GfIDfeB30zzvvPL311lvu+4ZhyG6364knntCgQYN8WhwAAACAIBXdxHnN1H3A57yeuv/EE0/owgsv1IoVK1RWVqZ77rlHP//8s3JycrRkyRJ/1AgAAAAg2EQ1cl4T9AGf83pEv2vXrtqyZYvOPfdcXX755SoqKtKoUaO0evVqtW3b1h81AgAAAAg2TN0H/MbrEX1JstlseuCBB3xdCwAAAICGIqoq6DOiD/hcrYJ+Xl6eli1bpoMHD8put1d77Prrr/dJYQAAAACCmGuNPiP6gM95HfQ/+eQTjRkzRoWFhYqLi5NhGO7HDMMg6AMAAAA4tWjW6AP+4vUa/bvuukvjx49XYWGh8vLylJub677k5OT4o0YAAAAAwYap+4DfeB309+7dq9tuu01RUVH+qAcAAABAQ+BuxpctORzm1gIEGa+D/pAhQ7RixQp/1AIAAACgoXCN6NvLpZJ8c2sBgozXa/QvvfRS3X333frll1/UrVs3hYWFVXt8+PDhPisOAAAAQJAKi5DCY6Wyw87p+5HxZlcEBA2vg/5NN90kSXr00UePe8wwDFVWVp5+VQAAAACCX3QjZ9AvPiSpndnVAEHD66n7dru9xgshHwAAAIDHaMgH+IXXQR8AAAAAfCK6ifO6mKAP+JLHQX/o0KHKzz/aJGPq1KnKy8tz38/Ozlbnzp19WhwAAACAIBbdyHldlGVuHUCQ8Tjof/HFFyotLXXff/zxx5WTk+O+X1FRoc2bN/u2OgAAAADByz11P9vcOoAg43HQd/xmb8vf3gcAAAAAr0RXBX2m7gM+xRp9AAAAAOZwrdGnGR/gUx5vr2cYhgzDOO4YAAAAANSKa+p+/m5pz0rPn2ec4I47m3iSUTyYnXzCGczezGr+TR2eZCf3ezp+83aO6vUkdZHCo7yoBQ2Nx0Hf4XDohhtukNVqlSSVlJTo5ptvVnR0tCRVW78PAAAAAKfkmrqfvU165QJzawkkKX2kmxaYXQXqMY+D/tixY6vdv+6664475/rrrz/9igAAAAA0DEldpfZDpIMbvXziMaPb1UbePRxxdzhqGGH3ZBT+ZCPzJ6vLw9nQv52Z4H6aITnsztkPmetO8jMAkuGgq16tFBQUyGazKT8/X3FxcWaXAwAAACDYlRVLjzd33r4vQ4qwmVsP6pynOZRmfAAAAAAQCMKjpDDn0mkaGOJkCPoAAAAAECiiGzmvi7PNrQP1GkEfAAAAAAKFe0vCLHPrQL1G0AcAAACAQOHakpCp+zgJgj4AAAAABArXiH4xQR81I+gDAAAAQKBwrdFnRB8nQdAHAAAAgEDB1H14gKAPAAAAAIGCZnzwAEEfAAAAAAJFdNWIPmv0cRIEfQAAAAAIFFGuNfrZ5taBeo2gDwAAAACB4tip+w6HubWg3iLoAwAAAECgcE3dt5dLpQXm1oJ6i6APAAAAAIEiLFIKj3HepvM+akDQBwAAAIBA4l6nT9DHiRH0AQAAACCQ0Hkfp0DQBwAAAIBAcmxDPuAECPoAAAAAEEiiqkb0mbqPGhD0AQAAACCQRFet0S/ONrcO1FsEfQAAAAAIJEzdxykQ9AEAAAAgkDB1H6dA0AcAAACAQOIe0Sfo48QI+gAAAAAQSNxr9An6ODGCPgAAAAAEkmOn7jsc5taCeomgDwAAAACBJLoq6NvLpZJ8c2tBvUTQBwAAAIBAEhYphcc4b7PFHk6AoA8AAAAAgSaqap0+DflwAgR9AAAAAAg07s77WebWgXqJoA8AAAAAgca1Tp/O+zgBgj4AAAAABBpX0GdEHydA0AcAAACAQOPeYo9mfDgeQR8AAAAAAg1T93ESBH0AAAAACDQ048NJEPQBAAAAINAwdR8nQdAHAAAAgEAT3ch5zYg+ToCgDwAAAACBxjV1vzhbcjjMrQX1DkEfAAAAAAKNa+q+vVwqyTe3FtQ7BH0AAAAACDRhEVJ4rPN2EZ33UR1BHwAAAAACkWudPlvs4TcI+gAAAAAQiNyd9wn6qI6gDwAAAACByNWQj877+A2CPgAAAAAEIqbuowYEfQAAAAAIREzdRw0I+gAAAAAQiNxT9wn6qI6gDwAAAACBKLpqRJ+p+/gNgj4AAAAABKJopu7jxAj6AAAAABCIWKOPGhD0AQAAACAQHTt13+EwtxbUKwR9AAAAAAhErhF9e4VUkmdqKahfCPoAAAAAEIjCIqTwWOftomxza0G90iCC/siRI5WQkKArr7zSq8cAAAAAoF6LbuS8Lsoytw7UKw0i6N9+++166623vH4MAAAAAOq16CbOa7bYwzEaRNA///zzFRsb6/VjAAAAAFCv0XkfJ2B60F+8eLGGDRum5ORkGYahuXPnHnfO888/r7S0NEVERKhfv35atmxZ3RcKAAAAAPVNNEEfxws1u4CioiL16NFD48eP16hRo457fPbs2UpPT9esWbPUr18/zZw5U0OGDNHmzZvVtGlTSVLPnj1VUVFx3HO//PJLJScn+6TO0tJSlZaWuu8XFBT45HUBAAAAoNaO3WIPqGJ60L/kkkt0ySWX1Pj4jBkzdNNNN2ncuHGSpFmzZunTTz/Va6+9pvvuu0+StGbNGr/XOWXKFD3yyCN+fx8AAAAA8BhT93ECpk/dP5mysjKtXLlSgwcPdh+zWCwaPHiwli5dWqe1TJo0Sfn5+e7L7t276/T9AQAAAOA4rmZ8dN3HMUwf0T+ZQ4cOqbKyUklJSdWOJyUladOmTR6/zuDBg7V27VoVFRWpRYsWev/999W/f/9TPnYsq9Uqq9V6ej8QAAAAAPiSa3u94mxz60C9Uq+Dvq98/fXXtXoMAAAAAOo199R9RvRxVL2eut+4cWOFhITowIED1Y4fOHBAzZo1M6kqAAAAAKgnXFP3i7Mlh8PcWlBv1OugHx4ert69e2vBggXuY3a7XQsWLDjh9HoAAAAAaFBcXfftFVJJnqmloP4wfep+YWGhtm3b5r6/c+dOrVmzRomJiUpNTVV6errGjh2rPn36qG/fvpo5c6aKiorcXfgBAAAAoMEKtUrWOKm0wNl5PzLB7IpQD5ge9FesWKFBgwa576enp0uSxo4dqzfeeEOjR49WVlaWHn74YWVmZqpnz56aP3/+cQ36AAAAAKBBimp0NOg3bm92NagHDIeDhRy1UVBQIJvNpvz8fMXFxZldDgAAAICG6pXB0p7l0tX/ljoPN7sa+JGnObRer9EHAAAAAJyCuyHfIXPrQL1B0AcAAACAQBbVyHldlG1uHag3CPoAAAAAEMhcnfeLssytA/UGQR8AAAAAAhlT9/EbBH0AAAAACGRRrhF9gj6cCPoAAAAAEMiiCfqojqAPAAAAAIHMFfSZuo8qBH0AAAAACGTHTt23282tBfUCQR8AAAAAAplrRN9RKZXkmVoK6geCPgAAAAAEslCrZI1z3i7ONrcW1AsEfQAAAAAIdFGNnNdFWebWgXqBoA8AAAAAgS66ifOazvsQQR8AAAAAAh+d93EMgj4AAAAABLroYzrvo8Ej6AMAAABAoIsi6OMogj4AAAAABDr3iD7N+EDQBwAAAIDA52rGxxp9iKAPAAAAAIHPvb1etrl1oF4g6AMAAABAoHNvr8fUfRD0AQAAACDwubfXy5bsdnNrgekI+gAAAAAQ6FxT9x2VUkmeqaXAfAR9AAAAAAh0oVbJanPeZou9Bo+gDwAAAADBILpqVJ/O+w0eQR8AAAAAgkFU1Tp9GvI1eAR9AAAAAAgG7s77jOg3dAR9AAAAAAgG7qn72ebWAdMR9AEAAAAgGLhH9Jm639AR9AEAAAAgGLjX6DN1v6Ej6AMAAABAMIimGR+cCPoAAAAAEAxcQZ81+g0eQR8AAAAAggFT91GFoA8AAAAAweDYEX273dxaYCqCPgAAAAAEA9eIvqNSKskztRSYi6APAAAAAMEgNFyy2py3mb7foBH0AQAAACBY0HkfIugDAAAAQPBwr9NnRL8hI+gDAAAAQLCIYkQfBH0AAAAACB7uqfvZ5tYBUxH0AQAAACBYMHUfIugDAAAAQPBg6j5E0AcAAACA4BHdxHnN9noNGkEfAAAAAIJFdCPnNUG/QSPoAwAAAECwcI3os0a/QSPoAwAAAECwcK3RL86W7HZza4FpCPoAAAAAECyiqqbuO+zSkVxza4FpCPoAAAAAECxCw6UIm/M20/cbLII+AAAAAAQT9xZ7BP2GKtTsAgAAAAAAPhTdWMrZLq15W9q/VrKESpaQquvQ6vcry6WyQqm8WCorPvHtihLJCJFCwiRLmPO57tuhUojrNcOOvm5I2Anet+pxSTIMSUb1a8Ny9HZF6YlrKi+qui52nhMSJoWEOy+h1mNuh0shVucx1/uHuOoLO/H9ln2lxu1N/IPzHYI+AAAAAASTuGTn9Zq3za0j0Fw6naAPAAAAAKiHBt4rRcQ7R+LtFc5LZblkrzx633UJCZPCY6SwKCk86sS3QyMkR+Uxr1Nx4tuOyprf59iLwyHJUXWt6vcdduftkHApPLqqluijNYVFV11X1WUvlyrKpMpSqbKshtuu93bVW3lM7eVH79tSzfsz8zGCPgAAAAAEk6ZnSMNmml0FTEQzPgAAAAAAgghBHwAAAACAIELQBwAAAAAgiBD0AQAAAAAIIgR9AAAAAACCCEEfAAAAAIAgQtAHAAAAACCIEPQBAAAAAAgiBH0AAAAAAIIIQR8AAAAAgCBC0AcAAAAAIIgQ9AEAAAAACCIEfQAAAAAAgghBHwAAAACAIELQBwAAAAAgiBD0AQAAAAAIIgR9AAAAAACCCEEfAAAAAIAgQtAHAAAAACCIEPQBAAAAAAgiBH0AAAAAAIIIQR8AAAAAgCBC0AcAAAAAIIgQ9AEAAAAACCIEfQAAAAAAgkio2QUEKofDIUkqKCgwuRIAAAAAQEPgyp+uPFoTgn4tHT58WJLUsmVLkysBAAAAADQkhw8fls1mq/Fxw3GqrwJwQna7Xfv27VNsbKwMw6jz9y8oKFDLli21e/duxcXF1fn7A2bgc4+GiM89GiI+92iI+NzDEw6HQ4cPH1ZycrIslppX4jOiX0sWi0UtWrQwuwzFxcXxDwEaHD73aIj43KMh4nOPhojPPU7lZCP5LjTjAwAAAAAgiBD0AQAAAAAIIgT9AGW1WjV58mRZrVazSwHqDJ97NER87tEQ8blHQ8TnHr5EMz4AAAAAAIIII/oAAAAAAAQRgj4AAAAAAEGEoA8AAAAAQBAh6AMAAAAAEEQI+gHq+eefV1pamiIiItSvXz8tW7bM7JIAn5kyZYrOOussxcbGqmnTphoxYoQ2b95c7ZySkhJNnDhRjRo1UkxMjK644godOHDApIoB35o6daoMw9Add9zhPsZnHsFq7969uu6669SoUSNFRkaqW7duWrFihftxh8Ohhx9+WM2bN1dkZKQGDx6srVu3mlgxcHoqKyv10EMPqXXr1oqMjFTbtm3197//Xcf2SOdzj9NF0A9As2fPVnp6uiZPnqxVq1apR48eGjJkiA4ePGh2aYBPLFq0SBMnTtSPP/6or776SuXl5broootUVFTkPufOO+/UJ598ovfff1+LFi3Svn37NGrUKBOrBnxj+fLlevHFF9W9e/dqx/nMIxjl5uZqwIABCgsL0+eff65ffvlF06dPV0JCgvucJ554Qs8884xmzZqln376SdHR0RoyZIhKSkpMrByovWnTpumFF17Qc889p40bN2ratGl64okn9Oyzz7rP4XOP0+ZAwOnbt69j4sSJ7vuVlZWO5ORkx5QpU0ysCvCfgwcPOiQ5Fi1a5HA4HI68vDxHWFiY4/3333efs3HjRockx9KlS80qEzhthw8fdrRv397x1VdfOQYOHOi4/fbbHQ4Hn3kEr3vvvddx7rnn1vi43W53NGvWzPHPf/7TfSwvL89htVod//3vf+uiRMDnLr30Usf48eOrHRs1apRjzJgxDoeDzz18gxH9AFNWVqaVK1dq8ODB7mMWi0WDBw/W0qVLTawM8J/8/HxJUmJioiRp5cqVKi8vr/b3oFOnTkpNTeXvAQLaxIkTdemll1b7bEt85hG8Pv74Y/Xp00dXXXWVmjZtqjPPPFMvv/yy+/GdO3cqMzOz2mffZrOpX79+fPYRsM455xwtWLBAW7ZskSStXbtW33//vS655BJJfO7hG6FmFwDvHDp0SJWVlUpKSqp2PCkpSZs2bTKpKsB/7Ha77rjjDg0YMEBdu3aVJGVmZio8PFzx8fHVzk1KSlJmZqYJVQKn791339WqVau0fPny4x7jM49gtWPHDr3wwgtKT0/X/fffr+XLl+u2225TeHi4xo4d6/58n+j3Hj77CFT33XefCgoK1KlTJ4WEhKiyslKPPfaYxowZI0l87uETBH0A9drEiRO1YcMGff/992aXAvjN7t27dfvtt+urr75SRESE2eUAdcZut6tPnz56/PHHJUlnnnmmNmzYoFmzZmns2LEmVwf4x3vvvae3335b77zzjrp06aI1a9bojjvuUHJyMp97+AxT9wNM48aNFRISclyn5QMHDqhZs2YmVQX4x6233qp58+bp22+/VYsWLdzHmzVrprKyMuXl5VU7n78HCFQrV67UwYMH1atXL4WGhio0NFSLFi3SM888o9DQUCUlJfGZR1Bq3ry5OnfuXO3YGWecoYyMDElyf775vQfB5O6779Z9992nP/zhD+rWrZv++Mc/6s4779SUKVMk8bmHbxD0A0x4eLh69+6tBQsWuI/Z7XYtWLBA/fv3N7EywHccDoduvfVWffjhh/rmm2/UunXrao/37t1bYWFh1f4ebN68WRkZGfw9QEC68MILtX79eq1Zs8Z96dOnj8aMGeO+zWcewWjAgAHHbZ+6ZcsWtWrVSpLUunVrNWvWrNpnv6CgQD/99BOffQSs4uJiWSzVY1hISIjsdrskPvfwDabuB6D09HSNHTtWffr0Ud++fTVz5kwVFRVp3LhxZpcG+MTEiRP1zjvv6KOPPlJsbKx7PZrNZlNkZKRsNptuvPFGpaenKzExUXFxcfrrX/+q/v376+yzzza5esB7sbGx7h4ULtHR0WrUqJH7OJ95BKM777xT55xzjh5//HFdffXVWrZsmV566SW99NJLkiTDMHTHHXfoH//4h9q3b6/WrVvroYceUnJyskaMGGFu8UAtDRs2TI899phSU1PVpUsXrV69WjNmzND48eMl8bmHj5jd9h+18+yzzzpSU1Md4eHhjr59+zp+/PFHs0sCfEbSCS+vv/66+5wjR444brnlFkdCQoIjKirKMXLkSMf+/fvNKxrwsWO313M4+MwjeH3yySeOrl27OqxWq6NTp06Ol156qdrjdrvd8dBDDzmSkpIcVqvVceGFFzo2b95sUrXA6SsoKHDcfvvtjtTUVEdERISjTZs2jgceeMBRWlrqPofPPU6X4XA4HGZ+0QAAAAAAAHyHNfoAAAAAAAQRgj4AAAAAAEGEoA8AAAAAQBAh6AMAAAAAEEQI+gAAAAAABBGCPgAAAAAAQYSgDwAAAABAECHoAwAAAAAQRAj6AADAJ3799VcZhqE1a9aYXQoAAA0aQR8AgAbghhtukGEYx10uvvhis0urcwsXLpRhGMrLyzO7FAAA/CLU7AIAAEDduPjii/X6669XO2a1Wk2qBgAA+Asj+gAANBBWq1XNmjWrdklISJAkXXvttRo9enS188vLy9W4cWO99dZbkqT58+fr3HPPVXx8vBo1aqTLLrtM27dv96qG0tJS3XvvvWrZsqWsVqvatWunV1991f34okWL1LdvX1mtVjVv3lz33XefKioq3I+npaVp5syZ1V6zZ8+e+r//+z/3fcMw9Morr2jkyJGKiopS+/bt9fHHH0tyLi8YNGiQJCkhIUGGYeiGG27w6mcAAKC+I+gDAACNGTNGn3zyiQoLC93HvvjiCxUXF2vkyJGSpKKiIqWnp2vFihVasGCBLBaLRo4cKbvd7vH7XH/99frvf/+rZ555Rhs3btSLL76omJgYSdLevXs1dOhQnXXWWVq7dq1eeOEFvfrqq/rHP/7h9c/zyCOP6Oqrr9a6des0dOhQjRkzRjk5OWrZsqU++OADSdLmzZu1f/9+Pf30016/PgAA9RlT9wEAaCDmzZvnDtUu999/v+6//34NGTJE0dHR+vDDD/XHP/5RkvTOO+9o+PDhio2NlSRdccUV1Z772muvqUmTJvrll1/UtWvXU77/li1b9N577+mrr77S4MGDJUlt2rRxP/6vf/1LLVu21HPPPSfDMNSpUyft27dP9957rx5++GFZLJ6PT9xwww265pprJEmPP/64nnnmGS1btkwXX3yxEhMTJUlNmzZVfHy8x68JAECgYEQfAIAGYtCgQVqzZk21y8033yxJCg0N1dVXX623335bknP0/qOPPtKYMWPcz9+6dauuueYatWnTRnFxcUpLS5MkZWRkePT+a9asUUhIiAYOHHjCxzdu3Kj+/fvLMAz3sQEDBqiwsFB79uzx6mft3r27+3Z0dLTi4uJ08OBBr14DAIBAxYg+AAANRHR0tNq1a1fj42PGjNHAgQN18OBBffXVV4qMjKzWlX/YsGFq1aqVXn75ZSUnJ8tut6tr164qKyvz6P0jIyNP+2ewWCxyOBzVjpWXlx93XlhYWLX7hmF4tcQAAIBAxog+AACQJJ1zzjlq2bKlZs+erbfffltXXXWVOzBnZ2dr8+bNevDBB3XhhRfqjDPOUG5urlev361bN9ntdi1atOiEj59xxhlaunRptSC/ZMkSxcbGqkWLFpKkJk2aaP/+/e7HCwoKtHPnTq/qCA8PlyRVVlZ69TwAAAIFQR8AgAaitLRUmZmZ1S6HDh2qds61116rWbNm6auvvqo2bT8hIUGNGjXSSy+9pG3btumbb75Renq6V++flpamsWPHavz48Zo7d6527typhQsX6r333pMk3XLLLdq9e7f++te/atOmTfroo480efJkpaenu9fnX3DBBfr3v/+t7777TuvXr9fYsWMVEhLiVR2tWrWSYRiaN2+esrKyqjUgBAAgGBD0AQBoIObPn6/mzZtXu5x77rnVzhkzZox++eUXpaSkaMCAAe7jFotF7777rlauXKmuXbvqzjvv1D//+U+va3jhhRd05ZVX6pZbblGnTp100003qaioSJKUkpKizz77TMuWLVOPHj10880368Ybb9SDDz7ofv6kSZM0cOBAXXbZZbr00ks1YsQItW3b1qsaUlJS9Mgjj+i+++5TUlKSbr31Vq9/DgAA6jPD8duFbgAAAAAAIGAxog8AAAAAQBAh6AMAAAAAEEQI+gAAAAAABBGCPgAAAAAAQYSgDwAAAABAECHoAwAAAAAQRAj6AAAAAAAEEYI+AAAAAABBhKAPAAAAAEAQIegDAAAAABBECPoAAAAAAASR/wcRxzBM9OY3bgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/oAAAK9CAYAAACUzBfBAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA+QNJREFUeJzs3Xd4k2UXwOFfkibdey9GC22BQlkCshEUARfIdIEoTlQE90ZxL9yKE/1EwcFQBBFEGQKyd6FAWZ1075W83x9pArUr6Upbzn1dvaDvPG/aQk+e85xHpSiKghBCCCGEEEIIIVoFta0DEEIIIYQQQgghRMORRF8IIYQQQgghhGhFJNEXQgghhBBCCCFaEUn0hRBCCCGEEEKIVkQSfSGEEEIIIYQQohWRRF8IIYQQQgghhGhFJNEXQgghhBBCCCFaEUn0hRBCCCGEEEKIVkQSfSGEEEIIIYQQohWRRF8IIYQQTeqbb74hKioKrVaLh4eHrcNpMNOmTaNdu3a2DsPm/vrrL1QqFX/99VeDXfOrr75CpVJx8uTJBrumEEK0ZpLoCyFEC2P6hbe6j61bt9o6RCGqFRsby7Rp0wgPD+fTTz9lwYIFtg5J1NGHH37IV199ZeswhBBCVEGlKIpi6yCEEEJY7quvvuLWW2/l+eefp3379pX2X3nllfj4+NggMiFq9/HHH3P33XcTFxdHhw4dbB1OgyotLcVgMGBvb2/rUJpEdHQ0Pj4+lUbuDQYDJSUl6HQ61OqGGVPS6/WUlpZib2+PSqVqkGsKIURrZmfrAIQQQtTNqFGj6N27t63DID8/H2dnZ1uH0eIVFRU1aGLUXKWmpgI0aMl+QUEBTk5ODXY9a5l+BrRarc1iaE7UajUODg4Nek2NRoNGo2nQa9ZEURSKiopwdHRssnsKIURDat2/TQghxEXs5MmTqFQq3njjDRYsWEB4eDj29vZccsklbN++vdLxsbGxjB8/Hi8vLxwcHOjduzcrVqyocIxp2sDff//NPffcg5+fHyEhIeb9H3zwAWFhYTg6OtKnTx82btzI0KFDGTp0KAB5eXk4OzvzwAMPVLr/2bNn0Wg0vPzyyzU+l8Fg4J133qFr1644ODjg6+vLlVdeyY4dO8zHlJWV8cILL5ifuV27djzxxBMUFxdXuFa7du246qqr2LRpE3369MHBwYGwsDC+/vpr8zE7duxApVKxcOHCSrH8/vvvqFQqfv31V/O2hIQEpk+fjr+/P/b29nTp0oUvvviiwnmmOczff/89Tz31FMHBwTg5OZGTkwPADz/8QOfOnXFwcCA6OpqlS5dWOf/bYDAwf/58unTpgoODA/7+/tx5551kZmZa/ZwmWVlZPPjgg7Rr1w57e3tCQkK45ZZbSEtLMx9TXFzMs88+S4cOHbC3tyc0NJRHHnmk0uv7X+3atePZZ58FwNfXF5VKxXPPPWfe/+GHH9KlSxfs7e0JCgri3nvvJSsrq8I1hg4dSnR0NDt37mTw4ME4OTnxxBNPVHm/N954A5VKxalTpyrte/zxx9HpdObXauPGjUyYMIE2bdqYn+nBBx+ksLCwwnnTpk3DxcWF48ePM3r0aFxdXbnxxhvN+/77NcrPz2fOnDmEhoZib29PZGQkb7zxBhcWVJp+Vqsqg//va5Sbm8usWbPMXx8/Pz8uv/xydu3aVeVrcKHdu3czatQo3NzccHFxYfjw4ZWm+ph+xjds2MCdd96Jt7c3bm5u3HLLLRW+r9q1a8fBgwf5+++/zdOGTD/nVc3RN33d9u3bx5AhQ3BycqJDhw78+OOPAPz999/07dsXR0dHIiMjWbt2bZVxmeboP/fcc9VOX5o2bZr5PGt/Rn7//Xd69+6No6Mjn3zyCQB//PEHAwcOxMPDAxcXFyIjI6v9nhNCiOZCRvSFEKKFys7OrpB8gTEp8Pb2rrBt0aJF5Obmcuedd6JSqXjttdcYN24cJ06cMI9AHjx4kAEDBhAcHMxjjz2Gs7MzS5Ys4brrruOnn35i7NixFa55zz334OvryzPPPEN+fj4AH330ETNnzmTQoEE8+OCDnDx5kuuuuw5PT0/zmwEuLi6MHTuWxYsX89Zbb1UYofvuu+9QFMWcNFXntttu46uvvmLUqFHcfvvtlJWVsXHjRrZu3WqucLj99ttZuHAh48ePZ86cOWzbto2XX36Zw4cPs3Tp0grXO3bsGOPHj+e2225j6tSpfPHFF0ybNo1evXrRpUsXevfuTVhYGEuWLGHq1KkVzl28eDGenp6MHDkSgJSUFPr164dKpWLmzJn4+vqyatUqbrvtNnJycpg1a1aF81944QV0Oh0PPfQQxcXF6HQ6Vq5cyaRJk+jatSsvv/wymZmZ3HbbbQQHB1d6Le68807zVI7777+f+Ph43n//fXbv3s3mzZsrjDDX9pxgfCNm0KBBHD58mOnTp9OzZ0/S0tJYsWIFZ8+excfHB4PBwDXXXMOmTZu444476NSpE/v37+ftt9/m6NGjLFu2rNqv3fz58/n6669ZunQpH330ES4uLnTr1g0wJm5z585lxIgR3H333Rw5coSPPvqI7du3V3qW9PR0Ro0axeTJk7npppvw9/ev8n4TJ07kkUceYcmSJTz88MMV9i1ZsoQrrrgCT09PwPjmSkFBAXfffTfe3t78+++/vPfee5w9e5YffvihwrllZWWMHDmSgQMH8sYbb1RbTaAoCtdccw3r16/ntttuo3v37vz+++88/PDDJCQk8Pbbb1f7WlXnrrvu4scff2TmzJl07tyZ9PR0Nm3axOHDh+nZs2e15x08eJBBgwbh5ubGI488glar5ZNPPmHo0KHmJPtCM2fOxMPDg+eee878tTh16pQ5iZ8/fz733XcfLi4uPPnkkwDVfh1MMjMzueqqq5g8eTITJkzgo48+YvLkyXz77bfMmjWLu+66ixtuuIHXX3+d8ePHc+bMGVxdXau81rhx4ypN/di5cyfz58/Hz8/PvM2an5EjR44wZcoU7rzzTmbMmEFkZCQHDx7kqquuolu3bjz//PPY29tz7NgxNm/eXOOzCiGEzSlCCCFalC+//FIBqvywt7c3HxcfH68Aire3t5KRkWHevnz5cgVQfvnlF/O24cOHK127dlWKiorM2wwGg9K/f3+lY8eOle49cOBApayszLy9uLhY8fb2Vi655BKltLTUvP2rr75SAGXIkCHmbb///rsCKKtWrarwXN26datwXFX+/PNPBVDuv//+SvsMBoOiKIqyZ88eBVBuv/32CvsfeughBVD+/PNP87a2bdsqgLJhwwbzttTUVMXe3l6ZM2eOedvjjz+uaLXaCq9jcXGx4uHhoUyfPt287bbbblMCAwOVtLS0CveePHmy4u7urhQUFCiKoijr169XACUsLMy8zaRr165KSEiIkpuba972119/KYDStm1b87aNGzcqgPLtt99WOH/16tWVtlv6nM8884wCKD///LPyX6bX95tvvlHUarWycePGCvs//vhjBVA2b95c6dwLPfvsswqgnDt3rkIsOp1OueKKKxS9Xm/e/v777yuA8sUXX5i3DRkyRAGUjz/+uMb7mFx66aVKr169Kmz7999/FUD5+uuvzdv++3VQFEV5+eWXFZVKpZw6dcq8berUqQqgPPbYY5WOnzp1aoWv0bJlyxRAmTdvXoXjxo8fr6hUKuXYsWOKopz/Wf3yyy8rXRNQnn32WfPn7u7uyr333lvjM1fluuuuU3Q6nXL8+HHztsTERMXV1VUZPHiweZvpZ7xXr15KSUmJeftrr72mAMry5cvN27p06VLlz6zp+3v9+vXmbaav26JFi8zbYmNjFUBRq9XK1q1bzdtN/0Zc+HqY4oqPj6/y+c6dO6e0adNG6dq1q5KXl6coSt1+RlavXl3h2LfffrvS96sQQrQEUrovhBAt1AcffMAff/xR4WPVqlWVjps0aZJ51BJg0KBBAJw4cQKAjIwM/vzzTyZOnEhubi5paWmkpaWRnp7OyJEjiYuLIyEhocI1Z8yYUWE0fseOHaSnpzNjxgzs7M4Xi914440V7g0wYsQIgoKC+Pbbb83bDhw4wL59+7jppptqfOaffvoJlUplLv++kKlB12+//QbA7NmzK+yfM2cOACtXrqywvXPnzubXBIwl5ZGRkebXB4yvYWlpKT///LN525o1a8jKymLSpEmAcfT2p59+4uqrr0ZRFPPrmJaWxsiRI8nOzq5UXj116tQKc4ATExPZv38/t9xyCy4uLubtQ4YMoWvXrhXO/eGHH3B3d+fyyy+vcK9evXrh4uLC+vXrrX7On376iZiYmEoVHHD+9f3hhx/o1KkTUVFRFe572WWXAVS6ryXWrl1LSUkJs2bNqtCjYMaMGbi5uVX6mtnb23PrrbdadO1Jkyaxc+dOjh8/bt62ePFi7O3tufbaa83bLvw65Ofnk5aWRv/+/VEUhd27d1e67t13313rvX/77Tc0Gg33339/he1z5sxBUZQqf15r4+HhwbZt20hMTLT4HL1ez5o1a7juuusICwszbw8MDOSGG25g06ZN5mkjJnfccUeF0e67774bOzs7889XXbi4uDB58mTz55GRkXh4eNCpU6cKFQWmv1/4vVkTvV7PlClTyM3NZenSpeaeIdb+jLRv395cnWNi6iWxfPlyDAaD1c8shBC2Iom+EEK0UH369GHEiBEVPoYNG1bpuDZt2lT43JR4m+aoHjt2DEVRePrpp/H19a3wYUqoTQ3UTP7b7d80B/q/pbR2dnaV5iyr1WpuvPFGli1bRkFBAQDffvstDg4OTJgwocZnPn78OEFBQXh5eVV7zKlTp1Cr1ZViCQgIwMPDo9J87f++PmB8jS6cwxsTE0NUVBSLFy82b1u8eDE+Pj7mBPfcuXNkZWWxYMGCSq+jKSmt6+tY1ba4uDiys7Px8/OrdL+8vLxK97LkOY8fP050dHSl4/5734MHD1a6Z0RERJXPaAnTc0dGRlbYrtPpCAsLq/Q1Cw4ORqfTWXTtCRMmoFarzV87RVH44YcfzHPVTU6fPs20adPw8vLCxcUFX19fhgwZAhinyVzIzs6uQm+Kmp4rKCioUvl5p06dzPut9dprr3HgwAFCQ0Pp06cPzz33XK0J8blz5ygoKKj0+ppiMRgMnDlzpsL2jh07VvjcxcWFwMDAeq1jHxISUqljvru7O6GhoZW2AZXm0Vfnqaee4s8//2TRokWEh4ebt1v7M1LVKiaTJk1iwIAB3H777fj7+zN58mSWLFkiSb8QotmTOfpCCNHKVdepWilvBmb6hfWhhx6qNJpl8t8ks76dqG+55RZef/11li1bxpQpU1i0aBFXXXWV+Rf8hmDpEly1vT4mkyZN4sUXXyQtLQ1XV1dWrFjBlClTzBUMptfxpptuqjSX38Q0H92kPq+jwWDAz8+vQmXEhXx9fSt8bulzWnLfrl278tZbb1W5/79JW2Ow5nULCgpi0KBBLFmyhCeeeIKtW7dy+vRpXn31VfMxer2eyy+/nIyMDB599FGioqJwdnYmISGBadOmVUrq7O3tG3R1hOq+V/V6faVtEydOZNCgQSxdupQ1a9bw+uuv8+qrr/Lzzz8zatSoBoupMVT3PVif781ly5bx6quv8sILL3DllVdW2Gftz0hV31eOjo5s2LCB9evXs3LlSlavXs3ixYu57LLLWLNmTZOuBCCEENaQRF8IIS5yplJerVbLiBEj6nSNtm3bAsbqgAurCsrKyjh58mSlBDc6OpoePXrw7bffEhISwunTp3nvvfdqvU94eDi///47GRkZ1Y7qt23bFoPBQFxcnHnkFIyN8rKyssyxWmvSpEnMnTuXn376CX9/f3JyciqUIfv6+uLq6oper2+Q1/G//rstPDyctWvXMmDAgAZbAiw8PJwDBw7UeszevXsZPnx4g61nbnruI0eOVCgtLykpIT4+vs6vp8mkSZO45557OHLkCIsXL8bJyYmrr77avH///v0cPXqUhQsXcsstt5i3//HHH/W6b9u2bVm7di25ubkVRvVjY2PN++F8lc1/VxiobsQ/MDCQe+65h3vuuYfU1FR69uzJiy++WG2i7+vri5OTE0eOHKm0LzY2FrVaXekNmri4uAo/y3l5eSQlJTF69GjzNluvZ3/06FGmTp3KddddV2UX/Ib6GVGr1QwfPpzhw4fz1ltv8dJLL/Hkk0+yfv36en9vCiFEY5HSfSGEuMj5+fkxdOhQPvnkE5KSkirtP3fuXK3X6N27N97e3nz66aeUlZWZt3/77bfVlt/efPPNrFmzhvnz5+Pt7W3RaOT111+PoijMnTu30j7T6J8pEZk/f36F/aYR6DFjxtR6n6p06tSJrl27snjxYhYvXkxgYCCDBw8279doNFx//fX89NNPVSbLlryOQUFBREdH8/XXX5OXl2fe/vfff7N///4Kx06cOBG9Xs8LL7xQ6TplZWWVkkZLXH/99ezdu7fSygRw/vWdOHEiCQkJfPrpp5WOKSwsNK/CYI0RI0ag0+l49913K4zifv7552RnZ9f5a2Zy/fXXo9Fo+O677/jhhx+46qqrzPO44fyI8oX3VhSFd955p173HT16NHq9nvfff7/C9rfffhuVSmX+nndzc8PHx4cNGzZUOO7DDz+s8Ller680jcDPz4+goKAalzbUaDRcccUVLF++vELpfUpKCosWLWLgwIEVpjEALFiwgNLSUvPnH330EWVlZRV+Tp2dnev0fdYQ8vLyGDt2LMHBwSxcuLDKNx0a4mckIyOj0rbu3bsD1LqcpBBC2JKM6AshRAu1atUq88jghfr3719hVNQSH3zwAQMHDqRr167MmDGDsLAwUlJS2LJlC2fPnmXv3r01nq/T6Xjuuee47777uOyyy5g4cSInT57kq6++Ijw8vMpfwm+44QYeeeQRli5dyt13312h8Vd1hg0bxs0338y7775LXFwcV155JQaDgY0bNzJs2DBmzpxJTEwMU6dOZcGCBWRlZTFkyBD+/fdfFi5cyHXXXVdlHwNLTZo0iWeeeQYHBwduu+22SuXbr7zyCuvXr6dv377MmDGDzp07k5GRwa5du1i7dm2VScN/vfTSS1x77bUMGDCAW2+9lczMTN5//32io6MrJP9Dhgzhzjvv5OWXX2bPnj1cccUVaLVa4uLi+OGHH3jnnXcYP368Vc/38MMP8+OPPzJhwgSmT59Or169yMjIYMWKFXz88cfExMRw8803s2TJEu666y7Wr1/PgAED0Ov1xMbGsmTJEvM65Nbw9fXl8ccfZ+7cuVx55ZVcc801HDlyhA8//JBLLrmk1iaNtfHz82PYsGG89dZb5ObmmhsomkRFRREeHs5DDz1EQkICbm5u/PTTTxbPEa/O1VdfzbBhw3jyySc5efIkMTExrFmzhuXLlzNr1qwK88lvv/12XnnlFW6//XZ69+7Nhg0bOHr0aIXr5ebmEhISwvjx44mJicHFxYW1a9eyfft23nzzzRpjmTdvnnk9+HvuuQc7Ozs++eQTiouLee211yodX1JSwvDhw5k4caL5azFw4ECuueYa8zG9evXio48+Yt68eXTo0AE/Pz9zz4rGNnfuXA4dOsRTTz3F8uXLK+wLDw/n0ksvbZCfkeeff54NGzYwZswY2rZtS2pqKh9++CEhISEMHDiwMR9RCCHqp+kb/QshhKiPmpbX44IlqUxLdr3++uuVrsF/luxSFEU5fvy4cssttygBAQGKVqtVgoODlauuukr58ccfK917+/btVcb27rvvKm3btlXs7e2VPn36KJs3b1Z69eqlXHnllVUeP3r0aAVQ/vnnH4ufv6ysTHn99deVqKgoRafTKb6+vsqoUaOUnTt3mo8pLS1V5s6dq7Rv317RarVKaGio8vjjj1dYPlBRjEtqjRkzptI9hgwZUuWyYXFxcebXedOmTVXGl5KSotx7771KaGiootVqlYCAAGX48OHKggULzMeYlh/74YcfqrzG999/r0RFRSn29vZKdHS0smLFCuX6669XoqKiKh27YMECpVevXoqjo6Pi6uqqdO3aVXnkkUeUxMTEOj1nenq6MnPmTCU4OFjR6XRKSEiIMnXq1ApLBpaUlCivvvqq0qVLF8Xe3l7x9PRUevXqpcydO1fJzs6u8plMqlpez+T9999XoqKiFK1Wq/j7+yt33323kpmZWSnmLl261HiPqnz66acKoLi6uiqFhYWV9h86dEgZMWKE4uLiovj4+CgzZsxQ9u7dW2mZt6lTpyrOzs5V3uO/y+spiqLk5uYqDz74oBIUFKRotVqlY8eOyuuvv25ertCkoKBAue222xR3d3fF1dVVmThxopKamlrhZ7W4uFh5+OGHlZiYGMXV1VVxdnZWYmJilA8//NCi12DXrl3KyJEjFRcXF8XJyUkZNmxYpZ8908/433//rdxxxx2Kp6en4uLiotx4441Kenp6hWOTk5OVMWPGKK6urhWW0axueb2qvm7VfW8CFZYR/O/yeqZlDqv6mDp1aoVr1ednZN26dcq1116rBAUFKTqdTgkKClKmTJmiHD16tMrXWAghmguVoljZhUcIIYSwkMFgwNfXl3HjxlVZ6j127Fj2799f5Zx0UVH37t3x9fWt97xxIWry1Vdfceutt7J9+3arKzOEEEI0HzJHXwghRIMoKiqq1CX766+/JiMjg6FDh1Y6PikpiZUrV3LzzTc3UYQtQ2lpaYU+BwB//fUXe/furfJ1FEIIIYT4L5mjL4QQokFs3bqVBx98kAkTJuDt7c2uXbv4/PPPiY6OZsKECebj4uPj2bx5M5999hlarZY777zThlE3PwkJCYwYMYKbbrqJoKAgYmNj+fjjjwkICOCuu+6ydXhCCCGEaAEk0RdCCNEg2rVrR2hoKO+++655+btbbrmFV155BZ1OZz7u77//5tZbb6VNmzYsXLiQgIAAG0bd/Hh6etKrVy8+++wzzp07h7OzM2PGjOGVV17B29vb1uEJIYQQogWQOfpCCCGEEEIIIUQrInP0hRBCCCGEEEKIVkQSfSGEEEIIIYQQohWROfp1ZDAYSExMxNXVFZVKZetwhBBCCCGEEEK0coqikJubS1BQEGp19eP2kujXUWJiIqGhobYOQwghhBBCCCHERebMmTOEhIRUu18S/TpydXUFjC+wm5ubjaMRQgghhBBCCNHa5eTkEBoaas5HqyOJfh2ZyvXd3Nwk0RdCCCGEEEII0WRqmz4uzfiEEEIIIYQQQohWRBJ9IYQQQgghhBCiFZFEXwghhBBCCCGEaEVkjr4QQgghhBBCtFCKolBWVoZer7d1KKIBaDQa7Ozs6r2EuyT6QgghhBBCCNEClZSUkJSUREFBga1DEQ3IycmJwMBAdDpdna8hib4QQgghhBBCtDAGg4H4+Hg0Gg1BQUHodLp6jwIL21IUhZKSEs6dO0d8fDwdO3ZEra7bbHtJ9IUQQgghhBCihSkpKcFgMBAaGoqTk5OtwxENxNHREa1Wy6lTpygpKcHBwaFO15FmfEIIIYQQQgjRQtV1xFc0Xw3xNZXvCiGEEEIIIYQQohWRRF8IIYQQQgghhGhFJNEXQgghhBBCCCFaEUn0hRBCCCGEEEI0qeTkZO677z7CwsKwt7cnNDSUq6++mnXr1pmP+eeffxg9ejSenp44ODjQtWtX3nrrLfR6fYVrqVQq84ednR1t2rRh9uzZFBcX8/fff6PVatm0aVOFc/Lz8wkLC+Ohhx4CYOjQocyaNavWuLds2YJGo2HMmDH1fxEakST6QgghhBBCCCGazMmTJ+nVqxd//vknr7/+Ovv372f16tUMGzaMe++9F4ClS5cyZMgQQkJCWL9+PbGxsTzwwAPMmzePyZMnoyhKhWt++eWXJCUlER8fz4cffsg333zDvHnzGDJkCPfddx/Tpk0jPz/ffPwjjzyCo6Mj8+bNsyr2zz//nPvuu48NGzaQmJhY/xejkcjyekIIIYQQQgjRCiiKQmGpvvYDG4GjVoNKpbLo2HvuuQeVSsW///6Ls7OzeXuXLl2YPn06+fn5zJgxg2uuuYYFCxaY999+++34+/tzzTXXsGTJEiZNmmTe5+HhQUBAAAChoaFce+217Nq1C4CXXnqJ1atX8+ijj/L++++zfv16PvvsM/755x+rlq/Ly8tj8eLF7Nixg+TkZL766iueeOIJi89vSpLoCyGEEEIIIUQrUFiqp/Mzv9vk3oeeH4mTrvb0MiMjg9WrV/Piiy9WSPJNPDw8WLp0Kenp6eay+gtdffXVRERE8N1331VI9C909OhR/vzzT6ZNmwaAg4MDX3/9Nf379+fyyy9n1qxZPPHEE/Tq1cuqZ1yyZAlRUVFERkZy0003MWvWLB5//HGL3+BoSlK6L4QQQgghhBCiSRw7dgxFUYiKiqr2mKNHjwLQqVOnKvdHRUWZjzGZMmUKLi4uODg4EBkZSZcuXXj88cfN+3v37s3jjz/OuHHj8Pb25sknn7Q69s8//5ybbroJgCuvvJLs7Gz+/vtvq6/TFGREXwghhBBCCCFaAUethkPPj7TZvS3x37n1DXXs22+/zYgRI9Dr9Rw7dozZs2dz88038/3335uPefrpp3n++ed57LHHsLOzLhU+cuQI//77L0uXLgXAzs6OSZMm8fnnnzN06FCrrtUUJNEXQgghhBBCiFZApVJZVD5vSx07dkSlUhEbG1vtMREREQAcPnyY/v37V9p/+PBhOnfuXGFbQEAAHTp0ACAyMpLc3FymTJnCvHnzzNtNyb21ST4YR/PLysoICgoyb1MUBXt7e95//33c3d2tvmZjktJ9IYQQQgghhBBNwsvLi5EjR/LBBx9U6IJvkpWVxRVXXIGXlxdvvvlmpf0rVqwgLi6OKVOm1HgfjcZYYVBYWFjvmMvKyvj6669588032bNnj/lj7969BAUF8d1339X7Hg2teb/dI4QQQgghhBCiVfnggw8YMGAAffr04fnnn6dbt26UlZXxxx9/8NFHH3H48GE++eQTJk+ezB133MHMmTNxc3Nj3bp1PPzww4wfP56JEydWuGZWVhbJyckYDAbi4uJ4/vnniYiIqHaef1XOnTvHnj17KmwLDAxky5YtZGZmctttt1Uaub/++uv5/PPPueuuu+r8ejQGSfSFEEIIIYQQQjSZsLAwdu3axYsvvsicOXNISkrC19eXXr168dFHHwEwfvx41q9fz4svvsigQYMoKiqiY8eOPPnkk8yaNatSp/tbb70VME5fCAgIYPDgwbz00ktWlekvWrSIRYsWVdj2wgsvsG3bNkaMGFFlef7111/Pa6+9xr59++jWrZu1L0WjUSnWdDgQZjk5Obi7u5OdnY2bm5utwxFCCCGEEEJcRIqKioiPj6d9+/ZWrQUvmr+avraW5qEyR18IIYQQQgghhGhFpHS/FSsoSGPxn+9gMCi09XK2dTgtRq9OE/D07mDrMIQQQgghhBCiTiTRb8XW7dnBW+nLjJ9k2jSUFsU97n8sHv4pwW0qL+UhhBBCCCGEEM2dJPqtWM/2QUQeUKM3KGjUapx0GluH1OwlGIpJ1ah5aO1dLJy4Fp2Ln61DEkIIIYQQQgirSKLfigUHduO1sZsZ8+4mCkv1PHplFHcPDbd1WM1aYso+Jvx2Awc08PpP43jypr9AIz8mQgghhBBCiJZDmvG1cmG+Ljx3TWcA3lxzhH1ns2wbUDMX5N+Nl3s9BMD3ZLNqxa2Vjvl6y0nCHl/J1hPpTR2eEEIIIYQQQtRKEv2LwMTeoYyKDqDMoPDA93soKCmzdUjN2uBu05gROASAZ7N2cWLzmxX2/7TzLAYFftmbaIvwhBBCCCGEEKJGkuhfBFQqFS+P60qguwPxafk8/8shW4fU7N0zYj6XOPhTqFYz59CnFBxfB0BRqZ6DiTkA7DmTZcMIhRBCCCGEEKJqkuhfJDycdLw1sTsqFXy//Qyr9ifZOqRmzU5tx2tXf4ePSssxnZZ5f9yLkn6CfWezKTMoAMQm51JYordxpEIIIYQQQghRkST6F5FLw725a4ixGd9jP+8nKbvQxhE1bz5Ovrx22XuoFfjFUctPP05g/4kz5v16g8KBxGwbRiiEEEIIIYQQlUmif5F5cEQEXYPdyS4sZfbivejLR6dF1S4JGcB9XaYD8LKuGN89s1BjQKUy7t9zOst2wQkhhBBCCNECTZs2jeuuu87q89q1a4dKpUKlUqHRaAgKCuK2224jMzPTfMxff/1lPubCj6eeesp8jKIofPrpp1x66aW4ubnh4uJCly5deOCBBzh27Jj5uIKCAh5//HHCw8NxcHDA19eXIUOGsHz5coviHTp0aIUY/P39mTBhAqdOnbL62a0lif5FRmen5p3J3XHUathyIp0FG07Uek5JmYFf9yVy5zc7eGrZflJzi+odR3peMTlFpfW+TlOY3vsBhvjEUKJW8ZF7ErN0/+OySD8A9sgqBkIIIYQQQjSZ559/nqSkJE6fPs23337Lhg0buP/++ysdd+TIEZKSkswfjz32GGBM8m+44Qbuv/9+Ro8ezZo1azh06BCff/45Dg4OzJs3z3yNu+66i59//pn33nuP2NhYVq9ezfjx40lPt3z1rRkzZpCUlERiYiLLly/nzJkz3HTTTfV/IWohC4RfhExL7j36037eXHOEAR286RbiUem4k2n5fLf9ND/uOEt6fol5+/Ldicy5IoKb+rXFTmPde0UpOUW8/cdRluw4QzsfZ1Y/MBidXfN+v0mtUvPiiA+4/scxnCWb4wE7mOO3nXWxbWVEXwghhBBCNB+KAqUFtrm31glz2WsjcnV1JSAgAIDg4GCmTp3Kd999V+k4Pz8/PDw8Km1fvHgx33//PcuXL+eaa64xb2/Tpg39+vVDUc5XPK9YsYJ33nmH0aNHA8aKgl69elkVr5OTkznewMBAZs6cyZ133mnVNepCEv2L1MTeofx15ByrDiTzwPd7WHn/QJx0dpSUGVhzKJlF207zz/Hz71T5udozrmcI/xxPY9/ZbJ775RBLdpxl3thoerbxrPV+uUWlfPL3CT7bdIKiUgMAJ87l8+u+RMb1DGm052wo7vbuXNfueT49Oos/nZ3oceQVNtjroAD0bzuiaYJ/1Fo0nQtc9wEE9bB1JEIIIYQQrVdpAbwUZJt7P5EIOucmvWVCQgK//PILffv2tfic7777jsjIyApJ/oVUF/xeHxAQwG+//ca4ceNwdXWtd7wZGRksWbLEqnjrShL9i5Rpyb09Z7KIT8vnsZ/2E+juwI87z4/eq1QwJMKXG/q04bIoP+w0avQGhe/+Pc1rq2M5lJTDuA//YVLvUB4dFYWXs67SfUrKDHy77RTv/XmMjPLr9mrrSZiPMz/sPMuCDScY2yO4wg9Uc5Vyzo+C1KtxCFjB255ufOdq6rhfZtO4WgJnJZ1Xls0g4o7NYGdv63CEEEIIIUQL9eijj/LUU0+h1+spKiqib9++vPXWW5WOCwmpOJh46tQpvL29OXr0KJGRkRX2zZo1i88++wwADw8Pzp49C8CCBQu48cYb8fb2JiYmhoEDBzJ+/HgGDBhgcbwffvghn332GYqiUFBQQEREBL///ru1j201SfQvYqYl9274bCsr9iaat/u72TOpdygTLwklxNOpwjkatYqb+rXlyugAXlkVy487z7J4xxl+P5TMIyOjmHxJKGq1CoNB4df9Sbzx+xFOZxjLh8J8nXn0yiiu6OxPTmEZK/cnEZucy8a4NAZH+Dbps9fFrtOZlGZeSv9OBezKXEuiVn58rLGwOJ0X/34Nhj9t61CEEEIIIVonrZNxZN1W924CDz/8MNOmTUNRFM6cOcMTTzzBmDFj2LBhAxqNxnzcxo0bK4zCe3pWX4X85JNPMnPmTH7++Wdeeukl8/bBgwdz4sQJtm7dyj///MO6det45513mDt3Lk8/bdnvtDfeeCNPPvkkACkpKbz00ktcccUV7Ny5s0GqBKojmcpF7tJwb2aPiODttUcZEuHLlAtG72vi42LPGxNimHRJKE8vO0Bsci5PLN3P4h1nuKVfWxZuOcm+s8al53xd7XlwRAQTe4eYr+vupGXSJaF8ufkkn2480ewT/fziMg4n5QAqXh78IvnKPSzfe5IP/zpO91B35l4TbesQm62TOSd5YtMTrHV24qnN83HsfA0Extg6LCGEEEKI1kelavLy+abm4+NDhw4dAOjYsSPz58/n0ksvZf369YwYMcJ8XPv27auco9+xY0eOHDlSYZuvry++vr74+flVOl6r1TJo0CAGDRrEo48+yrx583j++ed59NFH0ekqVzT/l7u7uzneDh068PnnnxMYGMjixYu5/fbbrXl0q0iiL7hveEfuHdYBtdr68vlL2nnx630DWbjlFG//cZS9Z7KYcyYLAGedhjuHhHP7oPY46Sp/q00f0J6vt5xiY1wahxJz6BzkVt9HaTR7z2ZhUCDQ3YEgDyegI6Mj/Hl/dQlxp+3o4h1dp9fvYhDtE80Hez4gIS+Bvxx1jFp2L9yxHjRaW4cmhBBCCCFaONMofmFhoUXHT5kyhRtuuIHly5dz7bXXWn2/zp07U1ZWRlFRkUWJ/n9ZG29dSaIvAOqVpNpp1Nw2sD1XdQvkxZWH+eNQChN7h3Df8I74uFQ/HzvUy4nRXQP5ZW8in248wduTutc5hsa2u7y7fs+250t+IvxdcNRqyC0u40RaHh38Gq/0piVTqVSMCRvDgn0L+NXNg1FJ+2HTfBjysK1DE0IIIYQQNpKdnc2ePXsqbPP29iY0NLTG83Jzc0lOTjaX7j/yyCP4+vrSv39/i+47efJkfv75ZyZPnszjjz/OyJEj8ff359SpUyxevLhC+f/QoUOZMmUKvXv3xtvbm0OHDvHEE08wbNgw3NwsG6QsKCggOTkZMJbuv/DCCzg4OHDFFVdYdH5dNe91zUSL4u/mwLtTenDo+ZHMvTa6xiTfZMag9gD8sjeRxKy6vat1JqOAtLziOp1rqZ2nMgEqrDBgp1HTNdgdOP9GgKjamLAxAPzjoCNDrYYNr0HqYRtHJYQQQgghbOWvv/6iR48eFT7mzp1b63nPPPMMgYGBBAUFcdVVV+Hs7MyaNWvw9va26L4qlYrFixczf/58fvvtN4YPH05kZCTTp08nNDSUTZs2mY8dOXIkCxcu5IorrqBTp07cd999jBw5kiVLllj8nJ9++imBgYEEBgYybNgw0tLS+O233yo1BGxoKuXChQKFxXJycnB3dyc7O9vid3NE1SYv2MLWExncMTiMJ0Z3surcXaczmfzJVgI9HFg/Z2ijlM8rikLPF/4gs6CUpff0p8cFyf5Lvx1mwYYT3Ni3DS+O7drg925NJv06iUPph3hCHcCU4/9CcC+47Q9Qa2o/WQghhBBCVFBUVER8fDzt27fHwcHB1uGIBlTT19bSPFRG9IXN3Tk4HIBF206TU1Rq8XnZhaXc/91uSvQGTqUXcDg5p1Hii0/LJ7OgFJ2dmi5B7hX2dQ/1AIxz+EXNrgq7CoBf3T3B3g0SdsLWD20clRBCCCGEEK2PJPrC5oZE+NLRz4W84jK+//e0RecoisITP+/nbOb5cv/Nx9IaJT5T2X63YHd0dhV/ZGLKE/3YpFyKSvWNcv/WYlT7UahVavZlHubMkIeMG/+cB+nHbRuYEEIIIYSwuW+//RYXF5cqP7p06WLr8CrZuHFjtfG6uLjYOjxpxidsT61WMWNQGI/8tI8vNp1kWv/2lRLq//p++xlW7k/CTq1iTLdAlu9JZNOxdO4orw5oSLuqaMRnEuTugK+rPedyizmQkE3vdl4Nfv/WwsfRh36B/fgn8R9+ddJxd/shEP83rLgPpv4KannfUQghhBDiYnXNNdfQt2/fKvdptc1vtabevXtXaibYnEiiL5qFa3sE8fqaIyTnFPHrvkTG9Qyp9tijKbk8t+IgAA+PjGRopB/L9yTyb3w6xWV67O0ads73rioa8ZmoVCq6h3rwx6EU9pzJkkS/FmPCxvBP4j/8Fv8bd139LqqP+sOpzbDjc+gzw9bhCSGEEEIIG3F1dcXVteWsYuXo6EiHDh1sHUa1ZAhNNAv2dhqm9W8HwIINJ6iuR2RRqZ6Zi3ZRXGZgcIQvMwaFEeHvgo+LPUWlBnOZfUPJKSrlaGouAD3belR5jGme/u4zWQ1679ZoeJvhOGgcOJlzkoOGfBjxnHHHH89C5imbxiaEEEIIIURrIYm+aDZu6tsWJ52G2ORcNlUz3/75Xw9xNCUPHxd73pwQg1qtQqVSMbCDcTmNhp6nv/dMFooCoV6O+LlW3c20h6khnyT6tXLWOjMsdBgAK0+shEtmQGg/KM2HXx4AWQRECCGEEEKIepPSfdFsuDtpmXRJKF9uPsmCDScY1NG3wv6V+5JYtO00KhXMn9QdX1d7876BHX1ZVj5P/+GRDRfTzhrK9k26hrijUsHZzELS8orxcbGv9lgBV4VfxaqTq/gt/jfm9J6D3bUfwMcD4MR6WPss+Fq3xOJFLbgn+DbuGqxCCCGEEKLlkURfNCvTB7Rn4T8n2RiXxqHEHDoHGdeGPJNRwGM/7wPgriHhDOzoU+G8AeUj+vvPZpFdUIq7U8M07DA34qsh0Xd10NLB14W41Dz2nM5iRGf/Brl3a3Vp0KV42nuSUZTBtqRtDAgeAEMfNyb5m9+xdXgti0oNfe6EYU+AQ/XrqAohhBBCiIuLJPqiWQn1cmJ010B+3ZfEZxtP8Nak7pTqDdz//W5yi8ro0caD2ZdHVDov0N2RcF9njp/LZ8uJNK6MDqx3LAaDwu7TxhH9XlV03L9Q91APY6J/RhL92mjVWka2G8n3R77n1xO/GhP9S2dCXgqkHbV1eC1HcR6c2QrbPoJDy+DKl6HzdaBS2ToyIYQQQghhY5Loi2bnjsFh/LoviRV7E3loZCTfbD3F7tNZuDrY8e7kHmg1VbeWGNTRl+Pn8tl0rGES/WPn8sgtKsNRqyEqoOYOoN3bePDDzrPskXn6Frkq/Cq+P/I9606vo6C0ACetkzFRFdY5/iesnAMZJ+CHadBhBIx+HbzCbB2ZEEIIIYSwIWnGJ5qdbiEe9AvzosygMHvJHj7++zgAr17fjVAvp2rPG9DBWM6/+Vh6g8RhWlavW4g7dtW8uWASE+IBwN6zWRgM0lCuNt18uhHqGkphWSHrz6y3dTgtV/hlcPcWGPIYaHRwbC18eCn8/TqUFds6OiGEEEKIap07d467776bNm3aYG9vT0BAACNHjmTz5s0AtGvXjvnz51d7/tKlS+nXrx/u7u64urrSpUsXZs2aVeGYwsJCnn32WSIiIrC3t8fHx4cJEyZw8ODBCsc999xzqFTGJt92dna0a9eOBx98kLy8vIZ+7CYjib5olu4YbByR3HoiA0WBG/q2YXTXmkfp+4Z5oVGriE/L52xmQb1j2GVh2T5AVIArDlo1uUVlnEjLr/e9WzuVSsWYsDEA/HriVxtH08JpHWDY48aEP2wolBXB+nnw0QCI32Dr6IQQQgghqnT99deze/duFi5cyNGjR1mxYgVDhw4lPb32Qbt169YxadIkrr/+ev7991927tzJiy++SGlpqfmY4uJiRowYwRdffMG8efM4evQov/32G2VlZfTt25etW7dWuGaXLl1ISkri5MmTvPrqqyxYsIA5c+Y0+HM3FSndF83S0Ag/Ovi5cCw1jwh/F565qnOt57g5aIkJcWfX6Sw2H0tj0iVt6hWDJR33Tew0aroGu7P9ZCZ7zmTRwc+lXve+GIxpP4aP937MlsQtpBem4+3obeuQWjafDnDzMjjwE6x+HNLjYOHV0Pla8O5o6+haDkcP6D0ddM62jkQIIYSwmqIoFJYV2uTejnaOqCzsFZSVlcXGjRv566+/GDJkCABt27alT58+Fp3/yy+/MGDAAB5++GHztoiICK677jrz5/Pnz2fLli3s3r2bmJgY8z1++ukn+vbty2233caBAwfMMdvZ2REQEADApEmTWLduHStWrOCTTz6xKKbmRhJ90Syp1SpeGtuVLzfH8/DISBy0GovOG9jRl12ns9h0LL1eiX5WQQnHzxlH5ntaMKIPxoZ8xkQ/k/G9Qup874tFO/d2RHtHcyD9AKtPrubGTjfaOqSWT6WCruONc/X/fAG2fw6Hlts6qpZH6wiX3G7rKIQQQgirFZYV0ndRX5vce9sN24x9lyzg4uKCi4sLy5Yto1+/ftjbW7c8dUBAAIsWLeLAgQNER0dXecyiRYu4/PLLzUm+iVqt5sEHH+TGG29k7969dO/evcrzHR0dKSkpsSqu5kQSfdFs9WnvRZ/2XladM7CDD++ui+OfY2kYDApqdd06kO8ub6rX3scZL2edRed0D/UE4tl7JrtO97wYjQkbw4H0A/x24jdJ9BuSoweMeRO63wAHfgZDma0jahnOboeEnZAWZ+tIhBBCiFbNzs6Or776ihkzZvDxxx/Ts2dPhgwZwuTJk+nWrVut5993331s3LiRrl270rZtW/r168cVV1zBjTfeaH7T4OjRowwbNqzK8zt16mQ+pqpEf+fOnSxatIjLLrus7g9pY5Loi1ale6gHTjoN6fklHE7OoUuQe52uY2rE16ONh8XnxIQa73U4KYeiUr3FVQiWOJaaS2GJgc5Bbmjq+OZFc3Rl+yt5Y8cb7Evbx6mcU7R1a2vrkFqX4F7GD2GZ7Z8ZE/2sM7aORAghhKgTRztHtt2wzWb3tsb111/PmDFj2LhxI1u3bmXVqlW89tprfPbZZ0ybNq3Gc52dnVm5ciXHjx9n/fr1bN26lTlz5vDOO++wZcsWnJyMlQWKUnOTbJ3u/IDe/v37cXFxQa/XU1JSwpgxY3j//feteqbmRBJ90aro7NT0be/F+iPn2Hwsre6JvhWN+EyCPRzxcbEnLa+Yg4nZ9GprXTVCVTLzS3jxt8P8uPMsAK4OdvQL86Z/uDf9w32I8HexeC5Uc+Tj6EO/wH5sTtzMbyd+4+7ud9s6JHEx8yh/oynrtG3jEEIIIepIpVJZXD7fHDg4OHD55Zdz+eWX8/TTT3P77bfz7LPP1prom4SHhxMeHs7tt9/Ok08+SUREBIsXL+bWW2+lY8eOHD58uMrzTNsjIiLM2yIjI1mxYgV2dnYEBQVVeBOgJbqou+6PHTsWT09Pxo8fb+tQRAMa2NEXgE11XGZPb1DYczoLsKwRn4lKpaJ7qAcAu8vPrytFUVixN5ERb/3NjzvPolKBq70duUVl/HEohbm/HGLk/A1c8uJaZi7axaJtpzmZll/ru5bN0YXd91ti/KIV8Sjv6yGJvhBCCGETnTt3Jj+/bitYtWvXDicnJ/P5U6ZMYe3atezdu7fCcQaDgbfffpvevXvTufP5ht86nY4OHTrQrl27Fp/kw0U+ov/AAw8wffp0Fi5caOtQRAMa2MEHgH/j0yku02NvZ10J/ZHkXPJL9LjY2xHh72rVuT3aeLD2cAp7yuf410VCViFPLd3P+iPnAOjo58Ir13eje6gHBxOz+ed4OpuPpbH9ZAZpeSX8ui+JX/clAdDW24n5k7rTw4o3KGxteJvhONo5cjr3NAfSDtDVt6utQxIXK/fyJprF2VCYZex1IIQQQogGl56ezoQJE5g+fTrdunXD1dWVHTt28Nprr3Httdeaj0tISGDPnj0Vzm3bti3vvPMOBQUFjB49mrZt25KVlcW7775LaWkpl19+OQAPPvggy5cv5+qrr+bNN9+kb9++pKSk8NJLLxEXF8c///zTlI/c5C7qRH/o0KH89ddftg5DNLAIfxdzCf3OU5n0D/ex6nxT2X73UA+r58PHhHgAsPdsllXngbGS4OstJ3n99yMUlOjRadTcO6wDdw8NR2dnLL7pFuJBtxAP7hoSTkmZgT1nsvjneBr/HE9n9+lMTqUXcMc3O/n1voH4uzlYHYMtOGmdGBY6jN/if+PLg18ypv0YW4fUYng4eNDevT1eDvWfJiIwLqnn5AMFacZRfUn0hRBCiEbh4uJC3759efvttzl+/DilpaWEhoYyY8YMnnjiCfNxb7zxBm+88UaFc7/55huGDBnCBx98wC233EJKSgqenp706NGDNWvWEBkZCRinBaxbt46XX36Zxx9/nFOnTlFWVkaHDh04cOAAISGte5UsldJMa2U3bNjA66+/zs6dO0lKSmLp0qUV1kUE+OCDD3j99ddJTk4mJiaG9957z+K1F03++usv3n//fX788UerzsvJycHd3Z3s7Gzc3NysOlc0vlnf72bZnkTuHRbOwyOjrDp39uI9/Lw7gfsv68DsKyKtOjenqJSYuWtQFNj51Ai8XSxbKiQ2OYfHftpvrgTo3daTV67vSgc/yysKcopKmfjxFmKTc+nRxoPv7+hndTWDrWw8u5F71t1j6zBaLA97Y8Lf3r09Ye5hxr+7tSfIJQiNumV8DzQbC4ZB4i6Y9C10usrW0QghhBDVKioqIj4+nvbt2+Pg0DIGeGxt1apVjB07ljfeeIOZM2faOpxq1fS1tTQPbbYj+vn5+cTExDB9+nTGjRtXaf/ixYuZPXs2H3/8MX379mX+/PmMHDmSI0eO4OfnB0D37t0pK6u8rNSaNWsICgpq9GcQtjOwoy/L9iSy6Vg6D4+07lzTiH5PKxrxmbg5aAn3deFYah57zmQxvJN/jccXler5YP0xPvrrOGUGBRd7Ox4bFcUNfdpYvTSgm4OWT27uxTXvb2b36SyeWXaQV67v2iKa9fUP6s/EiInEZcmyZpZSFIVzhedIzEskqziL3am72Z26u8IxOrWOCM8IXhn8iqxoYCmPNsZEP1s67wshhBCtzahRo1i1ahUbN24kLS0NHx/rKn9bkmab6I8aNYpRo0ZVu/+tt95ixowZ3HrrrQB8/PHHrFy5ki+++ILHHnsMoNJ8jvooLi6muLjY/HlOTk6DXVs0vAEdvAHYfzaL7IJS3J20Fp2XnlfMyfQCAHqE1m2ee/dQD4sS/QMJ2cxesoejKXkAXN7ZnxeujSbAve7vyLb1dua9KT2Y9uW/LN5xhugQd27u1/wTPI1aw9OXPm3rMFqkwrJCTuWcIj47nvjseE5knyA+O56T2ScpMZRwIP0AK46v4L4e99k61JZBGvIJIYQQrdqwYcMYNmyYrcNodM020a9JSUkJO3fu5PHHHzdvU6vVjBgxgi1btjTKPV9++WXmzp3bKNcWDS/Q3ZFwX2eOn8tny4k0rowOtOi8XeXd8jv4uVj85sB/xYR68OPOs9U25CvTG/hkwwnmrz1KqV7Bx0XHC9dGc2V0QIOMvg+O8OWRK6N4ZVUsc1ccJCrAlUvayRzu1srRzpEoryiivCpOUdEb9Hxx4Ave3f0ucZlSKWExSfSFEEII0Qq0yOX10tLS0Ov1+PtXHC319/cnOTnZ4uuMGDGCCRMm8NtvvxESElLjmwSPP/442dnZ5o8zZ6Sss7kzdd/fdCzN4nNMZfu96tG1vkf5Ent7z2RhMFRsgRGfls/ET7bw+u9HKNUrjOziz++zBjOqa2CDltjfOTiMq7oFUmZQuPt/u0jKLmywa4uWQaPW0N2vOwBHM4/aNpiWxJzon7JtHEIIIYQQ9dAiR/Qbytq1ay0+1t7eHnt7yxqrieZhYEdfFm45xeZj6Rafs+uUaX6+R53vGxngir2dmpyiMuLT8wn3dUFRFP637TQvrTxMYakeV3s7nrumC+N6BjfKHHqVSsVr47txLDWP2ORc7vrfLhbf0Q8HrTRmu5h09OgIQEJeAnklebjoXGwcUQsgI/pCCCFamGbaW13UQ0N8TVvkiL6Pjw8ajYaUlJQK21NSUggICLBRVKK56RvmhUatIj4tn7OZBbUen19cZl4Wr2c9RvS1GjVdg90B2HM6i5ScIqZ+uZ2nlx2gsFRP/3BvVj84mOt7hTRqozwnnR2f3tIbDycte89k8czyAxb/o5GRX8LOUxnyH0cL5+HggZ+TsTmpNDq0kHuo8c+ibOOHEEII0UxptcZppgUFtf+eK1oW09fU9DWuixY5oq/T6ejVqxfr1q0zL7lnMBhYt25ds14mQTQtNwctMSHu7DqdxeZjaUy6pE21xyZnF3Hbwu0UlRrwc7Un3Ld+I5/dQz3YcSqTb7ae4vlfD5FdWIq9nZpHr4xiWv92VnfUr6tQLyfen9KTW77YxpIdZ4kOdueWS9tVeWxuUSlrDqbwy75ENsWlUWZQ6rQ8oWheIjwjSC1I5WjGUXr49bB1OM2fvQs4eUNBOmSdgQB3W0ckhBBCVEmj0eDh4UFqaioATk5OLWK1JVE9RVEoKCggNTUVDw8PNJq6V+M220Q/Ly+PY8eOmT+Pj49nz549eHl50aZNG2bPns3UqVPp3bs3ffr0Yf78+eTn55u78AsBxnn6u05nselYerWJ/oGEbG5buJ2UnGK8nXV8dFOveifiMeXz9E0N+boGu/P2pBg6+LnW67p1MbCjD4+NiuKl32J5/pdDRPq70jfMuCpBUameP2NTWbEnkT+PpFJSZqhw7od/HWdAuA/9O7TepUdauwjPCDYlbJJ5+tZwDy1P9E9DQLStoxFCCCGqZapmNiX7onXw8PCod6V6s030d+zYUWHZg9mzZwMwdepUvvrqKyZNmsS5c+d45plnSE5Opnv37qxevbpSgz5xcRvY0Zd3/zzGP8fSMBiUSgn87weTmfX9HgpL9XT0c+GLaZcQ6uVU7/te0s4LO7UKBZg5rAMzL+uAVmO7mTIzBoVxICGHFXsTuXfRLp65ugvrY1NZczCZ/BK9+bgwX2euiQni6pggPt1wgu+3n+HBJXtY9cBgvJx1Notf1F2EZwQgDfms4tEGkvbIPH0hhBDNnkqlIjAwED8/P0pLS20djmgAWq22XiP5Js020R86dGit84NnzpwppfqiRt1DPXDSaUjPL+Fwcg5dgoxluIqisGDDCV5ZHYuiwKCOPnxwY0/cHOo+D+ZCAe4O/HDXpbg62NlkFP+/VCoVr15vbM53KCmH+7/bbd4X7OHI1TFBXB0TSOdAN3PJ1zNXd2b7yQyOn8vnkR/38uktvaUcrAWK9IwEjHP0DYoBtapFtmZpWtKQTwghRAuj0WgaJDkUrYf8xidaNZ2dmr7tjWvIby5fZq+kzMBjP+3n5VXGJP/mfm35ctolDZbkm/Ro49ksknwTR52GT27uRaC7Az4u9kzr346f7u7PpkeH8dioKLoEuVdI5J10drw3pSc6jZq1h1P5ZqssN9YStXVvi1atJb80n4S8BFuH0zJ4tDX+mS2JvhBCCCFaJkn0Ras3oHx++aZj6WQVlDD1i39ZvOMMahU8d3VnXrguGjsbltU3pVAvJzY/ehnbnxzOc9d0oVdbzxpH6TsHufH4aGMzvnkrD3M4KaepQhUNRKvWEu4RDkj5vsVkRF8IIYQQLdzFkd2Ii9qgjr4A/BufzrgP/2HLiXScdRo+n3oJ0wa0t3F0TU+tVllVgj+tfzsui/KjpMzA/d/tpvCCOf2iZZB5+lbyKF9iTxJ9IYQQQrRQkuiLVi/C3wUfF3uKSg2cSMsn2MORn+7pz7AoP1uH1iKoVCpeH98NX1d74lLzeGHlIVuHJKxkSvTjMuNsHEkL4V6e6BdmQpFUsQghhBCi5ZFEX7R6KpWKy6KMo/rdQz1Yem9/ogLcbBxVy+LtYs/bE7ujUsGibadZfSDJ1iEJK8iIvpUc3MDR0/j37DO2jUUIIYQQog4k0RcXhSdGd+KDG3ry/R398HN1sHU4LdLAjj7cOdg41/vRn/aTmFVo44iEpUyJ/umc0xSUFtg4mhbCPE9fEn0hhBBCtDyS6IuLgoeTjjHdAnHQyrIj9THnighiQtzJLixl1vd70BtqXgJTNA/ejt54O3ijoHAs65itw2kZpCGfEEIIIVowSfSFEBbTatS8O6UHLvZ2/Hsyg/f/lKSxpZDyfSu5mxJ9WVZSCCGEEC2PJPpCCKu09Xbmheu6APDOuqNsP5lh44iEJSTRt5KM6AshhBCiBZNEXwhhtbE9QhjXIxiDArO+30N2QamtQxK1iPSKBCTRt5gk+kIIIYRowSTRF0LUyfPXRdPW24mErEIe+3kfinLxztc/k1HA/LVHKSgps3Uo1bpwRP9i/lpZTBJ9IYQQQrRgkugLIerExd6Odyf3wE6tYtWBZL7ffvF2J5/7yyHmr43j6y3Ndz53e/f22KnsyC3JJaUgxdbhNH8eocY/CzOgOM+2sQghhBBCWEkSfSFEncWEevDwSGNJ+NxfDnIsNdfGETW9kjID/xxPA2Df2SzbBlMDnUZHO/d2ABzJOGLbYFoCB3fjB0D2xfsmlhBCCCFaJkn0hRD1MmNQGIM6+lBUamDmot0UleptHVKT2nU6k4IS4zMfSMixcTQ1k4Z8VpLyfSGEEEK0UJLoCyHqRa1W8ebEGLyddcQm5/LKqlhbh9SkNsadM//9dEZBs25MKIm+lTzaGv+URF8IIYQQLYwk+kKIevNzdeCNiTEAfPXPSdYeunjmgG+MS6vw+cHEbBtFUjvpvG8l84h+8+29IIQQQghRFUn0hRANYlikH7cPbA/Awz/uJTm7yKrzc4pKW1zZf0Z+CfsTjIl977aeABxoxom+aUT/ZM5JivXFNo6mBTAn+jJHXwghhBAtiyT6QogG8/CVkXQJciOzoJQHF+9Bb6h9Gbf0vGJe+PUQvV9Yy4i3/uZUen4TRNowNh9LQ1EgKsCVYVF+QPOep+/r6IuHvQcGxcDxrOO2Dqf5cy/vvC+l+0IIIYRoYSTRF0I0GHs7De9N6YGTTsOWE+l8/Hf1yWRecRnvrI1jyOt/8fmmeEr0Bs5mFjLxky0cS20Zy5mZ5ucP6uhDdLCxQ3tzHtFXqVTmUX3pvG8BacYnhBBCiBZKEn0hRIMK83Vh7jVdAHjrj6PsOp1ZYX9xmZ4vN8cz5LX1vL32KHnFZXQJcuODG3oS4e9CSk4xkxdsITa5biPjWQUlvLIqlmeWH2B9bGqjTQdQFMU8P39QR1+ig9wAiE/LJ6+4rFHu2RCkIZ8VTIl+QRqUtJxKEyGEEEIIO1sHIIRofcb3CmFjXBor9iZy/3e7+e2BQTjr7Fi2O4G3/jhKQlYhAO28nXhoZCSjowNRq1VcGu7NTZ9t41BSDpMXbOV/t/U1j5Rb4p/jacxevJfkHGN/gK+3nMJBq2ZAuA/Dovy4LMqPIA/HBnnG4+fySMouwt5OTZ/2XjhoNQS5O5CYXcShxBz6tPdqkPs0NFOiH5cZZ+NIWgBHD7B3h+Js4zx9vyhbRySEEEIIYRFJ9IUQDU6lUjFvbDS7z2RyJqOQe/63i3O5xRxJyQXAz9WeB0Z0ZGLvULSa84VFXs46vpvRj1u+/Je9Z7KY8ulWFk7vQ882njXer7hMz1trjrJg4wkUBdr7ONMvzJu/jqSSlF3EuthU1sWmAsb59MM7GZP+7qGeaNSqOj3jhqPG0XxTkg/QJdidxOwiDiRkN99E36u8dD/zCIqioFLV7fkvGh5tIGU/ZEuiL4QQQoiWQxJ9IUSjcHPQ8u7kHkz4eAubjqWVb7Pj7qEdmNa/HY46TZXnuTtp+d9tfZj+1Xa2n8zk5s+28eWtfapNnI+l5nL/d3s4lGQs9Z/SJ5Snr+qMk84ORVGITc7lz9hU/oxNZffpTGKTc4lNzuWD9cfxd7Nn4fQ+RAW4Wf18G8rn5w/u6GveFh3kzh+HUpr1PP1w93DUKjVZxVmkFabh6+Rb+0kXM49QY6IvS+wJIYQQogWROfpCiEbTo40nz17ThQA3B+4eGs7GRy7j7qHh1Sb5Jq4OWhZO70P/cG/yS/RM/eJfNh+ruF69oih8s+UkY97dxKGkHDydtHxycy9eHtcNJ53xPUyVSkWnQDfuHdaBn+7uz46nLuftSTFcHROEm4MdKTnFvLXG+rnqxWV6tp5IB2BQhI95e3Sw8Q2Dg824876DnQNt3doCMk/fItKQTwghhBAtkCT6QohGdXO/tmx9YjiPXhmFu5PW4vOcdHZ8Me0Shkb6Uliq59avtrO+vPz+XG4xty3cwdPLD1JcZmBQRx9+nzWYkV0Caryml7OOsT1CeG9KD366uz8Aaw+nkFjeM8BSO09mUlRqwNfVnkh/V/N2Uz+BuNRcCksapwlgQzB33s+Uzvu1kkRfCCGEEC2QJPpCiGbLQavhk5t7cXlnf0rKDNzxzQ7e+uMoo97ZwJ+xqejs1DxzVWcW3toHPzcHq67d0d+VfmFeGBT4/l/rkrgN5m77PhXmuPu7OeDrao9BgcN1XDWgKUR6RgIyom8RSfSFEEII0QJJoi+EaNbs7TR8eGNPxnQLpFSv8O66ONLySoj0d2XFzAFMH9gedR0b6t3Uz1jC/t32M5SUGSw+b2MV8/NNTMvsHUxovvP0ZYk9K0iiL4QQQogWSBJ9IUSzp9WoeWdSdyb1DkWjVnHrgHYsnzmgTk30LnRF5wB8Xe05l1vMmkPJFp2TllfMwUTjaP2ADj6V9pvK9w8043n6pkQ/PiueUn2pjaNp5txDjX/mn4NS66Z4CCGEEELYiiT6QogWwU6j5tXx3Tg4dyTPXt3FvKRdfejs1Ey5xJjIfbPFsq7qpqaAnQPd8HW1r7S/S1B5ot+MO+8HOAfgqnWlTCnjRPYJW4fTvDl6gq68D0PWGdvGIoQQQghhIUn0hRAtSkMk+Bea3KcNahVsi88gLiW31uM3HC2fnx9ReTQfznfeP5qSS3FZ82zIp1Kp6OjZEZDy/VqpVFK+L4QQQogWRxJ9IcRFLcjDkRGd/AH439aaR/UVRalxfj5AsIcjnk5aSvUKR5PzGjbYBiTz9K1gTvQtq/oQQgghhLA1SfSFEBe9my81NuX7aVcC+cVl1R53NCWP1NxiHLRqerfzrPIYlUp1fp5+My7fj/SSzvsWkxF9IYQQQrQwkugLIS56A8J9aO/jTF5xGcv3JFZ7nGk0v1+YN/Z21U8hMM/Tl877rYNHeUO+bJmjL4QQQoiWQRJ9IcRFT61WcWNf46jt11tOoihKlcdtiCufn19N2b6JaZ7+gcTm23m/g0cHVKhIK0wjvTDd1uE0bzKiL4QQQogWRhJ9IYQAxvcKwd5OTWxyLrtOZ1baX1SqZ9sJY0I8uGPVjfhMostH9A8n5VCqNzR8sA3ASetEqKtxpDouK87G0TRzkugLIYQQooWRRF8IIQAPJx3XxAQB8L+tlRO67SczKC4zEODmQAc/lxqv1dbbCVcHO0rKDBxLbQEN+TJqL99XFIW0vOLGDql58jD2cCAvBUoLbRuLEEIIIYQFJNEXQohyN/UzJnQr9yWR/p+kdqO5bN8HlUpV43VUKhVdgsrL95vzPH0vY6J/JPNIrce+seYIveetZX1samOH1fw4eoLW2fj37LO2jUUIIYQQwgKS6AshRLmYUA+6hbhTojewZEfFhG7DUWMjvkERNc/PNzGV7x9sxvP0TSP6cZk1l+7nFZfx1eaTAPyyr/pmhc2Voih8u+0Uf5d/Da2mUkn5vhBCCCFaFEn0hRDiAqZR/W+3nUJvMDblS80pIjY5F5UKBnaoeX6+iXmJveY8ol+e6B/LOkaZofplBZftTiC/RA/AthMZTRJbQ1qy4wxPLj3AzEW7MBiqbrRYK0n0hRBCCNGCSKIvhBAXuLpbEG4OdpzNLDSP4m86Zizbjw5yx8tZZ9F1TJ33DybmmN8waG6CXYJxsnOi1FDKqZxTVR6jKAr/23p+X0JWIWczC5oqxHpLzi5i3q+HAcgtKiM5p6huF5JEXwghhBAtiCT6QghxAUedhgm9jd3ovylPcC+cn2+p9j4uOOk0FJbqiU9rng351Co1HT07AnA0s+qGfLtOZxGbnIu9nZqO5U0IW8qovqIoPLl0P7nF56sVjp+r49dCEn0hhBBCtCCS6AshxH/c2NeY1K0/ksrp9AJzoj/Ywvn5ABq1is6BpoZ8zXeefqRnJFB9ov9t+ZsdV8cEcVknPwC2xac3TXD1tGJvIutiU9FqVEQFuAJw4lx+3S7mYXzzRxJ9IYQQQrQEdrYOQAghmpswXxcGdfRhY1waz6w4QFpeMU46DT3beFp1nehgd3acyuRAQjbX9QhupGjrxzRPf9+5fcRnx1fYl1NYysrYvah0CsO7hpJdWIBKd45/TucSn+1mi3AtlllQwrO/bUelK+OW/u0oLC3lSMY59iQfZXB2HaZSaLWgtYPc05AdT5BLEPYa+4YPXAghhBCiAUiiL4QQVbixb1s2xqXx1xHjPP1Lw7zR2VlXBGVeYi+xGTfkK19i79/kf7lm2TWV9uvagQ54ZJvxc5dwyAauWdZUEdZDMLgAS1KMn7qEw9pcWLusjtcLCTL+uewavBy8uCvmLsZHjEer1jZAsEIIIYQQDUcSfSGEqMKITn4EuDmYm7dZMz/fxNR5/2BCDgaDglqtatAYG0K0dzS9/XtXWbqfW1SGQVFw1GrMb3LkFZehNyg46TRoNc1z9lepXqGgxDgv38XeDo1ahd6gkFdchkqlws2hjv/1FWWBolCqcyajKIOXtr3EosOLmNVrFpeFXoZK1fy+vkIIIYS4OEmiL4QQVbDTqLmhbxve+sOYAA+yYn6+SQc/F3R2anKLyzidUUA7H+eGDrPetBotX175ZaXtG46e45Yv/sXV3o6/nxyOk87438W8Xw/x2aZ4ru7ThpfHdW3qcGuVVVDCiLc2kJdXzL3Dwnl4ZBQA2QWlxDy/BoAtc0fiYl+H//4+6AvnYim98Ud+0qfz0d6POJlzklnrZ9HTrydzes+hm2+3hnwcIYQQQog6aZ7DMUII0QxM7hOKt7OOmFAPwuqQpGs1ajoFNv/y/ap8u83YhG9cz2Bzkg/QN8wbaL4N+Z7/9RBpecWE+zpz32UdzdvdnbT4uBiXRjxR18777saGfNqcBCZHTWbl2JXM6DoDe409u1J3ceNvN/LQ3w9xJvdMvZ9DCCGEEKI+JNEXQohq+Lk68Pcjw1hyZ786l2VHBzX/zvv/lZxdxNrDqQDc2K9thX192nmhUhm716fm1nFN+kay/kgqP+9KQKWC18bH4KDVVNgf5mtcHrDunfcrLrHnonPh/p738+vYX7k2/FpUqPj95O9cs+waXtv+GtnFLevNHSGEEEK0HpLoCyFEDVzs7bC309R+YDXM8/Rb0Ij+d/+eRm9Q6NPeiwh/1wr73J20RAUY37z4Nz7DFuFVKbeolCd+3g/A9AHt6dW28goJ4eWJ/vG6juibE/2KI/YBzgHMGziPH67+gUsDL6XMUMY3h75h9M+jOZl9sm73EkIIIYSoB0n0hRCiEUUHGRP9/QnZKEodlnVrYqV6A99vN45Y3/Sf0XyTvu29ANh2ovkk+i+viiUpu4g2Xk48dEVklceE+xqnX9Q/0T9d5e5Ir0gWXLGAj0d8TFu3tuSU5LDs2LK63UsIIYQQoh4k0RdCiEYUEeCCVqMiq6CUhKxCW4dTq3WHU0jJKcbbWcfILv5VHtMvrDzRbybz9P85nsaibcbk+5Xru+Koq7oCI9yvfEQ/ta6l++VvfFST6JsMCB7ALZ1vASA2I7Zu9xJCCCGEqAdJ9IUQohHZ22nM5e8tYZ7+/7Yak9iJl4RWO2WhT3tjQ76jKXlk5Jc0WWxVKSgp47GfjCX7N/ZtQ//w6pdBDPcxJvrxafnoDXWorvAwNuMjNwnKims8NMrL2O3/cMbhFlHJIYQQQojWRRJ9IYRoZKby/aaep59bVMrqA0nmNeVrE5+Wz6ZjaahUcEOfNtUe5+WsI8LfmDT/a+NR/Q/WH+N0RgFB7g48NiqqxmODPR3R2akp0Rs4m1lg/c2cfcHOAVAg+2yNh3b07IhapSajKINzheesv5cQQgghRD1Ioi+EEI0sOtjUeb/pEn1FUbjzm53c9b9djH5nIztO1j6fflH5knpDI3wJ9XKq8di+5aP6W204T79Ub2DxdmNjvCfHdMbVQVvj8Rq1yrxMYp0676tU5+fpZ9e8hJ6jnSPt3doDUr4vhBBCiKYnib4QQjSyLsGmhnw5TVbGvXJ/Ev8cN462n0wvYMInW3jpt8MUleqrPL6oVM8PO42j1NU14btQX/M8fdsl+utjU0nLK8HHRccV1fQT+K+G67xf8zx9gCjv8vL99MN1u5cQQgghRB1Joi+EEI2sU4AbahWk5RWTmlvz3O6GUFBSxosrjcnljEHtub5nCIoCCzac4Kr3NrH3TFalc1buSyKroJRgD0eGRvrVeo8+5Z33Y5NzyC4obdD4LWV6Y2Jsj2C0Gsv+O2vszvsX6uTVCZARfSGEEEI0PUn0hRCikTnqNHT0MzXka/zy/Q/WHyMpu4gQT0fmXBHJmxNj+PSW3vi42HMsNY9xH/3DG78foaTMYD7nf+Vl+zf0bYNGrar1Hn6uDoT5OqMo8K8F0wIaWlpeMetjUwGY0DvU4vPq3XnfvfxeViT6hzNkRF8IIYQQTcvO1gEIIcTFoEuwG0dScjmQkMPwTpaVmddFfFo+n26IB+CZqzrjoDV2zr+8sz+923ryzIqD/LI3kffXH2NdbCpvTohBQWH36Szs1ComWpE0923vzYlz+Ww7kc7lnRvvmaqybHcCZQaFmBB386oGlgjzaaDS/Yx4KMyq8dBIp0AAEvISyM4+g7vO8jhbHQd3Y48DIYQQQjQJSfSFEKIJRAe58/OuBA40Yud9RVGY+8tBSvQGhkT4Vkq+PZ11vDelB1d2CeCpZfs5nJTDNe9vMs9bHxkdgK+rvcX36xfmxXf/nm7yefqKovBjedn+eCvemAAIKy/dT88vIaugBA8nnXU39yjvX3D2X3i15l4G7kBwSBAJWjuOfNSLPkWNP22j2Yq4Em5YbOsohBBCiIuGlO4LIUQTiC5vyLf1eDpbjjfOknTrDqfy15FzaDUqnr26M6pqRlDHdAtkzYNDuKKzP2UGhSMpuQDc1Lf2JnwXMnXeP5iYTU5R083TP5CQQ2xyLjo7Ndd0C7LqXGd7OwLdHQA4XpfO+wHR4BNp8eFRJSUAHNZZ+YZCa3P0dygtsnUUQgghxEVDRvSFEKIJdA/1oEuQGwcTc7jhs63MHNaBB4Z3xM7CJnK1KSrV8/yvhwC4bWAYYeWj9NXxdbXnk5t7sWxPAvN+PUynQDf6lXfSt1SAuwNtvZ04lV7AzpOZDIuqvYlfQ/hhp3Fpuys6++PuVPOSelUJ93UhKbuI4+fy6NXW07qTtY5w7zYwlFl0eNS+T1m37yNie98IA+ZZHWuLpyjwegcozoaME+Df2dYRCSGEEBcFSfSFEKIJ6OzU/HDXpcxdcYjFO87w3p/H2HI8nXem9CDYw7He1/90wwlOZxTg72bPfZd1sOgclUrF2B4hXNc9GEWh2gqAmvRt78Wp9AK2xqc3SaJfVKpn+Z5EwLomfBcK93Vm07G0us/TV6lAY9kbDJ18ugAQm3nU4nNaHe9wSNwF6cck0RdCCCGaiJTuCyFEE3HS2fHq+G68O6UHLvZ27DiVyaj5G1h9IKle1z2bWcAHfx0D4MkxnXG2t+49XJVKhdqCTvtVMZXvbzth+Tz9uJRcXv89lqyCEqvvt/ZwCtmFpQS6OzCwg4/V50MDdN63QpRXFADx2fEUlV2kpeve5W88pR+zbRxCCCHERUQSfSGEaGLXxATx2/2DiAn1IKeojLv+t4unlu2nqFRfp+u9uPIwRaUG+rb34upugQ0cbc36lpf770/IJr+49nL2c7nF3Pz5v3yw/jiP/bTf6vuZmvCN6xls0TKAVTE1HzxR1xF9K/g5+eHl4IVe0ROXGdfo92uWzIn+cdvGIYQQQlxEJNEXQggbaOPtxI93XcqdQ8IA+N/W01z3wWbiyhvjWWpTXBqrDiSjUat47poudSq/r48QTyeCPRzRGxR2nsqs8dhSvYGZi3aRnGMc2V59MJlV+y2vZkjOLmLD0XMAjO9Vt7J9ON95/1RGASVlhjpfxxIqlYpOXp0AOJxxuFHv1Wz5mBL9i/SNDiGEEMIGJNEXQggb0WrUPD6qE19P74OPi47Y5Fyufn8Ti7adpkxfewJaUmbg2RUHALi5X1s6Bbo1dshVMo3qb4uveTWBV1bFsi0+Axd7O67vGQLA08sPWlzC//PusxgU6N3Wk/Y+znWON8DNASedBr1B4XRGQZ2vYylT+X5sRmyj36tZktJ9IYQQoslJoi+EEDY2OMKXVQ8MZlBHH4pKDTyxdD+9X1zLrO93s2JvItkFVS9dt/Cfkxw/l4+3s44HL49o4qjP62fBPP3lexL4fFM8AG9MiOGlcdF08HMhLa+YF36tfaRbURR+3GEs25/QO6Re8apUKnP5fp0b8lkhytuY6B9Ov0hH9L3CjX8WpEOB5b0chBBCCFF3dUr0jx8/zlNPPcWUKVNITU0FYNWqVRw8eLBBgxNCiIuFr6s9C2/twxOjo3B31JJVUMqyPYnc/91ues77g0mfbGHBhuMcS81DURRSc4qYv/YoAI9eaTzHVkwj+nvPZlFYUrnPwOGkHB79aR8A9w4L58roAOztNLx6fTdUKvhp11n+Li/Jr86u05mcSMvHUathTLegesccXl6+3xSJvql0Py4rjjILl+VrVexdwLW8d0TGCdvGIoQQQlwkrE70//77b7p27cq2bdv4+eefycsz/pK0d+9enn322QYPUAghLhZqtYo7Boez86kRLLnzUu4aEk6Evwt6g8K2+Axe+i2WEW/9zdA3/uLWr7aTX6InJtSD8b3qN8JdX228nAhwc6BUr7D7dMV5+tkFpdz5zU6KSg0MjvBl9uWR5n292npya//2ADzx837yamjm90P5aP6orgG4WLmqQFXMI/pN0Hk/1DUUZ60zxfpi4rPjG/1+zZKU7wshhBBNyupE/7HHHmPevHn88ccf6HQ68/bLLruMrVu3NmhwQghxMbLTqOnT3ovHRkWx5sEhbHxkGHOv6cLgCF90GjWn0gs4mJiDSgXPX9OlzkvjNRSVSmUe1d8af740W29QeGDxbk5nFBDq5ci7k7tX6pT/0MgIQjwdScgq5PXVVc9hLygp49d9xqZ9E+rRhO9C5iX2mmBEX61SE+lpfIPjop+nnyYN+YQQQoimYHWiv3//fsaOHVtpu5+fH2lpaQ0SlBBCiPNCvZyY2r8dX0/vw+5nLueTm3txU782vDKuKzGhHrYOD4C+5nn65xvyvbP2KH8dOYeDVs3HN/XCw0lX6TwnnR2vjOsGwNdbT7H9ZOU53KsPJJNXXEaolyN923s1SLxhF5TuK4rSINesiakh30XbeV9G9IUQQogmZXWi7+HhQVJS5eWQdu/eTXBwcIMEJYQQomrO9naM7BLAvOu6MumSNrYOx8w0or/7TBZFpXr+OJTCu38ak7qXx3WlS5B7tecO7OjDpN6hKAo8+tM+ikorzvP/caexbH98z9AGq15o5+2MSgW5RWWk5VnW9b8+Onkb5+lf9CP66cdtG4cQQghxkbA60Z88eTKPPvooycnJqFQqDAYDmzdv5qGHHuKWW25pjBiFEEI0c2E+zvi42FNSZmD5ngRmL94DwLT+7Rjbo/YeAk+M6YSfqz0nzuXz7rrz5d1nMgr457ixSmBcz4Z7M9lBqyHU0wlo2oZ8sRmxTVJB0OyYEv2M42CofelIIYQQQtSP1Yn+Sy+9RFRUFKGhoeTl5dG5c2cGDx5M//79eeqppxojRiGEEM3chfP0H/t5P7nFZfRp58WTYzpZdL67o5YXrosG4JMNJziQkA0YO/ID9A/3JtTLqUFjbsrO+2EeYWjVWnJLcknIS2j0+zU7nm1BbQelBZCbaOtohBBCiFbP6kRfp9Px6aefcvz4cX799Vf+97//ERsbyzfffINGo2mMGIUQQrQA/crnzysK+LvZ8/6NPdBqLP9vZmSXAMZ0C0RvUHjkx32UlBnMZfsTejf8ygJN2Xlfq9bSwcM4qn1RztPXaMGznfHvMk9fCCGEaHRWJ/ombdq0YfTo0UycOJGOHTs2ZExCCCFaoP4dfADQalR8eGMv/FwdrL7Gc1d3wcNJy6GkHO75didnMwtxtbfjyi6BDR1uk3beh/Pz9A+nX4SJPkhDPiGEEKIJWb0Y8fTp02vc/8UXX9Q5GCGEEC1XuK8LH9/UC28XHb3aetbpGr6u9jxzVWdmL9nL2sOpAFwVE4ijruErxsJ8mq50H8533peGfNKQTwghhGhsVif6mZmZFT4vLS3lwIEDZGVlcdlllzVYYEIIIVqeK6MD6n2NsT2CWbE3kb+OnANgfK/Qel+zKqYR/YSsQopK9ThoG3f62YUN+S5KpkQ/La7m44QQQghRb1Yn+kuXLq20zWAwcPfddxMeHt4gQTWFrKwsRowYQVlZGWVlZTzwwAPMmDHD1mEJIcRFT6VS8eLYroz9YDNtvZ3o2cajUe7j7azD3VFLdmEp8Wn5dAp0a5T7mER4RqBCxbnCc6QVpuHj6NOo92t2pHRfCCGEaDJ1nqNf4SJqNbNnz+btt99uiMs1CVdXVzZs2MCePXvYtm0bL730Eunp6bYOSwghBBDs4cimRy9jyZ2XolKpGuUeKpWq0Trvxybn8MzyA2QXlJq3OWmdaOvW1rj/YhzVNyX6WaegrMS2sQghhBCtXIMk+gDHjx+nrKysoS7X6DQaDU5OxqWaiouLURTl4lzbWAghmimdnbrRknyTxui8rygKc5bs5estp/hm68kK+0wN+S7KRN81AHQuoBgg86StoxFCCCFaNatL92fPnl3hc0VRSEpKYuXKlUydOrXBAtuwYQOvv/46O3fuJCkpiaVLl3LddddVOOaDDz7g9ddfJzk5mZiYGN577z369Olj8T2ysrIYMmQIcXFxvP766/j4XGRllEIIcZFrjM77209mcjAxB4A9Z7Ir7Ovk1YlV8asuzs77KhV4h0PSXmP5vm+ErSMSQgghWi2rE/3du3dX+FytVuPr68ubb75Za0d+a+Tn5xMTE8P06dMZN25cpf2LFy9m9uzZfPzxx/Tt25f58+czcuRIjhw5gp+fHwDdu3evsspgzZo1BAUF4eHhwd69e0lJSWHcuHGMHz8ef3//BnsGIYQQzZt5RL8BE/2v/ok3/33f2awK+0yd9w9nWJ7o7z6dyZebT/LM1Z3xcbFvkBhtxrtDeaIvDfmEEEKIxmR1or9+/frGiKOSUaNGMWrUqGr3v/XWW8yYMYNbb70VgI8//piVK1fyxRdf8NhjjwGwZ88ei+7l7+9PTEwMGzduZPz48VUeU1xcTHFxsfnznJwcC59ECCFEcxVWPkf/xLl8DAYFtbp+UwUSsgr5/WAKYBzATs0tJjm7iAB3B+B85/0zuWfILcnFVeda6zXf+uMoG+PS6ODnwv3DO9YrPpuThnxCCCFEk2iwOfpNqaSkhJ07dzJixAjzNrVazYgRI9iyZYtF10hJSSE3NxeA7OxsNmzYQGRkZLXHv/zyy7i7u5s/QkMbZ7knIYQQTaeNlxN2ahWFpXqSc4rqfb2vt5xEb1DoH+5NpL8xid97wai+h4MHAc7GJQiPZByp9XoGg8Ke08bzY5NbwRvM5kT/uG3jEEIIIVo5i0b0e/ToYXFDpF27dtUrIEukpaWh1+srldn7+/sTG2tZg6NTp05xxx13mJvw3XfffXTt2rXa4x9//PEK/QlycnIk2RdCiBZOq1HT1tuJ4+fyOX4ujyAPxzpfq6CkjO//PQPAtP7tWHc4ldjkXPadzWJklwDzcVFeUSTnJxObEUvvgN41XvPYuTxyi41T0GKTc+scW7PhXb4Mr4zoCyGEEI3KokT/v03wWoM+ffpYXNoPYG9vj719C58bKYQQopJwXxdjop+ax6COvnW+ztLdCWQXlhLq5cjwTv6cyytm8Y4z7DtbuSHfX2f+smie/q5Tmea/n0zLp6hUj4NWU+cYm1pxmZ4ZX++kg68Lz1zd+fyIfl4KFOWAg5ttAxRCCCFaKYsS/Weffbax47CKj48PGo2GlJSUCttTUlIICAio5iwhhBCisnA/FziUwvFzdV9iT1EUvtp8EoCpl7ZDo1YRE+IBwL6z2SiKYq6MMzXks2SJvd3lZfsABgXiUvLoGuJe5zib2o6TmWw4eo6Nced4aGQETg7u4OwH+anGUf3gnrYOUQghhGiVWuQcfZ1OR69evVi3bp15m8FgYN26dVx66aU2jEwIIURL0xCd9zcfSycuNQ9nnYaJlxindUUGuKKzU5NdWMqp9ALzsZ29OwNwIusEJfqSGq+767RxRF+nMf53fbiFzdM39SdQFDicVB67zNMXQgghGp3Vib5er+eNN96gT58+BAQE4OXlVeGjoeTl5bFnzx5zeX18fDx79uzh9OnTAMyePZtPP/2UhQsXcvjwYe6++27y8/PNXfiFEEIIS1zYeb+uvtxsXFJvfK8Q3By0gHH+f+dAY2n6voTz5fv+Tv542HtQppQRl1X9MnPZhaXEpRrffLgyuryBXwubp7/vzPnnPpBgSvRlnr4QQgjR2KxO9OfOnctbb73FpEmTyM7OZvbs2YwbNw61Ws1zzz3XYIHt2LGDHj160KNHD8CY2Pfo0YNnnnkGgEmTJvHGG2/wzDPP0L17d/bs2cPq1asrNegTQgghahLuYxzRT84pIq+88Z01Tqbl8+eRVABu6d+uwr5u5WX2+85kmbepVKrz5fvp1Zfv7y0/p42XEwM6eBuPr+eIfnJ2EV9vOUlGfs2VBA1l3wUrDhwwvdnhU75EoCT6QgghRKOxOtH/9ttv+fTTT5kzZw52dnZMmTKFzz77jGeeeYatW7c2WGBDhw41d8S/8OOrr74yHzNz5kxOnTpFcXEx27Zto2/fvg12fyGEEBcHdyctPi7GZqsn6lC+v3DLSRQFhkb6mqcBmHS7YJ7+hTp5dQKosSGfaX5+zzYeRAUYKwPqO6L/8qrDPLP8IMPf/IslO86gKEq9rleT1NwiErPPL1l4IPG/pfvVVzMIIYQQon6sTvSTk5PNy9C5uLiQnW385eWqq65i5cqVDRudEEII0QTCy8v3rZ2nn1tUyg87zgJw64D2lfbHlI/oH0jMRm84n1SbRvRrSvRN8/N7tPEkwt8VlQrS8ko4l1tsVYwX2nHSeM3MglIe+XEfkz7ZytGUxpkOYCrb93QyTmWIS8mlqFRfcY5+I77RIIQQQlzMrE70Q0JCSEpKAiA8PJw1a9YAsH37dll+TgghRIsU7lfekC/Vunn6P+48S15xGeG+zgzu6FNpf5ivC846DQUleo6lnn8TIcrbmOjHZcahN+grnWcwKOwpL93v0cYDR52Gdt7GNyPqOqp/LreYhKxCVCqYc3kEjloN/57MYPQ7G3ltdSyFJZXjqA9T2f5lUf54OmkpMyjG2D3bgUoNJXnGZfaEEEII0eCsTvTHjh1r7nZ/33338fTTT9OxY0duueUWpk+f3uABCiGEEI2tLp33DQaFhf+cBGDagPbm5fMupFGriA42jurvvWC+elvXtjjaOVJYVsipnFOVzjuRlk92YSn2dmo6lTf0i/R3Beo+T9+UeHfwdeG+4R1ZO2cIIzr5U2ZQ+PCv41z+9t+sj02t07Wrsrd8ukL3UHfza3AgMRvs7MGjjfEgmacvhBBCNAqrE/1XXnmFJ554AjA2xNu4cSN33303P/74I6+88kqDByiEEEI0tvA6dN5ffySVk+kFuDrYMa5HcLXHxYR6ABUb02nUGiI8I4Cqy/d3l5ftdwtxR1u+tF5UoCnRr9uIvqm5nymeYA9HPpvamwU39yLI3YGzmYXc+tV27v7fTpKyC+t0DxNFUczP2y3E43yib+68X96QL03m6QshhBCNwepEv6ioqMLn/fr1Y/bs2Vx99dUNFpQQQgjRlEwj+vFp+RXm0tfkq/LR/MmXhOJsb1ftcebO+9U05IvNqNx5f5e5EZ+neVtUQP1G9PeU39/UN8Dkii4B/DF7CHcMDkOjVrHqQDIj3vyb5XsS6nQfgLOZhWQWlKLVqIgKdCU6yHjPg4nlr4F5nr6M6AshhBCNofrfTKrh5+fH2LFjuemmmxg+fDhqtdXvFQghhBDNSpCHI/Z2aorLDJzNLKBt+Xz46sSl5LIxLg21Cm65tF2Nx8aUd94/nJRDcZkeezsNAJ28jYn+5sTNhB4JrXDOpuQ4tB5FFDkmsuTIfgDSi4vRehzleJGK7w4noLHi/19FUdiTdRith55zqnMsOeJU6ZgO4XC/TyHL9yRyJqOAx//4hzxdZ3NFgTX2nc1C63GGYE9Hlh/PI73MGPvRAhXfHT6LRl0Ari6Quh2OLLHq2r0DehPmHmZ1TEIIIcTFRKVYubbO0qVLWbRoEStXrsTd3Z1JkyZx00030bt378aKsVnKycnB3d2d7Oxs3NzcbB2OEEKIerpy/gZik3N59urO3Ni3LTq76hPcJ5buZ9G204zs4s8nN9f8/5+iKPR84Q8yC0pZfu8Ac+l8bEYsE36Z0JCPcFEIdglm9fWrbR2GEEIIYROW5qFWj+iPHTuWsWPHkpuby48//sh3331Hv379CAsL46abbuKZZ56pV+BCCCGELUQGuBKbnMvcXw7x1pqjDI7wZViUH0MjffFxOb+qTFZBCT/vqn5Jvf9SqVR0C/Hg76Pn2Hc2y5zoR3pGclfMXcRlVpynnp5XwvaTGTjqNAyJ8K2wb8uJdLILSuke6kGAu4PFz5aUXcjeM9l4OGnpF+Zd6/H7z2aTkFVImK8zEeVNAK3xb3wGGfkldA12J9jTEYDt8Rmk55cQHexOiAtwbC2oVBA52tiFvxYGxcD6M+tJyEugoLQAJ23lqgQhhBBCGFmd6Ju4urpy6623cuutt3Lo0CFuvPFG5s6dK4m+EEKIFmnO5ZFoNWrWx6aSnl/Cyv1JrNyfhEoF3UM9GB7lx2VR/myIO0dRqYGoAFf6tvey6NoxIe7lif75efoqlYp7u99b6dgP1h9jY8IRRnQLZP6wnhX2PZq+j8VxZ7gksgNzhkVa/GzP/3KIbQnxjLy0LXOHRdd6/M+7zjJ7yV40uDN/8kCL7wOgNyh0Xf87RSV6Xpw42PxGwYsFh/h0Yzyd27Tl+RGd4d8gKCuEiQ+Ad7hF1+7/XX9yS3JJyk8i3MOyc4QQQoiLUZ0T/aKiIlasWMGiRYtYvXo1/v7+PPzwww0ZmxBCCNFk2ng78caEGAwGhX0J2fx5OIV1sakcTMxh9+ksdp/O4o01R83HT69mSb2qdC2fp//fhnxV2XXK2HG/xwWN+Ezq2nnftLSfqZqgNgM7+ADG5fAy80vwdNZZfK9jqXkUlOhx0mnMTQ6BCzrvZ4NabUzuUw4YG/JZmOgHOQdxpOQICXkJkugLIYQQNbA60f/9999ZtGgRy5Ytw87OjvHjx7NmzRoGDx7cGPEJIYQQTUqtVtE91IPuoR7MviKS5Owi1h9JZd3hVDYfS6OwVI+fqz3XdA+y+JqmTvdxqbkUlJThpKv6v19FUdhdvgxezzYelfZH1qHzfqneYO52b2mi7+fmQKS/K0dSctl8PI2ruln+rKY3FboGu6NRn38jpEt55/1DSTnoDQqaCxN9Rlp07SCXII5kHiEpL8nieIQQQoiLUZ3m6F911VV8/fXXjB49Gq1W2xhxCSGEEM1CgLsDU/q0YUqfNhSV6tl1OpNQTycctBqLr+Hn5kCAmwPJOUUcSMihTzUl/6fSC8jIL0GnUdM5qHKDnagA47YzGYXkFZfhUsOyfiZHU3IpKjXg6mBH+1pWE7jQwI4+HEnJZVOcdYn+vmqqB9r7OOOk01BQoufEuTw6enc07rBiib0gF2McifmJFp8jhBBCXIysXjMnJSWFJUuWcO2110qSL4QQ4qLioNXQP9yHUC/rG8F1Kx/VNyXCVdl9xli2Hx3sZl6G70Jezjr8XI2NAY9YWL6/90z5aH6IB2q1ZVMN4Hz5/sa4NKxZoMc0PcH0vCYatYrOgcY3KvYnZIN3B+OOtIrNCGvibmdsTpiYJ4m+EEIIUROrE31XV+u77wohhBAXO9MI994a5unvOpUFVD0/3ySqPFm2PNE3XvO/iXdt+oZ5odWoSMgq5FR6gUXnFJfpOZxknFYQU96X4ELn5+nnnE/0049bdO3UnCI+/MP4RkiCJPpCCCFEjaxO9IUQQghhPWtG9HvWlOhbOU/f2kZ8Jk46O3McG4+lWXTO4aRcSvUKnk5aQsqX1buQOdFPzD7fgC83EYrzar32qgPJ5Bcan/1E5lmL4hFCCCEuVpLoCyGEEE2gW7AHYJyHn1VQUml/QUkZh5OMo/Q9qmjEZ3I+0a99RL+gpIyjKcbjuluZ6MP58v3NcZYl+hfOz69qRYLoYGM1wqHEHAwOnuBY3qsg40St1159IBml1PjGQ74+g8zCfItiEkIIIS5GkugLIYQQTcDdSUs7b+Pc/qqW2dt/Nhu9QSHAzYEgj8qj4SbmzvtJObXOnT+QkINBgQA3B/zdHKyOeWBHY6L/z/E09Iba5+mb+gF0q6JsH6CDrwv2dmryiss4lVEAPqaGfDXP08/IL2FbfDqK3gkMxqX+Pt60y8KnEEIIIS4+dU70jx07xu+//05hYSGAVY16hBBCiIuRKQGuqnx/12njtppG8wE6+LmgUavIKSojOaeoxmNN8/NjQq2bn2/SLcQDNwc7corKapxyYGIe0a+mH4CdRm3uMVChIV8t8/TXHk7BoEDnQHd8HQMA+G7XXrILSy17ECGEEOIiY3Win56ezogRI4iIiGD06NEkJRnXsr3tttuYM2dOgwcohBBCtBbn5+lXHtHffbr2+fkA9nYawnyMy+TFJtVcvr+nPPGuboS9Nhq1iv7hxlH9TbWU7+cVl3HsXF6t94suXzbwYMIF8/RrWWLv9wPJAFwZHUCEdxsACpVzfLax9pJ/IYQQ4mJkdaL/4IMPYmdnx+nTp3FyOr+80KRJk1i9enWDBieEEEK0JqaGeP9N9BVFsXhEH8533q9tnr5phL0u8/NNBpSX72+qpSHf/rPZKAoEuTvgW74EYFW6VmjIZxrRrz7RzysuY2P5mwwjuwQQ4hoMgEqbxeeb4knLK7b4WYQQQoiLhdWJ/po1a3j11VcJCQmpsL1jx46cOnWqwQITQgghWpsuQW6oVZCcU0TqBWX3ZzMLScsrRqtRmTvT18SSzvvpecWcyTBOr+tq5dJ6FxpU3pBv1+lM8ovLqj1un4Xd/S9cYk+5MNGvZgrg+thUSvQG2vs4E+HvQqBzIADe7vkUlOj5cL1ly/MJIYQQFxOrE/38/PwKI/kmGRkZ2NtX/w6+EEIIcbFz0tnR0c+YpO+9YFR/V3nZfudANxy0mlqvY0r0j9Qwom+qGgj3dcbNQVvnmNt6OxHi6UipXuHf+Ixa71fbNIGO/i5oNSqyC0tJUAUAKijKhvyqKwZ+P2gs2x/ZJQCVSkWQSxAAAd4FAPxv6ykSswqtfCohhBCidbM60R80aBBff/21+XOVSoXBYOC1115j2LBhDRqcEEII0dqcn6efZd6221y2X/P8fBNT5/1jqXmUlBmqPGaPuRGfR53iNFGpVAyyoHx/by2N+Ezs7TRE+BvjP5BaAu6hxh1VlO8XlepZH5sKGOfnA+ZEP1+fRr8wL0r0Bt77s+au/UIIIcTFxupE/7XXXmPBggWMGjWKkpISHnnkEaKjo9mwYQOvvvpqY8QohBBCtBrdyhPvC0f0TY34LJmfDxDs4YirvR1lBoUTaXlVHnM+8bbsmjUZ0KHmhnzpecWczTSOqkdbME0gOsh4zP5aGvJtPpZGfomeADcHupWX/Ac5GxP91IJUZl9uPHfJjrPEp+Vb8URCCCFE62Z1oh8dHc3Ro0cZOHAg1157Lfn5+YwbN47du3cTHh7eGDEKIYQQrUbMBSP6iqJQVKrnYKJxrn1tHfdNVCqVeVS/qs77iqKYS+nrO6IPMCDcB5UKjqTkVugtYGK6V5iF0wRMbwYcSMipsSHf6gOmsn1/1GoVAN6O3mjVWvSKnmDfUi6L8kNvUHj7j6N1ejYhhBCiNbKry0nu7u48+eSTDR2LEEII0epFBbih06jJKijlTEYhqblFlBkUfFzsCfF0tPw6ga7sOJVZZef9s5mFZOSXoNWo6BToWu+YPZ11RAe5sz8hm03H0hjXs2JDXlP1QHcLqwdMS+wdSMhG6dwBFVRK9Mv0BtYeTgFgZHnZPoBapSbIJYhTOadIzEtkzhUR/Bmbyoq9idw1JJzO5dcWQgghLmZWj+h/+eWX/PDDD5W2//DDDyxcuLBBghJCCCFaK52d2px87z2bZZ6f37ONByqVyuLrRAaYltir3HnfND+/c6Ab9na1N/ezxMAa5umfb8RnWXf/ToFuaNQq0vNLyHRsa9z4n0T/35MZZBaU4umkpU87rwr7TJ33k/KT6BLkzlXdjJ+/9ccRyx9ICCGEaMWsTvRffvllfHx8Km338/PjpZdeapCghBBCiNbM1Jl+39ksc8d9SxvxmXSqofP+3gZqxHehgRfM01cuWApPURTz/bpZeD8HrYYOvi4AHCr2NW7MOAEGvfmY38vL9i/v7I+dpuKvK6aGfAl5CQDMvjwCjVrF2sOp7DyVad2DCSGEEK2Q1Yn+6dOnad++faXtbdu25fTp0w0SlBBCCNGamUa+957NvqDjvodV14goT/STsovILiitsM9USl/bUnfW6NXWE3s7Nam5xcSlnm8AmJBVSHp+CXZqFZ0DLS+b7xJsPHZntjNo7EFfAtlnADAYFH4/WF623yWg0rmmhnxJeUkAhPm6ML58OsEbv9d/VD+nqJQ9Z7L4eddZvt5ykqJSfe0nCSGEEM2I1XP0/fz82LdvH+3atauwfe/evXh7ezdUXEIIIUSrZRpp3306k1K9gkatsrjs3cTNQUuwhyMJWYXEJufQN8z4f3CZ3mBscgd0D7XumjVx0Gro096LjXFpbIxLMy+RZyrbjwp0xUFr+TSB6CB3ft6VwP7EPPAKg3OH4Z/3wLM9SVmFjMmPx16nZnD6cfjnPyP6OcbGe4kJ2+Cf9wF4wqsUD+1xyk4ZiF/xN+19nGu8v15RyCooJT2/mIy8EtLzi0nLKyEjv4S84rIKx2486M3lnf0tfrYm4egJXSeAnc7WkQghhGiGrE70p0yZwv3334+rqyuDBw8G4O+//+aBBx5g8uTJDR6gEEII0dqE+7rgpNNQUGIcKY4KcMVJZ31/3KgA1/JEP9ec6Mel5lFYqsfF3o4wH5cGjXtQRx82xqWx+Vgatw00VvfVtXqg64Wd9ztEGBP97Z8BEAw8bWrev7byuYEO9hDoT2LOKVhjbA7sDjyuATTArtrvrwG8yz8q+e/CAWfLP5odBXrcZOsghBBCNENW/1bxwgsvcPLkSYYPH46dnfF0g8HALbfcInP0hRBCCAto1Cqig9z592QGYPmyev8VFejKutjUCp33zfPlQ9zNS9I1lAHl8/S3nkinpMyAzk7NvjPly/hZWZHQKdANlQqSc4rIuGQ2XvZuoC9BQeGPgynklejp086TEE+nSucGG4ohfxdJWh2GrhNRlzcxLCrVs+ZgCmUX9BCoiUYFLg5aXO3tcHGwM//pYm+HVqNGQWHzsXRSc4sJ8XCkT3uv2i/aFJL3Q+ohSD1s60iEEEI0U1Yn+jqdjsWLF/PCCy+wd+9eHB0d6dq1K23btm2M+IQQQohWqVvI+UTf2vn5JlV13jeNsDdkIz6TTgFueDvrSM8vYffpTC5p58X+BFPHfevu52JvR3sfZ06cy2dfSRBDrzWW4B9NzuWOfzegs1Oz66bLwb7yryq+hjI0/+tNmaLn3JXz8Hc2ltU7ACkbTvDq6ljcHbX4uTkQ4GaPv5tD+d8d8C//3N/NAW9nXY1vhqgAz8Rsbn5vE8o5WDqhv9VNE00Wbz/NZxvj+eimnnTwq+eSh1s/htWPQpb0RhJCCFE16+sEy0VERBAREdGQsQghhBAXjQs71Nd1RN/Uef9oci4Gg4JarWJvHUfYLaFWqxjQwYcVexPZfCwNbxcdecVlOGjVdPSzfppAdJA7J87lczAxh6GRfgD8ftDYbX9QBx9cqkjyAezUdvg7+ZOYn0hSfpI50QeYMTiM2we1t2qpwpp0CXLn+p4h/LjzLC/9dpgld15q9bUPJGTz1LIDlOoV1hxKqX+i79HG+Kck+kIIIaphdaKv1+v56quvWLduHampqRgMhgr7//zzzwYLTgghhGitLmnnic5OTYCbA229K5enW6KdjzM6jZr8Ej1nMwvxdbXnSIqxjL8xRvQBBnY0Jvobj6XR1tvY8K5rsHulJfAsER3sxoq9iRworwoAWF2+rN7I6Mrd9i8U5BJEYn4iiXmJdPfrXmFfQyX5JnOuiODXfYlsP5nJ7wdTuLKW2C5UVKrnwcV7KNUbpxNk5JXUPyBJ9IUQQtTC6kT/gQce4KuvvmLMmDFER0c3+H+mQgghxMUg0N2RFTMH4GJvV+f/S7UaNR38XDiUlENscg6puTr0BgU/V3sC3BwaOGKjgeXz9PeeyaJ9eaJf12X8ooOMVQem8v/T6QUcSspBo1YxolPNXe6DXIIgBRLzE+t0b2sEujty+8Aw3l9/jFdXxzK8kx9aC9/YeG31kQrLEabnN0SiH2r8szADinPBvp4VAkIIIVodqxP977//niVLljB69OjGiEcIIYS4aEQFWL7ufPXXcC1P9HNx0hmXt4sJ9Wi0N+KDPBwJ8zXOrV+x15hkW7s0oEmXYON5ZzMLySooMZft92nnhZdzzcvGBToHApCY1/iJPsBdQ8P5fvtp4tPyWbTtNFP7t6v1nE1xaXyxOR6AMd0CWbkvibS84voH4+AODh5QlAVZZ8C/c/2vKYQQolWxus5Op9PRoUOHxohFCCGEEFaKCjSO5h5JzmXv2cabn3+hQeWj+mUGpfx+HnW6jrujljZexmkLBxNzzIm+JaXxwS7BQNOM6IOxeeCsEcbeRPPXHiWnqLTG47MKSnjoh70A3Ni3DeN7hQCQ3hCl+yDl+0IIIWpkdaI/Z84c3nnnHRQLl64RQgghROMxdd4/nJzDvkbsuH8h0zJ7YEzW69pjAIzz9AH+jE1l5+lMAK7oUnPZPkCgS9OO6ANMviSUcF9nMgtK+eiv4zUe+/TygyTnFNHex5knx3TCx9kegPT8BhjRB0n0hRBC1Mjq0v1Nmzaxfv16Vq1aRZcuXdBqtRX2//zzzw0WnBBCCCFqZuq8H5+Wj+k9+G7BHo16z37h3mjUKvQGhW4h7vWaJtAlyJ3f9ifzv62nUBToHupBoLtjrecFOQcBkJSXhKIoTdIzyE6j5vFRnbj96x18vimem/q1JdijcqzL9yTwy95ENGoVb0/qjpPODm8X41SEjPyShonXo3xZ46xT9buOEEKIVsnqEX0PDw/Gjh3LkCFD8PHxwd3dvcKHEEIIIZqOr6s9nk5ac5If5uOMu5O25pPqyc1BS/fyqoG6lu2bRJfP0y8uM67iM7KLZR3tA5wDUKGiSF9EZnFmvWKwxvBOfvQL86KkzMAbvx+ptD8hq5Cnlh0A4L7LOphfJ1PPgVK9Qk5RWf0DkRF9IYQQNbB6RP/LL79sjDiEEEIIUQcqlYqoADe2nEgHGr9s3+TBERF8suE4U/q2qdd1ooMqNiQcaUHZPoBOo8PX0ZfUwlQS8xLxcvCqVxyWUqlUPDm6M1e/v4mluxO4bWB785sVBoPCQ0v2kltURkyoBzOHne9p5KDV4GpvR25xGel5xbg71vPNGEn0hRBC1MD6RW+BsrIy1q5dyyeffEJurnG93sTERPLy8mo5UwghhBANLTLg/PJqde2Ab62BHX345ra+VZauW8PbxZ4gd+NSgJH+roT5ulh8ri3m6QN0DXHnuu7GqQPzVh4y9y36YnM8W06k46jVMH9Sd+z+swSfV3n5fsMssSeJvhBCiOpZneifOnWKrl27cu2113Lvvfdy7tw5AF599VUeeuihBg9QCCGEEDXrFHg+0W+qEf2G1K28/H+kBd32LxTkUj5PPz+poUOq1UMjI9HZqdl6IoM/Y1OJTc7htdXGUv6nrupEex/nSud4l5fvpzfEEnseocY/CzOgOLf+1xNCCNGqWJ3oP/DAA/Tu3ZvMzEwcHc+/iz927FjWrVvXoMEJIYQQonZR5Z337dQqOge61XJ08/PYqCgeHBHBXUPCrDrP1JAvIS+hMcKqUYinE9MHtAfg5VWxzPp+DyV6A5dF+XFDn6qnM3i7GDvvpzXEEnsO7uDgYfx71pn6X08IIf7f3r3HN13dfxx/J22T3u9QKBTKTbnKHQboEGWKeBmg0ymbKOjm1Hnpfl6YTqebF1SUeZno5nXzgtvQTTcRRbwhys2CCpRboQXa0lt6Se9Jfn+kCS3lkpSkadLX8/HoI8k333zzqUTlnXPO5yCkeL1G//PPP9eXX34pk8nU6nhmZqYOHOj4/9ECANDVjeiVoGtO76e+KdGKjAgLdDley0yN0c3TB3n9OveIfnXHj+hL0vXTBmjZ+jztOuRcupgcY9LDF484Zkf9VNfUfV8Efck5fb/Q4py+nzbUN9cEAIQEr0f07Xa7bDZbm+P79+9XXFzcUV4BAAD8yWg06O4LhurnkzIDXUqHcgX9A9bADDTER0bo5rMPf0Hx8JwR6h4XeczzU2KcI/qlVh9M3ZdYpw8AOCavg/4555yjJUuWuB8bDAZVV1fr3nvv1cyZM31ZGwAAwDG5pu4HakRfkub+oK9+/oO++u3MwTrnBFsDpvh8RL+v89ayzzfXAwCEDK+n7j/22GOaMWOGhg4dqrq6Ol1xxRXauXOnUlNT9cYbb/ijRgAAgDZ6xDiDdXVjtSobKhVv6vj+BBFhRv1h1nCPzj28Rp8RfQCAf3kd9DMyMrR582YtW7ZMmzdvVnV1tRYsWKC5c+e2as4HAADgT9ER0UqOTFZZXZkOVh9UfHLnbkSYGuPD7fUkgj4A4Ji8CvqNjY0aPHiw3nvvPc2dO1dz5871V10AAAAn1DOmpzvoD04eHOhyjss1ol9G0AcA+JlXa/QjIiJUV1fnr1oAAAC84u68bw3cOn1PJTeP6JfXNKjJZj/5CyZmOG9ry6T6qpO/HgAgZHjdjO+GG27QokWL1NTU5I96AAAAPOZqyHeguvNv8ZsUHSGDQXI4pPKaxpO/YGSCFJnovG/JP/nrAQBChtdr9NevX69Vq1Zp5cqVGjFihGJiYlo9v3z5cp8VBwAAcDw9Y3tKCmznfU+FhxmVFG1SmbVBpdZ6dYszn/xFE/tIhRbn9P20oSd/PQBASPA66CcmJuriiy/2Ry0AAABecY3oH7QeDHAlnkmJaQ76Pttir49UuIV1+gCAVrwO+i+99JI/6gAAAPCaa43+weogCfqxJu085Mst9vo6by37fHM9AEBI8HqNviQ1NTXpo48+0nPPPaeqKmfzl4MHD6q6utqnxQEAAByPK+hb6i2qaawJcDUn5uq879MRfYkRfQBAK16P6O/bt08zZsxQXl6e6uvr9aMf/UhxcXFatGiR6uvrtXTpUn/UCQAA0EacKU5xEXGqaqxSgbVAAxIHBLqk40pt7rxfavXViH5oBn2Hw6Hq+ibFRUYEuhQACEpej+jffPPNGjdunMrLyxUVFeU+Pnv2bK1atcqnxQEAAJyIa1Q/GDrvM6LvmWdW79LI+1bqk5xDgS4FAIKS10H/888/19133y2TydTqeGZmpg4c6Pz/gwUAAKElmDrvp8S6RvR9FfQznLe1ZVJ9lW+u2Ql8vP2Q7A7pr5/nBroUAAhKXgd9u90um83W5vj+/fsVFxfnk6IAAAA8FUyd91NiXCP6Ppq6H5kgRSY671vyfXPNAHM4HNp5yNn3ac3uEuWXdf7eCwDQ2Xgd9M855xwtWbLE/dhgMKi6ulr33nuvZs6c6cvaAAAATiiYOu/7fERfCrnp+8VV9aqqa5IkORzSvzbtD3BFABB8vA76ixcv1po1azR06FDV1dXpiiuucE/bX7RokT9qBAAAOCZ30A+KEf3moO+rNfpSyAV912i+yz837pfd7ghQNQAQnLzuut+7d29t3rxZy5Yt0+bNm1VdXa0FCxZo7ty5rZrzAQAAdATX1P3gWKPvnLpfXd+kukabIiPCTv6iiX2dt5Z9J3+tTmBXc9A/Y1CqsvMt2l9eq6/2lGrywNQAVwYAwcOjEf0xY8aovLxcknT//feroaFBc+fO1SOPPKI///nPuuaaawj5AAAgIFwj+sW1xaq3+Wjtu5/ER4YrIswgyZcN+UJtRN/ZVHB4rwRdNNL5Z/vWhtDoPwAAHcWjoL9t2zZZrVZJ0n333afq6uoTvAIAAKBjJJoTFRXuHHAotBYGuJrjMxgMvm/IF2JB3zWiP7BbrC4d59xV4P3vClVR2xjIsgAgqHg0dX/UqFG6+uqrdfrpp8vhcOixxx5TbGzsUc+95557fFogAADA8RgMBvWM6ak9FXt0oPqA+sb3DXRJx5USa1JhZZ3v1umHaNAflBarEb0SdGpanHKKqvTeloOaO7Fz/9kCQGfhUdB/+eWXde+99+q9996TwWDQ+++/r/Dwti81GAwEfQAA0OHSY9O1p2JPUK3TL/HZiL5z1Fu1ZVJ9lWQO3u2OLTUNKmn+AmRAt1gZDAb9ZFxv/fG/2/TWhv0EfQDwkEdB/9RTT9Wbb74pSTIajVq1apW6d+/u18IAAAA85WrIFwyd91NjfLzFXmSCFJko1VkkS76UNtQ31w0A12h+r8QoxZidf02dNbqXHn5/uzbnW7SjqEqnpAXvFxkA0FG83l7PbrcT8gEAQKfi3mKvuvMH/ZRYZ9Av81XQl0Jm+r5ra70B3Q8vEU2NNevsIc6/e/6DpnwA4BGvg74k/e1vf9OUKVOUnp6uffucW7k88cQT+ve//+3T4gAAADwRTEE/OcbHU/clKcm1xV5wB/2WjfhacjXlW77pgBpt9g6vCwCCjddB/9lnn1VWVpZmzpwpi8Uim80mSUpKStKSJUt8XR8AAMAJ9YzpKUkqsAbDGv3mqfu+asYnSYmuoL/Pd9cMgJ0tGvG1NPWUbuoWZ1aptUEfbz8UiNIAIKh4HfSfeuop/eUvf9Fdd92lsLAw9/Fx48bp22+/9WlxAAAAnugV20uSVFRTpEZ7596GLdUV9K0+HNEPkan7u10j+t1bB/3wMKPmjHH+GTN9HwBOzOugn5ubq9GjR7c5bjabZbVafVIUAACAN1KiUhRhjJDdYdehms494pvSPHXftyP6wR/0rfVNOmCpldR26r4k/WSsc/r+6pxiHaqq69DaACDYeB30+/Xrp+zs7DbHV6xYoSFDhviiJgAAAK8YDUb39P3Ovk6/5dR9h8Ph9etLq+v1v28LZLO3eG0IBP3dxc7R/NRYk5KadyZoaWD3WI3tmySb3aG3Nx3o6PIAIKh4HfSzsrJ0ww03aNmyZXI4HFq3bp0eeOABLVy4ULfffrs/agQAADihYGnI5xrRb7DZVVXf5PXrH/0gR9e/tknPrN51+GCCc7RbtWVSfZUvyuxwO4uOPm2/pZ+M7S1JemtDfru+JAGArsLroH/NNddo0aJFuvvuu1VTU6MrrrhCzz77rP70pz/ppz/9qT9qBAAAOCF30Ld27qAfZQpTjMnZ56g90/e3FlRKkl74IlfVri8KIuOlqCTnfUtwrmHfVXzioH/+aT0VFRGm3cVWbcqzdFBlABB8vAr6TU1NevXVVzV9+nTt3LlT1dXVKiws1P79+7VgwQJ/1QgAAHBC7s771cHQed+1Tt/7hnz7SmskSRW1jXrtqxZd9oN8+r5rRH9Q97hjnhMXGaGZI5x/zv/cGJxfaABAR/Aq6IeHh+u6665TXZ2zAUp0dLS6d+/ul8I6QmZmpk477TSNGjVK06ZNC3Q5AADgJLg673f2qfvS4XX6JV6O6FtqGlRRe3hXgb98nqu6RudWx8Ee9Hd7MKIvST8Z55y+/+7mAtU0eL/0AQC6Aq+n7k+YMEHffPONP2oJiC+//FLZ2dlavXp1oEsBAAAnwd2Mr5NP3ZcOr9Mvs3oX9F2j+amxJvVKjFJJdb3ecm03l9jXeWvZd4xXd151jTbtK3Xu3jToBEF/Yr9k9U2JVnV9k97/trAjygOAoON10L/++uv1m9/8Rk8//bTWrl2rLVu2tPoBAAAIBNca/QJrgewOe4CrOb6UGFfnfe+m7u9tDsP9U2P1y6n9JUnPfbpHjTZ7UI/o7y21yu6Q4iLD1S3OfNxzDQaDuynfP5i+DwBH5XXQ/+lPf6rc3FzddNNNmjJlikaNGqXRo0e7b33ls88+04UXXqj09HQZDAa98847bc555plnlJmZqcjISE2cOFHr1q3z6j0MBoOmTp2q8ePH67XXXvNR5QAAIBC6R3dXmCFMTfYmFdcUB7qc43JvsefliH5e84h+n5RoXTouQ6mxZh2w1Ortbw4EddA/vD4/VgaD4YTnXzy2twwG6as9Ze6ZAACAw8K9fUFubq4/6mjDarVq5MiRmj9/vubMmdPm+WXLlikrK0tLly7VxIkTtWTJEp177rnKyclx9w0YNWqUmprart1auXKl0tPT9cUXX6hXr14qKCjQ9OnTNWLECJ122ml+/90AAIDvhRvDlRadpoPWgyqwFigtJi3QJR2Tqxlfidcj+s6gn5kSrciIMF17Rj899P52PfvJbl08N0NhUlAG/V2HPFuf79IzIUpnDOqmz3YU6y+f79GVkzKVGB2hhKgImcPD/FkqAAQFgyMINiE1GAx6++23NWvWLPexiRMnavz48Xr66aclSXa7XRkZGfr1r3+tO++80+v3uO222zRs2DBdddVVR32+vr5e9fWH/2dcWVmpjIwMVVRUKD4+3uv3AwAAvnfViqu0sWijesX2Upzp2N3bA62iplH7LTWKMYUrMzXG49flllhV09Ck3knRSoiKkM3u0M6iKtkcDmUkRiq+Isd5YtowyehZ4E0wJ+j+yfe7lz4Ewg2vb9J/txTorplDdO0P+3v0mve2HNSNr7ftGxVtClNiVIQSok1KjIpQYnSEeiVG6ddnD1JCVISvSweADlVZWamEhIQT5lCvR/Q7g4aGBm3cuFELFy50HzMajZo+fbrWrl3r0TWsVqvsdrvi4uJUXV2tjz/+WJdeeukxz3/ooYd03333nXTtAADAf4anDNfGoo06UH0g0KWcUFikVCdpe5kXLzI6X1dQ6/yRJJmlMEkH66SDZueSAFl2elXLh/s+1Lxh87x6jS/tKvJuRF+SzhnaQxec1lPfH6x070Zgd0g1DTbVNNh0sKKu1fnd4836xQ8H+LRuAOisgjLol5SUyGazKS2t9ZS8tLQ0bd++3aNrFBUVafbs2ZIkm82ma6+9VuPHjz/m+QsXLlRWVpb7sWtEHwAAdB43j7lZUzOmqtHWeOKTAyivzKq73vlO8ZEReuaKMR69pq7Jpmtf3SBJWjp3rGLMzr/GVdc36tZl2aprsmtp8huKqd4nnflbqfex/17jsixnmT7O/1gV9RXt/2VOUpPNrtwS5zp7b4K+Kdyop1v8s7PbHaqqb5KlpkGWmkZZahtlqWnQR9sO6d3NB5Wdb/F16QDQaQVl0PeF/v37a/PmzR6fbzabZTYfvwssAAAIrIiwCI3vceKAG2gD4+tkszbIUiNN7DlJYcYTN6DbVlApm7VSCVER+lH/H7Z67mejuuu5T/coNixFkxpyJEVJvSaf8JrZxdkBD/p5ZTVqsNkVFRGmXolR7b6O0WhQQpRznX7flMPHu8dF6t3NB7U5P3C/IwB0NK+77ncGqampCgsLU1FRUavjRUVF6tGjR4CqAgAA8ExytHOKvcMhldd41nl/X4tGfEe65vT+Mocb9V1NovOAZZ9H10wwJzhPr7d4dL4/uBrxDegeI6MHX3h4a0TvBBkM0gFLrQ5V1Z34BQAQAtod9BsaGrR//37l5eW1+ukIJpNJY8eO1apVq9zH7Ha7Vq1apUmTJnVIDQAAAO0VHmZUUrSzMVyZh1vs5ZU5p7f3SWnbvK9bnFk/HZ+h/Y5uzgMedt6PNzkbOVU0BG60e6er4343z6fteyPWHK5BzUsCtjCqD6CL8Dro79y5U2eccYaioqLUt29f9evXT/369VNmZqb69evns8Kqq6uVnZ2t7OxsSc5t/bKzs91fJmRlZekvf/mLXnnlFW3btk2/+tWvZLVadfXVV/usBgAAAH9JjnGO6nu6xd7e44zoS9Ivpg5QgZxB33rIs+2QE82JkqTK+kqPzveH3c1Bf1Ca/3ZJGNk7UZK0eb/Fb+8BAJ2J12v0r7rqKoWHh+u9995Tz549ZTD4foqVJG3YsEHTpk1zP3Y1wps3b55efvllXXbZZSouLtY999yjwsJCjRo1SitWrGjToA8AAKAzSok1a3exVaXVHo7oNwf9PslHD/q9EqM0eMgwaZdkLz/x1P0t+y3666fOZZAlNeUeVn1sK74r0DOrd+uJy0ZqYHfPQ7trRH+An0b0JWlkRqL+sXE/DfkAdBleB/3s7Gxt3LhRgwcP9kc9bmeeeaYcDsdxz7nxxht14403+rUOAAAAf0iNdY7ol3o8ou+cup+Z2nbqvsucsyZLu6Q4e6W25h7Q0H69Wj1vtzu0avsh/eXzPVqXWyZDhFWxA6XyOkv7fokWln66R98eqNDST/fosZ+M9Og1drtDu4u931rPW6MyEiVJm/MtcjgcfhuoAoDOwuup+0OHDlVJSYk/agEAAOgyUmKcu/mUerBGv6HJroOWWklS32OM6EtSZnoPWY3Odff/Wr3Wfby2waa/f7VP0x//VNe+ukHrcssUbjRoWHMT4ybVndSWhDUNTfrugHP9+4rvClXbYPPodQcralXTYFNEmEF9j7EkwRdO7REnU7hRlXVN7iUQABDKvB7RX7RokW6//XY9+OCDGjFihCIiIlo9Hx8f77PiAAAAQlVKrGuN/omD/v7yGtkdUlREmLrFHX+737DkvlLJt9q7e5u+2lOqL3eV6G9f7VN5jTPIx0WG64qJfXTV5EzZHDbNeMcgg8Ghguoy9Ulo3xLIb/IsarI7Z2JW1zfpo21FunBk+glf5+q4n5kSo4gw/20GFRFm1PD0eG3Ks2hzvkX9jjMrAgBCgddBf/r06ZKks88+u9Vx1zQom82zb3ABAAC6spTY5hF9D6bu7ytzjkL3TYk+4bTzyG6ZUsm36qVi/fT5r9zHeydFaf6Ufrp0fIZizYf/Cmh0RMlhqNGXuXnqM6p9Qf/r3DJJUpjRIJvdoXe+OeBV0B+U5r9p+y4jMxK1Kc+i7HyLZo3udeIXAEAQ8zror1692h91AAAAdCmpzV33PZm6v6/EuT7fo+ntiX0lSRkG51LL0X0Sde0Z/XXO0DSFH2XUPDIsVrWOGm3I36+fjhrvafmtrMstlSRdNTlTL3yRq093FKu0ut79Zcax7PLz1notudfp03kfQBfgddCfOnWqP+oAAADoUto3ou/BlPPEPpKkSwbYNWH6FI1sDrjHkmROVG3dIX1XUHjiax9FfZNN3+RZJEmXT8jQ+r1l2rK/Qu9tKdC8yZnHfa076Ptxaz0X1xZ73x+sVEOTXaZw/y0VAIBA8zroS5LFYtELL7ygbdu2SZKGDRum+fPnKyEhwafFAQAAhKoUd9d9D0b0Sw9P3T+h5qCf1FCgpBOEfEnqEZesg3XS3vIS1TXaFBkRduL3aOHb/RWqb7IrOcakAd1iNWtUL23ZX6G3vzlw3KDvcDjcW+t1xIh+35RoJURFqKK2UTmFVRrRm7+3AghdXn+VuWHDBg0YMEBPPPGEysrKVFZWpscff1wDBgzQpk2b/FEjAABAyElt7rpfVd+k+qbj9zja17y1Xt9kz0f0ZcnzqI4escmSJJuhWpvbsc/8ur3O9fkTMpNlMBh04ch0hRkNys63KLd5ycHRlFQ3qKK2UUaD1L+b/5vjGQwG9+yGbKbvAwhxXgf9W2+9VRdddJH27t2r5cuXa/ny5crNzdUFF1ygW265xQ8lAgAAhJ74qHCFG52N9cqOs07fZncov6x5az1PRvQTMpy3tWVSfdWJTzc7R7YNYbVa19xUzxuu10zo5/zCoFucWacPTJUkvfPNgWO+buchZ20ZydFezyJor1HNo/jt+UIDAIJJu0b077jjDoWHH571Hx4erttvv10bNmzwaXEAAAChymAwKDnmxNP3Cyvr1GCzKyLMoPTEqBNfODJeikpy3rfkn/D0w0G/xj067ymb3aENe8slHQ76kjS7uav9O9kH5HA4jvra3a6O+939P23fxTWiT9AHEOq8Dvrx8fHKy2s7FSw/P19xcf5vpAIAABAqXA35So7TkM81bT8jKVphxuNvrefmxfT9RHOiJOeI/sZ95Wq02T17D0nbCipVXd+kOHO4hvSMdx8/Z1iaok1h2ldao2+OEapd6/MHdGDQP625Id+u4mpV1TV22PsCQEfzOuhfdtllWrBggZYtW6b8/Hzl5+frzTff1DXXXKPLL7/cHzUCAACEpFQPGvK5GvH18WTavosXQT/e5AzoERG1qmmw6fuDlR6/zdfN0/bHZSa1+hIi2hSuGcN6SDr29P1d7hH9jhso6hZnVq/EKDkc0rcHKjrsfQGgo3kd9B977DHNmTNHV155pTIzM5WZmamrrrpKl1xyiRYtWuSPGgEAAEJSimvqvvV4I/rOoJ/pydZ6Lol9nbeWfSc81TV1PzrKWcN6L9bpr8stlSSNbzFt32VW8/T9dzcfPOosAXfH/Q4c0ZekUe7p+wR9AKHL66BvMpn0pz/9SeXl5crOzlZ2drbKysr0xBNPyGw2+6NGAACAkOSaun/8EX3n1P0+yf4Z0XdN3Q8Ldzb8+9rDoO9wOLS+eX3+xKME/ckDUtQtzqzymkZ9mlPc6rmKmkYVVzm/WOjooD8yg4Z8AEJf+IlPObro6GiNGDHCl7UAAAB0KSnNU/dLPJi671HHfRdX0D/4jfTFE8c9NaHBObJts5XrurD/KDI3TPbPP9eJ2gGUVtfr0rpchUcYNHJfjpTf+gXhkh7ufkjra8pU/fEnUlm6+7mq8lpdF7ZPcZHhil2/w/PfywdmWGpUFpanuL3h0heftX5ywFlSz5EdWg8A+INHQX/OnDl6+eWXFR8frzlz5hz33OXLl/ukMAAAgFCXGtM8on+MqfsOh8M9ot/Xm6n7yf2dtxX50ke/P+6pCUaj1Le3ahxN+k3Em4qQpFUnfotUSXdGND/4+OjnnC3p7AhJJZI+Ony8t+u1ttbHO0Kf4733+hekW7/r2IIAwA88CvoJCQkyGJzf0sbHx7vvAwAAoP1STtCMr9TaIGuDTQaDlJHswdZ6Lt1Olc55QDq07YSnxjkcMlR+LoekFbFnq9bSpDF9EzWw2/Gb5H2VW6q80hoNTY/X8PSEo57jkEMffF+oytomje+XpH4pzmn62fnl2lFUrUFpsRqdkeT57+UjH2wtVEVNo6YMTFGvxGjJYZM2v+H8YqShRjJ5MXsCADohj4L+Sy+95L7/8ssv+6sWAACALsW1Rr/MevSg7xrNT0+Ikjk8zLuLT77Ro9PCJMW9MUWVDZXaNPzXeumTGl0Q01NPzxpzzNc4HA7d8tDHKmyq0+vnTJQGph71PIOk3Qm79OgHOZpsT9Hrs34gSVry0jp9cqBYD04YodET+3j3e/nAx01btGxDvm7oOUC3nTtYcjikbe9KDdVS5QEpdVCH1wQAvuR1M76zzjpLFoulzfHKykqdddZZvqgJAACgS3B13S+prpfD4WjzvHtrPW8a8bWDq/P+gDTnrM11uWVHrcdlf3mtCivrFG40aHSf44/IXzTSuTZ/7Z5SFVQ4G/7tClDHfZeRR3beNxikeOcuAarYH5CaAMCXvA76n3zyiRoa2n7rXFdXp88//9wnRQEAAHQFrqn79U12WRtsbZ7f69paL9XPQd/kDPrdEm0yhRl1qKre/SXD0axr7sw/oneCokzHn2mQkRytCZnJcjik/2QfVE1Dk/aXOwN/4IJ+c+f9/RbZ7c1faCQ0B/3KAwGpCQB8yeOu+1u2bHHf37p1qwoLC92PbTabVqxYoV69evm2OgAAgBAWbQpXVESYahttKq2uV6y59V/N8txb63nRiK8dXCP6tbYqjczorvV7y7Uut0yZqUd/X1fQn3CUbfWOZtboXlq3t0xvf3NAU5qn+afEmJTcPKOho52SFqfICKOq6pqUW2rVgG6xUkJv55MVBH0Awc/joD9q1CgZDAYZDIajTtGPiorSU0895dPiAAAAQl1KrEn7y2tVUt3QprO+e0Tfm6312sEV9CvqKzQ+c7DW7y3X17llunR8xlHPX7fXGfQnehj0zx/RU7//z/faXlildzcflCQNCNBoviRFhBk1PD1BG/aVa3O+xRn0411BPz9gdQGAr3g8dT83N1e7d++Ww+HQunXrlJub6/45cOCAKisrNX/+fH/WCgAAEHJcDflKq9tusZdX1rxGvwODvmuUfn1zmD/Soco65ZZYZTBIY/t6FvQToiM0bXA3SdIra/dKkgYFMOhLLdfpW5wHmLoPIIR4PKLft29fSZLdbvdbMQAAAF1NavP09dIjOu9X1jW6u/EfOdLvay2D/tihSTIanF8yFFTUqmdC6239XKP5Q3rEKyEqwuP3mD26lz74vkh1jc6/SwZqfb6LK+hn729uyMfUfQAhxOOg7/Lqq68e9/krr7yy3cUAAAB0Na6GfEeO6Oc1T9tPjTW1Wbvva65mfBUNFYqLjNCw9AR9e6BC63LL9ONRrXswebs+3+XMU7srPjJclXVNkqRB3eN8UHn7jeqdKEnadrBS9U02mV1T9ysPOLfbMxgCVxwAnCSv/69x8803t3rc2NiompoamUwmRUdHE/QBAAC84Jq6X1LdekTf1fXe36P5UusRfckZ4k8U9D1dn+8SGRGm80/rqTfWOdfAB3pEPyM5SknRESqvadT2giqNTHNuA6iGaqnOIkUdf9vAY6ltsGnh8i06tUe8fnXmAN8VDABe8Hp7vfLy8lY/1dXVysnJ0emnn6433njDHzUCAACErJTmqftlR0zd39vccb9vsn/X50ttg/74TGeId4V6F0tNg3KKqiRJ4zK9C/qSNHu0c9Q8OcaktHhzu+v1BYPBcHid/n6LZIqWopp/p5OYvr94ZY7eyT6oxStzZK1vOvlCAaAdvA76RzNo0CA9/PDDbUb7AQAAcHzuqfvWo0/dD8SI/vhM52j2zkPVrb6A2LC3XA6H1L9bjLrFeR/UJ/RL1uKfjNQzV4yRoRNMjR/ZPH0/292Qr8X0/XbYlFeuF9bkSpKa7I42X5QAQEfxSdCXpPDwcB08eNBXlwMAAOgSUmJcXfePMaLv5477kpRoTpTkXKMvOZcTuLrit+y+7+22ekdz8djemjQgpd2v96VRbTrvuxry7ff6WvVNNt3+zy1yOKSIMOeXGF/uLvFBlQDgPa/X6P/nP/9p9djhcKigoEBPP/20pkyZ4rPCAAAAugLXiP6Ra/RdW+t1RNB3NeOzNlrVaG9UhDFCE/ola+ehaq3LLdO5w3pIkr5uZyO+zuq03s7fe3exVZV1jYqPb+5H0I6g//THu7TrULVSY0266exBuuff32vNrlJflgsAHvM66M+aNavVY4PBoG7duumss87S4sWLfVUXAABAl5Da3IyvzFovu90ho9GgukabCirqJHXM1P040+EO+BX1FUqNStWEfsl67es89/Rza32TvjvgatbXOUbkT1ZKrFkZyVHKL6vVt/srNCWhOeh7OXX/+4MVevaT3ZKkP/x4uMZlJuuef3+vrQWVKrM2KLm5DwMAdBSvg77dbvdHHQAAAF1SUrQzBNodkqW2UckxJuU3j+bHmcOVFO35XvXtFWYMU5wpTlUNVaqsr1RqVKq7Id/3BytUVdeozfkVstkd6pUYpV6JUX6vqaOM7J2o/LJaZedbNCU1w3nQi2Z8jTa7bv/nFjXZHTpveA+dN6KnJOnUtDjlFFXpqz2lmtl8DAA6is/W6AMAAMB7pnCjEqKcYb602tmQb6+rEV9qdIc1rTtynX56YpQykqNkd0ib8ixal+uchn4y6/M7o1br9F1T9ys9n7r//Gd79P3BSiVERei+Hw9zH5880DnrYc0u1ukD6HgejehnZWV5fMHHH3+83cUAAAB0RSmxJlXUNqqkukGD0qR97q31/D9t3yXBlKB85bs770vShMwU5Zft17rcUm3YWy5JGh9iQb/VFnsJpzgPVhyQ7HbJePwxsV2HqvSnVTslSfdcMFTd4yLdz00ekKqX1uzVl7tZpw+g43kU9L/55huPLtYZtkkBAAAINqkxZu0ptrq32NtX2nGN+FxcW+xZ6i3uYxP7Jetfm/bri50l2lZYJSl0GvG5DEuPV5jRoKLKehXak9RDBsneKFmLpbi0Y77OZnfo9n9uUUOTXWee2k1zxvRq9fzE/skyGqTcEqsOWmqVHkLLHQB0fh4F/dWrV/u7DgAAgC7L1XnftcXevg7suO8Sb46XpFYj+q7R+837ncdSY03qn9pxsww6QrQpXKekxWlbQaWyD1o1I66nVHXQOX3/OEH/lS/3alOeRbHmcD04e0SbAa/4yAid1jtR2fkWfbm7VJeM7e3vXwUA3E5qjf7+/fu1f7/3248AAADgMHfQtzqDfp5r6n4HdNx3ca/RbxH0M1Oi1S3O7H48oV9ySM7gHJXhnM3gnL7v2mLv2A358kpr9OgHOZKkO88bfMzR+skDnOv0v2SdPoAO5nXQt9vtuv/++5WQkKC+ffuqb9++SkxM1B/+8Ac68gMAALRDcowzTJdW16vJZtf+8lpJgZm63zLoGwyGVlP1J2SG1rR9l5G9EyVJn+0oliWiu/NgxdEHsxwOh+5cvkW1jTZN7JesKyb0OeZ1pwxMlSSt2V0ih8Ph05oB4Hi8Dvp33XWXnn76aT388MP65ptv9M033+jBBx/UU089pd/97nf+qBEAACCkpbaYun/QUqcmu0PmcKPSWjR387cEU3PQb6hodbxll/0J/VI6rJ6ONKZvkiTp+4OV+sdOZyD/35oNemrVTn21p1R1jTb3uW+uz9eXu0sVGWHUootPk9F47BkOY/smyRRuVFFlvfaUWP37SwBACx6t0W/plVde0V//+ldddNFF7mOnnXaaevXqpeuvv14PPPCATwsEAAAIdSmuEX1rvfY2T9vvkxx93BDpa0cb0Zec088NBiklxqRTe8R1WD0d6ZS0OD00Z4RWfl+o0r3OEX17xX4t/nCHJMkUZtSI3gka1zdJr3+dJ0n6v3NOVeYJ+hVERoRpbJ8krd1Tqi93lWhAt1j//iIA0MzroF9WVqbBgwe3OT548GCVlZX5pCgAAICupGUzvsON+Dq26d2xgv7A7nF66arxSo01K6wDv3joaJdP6KPLJ/SR7fsC6R8va0Jyrc7v3lPr9papuKpeG/eVa+M+5xaDozISdfWUfh5dd8rAFK3dU6o1u0r180mZfvwNAOAwr4P+yJEj9fTTT+vJJ59sdfzpp5/WyJEjfVYYAABAV+Gaul9SXa99Ja5GfB23Pl86dtCXpDNP7d6htQRSWKKzO353e7GemTtGDodD+0prtG5vmdbnlqmwsk73/3i4x196TB6YKq3cobV7SmW3Ozp0lgaArsvroP/II4/o/PPP10cffaRJkyZJktauXav8/Hz973//83mBAAAAoc41db+yrkm7iqslOTved6RjrdHvcuKbt8GrKpRsjTKERSgzNUaZqTG6dFyG15c7rVeCYs3hqqht1NaCSg3vleDjggGgLa+b8U2dOlU7duzQ7NmzZbFYZLFYNGfOHOXk5OiMM87wR40AAAAhLSEqwj1C/E2eRZLUp4On7ru217M2WtVob+zQ9+5UYrpJYSZJDqmq4KQvFx5mdDc0XMM2ewA6iNcj+pKUnp5O0z0AAAAfMRoNSo4xqbiqXhW1zpDd0SP6cabDjfYq6yuVEhWaHfZPyGiU4tOl8r1SxQEp8djb53lq8sBUrdp+SF/uLtUvpw44+RoB4AS8HtFfsWKFvvjiC/fjZ555RqNGjdIVV1yh8vJynxYHAADQVaTEmNz3w4wGpSdGdej7hxnD3GH/aOv0uxTX9P2K/T653OQBzi9N1uWWqaHJ7pNrAsDxeB30b7vtNlVWVkqSvv32W2VlZWnmzJnKzc1VVlaWzwsEAADoClyd9yWpd1KUIsK8/mvaSWOdfrOEXs7bSt8E/VPT4pQSY1Jto03Z+RafXBMAjsfr/4Pk5uZq6NChkqR//etfuvDCC/Xggw/qmWee0fvvv+/zAgEAALoCV0M+SeqT3LHT9l1c6/S7/Ih+gmtE/4BPLmc0GjSpeVT/y92s0wfgf14HfZPJpJoa5/6uH330kc455xxJUnJysnukHwAAAN5pOaKf2cGN+FyOt8VelxLvGtH3TdCXpMkDUiVJX+4q9dk1AeBYvG7Gd/rppysrK0tTpkzRunXrtGzZMknSjh071Lt3b58XCAAA0BWkxh4e0e/bwY34XOLN8ZIkS70lIO/fabhH9PN9dskpA50j+t/kl6umoUnRpnb1xO4Ummx2/fG/25SZEq2rpvQLdDmt1DbYZAo3unexALoqr0f0n376aYWHh+uf//ynnn32WfXq5fzG8/3339eMGTN8XiAAAEBX0LIZX6Cm7rvX6Hf1EX0fT92XnH+mvRKj1GhzaP3e4G5g/emOYr385V79/t2t2tyJeg4cqqzTGY98rHkvrgt0KUDAef1VYp8+ffTee++1Of7EE0/4pCAAAICuKKXFiH5mamCm7idGJkqSKhu6+HJM19T92jKpoUYynfwXLwaDQVMGpuitDfv15a4STT2l20lfM1De3XzQff/+97bqn9dNksEQ+BH0N9blq6S6QV/sKlF1fZNizcE7awI4WR3fzhUAAABttFyjH+gR/S4/dT8yQTLFOu9XHjz+uV5wrdNfE8QN+WobbFq5tUiScxvIjfvK9Z/Nvvtn1F5NNrveXJ/nfpxTWBXAaoDAI+gDAAB0AgNSYxVtCtOIXgmKjAgLSA0042tmMBwe1ffhOv3JzZ33vz9YKUtNg8+u25E+3n5INQ02ZSRH6aazBkmSFr2/XbUNtoDW9UlOsQoq6tyPtxV08Vkp6PII+gAAAJ1AQnSEPr99mt765aTA1UDQP8y1Tt+Hnfe7x0dqUPdYORzSV3uCs/u+a9r+hael65dT+6tXYpQOVtTp+c/2BLSu19c5R/MjI5zxhqCPro6gDwAA0EmkxJoVZQrMaL50OOh3+TX6kpTgGtH3XdCXDo/qrwnCbfaq6hr1cc4hSdKFI9MVGRGmO88bLEla+uluFVTUBqSu/eU1Wt1c16+mDpRE0AcI+gAAAJDEGv1W4l0j+vt9etnJA4N3nf7K74vU0GTXwO6xGtwjTpJ0wWk9NT4zSbWNNi16f3tA6lq2Pl8Oh3MLw5kjekhyrtG32x0BqQfoDLxuRVlXV6ennnpKq1ev1qFDh2S321s9v2nTJp8VBwAAgI7jGtG3NlrVaG9UhDEiwBUFkHtE37dB/wf9U2Q0SHuKrSqsqFOPhEifXt+f3t1yeNq+q8u+wWDQPRcM00XPfKF3sg/qysmZGtMnqcNqarTZtWy9s4/CFRP6ql9qjEzhRlkbbMovr1HflMDsYAEEmtdBf8GCBVq5cqUuueQSTZgwoVNspQEAAICTF2+Kd9+vrK9USlRKAKsJMNcafR9P3U+IitDwXgnasr9CX+4u0ZwxvY95bl2jTev3lqlvcoz6pARmJwaXMmuDvtjpnIVw4cierZ4b0TtBF4/prX9u3K/7392q5b+aLKOxYzLCqm1FOlRVr9RYk340NE3hYUadmhanbw9UaFtBJUEfXZbXQf+9997T//73P02ZMsUf9QAAACBAwoxhijPFqaqhShUNFV076Me3aMbncDg78fvI5AGp2rK/Qmt2lbYJ+pV1jVq9/ZA++L5Qn+QUq6bBpuQYkz7+zVQlRpuOcUX/W/FdoZrsDg3vFa/+3WLbPH/7uafq/W8LlJ1v0b83H9Ds0cf+AsOXXvva2YTv0nEZMoU7VyUP7uEM+lsLqjRjeM/jvRwIWV6v0e/Vq5fi4uL8UQsAAAACzLVOv8t33o9Pd942VEt1vv1nMWWg8wuUtbtL5HA4VFxVr9e/ztOVL67T2D98qJvfzNb/vi1UTYNNRoNzNH3xyh0+rcFbLbvtH033+EhdP83ZCG/R+zmqaWjye015pTX6fGeJDAbp8gl93MeH9HTOTNlOQz50YV4H/cWLF+uOO+7Qvn37/FEPAAAAAogt9pqZoqWoZOd9H6/TH9c3WaYwow5W1GnWM2s04cGP9Nu3v9VnO4rVaHNoYPdY3TBtgN698XT9/ZqJkqTXvt6nrQcDE1yLKuv0Va5zl4DzTzv2CPmC0/spIzlKhZV1WvrJbr/X5dpS74xB3ZSRfHhpgyvobysk6KPr8jrojxs3TnV1derfv7/i4uKUnJzc6gcAAADBK9GcKImgL+nwOv1K367TjzKFaXSfREnS5v0Vcjikkb0TdNu5p+qjrKn6KGuqbjt3sEb0TtDkAak6/7Sesjuke//znRyOju8k/98tBXI4pLF9k9Q76di9AiIjwvTb84ZIkp77bI8OWDzbbq+iplF1jTavamposusfG1xN+Pq0em5IT+fs4/yyWlXVNXp1XSBUeL1G//LLL9eBAwf04IMPKi0tjWZ8AAAAISTe7BwNJejLGfQLt/h8RF+S7jhvsF75cq9GZyTqnGE9lJ4Ydcxz75o5RB9vO6T1e8v17+yDmjW6l8/rOZ7D3fZPvN59xvAemtgvWV/nlunh97frqctHH/W83cXVWvl9kVZuLVR2vkUDusVq2S9+oJRYs0c1ffB9oUqtDUqLN+vsId1bPZcYbVLPhEgVVNRpe2GVxmcyGImux+ug/+WXX2rt2rUaOXKkP+oBAABAALnW6FvqLYEtpDOIbw7UPh7Rl6QxfZI83oYuPTFKN541UI9+kKMH/7dN04emKdbs9V/j2yW/rEbf5FlkNEgzPQj6BoNB91w4VBc89YXe3XxQ8yb11bjMZNntDm3eb9HKrUVa+X2hdhdbW71u16FqzX9lg964dqKiTSf+3V5vbsJ32bgMRYS1naQ8pGe8M+gXVBL00SV5PXV/8ODBqq31bBoOAAAAgotrjX5lA+ubldAc9P0wou+ta87op8yUaB2qqtdTq3Z22Pu6RvMnDUhR97hIj14zLD1Bl43LkCTd/c53uuvtb/WDh1Zp9p+/1LOf7NbuYqsiwgz64Snd9MdZw7XsFz9QUnSENudbdP1rm9Rosx/3+ruLq7V2T6mMBumyI6btu7im728tqPL0VwVCitdB/+GHH9ZvfvMbffLJJyotLVVlZWWrHwAAAAQv1ui3kOAMq6rw/Yi+t8zhYbrnwqGSpBfX5GrXoeoOed93NxdIOna3/WP5zTmnKtYcru2FVXrt6zwdqqpXrDlcF5zWU09ePlobf/cjvTp/gn72g76a2D9FL1w1XpERRn2SU6w7/rXluL0I3mgezZ92anf1OsaSh8E9mhvy0XkfXZTXc35mzJghSTr77LNbHXc4HDIYDLLZvGukAQAAgM7DNaLP1H21mLof+BF9STprcJrOHtxdq7Yf0n3vfq9X50/wa7+sXYeqtK2gUhFhBs0Y3sOr13aLM+sPs4bp2U92a1xmss4ZmqZJA1JkDg876vlj+iTpz3PH6NpXN2r5pgPqFmfWwubGfi3VNdr0z03OP48rJh59NF863Hk/p7BKNrtDYUb6iqFr8Tror1692h91AAAAoBNge70WXFP3Kw9Kdrtk9HoyrM/97oKh+nxniT7fWaKVW4t07jDvArg3XKP5PxzUTYnRJq9fP3t0b80e3dvj888anKaH54zQbf/couc+3aPucZFacHq/Vues+K5QlppGpSdE6sxTux/jSlK/1BhFRhhV22hTXlmN+qXGeF0/EMy8DvpTp071Rx0AAADoBOJNzpFQ1uhLiuspySDZGqSaEin22MGyo2SmxugXP+yvp1fv0h/e26qpp3RTZMTRR8lPhsPhONxtf6R30/ZPxk/GZehQVb0e/SBHf3hvq7rFmXVRi/d/7et9kqSfTuhz3FH6MKNBp6bFafP+Cm0rqCToo8tp19eSFotFixcv1jXXXKNrrrlGTzzxhCoq+NYXAAAg2LFGv4WwiOawL6kiP7C1tHD9tAFKT4jU/vJaLf10t1/e4/uDldpTbJU53KjpQ9P88h7Hcv2ZA3TV5ExJ0m/eytYXO0skSTuKqrR+b7nCjAZdNj7jhNdhnT66Mq+D/oYNGzRgwAA98cQTKisrU1lZmR5//HENGDBAmzZt8keNAAAA6CCuqfvVjdVqtDcGuJpOwN15P/AN+VyiTeG663xnY75nP9mt/LIan7+HazT/7CHdO2wrPxeDwaB7Lhiq80/rqUabQ7/82wZ9d6DCvaXe2YO7Ky3+xDsAuDrvb6PzProgr4P+rbfeqosuukh79+7V8uXLtXz5cuXm5uqCCy7QLbfc4ocSAQAA0FHiTHHu+5X1jIQebsjXeYK+JM0c0UOT+qeovsmuP/53q0+v7XA49F47u+37itFo0OOXjtSk/imyNth01Uvr9C8PmvC15GrIx4g+uqJ2jejfcccdCg8//M1eeHi4br/9dm3YsMGnxQEAAKBjhRvD3WG/ooHp+0pobiZX0Tk677sYDAbd9+NhCjMa9MH3RfpsR7HPrr0pz6IDllrFmsM1bXDg+hKYw8P03JVjNaRnvEqqG1RV16TeSVH64aBuHr1+cHPQP2CpVUUts1PQtXgd9OPj45WXl9fmeH5+vuLi4o7yCgAAAASTBJNz+j4j+uq0QV+STkmL07xJmZKk37/7veoafbPN9bubndP2zxma5pdGf96Ij4zQK1ePV++kKEnS3Il9ZfRwq7yEqAj1SnS+bjuj+uhivA76l112mRYsWKBly5YpPz9f+fn5evPNN3XNNdfo8ssv90eNAAAA6ECudfqWektgC+kMOunUfZdbfjRIqbEm7Sm26oePrNYzq3ep3NrQ7uvZ7A69t6V52n4Hdts/nu7xkfrXrybrkYtP0zVn9DvxC1pwrdPfXsg6fXQtXnfWeOyxx2QwGHTllVeqqalJkhQREaFf/epXevjhh31eIAAAADqWK+jTeV+dshlfS/GREXr80lH6v39sdm9L99THOzVnTG/Nn9JPA7vHenW9r/aUqqS6XonREZoyMNVPVXsvLT5Sl3rQaf9IQ3rG66Nth1injy7Hq6Bvs9n01Vdf6fe//70eeugh7d7t3M5jwIABio6O9kuBAAAA6FgE/RYSmsNldaFka3RuudfJ/PCUbvrijrP0328P6oUvcvXdgUq9/nWeXv86T2ee2k3zp/TTGYNSZTC0nvJutzu0p8Sq7HyLvskrV3a+xT3yfd7wHjKFt2sn7k6FLfbQVXkV9MPCwnTOOedo27Zt6tevn0aMGOGvugAAABAgrjX6NOOTFJ0qhZkkW4NUVSAletbxvaOZwo2aPbq3Zo3qpXW5ZXrhi1x9uK1In+QU65OcYp2SFqv5U/opLSFS3+RZlJ1vUXZeuSrrmtpcq3dSlOY172Mf7FxT93OKqmSzOxTm4fp+INh5PXV/+PDh2rNnj/r18259TGeTk5Ojyy67rNXjN954Q7NmzQpcUQAAAJ0AI/otGI1SfLpUvtc5fb+TBn0Xg8Ggif1TNLF/ivaVWvXSmr36x4Z87Siq1p3Lv21zfmSEUSN6JWh0nySNzkjUqD6J6pkQFYDK/aNvSoyiIsJU22jT3lKrBnTzbikDEKy8Dvp//OMf9X//93/6wx/+oLFjxyomJqbV8/Hx8T4rzp9OPfVUZWdnS5Kqq6uVmZmpH/3oR4EtCgAAoBMg6B8hvrcz6HfShnzH0jclRr+/aJhu/dEpemt9vt5cnyeHQxqVkajRfRI1uk+STu0Rp4iw4J+ifyxhRoNO7RGn7HyLthVUEvTRZXgd9GfOnClJuuiii1qt83E4HDIYDLLZfLOtR0f6z3/+o7PPPrvNlxYAAABdUaI5URJB360Tb7HniYSoCF37w/669of9A11KQAzpeTjoX3Ba59hJAPA3r4P+6tWr/VFHG5999pkeffRRbdy4UQUFBXr77bfbTKt/5pln9Oijj6qwsFAjR47UU089pQkTJnj9Xm+99ZauvPJKH1UOAAAQ3Nhe7wjuzvvBGfS7uiE9XQ352GIPXYdHQX/OnDl6+eWXFR8fr3379umyyy6T2Wz2a2FWq1UjR47U/PnzNWfOnDbPL1u2TFlZWVq6dKkmTpyoJUuW6Nxzz1VOTo66d+8uSRo1apR7C8CWVq5cqfR057d5lZWV+vLLL/Xmm2/69fcBAAAIFvEmZzCqbKBTuSQpvjnoB9nUfTi5gv52Ou+jC/Eo6L/33nuyWq2Kj4/X1VdfrRkzZrjDtL+cd955Ou+88475/OOPP65rr71WV199tSRp6dKl+u9//6sXX3xRd955pyS51+Afz7///W+dc845ioyMPO559fX1qq+vdz+urOQ/FAAAIDSxRv8IQT51v6s7tYez8/7BijpZahqUGG0KcEWA/3kU9AcPHqyFCxdq2rRpcjgceuutt47ZdK8jpsA3NDRo48aNWrhwofuY0WjU9OnTtXbtWq+u9dZbb+kXv/jFCc976KGHdN9993ldKwAAQLBxrdGvbqxWo71REcbOt3d8h3IFfUb0g1J8ZIR6J0Vpf3mtthVUadKAlECXBPidR0F/6dKlysrK0n//+18ZDAbdfffdrRrxuRgMhg4J+iUlJbLZbEpLS2t1PC0tTdu3b/f4OhUVFVq3bp3+9a9/nfDchQsXKisry/24srJSGRkZnhcNAAAQJOJMce77lfWVSonq4sHINXW/plRqqJFM0YGtB14b0jO+OehXEvTRJXgU9CdPnqyvvvpKknPkfMeOHX6fut8REhISVFRU5NG5ZrPZ730JAAAAOoNwY7jiIuJU1VilioYKgn5kgmSKlRqqpcqDUurAQFcELw3pGa8PtxZpeyHLb9E1eL1pZm5urrp16+aPWjyWmpqqsLCwNiG9qKhIPXr0CFBVAAAAocO1Tr+ynmAkg6FFQz7W6QejoT2ds1TovI+uwuug37dv36NO2+9IJpNJY8eO1apVq9zH7Ha7Vq1apUmTJgWwMgAAgNBAQ74juBvysU4/GA3u4ewvllNUpSabPcDVAP7n0dT9QKiurtauXbvcj3Nzc5Wdna3k5GT16dNHWVlZmjdvnsaNG6cJEyZoyZIlslqt7i78AAAAaD9X0LfUWwJbSGeR0DyiT+f9oNQnOVoxpjBZG2zaW2rVwO5xJ34REMQ6bdDfsGGDpk2b5n7saoQ3b948vfzyy7rssstUXFyse+65R4WFhRo1apRWrFjRpkEfAAAAvJdgYkS/lXhX532CfjAyGg06tUecNuVZtLWgiqCPkNdpg/6ZZ54ph8Nx3HNuvPFG3XjjjR1UEQAAQNfhnrrfQNCX1GJEn6n7wWpwz3htyrNoW0GlLhqZHuhyAL/yeo2+JDU1Nemjjz7Sc889p6oqZ0OLgwcPqrq62qfFAQAAIDBYo38E1xr9SoJ+sBrS07lOf1sBDSYR+rwe0d+3b59mzJihvLw81dfX60c/+pHi4uK0aNEi1dfXa+nSpf6oEwAAAB2IoH8E19T9iv2Sw+HsxI+g4uq8v53O++gCvB7Rv/nmmzVu3DiVl5crKirKfXz27NmtuuADAAAgeBH0jxDfPNW7oVqq459JMDq1ufN+YWWdyq0NAa4G8C+vg/7nn3+uu+++WyaTqdXxzMxMHTjAVCYAAIBQkGhOlMQafTdTtBSV7LzP9P2gFGsOV5/kaElM30fo83rqvt1ul81ma3N8//79ioujeyUAAEAoiDc5Rz8Z0W8hobdUWyZ9+w+paGugqwkO0UlS/2mSMSzQlUiShvSMU15ZjbYWVGrywNRAlwP4jddB/5xzztGSJUv0/PPPS5IMBoOqq6t17733aubMmT4vEAAAAB2PqftHkdhHKtwiffFEoCsJLj95WRo2O9BVSHI25Pvg+yJtL2SdPkKb10F/8eLFOvfcczV06FDV1dXpiiuu0M6dO5Wamqo33njDHzUCAACgg7mCfnVjtRrtjYowRgS4ok5gys2SrUFqqg90JcGhdJdzmUPJzkBX4kbnfXQVXgf93r17a/PmzVq2bJk2b96s6upqLViwQHPnzm3VnA8AAADByzV1X5KqGqqUHJkcwGo6iYwJ0tx/BLqK4PHRfdIXj0vWkkBX4jakuSHfzqJqNdrsighr127jbv/ZfFCPr8xRtClcKbEmJceYlBJjdt93Pnbe9kmOVvhJvh/gKa+DviSFh4dr7ty5mjt3rq/rAQAAQCcQbgxXXEScqhqrZKm3EPThvZhuztuazhP0eydFKdYcrur6Ju0pturUHifXY+zpj3dqb2mNR+emJ0Tq1h+dojljeivMyPaM8C+vg/5DDz2ktLQ0zZ8/v9XxF198UcXFxbrjjjt8VhwAAAACJ94cr6rGKlXWM80Z7RDT3OzOWhzYOlowGg0a3CNOG/aV6/uDFScV9PeVWrWjqFphRoOenTtGVXVNKrM2qNTaoNLqevf9MmuDiqvqdbCiTrf9c4v+8vke3TFjsM4a3F0GA4Ef/uF10H/uuef0+uuvtzk+bNgw/fSnPyXoAwAAhIhEc6IOVB+gIR/aJzrFeWstDWwdRxibmaQN+8q1OqdYc8b0bvd1PtxaJEma2C9Z5wzrcdxz6xptenXtXj2zerd2FFVrwSsbNKFfsu48b7DG9Elqdw3AsXi9SKSwsFA9e/Zsc7xbt24qKCjwSVEAAAAIPHfn/QaCPtqhE07dl6TzhjuzzMfbilTX2HbbcE+tbA76PxqadsJzIyPC9IsfDtBnt03TL6f2lyncqHW5ZZrz5y913d82andxdbvrAI7G66CfkZGhNWvWtDm+Zs0apaen+6QoAAAABF6CyRn0LXWWwBaC4OSeul8i2e2BraWFkb0TlJ4QKWuDTZ/vbN+XEGXWBm3YWybJs6DvkhAdoYXnDdEn/3emLh3XW0aDtOL7Qp3zxGdauPxbFVXWtase4EheB/1rr71Wt9xyi1566SXt27dP+/bt04svvqhbb71V1157rT9qBAAAQADEm50dyhnRR7u4pu47bFIn+rLIYDBoRvOo/vvftm9G8urth2R3OLfr650U7fXr0xOj9MglI7Xilh9q+pA02ewOvbEuT1MfXa1X1+5tV01AS16v0b/ttttUWlqq66+/Xg0NDZKkyMhI3XHHHVq4cKHPCwQAAEBgJJoTJYk1+mifcLNkjpfqK6WaUim68+zcMHNED724JlcfbitSfZNN5vAwr17/oRfT9o/nlLQ4/XXeOK3LLdPD72/TpjyLuseZT+qagNSOoG8wGLRo0SL97ne/07Zt2xQVFaVBgwbJbOYDCQAAEEpca/Tpuo92i0l1Bn1rsZQ6KNDVuI3pk6TucWYdqqrXl7tKNW1wd49fW9do02c7nTsJnHOSQd9lQr9k/etXk7VmV6mmDEzxyTXRtXk9dd8lNjZW48eP1/Dhwwn5AAAAIcgV9C31lsAWguAV3WKdfidiNBo0Y7izU/7733k3ff/L3SWqabCpZ0KkhqXH+6wmg8Gg0welsuUefMLrEX2r1aqHH35Yq1at0qFDh2Q/orHGnj17fFYcAAAAAsfVjI81+mg3V0O+TtZ5X3J233917T6t3FqkB2x2RYR5NgbqmrY/fUgaoRydltdB/5prrtGnn36qn//85+rZsycfbgAAgBDl3l6PNfpoL3fn/dLA1nEUE/olKyXGpFJrg77aU6ozBnU74Wvsdoc+2nZI0smvzwf8yeug//777+u///2vpkyZ4o96AAAA0EkQ9HHS3FP3iwNbx1GEGQ06Z1gPvbEuT//7ttCjoJ+936LiqnrFmcP1g/6spUfn5fUa/aSkJCUnd56OmQAAAPAPV9CvbqxWo70xwNUgKHXiqfuSs/u+JK38vlA2u+OE57um7U89tZtM4e1udwb4ndefzj/84Q+65557VFNT4496AAAA0EnEmw43GqtqqApgJQhaMc2j5J2sGZ/LD/qnKDE6QqXWBq3LLTvh+R/5aFs9wN+8nrq/ePFi7d69W2lpacrMzFRERESr5zdt2uSz4gAAABA44cZwxUXEqaqxShX1FUqOZFYnvBTdPL29kwb9iDCjzhmaprc27Nf73xVo0oBjT8ffW2LVzkPVCjcadOapnm/HBwSC10F/1qxZfigDAAAAnVG8Od4d9AGvdfKp+5Kz+/5bG/ZrxXeF+v2Fw2Q0Hr3ZuGva/sT+yUqIijjqOUBn4XXQv/fee/1RBwAAADqhBHOCDlQfIOijfVzN+GpKJYdD6oQ7dk0emKK4yHAdqqrXprxyjcs8+swVV9D/0RCm7aPza1cHCYvFor/+9a9auHChysqca1k2bdqkAwcO+LQ4AAAABFaiOVGSVNFA0Ec7uEb07U1SnSWgpRyLOTzMHd7/923hUc8pszZowz5n7pnO+nwEAa+D/pYtW3TKKado0aJFeuyxx2SxWCRJy5cv18KFC31dHwAAAAIowcQWezgJ4WbJ3NzUsZOu05ekGcOd3fdXfFcgh6Nt9/1V24pkd0hDe8ard1J0R5cHeM3roJ+VlaWrrrpKO3fuVGRkpPv4zJkz9dlnn/m0OAAAAARWfHNIs9RbAlsIglcnb8gnST88pZtiTGE6WFGnzfvbfqn1Id32EWS8Dvrr16/XL3/5yzbHe/XqpcLCo091AQAAQHBKMDOij5Pk2mKvEzfki4wI01nN0/ff/7ag1XN1jTZ9vtNZO0EfwcLroG82m1VZWdnm+I4dO9StWzefFAUAAIDOwbVGv7K+7d//AI+41ulbiwNbxwnMbJ6+/78jpu9/sbNEtY02pSdEalh6fKDKA7ziddC/6KKLdP/996uxsVGSZDAYlJeXpzvuuEMXX3yxzwsEAABA4LhH9GnGh/ZyT90vDWwdJzD11G6KjDAqv6xW3x88/MXWR9uc0/anD02ToRPuGgAcjddBf/Hixaqurlb37t1VW1urqVOnauDAgYqLi9MDDzzgjxoBAAAQIK5mfKzRR7u5RvQ78dR9SYo2hWvaqd0lSe9/55y+b7c79NG2Q5KYto/gEu7tCxISEvThhx9qzZo12rx5s6qrqzVmzBhNnz7dH/UBAAAggFwj+rkVubr545uPe65DbbuVnwyDjj966uv386XYiFg9eMaDgS6jc3Ct0e/EzfhczhvRU+9/V6j/fVuo/zvnVH2Tb1FJdb3izOGa2C8l0OUBHvMq6Dc2NioqKkrZ2dmaMmWKpkyZ4q+6AAAA0Amkx6bLaDCqtqlWH+d/HOhygoartwEkRQfHGn1JOmtwd5nCjcotsSqnqMrdbf/M5uNAsPAq6EdERKhPnz6y2Wz+qgcAAACdSPfo7nrp3Je0u2K3R+efaBTeU515tN4TJqMp0CV0HjHNI+E1nXuNviTFmsP1w0Hd9NG2Iv3v20J9uNW5qxjT9hFsvJ66f9ddd+m3v/2t/va3vyk5OdkfNQEAAKATGZM2RmPSxgS6DASrIJq6L0kzR/TQR9uK9PrX+1RS3aBwo0FTT2F3MQQXr4P+008/rV27dik9PV19+/ZVTExMq+c3bdrks+IAAAAABLnoFs34HA6pk3euP3tImiLCDCqpbpAk/aB/ihKiIgJcFeAdr4P+rFmz/FAGAAAAgJDk6rpvb5LqLFJUUkDLOZGEqAhNGZiqT3KcPQWYto9g5HXQv/fee/1RBwAAAIBQFG6WTHFSQ5VkLe30QV+SZg7v6Q760wn6CELtah1psVj017/+VQsXLlRZWZkk55T9AwcO+LQ4AAAAACEgpsX0/SBw7vAeGtwjTj8ela5eiVGBLgfwmtcj+lu2bNH06dOVkJCgvXv36tprr1VycrKWL1+uvLw8vfrqq/6oEwAAAECwikmVynODYos9yTl9f8UtPwx0GUC7eT2in5WVpauuuko7d+5UZGSk+/jMmTP12Wef+bQ4AAAAACHA1ZAvSDrvA8HO66C/fv16/fKXv2xzvFevXiosLPRJUQAAAABCSJBN3QeCnddB32w2q7Kyss3xHTt2qFs39pcEAAAAcIQYRvSBjuR10L/ooot0//33q7GxUZJkMBiUl5enO+64QxdffLHPCwQAAAAQ5Ji6D3Qor4P+4sWLVV1dre7du6u2tlZTp07VwIEDFRcXpwceeMAfNQIAAAAIZkzdBzqU1133ExIS9OGHH2rNmjXavHmzqqurNWbMGE2fPt0f9QEAAAAIdu6p+6WBrQPoIjwK+snJydqxY4dSU1M1f/58/elPf9KUKVM0ZcoUf9cHAAAAINi5p+4Hx/Z6QLDzaOp+Q0ODuwHfK6+8orq6Or8WBQAAACCEuKful0oOR2BrAboAj0b0J02apFmzZmns2LFyOBy66aabFBUVddRzX3zxRZ8WCAAAACDIuUb07Y1SXYUUlRjQcoBQ51HQ//vf/64nnnhCu3fvliRVVFQwqg8AAADAMxGRkilOaqhydt4n6AN+5VHQT0tL08MPPyxJ6tevn/72t78pJSXFr4UBAAAACCExKc6gX1MiaWCgqwFCmkdr9JOTk1VS4twKY9q0aTKZTH4tCgAAAECIcTfkY4s9wN9oxgcAAADA/2K6OW/pvA/4Hc34AAAAAPhfTPPS3xpG9AF/87oZn8FgoBkfAAAAAO+4p+6XBrYOoAugGR8AAAAA/3NN3WdEH/A7j4J+S7m5uf6oAwAAAEAoi3GN6LNGH/A3j4L+k08+qV/84heKjIzUk08+edxzb7rpJp8UBgAAACCEMHUf6DAGh8PhONFJ/fr104YNG5SSkqJ+/fod+2IGg/bs2ePTAjuryspKJSQkqKKiQvHx8YEuBwAAAOjcDmZLz0+V4npKv9ke6GqAoORpDvVoRL/ldH2m7gMAAADwmnvqfonkcEgGQ2DrAUKYMdAFAAAAAOgCXFP37Y1SXUVgawFCnEcj+llZWR5f8PHHH293MQAAAABCVESkZIqVGqqlmlIpKjHQFQEhy6Og/80337R6vGnTJjU1NenUU0+VJO3YsUNhYWEaO3as7ysEAAAAEBpiUp1B31oipQwIdDVAyPIo6K9evdp9//HHH1dcXJxeeeUVJSUlSZLKy8t19dVX64wzzvBPlQAAAACCX3SqVL6XLfYAP/N6jf7ixYv10EMPuUO+JCUlJemPf/yjFi9e7NPiAAAAAIQQV0O+mpLA1gGEOK+DfmVlpYqL234DV1xcrKqqKp8UBQAAACAEtey8D8BvvA76s2fP1tVXX63ly5dr//792r9/v/71r39pwYIFmjNnjj9qBAAAABAKogn6QEfwaI1+S0uXLtX//d//6YorrlBjY6PzIuHhWrBggR599FGfFwgAAAAgRDB1H+gQXgf96Oho/fnPf9ajjz6q3bt3S5IGDBigmJgYnxcHAAAAIIQwog90CK+DvktMTIxOO+00X9YCAAAAIJTFdHPeMqIP+JXXa/QBAAAAoF1iUpy3jOgDfkXQBwAAANAxWk7ddzgCWwsQwgj6AAAAADqGqxmfvVGqrwxsLUAI8zroW61Wf9QBAAAAINRFREmmWOd9pu8DfuN10E9LS9P8+fP1xRdf+KMeAAAAAKEsmnX6gL95HfT//ve/q6ysTGeddZZOOeUUPfzwwzp48KA/agMAAAAQalzT9+m8D/iN10F/1qxZeuedd3TgwAFdd911ev3119W3b19dcMEFWr58uZqamvxRJwAAAIBQ4NpijxF9wG/a3YyvW7duysrK0pYtW/T444/ro48+0iWXXKL09HTdc889qqmp8WWdPvfYY49p2LBhGj58uP7+978HuhwAAACga3B33i8ObB1ACAtv7wuLior0yiuv6OWXX9a+fft0ySWXaMGCBdq/f78WLVqkr776SitXrvRlrT7z7bff6vXXX9fGjRvlcDg0bdo0XXDBBUpMTAx0aQAAAEBoi2leo19TGtg6gBDmddBfvny5XnrpJX3wwQcaOnSorr/+ev3sZz9rFZInT56sIUOG+LJOn9q2bZsmTZqkyMhISdLIkSO1YsUK/fSnPw1wZQAAAECIY+o+4HdeT92/+uqrlZ6erjVr1ig7O1s33nhjm5Hw9PR03XXXXe0u6rPPPtOFF16o9PR0GQwGvfPOO23OeeaZZ5SZmanIyEhNnDhR69at8/j6w4cP1yeffCKLxaLy8nJ98sknOnDgQLvrBQAAAOAhpu4Dfuf1iH5BQYGio6OPe05UVJTuvffedhdltVo1cuRIzZ8/X3PmzGnz/LJly5SVlaWlS5dq4sSJWrJkic4991zl5OSoe/fukqRRo0YdtTHgypUrNXToUN10000666yzlJCQoB/84AcKCwtrd70AAAAAPETXfcDvDA6Hw+HNCyorK49+IYNBZrNZJpPJJ4W1vO7bb7+tWbNmuY9NnDhR48eP19NPPy1JstvtysjI0K9//WvdeeedXr/HNddco9mzZ+v8888/5jn19fWqr693P66srFRGRoYqKioUHx/v9XsCAAAAXdKBTdJfpklx6dJvtgW6GiCoVFZWKiEh4YQ51Oup+4mJiUpKSmrzk5iYqKioKPXt21f33nuv7Hb7Sf0Cx9LQ0KCNGzdq+vTp7mNGo1HTp0/X2rVrPb7OoUOHJEk5OTlat26dzj333OOe/9BDDykhIcH9k5GR0b5fAAAAAOjK3Gv0iyXvxhwBeMjrqfsvv/yy7rrrLl111VWaMGGCJGndunV65ZVXdPfdd6u4uFiPPfaYzGazfvvb3/q84JKSEtlsNqWlpbU6npaWpu3bt3t8nR//+MeqqKhQTEyMXnrpJYWHH/8fxcKFC5WVleV+7BrRBwAAAOAF19R9e6NUXylFJgS2HiAEeR30X3nlFS1evFiXXnqp+9iFF16oESNG6LnnntOqVavUp08fPfDAA34J+r7izei/JJnNZpnNZj9VAwAAAHQREVFSRIzUaHV23ifoAz7n9dT9L7/8UqNHj25zfPTo0e7wfPrppysvL+/kqzuK1NRUhYWFqaioqNXxoqIi9ejRwy/vCQAAAMCH3A35SgNbBxCivA76GRkZeuGFF9ocf+GFF9xT2UtLS5WUlHTy1R2FyWTS2LFjtWrVKvcxu92uVatWadKkSX55TwAAAAA+FMMWe4A/eT11/7HHHtNPfvITvf/++xo/frwkacOGDdq+fbv++c9/SpLWr1+vyy67rN1FVVdXa9euXe7Hubm5ys7OVnJysvr06aOsrCzNmzdP48aN04QJE7RkyRJZrVZdffXV7X5PAAAAAB0k2hX02WIP8Aevg/5FF12knJwcPffcc8rJyZEknXfeeXrnnXeUmZkpSfrVr351UkVt2LBB06ZNcz92NcGbN2+eXn75ZV122WUqLi7WPffco8LCQo0aNUorVqxo06APAAAAQCfk6rxfQ9AH/MHgcHi+p0VjY6NmzJihpUuXatCgQf6sq9PzdP9CAAAAAEf48B5pzZ+kH1wvzXgo0NUAQcPTHOrVGv2IiAht2bLlpIsDAAAA0IUxdR/wK6+b8f3sZz87ajM+AAAAAPCIu+s+QR/wB6/X6Dc1NenFF1/URx99pLFjxyomJqbV848//rjPigMAAAAQglxr9BnRB/zC66D/3XffacyYMZKkHTt2tHrOYDD4pioAAAAAoSs6xXlL0Af8wuugv3r1an/UAQAAAKCraDl13+GQGDAEfMrrNfouu3bt0gcffKDa2lpJkhfN+wEAAAB0Za5mfLYGqb4qsLUAIcjroF9aWqqzzz5bp5xyimbOnKmCggJJ0oIFC/Sb3/zG5wUCAAAACDGmaCmiudeXtTiwtQAhyOugf+uttyoiIkJ5eXmKjo52H7/sssu0YsUKnxYHAAAAIETFNK/TrykNbB1ACPJ6jf7KlSv1wQcfqHfv3q2ODxo0SPv27fNZYQAAAABCWHSqZMmjIR/gB16P6Fut1lYj+S5lZWUym80+KQoAAABAiHNtsVdD0Ad8zeugf8YZZ+jVV191PzYYDLLb7XrkkUc0bdo0nxYHAAAAIES5Ou+zRh/wOa+n7j/yyCM6++yztWHDBjU0NOj222/X999/r7KyMq1Zs8YfNQIAAAAINdHNa/StrNEHfM3rEf3hw4drx44dOv300/XjH/9YVqtVc+bM0TfffKMBAwb4o0YAAAAAoYap+4DfeD2iL0kJCQm66667fF0LAAAAgK6CqfuA37Qr6FssFq1bt06HDh2S3W5v9dyVV17pk8IAAAAAhLBoV9BnRB/wNa+D/rvvvqu5c+equrpa8fHxMhgM7ucMBgNBHwAAAMCJxTSv0a9hjT7ga16v0f/Nb36j+fPnq7q6WhaLReXl5e6fsrIyf9QIAAAAINS41uhbSySHI7C1ACHG66B/4MAB3XTTTYqOjvZHPQAAAAC6AtfUfVu9VF8V2FqAEON10D/33HO1YcMGf9QCAAAAoKswRUsRzYOHdN4HfMrrNfrnn3++brvtNm3dulUjRoxQREREq+cvuuginxUHAAAAIITFpEqWPMlaKiX3D3Q1QMjwOuhfe+21kqT777+/zXMGg0E2m+3kqwIAAAAQ+qJdQZ8t9gBf8jroH7mdHgAAAAC0S0zzOn2m7gM+5fUafQAAAADwCVdDPitBH/Alj4P+zJkzVVFR4X788MMPy2KxuB+XlpZq6NChPi0OAAAAQAiLIegD/uBx0P/ggw9UX1/vfvzggw+qrKzM/bipqUk5OTm+rQ4AAABA6GLqPuAXHgd9h8Nx3McAAAAA4BWm7gN+4XUzPgAAAADwiZhuztuqQqmywLvXGgwtHxzjuBfaDGQeZWDTk8HOY9XlWRFHvE/Lxy3eOy5dMtJuDcfmcdA3GAwyHPEvzZGPAQAAAMBjMSnO20PfS48PDmwtwWTgj6Sf/TPQVaAT8zjoOxwOXXXVVTKbzZKkuro6XXfddYqJiZGkVuv3AQAAAOCEug+TeoyQDm3z7nWtRtYdxzh+3AvoqKPtbQYy2zuweUQdDocXMw0MR9TS4rHDIdkbpb2fe3lNdDUeB/158+a1evyzn/2szTlXXnnlyVcEAAAAoGuIiJSu+yLQVQSP+mrpoV5SU53UYJXMsYGuCJ2Ux0H/pZde8mcdAAAAAIDjMcVI4ZHOoF9TQtDHMdHBAQAAAACCgcFwuIGhtTSwtaBTI+gDAAAAQLCIbm5gaC0ObB3o1Aj6AAAAABAsYlKdtzUlga0DnRpBHwAAAACCRXRz0LcS9HFsBH0AAAAACBaM6MMDBH0AAAAACBauoE8zPhwHQR8AAAAAgoV76j7N+HBsBH0AAAAACBZM3YcHCPoAAAAAECyimbqPEyPoAwAAAECwiElx3jKij+Mg6AMAAABAsIjp5rxtrJEarIGtBZ0WQR8AAAAAgoUpVgozO+9bGdXH0RH0AQAAACBYGAw05MMJEfQBAAAAIJhEN6/TpyEfjoGgDwAAAADBxLVOnxF9HANBHwAAAACCiWvqvrU4sHWg0yLoAwAAAEAwiXYFfUb0cXQEfQAAAAAIJjHNa/RrWKOPoyPoAwAAAEAwYUQfJ0DQBwAAAIBgQjM+nABBHwAAAACCCc34cAIEfQAAAAAIJtHNa/StrNHH0RH0AQAAACCYuEb0G61SY21ga0GnRNAHAAAAgGBijpeMEc77NOTDURD0AQAAACCYGAw05MNxEfQBAAAAINjEuNbpE/TRFkEfAAAAAIJNtKvzPkEfbRH0AQAAACDYuBryMXUfR0HQBwAAAIBgw4g+joOgDwAAAADBhhF9HAdBHwAAAACCTQwj+jg2gj4AAAAABBum7uM4CPoAAAAAEGyYuo/jIOgDAAAAQLBxj+iXBrYOdEoEfQAAAAAINq4R/YYqqbEusLWg0yHoAwAAAECwiUyQjBHO+0zfxxEI+gAAAAAQbAwGKTrFeZ+GfDgCQR8AAAAAghEN+XAMBH0AAAAACEbuEX0a8qE1gj4AAAAABKOYbs5ba3Fg60CnQ9AHAAAAgGDE1H0cA0EfAAAAAIJRdHPQpxkfjkDQBwAAAIBgFNO8Rr+GNfpojaAPAAAAAMGIEX0cA0EfAAAAAIIRzfhwDAR9AAAAAAhG7mZ8TN1HawR9AAAAAAhG0c1r9Osrpab6wNaCToWgDwAAAADBKDJRMoQ57zOqjxa6RNCfPXu2kpKSdMkll3j1HAAAAAB0Wkbj4VF9GvKhhS4R9G+++Wa9+uqrXj8HAAAAAJ0aDflwFF0i6J955pmKi4vz+jkAAAAA6NRimkf0mbqPFgIe9D/77DNdeOGFSk9Pl8Fg0DvvvNPmnGeeeUaZmZmKjIzUxIkTtW7duo4vFAAAAAA6m+jmzvtM3UcL4YEuwGq1auTIkZo/f77mzJnT5vlly5YpKytLS5cu1cSJE7VkyRKde+65ysnJUffu3SVJo0aNUlNTU5vXrly5Uunp6T6ps76+XvX1hztZVlZW+uS6AAAAANBu7i32CPo4LOBB/7zzztN55513zOcff/xxXXvttbr66qslSUuXLtV///tfvfjii7rzzjslSdnZ2X6v86GHHtJ9993n9/cBAAAAAI8xoo+jCPjU/eNpaGjQxo0bNX36dPcxo9Go6dOna+3atR1ay8KFC1VRUeH+yc/P79D3BwAAAIA2Ygj6aCvgI/rHU1JSIpvNprS0tFbH09LStH37do+vM336dG3evFlWq1W9e/fWP/7xD02aNOmEz7VkNptlNptP7hcCAAAAAF9i6j6OolMHfV/56KOP2vUcAAAAAHRqTN3HUXTqqfupqakKCwtTUVFRq+NFRUXq0aNHgKoCAAAAgE6CEX0cRacO+iaTSWPHjtWqVavcx+x2u1atWnXU6fUAAAAA0KW4RvTrKqSmhsDWgk4j4FP3q6urtWvXLvfj3NxcZWdnKzk5WX369FFWVpbmzZuncePGacKECVqyZImsVqu7Cz8AAAAAdFlRSZLBKDnsUk2pFN8z0BWhEwh40N+wYYOmTZvmfpyVlSVJmjdvnl5++WVddtllKi4u1j333KPCwkKNGjVKK1asaNOgDwAAAAC6HKNRik6RrMXO6fsEfUgyOBwOR6CLCEaVlZVKSEhQRUWF4uPjA10OAAAAgK7qmR9Ixdukn78jDZh2wtMRvDzNoZ16jT4AAAAA4ATcDflKA1sHOg2CPgAAAAAEs+gU5621OLB1oNMg6AMAAABAMIvp5ry1ssUenAj6AAAAABDM3FP3CfpwIugDAAAAQDBzT90n6MOJoA8AAAAAwYxmfDgCQR8AAAAAgll0c9CnGR+aEfQBAAAAIJjRjA9HIOgDAAAAQDBzTd2vs0i2xoCWgs6BoA8AAAAAwSwqSZLBeb+mLKCloHMg6AMAAABAMDOGSdHJzvtssQcR9AEAAAAg+NGQDy0Q9AEAAAAg2NGQDy0Q9AEAAAAg2MWkOG9rSgNbBzoFgj4AAAAABDv31H1G9EHQBwAAAIDg59pij2Z8EEEfAAAAAIIfzfjQAkEfAAAAAIKda0Tfyhp9EPQBAAAAIPgxdR8tEPQBAAAAINjRjA8tEPQBAAAAINi5RvRryyVbU2BrQcAR9AEAAAAg2EUlN99xSLVlAS0FgUfQBwAAAIBgFxZ+OOwzfb/LI+gDAAAAQCigIR+aEfQBAAAAIBTQkA/NCPoAAAAAEApiUpy3BP0uj6APAAAAAKEgmqn7cCLoAwAAAEAoiOnmvGVEv8sj6AMAAABAKKAZH5oR9AEAAAAgFES71uiXBrYOBBxBHwAAAABCgWtE31oc2DoQcAR9AAAAAAgFNONDM4I+AAAAAIQCVzO+mjLJbgtsLQgogj4AAAAAhILo5OY7Dqm2PKClILAI+gAAAAAQCsIipMhE53222OvSCPoAAAAAECpoyAcR9AEAAAAgdNCQDyLoAwAAAEDocI/oE/S7MoI+AAAAAIQKV9CvKQ1sHQgogj4AAAAAhIpoRvRB0AcAAACA0EEzPoigDwAAAAChI5qp+yDoAwAAAEDooBkfRNAHAAAAgNARw/Z6IOgDAAAAQOhoOXXfbg9sLQgYgj4AAAAAhIroFOetwy7Vlge2FgQMQR8AAAAAQkW4STInOO8zfb/LIugDAAAAQCihIV+XFx7oAgAAAAAAPhSTKpXtlrYskw5tlYxhkiGsxW24ZDQ679sapYZqqcHa/HOU+011zteEmZp/Wt6PkIwRh48bI5rPbb498r4xXDIYjlL0EcdsDVJjrdRY03zb8n7zra3e+X7hZud7tKwprOUxV42uGo6831xfz5FSyoAO+SPyN4I+AAAAAISSuB7O202vBLaOYDPzMYI+AAAAAKAT+uFtUkSMc+TbYXN233fYJLvt8K3rfphJMsVKppgWP7Gt74ebJXuTc/Tf3ugcbbe1vG2+b2+UbE3Oc933G1u8tvm5IzkcRx5wjshHRDX/RB9x23w/zNS2nqb6FrU1HH7O3uj8nd11HKXW+F4d8sfTEQj6AAAAABBKeoyQZj8b6CoQQDTjAwAAAAAghBD0AQAAAAAIIQR9AAAAAABCCEEfAAAAAIAQQtAHAAAAACCEEPQBAAAAAAghBH0AAAAAAEIIQR8AAAAAgBBC0AcAAAAAIIQQ9AEAAAAACCEEfQAAAAAAQghBHwAAAACAEELQBwAAAAAghBD0AQAAAAAIIQR9AAAAAABCCEEfAAAAAIAQQtAHAAAAACCEEPQBAAAAAAghBH0AAAAAAEIIQR8AAAAAgBBC0AcAAAAAIIQQ9AEAAAAACCEEfQAAAAAAQghBHwAAAACAEELQBwAAAAAghIQHuoBg5XA4JEmVlZUBrgQAAAAA0BW48qcrjx4LQb+dqqqqJEkZGRkBrgQAAAAA0JVUVVUpISHhmM8bHCf6KgBHZbfbdfDgQcXFxclgMHT4+1dWViojI0P5+fmKj4/v8PcHAoHPPboiPvfoivjcoyvicw9POBwOVVVVKT09XUbjsVfiM6LfTkajUb179w50GYqPj+c/BOhy+NyjK+Jzj66Izz26Ij73OJHjjeS70IwPAAAAAIAQQtAHAAAAACCEEPSDlNls1r333iuz2RzoUoAOw+ceXRGfe3RFfO7RFfG5hy/RjA8AAAAAgBDCiD4AAAAAACGEoA8AAAAAQAgh6AMAAAAAEEII+gAAAAAAhBCCfpB65plnlJmZqcjISE2cOFHr1q0LdEmAzzz00EMaP3684uLi1L17d82aNUs5OTmtzqmrq9MNN9yglJQUxcbG6uKLL1ZRUVGAKgZ86+GHH5bBYNAtt9ziPsZnHqHqwIED+tnPfqaUlBRFRUVpxIgR2rBhg/t5h8Ohe+65Rz179lRUVJSmT5+unTt3BrBi4OTYbDb97ne/U79+/RQVFaUBAwboD3/4g1r2SOdzj5NF0A9Cy5YtU1ZWlu69915t2rRJI0eO1LnnnqtDhw4FujTAJz799FPdcMMN+uqrr/Thhx+qsbFR55xzjqxWq/ucW2+9Ve+++67+8Y9/6NNPP9XBgwc1Z86cAFYN+Mb69ev13HPP6bTTTmt1nM88QlF5ebmmTJmiiIgIvf/++9q6dasWL16spKQk9zmPPPKInnzySS1dulRff/21YmJidO6556quri6AlQPtt2jRIj377LN6+umntW3bNi1atEiPPPKInnrqKfc5fO5x0hwIOhMmTHDccMMN7sc2m82Rnp7ueOihhwJYFeA/hw4dckhyfPrppw6Hw+GwWCyOiIgIxz/+8Q/3Odu2bXNIcqxduzZQZQInraqqyjFo0CDHhx9+6Jg6darj5ptvdjgcfOYRuu644w7H6aeffszn7Xa7o0ePHo5HH33UfcxisTjMZrPjjTfe6IgSAZ87//zzHfPnz291bM6cOY65c+c6HA4+9/ANRvSDTENDgzZu3Kjp06e7jxmNRk2fPl1r164NYGWA/1RUVEiSkpOTJUkbN25UY2Njq38PBg8erD59+vDvAYLaDTfcoPPPP7/VZ1viM4/Q9Z///Efjxo3TT37yE3Xv3l2jR4/WX/7yF/fzubm5KiwsbPXZT0hI0MSJE/nsI2hNnjxZq1at0o4dOyRJmzdv1hdffKHzzjtPEp97+EZ4oAuAd0pKSmSz2ZSWltbqeFpamrZv3x6gqgD/sdvtuuWWWzRlyhQNHz5cklRYWCiTyaTExMRW56alpamwsDAAVQIn780339SmTZu0fv36Ns/xmUeo2rNnj5599lllZWXpt7/9rdavX6+bbrpJJpNJ8+bNc3++j/b3Hj77CFZ33nmnKisrNXjwYIWFhclms+mBBx7Q3LlzJYnPPXyCoA+gU7vhhhv03Xff6Ysvvgh0KYDf5Ofn6+abb9aHH36oyMjIQJcDdBi73a5x48bpwQcflCSNHj1a3333nZYuXap58+YFuDrAP9566y299tprev311zVs2DBlZ2frlltuUXp6Op97+AxT94NMamqqwsLC2nRaLioqUo8ePQJUFeAfN954o9577z2tXr1avXv3dh/v0aOHGhoaZLFYWp3PvwcIVhs3btShQ4c0ZswYhYeHKzw8XJ9++qmefPJJhYeHKy0tjc88QlLPnj01dOjQVseGDBmivLw8SXJ/vvl7D0LJbbfdpjvvvFM//elPNWLECP385z/XrbfeqoceekgSn3v4BkE/yJhMJo0dO1arVq1yH7Pb7Vq1apUmTZoUwMoA33E4HLrxxhv19ttv6+OPP1a/fv1aPT927FhFRES0+vcgJydHeXl5/HuAoHT22Wfr22+/VXZ2tvtn3Lhxmjt3rvs+n3mEoilTprTZPnXHjh3q27evJKlfv37q0aNHq89+ZWWlvv76az77CFo1NTUyGlvHsLCwMNntdkl87uEbTN0PQllZWZo3b57GjRunCRMmaMmSJbJarbr66qsDXRrgEzfccINef/11/fvf/1ZcXJx7PVpCQoKioqKUkJCgBQsWKCsrS8nJyYqPj9evf/1rTZo0ST/4wQ8CXD3gvbi4OHcPCpeYmBilpKS4j/OZRyi69dZbNXnyZD344IO69NJLtW7dOj3//PN6/vnnJUkGg0G33HKL/vjHP2rQoEHq16+ffve73yk9PV2zZs0KbPFAO1144YV64IEH1KdPHw0bNkzffPONHn/8cc2fP18Sn3v4SKDb/qN9nnrqKUefPn0cJpPJMWHCBMdXX30V6JIAn5F01J+XXnrJfU5tba3j+uuvdyQlJTmio6Mds2fPdhQUFASuaMDHWm6v53DwmUfoevfddx3Dhw93mM1mx+DBgx3PP/98q+ftdrvjd7/7nSMtLc1hNpsdZ599tiMnJydA1QInr7Ky0nHzzTc7+vTp44iMjHT079/fcddddznq6+vd5/C5x8kyOBwORyC/aAAAAAAAAL7DGn0AAAAAAEIIQR8AAAAAgBBC0AcAAAAAIIQQ9AEAAAAACCEEfQAAAAAAQghBHwAAAACAEELQBwAAAAAghBD0AQAAAAAIIQR9AADgE3v37pXBYFB2dnagSwEAoEsj6AMA0AVcddVVMhgMbX5mzJgR6NI63CeffCKDwSCLxRLoUgAA8IvwQBcAAAA6xowZM/TSSy+1OmY2mwNUDQAA8BdG9AEA6CLMZrN69OjR6icpKUmSdMUVV+iyyy5rdX5jY6NSU1P16quvSpJWrFih008/XYmJiUpJSdEFF1yg3bt3e1VDfX297rjjDmVkZMhsNmvgwIF64YUX3M9/+umnmjBhgsxms3r27Kk777xTTU1N7uczMzO1ZMmSVtccNWqUfv/737sfGwwG/fWvf9Xs2bMVHR2tQYMG6T//+Y8k5/KCadOmSZKSkpJkMBh01VVXefU7AADQ2RH0AQCA5s6dq3fffVfV1dXuYx988IFqamo0e/ZsSZLValVWVpY2bNigVatWyWg0avbs2bLb7R6/z5VXXqk33nhDTz75pLZt26bnnntOsbGxkqQDBw5o5syZGj9+vDZv3qxnn31WL7zwgv74xz96/fvcd999uvTSS7VlyxbNnDlTc+fOVVlZmTIyMvSvf/1LkpSTk6OCggL96U9/8vr6AAB0ZkzdBwCgi3jvvffcodrlt7/9rX7729/q3HPPVUxMjN5++239/Oc/lyS9/vrruuiiixQXFydJuvjii1u99sUXX1S3bt20detWDR8+/ITvv2PHDr311lv68MMPNX36dElS//793c//+c9/VkZGhp5++mkZDAYNHjxYBw8e1B133KF77rlHRqPn4xNXXXWVLr/8cknSgw8+qCeffFLr1q3TjBkzlJycLEnq3r27EhMTPb4mAADBghF9AAC6iGnTpik7O7vVz3XXXSdJCg8P16WXXqrXXntNknP0/t///rfmzp3rfv3OnTt1+eWXq3///oqPj1dmZqYkKS8vz6P3z87OVlhYmKZOnXrU57dt26ZJkybJYDC4j02ZMkXV1dXav3+/V7/raaed5r4fExOj+Ph4HTp0yKtrAAAQrBjRBwCgi4iJidHAgQOP+fzcuXM1depUHTp0SB9++KGioqJadeW/8MIL1bdvX/3lL39Renq67Ha7hg8froaGBo/ePyoq6qR/B6PRKIfD0epYY2Njm/MiIiJaPTYYDF4tMQAAIJgxog8AACRJkydPVkZGhpYtW6bXXntNP/nJT9yBubS0VDk5Obr77rt19tlna8iQISovL/fq+iNGjJDdbtenn3561OeHDBmitWvXtgrya9asUVxcnHr37i1J6tatmwoKCtzPV1ZWKjc316s6TCaTJMlms3n1OgAAggVBHwCALqK+vl6FhYWtfkpKSlqdc8UVV2jp0qX68MMPW03bT0pKUkpKip5//nnt2rVLH3/8sbKysrx6/8zMTM2bN0/z58/XO++8o9zcXH3yySd66623JEnXX3+98vPz9etf/1rbt2/Xv//9b917773Kyspyr88/66yz9Le//U2ff/65vv32W82bN09hYWFe1dG3b18ZDAa99957Ki4ubtWAEACAUEDQBwCgi1ixYoV69uzZ6uf0009vdc7cuXO1detW9erVS1OmTHEfNxqNevPNN7Vx40YNHz5ct956qx599FGva3j22Wd1ySWX6Prrr9fgwYN17bXXymq1SpJ69eql//3vf1q3bp1Gjhyp6667TgsWLNDdd9/tfv3ChQs1depUXXDBBTr//PM1a9YsDRgwwKsaevXqpfvuu0933nmn0tLSdOONN3r9ewAA0JkZHEcudAMAAAAAAEGLEX0AAAAAAEIIQR8AAAAAgBBC0AcAAAAAIIQQ9AEAAAAACCEEfQAAAAAAQghBHwAAAACAEELQBwAAAAAghBD0AQAAAAAIIQR9AAAAAABCCEEfAAAAAIAQQtAHAAAAACCE/D8cojbRGTDepQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -258,7 +258,7 @@ "source": [ "from qiskit_algorithms.gradients import FiniteDiffEstimatorGradient\n", "\n", - "estimator = Estimator()\n", + "estimator = StatevectorEstimator()\n", "gradient = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)" ] }, @@ -284,7 +284,7 @@ ], "source": [ "algorithm_globals.random_seed = 50\n", - "ansatz = TwoLocal(rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", + "ansatz = n_local(2, rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", "\n", "optimizer = SLSQP(maxiter=100)\n", "\n", @@ -310,7 +310,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAK9CAYAAABlx0xMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB/bUlEQVR4nOzdd3wUdcLH8e9syqYnlFBCQiCh99ClCNhAUVERUbEg2FD0QE4PfB7xfDwOy53tUFFPhROwIop6iqJ0pRuK0ktCLwnppO3O80fISkiA9MlmP+/Xa1+wszM7382SO7/zm/mNYZqmKQAAAAAA4HZsVgcAAAAAAADlQ6kHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAAAAAwE1R6gEAAAAAcFOUegAAAAAA3BSlHgAAAAAAN0WpBwAAKMGsWbNkGIb2799vdRTLDRw4UAMHDnQ9379/vwzD0KxZsyzLBAAoQKkHABRRWGTO91i9erXVEQGPsXnzZt1zzz1q3ry5/Pz8FBQUpC5duuiJJ57Q3r17rY5X5d544w0OHADARRimaZpWhwAA1ByzZs3SPffco//7v/9T8+bNi70+ZMgQ1a9f34JkQPVyOBzKy8uT3W6XYRjVvv933nlH48aNU/369TVq1Ci1adNG+fn52rp1q+bPn6/k5GSdPn1aXl5eVZ6lcJR+6dKlkiTTNJWTkyMfH58q3X+HDh1Uv359134BAMV5Wx0AAFAzXX311erevbvVMZSZmanAwECrY7i97Oxs+fr6ymbjJL3S8vLyqpbCXJKff/5Z48aNU9++ffX1118rODi4yOv//Oc/NW3atIu+T1ZWlgICAio9n2EY8vPzq/T3BQCUHf/PDgAol8Jrav/xj3/o7bffVmxsrOx2u3r06KF169YVW3/79u26+eabVbduXfn5+al79+5auHBhkXUKT/1ftmyZHnroITVo0ECRkZGu119//XXFxMTI399fPXv21IoVK4pc65uRkaHAwED96U9/Krb/gwcPysvLS9OnT7/g53I6nXr11VfVsWNH+fn5KTw8XEOGDNH69etd6+Tn5+vZZ591feZmzZrpySefVE5OTpH3atasma699lqtXLlSPXv2lJ+fn2JiYvSf//zHtc769etlGIZmz55dLMuiRYtkGIa+/vpr17JDhw5pzJgxatiwoex2u9q3b6/33nuvyHZLly6VYRj66KOP9L//+79q0qSJAgIClJaWJkn69NNP1a5dO/n5+alDhw5asGCBRo8erWbNmhX7Wbzyyitq3769/Pz81LBhQz3wwAM6depUmT9noZSUFE2cOFHNmjWT3W5XZGSk7rrrLp08edK1Tk5Ojp5++mm1aNFCdrtdUVFReuKJJ4r9fEvSrFkzjR49utjyc68Jl6R//etfat++vQICAlSnTh11795d8+bNc71e0jX1Zfmsmzdv1oABA+Tv76/IyEj97W9/0/vvv1+q6/SfeeYZGYahuXPnFiv0kuTn56dnn322yEGHgQMHqkOHDtqwYYMuvfRSBQQE6Mknn5Qkffnllxo6dKgiIiJkt9sVGxurZ599Vg6Ho9h7F/4+n/17dq7zXVNflt/zVatW6bHHHlN4eLgCAwN144036sSJE0V+1r/99puWLVvmuvzn3O8QAMBIPQDgPFJTU4sULalgdK5evXpFls2bN0/p6el64IEHZBiGXnjhBd10003au3evfHx8JEm//fab+vbtqyZNmmjy5MkKDAzUJ598ohtuuEHz58/XjTfeWOQ9H3roIYWHh2vq1KnKzMyUJL355psaP368+vfvr4kTJ2r//v264YYbVKdOHVfxDwoK0o033qiPP/5YL730UpHC8+GHH8o0TY0aNeqCn3vs2LGaNWuWrr76at17773Kz8/XihUrtHr1ateZC/fee69mz56tm2++WZMmTdKaNWs0ffp0bdu2TQsWLCjyfrt379bNN9+ssWPH6u6779Z7772n0aNHq1u3bmrfvr26d++umJgYffLJJ7r77ruLbPvxxx+rTp06Gjx4sCTp2LFj6t27twzD0Pjx4xUeHq5vv/1WY8eOVVpamiZMmFBk+2effVa+vr7685//rJycHPn6+uqbb77RyJEj1bFjR02fPl2nTp3S2LFj1aRJk2I/iwceeMB1Ocajjz6qffv2acaMGfr111+1atUq1/dbms8pFRx06d+/v7Zt26YxY8aoa9euOnnypBYuXKiDBw+qfv36cjqduv7667Vy5Urdf//9atu2rbZs2aKXX35ZO3fu1BdffHHB76+03nnnHT366KO6+eab9ac//UnZ2dnavHmz1qxZo9tvv/2C25bmsx46dEiDBg2SYRiaMmWKAgMD9e9//1t2u/2i2bKysvTTTz9p4MCBRQ5qlUZSUpKuvvpq3XrrrbrjjjvUsGFDSQVFOigoSI899piCgoL0008/aerUqUpLS9OLL77o2v7dd9/VAw88oD59+mjChAnau3evrr/+etWtW1dRUVEX3HdZf88feeQR1alTR08//bT279+vV155RePHj9fHH38sSXrllVf0yCOPKCgoSP/zP/8jSa7PAwA4iwkAwFnef/99U1KJD7vd7lpv3759piSzXr16ZnJysmv5l19+aUoyv/rqK9eyyy+/3OzYsaOZnZ3tWuZ0Os0+ffqYLVu2LLbvfv36mfn5+a7lOTk5Zr169cwePXqYeXl5ruWzZs0yJZkDBgxwLVu0aJEpyfz222+LfK5OnToVWa8kP/30kynJfPTRR4u95nQ6TdM0zfj4eFOSee+99xZ5/c9//rMpyfzpp59cy6Kjo01J5vLly13Ljh8/btrtdnPSpEmuZVOmTDF9fHyK/BxzcnLMsLAwc8yYMa5lY8eONRs3bmyePHmyyL5vvfVWMzQ01MzKyjJN0zSXLFliSjJjYmJcywp17NjRjIyMNNPT013Lli5dakoyo6OjXctWrFhhSjLnzp1bZPvvvvuu2PLSfs6pU6eakszPP//cPFfhz/eDDz4wbTabuWLFiiKvz5w505Rkrlq1qti2Z4uOjjbvvvvuYssHDBhQ5PsfNmyY2b59+wu+V+G/x3379hV5/9J81kceecQ0DMP89ddfXcuSkpLMunXrFnvPc23atMmUZE6YMKHYa0lJSeaJEydcj5ycnCKfUZI5c+bMYtud++/ANE3zgQceMAMCAly/l7m5uWaDBg3MLl26FHnft99+u9jvWeHv//vvv+9aVtbf8yuuuML1vZumaU6cONH08vIyU1JSXMvat29/0d9bAPB0nH4PACjR66+/rh9++KHI49tvvy223siRI1WnTh3X8/79+0uSa2bu5ORk/fTTT7rllluUnp6ukydP6uTJk0pKStLgwYO1a9cuHTp0qMh73nfffUVG2devX6+kpCTdd9998vb+4ySzUaNGFdm3JF1xxRWKiIjQ3LlzXcu2bt2qzZs364477rjgZ54/f74Mw9DTTz9d7LXCidL++9//SpIee+yxIq9PmjRJkvTNN98UWd6uXTvXz0SSwsPD1bp16yIzl48cOVJ5eXn6/PPPXcu+//57paSkaOTIkZIKJiabP3++rrvuOpmm6fo5njx5UoMHD1Zqaqo2btxYZN933323/P39Xc8PHz6sLVu26K677lJQUJBr+YABA9SxY8ci23766acKDQ3VlVdeWWRf3bp1U1BQkJYsWVLmzzl//nx17ty52Iit9MfP99NPP1Xbtm3Vpk2bIvu97LLLJKnYfssrLCxMBw8eLPFSkYspzWf97rvvdMkll6hLly6uZXXr1r3omSKSXJdJnP0dFYqJiVF4eLjrce6p7Xa7Xffcc0+x7c7+d1D4e9i/f39lZWVp+/btkgp+z44fP64HH3xQvr6+rvVHjx6t0NDQC2Yuz+/5/fffX2QCwv79+8vhcCghIeGC+wIAFMXp9wCAEvXs2bNUE+U1bdq0yPPCkl143fXu3btlmqaeeuopPfXUUyW+x/Hjx4uc/n3urPuF/5HfokWLIsu9vb2LXQdus9k0atQovfnmm65JwubOnSs/Pz+NGDHigp9lz549ioiIUN26dc+7TkJCgmw2W7EsjRo1UlhYWLFCcu7PRyr4GZ19XXrnzp3Vpk0bffzxxxo7dqykglPv69ev7yqzJ06cUEpKit5++229/fbbJWY7fvx4keel/TkWLjv7oMCuXbuUmpqqBg0alGpfpfmce/bs0fDhw0t8v7P3u23bNoWHh5dqv+X1l7/8RYsXL1bPnj3VokULXXXVVbr99tvVt2/fi25bms+akJCgSy65pNh6Jf3sz1V4DX1GRkax17788kvl5eVp06ZN+vOf/1zs9SZNmhQp5IV+++03/e///q9++ukn10GDQqmpqa7MktSyZcsir/v4+CgmJuaCmcvze36x/+0AAJQOpR4AUCHnmx3cPHPHVKfTKUn685//7Lo2/FznFp2zRxXL46677tKLL76oL774QrfddpvmzZuna6+99qKjjWVR2lucXeznU2jkyJGaNm2aTp48qeDgYC1cuFC33Xab68yEwp/jHXfcUeza+0KdOnUq8rwiP0en06kGDRoUOePhbOeW7tJ+ztLst2PHjnrppZdKfP1i13Wf73txOBxFMrZt21Y7duzQ119/re+++07z58/XG2+8oalTp+qZZ5654D4q67OeT4sWLeTt7a2tW7cWe23AgAGSVOSMlbOV9J2npKRowIABCgkJ0f/93/8pNjZWfn5+2rhxo/7yl7+4/m1VRHl+z6v65wgAnoJSDwCoUoUjfD4+PrriiivK9R7R0dGSCkYDBw0a5Fqen5+v/fv3FyuzHTp0UFxcnObOnavIyEglJibqX//610X3Exsbq0WLFik5Ofm8o/XR0dFyOp3atWuX2rZt61p+7NgxpaSkuLKW1ciRI/XMM89o/vz5atiwodLS0nTrrbe6Xg8PD1dwcLAcDkel/BzPde6y2NhYLV68WH379q3wQZaz37OkonruOps2bdLll19ernvD16lTRykpKcWWJyQkFBttDgwM1MiRIzVy5Ejl5ubqpptu0rRp0zRlypQK364tOjq6VD/nkgQGBmrgwIFatmyZDh06VOIkhmWxdOlSJSUl6fPPP9ell17qWr5v375imaWCsyUKzxCRpLy8PO3bt0+dO3c+7z4q4/e8JOX5NwAAnoZr6gEAVapBgwYaOHCg3nrrLR05cqTY62ffwup8unfvrnr16umdd95Rfn6+a/ncuXPPe6runXfeqe+//16vvPKK6tWrp6uvvvqi+xk+fLhM0yxxpLZw9PCaa66RVDAz99kKR5aHDh160f2UpG3bturYsaM+/vhjffzxx2rcuHGRAubl5aXhw4dr/vz5JRbj0vwcIyIi1KFDB/3nP/8pcmr3smXLtGXLliLr3nLLLXI4HHr22WeLvU9+fn6Jxflihg8frk2bNhW7Q4D0x8/3lltu0aFDh/TOO+8UW+f06dOuuyGcT2xsrFavXq3c3FzXsq+//loHDhwosl5SUlKR576+vmrXrp1M01ReXl6pP9P5DB48WL/88ovi4+Ndy5KTk8975sO5pk6dKofDoTvuuKPE0/DLMppdOCJ+9ja5ubl64403iqzXvXt3hYeHa+bMmUV+frNmzbro910Zv+clCQwMLNe/NQDwJIzUAwBK9O2337om0Dpbnz59Lnp97blef/119evXTx07dtR9992nmJgYHTt2TL/88osOHjyoTZs2XXB7X19f/fWvf9Ujjzyiyy67TLfccov279+vWbNmKTY2tsTRvNtvv11PPPGEFixYoHHjxhW5/dr5DBo0SHfeeadee+017dq1S0OGDJHT6dSKFSs0aNAgjR8/Xp07d9bdd9+tt99+23Va89q1azV79mzdcMMNRc4kKKuRI0dq6tSp8vPz09ixY2WzFT32/txzz2nJkiXq1auX7rvvPrVr107JycnauHGjFi9erOTk5Ivu4+9//7uGDRumvn376p577tGpU6c0Y8YMdejQoUh5HDBggB544AFNnz5d8fHxuuqqq+Tj46Ndu3bp008/1auvvqqbb765TJ/v8ccf12effaYRI0ZozJgx6tatm5KTk7Vw4ULNnDlTnTt31p133qlPPvlEDz74oJYsWaK+ffvK4XBo+/bt+uSTT7Ro0aILzvVw77336rPPPtOQIUN0yy23aM+ePZozZ45iY2OLrHfVVVepUaNG6tu3rxo2bKht27ZpxowZGjp0aIn3hS+rJ554QnPmzNGVV16pRx55xHVLu6ZNmyo5OfmiI9D9+/fXjBkz9Mgjj6hly5YaNWqU2rRpo9zcXO3cuVNz586Vr6+vGjVqdNEsffr0UZ06dXT33Xfr0UcflWEY+uCDD4odGPDx8dHf/vY3PfDAA7rssss0cuRI7du3T++//36pfucr+ntekm7duunNN9/U3/72N7Vo0UINGjQochYBAEDc0g4AUNSFbmmns25hVXhLqxdffLHYe0gyn3766SLL9uzZY951111mo0aNTB8fH7NJkybmtddea3722WfF9r1u3boSs7322mtmdHS0abfbzZ49e5qrVq0yu3XrZg4ZMqTE9a+55hpTkvnzzz+X+vPn5+ebL774otmmTRvT19fXDA8PN6+++mpzw4YNrnXy8vLMZ555xmzevLnp4+NjRkVFmVOmTClyKy/TLLj92dChQ4vt49zbqxXatWuX6+e8cuXKEvMdO3bMfPjhh82oqCjTx8fHbNSokXn55Zebb7/9tmudwlvaffrppyW+x0cffWS2adPGtNvtZocOHcyFCxeaw4cPN9u0aVNs3bffftvs1q2b6e/vbwYHB5sdO3Y0n3jiCfPw4cPl+pxJSUnm+PHjzSZNmpi+vr5mZGSkeffddxe5TV9ubq75/PPPm+3btzftdrtZp04ds1u3buYzzzxjpqamlviZzvbPf/7TbNKkiWm3282+ffua69evL5blrbfeMi+99FKzXr16pt1uN2NjY83HH3+8yPuf75Z2pf2sv/76q9m/f3/TbrebkZGR5vTp083XXnvNlGQePXr0op+j8D3uuusus2nTpqavr68ZGBhodurUyZw0aZK5e/fuYhnOd5u+VatWmb179zb9/f3NiIgI84knnnDd/nHJkiVF1n3jjTfM5s2bm3a73ezevbu5fPnyYp+vpFvamWbFfs8L/92enefo0aPm0KFDzeDg4GK31QMAFDBMk9lIAADuyel0Kjw8XDfddFOJp2vfeOON2rJlS6muY/Z0Xbp0UXh4uH744Qero9RqEyZM0FtvvaWMjIzzThQHAEBZcE09AMAtZGdnFztd+D//+Y+Sk5M1cODAYusfOXJE33zzje68885qSuge8vLyisxLIBVMpLZp06YSf44ov9OnTxd5npSUpA8++ED9+vWj0AMAKg0j9QAAt7B06VJNnDhRI0aMUL169bRx40a9++67atu2rTZs2OC6N/e+ffu0atUq/fvf/9a6deu0Z8+eUl137Cn279+vK664QnfccYciIiK0fft2zZw5U6Ghodq6davq1atndcRao0uXLho4cKDatm2rY8eO6d1339Xhw4f1448/FpkEEQCAimCiPACAW2jWrJmioqL02muvuW45d9ddd+m5555zFXqpYCb3e+65R02bNtXs2bMp9OeoU6eOunXrpn//+986ceKEAgMDNXToUD333HMU+kp2zTXX6LPPPtPbb78twzDUtWtXvfvuuxR6AEClYqQeAAAAAAA3xTX1AAAAAAC4KUo9AAAAAABuimvqL8LpdOrw4cMKDg6WYRhWxwEAAAAA1HKmaSo9PV0RERGy2S48Fk+pv4jDhw8rKirK6hgAAAAAAA9z4MABRUZGXnAdSv1FBAcHSyr4YYaEhFicBgAAAABQ26WlpSkqKsrVRy+EUn8Rhafch4SEUOoBAAAAANWmNJeAM1EeAAAAAABuilIPAAAAAICbotQDAAAAAOCmuKYeAAAAACCHw6G8vDyrY3gELy8veXt7V8pt0yn1AAAAAODhMjIydPDgQZmmaXUUjxEQEKDGjRvL19e3Qu9DqQcAAAAAD+ZwOHTw4EEFBAQoPDy8UkaPcX6maSo3N1cnTpzQvn371LJlS9ls5b8ynlIPAAAAAB4sLy9PpmkqPDxc/v7+VsfxCP7+/vLx8VFCQoJyc3Pl5+dX7vdiojwAAAAAACP01awio/NF3qdS3gUAAAAAAFQ7Sj0AAAAAAG6KUg8AAAAAgJui1AMAAAAA3NKJEyc0btw4NW3aVHa7XY0aNdLgwYO1atUqSVKzZs30yiuvnHf7BQsWqHfv3goNDVVwcLDat2+vCRMmFFnn9OnTevrpp9WqVSvZ7XbVr19fI0aM0G+//VZkvb/+9a8yDEOGYcjb21vNmjXTxIkTlZGRUdkfuwhmvwcAAAAAuKXhw4crNzdXs2fPVkxMjI4dO6Yff/xRSUlJF932xx9/1MiRIzVt2jRdf/31MgxDv//+u3744QfXOjk5ObriiiuUmJiof/7zn+rVq5eOHTum6dOnq1evXlq8eLF69+7tWr99+/ZavHix8vPztWrVKo0ZM0ZZWVl66623quTzS5R6AAAAAMBZTNPU6TyHJfv29/Eq9Sz8KSkpWrFihZYuXaoBAwZIkqKjo9WzZ89Sbf/VV1+pb9++evzxx13LWrVqpRtuuMH1/JVXXtEvv/yiX3/9VZ07d3btY/78+erVq5fGjh2rrVu3ujJ7e3urUaNGkqSRI0fqxx9/1MKFCyn1AAAAAIDqcTrPoXZTF1my79//b7ACfEtXU4OCghQUFKQvvvhCvXv3lt1uL9O+GjVqpHnz5mnr1q3q0KFDievMmzdPV155pavQF7LZbJo4caJGjRqlTZs2qUuXLiVu7+/vr9zc3DLlKiuuqQcAAAAAuB1vb2/NmjVLs2fPVlhYmPr27asnn3xSmzdvLtX2jzzyiHr06KGOHTuqWbNmuvXWW/Xee+8pJyfHtc7OnTvVtm3bErcvXL5z584SX9+wYYPmzZunyy67rIyfrGwYqQcAAAAAuPj7eOn3/xts2b7LYvjw4Ro6dKhWrFih1atX69tvv9ULL7ygf//73xo9evQFtw0MDNQ333yjPXv2aMmSJVq9erUmTZqkV199Vb/88osCAgIkFVyOcCG+vr6uv2/ZskVBQUFyOBzKzc3V0KFDNWPGjDJ9prKi1AMAAAAAXAzDKPUp8DWBn5+frrzySl155ZV66qmndO+99+rpp5++aKkvFBsbq9jYWN177736n//5H7Vq1Uoff/yx7rnnHrVs2VLbtm0rcbvC5a1atXIta926tRYuXChvb29FREQUKfxVhdPvAQAAAAC1Rrt27ZSZmVmubZs1a6aAgADX9rfddpsWL16sTZs2FVnP6XTq5ZdfVvfu3dWuXTvXcl9fX7Vo0ULNmjWrlkIvMVIPAAAAAHBDSUlJGjFihMaMGaNOnTopODhY69ev1wsvvKBhw4a51jt06JDi4+OLbBsdHa1XX31VWVlZuuaaaxQdHa2UlBS99tprysvL05VXXilJmjhxor788ktdd911RW5p9/e//127du3Szz//XJ0fuUSUegAAAACA2wkKClKvXr308ssva8+ePcrLy1NUVJTuu+8+Pfnkk671/vGPf+gf//hHkW0/+OADDRgwQK+//rruuusuHTt2THXq1FFcXJy+//57tW7dWlLBqf0//vijpk+frilTpighIUH5+flq0aKFtm7dqsjIyGr9zCUxzItd9e/h0tLSFBoaqtTUVIWEhFgdBwAAAAAqVXZ2tvbt26fmzZvLz8/P6jg13rfffqsbb7xR//jHPzR+/Phyv8+Ffu5l6aFcUw8AAAAAQCldffXV+vbbb5WcnKyTJ09aHYfT72uLY2nZ+nzjIY3t11y+3hyrAQAAAICqMmjQIA0aNMjqGJIo9bWC02nqxtdX6XBqtprWDdDQTo2tjgQAAAAAqAYM6dYCNpuh4d0KJmiYuybB4jQAAAAAgOpCqa8lbu3ZVDZD+nlPkvacyLA6DgAAAAA3wxzq1auyft6U+lqiSZi/LmvTQJI0b02ixWkAAAAAuAsvLy9JUm5ursVJPEtWVpYkycfHp0LvwzX1tcioXtFavO24PttwUI8Pbi0/Hy+rIwEAAACo4by9vRUQEKATJ07Ix8dHNhtjv1XJNE1lZWXp+PHjCgsLcx1UKS9KfS1yaatwNQnz16GU0/pm8xHXdfYAAAAAcD6GYahx48bat2+fEhKYo6u6hIWFqVGjRhV+H0p9LeJlM3R7r6Z6cdEOzVmTQKkHAAAAUCq+vr5q2bIlp+BXEx8fnwqP0Bei1Ncyt3SP0ss/7NSviSn67XCq2keEWh0JAAAAgBuw2Wzy8/OzOgbKiIslapnwYLsGdyg4hYMJ8wAAAACgdqPU10KjejWVJH3x6yFl5ORbnAYAAAAAUFUo9bXQJTH1FBMeqMxch76MP2R1HAAAAABAFaHU10KGYWhUr2hJ0pzViTJN0+JEAAAAAICqQKmvpYZ3bSK7t03bjqTp1wMpVscBAAAAAFQBSn0tFRbgq2s7RUiS5q5mwjwAAAAAqI0o9bXYqN4FE+Z9vfmwUrK43yQAAAAA1DZuU+qnTZumPn36KCAgQGFhYaXa5vPPP9dVV12levXqyTAMxcfHV2nGmiYuKkztGocoJ9+pzzYctDoOAAAAAKCSuU2pz83N1YgRIzRu3LhSb5OZmal+/frp+eefr8JkNZdhGK7R+nlrmDAPAAAAAGobb6sDlNYzzzwjSZo1a1apt7nzzjslSfv376+CRO5hWJcm+vs327T3ZKZ+2ZukPrH1rY4EAAAAAKgkbjNSX11ycnKUlpZW5OHOguzeuiGuiSRp7homzAMAAACA2oRSf47p06crNDTU9YiKirI6UoUV3rN+0dajOp6ebXEaAAAAAEBlsbTUT548WYZhXPCxffv2as00ZcoUpaamuh4HDhyo1v1XhXYRIeraNEz5TlOfrmfCPAAAAACoLSy9pn7SpEkaPXr0BdeJiYmpnjBn2O122e32at1ndRjVK1obE1M0b02iHhwQKy+bYXUkAAAAAEAFWVrqw8PDFR4ebmUEjzG0U2P939e/61DKaS3feUKD2jSwOhIAAAAAoILc5pr6xMRExcfHKzExUQ6HQ/Hx8YqPj1dGRoZrnTZt2mjBggWu58nJyYqPj9fvv/8uSdqxY4fi4+N19OjRas9vNT8fL93cLVKSNGd1gsVpAAAAAACVwW1K/dSpUxUXF6enn35aGRkZiouLU1xcnNavX+9aZ8eOHUpNTXU9X7hwoeLi4jR06FBJ0q233qq4uDjNnDmz2vPXBLf3Krhn/U87juvgqSyL0wAAAAAAKsowTdO0OkRNlpaWptDQUKWmpiokJMTqOBV2+zur9fOeJD1yWQtNuqq11XEAAAAAAOcoSw91m5F6VI7C29t9tO6A8hxOi9MAAAAAACqCUu9hrmzXUPWD7DqRnqPFvx+zOg4AAAAAoAIo9R7G19umW3tESZLmrGHCPAAAAABwZ5R6D3RrzygZhrRqd5L2nsi4+AYAAAAAgBqJUu+BIusEaFDrgvvUf7g20eI0AAAAAIDyotR7qFFnbm/36YaDys5zWJwGAAAAAFAelHoPNbB1AzUJ81dKVp7+u+WI1XEAAAAAAOVAqfdQXjZDt/UsmDBv7hpOwQcAAAAAd0Sp92C3dI+St83QhoRT2nYkzeo4AAAAAIAyotR7sAYhfrqqfUNJ0jxG6wEAAADA7VDqPdyoXtGSpAW/HlJmTr7FaQAAAAAAZUGp93B9Yusppn6gMnLy9WX8YavjAAAAAADKgFLv4QzD0O1nbm83d02CTNO0OBEAAAAAoLQo9dDwrpHy9bbpt8Np2nQw1eo4AAAAAIBSotRDdQJ9dW3HxpKkOasTLE4DAAAAACgtSj0kSaN6F0yY99Wmw0rNyrM4DQAAAACgNCj1kCR1bRqmNo2ClZPv1PyNB62OAwAAAAAoBUo9JBVMmFc4Ws+EeQAAAADgHij1cLmhS4QCfL2050Sm1uxLtjoOAAAAAOAiKPVwCfbz0Q1xTSQxYR4AAAAAuANKPYq4vWfBPesX/XZUJ9JzLE4DAAAAALgQSj2K6NAkVF2iwpTnMPXphgNWxwEAAAAAXAClHsWM6lUwWj9vTaKcTibMAwAAAICailKPYq7rHKEQP28dPHVay3adsDoOAAAAAOA8KPUoxs/HSzd3i5IkzV2daHEaAAAAAMD5UOpRotvPnIL/0/ZjOpxy2uI0AAAAAICSUOpRohYNgtQ7pq6cpvTROibMAwAAAICaiFKP8xrVK1qS9NHaROU5nBanAQAAAACci1KP8xrcvpHqB/nqeHqOftx2zOo4AAAAAIBzUOpxXr7eNt3S/cyEeWuYMA8AAAAAahpKPS7otp5NZRjSil0ntf9kptVxAAAAAABnodTjgqLqBmhAq3BJ0odrGa0HAAAAgJqEUo+LuuPMhHmfrD+g7DyHxWkAAAAAAIUo9bioQW0aKCLUT6ey8vTd1qNWxwEAAAAAnEGpx0V52Qzd2rOpJGnumgSL0wAAAAAAClHqUSoje0TJy2Zo3f5T2nE03eo4AAAAAABR6lFKDUP8dFW7hpIYrQcAAACAmoJSj1IbdWbCvM83HlJmTr7FaQAAAAAAlHqUWp/YempWL0AZOfn6atNhq+MAAAAAgMej1KPUbDZDt/cqnDCPe9YDAAAAgNUo9SiTm7tFydfbpi2HUrXpQIrVcQAAAADAo1HqUSZ1A301tGNjSUyYBwAAAABWo9SjzEadOQV/4abDSj2dZ3EaAAAAAPBclHqUWbfoOmrdMFjZeU4t2HjQ6jgAAAAA4LEo9SgzwzA0qnfBaP2cNYkyTdPiRAAAAADgmSj1KJcb45oowNdLu49naO2+ZKvjAAAAAIBHotSjXIL9fDSsS4Qkbm8HAAAAAFah1KPcbu8ZLUn6dusRnczIsTgNAAAAAHgeSj3KrWNkqDpHhirPYeqzDUyYBwAAAADVjVKPChnVu2C0ft6aRDmdTJgHAAAAANWJUo8Kua5ThIL9vJWYnKUVu09aHQcAAAAAPAqlHhXi7+ul4V0jJUlzVydYnAYAAAAAPAulHhU2qlfBPet/3H5cR1JPW5wGAAAAADwHpR4V1rJhsHo1ryuH09RHaw9YHQcAAAAAPAalHpWicMK8j9YlKt/htDgNAAAAAHgGSj0qxeD2DVUv0FfH0nL04/bjVscBAAAAAI9AqUelsHt7aUT3KEnS3DWJFqcBAAAAAM9AqUelub1nUxmGtHznCSUkZVodBwAAAABqPUo9Kk3TegG6tGW4JGneWkbrAQAAAKCqUepRqQpvb/fp+oPKyXdYnAYAAAAAajdKPSrVZW0aqFGIn5Izc/Xd1qNWxwEAAACAWs1tSv20adPUp08fBQQEKCws7KLr5+Xl6S9/+Ys6duyowMBARURE6K677tLhw4erPqwH8/ay6daeZybMW80p+AAAAABQldym1Ofm5mrEiBEaN25cqdbPysrSxo0b9dRTT2njxo36/PPPtWPHDl1//fVVnBS39mgqL5uhtfuTtfNYutVxAAAAAKDW8rY6QGk988wzkqRZs2aVav3Q0FD98MMPRZbNmDFDPXv2VGJiopo2bVrZEXFGo1A/XdG2gRb9dkzz1iTqr9e3tzoSAAAAANRKbjNSXxlSU1NlGMYFT9/PyclRWlpakQfKblSvaEnS/I0HlZWbb3EaAAAAAKidPKbUZ2dn6y9/+Ytuu+02hYSEnHe96dOnKzQ01PWIioqqxpS1R78W9RVdL0Dp2fn6etMRq+MAAAAAQK1kaamfPHmyDMO44GP79u0V3k9eXp5uueUWmaapN99884LrTpkyRampqa7HgQMHKrx/T2SzGbq9Z8ElDnPWJFicBgAAAABqJ0uvqZ80aZJGjx59wXViYmIqtI/CQp+QkKCffvrpgqP0kmS322W32yu0TxS4uVuk/vn9Tm0+mKrNB1PUKTLM6kgAAAAAUKtYWurDw8MVHh5eZe9fWOh37dqlJUuWqF69elW2LxRXL8iuqzs20pfxhzVvTSKlHgAAAAAqmdtcU5+YmKj4+HglJibK4XAoPj5e8fHxysjIcK3Tpk0bLViwQFJBob/55pu1fv16zZ07Vw6HQ0ePHtXRo0eVm5tr1cfwOIUT5n0Zf1hp2XkWpwEAAACA2sVtbmk3depUzZ492/U8Li5OkrRkyRINHDhQkrRjxw6lpqZKkg4dOqSFCxdKkrp06VLkvc7eBlWrR7M6atUwSDuPZWjBxkO6u08zqyMBAAAAQK1hmKZpWh2iJktLS1NoaKhSU1Mvej0+Sjb75/16euFvatUwSIsmXCrDMKyOBAAAAAA1Vll6qNucfg/3dWPXJvL38dLOYxlan3DK6jgAAAAAUGtQ6lHlQvx8dH3nCEnS3NXc3g4AAAAAKgulHtViVO+Ce9b/d8tRJWXkWJwGAAAAAGoHSj2qRafIMHWKDFWuw6nPNhy0Og4AAAAA1AqUelSbUb0KRuvnrU2U08n8jAAAAABQUZR6VJvrOkco2O6thKQsrdpz0uo4AAAAAOD2KPWoNgG+3rqpaxNJ0hwmzAMAAACACqPUo1qN6h0tSVq87biOpmZbnAYAAAAA3BulHtWqVcNg9WxWVw6nqY/XHbA6DgAAAAC4NUo9ql3h7e0+WpeofIfT4jQAAAAA4L4o9ah2Qzo0Ut1AXx1JzdaSHSesjgMAAAAAbotSj2pn9/bSiO6RkpgwDwAAAAAqglIPS9zes+AU/OW7TigxKcviNAAAAADgnij1sER0vUD1b1lfpil9uC7R6jgAAAAA4JYo9bDMqF4Ft7f7ZN0B5eYzYR4AAAAAlBWlHpa5om0DNQyxKykzV9/9dtTqOAAAAADgdij1sIy3l0239ii4tn4uE+YBAAAAQJlR6mGpW3tGyWZIa/Yla/fxdKvjAAAAAIBbodTDUo1D/XV524aSpLlrmDAPAAAAAMqCUg/LjepVcAr+/A0HdTrXYXEaAAAAAHAflHpY7tKW4Yqq66+07Hx9tfmw1XEAAAAAwG1Q6mE5m83Q7T0Lbm/HKfgAAAAAUHqUetQII7pHysfL0KYDKdp6KNXqOAAAAADgFij1qBHqB9k1pENjSdLcNdzeDgAAAABKg1KPGuOOMxPmfRl/WGnZeRanAQAAAICaj1KPGqNn87pq0SBIWbkOffnrIavjAAAAAECNR6lHjWEYhuv2dnPXJMo0TYsTAQAAAEDNRqlHjXJT10j5+di0/Wi6NiaesjoOAAAAANRolHrUKKH+Prq+c4Qkac5qbm8HAAAAABdCqUeNM6pXwT3rv9lyRMmZuRanAQAAAICai1KPGqdTZKg6NAlRbr5T8zcctDoOAAAAANRYlHrUOAUT5hWM1s9bmyinkwnzAAAAAKAklHrUSNd3jlCw3Vv7Tmbq5z1JVscBAAAAgBqJUo8aKdDurRu7NpEkzV2TYHEaAAAAAKiZKPWosW4/c8/6738/pmNp2RanAQAAAICah1KPGqtNoxB1j64jh9PUJ+sOWB0HAAAAAGocSj1qtFG9C0brP1ybKAcT5gEAAABAEZR61GhXd2isOgE+OpyarSXbj1sdBwAAAABqFEo9ajQ/Hy+N6B4liQnzAAAAAOBclHrUeLf1LDgFf+nOEzqQnGVxGgAAAACoOSj1qPGa1w9Uvxb1ZZoF19YDAAAAAApQ6uEW7jgzYd4n6w8oN99pcRoAAAAAqBko9XALl7dtqAbBdp3MyNX3vx+1Og4AAAAA1AiUergFHy+bbu1xZsK81ZyCDwAAAAASpR5u5NaeTWUzpF/2Jmn38Qyr4wAAAACA5Sj1cBsRYf66rE1DSdK8NYzWAwAAAAClHm5l1JkJ8z7bcEDZeQ6L0wAAAACAtSj1cCuXtgxXZB1/pWXn6+vNR6yOAwAAAACWotTDrXjZDN3Ws2C0fu6aBIvTAAAAAIC1KPVwO7d0j5KPl6FfE1P02+FUq+MAAAAAgGUo9XA74cF2DW7fSJI0lwnzAAAAAHgwSj3c0qhe0ZKkL389pIycfIvTAAAAAIA1KPVwS71j6iomPFCZuQ598eshq+MAAAAAgCUo9XBLhmG4RuvnrE6QaZoWJwIAAACA6keph9u6uWuk7N42bT+aro2JKVbHAQAAAIBqR6mH2woN8NF1nSMkcXs7AAAAAJ6JUg+3NqpXwT3rv958RClZuRanAQAAAIDqRamHW+sSFaZ2jUOUm+/UZxsOWh0HAAAAAKoVpR5uzTAM3dG7YMK8uWsSmTAPAAAAgEeh1MPtXd8lQkF2b+07malf9iRZHQcAAAAAqo3blPpp06apT58+CggIUFhYWKm2+etf/6o2bdooMDBQderU0RVXXKE1a9ZUbVBUuyC7t26IK5wwL9HiNAAAAABQfdym1Ofm5mrEiBEaN25cqbdp1aqVZsyYoS1btmjlypVq1qyZrrrqKp04caIKk8IKhfesX/TbUR1Pz7Y4DQAAAABUD8N0s4uQZ82apQkTJiglJaXM26alpSk0NFSLFy/W5ZdfXqZtUlNTFRISUuZ9ovoMf/NnbUg4pT9f1UrjL2tpdRwAAAAAKJey9FC3GamvqNzcXL399tsKDQ1V586dz7teTk6O0tLSijzgHgpvb/fh2gNyON3qWBUAAAAAlEutL/Vff/21goKC5Ofnp5dfflk//PCD6tevf971p0+frtDQUNcjKiqqGtOiIq7p2FhhAT46lHJay3YetzoOAAAAAFQ5S0v95MmTZRjGBR/bt2+v0D4GDRqk+Ph4/fzzzxoyZIhuueUWHT9+/sI3ZcoUpaamuh4HDhyo0P5Rffx8vHRz10hJ0tzVTJgHAAAAoPbztnLnkyZN0ujRoy+4TkxMTIX2ERgYqBYtWqhFixbq3bu3WrZsqXfffVdTpkwpcX273S673V6hfcI6t/dqqn+v3KefdhzXwVNZiqwTYHUkAAAAAKgylpb68PBwhYeHV+s+nU6ncnJyqnWfqD4x4UHq26KeVu1O0kdrD+jPg1tbHQkAAAAAqozbXFOfmJio+Ph4JSYmyuFwKD4+XvHx8crIyHCt06ZNGy1YsECSlJmZqSeffFKrV69WQkKCNmzYoDFjxujQoUMaMWKEVR8D1aDw9nYfrTugPIfT4jQAAAAAUHUsHakvi6lTp2r27Nmu53FxcZKkJUuWaODAgZKkHTt2KDU1VZLk5eWl7du3a/bs2Tp58qTq1aunHj16aMWKFWrfvn2150f1ubJdQ4UH23UiPUc//H5M13RsbHUkAAAAAKgSbnef+urGferd0z8W7dCMJbvVJ7ae5t3X2+o4AAAAAFBq3KceHu+2Xk1lM6Sf9yRpz4mMi28AAAAAAG6IUo9aqUmYvwa1biBJ+nANt7cDAAAAUDtR6lFrjerdVJL02caDys5zWJwGAAAAACofpR611oBWDdQkzF8pWXn6ZvMRq+MAAAAAQKWj1KPW8rIZur1XwWj93DUJFqcBAAAAgMpHqUetNqJ7pLxthjYmpuj3w2lWxwEAAACASkWpR63WINhPg9s3kiTNW8toPQAAAIDahVKPWm/UmVPwF2w8pIycfIvTAAAAAEDlodSj1rsktp5i6gcqM9ehL+MPWR0HAAAAACoNpR61nmH8MWHenNWJMk3T4kQAAAAAUDko9fAIN3eLlK+3TduOpCn+QIrVcQAAAACgUlDq4RHCAnx1bafGkqS5axItTgMAAAAAlYNSD48xqle0JOmrTYeVkpVrcRoAAAAAqDhKPTxG16Zhats4RDn5Ts3fyIR5AAAAANwfpR4ewzAM1+3t5q5JYMI8AAAAAG6PUg+PckNcEwX6emnviUyt3ptsdRwAAAAAqBBKPTxKkN1bw+KaSJLmrEmwOA0AAAAAVAylHh7njjMT5i3aelQn0nMsTgMAAAAA5Ueph8dpFxGiuKZhynea+mT9AavjAAAAAEC5UerhkQpvb/fh2kQ5nEyYBwAAAMA9Uerhka7t1Fih/j46eOq0lu88YXUcAAAAACgXSj08kp+Pl27uFimp4PZ2AAAAAOCOKPXwWLefuWf9T9uP61DKaYvTAAAAAEDZUerhsWLDg3RJTD05TenjtYlWxwEAAACAMqPUw6ON6l0wWv/RugPKczgtTgMAAAAAZUOph0e7ql0j1Q+y63h6jhb/fszqOAAAAABQJpR6eDRfb5tG9iicMI9T8AEAAAC4F0o9PN6tPZrKMKSVu09q38lMq+MAAAAAQKlR6uHxouoGaGCrcEnSh0yYBwAAAMCNUOoBSaN6RUuSPl1/QNl5DovTAAAAAEDpUOoBSYPaNFBEqJ9OZeXp261HrI4DAAAAAKVCqQckedkM3daz4PZ2c1dzCj4AAAAA90CpB84Y2SNKXjZD6xNOafvRNKvjAAAAAMBFUeqBMxqE+Omqdg0lMVoPAAAAwD1Q6oGz3NG7YMK8Bb8eUmZOvsVpAAAAAODCKPXAWS6Jqafm9QOVkZOvhZsOWx0HAAAAAC6IUg+cxWYzdPuZCfPmrE6QaZoWJwIAAACA86PUA+e4uVukfL1t+u1wmjYdTLU6DgAAAACcF6UeOEedQF9d27GxJGnu6gSL0wAAAADA+VHqgRKM6l1wCv5Xmw8rNSvP4jQAAAAAUDJKPVCCrk3rqE2jYGXnOfX5rwetjgMAAAAAJaLUAyUwDEOjehWM1s9dk8iEeQAAAABqJEo9cB43xDVRgK+Xdh/P0Jp9yVbHAQAAAIBiKPXAeQT7+WhYlyaSCkbrAQAAAKCmodQDF1B4Cv53W4/oZEaOxWkAAAAAoChKPXABHZqEqnNUmPIcpj5dz4R5AAAAAGoWSj1wEYWj9fPWJsjpZMI8AAAAADUHpR64iOs6RSjEz1sHkk9r+a4TVscBAAAAABdKPXAR/r5eGt4tUhIT5gEAAACoWSj1QCkUnoL/47ZjOpJ62uI0AAAAAFCAUg+UQosGwerVvK6cpvTh2gNWxwEAAAAASZR6oNTu6B0tSfpobaLyHE6L0wAAAAAApR4otcHtG6leoK+Op+fox23HrY4DAAAAAJR6oLR8vW26pUeUJGnumgSL0wAAAAAApR4ok9t7NpVhSCt2ndT+k5lWxwEAAADg4Sj1QBlE1Q3QgFbhkqQP13J7OwAAAADWotQDZTSqV8GEeZ+sP6CcfIfFaQAAAAB4Mko9UEaDWoercaifTmXl6butR62OAwAAAMCDUeqBMvL2sunWHk0lSXNXcwo+AAAAAOtQ6oFyuLVnlLxshtbuT9aOo+lWxwEAAADgoSj1QDk0DPHTlW0bSpLmcXs7AAAAABZxm1I/bdo09enTRwEBAQoLCyvz9g8++KAMw9Arr7xS6dngmUb1LjgF//ONh5SVm29xGgAAAACeyG1KfW5urkaMGKFx48aVedsFCxZo9erVioiIqIJk8FR9Y+srul6A0nPy9dWmw1bHAQAAAOCB3KbUP/PMM5o4caI6duxYpu0OHTqkRx55RHPnzpWPj08VpYMnstkM3d6zYLR+DhPmAQAAALCA25T68nA6nbrzzjv1+OOPq3379qXaJicnR2lpaUUewPmM6B4lXy+bthxK1eaDKVbHAQAAAOBhanWpf/755+Xt7a1HH3201NtMnz5doaGhrkdUVFQVJoS7qxvoq2s6NpLE7e0AAAAAVD9LS/3kyZNlGMYFH9u3by/Xe2/YsEGvvvqqZs2aJcMwSr3dlClTlJqa6nocOHCgXPuH5xjVO1qStHDTYaWezrM4DQAAAABP4m3lzidNmqTRo0dfcJ2YmJhyvfeKFSt0/PhxNW3a1LXM4XBo0qRJeuWVV7R///4St7Pb7bLb7eXaJzxT9+g6atUwSDuPZWjBxoMa3be51ZEAAAAAeAhLS314eLjCw8Or5L3vvPNOXXHFFUWWDR48WHfeeafuueeeKtknPJNhGLqjd7Smfvmb5q5J1N19mpXp7BAAAAAAKC+3uaY+MTFR8fHxSkxMlMPhUHx8vOLj45WRkeFap02bNlqwYIEkqV69eurQoUORh4+Pjxo1aqTWrVtb9TFQS90Q10T+Pl7adTxD6/afsjoOAAAAAA/hNqV+6tSpiouL09NPP62MjAzFxcUpLi5O69evd62zY8cOpaamWpgSnirEz0fDukRIkuauSbA4DQAAAABPYZimaVodoiZLS0tTaGioUlNTFRISYnUc1GBbDqbquhkr5etl0y9TLlO9IOZmAAAAAFB2ZemhbjNSD9R0HSND1TkyVLkOpz7dcNDqOAAAAAA8AKUeqESjehXc3m7emkQ5nZwEAwAAAKBqUeqBSnRt58YK9vNWYnKWVu4+aXUcAAAAALUcpR6oRAG+3hreNVISE+YBAAAAqHqUeqCSjerVVJK0eNtxHU3NtjgNAAAAgNqMUg9UspYNg9WzeV05nKY+WpdodRwAAAAAtRilHqgChaP1H609oHyH0+I0AAAAAGorSj1QBYZ0aKS6gb46mpatn7YftzoOAAAAgFqKUg9UAbu3l0Z0L5gwb84aTsEHAAAAUDUo9UAVGdWz4J71y3eeUGJSlsVpAAAAANRGlHqgijStF6BLW4VLkuatZbQeAAAAQOWj1ANVqHDCvE/XH1BOvsPiNAAAAABqG0o9UIUub9NAjUL8lJSZq++2HrU6DgAAAIBahlIPVCFvL5tu7RklSZrLhHkAAAAAKhmlHqhit/ZoKi+bobX7krXrWLrVcQAAAADUIpR6oIo1CvXT5W0aSGK0HgAAAEDlotQD1WBU74Lb283feFBZufkWpwEAAABQW1DqgWrQv0V9Na0boPTsfH296YjVcQAAAADUEpR6oBrYbIZuP3N7uzlrEmSapsWJAAAAANQG5Sr1mZmZlZ0DqPVGdIuUr7dNmw+mau2+ZKvjAAAAAKgFylXqGzZsqDFjxmjlypWVnQeoteoF2TWiW6QkacaS3RanAQAAAFAblKvUz5kzR8nJybrsssvUqlUrPffcczp8+HBlZwNqnQcHxMrLZmjFrpPafDDF6jgAAAAA3Fy5Sv0NN9ygL774QocOHdKDDz6oefPmKTo6Wtdee60+//xz5eczuzdQkqi6ARrWOUKS9Dqj9QAAAAAqqEIT5YWHh+uxxx7T5s2b9dJLL2nx4sW6+eabFRERoalTpyorK6uycgK1xriBsZKkRb8d065j6RanAQAAAODOKlTqjx07phdeeEHt2rXT5MmTdfPNN+vHH3/UP//5T33++ee64YYbKikmUHu0bBisIe0bSZLeWLrH4jQAAAAA3Jl3eTb6/PPP9f7772vRokVq166dHnroId1xxx0KCwtzrdOnTx+1bdu2snICtcrDg1rou9+OauGmw5p4RSs1rRdgdSQAAAAAbqhcI/X33HOPIiIitGrVKsXHx2v8+PFFCr0kRURE6H/+538qIyNQ63SMDNWlrcLlcJqauZzRegAAAADlY5imaZZ1o6ysLAUEeMbIYlpamkJDQ5WamqqQkBCr46AWWbM3SSPfXi1fL5tW/GWQGob4WR0JAAAAQA1Qlh5arpH6/Px8paWlFXukp6crNze3XKEBT9Mrpp56NKujXIdT7yzfa3UcAAAAAG6oXKU+LCxMderUKfYICwuTv7+/oqOj9fTTT8vpdFZ2XqBWeWhQC0nS3DWJOpXJATEAAAAAZVOuUj9r1ixFREToySef1BdffKEvvvhCTz75pJo0aaI333xT999/v1577TU999xzlZ0XqFUGtgpX+4gQnc5z6P1V+6yOAwAAAMDNlOua+ssvv1wPPPCAbrnlliLLP/nkE7311lv68ccf9cEHH2jatGnavn17pYW1AtfUo6r9d8sRPTR3o0L8vLVq8mUK9vOxOhIAAAAAC1X5NfU///yz4uLiii2Pi4vTL7/8Iknq16+fEhMTy/P2gEcZ0r6RYsMDlZadrzmr+Z0BAAAAUHrlKvVRUVF69913iy1/9913FRUVJUlKSkpSnTp1KpYO8AA2m6FxAwuurX935V5l5zksTgQAAADAXXiXZ6N//OMfGjFihL799lv16NFDkrR+/Xpt375dn332mSRp3bp1GjlyZOUlBWqxYV0i9PIPO3Uo5bQ+XndAd/dpZnUkAAAAAG6gXNfUS9L+/fv11ltvaceOHZKk1q1b64EHHlCzZs0qM5/luKYe1eWDX/brqS9/U0Son5Y+Pki+3uU6kQYAAACAmytLDy3zSH1eXp6GDBmimTNnavr06eUOCaCoEd2j9OqPu3U4NVtfxh/SiO5RVkcCAAAAUMOVeSjQx8dHmzdvroosgEfz8/HSff2bS5LeXLpHDme5TqIBAAAA4EHKdX7vHXfcUeJEeQAqZlTvaIX6+2jvyUx9t/Wo1XEAAAAA1HDlmigvPz9f7733nhYvXqxu3bopMDCwyOsvvfRSpYQDPE2Q3Vuj+zTTqz/u0owlu3VNx0YyDMPqWAAAAABqqHKV+q1bt6pr166SpJ07dxZ5jQICVMw9fZvpnRV7te1ImpbuOKFBbRpYHQkAAABADVWuUr9kyZLKzgHgjLAAX93RO1pvL9+rGUt2a2DrcA6WAQAAAChRhe6ZtXv3bi1atEinT5+WJJXz7ngAznFvv+by9bZpQ8IprdmXbHUcAAAAADVUuUp9UlKSLr/8crVq1UrXXHONjhw5IkkaO3asJk2aVKkBAU/UIMRPt3SPlCS9vmS3xWkAAAAA1FTlKvUTJ06Uj4+PEhMTFRAQ4Fo+cuRIfffdd5UWDvBkD1waKy+boRW7TmrTgRSr4wAAAACogcpV6r///ns9//zzioyMLLK8ZcuWSkhIqJRggKeLqhugYV0iJDFaDwAAAKBk5Sr1mZmZRUboCyUnJ8tut1c4FIACDw2MlWFI3/9+TDuPpVsdBwAAAEANU65S379/f/3nP/9xPTcMQ06nUy+88IIGDRpUaeEAT9eiQbCGtG8kSXqD0XoAAAAA5yjXLe1eeOEFXX755Vq/fr1yc3P1xBNP6LffflNycrJWrVpV2RkBj/bQwBb6dutRLdx0WI9d2VpN6xU/SwYAAACAZyrXSH2HDh20c+dO9evXT8OGDVNmZqZuuukm/frrr4qNja3sjIBH6xgZqgGtwuU0pTeX7bE6DgAAAIAaxDC5ufwFpaWlKTQ0VKmpqQoJCbE6DjzU2n3JuuWtX+TrZdPyJwapUaif1ZEAAAAAVJGy9NBynX4vSSkpKVq7dq2OHz8up9NZ5LW77rqrvG8LoAQ9m9dVz2Z1tXZ/st5ZsVdPXdvO6kgAAAAAaoByjdR/9dVXGjVqlDIyMhQSEiLDMP54Q8NQcnJypYa0EiP1qCmW7jiu0e+vk7+Pl1ZNvkx1A32tjgQAAACgCpSlh5brmvpJkyZpzJgxysjIUEpKik6dOuV61KZCD9QkA1qFq0OTEJ3Oc+j9VfusjgMAAACgBihXqT906JAeffTREu9VD6BqGIahhwe2kCTN+nm/0rPzLE4EAAAAwGrlKvWDBw/W+vXrKzsLgIsY3L6RYsMDlZ6drw9WJ1gdBwAAAIDFyjVR3tChQ/X444/r999/V8eOHeXj41Pk9euvv75SwgEoymYz9NDAFpr06Sa9u2Kf7unTXP6+XlbHAgAAAGCRck2UZ7Odf4DfMAw5HI4KhapJmCgPNU2ew6lB/1iqg6dO66/XtdPovs2tjgQAAACgElX5RHlOp/O8j9pU6IGayMfLpgcGxEqS3l6+V7n5zotsAQAAAKC2KlOpv+aaa5Samup6/txzzyklJcX1PCkpSe3acf9soKqN6Bap8GC7Dqdm64tfD1kdBwAAAIBFylTqFy1apJycHNfzv//970VuYZefn68dO3ZUXrqzTJs2TX369FFAQIDCwsJKtc3o0aNlGEaRx5AhQ6okH1Cd/Hy8dF//gtPu31y2Rw5nma+iAQAAAFALlKnUn3v5fTkuxy+33NxcjRgxQuPGjSvTdkOGDNGRI0dcjw8//LCKEgLVa1SvaIX6+2jfyUz9d8sRq+MAAAAAsEC5Zr+3wjPPPCNJmjVrVpm2s9vtatSoURUkAqwVaPfWPX2b6ZXFu/T6kt26tlNjGYZhdSwAAAAA1ahMI/WFp7Cfu6wmW7p0qRo0aKDWrVtr3LhxSkpKuuD6OTk5SktLK/IAaqrRfZop0NdL24+m66ftx62OAwAAAKCalWmk3jRNjR49Wna7XZKUnZ2tBx98UIGBgZJU5Hr7mmDIkCG66aab1Lx5c+3Zs0dPPvmkrr76av3yyy/y8ir53t7Tp093nRUA1HRhAb66o3e03lq+VzOW7NZlbRrU+ANtAAAAACpPme5Tf88995Rqvffff79U602ePFnPP//8BdfZtm2b2rRp43o+a9YsTZgwocis+6W1d+9excbGavHixbr88stLXCcnJ6fIwYm0tDRFRUVxn3rUWMfTs9Xv+SXKzXdq3n291Ce2vtWRAAAAAFRAWe5TX6aR+tKW9dKaNGmSRo8efcF1YmJiKm1/MTExql+/vnbv3n3eUm+3211nIgDuoEGwn0Z2j9IHqxP0xpI9lHoAAADAg1g6UV54eLjCw8OrbX8HDx5UUlKSGjduXG37BKrDAwNi9OHaRK3cfVLxB1LUJSrM6kgAAAAAqkGZJsqzUmJiouLj45WYmCiHw6H4+HjFx8crIyPDtU6bNm20YMECSVJGRoYef/xxrV69Wvv379ePP/6oYcOGqUWLFho8eLBVHwOoEpF1AjSsSxNJ0utLdlucBgAAAEB1cZtSP3XqVMXFxenpp59WRkaG4uLiFBcXp/Xr17vW2bFjh1JTUyVJXl5e2rx5s66//nq1atVKY8eOVbdu3bRixQpOr0etNG5grAxD+uH3Y9p+lLs2AAAAAJ6gTBPleaKyTFAAWO2huRv03y1HNaxLhF69Nc7qOAAAAADKoSw91G1G6gFc3EMDW0iSvtp0WPtPZlqcBgAAAEBVo9QDtUiHJqEa2DpcTlN6a/keq+MAAAAAqGKUeqCWGT+oYLT+sw0HdST1tMVpAAAAAFQlSj1Qy3RvVlc9m9dVnsPUO8v3WR0HAAAAQBWi1AO1UOFo/by1CUrKyLE4DQAAAICqQqkHaqH+LeurY5NQZec59f6q/VbHAQAAAFBFKPVALWQYhh4+M1o/+5f9SsvOszgRAAAAgKpAqQdqqavaNVTLBkFKz87XB78kWB0HAAAAQBWg1AO1lM1m6KFBsZKk91bu0+lch8WJAAAAAFQ2Sj1Qi13XKUJRdf2VlJmrj9YlWh0HAAAAQCWj1AO1mLeXTQ8OKBitf3v5XuXmOy1OBAAAAKAyUeqBWm5410g1CLbrSGq2Fvx60Oo4AAAAACoRpR6o5fx8vHT/pTGSpDeX7pHDaVqcCAAAAEBlodQDHuC2nk0VFuCj/UlZ+mbLEavjAAAAAKgklHrAAwTavTWmb3NJ0htLdss0Ga0HAAAAagNKPeAh7r6kmYLs3tp+NF0/bjtudRwAAAAAlYBSD3iI0AAf3dE7WpI0g9F6AAAAoFag1AMeZGy/5rJ72xR/IEW/7EmyOg4AAACACqLUAx4kPNiuW3tESZJeX7rb4jQAAAAAKopSD3iY+wfEyttmaNXuJP2aeMrqOAAAAAAqgFIPeJgmYf66Ma6JJOn1JXssTgMAAACgIij1gAd6cGCsDENavO2Yth9NszoOAAAAgHKi1AMeKDY8SNd0aCxJeoPRegAAAMBtUeoBD/XQoFhJ0tebD2v/yUyL0wAAAAAoD0o94KHaR4RqUOtwOU1p5jJG6wEAAAB3RKkHPNj4y1pIkuZvPKjDKactTgMAAACgrCj1gAfrFl1XvZrXVZ7D1Dsr9lodBwAAAEAZUeoBD1c4Wv/h2kSdzMixOA0AAACAsqDUAx6uX4v66hQZquw8p95ftc/qOAAAAADKgFIPeDjDMPTwoILR+v/8nKDU03kWJwIAAABQWpR6ALqybUO1ahik9Jx8zVmdYHUcAAAAAKVEqQcgm83QQwMLRuvfXblPWbn5FicCAAAAUBqUegCSpGs7NVbTugFKzszVR2sPWB0HAAAAQClQ6gFIkry9bHpwQKwk6e3le5WT77A4EQAAAICLodQDcBnerYkahth1NC1bCzYesjoOAAAAgIug1ANwsXt76b7+MZKkN5ftUb7DaXEiAAAAABdCqQdQxO29mqpOgI8SkrL0zZYjVscBAAAAcAGUegBFBPh6a0zf5pKkN5bskdNpWpwIAAAAwPlQ6gEUc9clzRRk99aOY+n6cftxq+MAAAAAOA9KPYBiQgN8dOcl0ZKkGUt2yzQZrQcAAABqIko9gBKN6dtcdm+bNh1I0c97kqyOAwAAAKAElHoAJQoPtuu2nk0lSTN+2m1xGgAAAAAlodQDOK/7Lo2Rt83QL3uTtCHhlNVxAAAAAJyDUg/gvJqE+eumrk0kSW8sYbQeAAAAqGko9QAu6MEBsbIZ0o/bj+v3w2lWxwEAAABwFko9gAuKCQ/SNR0bS5LeWMpoPQAAAFCTUOoBXNRDA1tIkr7ZckR7T2RYnAYAAABAIUo9gItqFxGiy9s0kGlKM5ftsToOAAAAgDMo9QBK5aFBBaP1n288pEMppy1OAwAAAECi1AMopW7RdXRJTD3lO029s3yv1XEAAAAAiFIPoAwePjNa/+HaRJ3MyLE4DQAAAABKPYBS69uinjpHhSkn36l3V+6zOg4AAADg8Sj1AErNMAw9PDBWkvTBLwlKPZ1ncSIAAADAs1HqAZTJFW0bqnXDYGXk5Os/P++3Og4AAADg0Sj1AMrEZjP00KCC0fr3Vu1TVm6+xYkAAAAAz0WpB1BmQzs2VnS9AJ3KytO8NYlWxwEAAAA8FqUeQJl5e9n04ICC0fp3VuxVTr7D4kQAAACAZ6LUAyiXm7o2UaMQPx1Ly9HnGw9ZHQcAAADwSJR6AOVi9/bSfZfGSJLeXLpH+Q6nxYkAAAAAz0OpB1But/WMUt1AXyUmZ+mbLUesjgMAAAB4HEo9gHIL8PXWmL7NJEmvL9ktp9O0NhAAAADgYdym1E+bNk19+vRRQECAwsLCSr3dtm3bdP311ys0NFSBgYHq0aOHEhOZrRuoLHde0kzBdm/tPJahxduOWR0HAAAA8ChuU+pzc3M1YsQIjRs3rtTb7NmzR/369VObNm20dOlSbd68WU899ZT8/PyqMCngWUL9fXTnJdGSCkbrTZPRegAAAKC6GKab/Rf4rFmzNGHCBKWkpFx03VtvvVU+Pj764IMPyr2/tLQ0hYaGKjU1VSEhIeV+H6A2O5mRo37P/6TsPKfmjO2lfi3rWx0JAAAAcFtl6aFuM1JfVk6nU998841atWqlwYMHq0GDBurVq5e++OKLC26Xk5OjtLS0Ig8AF1Y/yK5bezSVJM1YssviNAAAAIDnqLWl/vjx48rIyNBzzz2nIUOG6Pvvv9eNN96om266ScuWLTvvdtOnT1doaKjrERUVVY2pAfd1/6Ux8vEytHpvsjYkJFsdBwAAAPAIlpb6yZMnyzCMCz62b99ervd2OgvumT1s2DBNnDhRXbp00eTJk3Xttddq5syZ591uypQpSk1NdT0OHDhQrv0DniYizF83xUVKkl5fssfiNAAAAIBn8LZy55MmTdLo0aMvuE5MTEy53rt+/fry9vZWu3btiixv27atVq5ced7t7Ha77HZ7ufYJeLoHB8bq0w0H9NP24/rtcKraR4RaHQkAAACo1Swt9eHh4QoPD6+S9/b19VWPHj20Y8eOIst37typ6OjoKtkn4Oma1w/U0E4R+mrTYb2xdI9ev72r1ZEAAACAWs1trqlPTExUfHy8EhMT5XA4FB8fr/j4eGVkZLjWadOmjRYsWOB6/vjjj+vjjz/WO++8o927d2vGjBn66quv9NBDD1nxEQCP8NDAWEnSf7cc0d4TGRdZGwAAAEBFuE2pnzp1quLi4vT0008rIyNDcXFxiouL0/r1613r7NixQ6mpqa7nN954o2bOnKkXXnhBHTt21L///W/Nnz9f/fr1s+IjAB6hbeMQXdG2gUxTenMp19YDAAAAVcnt7lNf3bhPPVB2GxNP6aY3fpa3zdCyJwapSZi/1ZEAAAAAt8F96gFYqmvTOuoTW0/5TlNvL2O0HgAAAKgqlHoAVeLhQS0kSR+tO6AT6TkWpwEAAABqJ0o9gCrRJ7aeukSFKSffqXdX7rM6DgAAAFArUeoBVAnDMFyj9XNWJyg1K8/iRAAAAEDtQ6kHUGUub9NAbRoFKyMnX7N/2W91HAAAAKDWodQDqDI2m6FxZ+5b/96qfcrMybc4EQAAAFC7UOoBVKlrO0WoWb0ApWTl6cO1iVbHAQAAAGoVSj2AKuVlM/TggILR+reX71VOvsPiRAAAAEDtQakHUOVu6hqpxqF+Op6eo882HLQ6DgAAAFBrUOoBVDlfb5vu6x8jSZq5bI/yHU6LEwEAAAC1A6UeQLW4rWdT1Q301YHk0/pq82Gr4wAAAAC1AqUeQLXw9/XS2H7NJUlvLNkjp9O0OBEAAADg/ij1AKrNnZdEK9jurV3HM/T978esjgMAAAC4PUo9gGoT4ueju/pES5LeWLpbpsloPQAAAFARlHoA1WpM3+by87Fp88FUrdh10uo4AAAAgFuj1AOoVvWC7LqtZ1NJ0utLdlucBgAAAHBvlHoA1e7+S2Pk42Vozb5krd+fbHUcAAAAwG1R6gFUu8ah/hreNVISo/UAAABARVDqAVjiwQGxshnSkh0ntPVQqtVxAAAAALdEqQdgiWb1A3VtpwhJ0ptL91icBgAAAHBPlHoAlnloUKwk6b9bj2j38QyL0wAAAADuh1IPwDJtGoXoirYNZZrSzGWM1gMAAABlRakHYKmHz4zWf/HrIR08lWVxGgAAAMC9UOoBWCquaR31bVFP+U5Tby/fa3UcAAAAwK1Q6gFY7uFBLSRJH607oOPp2RanAQAAANwHpR6A5S6Jqae4pmHKzXfq3ZX7rI4DAAAAuA1KPQDLGYah8WdG6+f8kqCUrFyLEwEAAADugVIPoEa4rE0DtWkUrMxch2b/nGB1HAAAAMAtUOoB1AiGYbiurX//533KzMm3OBEAAABQ81HqAdQY13RsrOb1A5WSlad5axKtjgMAAADUeJR6ADWGl83QuAEF961/Z8VeZec5LE4EAAAA1GyUegA1yg1xTRQR6qfj6Tn6bMNBq+MAAAAANRqlHkCN4utt0/2XxkiSZi7bo3yH0+JEAAAAQM1FqQdQ44zs0VT1An118NRpLdx02Oo4AAAAQI1FqQdQ4/j7emls/+aSpDeW7pHTaVqcCAAAAKiZKPUAaqQ7ekcr2M9bu49n6Pvfj1odBwAAAKiRKPUAaqQQPx/dfUkzSdLrS/bINBmtBwAAAM5FqQdQY43p11z+Pl7acihVy3edtDoOAAAAUONQ6gHUWHUDfXVbz6aSpNeX7LY4DQAAAFDzUOoB1Gj3XxojHy9Da/cla93+ZKvjAAAAADUKpR5AjdYo1E83d4uUxGg9AAAAcC5KPYAa78EBsbIZ0tIdJ7T1UKrVcQAAAIAag1IPoMaLrheo6zpHSJLeWMpoPQAAAFCIUg/ALTw0sIUk6dutR7X7eLrFaQAAAICagVIPwC20bhSsK9s1lGlKby7da3UcAAAAoEag1ANwGw8PKhit/yL+kA4kZ1mcBgAAALAepR6A2+gSFaZ+LerL4TT19nJG6wEAAABKPQC3Ujha//H6Azqelm1xGgAAAMBalHoAbqV3TF11bRqm3Hyn3l25z+o4AAAAgKUo9QDcimEYGn9ZwWj9nNUJSsnKtTgRAAAAYB1KPQC3M6h1A7VtHKLMXIdm/bzf6jgAAACAZSj1ANyOYRh6eFCsJOn9VfuVkZNvcSIAAADAGpR6AG7p6g6NFVM/UKmn8zRvTYLVcQAAAABLUOoBuCUvm6EHBxaM1r+zYp+y8xwWJwIAAACqH6UegNu6oUsTRYT66UR6jj7dcNDqOAAAAEC1o9QDcFu+3jY9MKBgtH7m0j3KczgtTgQAAABUL0o9ALc2skeU6gf56lDKaS2MP2x1HAAAAKBaUeoBuDU/Hy+N7RcjSXpj6W45nabFiQAAAIDqQ6kH4Pbu6N1UIX7e2nMiU4t+O2p1HAAAAKDaUOoBuL1gPx+N7tNMkjRjyW6ZJqP1AAAA8AxuU+qnTZumPn36KCAgQGFhYaXaxjCMEh8vvvhi1YYFUO1G920ufx8v/XY4Tct2nrA6DgAAAFAt3KbU5+bmasSIERo3blyptzly5EiRx3vvvSfDMDR8+PAqTArACnUDfTWqV1NJ0utLdlucBgAAAKge3lYHKK1nnnlGkjRr1qxSb9OoUaMiz7/88ksNGjRIMTExlRkNQA1x36Ux+s8vCVq3/5TW7ktWz+Z1rY4EAAAAVCm3GamvqGPHjumbb77R2LFjL7heTk6O0tLSijwAuIeGIX66uXukpIJr6wEAAIDazmNK/ezZsxUcHKybbrrpgutNnz5doaGhrkdUVFQ1JQRQGR68NFZeNkPLd57QloOpVscBAAAAqpSlpX7y5Mnnncyu8LF9+/ZK2dd7772nUaNGyc/P74LrTZkyRampqa7HgQMHKmX/AKpH03oBur5zhCSurQcAAEDtZ+k19ZMmTdLo0aMvuE5lXP++YsUK7dixQx9//PFF17Xb7bLb7RXeJwDrjBsYqwW/HtJ3vx3VrmPpatkw2OpIAAAAQJWwtNSHh4crPDy8yvfz7rvvqlu3burcuXOV7wuA9Vo1DNbg9g216LdjenPpHr00sovVkQAAAIAq4TbX1CcmJio+Pl6JiYlyOByKj49XfHy8MjIyXOu0adNGCxYsKLJdWlqaPv30U917773VHRmAhR4e1EKS9OWmwzqQnGVxGgAAAKBquE2pnzp1quLi4vT0008rIyNDcXFxiouL0/r1613r7NixQ6mpRSfG+uijj2Sapm677bbqjgzAQp0iw9S/ZX05nKZmLttjdRwAAACgShimaZpWh6jJ0tLSFBoaqtTUVIWEhFgdB0AZrN6bpFvfXi1fL5tW/mWQGoRceKJMAAAAoCYoSw91m5F6ACirXs3rqnt0HeU6nHpnxV6r4wAAAACVjlIPoNYyDMN1bf3cNYk6lZlrcSIAAACgclHqAdRqA1uHq13jEGXlOvT+z/utjgMAAABUKko9gFrt7NH6Wav2KSMn3+JEAAAAQOWh1AOo9YZ0aKSY8EClZedr7uoEq+MAAAAAlYZSD6DW87IZGjcgVpL0zop9ys5zWJwIAAAAqByUegAe4Ya4JmoS5q+TGTn6dP0Bq+MAAAAAlYJSD8Aj+HjZ9MCAGEnSzGV7ledwWpwIAAAAqDhKPQCPcUv3KNUPsutQyml9GX/Y6jgAAABAhVHqAXgMPx8v3du/uSTpjaW75XCaFicCAAAAKoZSD8CjjOrVVCF+3tp7IlOLfjtqdRwAAACgQij1ADxKsJ+PRvctGK1/fclumSaj9QAAAHBflHoAHueePs0U4Oul3w6naenOE1bHAQAAAMqNUg/A49QJ9NWoXk0lSa//xGg9AAAA3BelHoBHurd/jHy9bFqfcEpr9yVbHQcAAAAoF0o9AI/UMMRPI7pHSpJmLNltcRoAAACgfCj1ADzWgwNi5WUztGLXSW0+mGJ1HAAAAKDMKPUAPFZU3QAN6xwhqWAmfAAAAMDdUOoBeLRxA2MlSYt+O6Zdx9ItTgMAAACUDaUegEdr2TBYQ9o3kiS9sXSPxWkAAACAsqHUA/B4Dw9qIUlauOmwEpOyLE4DAAAAlB6lHoDH6xgZqktbhcvhNDVzOaP1AAAAcB+UegCQ9PCZa+s/W39Qx9KyLU4DAAAAlA6lHgAk9Yqppx7N6ijX4dQ7y/daHQcAAAAoFUo9AJzx0Jlr6+euSdSpzFyL0wAAAAAX5211AACoKQa2Clf7iBD9djhNV7+6QuHBdgXZvRVo91awn7eC7N4KOvOn6/mZZcF2HwXavVx/9/OxyTAMqz8SAAAAajlKPQCcYRiGHruylcbOXq+jadk6WoFr671shqv0n31AINDurWB7SQcIfIo8D7T/cdDAy8bBAQAAAJTMME3TtDpETZaWlqbQ0FClpqYqJCTE6jgAqkFiUpaOpWcrIztf6Tn5ysjOV0ZOnjJyHGf9PV/p2fnKcL1+5s/cfFX2/6oG+HqddUbAHwcDXAcIzjooUNIBg8IDBHZvzh4AAABwB2XpoYzUA8A5mtYLUNN6AeXa1uk0dTrPUULpzyt+ECDnj+fp5yxPz85TnqPg6EBWrkNZuQ4dT8+p0Ofy8TLOKvw+RQ4QBJ19OUEJBxAKzyYItHsp0NdbNs4eAAAAqBEo9QBQiWw2Q4FnRtEbVvDknpz8gjMDMnMcSs/JO6f0Fz1AkJ6dr8zC13LylZGd53o9M9chScpzmDqVladTWXmSTlcoW1CJlxCUcIDg3EsMzlo30O4tX2/mawUAAKgISj0A1FB2by/Zg7xUL6hi7+NwmsrMPVPwc845K6DYJQbnHCA450CCw1lw9kDhMqVVLJuvt63oGQPFJiX0UZC98PKDogcFGob4qVGoX8UCAAAAuDlKPQDUcl42QyF+Pgrx86nQ+5imqZx853kuI8grfhnBWc8LDyoUPj+dV3D2QG6+U0n5uUoq5y0ER3aP0pND2yrUv2KfDQAAwF1R6gEApWIYhvx8vOTn46XwYHuF3ivf4fzjsoKzDgBknnNJQZFLDM66rCAzx6FDKaf18foDWrLjuJ69oYMGt29USZ8UAADAfVDqAQDVztvLptAAm0IDyj/CvnZfsibP36y9JzP1wAcbNLRjY/31+vYVPuAAAADgTpihCADglno2r6v//qm/HhoYKy+boW+2HNEVLy3T/A0Hxd1aAQCAp6DUAwDclp+Pl54Y0kZfPtxX7RqHKPV0niZ9ukl3v79OB09lWR0PAACgylHqAQBur0OTUH05vq+eGNJavt42Ld95QoNfXq7//LJfTiej9gAAoPai1AMAagUfL5seGthC3/6pv3o0q6PMXIemfvmbbnnrF+0+nmF1PAAAgCpBqQcA1Cqx4UH6+P5L9Oyw9gr09dL6hFO65tUVen3JbuU5nFbHAwAAqFSUegBArWOzGbrzkmb6/rEBGtAqXLkOp15ctEPDZqzS1kOpVscDAACoNJR6AECt1STMX7Pu6aGXR3ZWWICPfj+SpmGvr9Lz321Xdp7D6ngAAAAVRqkHANRqhmHoxrhILX5sgIZ2aiyH09SbS/fomldXaO2+ZKvjAQAAVAilHgDgEeoH2fX67V311p3d1CDYrr0nM3XLW7/oqS+2Kj07z+p4AAAA5UKpBwB4lMHtG+mHxwbotp5RkqQPVido8MvLtWT7cYuTAQAAlB2lHgDgcUL9fTT9pk6ad28vNa0boMOp2bpn1jpN/DheyZm5VscDAAAoNUo9AMBj9WlRX4smXKp7+zWXzZAW/HpIV760TF9tOizTNK2OBwAAcFGUegCAR/P39dL/XttO88f1UauGQUrKzNUjH/6q+/6zQUdTs62OBwAAcEGUegAAJMU1raOvH+mvCVe0lI+XocXbjunKl5bpw7WJjNoDAIAai1IPAMAZvt42Tbiilb5+pL86R4UpPSdfUz7fotvfWaOEpEyr4wEAABRDqQcA4BytGwXr83F99L9D28rPx6Zf9iZp8CvL9c7yvXI4GbUHAAA1B6UeAIASeNkM3ds/Rt9PGKA+sfWUnefUtP9u001vrNL2o2lWxwMAAJBEqQcA4IKa1gvQ3Ht76fnhHRXs561NB1N17Wsr9dIPO5WT77A6HgAA8HCUegAALsIwDI3s0VSLHxugK9s1VL7T1Gs/7tK1r63UxsRTVscDAAAejFIPAEApNQzx09t3dtPrt3dV/SBf7TqeoeFv/qxnv/5dWbn5VscDAAAeiFIPAEAZGIahoZ0a64eJA3RT1yYyTendlfs0+JXlWrnrpNXxAACAh6HUAwBQDnUCffXSLV00654eahLmrwPJp3XHu2v0xGeblHo6z+p4AADAQ1DqAQCogIGtG2jRxEt19yXRkqRP1h/UlS8t06LfjlqcDAAAeAJKPQAAFRRk99Yzwzro0wcvUUx4oI6n5+iBDzbo4bkbdSI9x+p4AACgFqPUAwBQSXo0q6v/PtpfDw+KlZfN0DdbjuiKl5Zp/oaDMk3T6ngAAKAWotQDAFCJ/Hy89PjgNlo4vq/aR4Qo9XSeJn26SXe/v04HT2VZHQ8AANQylHoAAKpA+4hQffFwX/1lSBv5etu0fOcJXfXycs3+eb+cTkbtAQBA5XCbUj9t2jT16dNHAQEBCgsLK9U2GRkZGj9+vCIjI+Xv76927dpp5syZVRsUAIAzfLxsGjcwVt/+qb96NqurrFyHnl74m2556xftPp5hdTwAAFALuE2pz83N1YgRIzRu3LhSb/PYY4/pu+++05w5c7Rt2zZNmDBB48eP18KFC6swKQAARcWGB+mj+3vr2WHtFejrpfUJp3TNqyv0+pLdynM4rY4HAADcmNuU+meeeUYTJ05Ux44dS73Nzz//rLvvvlsDBw5Us2bNdP/996tz585au3ZtFSYFAKA4m83QnZc00/ePDdDA1uHKdTj14qIdun7GKm09lGp1PAAA4KbcptSXR58+fbRw4UIdOnRIpmlqyZIl2rlzp6666qrzbpOTk6O0tLQiDwAAKkuTMH+9P7qHXh7ZWXUCfLTtSJqGvb5Kz327Xdl5DqvjAQAAN1OrS/2//vUvtWvXTpGRkfL19dWQIUP0+uuv69JLLz3vNtOnT1doaKjrERUVVY2JAQCewDAM3RgXqR8eG6DrOkfI4TQ1c9keXf3qCq3Zm2R1PAAA4EYsLfWTJ0+WYRgXfGzfvr3c7/+vf/1Lq1ev1sKFC7Vhwwb985//1MMPP6zFixefd5spU6YoNTXV9Thw4EC59w8AwIXUD7LrX7fF6Z27uqthiF37TmZq5Nur9b9fbFF6dp7V8QAAgBswTNO07L46J06cUFLShUckYmJi5Ovr63o+a9YsTZgwQSkpKRfc7vTp0woNDdWCBQs0dOhQ1/J7771XBw8e1HfffVeqjGlpaQoNDVVqaqpCQkJKtQ0AAGWVejpPz327TR+uLTiY3DjUT3+/saMGtWlgcTIAAFDdytJDvaspU4nCw8MVHh5eJe+dl5envLw82WxFT0bw8vKS08lMwwCAmiXU30fTb+qk6zpFaPLnW5SYnKV7Zq3TDV0iNPW69qob6HvxNwEAAB7Hba6pT0xMVHx8vBITE+VwOBQfH6/4+HhlZPxxn982bdpowYIFkqSQkBANGDBAjz/+uJYuXap9+/Zp1qxZ+s9//qMbb7zRqo8BAMAF9WlRX4smXKr7+jeXzZC+iD+sK19apq82HZaFJ9cBAIAaytLT78ti9OjRmj17drHlS5Ys0cCBAyUVTDz0/vvva/To0ZKko0ePasqUKfr++++VnJys6Oho3X///Zo4caIMwyjVfjn9HgBglfgDKfrLZ5u141i6JOmKtg31txs6qFGon8XJAABAVSpLD3WbUm8VSj0AwEq5+U69uXSPZizZpTyHqWC7t54c2la39ogq9QFqAADgXsrSQ93m9HsAADyRr7dNf7qipb55tL+6RIUpPSdfUz7fotvfWaP9JzOtjgcAACxGqQcAwA20ahis+eP66Klr28nfx0u/7E3SkFeX653le5XvYAJYAAA8FaUeAAA34WUzNLZfcy2acKn6tqin7Dynpv13m4a/+bO2H02zOh4AALAApR4AADfTtF6A5oztpReGd1Kwn7c2HUzVta+t1Es/7FROvsPqeAAAoBpR6gEAcEOGYeiWHlFa/NgAXdWuofKdpl77cZeufW2lNiaesjoeAACoJpR6AADcWMMQP711Zze9Maqr6gf5atfxDA1/82f931e/Kys33+p4AACgilHqAQBwc4Zh6JqOjfXDxAEa3jVSpim9t2qfrnp5uVbuOml1PAAAUIUo9QAA1BJ1An31z1s6a/aYnmoS5q+Dp07rjnfX6InPNik1K8/qeAAAoApQ6gEAqGUGtArXoomX6u5LomUY0ifrD+qKl5fpu61HrY4GAAAqGaUeAIBaKMjurWeGddCnD1yimPBAnUjP0YNzNuihuRt0PD3b6ngAAKCSUOoBAKjFujerq/8+2l/jB7WQl83Qf7cc1ZUvLddnGw7KNE2r4wEAgAqi1AMAUMv5+Xjpz4Nba+H4vurQJESpp/P050836a731upAcpbV8QAAQAVQ6gEA8BDtI0L1xUN99ZchbeTrbdOKXSc1+JXlmrVqn5xORu0BAHBHlHoAADyIt5dN4wbG6rs/9VfPZnWVlevQX7/6XSPe+kW7j6dbHQ8AAJQRpR4AAA8UEx6kj+7vrWdv6KAgu7c2JJzSNa+u1OtLdivP4bQ6HgAAKCVKPQAAHspmM3Rn72h9P/FSDWwdrlyHUy8u2qHrZ6zSloOpVscDAAClQKkHAMDDRYT56/3RPfTKyC6qE+CjbUfSdMMbq/Tct9uVneewOh4AALgASj0AAJBhGLohrol+eGyAruscIYfT1Mxle3T1qyu0Zm+S1fEAAMB5UOoBAIBL/SC7/nVbnN65q7sahti172SmRr69Wv/7xRalZ+dZHQ8AAJyDUg8AAIq5sl1D/fDYAN3Ws6kkac7qRF318nIt2X7c4mQAAOBslHoAAFCiED8fTb+po+bd10vR9QJ0JDVb98xapwkf/arkzFyr4wEAAFHqAQDARfSJra/v/nSp7r80RjZD+iL+sK54aZkWbjos0zStjgcAgEej1AMAgIvy9/XSk9e01YKH+qpNo2AlZ+bq0Q9/1X3/Wa8jqaetjgcAgMei1AMAgFLrHBWmheP76bErW8nHy9Dibcd11UvLNW9NopxORu0BAKhulHoAAFAmvt42PXp5S33zaH/FNQ1Tek6+nlywRbf/e7X2n8y0Oh4AAB6FUg8AAMqlVcNgffZgH029tp38fby0em+yBr+yXG8v36N8h9PqeAAAeARKPQAAKDcvm6Ex/Zrr+4mXql+L+srJd+rv/92um978WduOpFkdDwCAWs8wmbb2gtLS0hQaGqrU1FSFhIRYHQcAgBrLNE19uuGg/vb170rLzpe3zdA1HRsr0O4lm2HIy2a4/vzj75KXYchmM/748+y/GwUHDoq8Xvherr9LhlF8ue3Mexdd9+wMukCus97jzLI/1i3YHwAAVaUsPZRSfxGUegAAyuZ4Wrae+nKrFv12zOooVcZmqIQDAOc5WHHOAQmb7TwHM84cRCj2nkUOTOg8Bzb+2G/JBzDOev3sAxQ2Q942Q75eNvn5eMnP548/7d5e5yzzkp+3Td5enOgJAFWtLD3Uu5oyAQAAD9EgxE9v3dldy3ae0NZDqXI6TTlM0/Wnwyk5TVMOZ8Gj8O9/LDvr9cLtzn7dlGuZwzRllrC82PamKadTxZY5nOe8fmbZxThNyekwJXne2Ii3zShS/P19zxT/sw4C2H28zjw/62DBua+fOUjgOmBQuK732evY5Otl48wIALgASj0AAKgSA1qFa0CrcKtjlEuR0u/6UyUcoCh6MOD8BytU8sGGs18/Z9n5lhfdXuccuCh+MMPhPE/uMwcy8p2mch1OZec5lJPnUHaeU6fzHMoufOQ7lZv/x8SH+U5TGTn5ysipnu/CZujMWQM2+Z85AGAvcqCg6IGBYmcYnHPgoPgBh6IHHezeNtlsHEQA4D4o9QAAAOew2QzZZMjHy+okNYPTaSon33mm5BcUf1fpz3MqO/+PAwJnHwzIPmtZznm2O53r+OO9z1peeIGo05RO5zl0Os+hU8qrls/r6114AKGkswfOPlBQ9NIEewkHCbikAUBVo9QDAADggmw2Q/6+BafaVwfTLDx7wPnHwYJ8R5GDBGcfOChyQKHIwYPiBxxOn3Xw4OwDDflnXXaRe+bshNTT1fJx5eNlyM/7rDMQSrpkwdtLMiRDf0zUWPD34ssK1jNUeNXCH+udtezMioXb65x1/lhmFHutyHsahmtdlbh98WU6s03ha3+s98d7qoTtz/dZCnOe/fNwLSt8XuxnVvJ7qsiyP96zpCzF9/vHZ6ltattHCvX3UZ8W9a2OUWko9QAAAKhRDMOQ3duroMj6+1TLPvMdzrPOLjjfGQbFDxzkFDkr4ex1zl5W/GDE2Zc05DlM5TnylZ6TXy2fFfB0HZuE6qtH+lkdo9JQ6gEAAODxvL1sCvKyKchePf95XNZLGnLynTJN0zU1o2kWTNNYeCOrwssVTJlnvVZ0mc5Z33T9edbrZ14saftzl+msDGdvf+57Fu737NfOzaCzl5WQybWd+cf0lEXfs+gynbufs97z7J+hii0r+T3/yHv2z7L4e9bGuTPNWvihYuoHWR2hUlHqAQAAgGpW3Zc0AKi9mJUDAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAAAAAwE1R6gEAAAAAcFOUegAAAAAA3BSlHgAAAAAAN0WpBwAAAADATVHqAQAAAABwU5R6AAAAAADcFKUeAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAAAAAwE1R6gEAAAAAcFOUegAAAAAA3BSlHgAAAAAAN0WpBwAAAADATVHqAQAAAABwU5R6AAAAAADcFKUeAAAAAAA35W11gJrONE1JUlpamsVJAAAAAACeoLB/FvbRC6HUX0R6erokKSoqyuIkAAAAAABPkp6ertDQ0AuuY5ilqf4ezOl06vDhwwoODpZhGFbHOa+0tDRFRUXpwIEDCgkJsToOzoPvyT3wPdV8fEfuge/JPfA91Xx8R+6B78k9uMv3ZJqm0tPTFRERIZvtwlfNM1J/ETabTZGRkVbHKLWQkJAa/Y8TBfie3APfU83Hd+Qe+J7cA99Tzcd35B74ntyDO3xPFxuhL8REeQAAAAAAuClKPQAAAAAAbopSX0vY7XY9/fTTstvtVkfBBfA9uQe+p5qP78g98D25B76nmo/vyD3wPbmH2vg9MVEeAAAAAABuipF6AAAAAADcFKUeAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHo3t3z5cl133XWKiIiQYRj64osvrI6EEkyfPl09evRQcHCwGjRooBtuuEE7duywOhbO8uabb6pTp04KCQlRSEiILrnkEn377bdWx8JFPPfcczIMQxMmTLA6Cs7y17/+VYZhFHm0adPG6lg4x6FDh3THHXeoXr168vf3V8eOHbV+/XqrY+EszZo1K/a7ZBiGHn74Yauj4SwOh0NPPfWUmjdvLn9/f8XGxurZZ58V85HXLOnp6ZowYYKio6Pl7++vPn36aN26dVbHqhTeVgdAxWRmZqpz584aM2aMbrrpJqvj4DyWLVumhx9+WD169FB+fr6efPJJXXXVVfr9998VGBhodTxIioyM1HPPPaeWLVvKNE3Nnj1bw4YN06+//qr27dtbHQ8lWLdund566y116tTJ6igoQfv27bV48WLXc29v/pOjJjl16pT69u2rQYMG6dtvv1V4eLh27dqlOnXqWB0NZ1m3bp0cDofr+datW3XllVdqxIgRFqbCuZ5//nm9+eabmj17ttq3b6/169frnnvuUWhoqB599FGr4+GMe++9V1u3btUHH3ygiIgIzZkzR1dccYV+//13NWnSxOp4FcIt7WoRwzC0YMEC3XDDDVZHwUWcOHFCDRo00LJly3TppZdaHQfnUbduXb344osaO3as1VFwjoyMDHXt2lVvvPGG/va3v6lLly565ZVXrI6FM/7617/qiy++UHx8vNVRcB6TJ0/WqlWrtGLFCqujoAwmTJigr7/+Wrt27ZJhGFbHwRnXXnutGjZsqHfffde1bPjw4fL399ecOXMsTIZCp0+fVnBwsL788ksNHTrUtbxbt266+uqr9be//c3CdBXH6feABVJTUyUVlEbUPA6HQx999JEyMzN1ySWXWB0HJXj44Yc1dOhQXXHFFVZHwXns2rVLERERiomJ0ahRo5SYmGh1JJxl4cKF6t69u0aMGKEGDRooLi5O77zzjtWxcAG5ubmaM2eOxowZQ6GvYfr06aMff/xRO3fulCRt2rRJK1eu1NVXX21xMhTKz8+Xw+GQn59fkeX+/v5auXKlRakqD+fCAdXM6XRqwoQJ6tu3rzp06GB1HJxly5YtuuSSS5Sdna2goCAtWLBA7dq1szoWzvHRRx9p48aNteY6uNqoV69emjVrllq3bq0jR47omWeeUf/+/bV161YFBwdbHQ+S9u7dqzfffFOPPfaYnnzySa1bt06PPvqofH19dffdd1sdDyX44osvlJKSotGjR1sdBeeYPHmy0tLS1KZNG3l5ecnhcGjatGkaNWqU1dFwRnBwsC655BI9++yzatu2rRo2bKgPP/xQv/zyi1q0aGF1vAqj1APV7OGHH9bWrVtrxVHB2qZ169aKj49XamqqPvvsM919991atmwZxb4GOXDggP70pz/phx9+KHa0HTXH2aNTnTp1Uq9evRQdHa1PPvmEy1lqCKfTqe7du+vvf/+7JCkuLk5bt27VzJkzKfU11Lvvvqurr75aERERVkfBOT755BPNnTtX8+bNU/v27RUfH68JEyYoIiKC36ca5IMPPtCYMWPUpEkTeXl5qWvXrrrtttu0YcMGq6NVGKUeqEbjx4/X119/reXLlysyMtLqODiHr6+v62htt27dtG7dOr366qt66623LE6GQhs2bNDx48fVtWtX1zKHw6Hly5drxowZysnJkZeXl4UJUZKwsDC1atVKu3fvtjoKzmjcuHGxA5Zt27bV/PnzLUqEC0lISNDixYv1+eefWx0FJXj88cc1efJk3XrrrZKkjh07KiEhQdOnT6fU1yCxsbFatmyZMjMzlZaWpsaNG2vkyJGKiYmxOlqFcU09UA1M09T48eO1YMEC/fTTT2revLnVkVAKTqdTOTk5VsfAWS6//HJt2bJF8fHxrkf37t01atQoxcfHU+hrqIyMDO3Zs0eNGze2OgrO6Nu3b7Fbq+7cuVPR0dEWJcKFvP/++2rQoEGRCb5Qc2RlZclmK1qrvLy85HQ6LUqECwkMDFTjxo116tQpLVq0SMOGDbM6UoUxUu/mMjIyiox87Nu3T/Hx8apbt66aNm1qYTKc7eGHH/7/9u4tpKptj+P4b2ruhZmVmpWaaWZkZJeXgkwwu5BZRmIZukjNiETqISlSsaxIX4Iwiyy7GEV2gTBLQrFCiSjEyAq6GoaZht2v0E3Pw95n0ap9OC06+yynfT8wYc0x5pzjP14W/BhrjqXy8nJVVlbK09NTT548kSQNGDBA7u7uTq4OkpSTk6M5c+Zo+PDhevv2rcrLy1VXV6eamhpnl4ZveHp6/rAXhYeHh3x8fNijogdZs2aN4uLiFBQUpPb2duXn58vV1VVJSUnOLg1/Wb16tSIiIlRYWKjExEQ1NDSotLRUpaWlzi4N3+nq6lJZWZlSU1P5a8geKi4uTgUFBRo+fLjGjh2ra9euadu2bUpPT3d2afhGTU2Nuru7NXr0aDU3N2vt2rUKCwvT0qVLnV3aL+ObweQaGxsVHR1tO8/KypIkpaam6uDBg06qCt8rKSmRJE2bNs2uvaysjA1veojOzk6lpKSoo6NDAwYM0Pjx41VTU6NZs2Y5uzTAdNra2pSUlKTnz5/L19dXkZGRunLlinx9fZ1dGv4yadIkVVRUKCcnR5s3b9aIESNUVFTExl490Llz59Ta2kpA7MF27Nih9evXKzMzU52dnfL399eKFSu0YcMGZ5eGb7x+/Vo5OTlqa2uTt7e3EhISVFBQIDc3N2eX9sv4n3oAAAAAAEyKd+oBAAAAADApQj0AAAAAACZFqAcAAAAAwKQI9QAAAAAAmBShHgAAAAAAkyLUAwAAAABgUoR6AAAAAABMilAPAAAAAIBJEeoBAIDDHj58KMMw1NTU5OxSAAD4rRHqAQDoZdLS0mQYxg9HTEyMs0v7v6urq5NhGHr16pWzSwEA4B/Rx9kFAACA/72YmBiVlZXZtVksFidVAwAA/ims1AMA0AtZLBYNHTrU7vDy8pIkJScna/HixXbXf/78WYMGDdKhQ4ckSdXV1YqMjNTAgQPl4+OjefPm6cGDBw7V8PHjR61bt06BgYGyWCwKDQ3V/v37bf319fWaPHmyLBaL/Pz8lJ2drS9fvtj6g4ODVVRUZPfMiRMnauPGjbZzwzC0b98+xcfHq2/fvho1apROnz4t6c9XBKKjoyVJXl5eMgxDaWlpDs0BAICejlAPAMBvxmq16syZM3r37p2traamRh8+fFB8fLwk6f3798rKylJjY6POnz8vFxcXxcfHq6ur66fHSUlJ0dGjR1VcXKzbt29rz5496tevnyTp8ePHio2N1aRJk3T9+nWVlJRo//792rJli8Pz2bRpkxITE3Xjxg3FxsbKarXqxYsXCgwM1MmTJyVJd+/eVUdHh7Zv3+7w8wEA6Mn4+T0AAL1QVVWVLUD/W25urnJzczV79mx5eHiooqJCS5YskSSVl5dr/vz58vT0lCQlJCTY3XvgwAH5+vrq1q1bCg8P/6/j37t3TydOnFBtba1mzpwpSQoJCbH179q1S4GBgdq5c6cMw1BYWJja29u1bt06bdiwQS4uP7/ukJaWpqSkJElSYWGhiouL1dDQoJiYGHl7e0uSBg8erIEDB/70MwEAMAtW6gEA6IWio6PV1NRkd2RkZEiS+vTpo8TERB05ckTSn6vylZWVslqttvvv37+vpKQkhYSEqH///goODpYktba2/tT4TU1NcnV1VVRU1N/23759W1OmTJFhGLa2qVOn6t27d2pra3NoruPHj7d99vDwUP/+/dXZ2enQMwAAMCtW6gEA6IU8PDwUGhr6H/utVquioqLU2dmp2tpaubu72+2OHxcXp6CgIO3du1f+/v7q6upSeHi4Pn369FPju7u7//IcXFxc1N3dbdf2+fPnH65zc3OzOzcMw6HXBAAAMDNW6gEA+A1FREQoMDBQx48f15EjR7Ro0SJbOH7+/Lnu3r2rvLw8zZgxQ2PGjNHLly8dev64cePU1dWl+vr6v+0fM2aMLl++bBfaL126JE9PTw0bNkyS5Ovrq46ODlv/mzdv1NLS4lAdf/zxhyTp69evDt0HAIBZEOoBAOiFPn78qCdPntgdz549s7smOTlZu3fvVm1trd1P7728vOTj46PS0lI1NzfrwoULysrKcmj84OBgpaamKj09XadOnVJLS4vq6up04sQJSVJmZqYePXqkVatW6c6dO6qsrFR+fr6ysrJs79NPnz5dhw8f1sWLF3Xz5k2lpqbK1dXVoTqCgoJkGIaqqqr09OlTu80BAQDoDQj1AAD0QtXV1fLz87M7IiMj7a6xWq26deuWAgICNHXqVFu7i4uLjh07pqtXryo8PFyrV6/W1q1bHa6hpKRECxcuVGZmpsLCwrR8+XK9f/9ekhQQEKCzZ8+qoaFBEyZMUEZGhpYtW6a8vDzb/Tk5OYqKitK8efM0d+5cLViwQCNHjnSohoCAAG3atEnZ2dkaMmSIVq5c6fA8AADoyYzu719WAwAAAAAApsBKPQAAAAAAJkWoBwAAAADApAj1AAAAAACYFKEeAAAAAACTItQDAAAAAGBShHoAAAAAAEyKUA8AAAAAgEkR6gEAAAAAMClCPQAAAAAAJkWoBwAAAADApAj1AAAAAACY1L8AgAlXsrgkNTIAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAK9CAYAAABlx0xMAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAf21JREFUeJzs3Xd8FHXCx/HvbMqmJ5RQQkIgoffQpQjYQFFREVGxINhQ9EBOD3we8Xw8Dsud7VBRT4UTsCKKeoqidKUbitJLQi8J6aTtzvNHyEpIgPTJZj/v12tfsLMzO9/Nkju/85v5jWGapikAAAAAAOB2bFYHAAAAAAAA5UOpBwAAAADATVHqAQAAAABwU5R6AAAAAADcFKUeAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAACjBrFmzZBiG9u/fb3UUyw0cOFADBw50Pd+/f78Mw9CsWbMsywQAKECpBwAUUVhkzvdYvXq11REBj7F582bdc889at68ufz8/BQUFKQuXbroiSee0N69e62OV+XeeOMNDhwAwEUYpmmaVocAANQcs2bN0j333KP/+7//U/PmzYu9PmTIENWvX9+CZED1cjgcysvLk91ul2EY1b7/d955R+PGjVP9+vU1atQotWnTRvn5+dq6davmz5+v5ORknT59Wl5eXlWepXCUfunSpZIk0zSVk5MjHx+fKt1/hw4dVL9+fdd+AQDFeVsdAABQM1199dXq3r271TGUmZmpwMBAq2O4vezsbPn6+spm4yS90vLy8qqWwlySn3/+WePGjVPfvn319ddfKzg4uMjr//znPzVt2rSLvk9WVpYCAgIqPZ9hGPLz86v09wUAlB3/zw4AKJfCa2r/8Y9/6O2331ZsbKzsdrt69OihdevWFVt/+/btuvnmm1W3bl35+fmpe/fuWrhwYZF1Ck/9X7ZsmR566CE1aNBAkZGRrtdff/11xcTEyN/fXz179tSKFSuKXOubkZGhwMBA/elPfyq2/4MHD8rLy0vTp0+/4OdyOp169dVX1bFjR/n5+Sk8PFxDhgzR+vXrXevk5+fr2WefdX3mZs2a6cknn1ROTk6R92rWrJmuvfZarVy5Uj179pSfn59iYmL0n//8x7XO+vXrZRiGZs+eXSzLokWLZBiGvv76a9eyQ4cOacyYMWrYsKHsdrvat2+v9957r8h2S5culWEY+uijj/S///u/atKkiQICApSWliZJ+vTTT9WuXTv5+fmpQ4cOWrBggUaPHq1mzZoV+1m88sorat++vfz8/NSwYUM98MADOnXqVJk/Z6GUlBRNnDhRzZo1k91uV2RkpO666y6dPHnStU5OTo6efvpptWjRQna7XVFRUXriiSeK/XxL0qxZM40ePbrY8nOvCZekf/3rX2rfvr0CAgJUp04dde/eXfPmzXO9XtI19WX5rJs3b9aAAQPk7++vyMhI/e1vf9P7779fquv0n3nmGRmGoblz5xYr9JLk5+enZ599tshBh4EDB6pDhw7asGGDLr30UgUEBOjJJ5+UJH355ZcaOnSoIiIiZLfbFRsbq2effVYOh6PYexf+Pp/9e3au811TX5bf81WrVumxxx5TeHi4AgMDdeONN+rEiRNFfta//fabli1b5rr859zvEADASD0A4DxSU1OLFC2pYHSuXr16RZbNmzdP6enpeuCBB2QYhl544QXddNNN2rt3r3x8fCRJv/32m/r27asmTZpo8uTJCgwM1CeffKIbbrhB8+fP14033ljkPR966CGFh4dr6tSpyszMlCS9+eabGj9+vPr376+JEydq//79uuGGG1SnTh1X8Q8KCtKNN96ojz/+WC+99FKRwvPhhx/KNE2NGjXqgp977NixmjVrlq6++mrde++9ys/P14oVK7R69WrXmQv33nuvZs+erZtvvlmTJk3SmjVrNH36dG3btk0LFiwo8n67d+/WzTffrLFjx+ruu+/We++9p9GjR6tbt25q3769unfvrpiYGH3yySe6++67i2z78ccfq06dOho8eLAk6dixY+rdu7cMw9D48eMVHh6ub7/9VmPHjlVaWpomTJhQZPtnn31Wvr6++vOf/6ycnBz5+vrqm2++0ciRI9WxY0dNnz5dp06d0tixY9WkSZNiP4sHHnjAdTnGo48+qn379mnGjBn69ddftWrVKtf3W5rPKRUcdOnfv7+2bdumMWPGqGvXrjp58qQWLlyogwcPqn79+nI6nbr++uu1cuVK3X///Wrbtq22bNmil19+WTt37tQXX3xxwe+vtN555x09+uijuvnmm/WnP/1J2dnZ2rx5s9asWaPbb7/9gtuW5rMeOnRIgwYNkmEYmjJligIDA/Xvf/9bdrv9otmysrL0008/aeDAgUUOapVGUlKSrr76at16662644471LBhQ0kFRTooKEiPPfaYgoKC9NNPP2nq1KlKS0vTiy++6Nr+3Xff1QMPPKA+ffpowoQJ2rt3r66//nrVrVtXUVFRF9x3WX/PH3nkEdWpU0dPP/209u/fr1deeUXjx4/Xxx9/LEl65ZVX9MgjjygoKEj/8z//I0muzwMAOIsJAMBZ3n//fVNSiQ+73e5ab9++faYks169emZycrJr+ZdffmlKMr/66ivXsssvv9zs2LGjmZ2d7VrmdDrNPn36mC1btiy27379+pn5+fmu5Tk5OWa9evXMHj16mHl5ea7ls2bNMiWZAwYMcC1btGiRKcn89ttvi3yuTp06FVmvJD/99JMpyXz00UeLveZ0Ok3TNM34+HhTknnvvfcWef3Pf/6zKcn86aefXMuio6NNSeby5ctdy44fP27a7XZz0qRJrmVTpkwxfXx8ivwcc3JyzLCwMHPMmDGuZWPHjjUbN25snjx5ssi+b731VjM0NNTMysoyTdM0lyxZYkoyY2JiXMsKdezY0YyMjDTT09Ndy5YuXWpKMqOjo13LVqxYYUoy586dW2T77777rtjy0n7OqVOnmpLMzz//3DxX4c/3gw8+MG02m7lixYoir8+cOdOUZK5atarYtmeLjo4277777mLLBwwYUOT7HzZsmNm+ffsLvlfhv8d9+/YVef/SfNZHHnnENAzD/PXXX13LkpKSzLp16xZ7z3Nt2rTJlGROmDCh2GtJSUnmiRMnXI+cnJwin1GSOXPmzGLbnfvvwDRN84EHHjADAgJcv5e5ublmgwYNzC5duhR537fffrvY71nh7//777/vWlbW3/MrrrjC9b2bpmlOnDjR9PLyMlNSUlzL2rdvf9HfWwDwdJx+DwAo0euvv64ffvihyOPbb78ttt7IkSNVp04d1/P+/ftLkmtm7uTkZP3000+65ZZblJ6erpMnT+rkyZNKSkrS4MGDtWvXLh06dKjIe953331FRtnXr1+vpKQk3XffffL2/uMks1GjRhXZtyRdccUVioiI0Ny5c13Ltm7dqs2bN+uOO+644GeeP3++DMPQ008/Xey1wonS/vvf/0qSHnvssSKvT5o0SZL0zTffFFnerl07189EksLDw9W6desiM5ePHDlSeXl5+vzzz13Lvv/+e6WkpGjkyJGSCiYmmz9/vq677jqZpun6OZ48eVKDBw9WamqqNm7cWGTfd999t/z9/V3PDx8+rC1btuiuu+5SUFCQa/mAAQPUsWPHItt++umnCg0N1ZVXXllkX926dVNQUJCWLFlS5s85f/58de7cudiIrfTHz/fTTz9V27Zt1aZNmyL7veyyyySp2H7LKywsTAcPHizxUpGLKc1n/e6773TJJZeoS5curmV169a96JkiklyXSZz9HRWKiYlReHi463Huqe12u1333HNPse3O/ndQ+HvYv39/ZWVlafv27ZIKfs+OHz+uBx98UL6+vq71R48erdDQ0AtmLs/v+f33319kAsL+/fvL4XAoISHhgvsCABTF6fcAgBL17NmzVBPlNW3atMjzwpJdeN317t27ZZqmnnrqKT311FMlvsfx48eLnP597qz7hf+R36JFiyLLvb29i10HbrPZNGrUKL355puuScLmzp0rPz8/jRgx4oKfZc+ePYqIiFDdunXPu05CQoJsNluxLI0aNVJYWFixQnLuz0cq+BmdfV16586d1aZNG3388ccaO3aspIJT7+vXr+8qsydOnFBKSorefvttvf322yVmO378eJHnpf05Fi47+6DArl27lJqaqgYNGpRqX6X5nHv27NHw4cNLfL+z97tt2zaFh4eXar/l9Ze//EWLFy9Wz5491aJFC1111VW6/fbb1bdv34tuW5rPmpCQoEsuuaTYeiX97M9VeA19RkZGsde+/PJL5eXladOmTfrzn/9c7PUmTZoUKeSFfvvtN/3v//6vfvrpJ9dBg0KpqamuzJLUsmXLIq/7+PgoJibmgpnL83t+sf/tAACUDqUeAFAh55sd3Dxzx1Sn0ylJ+vOf/+y6Nvxc5xads0cVy+Ouu+7Siy++qC+++EK33Xab5s2bp2uvvfaio41lUdpbnF3s51No5MiRmjZtmk6ePKng4GAtXLhQt912m+vMhMKf4x133FHs2vtCnTp1KvK8Ij9Hp9OpBg0aFDnj4Wznlu7Sfs7S7Ldjx4566aWXSnz9Ytd1n+97cTgcRTK2bdtWO3bs0Ndff63vvvtO8+fP1xtvvKGpU6fqmWeeueA+Kuuznk+LFi3k7e2trVu3FnttwIABklTkjJWzlfSdp6SkaMCAAQoJCdH//d//KTY2Vn5+ftq4caP+8pe/uP5tVUR5fs+r+ucIAJ6CUg8AqFKFI3w+Pj664ooryvUe0dHRkgpGAwcNGuRanp+fr/379xcrsx06dFBcXJzmzp2ryMhIJSYm6l//+tdF9xMbG6tFixYpOTn5vKP10dHRcjqd2rVrl9q2betafuzYMaWkpLiyltXIkSP1zDPPaP78+WrYsKHS0tJ06623ul4PDw9XcHCwHA5Hpfwcz3XustjYWC1evFh9+/at8EGWs9+zpKJ67jqbNm3S5ZdfXq57w9epU0cpKSnFlickJBQbbQ4MDNTIkSM1cuRI5ebm6qabbtK0adM0ZcqUCt+uLTo6ulQ/55IEBgZq4MCBWrZsmQ4dOlTiJIZlsXTpUiUlJenzzz/XpZde6lq+b9++YpmlgrMlCs8QkaS8vDzt27dPnTt3Pu8+KuP3vCTl+TcAAJ6Ga+oBAFWqQYMGGjhwoN566y0dOXKk2Otn38LqfLp376569erpnXfeUX5+vmv53Llzz3uq7p133qnvv/9er7zyiurVq6err776ovsZPny4TNMscaS2cPTwmmuukVQwM/fZCkeWhw4detH9lKRt27bq2LGjPv74Y3388cdq3LhxkQLm5eWl4cOHa/78+SUW49L8HCMiItShQwf95z//KXJq97Jly7Rly5Yi695yyy1yOBx69tlni71Pfn5+icX5YoYPH65NmzYVu0OA9MfP95ZbbtGhQ4f0zjvvFFvn9OnTrrshnE9sbKxWr16t3Nxc17Kvv/5aBw4cKLJeUlJSkee+vr5q166dTNNUXl5eqT/T+QwePFi//PKL4uPjXcuSk5PPe+bDuaZOnSqHw6E77rijxNPwyzKaXTgifvY2ubm5euONN4qs1717d4WHh2vmzJlFfn6zZs266PddGb/nJQkMDCzXvzUA8CSM1AMASvTtt9+6JtA6W58+fS56fe25Xn/9dfXr108dO3bUfffdp5iYGB07dky//PKLDh48qE2bNl1we19fX/31r3/VI488ossuu0y33HKL9u/fr1mzZik2NrbE0bzbb79dTzzxhBYsWKBx48YVuf3a+QwaNEh33nmnXnvtNe3atUtDhgyR0+nUihUrNGjQII0fP16dO3fW3Xffrbffftt1WvPatWs1e/Zs3XDDDUXOJCirkSNHaurUqfLz89PYsWNlsxU99v7cc89pyZIl6tWrl+677z61a9dOycnJ2rhxoxYvXqzk5OSL7uPvf/+7hg0bpr59++qee+7RqVOnNGPGDHXo0KFIeRwwYIAeeOABTZ8+XfHx8brqqqvk4+OjXbt26dNPP9Wrr76qm2++uUyf7/HHH9dnn32mESNGaMyYMerWrZuSk5O1cOFCzZw5U507d9add96pTz75RA8++KCWLFmivn37yuFwaPv27frkk0+0aNGiC871cO+99+qzzz7TkCFDdMstt2jPnj2aM2eOYmNji6x31VVXqVGjRurbt68aNmyobdu2acaMGRo6dGiJ94UvqyeeeEJz5szRlVdeqUceecR1S7umTZsqOTn5oiPQ/fv314wZM/TII4+oZcuWGjVqlNq0aaPc3Fzt3LlTc+fOla+vrxo1anTRLH369FGdOnV0991369FHH5VhGPrggw+KHRjw8fHR3/72Nz3wwAO67LLLNHLkSO3bt0/vv/9+qX7nK/p7XpJu3brpzTff1N/+9je1aNFCDRo0KHIWAQBA3NIOAFDUhW5pp7NuYVV4S6sXX3yx2HtIMp9++ukiy/bs2WPeddddZqNGjUwfHx+zSZMm5rXXXmt+9tlnxfa9bt26ErO99tprZnR0tGm3282ePXuaq1atMrt162YOGTKkxPWvueYaU5L5888/l/rz5+fnmy+++KLZpk0b09fX1wwPDzevvvpqc8OGDa518vLyzGeeecZs3ry56ePjY0ZFRZlTpkwpcisv0yy4/dnQoUOL7ePc26sV2rVrl+vnvHLlyhLzHTt2zHz44YfNqKgo08fHx2zUqJF5+eWXm2+//bZrncJb2n366aclvsdHH31ktmnTxrTb7WaHDh3MhQsXmsOHDzfbtGlTbN23337b7Natm+nv728GBwebHTt2NJ944gnz8OHD5fqcSUlJ5vjx480mTZqYvr6+ZmRkpHn33XcXuU1fbm6u+fzzz5vt27c37Xa7WadOHbNbt27mM888Y6amppb4mc72z3/+02zSpIlpt9vNvn37muvXry+W5a233jIvvfRSs169eqbdbjdjY2PNxx9/vMj7n++WdqX9rL/++qvZv39/0263m5GRkeb06dPN1157zZRkHj169KKfo/A97rrrLrNp06amr6+vGRgYaHbq1MmcNGmSuXv37mIZznebvlWrVpm9e/c2/f39zYiICPOJJ55w3f5xyZIlRdZ94403zObNm5t2u93s3r27uXz58mKfr6Rb2plmxX7PC//dnp3n6NGj5tChQ83g4OBit9UDABQwTJPZSAAA7snpdCo8PFw33XRTiadr33jjjdqyZUuprmP2dF26dFF4eLh++OEHq6PUahMmTNBbb72ljIyM804UBwBAWXBNPQDALWRnZxc7Xfg///mPkpOTNXDgwGLrHzlyRN98843uvPPOakroHvLy8orMSyAVTKS2adOmEn+OKL/Tp08XeZ6UlKQPPvhA/fr1o9ADACoNI/UAALewdOlSTZw4USNGjFC9evW0ceNGvfvuu2rbtq02bNjgujf3vn37tGrVKv373//WunXrtGfPnlJdd+wp9u/fryuuuEJ33HGHIiIitH37ds2cOVOhoaHaunWr6tWrZ3XEWqNLly4aOHCg2rZtq2PHjundd9/V4cOH9eOPPxaZBBEAgIpgojwAgFto1qyZoqKi9Nprr7luOXfXXXfpueeecxV6qWAm93vuuUdNmzbV7NmzKfTnqFOnjrp166Z///vfOnHihAIDAzV06FA999xzFPpKds011+izzz7T22+/LcMw1LVrV7377rsUegBApWKkHgAAAAAAN8U19QAAAAAAuClKPQAAAAAAbopr6i/C6XTq8OHDCg4OlmEYVscBAAAAANRypmkqPT1dERERstkuPBZPqb+Iw4cPKyoqyuoYAAAAAAAPc+DAAUVGRl5wHUr9RQQHB0sq+GGGhIRYnAYAAAAAUNulpaUpKirK1UcvhFJ/EYWn3IeEhFDqAQAAAADVpjSXgDNRHgAAAAAAbopSDwAAAACAm6LUAwAAAADgprimHgAAAAAgh8OhvLw8q2N4BC8vL3l7e1fKbdMp9QAAAADg4TIyMnTw4EGZpml1FI8REBCgxo0by9fXt0LvQ6kHAAAAAA/mcDh08OBBBQQEKDw8vFJGj3F+pmkqNzdXJ06c0L59+9SyZUvZbOW/Mp5SDwAAAAAeLC8vT6ZpKjw8XP7+/lbH8Qj+/v7y8fFRQkKCcnNz5efnV+73YqI8AAAAAAAj9NWsIqPzRd6nUt4FAAAAAABUO0o9AAAAAABuilIPAAAAAICbotQDAAAAANzSiRMnNG7cODVt2lR2u12NGjXS4MGDtWrVKklSs2bN9Morr5x3+wULFqh3794KDQ1VcHCw2rdvrwkTJhRZ5/Tp03r66afVqlUr2e121a9fXyNGjNBvv/1WZL2//vWvMgxDhmHI29tbzZo108SJE5WRkVHZH7sIZr8HAAAAALil4cOHKzc3V7Nnz1ZMTIyOHTumH3/8UUlJSRfd9scff9TIkSM1bdo0XX/99TIMQ7///rt++OEH1zo5OTm64oorlJiYqH/+85/q1auXjh07punTp6tXr15avHixevfu7Vq/ffv2Wrx4sfLz87Vq1SqNGTNGWVlZeuutt6rk80uUegAAAADAWUzT1Ok8hyX79vfxKvUs/CkpKVqxYoWWLl2qAQMGSJKio6PVs2fPUm3/1VdfqW/fvnr88cddy1q1aqUbbrjB9fyVV17RL7/8ol9//VWdO3d27WP+/Pnq1auXxo4dq61bt7oye3t7q1GjRpKkkSNH6scff9TChQsp9QAAAACA6nE6z6F2UxdZsu/f/2+wAnxLV1ODgoIUFBSkL774Qr1795bdbi/Tvho1aqR58+Zp69at6tChQ4nrzJs3T1deeaWr0Bey2WyaOHGiRo0apU2bNqlLly4lbu/v76/c3Nwy5SorrqkHAAAAALgdb29vzZo1S7Nnz1ZYWJj69u2rJ598Ups3by7V9o888oh69Oihjh07qlmzZrr11lv13nvvKScnx7XOzp071bZt2xK3L1y+c+fOEl/fsGGD5s2bp8suu6yMn6xsGKkHAAAAALj4+3jp9/8bbNm+y2L48OEaOnSoVqxYodWrV+vbb7/VCy+8oH//+98aPXr0BbcNDAzUN998oz179mjJkiVavXq1Jk2apFdffVW//PKLAgICJBVcjnAhvr6+rr9v2bJFQUFBcjgcys3N1dChQzVjxowyfaayotQDAAAAAFwMwyj1KfA1gZ+fn6688kpdeeWVeuqpp3Tvvffq6aefvmipLxQbG6vY2Fjde++9+p//+R+1atVKH3/8se655x61bNlS27ZtK3G7wuWtWrVyLWvdurUWLlwob29vRUREFCn8VYXT7wEAAAAAtUa7du2UmZlZrm2bNWumgIAA1/a33XabFi9erE2bNhVZz+l06uWXX1b37t3Vrl0713JfX1+1aNFCzZo1q5ZCLzFSDwAAAABwQ0lJSRoxYoTGjBmjTp06KTg4WOvXr9cLL7ygYcOGudY7dOiQ4uPji2wbHR2tV199VVlZWbrmmmsUHR2tlJQUvfbaa8rLy9OVV14pSZo4caK+/PJLXXfddUVuaff3v/9du3bt0s8//1ydH7lElHoAAAAAgNsJCgpSr1699PLLL2vPnj3Ky8tTVFSU7rvvPj355JOu9f7xj3/oH//4R5FtP/jgAw0YMECvv/667rrrLh07dkx16tRRXFycvv/+e7Vu3VpSwan9P/74o6ZPn64pU6YoISFB+fn5atGihbZu3arIyMhq/cwlMcyLXfXv4dLS0hQaGqrU1FSFhIRYHQcAAAAAKlV2drb27dun5s2by8/Pz+o4Nd63336rG2+8Uf/4xz80fvz4cr/PhX7uZemhXFMPAAAAAEApXX311fr222+VnJyskydPWh2H0+9ri2Np2fp84yGN7ddcvt4cqwEAAACAqjJo0CANGjTI6hiSKPW1gtNp6sbXV+lwaraa1g3Q0E6NrY4EAAAAAKgGDOnWAjaboeHdCiZomLsmweI0AAAAAIDqQqmvJW7t2VQ2Q/p5T5L2nMiwOg4AAAAAN8Mc6tWrsn7elPpaokmYvy5r00CSNG9NosVpAAAAALgLLy8vSVJubq7FSTxLVlaWJMnHx6dC78M19bXIqF7RWrztuD7bcFCPD24tPx8vqyMBAAAAqOG8vb0VEBCgEydOyMfHRzYbY79VyTRNZWVl6fjx4woLC3MdVCkvSn0tcmmrcDUJ89ehlNP6ZvMR13X2AAAAAHA+hmGocePG2rdvnxISmKOruoSFhalRo0YVfh9KfS3iZTN0e6+menHRDs1Zk0CpBwAAAFAqvr6+atmyJafgVxMfH58Kj9AXotTXMrd0j9LLP+zUr4kp+u1wqtpHhFodCQAAAIAbsNls8vPzszoGyoiLJWqZ8GC7BncoOIWDCfMAAAAAoHaj1NdCo3o1lSR98eshZeTkW5wGAAAAAFBVKPW10CUx9RQTHqjMXIe+jD9kdRwAAAAAQBWh1NdChmFoVK9oSdKc1YkyTdPiRAAAAACAqkCpr6WGd20iu7dN246k6dcDKVbHAQAAAABUAUp9LRUW4KtrO0VIkuauZsI8AAAAAKiNKPW12KjeBRPmfb35sFKyuN8kAAAAANQ2blPqp02bpj59+iggIEBhYWGl2ubzzz/XVVddpXr16skwDMXHx1dpxpomLipM7RqHKCffqc82HLQ6DgAAAACgkrlNqc/NzdWIESM0bty4Um+TmZmpfv366fnnn6/CZDWXYRiu0fp5a5gwDwAAAABqG2+rA5TWM888I0maNWtWqbe58847JUn79++vgkTuYViXJvr7N9u092SmftmbpD6x9a2OBAAAAACoJG4zUl9dcnJylJaWVuThzoLs3rohrokkae4aJswDAAAAgNqEUn+O6dOnKzQ01PWIioqyOlKFFd6zftHWozqenm1xGgAAAABAZbG01E+ePFmGYVzwsX379mrNNGXKFKWmproeBw4cqNb9V4V2ESHq2jRM+U5Tn65nwjwAAAAAqC0svaZ+0qRJGj169AXXiYmJqZ4wZ9jtdtnt9mrdZ3UY1StaGxNTNG9Noh4cECsvm2F1JAAAAABABVla6sPDwxUeHm5lBI8xtFNj/d/Xv+tQymkt33lCg9o0sDoSAAAAAKCC3Oaa+sTERMXHxysxMVEOh0Px8fGKj49XRkaGa502bdpowYIFrufJycmKj4/X77//LknasWOH4uPjdfTo0WrPbzU/Hy/d3C1SkjRndYLFaQAAAAAAlcFtSv3UqVMVFxenp59+WhkZGYqLi1NcXJzWr1/vWmfHjh1KTU11PV+4cKHi4uI0dOhQSdKtt96quLg4zZw5s9rz1wS39yq4Z/1PO47r4Kksi9MAAAAAACrKME3TtDpETZaWlqbQ0FClpqYqJCTE6jgVdvs7q/XzniQ9clkLTbqqtdVxAAAAAADnKEsPdZuRelSOwtvbfbTugPIcTovTAAAAAAAqglLvYa5s11D1g+w6kZ6jxb8fszoOAAAAAKACKPUextfbplt7REmS5qxhwjwAAAAAcGeUeg90a88oGYa0aneS9p7IuPgGAAAAAIAaiVLvgSLrBGhQ64L71H+4NtHiNAAAAACA8qLUe6hRZ25v9+mGg8rOc1icBgAAAABQHpR6DzWwdQM1CfNXSlae/rvliNVxAAAAAADlQKn3UF42Q7f1LJgwb+4aTsEHAAAAAHdEqfdgt3SPkrfN0IaEU9p2JM3qOAAAAACAMqLUe7AGIX66qn1DSdI8RusBAAAAwO1Q6j3cqF7RkqQFvx5SZk6+xWkAAAAAAGVBqfdwfWLrKaZ+oDJy8vVl/GGr4wAAAAAAyoBS7+EMw9DtZ25vN3dNgkzTtDgRAAAAAKC0KPXQ8K6R8vW26bfDadp0MNXqOAAAAACAUqLUQ3UCfXVtx8aSpDmrEyxOAwAAAAAoLUo9JEmjehdMmPfVpsNKzcqzOA0AAAAAoDQo9ZAkdW0apjaNgpWT79T8jQetjgMAAAAAKAVKPSQVTJhXOFrPhHkAAAAA4B4o9XC5oUuEAny9tOdEptbsS7Y6DgAAAADgIij1cAn289ENcU0kMWEeAAAAALgDSj2KuL1nwT3rF/12VCfScyxOAwAAAAC4EEo9iujQJFRdosKU5zD16YYDVscBAAAAAFwApR7FjOpVMFo/b02inE4mzAMAAACAmopSj2Ku6xyhED9vHTx1Wst2nbA6DgAAAADgPCj1KMbPx0s3d4uSJM1dnWhxGgAAAADA+VDqUaLbz5yC/9P2YzqcctriNAAAAACAklDqUaIWDYLUO6aunKb00TomzAMAAACAmohSj/Ma1StakvTR2kTlOZwWpwEAAAAAnItSj/Ma3L6R6gf56nh6jn7cdszqOAAAAACAc1DqcV6+3jbd0v3MhHlrmDAPAAAAAGoaSj0u6LaeTWUY0opdJ7X/ZKbVcQAAAAAAZ6HU44Ki6gZoQKtwSdKHaxmtBwAAAICahFKPi7rjzIR5n6w/oOw8h8VpAAAAAACFKPW4qEFtGigi1E+nsvL03dajVscBAAAAAJxBqcdFedkM3dqzqSRp7poEi9MAAAAAAApR6lEqI3tEyctmaN3+U9pxNN3qOAAAAAAAUepRSg1D/HRVu4aSGK0HAAAAgJqCUo9SG3VmwrzPNx5SZk6+xWkAAAAAAJR6lFqf2HpqVi9AGTn5+mrTYavjAAAAAIDHo9Sj1Gw2Q7f3Kpwwj3vWAwAAAIDVKPUok5u7RcnX26Yth1K16UCK1XEAAAAAwKNR6lEmdQN9NbRjY0lMmAcAAAAAVqPUo8xGnTkFf+Gmw0o9nWdxGgAAAADwXJR6lFm36Dpq3TBY2XlOLdh40Oo4AAAAAOCxKPUoM8MwNKp3wWj9nDWJMk3T4kQAAAAA4Jko9SiXG+OaKMDXS7uPZ2jtvmSr4wAAAACAR6LUo1yC/Xw0rEuEJG5vBwAAAABWodSj3G7vGS1J+nbrEZ3MyLE4DQAAAAB4Hko9yq1jZKg6R4Yqz2Hqsw1MmAcAAAAA1Y1SjwoZ1btgtH7emkQ5nUyYBwAAAADViVKPCrmuU4SC/byVmJylFbtPWh0HAAAAADwKpR4V4u/rpeFdIyVJc1cnWJwGAAAAADwLpR4VNqpXwT3rf9x+XEdST1ucBgAAAAA8B6UeFdayYbB6Na8rh9PUR2sPWB0HAAAAADwGpR6VonDCvI/WJSrf4bQ4DQAAAAB4Bko9KsXg9g1VL9BXx9Jy9OP241bHAQAAAACPQKlHpbB7e2lE9yhJ0tw1iRanAQAAAADPQKlHpbm9Z1MZhrR85wklJGVaHQcAAAAAaj1KPSpN03oBurRluCRp3lpG6wEAAACgqlHqUakKb2/36fqDysl3WJwGAAAAAGo3Sj0q1WVtGqhRiJ+SM3P13dajVscBAAAAgFrNbUr9tGnT1KdPHwUEBCgsLOyi6+fl5ekvf/mLOnbsqMDAQEVEROiuu+7S4cOHqz6sB/P2sunWnmcmzFvNKfgAAAAAUJXcptTn5uZqxIgRGjduXKnWz8rK0saNG/XUU09p48aN+vzzz7Vjxw5df/31VZwUt/ZoKi+bobX7k7XzWLrVcQAAAACg1vK2OkBpPfPMM5KkWbNmlWr90NBQ/fDDD0WWzZgxQz179lRiYqKaNm1a2RFxRqNQP13RtoEW/XZM89Yk6q/Xt7c6EgAAAADUSm4zUl8ZUlNTZRjGBU/fz8nJUVpaWpEHym5Ur2hJ0vyNB5WVm29xGgAAAAConTym1GdnZ+svf/mLbrvtNoWEhJx3venTpys0NNT1iIqKqsaUtUe/FvUVXS9A6dn5+nrTEavjAAAAAECtZGmpnzx5sgzDuOBj+/btFd5PXl6ebrnlFpmmqTfffPOC606ZMkWpqamux4EDByq8f09ksxm6vWfBJQ5z1iRYnAYAAAAAaidLr6mfNGmSRo8efcF1YmJiKrSPwkKfkJCgn3766YKj9JJkt9tlt9srtE8UuLlbpP75/U5tPpiqzQdT1CkyzOpIAAAAAFCrWFrqw8PDFR4eXmXvX1jod+3apSVLlqhevXpVti8UVy/Irqs7NtKX8Yc1b00ipR4AAAAAKpnbXFOfmJio+Ph4JSYmyuFwKD4+XvHx8crIyHCt06ZNGy1YsEBSQaG/+eabtX79es2dO1cOh0NHjx7V0aNHlZuba9XH8DiFE+Z9GX9Yadl5FqcBAAAAgNrFbW5pN3XqVM2ePdv1PC4uTpK0ZMkSDRw4UJK0Y8cOpaamSpIOHTqkhQsXSpK6dOlS5L3O3gZVq0ezOmrVMEg7j2VowcZDurtPM6sjAQAAAECtYZimaVodoiZLS0tTaGioUlNTL3o9Pko2++f9enrhb2rVMEiLJlwqwzCsjgQAAAAANVZZeqjbnH4P93Vj1yby9/HSzmMZWp9wyuo4AAAAAFBrUOpR5UL8fHR95whJ0tzV3N4OAAAAACoLpR7VYlTvgnvW/3fLUSVl5FicBgAAAABqB0o9qkWnyDB1igxVrsOpzzYctDoOAAAAANQKlHpUm1G9Ckbr561NlNPJ/IwAAAAAUFGUelSb6zpHKNjurYSkLK3ac9LqOAAAAADg9ij1qDYBvt66qWsTSdIcJswDAAAAgAqj1KNajeodLUlavO24jqZmW5wGAAAAANwbpR7VqlXDYPVsVlcOp6mP1x2wOg4AAAAAuDVKPapd4e3tPlqXqHyH0+I0AAAAAOC+KPWodkM6NFLdQF8dSc3Wkh0nrI4DAAAAAG6LUo9qZ/f20ojukZKYMA8AAAAAKoJSD0vc3rPgFPzlu04oMSnL4jQAAAAA4J4o9bBEdL1A9W9ZX6Ypfbgu0eo4AAAAAOCWKPWwzKheBbe3+2TdAeXmM2EeAAAAAJQVpR6WuaJtAzUMsSspM1ff/XbU6jgAAAAA4HYo9bCMt5dNt/YouLZ+LhPmAQAAAECZUephqVt7RslmSGv2JWv38XSr4wAAAACAW6HUw1KNQ/11eduGkqS5a5gwDwAAAADKglIPy43qVXAK/vwNB3U612FxGgAAAABwH5R6WO7SluGKquuvtOx8fbX5sNVxAAAAAMBtUOphOZvN0O09C25vxyn4AAAAAFB6lHrUCCO6R8rHy9CmAynaeijV6jgAAAAA4BYo9agR6gfZNaRDY0nS3DXc3g4AAAAASoNSjxrjjjMT5n0Zf1hp2XkWpwEAAACAmo9SjxqjZ/O6atEgSFm5Dn356yGr4wAAAABAjUepR41hGIbr9nZz1yTKNE2LEwEAAABAzUapR41yU9dI+fnYtP1oujYmnrI6DgAAAADUaJR61Cih/j66vnOEJGnOam5vBwAAAAAXQqlHjTOqV8E967/ZckTJmbkWpwEAAACAmotSjxqnU2SoOjQJUW6+U/M3HLQ6DgAAAADUWJR61DgFE+YVjNbPW5sop5MJ8wAAAACgJJR61EjXd45QsN1b+05m6uc9SVbHAQAAAIAaiVKPGinQ7q0buzaRJM1dk2BxGgAAAAComSj1qLFuP3PP+u9/P6ZjadkWpwEAAACAmodSjxqrTaMQdY+uI4fT1CfrDlgdBwAAAABqHEo9arRRvQtG6z9cmygHE+YBAAAAQBGUetRoV3dorDoBPjqcmq0l249bHQcAAAAAahRKPWo0Px8vjegeJYkJ8wAAAADgXJR61Hi39Sw4BX/pzhM6kJxlcRoAAAAAqDko9ajxmtcPVL8W9WWaBdfWAwAAAAAKUOrhFu44M2HeJ+sPKDffaXEaAAAAAKgZKPVwC5e3bagGwXadzMjV978ftToOAAAAANQIlHq4BR8vm27tcWbCvNWcgg8AAAAAEqUebuTWnk1lM6Rf9iZp9/EMq+MAAAAAgOUo9XAbEWH+uqxNQ0nSvDWM1gMAAAAApR5uZdSZCfM+23BA2XkOi9MAAAAAgLUo9XArl7YMV2Qdf6Vl5+vrzUesjgMAAAAAlqLUw6142Qzd1rNgtH7umgSL0wAAAACAtSj1cDu3dI+Sj5ehXxNT9NvhVKvjAAAAAIBlKPVwO+HBdg1u30iSNJcJ8wAAAAB4MEo93NKoXtGSpC9/PaSMnHyL0wAAAACANSj1cEu9Y+oqJjxQmbkOffHrIavjAAAAAIAlKPVwS4ZhuEbr56xOkGmaFicCAAAAgOpHqYfburlrpOzeNm0/mq6NiSlWxwEAAACAakeph9sKDfDRdZ0jJHF7OwAAAACeiVIPtzaqV8E967/efEQpWbkWpwEAAACA6kWph1vrEhWmdo1DlJvv1GcbDlodBwAAAACqFaUebs0wDN3Ru2DCvLlrEpkwDwAAAIBHodTD7V3fJUJBdm/tO5mpX/YkWR0HAAAAAKqN25T6adOmqU+fPgoICFBYWFiptvnrX/+qNm3aKDAwUHXq1NEVV1yhNWvWVG1QVLsgu7duiCucMC/R4jQAAAAAUH3cptTn5uZqxIgRGjduXKm3adWqlWbMmKEtW7Zo5cqVatasma666iqdOHGiCpPCCoX3rF/021EdT8+2OA0AAAAAVA/DdLOLkGfNmqUJEyYoJSWlzNumpaUpNDRUixcv1uWXX16mbVJTUxUSElLmfaL6DH/zZ21IOKU/X9VK4y9raXUcAAAAACiXsvRQtxmpr6jc3Fy9/fbbCg0NVefOnc+7Xk5OjtLS0oo84B4Kb2/34doDcjjd6lgVAAAAAJRLrS/1X3/9tYKCguTn56eXX35ZP/zwg+rXr3/e9adPn67Q0FDXIyoqqhrToiKu6dhYYQE+OpRyWst2Hrc6DgAAAABUOUtL/eTJk2UYxgUf27dvr9A+Bg0apPj4eP38888aMmSIbrnlFh0/fv7CN2XKFKWmproeBw4cqND+UX38fLx0c9dISdLc1UyYBwAAAKD287Zy55MmTdLo0aMvuE5MTEyF9hEYGKgWLVqoRYsW6t27t1q2bKl3331XU6ZMKXF9u90uu91eoX3COrf3aqp/r9ynn3Yc18FTWYqsE2B1JAAAAACoMpaW+vDwcIWHh1frPp1Op3Jycqp1n6g+MeFB6tuinlbtTtJHaw/oz4NbWx0JAAAAAKqM21xTn5iYqPj4eCUmJsrhcCg+Pl7x8fHKyMhwrdOmTRstWLBAkpSZmaknn3xSq1evVkJCgjZs2KAxY8bo0KFDGjFihFUfA9Wg8PZ2H607oDyH0+I0AAAAAFB1LB2pL4upU6dq9uzZrudxcXGSpCVLlmjgwIGSpB07dig1NVWS5OXlpe3bt2v27Nk6efKk6tWrpx49emjFihVq3759tedH9bmyXUOFB9t1Ij1HP/x+TNd0bGx1JAAAAACoEm53n/rqxn3q3dM/Fu3QjCW71Se2nubd19vqOAAAAABQatynHh7vtl5NZTOkn/ckac+JjItvAAAAAABuiFKPWqlJmL8GtW4gSfpwDbe3AwAAAFA7UepRa43q3VSS9NnGg8rOc1icBgAAAAAqH6UetdaAVg3UJMxfKVl5+mbzEavjAAAAAEClo9Sj1vKyGbq9V8Fo/dw1CRanAQAAAIDKR6lHrTaie6S8bYY2Jqbo98NpVscBAAAAgEpFqUet1iDYT4PbN5IkzVvLaD0AAACA2oVSj1pv1JlT8BdsPKSMnHyL0wAAAABA5aHUo9a7JLaeYuoHKjPXoS/jD1kdBwAAAAAqDaUetZ5h/DFh3pzViTJN0+JEAAAAAFA5KPXwCDd3i5Svt03bjqQp/kCK1XEAAAAAoFJQ6uERwgJ8dW2nxpKkuWsSLU4DAAAAAJWDUg+PMapXtCTpq02HlZKVa3EaAAAAAKg4Sj08RtemYWrbOEQ5+U7N38iEeQAAAADcH6UeHsMwDNft7eauSWDCPAAAAABuj1IPj3JDXBMF+npp74lMrd6bbHUcAAAAAKgQSj08SpDdW8PimkiS5qxJsDgNAAAAAFQMpR4e544zE+Yt2npUJ9JzLE4DAAAAAOVHqYfHaRcRorimYcp3mvpk/QGr4wAAAABAuVHq4ZEKb2/34dpEOZxMmAcAAADAPVHq4ZGu7dRYof4+OnjqtJbvPGF1HAAAAAAoF0o9PJKfj5du7hYpqeD2dgAAAADgjij18Fi3n7ln/U/bj+tQymmL0wAAAABA2VHq4bFiw4N0SUw9OU3p47WJVscBAAAAgDKj1MOjjepdMFr/0boDynM4LU4DAAAAAGVDqYdHu6pdI9UPsut4eo4W/37M6jgAAAAAUCaUeng0X2+bRvYonDCPU/ABAAAAuBdKPTzerT2ayjCklbtPat/JTKvjAAAAAECpUerh8aLqBmhgq3BJ0odMmAcAAADAjVDqAUmjekVLkj5df0DZeQ6L0wAAAABA6VDqAUmD2jRQRKifTmXl6dutR6yOAwAAAAClQqkHJHnZDN3Ws+D2dnNXcwo+AAAAAPdAqQfOGNkjSl42Q+sTTmn70TSr4wAAAADARVHqgTMahPjpqnYNJTFaDwAAAMA9UOqBs9zRu2DCvAW/HlJmTr7FaQAAAADgwij1wFkuiamn5vUDlZGTr4WbDlsdBwAAAAAuiFIPnMVmM3T7mQnz5qxOkGmaFicCAAAAgPOj1APnuLlbpHy9bfrtcJo2HUy1Og4AAAAAnBelHjhHnUBfXduxsSRp7uoEi9MAAAAAwPlR6oESjOpdcAr+V5sPKzUrz+I0AAAAAFAySj1Qgq5N66hNo2Bl5zn1+a8HrY4DAAAAACWi1AMlMAxDo3oVjNbPXZPIhHkAAAAAaiRKPXAeN8Q1UYCvl3Yfz9CafclWxwEAAACAYij1wHkE+/loWJcmkgpG6wEAAACgpqHUAxdQeAr+d1uP6GRGjsVpAAAAAKAoSj1wAR2ahKpzVJjyHKY+Xc+EeQAAAABqFko9cBGFo/Xz1ibI6WTCPAAAAAA1B6UeuIjrOkUoxM9bB5JPa/muE1bHAQAAAAAXSj1wEf6+XhreLVISE+YBAAAAqFko9UApFJ6C/+O2YzqSetriNAAAAABQgFIPlEKLBsHq1byunKb04doDVscBAAAAAEmUeqDU7ugdLUn6aG2i8hxOi9MAAAAAAKUeKLXB7RupXqCvjqfn6Mdtx62OAwAAAACUeqC0fL1tuqVHlCRp7poEi9MAAAAAAKUeKJPbezaVYUgrdp3U/pOZVscBAAAA4OEo9UAZRNUN0IBW4ZKkD9dyezsAAAAA1qLUA2U0qlfBhHmfrD+gnHyHxWkAAAAAeDJKPVBGg1qHq3Gon05l5em7rUetjgMAAADAg1HqgTLy9rLp1h5NJUlzV3MKPgAAAADrUOqBcri1Z5S8bIbW7k/WjqPpVscBAAAA4KEo9UA5NAzx05VtG0qS5nF7OwAAAAAWcZtSP23aNPXp00cBAQEKCwsr8/YPPvigDMPQK6+8UunZ4JlG9S44Bf/zjYeUlZtvcRoAAAAAnshtSn1ubq5GjBihcePGlXnbBQsWaPXq1YqIiKiCZPBUfWPrK7pegNJz8vXVpsNWxwEAAADggdym1D/zzDOaOHGiOnbsWKbtDh06pEceeURz586Vj49PFaWDJ7LZDN3es2C0fg4T5gEAAACwgNuU+vJwOp2688479fjjj6t9+/al2iYnJ0dpaWlFHsD5jOgeJV8vm7YcStXmgylWxwEAAADgYWp1qX/++efl7e2tRx99tNTbTJ8+XaGhoa5HVFRUFSaEu6sb6KtrOjaSxO3tAAAAAFQ/S0v95MmTZRjGBR/bt28v13tv2LBBr776qmbNmiXDMEq93ZQpU5Samup6HDhwoFz7h+cY1TtakrRw02Glns6zOA0AAAAAT+Jt5c4nTZqk0aNHX3CdmJiYcr33ihUrdPz4cTVt2tS1zOFwaNKkSXrllVe0f//+Erez2+2y2+3l2ic8U/foOmrVMEg7j2VowcaDGt23udWRAAAAAHgIS0t9eHi4wsPDq+S977zzTl1xxRVFlg0ePFh33nmn7rnnnirZJzyTYRi6o3e0pn75m+auSdTdfZqV6ewQAAAAACgvt7mmPjExUfHx8UpMTJTD4VB8fLzi4+OVkZHhWqdNmzZasGCBJKlevXrq0KFDkYePj48aNWqk1q1bW/UxUEvdENdE/j5e2nU8Q+v2n7I6DgAAAAAP4TalfurUqYqLi9PTTz+tjIwMxcXFKS4uTuvXr3ets2PHDqWmplqYEp4qxM9Hw7pESJLmrkmwOA0AAAAAT2GYpmlaHaImS0tLU2hoqFJTUxUSEmJ1HNRgWw6m6roZK+XrZdMvUy5TvSDmZgAAAABQdmXpoW4zUg/UdB0jQ9U5MlS5Dqc+3XDQ6jgAAAAAPAClHqhEo3oV3N5u3ppEOZ2cBAMAAACgalHqgUp0befGCvbzVmJyllbuPml1HAAAAAC1HKUeqEQBvt4a3jVSEhPmAQAAAKh6lHqgko3q1VSStHjbcR1NzbY4DQAAAIDajFIPVLKWDYPVs3ldOZymPlqXaHUcAAAAALUYpR6oAoWj9R+tPaB8h9PiNAAAAABqK0o9UAWGdGikuoG+OpqWrZ+2H7c6DgAAAIBailIPVAG7t5dGdC+YMG/OGk7BBwAAAFA1KPVAFRnVs+Ce9ct3nlBiUpbFaQAAAADURpR6oIo0rRegS1uFS5LmrWW0HgAAAEDlo9QDVahwwrxP1x9QTr7D4jQAAAAAahtKPVCFLm/TQI1C/JSUmavvth61Og4AAACAWoZSD1Qhby+bbu0ZJUmay4R5AAAAACoZpR6oYrf2aCovm6G1+5K161i61XEAAAAA1CKUeqCKNQr10+VtGkhitB4AAABA5aLUA9VgVO+C29vN33hQWbn5FqcBAAAAUFtQ6oFq0L9FfTWtG6D07Hx9vemI1XEAAAAA1BKUeqAa2GyGbj9ze7s5axJkmqbFiQAAAADUBuUq9ZmZmZWdA6j1RnSLlK+3TZsPpmrtvmSr4wAAAACoBcpV6hs2bKgxY8Zo5cqVlZ0HqLXqBdk1olukJGnGkt0WpwEAAABQG5Sr1M+ZM0fJycm67LLL1KpVKz333HM6fPhwZWcDap0HB8TKy2Zoxa6T2nwwxeo4AAAAANxcuUr9DTfcoC+++EKHDh3Sgw8+qHnz5ik6OlrXXnutPv/8c+XnM7s3UJKougEa1jlCkvQ6o/UAAAAAKqhCE+WFh4frscce0+bNm/XSSy9p8eLFuvnmmxUREaGpU6cqKyursnICtca4gbGSpEW/HdOuY+kWpwEAAADgzipU6o8dO6YXXnhB7dq10+TJk3XzzTfrxx9/1D//+U99/vnnuuGGGyopJlB7tGwYrCHtG0mS3li6x+I0AAAAANyZd3k2+vzzz/X+++9r0aJFateunR566CHdcccdCgsLc63Tp08ftW3btrJyArXKw4Na6LvfjmrhpsOaeEUrNa0XYHUkAAAAAG6oXCP199xzjyIiIrRq1SrFx8dr/PjxRQq9JEVEROh//ud/KiMjUOt0jAzVpa3C5XCamrmc0XoAAAAA5WOYpmmWdaOsrCwFBHjGyGJaWppCQ0OVmpqqkJAQq+OgFlmzN0kj314tXy+bVvxlkBqG+FkdCQAAAEANUJYeWq6R+vz8fKWlpRV7pKenKzc3t1yhAU/TK6aeejSro1yHU+8s32t1HAAAAABuqFylPiwsTHXq1Cn2CAsLk7+/v6Kjo/X000/L6XRWdl6gVnloUAtJ0tw1iTqVyQExAAAAAGVTrlI/a9YsRURE6Mknn9QXX3yhL774Qk8++aSaNGmiN998U/fff79ee+01Pffcc5WdF6hVBrYKV/uIEJ3Oc+j9VfusjgMAAADAzZTrmvrLL79cDzzwgG655ZYiyz/55BO99dZb+vHHH/XBBx9o2rRp2r59e6WFtQLX1KOq/XfLET00d6NC/Ly1avJlCvbzsToSAAAAAAtV+TX1P//8s+Li4ootj4uL0y+//CJJ6tevnxITE8vz9oBHGdK+kWLDA5WWna85q/mdAQAAAFB65Sr1UVFRevfdd4stf/fddxUVFSVJSkpKUp06dSqWDvAANpuhcQMLrq1/d+VeZec5LE4EAAAAwF14l2ejf/zjHxoxYoS+/fZb9ejRQ5K0fv16bd++XZ999pkkad26dRo5cmTlJQVqsWFdIvTyDzt1KOW0Pl53QHf3aWZ1JAAAAABuoFzX1EvS/v379dZbb2nHjh2SpNatW+uBBx5Qs2bNKjOf5bimHtXlg1/266kvf1NEqJ+WPj5Ivt7lOpEGAAAAgJsrSw8t80h9Xl6ehgwZopkzZ2r69OnlDgmgqBHdo/Tqj7t1ODVbX8Yf0ojuUVZHAgAAAFDDlXko0MfHR5s3b66KLIBH8/Px0n39m0uS3ly6Rw5nuU6iAQAAAOBBynV+7x133FHiRHkAKmZU72iF+vto78lMfbf1qNVxAAAAANRw5ZooLz8/X++9954WL16sbt26KTAwsMjrL730UqWEAzxNkN1bo/s006s/7tKMJbt1TcdGMgzD6lgAAAAAaqhylfqtW7eqa9eukqSdO3cWeY0CAlTMPX2b6Z0Ve7XtSJqW7jihQW0aWB0JAAAAQA1VrlK/ZMmSys4B4IywAF/d0Ttaby/fqxlLdmtg63AOlgEAAAAoUYXumbV7924tWrRIp0+fliSV8+54AM5xb7/m8vW2aUPCKa3Zl2x1HAAAAAA1VLlKfVJSki6//HK1atVK11xzjY4cOSJJGjt2rCZNmlSpAQFP1CDET7d0j5Qkvb5kt8VpAAAAANRU5Sr1EydOlI+PjxITExUQEOBaPnLkSH333XeVFg7wZA9cGisvm6EVu05q04EUq+MAAAAAqIHKVeq///57Pf/884qMjCyyvGXLlkpISKiUYICni6oboGFdIiQxWg8AAACgZOUq9ZmZmUVG6AslJyfLbrdXOBSAAg8NjJVhSN//fkw7j6VbHQcAAABADVOuUt+/f3/95z//cT03DENOp1MvvPCCBg0aVGnhAE/XokGwhrRvJEl6g9F6AAAAAOco1y3tXnjhBV1++eVav369cnNz9cQTT+i3335TcnKyVq1aVdkZAY/20MAW+nbrUS3cdFiPXdlaTesVP0sGAAAAgGcq10h9hw4dtHPnTvXr10/Dhg1TZmambrrpJv3666+KjY2t7IyAR+sYGaoBrcLlNKU3l+2xOg4AAACAGsQwubn8BaWlpSk0NFSpqakKCQmxOg481Np9ybrlrV/k62XT8icGqVGon9WRAAAAAFSRsvTQcp1+L0kpKSlau3atjh8/LqfTWeS1u+66q7xvC6AEPZvXVc9mdbV2f7LeWbFXT13bzupIAAAAAGqAco3Uf/XVVxo1apQyMjIUEhIiwzD+eEPDUHJycqWGtBIj9agplu44rtHvr5O/j5dWTb5MdQN9rY4EAAAAoAqUpYeW65r6SZMmacyYMcrIyFBKSopOnTrletSmQg/UJANahatDkxCdznPo/VX7rI4DAAAAoAYoV6k/dOiQHn300RLvVQ+gahiGoYcHtpAkzfp5v9Kz8yxOBAAAAMBq5Sr1gwcP1vr16ys7C4CLGNy+kWLDA5Wena8PVidYHQcAAACAxco1Ud7QoUP1+OOP6/fff1fHjh3l4+NT5PXrr7++UsIBKMpmM/TQwBaa9Okmvbtin+7p01z+vl5WxwIAAABgkXJNlGeznX+A3zAMORyOCoWqSZgoDzVNnsOpQf9YqoOnTuuv17XT6L7NrY4EAAAAoBJV+UR5TqfzvI/aVOiBmsjHy6YHBsRKkt5evle5+c6LbAEAAACgtipTqb/mmmuUmprqev7cc88pJSXF9TwpKUnt2nH/bKCqjegWqfBguw6nZuuLXw9ZHQcAAACARcpU6hctWqScnBzX87///e9FbmGXn5+vHTt2VF66s0ybNk19+vRRQECAwsLCSrXN6NGjZRhGkceQIUOqJB9Qnfx8vHRf/4LT7t9ctkcOZ5mvogEAAABQC5Sp1J97+X05Lscvt9zcXI0YMULjxo0r03ZDhgzRkSNHXI8PP/ywihIC1WtUr2iF+vto38lM/XfLEavjAAAAALBAuWa/t8IzzzwjSZo1a1aZtrPb7WrUqFEVJAKsFWj31j19m+mVxbv0+pLdurZTYxmGYXUsAAAAANWoTCP1haewn7usJlu6dKkaNGig1q1ba9y4cUpKSrrg+jk5OUpLSyvyAGqq0X2aKdDXS9uPpuun7cetjgMAAACgmpVppN40TY0ePVp2u12SlJ2drQcffFCBgYGSVOR6+5pgyJAhuummm9S8eXPt2bNHTz75pK6++mr98ssv8vIq+d7e06dPd50VANR0YQG+uqN3tN5avlczluzWZW0a1PgDbQAAAAAqT5nuU3/PPfeUar3333+/VOtNnjxZzz///AXX2bZtm9q0aeN6PmvWLE2YMKHIrPultXfvXsXGxmrx4sW6/PLLS1wnJyenyMGJtLQ0RUVFcZ961FjH07PV7/klys13at59vdQntr7VkQAAAABUQFnuU1+mkfrSlvXSmjRpkkaPHn3BdWJiYiptfzExMapfv75279593lJvt9tdZyIA7qBBsJ9Gdo/SB6sT9MaSPZR6AAAAwINYOlFeeHi4wsPDq21/Bw8eVFJSkho3blxt+wSqwwMDYvTh2kSt3H1S8QdS1CUqzOpIAAAAAKpBmSbKs1JiYqLi4+OVmJgoh8Oh+Ph4xcfHKyMjw7VOmzZttGDBAklSRkaGHn/8ca1evVr79+/Xjz/+qGHDhqlFixYaPHiwVR8DqBKRdQI0rEsTSdLrS3ZbnAYAAABAdXGbUj916lTFxcXp6aefVkZGhuLi4hQXF6f169e71tmxY4dSU1MlSV5eXtq8ebOuv/56tWrVSmPHjlW3bt20YsUKTq9HrTRuYKwMQ/rh92PafpS7NgAAAACeoEwT5XmiskxQAFjtobkb9N8tRzWsS4RevTXO6jgAAAAAyqEsPdRtRuoBXNxDA1tIkr7adFj7T2ZanAYAAABAVaPUA7VIhyahGtg6XE5Temv5HqvjAAAAAKhilHqglhk/qGC0/rMNB3Uk9bTFaQAAAABUJUo9UMt0b1ZXPZvXVZ7D1DvL91kdBwAAAEAVotQDtVDhaP28tQlKysixOA0AAACAqkKpB2qh/i3rq2OTUGXnOfX+qv1WxwEAAABQRSj1QC1kGIYePjNaP/uX/UrLzrM4EQAAAICqQKkHaqmr2jVUywZBSs/O1we/JFgdBwAAAEAVoNQDtZTNZuihQbGSpPdW7tPpXIfFiQAAAABUNko9UItd1ylCUXX9lZSZq4/WJVodBwAAAEAlo9QDtZi3l00PDigYrX97+V7l5jstTgQAAACgMlHqgVpueNdINQi260hqthb8etDqOAAAAAAqEaUeqOX8fLx0/6UxkqQ3l+6Rw2lanAgAAABAZaHUAx7gtp5NFRbgo/1JWfpmyxGr4wAAAACoJJR6wAME2r01pm9zSdIbS3bLNBmtBwAAAGoDSj3gIe6+pJmC7N7afjRdP247bnUcAAAAAJWAUg94iNAAH93RO1qSNIPRegAAAKBWoNQDHmRsv+aye9sUfyBFv+xJsjoOAAAAgAqi1AMeJDzYrlt7REmSXl+62+I0AAAAACqKUg94mPsHxMrbZmjV7iT9mnjK6jgAAAAAKoBSD3iYJmH+ujGuiSTp9SV7LE4DAAAAoCIo9YAHenBgrAxDWrztmLYfTbM6DgAAAIByotQDHig2PEjXdGgsSXqD0XoAAADAbVHqAQ/10KBYSdLXmw9r/8lMi9MAAAAAKA9KPeCh2keEalDrcDlNaeYyRusBAAAAd0SpBzzY+MtaSJLmbzyowymnLU4DAAAAoKwo9YAH6xZdV72a11Wew9Q7K/ZaHQcAAABAGVHqAQ9XOFr/4dpEnczIsTgNAAAAgLKg1AMerl+L+uoUGarsPKfeX7XP6jgAAAAAyoBSD3g4wzD08KCC0fr//Jyg1NN5FicCAAAAUFqUegC6sm1DtWoYpPScfM1ZnWB1HAAAAAClRKkHIJvN0EMDC0br3125T1m5+RYnAgAAAFAalHoAkqRrOzVW07oBSs7M1UdrD1gdBwAAAEApUOoBSJK8vWx6cECsJOnt5XuVk++wOBEAAACAi6HUA3AZ3q2JGobYdTQtWws2HrI6DgAAAICLoNQDcLF7e+m+/jGSpDeX7VG+w2lxIgAAAAAXQqkHUMTtvZqqToCPEpKy9M2WI1bHAQAAAHABlHoARQT4emtM3+aSpDeW7JHTaVqcCAAAAMD5UOoBFHPXJc0UZPfWjmPp+nH7cavjAAAAADgPSj2AYkIDfHTnJdGSpBlLdss0Ga0HAAAAaiJKPYASjenbXHZvmzYdSNHPe5KsjgMAAACgBJR6ACUKD7brtp5NJUkzftptcRoAAAAAJaHUAziv+y6NkbfN0C97k7Qh4ZTVcQAAAACcg1IP4LyahPnrpq5NJElvLGG0HgAAAKhpKPUALujBAbGyGdKP24/r98NpVscBAAAAcBZKPYALigkP0jUdG0uS3ljKaD0AAABQk1DqAVzUQwNbSJK+2XJEe09kWJwGAAAAQCFKPYCLahcRosvbNJBpSjOX7bE6DgAAAIAzKPUASuWhQQWj9Z9vPKRDKactTgMAAABAotQDKKVu0XV0SUw95TtNvbN8r9VxAAAAAIhSD6AMHj4zWv/h2kSdzMixOA0AAAAASj2AUuvbop46R4UpJ9+pd1fuszoOAAAA4PEo9QBKzTAMPTwwVpL0wS8JSj2dZ3EiAAAAwLNR6gGUyRVtG6p1w2Bl5OTrPz/vtzoOAAAA4NEo9QDKxGYz9NCggtH691btU1ZuvsWJAAAAAM9FqQdQZkM7NlZ0vQCdysrTvDWJVscBAAAAPBalHkCZeXvZ9OCAgtH6d1bsVU6+w+JEAAAAgGei1AMol5u6NlGjED8dS8vR5xsPWR0HAAAA8EiUegDlYvf20n2XxkiS3ly6R/kOp8WJAAAAAM9DqQdQbrf1jFLdQF8lJmfpmy1HrI4DAAAAeBxKPYByC/D11pi+zSRJry/ZLafTtDYQAAAA4GHcptRPmzZNffr0UUBAgMLCwkq93bZt23T99dcrNDRUgYGB6tGjhxITma0bqCx3XtJMwXZv7TyWocXbjlkdBwAAAPAoblPqc3NzNWLECI0bN67U2+zZs0f9+vVTmzZttHTpUm3evFlPPfWU/Pz8qjAp4FlC/X105yXRkgpG602T0XoAAACguhimm/0X+KxZszRhwgSlpKRcdN1bb71VPj4++uCDD8q9v7S0NIWGhio1NVUhISHlfh+gNjuZkaN+z/+k7Dyn5oztpX4t61sdCQAAAHBbZemhbjNSX1ZOp1PffPONWrVqpcGDB6tBgwbq1auXvvjiiwtul5OTo7S0tCIPABdWP8iuW3s0lSTNWLLL4jQAAACA56i1pf748ePKyMjQc889pyFDhuj777/XjTfeqJtuuknLli0773bTp09XaGio6xEVFVWNqQH3df+lMfLxMrR6b7I2JCRbHQcAAADwCJaW+smTJ8swjAs+tm/fXq73djoL7pk9bNgwTZw4UV26dNHkyZN17bXXaubMmefdbsqUKUpNTXU9Dhw4UK79A54mIsxfN8VFSpJeX7LH4jQAAACAZ/C2cueTJk3S6NGjL7hOTExMud67fv368vb2Vrt27Yosb9u2rVauXHne7ex2u+x2e7n2CXi6BwfG6tMNB/TT9uP67XCq2keEWh0JAAAAqNUsLfXh4eEKDw+vkvf29fVVjx49tGPHjiLLd+7cqejo6CrZJ+DpmtcP1NBOEfpq02G9sXSPXr+9q9WRAAAAgFrNba6pT0xMVHx8vBITE+VwOBQfH6/4+HhlZGS41mnTpo0WLFjgev7444/r448/1jvvvKPdu3drxowZ+uqrr/TQQw9Z8REAj/DQwFhJ0n+3HNHeExkXWRsAAABARbhNqZ86dari4uL09NNPKyMjQ3FxcYqLi9P69etd6+zYsUOpqamu5zfeeKNmzpypF154QR07dtS///1vzZ8/X/369bPiIwAeoW3jEF3RtoFMU3pzKdfWAwAAAFXJ7e5TX924Tz1QdhsTT+mmN36Wt83QsicGqUmYv9WRAAAAALfBfeoBWKpr0zrqE1tP+U5Tby9jtB4AAACoKpR6AFXi4UEtJEkfrTugE+k5FqcBAAAAaidKPYAq0Se2nrpEhSkn36l3V+6zOg4AAABQK1HqAVQJwzBco/VzVicoNSvP4kQAAABA7UOpB1BlLm/TQG0aBSsjJ1+zf9lvdRwAAACg1qHUA6gyNpuhcWfuW//eqn3KzMm3OBEAAABQu1DqAVSpaztFqFm9AKVk5enDtYlWxwEAAABqFUo9gCrlZTP04ICC0fq3l+9VTr7D4kQAAABA7UGpB1DlbuoaqcahfjqenqPPNhy0Og4AAABQa1DqAVQ5X2+b7usfI0mauWyP8h1OixMBAAAAtQOlHkC1uK1nU9UN9NWB5NP6avNhq+MAAAAAtQKlHkC18Pf10th+zSVJbyzZI6fTtDgRAAAA4P4o9QCqzZ2XRCvY7q1dxzP0/e/HrI4DAAAAuD1KPYBqE+Lno7v6REuS3li6W6bJaD0AAABQEZR6ANVqTN/m8vOxafPBVK3YddLqOAAAAIBbo9QDqFb1guy6rWdTSdLrS3ZbnAYAAABwb5R6ANXu/ktj5ONlaM2+ZK3fn2x1HAAAAMBtUeoBVLvGof4a3jVSEqP1AAAAQEVQ6gFY4sEBsbIZ0pIdJ7T1UKrVcQAAAAC3RKkHYIlm9QN1bacISdKbS/dYnAYAAABwT5R6AJZ5aFCsJOm/W49o9/EMi9MAAAAA7odSD8AybRqF6Iq2DWWa0sxljNYDAAAAZUWpB2Cph8+M1n/x6yEdPJVlcRoAAADAvVDqAVgqrmkd9W1RT/lOU28v32t1HAAAAMCtUOoBWO7hQS0kSR+tO6Dj6dkWpwEAAADcB6UegOUuiamnuKZhys136t2V+6yOAwAAALgNSj0AyxmGofFnRuvn/JKglKxcixMBAAAA7oFSD6BGuKxNA7VpFKzMXIdm/5xgdRwAAADALVDqAdQIhmG4rq1//+d9yszJtzgRAAAAUPNR6gHUGNd0bKzm9QOVkpWneWsSrY4DAAAA1HiUegA1hpfN0LgBBfetf2fFXmXnOSxOBAAAANRslHoANcoNcU0UEeqn4+k5+mzDQavjAAAAADUapR5AjeLrbdP9l8ZIkmYu26N8h9PiRAAAAEDNRakHUOOM7NFU9QJ9dfDUaS3cdNjqOAAAAECNRakHUOP4+3ppbP/mkqQ3lu6R02lanAgAAAComSj1AGqkO3pHK9jPW7uPZ+j7349aHQcAAACokSj1AGqkED8f3X1JM0nS60v2yDQZrQcAAADORakHUGON6ddc/j5e2nIoVct3nbQ6DgAAAFDjUOoB1Fh1A311W8+mkqTXl+y2OA0AAABQ81DqAdRo918aIx8vQ2v3JWvd/mSr4wAAAAA1CqUeQI3WKNRPN3eLlMRoPQAAAHAuSj2AGu/BAbGyGdLSHSe09VCq1XEAAACAGoNSD6DGi64XqOs6R0iS3ljKaD0AAABQiFIPwC08NLCFJOnbrUe1+3i6xWkAAACAmoFSD8AttG4UrCvbNZRpSm8u3Wt1HAAAAKBGoNQDcBsPDyoYrf8i/pAOJGdZnAYAAACwHqUegNvoEhWmfi3qy+E09fZyRusBAAAASj0At1I4Wv/x+gM6npZtcRoAAADAWpR6AG6ld0xddW0aptx8p95duc/qOAAAAIClKPUA3IphGBp/WcFo/ZzVCUrJyrU4EQAAAGAdSj0AtzOodQO1bRyizFyHZv283+o4AAAAgGUo9QDcjmEYenhQrCTp/VX7lZGTb3EiAAAAwBqUegBu6eoOjRVTP1Cpp/M0b02C1XEAAAAAS1DqAbglL5uhBwcWjNa/s2KfsvMcFicCAAAAqh+lHoDbuqFLE0WE+ulEeo4+3XDQ6jgAAABAtaPUA3Bbvt42PTCgYLR+5tI9ynM4LU4EAAAAVC9KPQC3NrJHlOoH+epQymktjD9sdRwAAACgWlHqAbg1Px8vje0XI0l6Y+luOZ2mxYkAAACA6kOpB+D27ujdVCF+3tpzIlOLfjtqdRwAAACg2lDqAbi9YD8fje7TTJI0Y8lumSaj9QAAAPAMblPqp02bpj59+iggIEBhYWGl2sYwjBIfL774YtWGBVDtRvdtLn8fL/12OE3Ldp6wOg4AAABQLdym1Ofm5mrEiBEaN25cqbc5cuRIkcd7770nwzA0fPjwKkwKwAp1A301qldTSdLrS3ZbnAYAAACoHt5WByitZ555RpI0a9asUm/TqFGjIs+//PJLDRo0SDExMZUZDUANcd+lMfrPLwlat/+U1u5LVs/mda2OBAAAAFQptxmpr6hjx47pm2++0dixYy+4Xk5OjtLS0oo8ALiHhiF+url7pKSCa+sBAACA2s5jSv3s2bMVHBysm2666YLrTZ8+XaGhoa5HVFRUNSUEUBkevDRWXjZDy3ee0JaDqVbHAQAAAKqUpaV+8uTJ553MrvCxffv2StnXe++9p1GjRsnPz++C602ZMkWpqamux4EDBypl/wCqR9N6Abq+c4Qkrq0HAABA7WfpNfWTJk3S6NGjL7hOZVz/vmLFCu3YsUMff/zxRde12+2y2+0V3icA64wbGKsFvx7Sd78d1a5j6WrZMNjqSAAAAECVsLTUh4eHKzw8vMr38+6776pbt27q3Llzle8LgPVaNQzW4PYNtei3Y3pz6R69NLKL1ZEAAACAKuE219QnJiYqPj5eiYmJcjgcio+PV3x8vDIyMlzrtGnTRgsWLCiyXVpamj799FPde++91R0ZgIUeHtRCkvTlpsM6kJxlcRoAAACgarhNqZ86dari4uL09NNPKyMjQ3FxcYqLi9P69etd6+zYsUOpqUUnxvroo49kmqZuu+226o4MwEKdIsPUv2V9OZymZi7bY3UcAAAAoEoYpmmaVoeoydLS0hQaGqrU1FSFhIRYHQdAGazem6Rb314tXy+bVv5lkBqEXHiiTAAAAKAmKEsPdZuRegAoq17N66p7dB3lOpx6Z8Veq+MAAAAAlY5SD6DWMgzDdW393DWJOpWZa3EiAAAAoHJR6gHUagNbh6td4xBl5Tr0/s/7rY4DAAAAVCpKPYBa7ezR+lmr9ikjJ9/iRAAAAEDlodQDqPWGdGikmPBApWXna+7qBKvjAAAAAJWGUg+g1vOyGRo3IFaS9M6KfcrOc1icCAAAAKgclHoAHuGGuCZqEuavkxk5+nT9AavjAAAAAJWCUg/AI/h42fTAgBhJ0sxle5XncFqcCAAAAKg4Sj0Aj3FL9yjVD7LrUMppfRl/2Oo4AAAAQIVR6gF4DD8fL93bv7kk6Y2lu+VwmhYnAgAAACqGUg/Ao4zq1VQhft7aeyJTi347anUcAAAAoEIo9QA8SrCfj0b3LRitf33Jbpkmo/UAAABwX5R6AB7nnj7NFODrpd8Op2npzhNWxwEAAADKjVIPwOPUCfTVqF5NJUmv/8RoPQAAANwXpR6AR7q3f4x8vWxan3BKa/clWx0HAAAAKBdKPQCP1DDETyO6R0qSZizZbXEaAAAAoHwo9QA81oMDYuVlM7Ri10ltPphidRwAAACgzCj1ADxWVN0ADescIalgJnwAAADA3VDqAXi0cQNjJUmLfjumXcfSLU4DAAAAlA2lHoBHa9kwWEPaN5IkvbF0j8VpAAAAgLKh1APweA8PaiFJWrjpsBKTsixOAwAAAJQepR6Ax+sYGapLW4XL4TQ1czmj9QAAAHAflHoAkPTwmWvrP1t/UMfSsi1OAwAAAJQOpR4AJPWKqacezeoo1+HUO8v3Wh0HAAAAKBVKPQCc8dCZa+vnrknUqcxci9MAAAAAF+dtdQAAqCkGtgpX+4gQ/XY4TVe/ukLhwXYF2b0VaPdWsJ+3guzeCjrzp+v5mWXBdh8F2r1cf/fzsckwDKs/EgAAAGo5Sj0AnGEYhh67spXGzl6vo2nZOlqBa+u9bIar9J99QCDQ7q1ge0kHCHyKPA+0/3HQwMvGwQEAAACUzDBN07Q6RE2Wlpam0NBQpaamKiQkxOo4AKpBYlKWjqVnKyM7X+k5+crIzldGTp4ychxn/T1f6dn5ynC9fubP3HxV9v+qBvh6nXVGwB8HA1wHCM46KFDSAYPCAwR2b84eAAAAcAdl6aGM1APAOZrWC1DTegHl2tbpNHU6z1FC6c8rfhAg54/n6ecsT8/OU56j4OhAVq5DWbkOHU/PqdDn8vEyzir8PkUOEASdfTlBCQcQCs8mCLR7KdDXWzbOHgAAAKgRKPUAUIlsNkOBZ0bRG1bw5J6c/IIzAzJzHErPyTun9Bc9QJCena/Mwtdy8pWRned6PTPXIUnKc5g6lZWnU1l5kk5XKFtQiZcQlHCA4NxLDM5aN9DuLV9v5msFAACoCEo9ANRQdm8v2YO8VC+oYu/jcJrKzD1T8HPOOSug2CUG5xwgOOdAgsNZcPZA4TKlVSybr7et6BkDxSYl9FGQvfDyg6IHBRqG+KlRqF/FAgAAALg5Sj0A1HJeNkMhfj4K8fOp0PuYpqmcfOd5LiPIK34ZwVnPCw8qFD4/nVdw9kBuvlNJ+blKKuctBEd2j9KTQ9sq1L9inw0AAMBdUeoBAKViGIb8fLzk5+Ol8GB7hd4r3+H847KCsw4AZJ5zSUGRSwzOuqwgM8ehQymn9fH6A1qy47ievaGDBrdvVEmfFAAAwH1Q6gEA1c7by6bQAJtCA8o/wr52X7Imz9+svScz9cAHGzS0Y2P99fr2FT7gAAAA4E6YoQgA4JZ6Nq+r//6pvx4aGCsvm6FvthzRFS8t0/wNB8XdWgEAgKeg1AMA3Jafj5eeGNJGXz7cV+0ahyj1dJ4mfbpJd7+/TgdPZVkdDwAAoMpR6gEAbq9Dk1B9Ob6vnhjSWr7eNi3feUKDX16u//yyX04no/YAAKD2otQDAGoFHy+bHhrYQt/+qb96NKujzFyHpn75m2556xftPp5hdTwAAIAqQakHANQqseFB+vj+S/TssPYK9PXS+oRTuubVFXp9yW7lOZxWxwMAAKhUlHoAQK1jsxm685Jm+v6xARrQKly5DqdeXLRDw2as0tZDqVbHAwAAqDSUegBArdUkzF+z7umhl0d2VliAj34/kqZhr6/S899tV3aew+p4AAAAFUapBwDUaoZh6Ma4SC1+bICGdmosh9PUm0v36JpXV2jtvmSr4wEAAFQIpR4A4BHqB9n1+u1d9dad3dQg2K69JzN1y1u/6Kkvtio9O8/qeAAAAOVCqQcAeJTB7Rvph8cG6LaeUZKkD1YnaPDLy7Vk+3GLkwEAAJQdpR4A4HFC/X00/aZOmndvLzWtG6DDqdm6Z9Y6Tfw4XsmZuVbHAwAAKDVKPQDAY/VpUV+LJlyqe/s1l82QFvx6SFe+tExfbTos0zStjgcAAHBRlHoAgEfz9/XS/17bTvPH9VGrhkFKyszVIx/+qvv+s0FHU7OtjgcAAHBBlHoAACTFNa2jrx/prwlXtJSPl6HF247pypeW6cO1iYzaAwCAGotSDwDAGb7eNk24opW+fqS/OkeFKT0nX1M+36Lb31mjhKRMq+MBAAAUQ6kHAOAcrRsF6/NxffS/Q9vKz8emX/YmafAry/XO8r1yOBm1BwAANQelHgCAEnjZDN3bP0bfTxigPrH1lJ3n1LT/btNNb6zS9qNpVscDAACQRKkHAOCCmtYL0Nx7e+n54R0V7OetTQdTde1rK/XSDzuVk++wOh4AAPBwlHoAAC7CMAyN7NFUix8boCvbNVS+09RrP+7Sta+t1MbEU1bHAwAAHoxSDwBAKTUM8dPbd3bT67d3Vf0gX+06nqHhb/6sZ7/+XVm5+VbHAwAAHohSDwBAGRiGoaGdGuuHiQN0U9cmMk3p3ZX7NPiV5Vq566TV8QAAgIeh1AMAUA51An310i1dNOueHmoS5q8Dyad1x7tr9MRnm5R6Os/qeAAAwENQ6gEAqICBrRto0cRLdfcl0ZKkT9Yf1JUvLdOi345anAwAAHgCSj0AABUUZPfWM8M66NMHL1FMeKCOp+fogQ826OG5G3UiPcfqeAAAoBaj1AMAUEl6NKur/z7aXw8PipWXzdA3W47oipeWaf6GgzJN0+p4AACgFqLUAwBQifx8vPT44DZaOL6v2keEKPV0niZ9ukl3v79OB09lWR0PAADUMpR6AACqQPuIUH3xcF/9ZUgb+XrbtHznCV318nLN/nm/nE5G7QEAQOVwm1I/bdo09enTRwEBAQoLCyvVNhkZGRo/frwiIyPl7++vdu3aaebMmVUbFACAM3y8bBo3MFbf/qm/ejarq6xch55e+JtueesX7T6eYXU8AABQC7hNqc/NzdWIESM0bty4Um/z2GOP6bvvvtOcOXO0bds2TZgwQePHj9fChQurMCkAAEXFhgfpo/t769lh7RXo66X1Cad0zasr9PqS3cpzOK2OBwAA3JjblPpnnnlGEydOVMeOHUu9zc8//6y7775bAwcOVLNmzXT//ferc+fOWrt2bRUmBQCgOJvN0J2XNNP3jw3QwNbhynU49eKiHbp+xiptPZRqdTwAAOCm3KbUl0efPn20cOFCHTp0SKZpasmSJdq5c6euuuqq826Tk5OjtLS0Ig8AACpLkzB/vT+6h14e2Vl1Any07Uiahr2+Ss99u13ZeQ6r4wEAADdTq0v9v/71L7Vr106RkZHy9fXVkCFD9Prrr+vSSy897zbTp09XaGio6xEVFVWNiQEAnsAwDN0YF6kfHhug6zpHyOE0NXPZHl396gqt2ZtkdTwAAOBGLC31kydPlmEYF3xs37693O//r3/9S6tXr9bChQu1YcMG/fOf/9TDDz+sxYsXn3ebKVOmKDU11fU4cOBAufcPAMCF1A+y61+3xemdu7qrYYhd+05mauTbq/W/X2xRenae1fEAAIAbMEzTtOy+OidOnFBS0oVHJGJiYuTr6+t6PmvWLE2YMEEpKSkX3O706dMKDQ3VggULNHToUNfye++9VwcPHtR3331XqoxpaWkKDQ1VamqqQkJCSrUNAABllXo6T899u00fri04mNw41E9/v7GjBrVpYHEyAABQ3crSQ72rKVOJwsPDFR4eXiXvnZeXp7y8PNlsRU9G8PLyktPJTMMAgJol1N9H02/qpOs6RWjy51uUmJyle2at0w1dIjT1uvaqG+h78TcBAAAex22uqU9MTFR8fLwSExPlcDgUHx+v+Ph4ZWT8cZ/fNm3aaMGCBZKkkJAQDRgwQI8//riWLl2qffv2adasWfrPf/6jG2+80aqPAQDABfVpUV+LJlyq+/o3l82Qvog/rCtfWqavNh2WhSfXAQCAGsrS0+/LYvTo0Zo9e3ax5UuWLNHAgQMlFUw89P7772v06NGSpKNHj2rKlCn6/vvvlZycrOjoaN1///2aOHGiDMMo1X45/R4AYJX4Ayn6y2ebteNYuiTpirYN9bcbOqhRqJ/FyQAAQFUqSw91m1JvFUo9AMBKuflOvbl0j2Ys2aU8h6lgu7eeHNpWt/aIKvUBagAA4F7K0kPd5vR7AAA8ka+3TX+6oqW+ebS/ukSFKT0nX1M+36Lb31mj/SczrY4HAAAsRqkHAMANtGoYrPnj+uipa9vJ38dLv+xN0pBXl+ud5XuV72ACWAAAPBWlHgAAN+FlMzS2X3MtmnCp+raop+w8p6b9d5uGv/mzth9NszoeAACwAKUeAAA307RegOaM7aUXhndSsJ+3Nh1M1bWvrdRLP+xUTr7D6ngAAKAaUeoBAHBDhmHolh5RWvzYAF3VrqHynaZe+3GXrn1tpTYmnrI6HgAAqCaUegAA3FjDED+9dWc3vTGqq+oH+WrX8QwNf/Nn/d9XvysrN9/qeAAAoIpR6gEAcHOGYeiajo31w8QBGt41UqYpvbdqn656eblW7jppdTwAAFCFKPUAANQSdQJ99c9bOmv2mJ5qEuavg6dO64531+iJzzYpNSvP6ngAAKAKUOoBAKhlBrQK16KJl+ruS6JlGNIn6w/qipeX6butR62OBgAAKhmlHgCAWijI7q1nhnXQpw9copjwQJ1Iz9GDczboobkbdDw92+p4AACgklDqAQCoxbo3q6v/Ptpf4we1kJfN0H+3HNWVLy3XZxsOyjRNq+MBAIAKotQDAFDL+fl46c+DW2vh+L7q0CREqafz9OdPN+mu99bqQHKW1fEAAEAFUOoBAPAQ7SNC9cVDffWXIW3k623Til0nNfiV5Zq1ap+cTkbtAQBwR5R6AAA8iLeXTeMGxuq7P/VXz2Z1lZXr0F+/+l0j3vpFu4+nWx0PAACUEaUeAAAPFBMepI/u761nb+igILu3NiSc0jWvrtTrS3Yrz+G0Oh4AACglSj0AAB7KZjN0Z+9ofT/xUg1sHa5ch1MvLtqh62es0paDqVbHAwAApUCpBwDAw0WE+ev90T30ysguqhPgo21H0nTDG6v03LfblZ3nsDoeAAC4AEo9AACQYRi6Ia6JfnhsgK7rHCGH09TMZXt09asrtGZvktXxAADAeVDqAQCAS/0gu/51W5zeuau7GobYte9kpka+vVr/+8UWpWfnWR0PAACcg1IPAACKubJdQ/3w2ADd1rOpJGnO6kRd9fJyLdl+3OJkAADgbJR6AABQohA/H02/qaPm3ddL0fUCdCQ1W/fMWqcJH/2q5Mxcq+MBAABR6gEAwEX0ia2v7/50qe6/NEY2Q/oi/rCueGmZFm46LNM0rY4HAIBHo9QDAICL8vf10pPXtNWCh/qqTaNgJWfm6tEPf9V9/1mvI6mnrY4HAIDHotQDAIBS6xwVpoXj++mxK1vJx8vQ4m3HddVLyzVvTaKcTkbtAQCobpR6AABQJr7eNj16eUt982h/xTUNU3pOvp5csEW3/3u19p/MtDoeAAAehVIPAADKpVXDYH32YB9Nvbad/H28tHpvsga/slxvL9+jfIfT6ngAAHgESj0AACg3L5uhMf2a6/uJl6pfi/rKyXfq7//drpve/FnbjqRZHQ8AgFrPMJm29oLS0tIUGhqq1NRUhYSEWB0HAIAayzRNfbrhoP729e9Ky86Xt83QNR0bK9DuJZthyMtmuP784++Sl2HIZjP++PPsvxsFBw6KvF74Xq6/S4ZRfLntzHsXXffsDLpArrPe48yyP9Yt2B8AAFWlLD2UUn8RlHoAAMrmeFq2nvpyqxb9dszqKFXGZqiEAwDnOVhxzgEJm+08BzPOHEQo9p5FDkzoPAc2/thvyQcwznr97AMUNkPeNkO+Xjb5+XjJz+ePP+3eXucs85Kft03eXpzoCQBVrSw91LuaMgEAAA/RIMRPb93ZXct2ntDWQ6lyOk05TNP1p8MpOU1TDmfBo/Dvfyw76/XC7c5+3ZRrmcM0ZZawvNj2pimnU8WWOZznvH5m2cU4TcnpMCV53tiIt80oUvz9fc8U/7MOAth9vM48P+tgwbmvnzlI4DpgULiu99nr2OTrZePMCAC4AEo9AACoEgNahWtAq3CrY5RLkdLv+lMlHKAoejDg/AcrVPLBhrNfP2fZ+ZYX3V7nHLgofjDD4TxP7jMHMvKdpnIdTmXnOZST51B2nlOn8xzKLnzkO5Wb/8fEh/lOUxk5+crIqZ7vwmbozFkDNvmfOQBgL3KgoOiBgWJnGJxz4KD4AYeiBx3s3jbZbBxEAOA+KPUAAADnsNkM2WTIx8vqJDWD02kqJ995puQXFH9X6c9zKjv/jwMCZx8MyD5rWc55tjud6/jjvc9aXniBqNOUTuc5dDrPoVPKq5bP6+tdeAChpLMHzj5QUPTSBHsJBwm4pAFAVaPUAwAA4IJsNkP+vgWn2lcH0yw8e8D5x8GCfEeRgwRnHzgockChyMGD4gccTp918ODsAw35Z112kXvm7ITU09XyceXjZcjP+6wzEEq6ZMHbSzIkQ39M1Fjw9+LLCtYzVHjVwh/rnbXszIqF2+ucdf5YZhR7rch7GoZrXZW4ffFlOrNN4Wt/rPfHe6qE7c/3WQpznv3zcC0rfF7sZ1bye6rIsj/es6Qsxff7x2epbWrbRwr191GfFvWtjlFpKPUAAACoUQzDkN3bq6DI+vtUyz7zHc6zzi443xkGxQ8c5BQ5K+Hsdc5eVvxgxNmXNOQ5TOU58pWek18tnxXwdB2bhOqrR/pZHaPSUOoBAADg8by9bArysinIXj3/eVzWSxpy8p0yTdM1NaNpFkzTWHgjq8LLFUyZZ71WdJnOWd90/XnW62deLGn7c5fprAxnb3/uexbu9+zXzs2gs5eVkMm1nfnH9JRF37PoMp27n7Pe8+yfoYotK/k9/8h79s+y+HvWxrkzzVr4oWLqB1kdoVJR6gEAAIBqVt2XNACovZiVAwAAAAAAN0WpBwAAAADATVHqAQAAAABwU5R6AAAAAADcFKUeAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAAAAAwE1R6gEAAAAAcFOUegAAAAAA3BSlHgAAAAAAN0WpBwAAAADATVHqAQAAAABwU5R6AAAAAADcFKUeAAAAAAA3RakHAAAAAMBNUeoBAAAAAHBTlHoAAAAAANwUpR4AAAAAADdFqQcAAAAAwE1R6gEAAAAAcFOUegAAAAAA3BSlHgAAAAAAN+VtdYCazjRNSVJaWprFSQAAAAAAnqCwfxb20Quh1F9Eenq6JCkqKsriJAAAAAAAT5Kenq7Q0NALrmOYpan+HszpdOrw4cMKDg6WYRhWxzmvtLQ0RUVF6cCBAwoJCbE6Ds6D78k98D3VfHxH7oHvyT3wPdV8fEfuge/JPbjL92SaptLT0xURESGb7cJXzTNSfxE2m02RkZFWxyi1kJCQGv2PEwX4ntwD31PNx3fkHvie3APfU83Hd+Qe+J7cgzt8TxcboS/ERHkAAAAAALgpSj0AAAAAAG6KUl9L2O12Pf3007Lb7VZHwQXwPbkHvqeaj+/IPfA9uQe+p5qP78g98D25h9r4PTFRHgAAAAAAboqRegAAAAAA3BSlHgAAAAAAN0WpBwAAAADATVHqAQAAAABwU5R6N7d8+XJdd911ioiIkGEY+uKLL6yOhBJMnz5dPXr0UHBwsBo0aKAbbrhBO3bssDoWzvLmm2+qU6dOCgkJUUhIiC655BJ9++23VsfCRTz33HMyDEMTJkywOgrO8te//lWGYRR5tGnTxupYOMehQ4d0xx13qF69evL391fHjh21fv16q2PhLM2aNSv2u2QYhh5++GGro+EsDodDTz31lJo3by5/f3/Fxsbq2WefFfOR1yzp6emaMGGCoqOj5e/vrz59+mjdunVWx6oU3lYHQMVkZmaqc+fOGjNmjG666Sar4+A8li1bpocfflg9evRQfn6+nnzySV111VX6/fffFRgYaHU8SIqMjNRzzz2nli1byjRNzZ49W8OGDdOvv/6q9u3bWx0PJVi3bp3eeustderUyeooKEH79u21ePFi13Nvb/6ToyY5deqU+vbtq0GDBunbb79VeHi4du3apTp16lgdDWdZt26dHA6H6/nWrVt15ZVXasSIERamwrmef/55vfnmm5o9e7bat2+v9evX65577lFoaKgeffRRq+PhjHvvvVdbt27VBx98oIiICM2ZM0dXXHGFfv/9dzVp0sTqeBXCLe1qEcMwtGDBAt1www1WR8FFnDhxQg0aNNCyZct06aWXWh0H51G3bl29+OKLGjt2rNVRcI6MjAx17dpVb7zxhv72t7+pS5cueuWVV6yOhTP++te/6osvvlB8fLzVUXAekydP1qpVq7RixQqro6AMJkyYoK+//lq7du2SYRhWx8EZ1157rRo2bKh3333XtWz48OHy9/fXnDlzLEyGQqdPn1ZwcLC+/PJLDR061LW8W7duuvrqq/W3v/3NwnQVx+n3gAVSU1MlFZRG1DwOh0MfffSRMjMzdckll1gdByV4+OGHNXToUF1xxRVWR8F57Nq1SxEREYqJidGoUaOUmJhodSScZeHCherevbtGjBihBg0aKC4uTu+8847VsXABubm5mjNnjsaMGUOhr2H69OmjH3/8UTt37pQkbdq0SStXrtTVV19tcTIUys/Pl8PhkJ+fX5Hl/v7+WrlypUWpKg/nwgHVzOl0asKECerbt686dOhgdRycZcuWLbrkkkuUnZ2toKAgLViwQO3atbM6Fs7x0UcfaePGjbXmOrjaqFevXpo1a5Zat26tI0eO6JlnnlH//v21detWBQcHWx0Pkvbu3as333xTjz32mJ588kmtW7dOjz76qHx9fXX33XdbHQ8l+OKLL5SSkqLRo0dbHQXnmDx5stLS0tSmTRt5eXnJ4XBo2rRpGjVqlNXRcEZwcLAuueQSPfvss2rbtq0aNmyoDz/8UL/88otatGhhdbwKo9QD1ezhhx/W1q1ba8VRwdqmdevWio+PV2pqqj777DPdfffdWrZsGcW+Bjlw4ID+9Kc/6Ycffih2tB01x9mjU506dVKvXr0UHR2tTz75hMtZagin06nu3bvr73//uyQpLi5OW7du1cyZMyn1NdS7776rq6++WhEREVZHwTk++eQTzZ07V/PmzVP79u0VHx+vCRMmKCIigt+nGuSDDz7QmDFj1KRJE3l5ealr16667bbbtGHDBqujVRilHqhG48eP19dff63ly5crMjLS6jg4h6+vr+tobbdu3bRu3Tq9+uqreuuttyxOhkIbNmzQ8ePH1bVrV9cyh8Oh5cuXa8aMGcrJyZGXl5eFCVGSsLAwtWrVSrt377Y6Cs5o3LhxsQOWbdu21fz58y1KhAtJSEjQ4sWL9fnnn1sdBSV4/PHHNXnyZN16662SpI4dOyohIUHTp0+n1NcgsbGxWrZsmTIzM5WWlqbGjRtr5MiRiomJsTpahXFNPVANTNPU+PHjtWDBAv30009q3ry51ZFQCk6nUzk5OVbHwFkuv/xybdmyRfHx8a5H9+7dNWrUKMXHx1Poa6iMjAzt2bNHjRs3tjoKzujbt2+xW6vu3LlT0dHRFiXChbz//vtq0KBBkQm+UHNkZWXJZitaq7y8vOR0Oi1KhAsJDAxU48aNderUKS1atEjDhg2zOlKFMVLv5jIyMoqMfOzbt0/x8fGqW7eumjZtamEynO3hhx/+//buLaSqbY/j+G9q7oWZlZqVmmlmZGSXl4JMMLuQWUZiGbpIzYhE6iEpUrGsSF+CMIssuxhFdoEwS0KxQokoxMgKuhqGmYbdr9BNz8PeZ9GqfTgtOvssp30/MGHNMeac4z9eFvwYa46l8vJyVVZWytPTU0+ePJEkDRgwQO7u7k6uDpKUk5OjOXPmaPjw4Xr79q3Ky8tVV1enmpoaZ5eGb3h6ev6wF4WHh4d8fHzYo6IHWbNmjeLi4hQUFKT29nbl5+fL1dVVSUlJzi4Nf1m9erUiIiJUWFioxMRENTQ0qLS0VKWlpc4uDd/p6upSWVmZUlNT+WvIHiouLk4FBQUaPny4xo4dq2vXrmnbtm1KT093dmn4Rk1Njbq7uzV69Gg1Nzdr7dq1CgsL09KlS51d2i/jm8HkGhsbFR0dbTvPysqSJKWmpurgwYNOqgrfKykpkSRNmzbNrr2srIwNb3qIzs5OpaSkqKOjQwMGDND48eNVU1OjWbNmObs0wHTa2tqUlJSk58+fy9fXV5GRkbpy5Yp8fX2dXRr+MmnSJFVUVCgnJ0ebN2/WiBEjVFRUxMZePdC5c+fU2tpKQOzBduzYofXr1yszM1OdnZ3y9/fXihUrtGHDBmeXhm+8fv1aOTk5amtrk7e3txISElRQUCA3Nzdnl/bL+J96AAAAAABMinfqAQAAAAAwKUI9AAAAAAAmRagHAAAAAMCkCPUAAAAAAJgUoR4AAAAAAJMi1AMAAAAAYFKEegAAAAAATIpQDwAAAACASRHqAQCAwx4+fCjDMNTU1OTsUgAA+K0R6gEA6GXS0tJkGMYPR0xMjLNL+7+rq6uTYRh69eqVs0sBAOAf0cfZBQAAgP+9mJgYlZWV2bVZLBYnVQMAAP4prNQDANALWSwWDR061O7w8vKSJCUnJ2vx4sV213/+/FmDBg3SoUOHJEnV1dWKjIzUwIED5ePjo3nz5unBgwcO1fDx40etW7dOgYGBslgsCg0N1f79+2399fX1mjx5siwWi/z8/JSdna0vX77Y+oODg1VUVGT3zIkTJ2rjxo22c8MwtG/fPsXHx6tv374aNWqUTp8+LenPVwSio6MlSV5eXjIMQ2lpaQ7NAQCAno5QDwDAb8ZqterMmTN69+6dra2mpkYfPnxQfHy8JOn9+/fKyspSY2Ojzp8/LxcXF8XHx6urq+unx0lJSdHRo0dVXFys27dva8+ePerXr58k6fHjx4qNjdWkSZN0/fp1lZSUaP/+/dqyZYvD89m0aZMSExN148YNxcbGymq16sWLFwoMDNTJkyclSXfv3lVHR4e2b9/u8PMBAOjJ+Pk9AAC9UFVVlS1A/1tubq5yc3M1e/ZseXh4qKKiQkuWLJEklZeXa/78+fL09JQkJSQk2N174MAB+fr66tatWwoPD/+v49+7d08nTpxQbW2tZs6cKUkKCQmx9e/atUuBgYHauXOnDMNQWFiY2tvbtW7dOm3YsEEuLj+/7pCWlqakpCRJUmFhoYqLi9XQ0KCYmBh5e3tLkgYPHqyBAwf+9DMBADALVuoBAOiFoqOj1dTUZHdkZGRIkvr06aPExEQdOXJE0p+r8pWVlbJarbb779+/r6SkJIWEhKh///4KDg6WJLW2tv7U+E1NTXJ1dVVUVNTf9t++fVtTpkyRYRi2tqlTp+rdu3dqa2tzaK7jx4+3ffbw8FD//v3V2dnp0DMAADArVuoBAOiFPDw8FBoa+h/7rVaroqKi1NnZqdraWrm7u9vtjh8XF6egoCDt3btX/v7+6urqUnh4uD59+vRT47u7u//yHFxcXNTd3W3X9vnz5x+uc3Nzszs3DMOh1wQAADAzVuoBAPgNRUREKDAwUMePH9eRI0e0aNEiWzh+/vy57t69q7y8PM2YMUNjxozRy5cvHXr+uHHj1NXVpfr6+r/tHzNmjC5fvmwX2i9duiRPT08NGzZMkuTr66uOjg5b/5s3b9TS0uJQHX/88Yck6evXrw7dBwCAWRDqAQDohT5+/KgnT57YHc+ePbO7Jjk5Wbt371Ztba3dT++9vLzk4+Oj0tJSNTc368KFC8rKynJo/ODgYKWmpio9PV2nTp1SS0uL6urqdOLECUlSZmamHj16pFWrVunOnTuqrKxUfn6+srKybO/TT58+XYcPH9bFixd18+ZNpaamytXV1aE6goKCZBiGqqqq9PTpU7vNAQEA6A0I9QAA9ELV1dXy8/OzOyIjI+2usVqtunXrlgICAjR16lRbu4uLi44dO6arV68qPDxcq1ev1tatWx2uoaSkRAsXLlRmZqbCwsK0fPlyvX//XpIUEBCgs2fPqqGhQRMmTFBGRoaWLVumvLw82/05OTmKiorSvHnzNHfuXC1YsEAjR450qIaAgABt2rRJ2dnZGjJkiFauXOnwPAAA6MmM7u9fVgMAAAAAAKbASj0AAAAAACZFqAcAAAAAwKQI9QAAAAAAmBShHgAAAAAAkyLUAwAAAABgUoR6AAAAAABMilAPAAAAAIBJEeoBAAAAADApQj0AAAAAACZFqAcAAAAAwKQI9QAAAAAAmNS/AIAJV7K4JDUyAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -356,22 +356,22 @@ "text": [ "{ 'aux_operators_evaluated': None,\n", " 'cost_function_evals': 9,\n", - " 'eigenvalue': -1.8572750175655814,\n", - " 'optimal_circuit': ,\n", - " 'optimal_parameters': { ParameterVectorElement(θ[3]): 6.0929478327669955,\n", - " ParameterVectorElement(θ[2]): 0.547077760766061,\n", - " ParameterVectorElement(θ[7]): 0.3602101747090559,\n", - " ParameterVectorElement(θ[6]): -4.717616147449735,\n", - " ParameterVectorElement(θ[4]): -2.598326651673345,\n", - " ParameterVectorElement(θ[5]): 1.5683250498282117,\n", - " ParameterVectorElement(θ[1]): 4.426962358395529,\n", - " ParameterVectorElement(θ[0]): 4.296519450348804},\n", + " 'eigenvalue': np.float64(-1.8572750175655812),\n", + " 'optimal_circuit': ,\n", + " 'optimal_parameters': { ParameterVectorElement(θ[2]): np.float64(0.5470777607660052),\n", + " ParameterVectorElement(θ[3]): np.float64(6.092947832766964),\n", + " ParameterVectorElement(θ[1]): np.float64(4.426962358395508),\n", + " ParameterVectorElement(θ[4]): np.float64(-2.598326651673286),\n", + " ParameterVectorElement(θ[0]): np.float64(4.296519450348767),\n", + " ParameterVectorElement(θ[5]): np.float64(1.5683250498282177),\n", + " ParameterVectorElement(θ[6]): np.float64(-4.717616147449723),\n", + " ParameterVectorElement(θ[7]): np.float64(0.36021017470900696)},\n", " 'optimal_point': array([ 4.29651945, 4.42696236, 0.54707776, 6.09294783, -2.59832665,\n", " 1.56832505, -4.71761615, 0.36021017]),\n", - " 'optimal_value': -1.8572750175655814,\n", + " 'optimal_value': np.float64(-1.8572750175655812),\n", " 'optimizer_evals': None,\n", - " 'optimizer_result': ,\n", - " 'optimizer_time': 0.17816972732543945}\n" + " 'optimizer_result': ,\n", + " 'optimizer_time': 0.48043346405029297}\n" ] } ], @@ -404,40 +404,38 @@ "text": [ "{ 'aux_operators_evaluated': None,\n", " 'cost_function_evals': 1,\n", - " 'eigenvalue': -1.8572750175655814,\n", - " 'optimal_circuit': ,\n", - " 'optimal_parameters': { ParameterVectorElement(θ[6]): -4.717616147449735,\n", - " ParameterVectorElement(θ[7]): 0.3602101747090559,\n", - " ParameterVectorElement(θ[5]): 1.5683250498282117,\n", - " ParameterVectorElement(θ[4]): -2.598326651673345,\n", - " ParameterVectorElement(θ[0]): 4.296519450348804,\n", - " ParameterVectorElement(θ[2]): 0.547077760766061,\n", - " ParameterVectorElement(θ[3]): 6.0929478327669955,\n", - " ParameterVectorElement(θ[1]): 4.426962358395529},\n", + " 'eigenvalue': np.float64(-1.8572750175655812),\n", + " 'optimal_circuit': ,\n", + " 'optimal_parameters': { ParameterVectorElement(θ[2]): np.float64(0.5470777607660052),\n", + " ParameterVectorElement(θ[7]): np.float64(0.36021017470900696),\n", + " ParameterVectorElement(θ[6]): np.float64(-4.717616147449723),\n", + " ParameterVectorElement(θ[5]): np.float64(1.5683250498282177),\n", + " ParameterVectorElement(θ[4]): np.float64(-2.598326651673286),\n", + " ParameterVectorElement(θ[3]): np.float64(6.092947832766964),\n", + " ParameterVectorElement(θ[0]): np.float64(4.296519450348767),\n", + " ParameterVectorElement(θ[1]): np.float64(4.426962358395508)},\n", " 'optimal_point': array([ 4.29651945, 4.42696236, 0.54707776, 6.09294783, -2.59832665,\n", " 1.56832505, -4.71761615, 0.36021017]),\n", - " 'optimal_value': -1.8572750175655814,\n", + " 'optimal_value': np.float64(-1.8572750175655812),\n", " 'optimizer_evals': None,\n", - " 'optimizer_result': ,\n", - " 'optimizer_time': 0.028038740158081055}\n", - "\n" + " 'optimizer_result': ,\n", + " 'optimizer_time': 0.09656596183776855}\n" ] } ], "source": [ "initial_pt = result.optimal_point\n", "\n", - "estimator1 = Estimator()\n", + "estimator1 = StatevectorEstimator()\n", "gradient1 = FiniteDiffEstimatorGradient(estimator, epsilon=0.01)\n", - "ansatz1 = TwoLocal(rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", + "ansatz1 = n_local(2, rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", "optimizer1 = SLSQP(maxiter=1000)\n", "\n", "vqe1 = VQE(estimator1, ansatz1, optimizer1, gradient=gradient1, initial_point=initial_pt)\n", "result1 = vqe1.compute_minimum_eigenvalue(operator=H2_op)\n", "print(result1)\n", "\n", - "cost_function_evals1 = result1.cost_function_evals\n", - "print()" + "cost_function_evals1 = result1.cost_function_evals" ] }, { @@ -484,7 +482,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:17:07 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 10:59:09 2025 CEST
" ], "text/plain": [ "" @@ -496,7 +494,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -530,7 +528,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/03_vqe_simulation_with_noise.ipynb b/docs/tutorials/03_vqe_simulation_with_noise.ipynb index 5b91e4aa..a0885ec0 100644 --- a/docs/tutorials/03_vqe_simulation_with_noise.ipynb +++ b/docs/tutorials/03_vqe_simulation_with_noise.ipynb @@ -92,11 +92,11 @@ "outputs": [], "source": [ "# define ansatz and optimizer\n", - "from qiskit.circuit.library import TwoLocal\n", + "from qiskit.circuit.library import n_local\n", "from qiskit_algorithms.optimizers import SPSA\n", "\n", "iterations = 125\n", - "ansatz = TwoLocal(rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", + "ansatz = n_local(2, rotation_blocks=\"ry\", entanglement_blocks=\"cz\")\n", "spsa = SPSA(maxiter=iterations)" ] }, @@ -104,9 +104,9 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Performance *without* noise\n", + "## Performance *without* backend noise\n", "\n", - "Let's first run the `VQE` on the default Aer simulator without adding noise, with a fixed seed for the run and transpilation to obtain reproducible results. This result should be relatively close to the reference value from the exact computation." + "Let's first run the `VQE` on the default Aer simulator without adding noise from the backend, with a fixed seed for the run and transpilation to obtain reproducible results. We'll still specify a target precision to simulate shot noise. This result should be relatively close to the reference value from the exact computation." ] }, { @@ -134,15 +134,12 @@ "source": [ "# define Aer Estimator for noiseless statevector simulation\n", "from qiskit_algorithms.utils import algorithm_globals\n", - "from qiskit_aer.primitives import Estimator as AerEstimator\n", + "from qiskit_aer.primitives import EstimatorV2 as AerEstimator\n", "\n", "seed = 170\n", "algorithm_globals.random_seed = seed\n", "\n", - "noiseless_estimator = AerEstimator(\n", - " run_options={\"seed\": seed, \"shots\": 1024},\n", - " transpile_options={\"seed_transpiler\": seed},\n", - ")" + "noiseless_estimator = AerEstimator(options={\"default_precision\": 1e-2})" ] }, { @@ -154,8 +151,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "VQE on Aer qasm simulator (no noise): -1.85160\n", - "Delta from reference energy value is 0.00567\n" + "VQE on Aer qasm simulator (no noise): -1.86154\n", + "Delta from reference energy value is -0.00426\n" ] } ], @@ -194,7 +191,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAGJCAYAAADLxBNqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuX0lEQVR4nOy9eZgcZbn+f1fvs88kmewhIQkQIAFCBBVQVhE3EJXFI7KJCso5ihw4gL/Dol8OuKEIKqJowOWgIHIQFBQMGDbZDHtCAkkm+2SbfaaXqvr9UfW+9dbS63TPdHfuz3XlYqanu+rt6p6h7/e+n+fRTNM0QQghhBBCCCGEkJojNN4LIIQQQgghhBBCSGlQ1BNCCCGEEEIIITUKRT0hhBBCCCGEEFKjUNQTQgghhBBCCCE1CkU9IYQQQgghhBBSo1DUE0IIIYQQQgghNQpFPSGEEEIIIYQQUqNQ1BNCCCGEEEIIITUKRT0hhBBCCCGEEFKjUNQTQgghpKrRNA3XXnttwfe9+OKLK7ugKuTcc8/FnDlzxnsZhBBCxgGKekIIITXB22+/jS9+8YuYO3cuEokEWltbceSRR+Lmm2/G8PDweC+PjCFPP/00rr32WvT09Iz3UgghhJBxJzLeCyCEEELy8dBDD+G0005DPB7H2WefjYULFyKVSuHJJ5/EZZddhtdffx233377eC+TVIjh4WFEIs5HlqeffhrXXXcdzj33XLS3t4/fwqqIn/3sZzAMY7yXQQghZBygqCeEEFLVrF27FmeeeSZmz56Nv//975g2bZr82Ze//GWsWbMGDz300DiucPSMjIwgFoshFGKALohEIjHeS6h6otHoeC+BEELIOMFPD4QQQqqab3/72xgYGMAdd9zhEvSC+fPn4ytf+Yr8PpPJ4Jvf/CbmzZuHeDyOOXPm4KqrrkIymXQ9bs6cOfjoRz+KJ598EocffjgSiQTmzp2Lu+66S97nhRdegKZpuPPOO33nfeSRR6BpGh588EF526ZNm3D++edjypQpiMfjOPDAA/GLX/zC9bjHH38cmqbh7rvvxv/3//1/mDFjBhobG9HX1wcAuOeee3DAAQcgkUhg4cKF+OMf/xhYL20YBn7wgx/gwAMPRCKRwJQpU/DFL34Ru3fvLvp5Cnp6enDJJZdgzpw5iMfjmDlzJs4++2zs2LFD3ieZTOKaa67B/PnzEY/HMWvWLFx++eW+6+vlhz/8IcLhsCsy/73vfQ+apuFrX/uavE3XdbS0tOC//uu/5G1qTf21116Lyy67DACw9957Q9M0aJqGdevWuc53//33Y+HChfJ1ePjhh3OuD3Bem9///ve4/vrrMXPmTCQSCRx//PFYs2aN7/733HMPlixZgoaGBkyaNAlnnXUWNm3alPc8S5cuhaZpeOqpp/C1r30NnZ2daGpqwqmnnort27f77v/jH/8YBx54IOLxOKZPn44vf/nLvtKDoPfI3XffjSVLlqClpQWtra1YtGgRbr75Ztd9enp68NWvfhWzZs1CPB7H/Pnz8a1vfYuuPyGE1BImIYQQUsXMmDHDnDt3bsH3P+ecc0wA5qc+9SnzRz/6kXn22WebAMyPf/zjrvvNnj3b3G+//cwpU6aYV111lXnrrbeahx56qKlpmvnaa6/J+82dO9f88Ic/7DvPeeedZ3Z0dJipVMo0TdPcunWrOXPmTHPWrFnmN77xDfMnP/mJefLJJ5sAzO9///vyccuWLTMBmAcccIB5yCGHmDfddJN5ww03mIODg+aDDz5oappmHnTQQeZNN91k/vd//7fZ0dFhLly40Jw9e7br/BdccIEZiUTMz3/+8+Ztt91m/td//ZfZ1NRkHnbYYXJNxTzP/v5+c+HChWY4HDY///nPmz/5yU/Mb37zm+Zhhx1m/utf/zJN0zR1XTdPPPFEs7Gx0fzqV79q/vSnPzUvvvhiMxKJmKecckrO1+Wll14yAZh/+tOf5G2nnHKKGQqFzHe9613ytueff94EYD744IPyNgDmNddcY5qmab788svmpz/9aXldf/WrX5m/+tWvzIGBAXnfgw8+2Jw2bZr5zW9+0/zBD35gzp0712xsbDR37NiRc43itVm8eLG5ZMkS8/vf/7557bXXmo2Njebhhx/uuu8vf/lLE4B52GGHmd///vfNK664wmxoaDDnzJlj7t69O+d5xGMXL15sHnfcceYtt9xiXnrppWY4HDZPP/10132vueYaE4B5wgknmLfccot58cUXm+Fw2Pc6n3POOa73yF//+lcTgHn88cebP/rRj8wf/ehH5sUXX2yedtpp8j6Dg4PmQQcdZE6cONG86qqrzNtuu808++yzTU3TzK985Ss5nwMhhJDqgaKeEEJI1dLb22sCyCsYBStWrDABmBdccIHr9v/8z/80AZh///vf5W2zZ882AZj/+Mc/5G3d3d1mPB43L730UnnblVdeaUajUXPXrl3ytmQyaba3t5vnn3++vO1zn/ucOW3aNJ9wPPPMM822tjZzaGjINE1HOM6dO1feJli0aJE5c+ZMs7+/X972+OOPmwBcgm358uUmAPM3v/mN6/EPP/yw7/ZCn+fVV19tAjDvu+8+04thGKZpmuavfvUrMxQKmcuXL3f9/LbbbjMBmE899ZTvsQJd183W1lbz8ssvl8ecOHGiedppp5nhcFg+55tuuskMhUIuYayKetM0ze985zsmAHPt2rW+8wAwY7GYuWbNGnnbyy+/bAIwb7nllqzrM03ntdl///3NZDIpb7/55ptNAOarr75qmqZpplIpc/LkyebChQvN4eFheb8HH3zQBGBeffXVOc8jRP0JJ5wgr61pmuYll1xihsNhs6enxzRN63WKxWLmiSeeaOq6Lu936623mgDMX/ziF/I2r6j/yle+Yra2tpqZTCbrOr75zW+aTU1N5ltvveW6/YorrjDD4bDZ1dWV83kQQgipDhi/J4QQUrWISHpLS0tB9//zn/8MAK44NwBceumlAOCrvT/ggAPwvve9T37f2dmJ/fbbD++884687YwzzkA6ncZ9990nb/vrX/+Knp4enHHGGQAA0zTxhz/8AR/72MdgmiZ27Ngh/33wgx9Eb28vXnrpJde5zznnHDQ0NMjvN2/ejFdffRVnn302mpub5e1HH300Fi1a5HrsPffcg7a2NnzgAx9wnWvJkiVobm7GsmXLin6ef/jDH3DwwQfj1FNP9V1XTdPkeffff38sWLDAdd7jjjsOAHznVQmFQjjiiCPwj3/8AwDw5ptvYufOnbjiiitgmiaeeeYZAMDy5cuxcOHCUTXAO+GEEzBv3jz5/UEHHYTW1lbX883Feeedh1gsJr8X1048/oUXXkB3dze+9KUvuer9P/KRj2DBggUF93j4whe+IK+tOI+u61i/fj0A4NFHH0UqlcJXv/pVV7+Fz3/+82htbc15nvb2dgwODuJvf/tb1vvcc889eN/73oeOjg7X63nCCSdA13X5WhFCCKluKOoJIYRULa2trQCA/v7+gu6/fv16hEIhzJ8/33X71KlT0d7eLsWSYK+99vIdo6Ojw1WXfvDBB2PBggX43e9+J2/73e9+h0mTJkkxu337dvT09OD2229HZ2en6995550HAOju7nadZ++99/atHYBv7UG3rV69Gr29vZg8ebLvfAMDA75zFfI83377bSxcuNB3P+95X3/9dd85991338Dn6OV973sfXnzxRQwPD2P58uWYNm0aDj30UBx88MFYvnw5AODJJ590bUCUQiHPt5jHd3R0AIB8vHit9ttvP99jFyxY4Huflfs8sVgMc+fOzXmeL33pS9h3333xoQ99CDNnzsT555/v6yuwevVqPPzww77X84QTTgCQ//UkhBBSHbD7PSGEkKqltbUV06dPx2uvvVbU41T3MxfhcDjwdtM0Xd+fccYZuP7667Fjxw60tLTggQcewKc//Wk5Zk00FTvrrLNwzjnnBB7zoIMOcn2vuvTFYhgGJk+ejN/85jeBP+/s7HR9X+jzLOS8ixYtwk033RT481mzZuV8/FFHHYV0Oo1nnnkGy5cvl+L9fe97H5YvX46VK1di+/btoxb1o32+5bpe43meyZMnY8WKFXjkkUfwl7/8BX/5y1/wy1/+EmeffbZs/GgYBj7wgQ/g8ssvDzyG2KwhhBBS3VDUE0IIqWo++tGP4vbbb8czzzyD9773vTnvO3v2bBiGgdWrV2P//feXt2/btg09PT2YPXt2SWs444wzcN111+EPf/gDpkyZgr6+Ppx55pny552dnWhpaYGu69LlLBaxtqAu697b5s2bh0cffRRHHnnkqDYHvMfMt3kyb948vPzyyzj++OML3jhROfzwwxGLxbB8+XIsX75cdrF///vfj5/97Gd47LHH5Pe5KOXc5US8VqtWrZJpDcGqVatKfp/lOs/cuXPl7alUCmvXrs37XovFYvjYxz6Gj33sYzAMA1/60pfw05/+FP/93/+N+fPnY968eRgYGCj5PUsIIaQ6YPyeEEJIVXP55ZejqakJF1xwAbZt2+b7+dtvvy3HdH34wx8GAPzgBz9w3Uc4yx/5yEdKWsP++++PRYsW4Xe/+x1+97vfYdq0aS7hGQ6H8clPfhJ/+MMfAoVx0JgyL9OnT8fChQtx1113YWBgQN7+xBNP4NVXX3Xd9/TTT4eu6/jmN7/pO04mk/GNOyuET37yk3j55Zfxxz/+0fcz4Ryffvrp2LRpE372s5/57jM8PIzBwcGc50gkEjjssMPwv//7v+jq6nI59cPDw/jhD3+IefPmBY4uVGlqagKAkp5nOXjXu96FyZMn47bbbnON8vvLX/6CN998s+T3mZcTTjgBsVgMP/zhD13u/R133IHe3t6c59m5c6fr+1AoJNMiYs2nn346nnnmGTzyyCO+x/f09CCTyZTjaRBCCKkwdOoJIYRUNfPmzcNvf/tbnHHGGdh///1x9tlnY+HChUilUnj66adxzz334NxzzwVg1b+fc845uP3229HT04Ojjz4azz33HO688058/OMfx7HHHlvyOs444wxcffXVSCQS+NznPudqXAYAN954I5YtW4Z3v/vd+PznP48DDjgAu3btwksvvYRHH30Uu3btynuO//mf/8Epp5yCI488Eueddx52796NW2+9FQsXLnQJ/aOPPhpf/OIXccMNN2DFihU48cQTEY1GsXr1atxzzz24+eab8alPfaqo53fZZZfh3nvvxWmnnYbzzz8fS5Yswa5du/DAAw/gtttuw8EHH4zPfvaz+P3vf48LL7wQy5Ytw5FHHgld17Fy5Ur8/ve/xyOPPIJ3vetdOc/zvve9DzfeeCPa2tpkA8DJkydjv/32w6pVq+RrmYslS5YAAL7+9a/jzDPPRDQaxcc+9jEp9itNNBrFt771LZx33nk4+uij8elPfxrbtm3DzTffjDlz5uCSSy4py3k6Oztx5ZVX4rrrrsNJJ52Ek08+GatWrcKPf/xjHHbYYTjrrLOyPvaCCy7Arl27cNxxx2HmzJlYv349brnlFhxyyCEyxXLZZZfhgQcewEc/+lGce+65WLJkCQYHB/Hqq6/i3nvvxbp16zBp0qSyPBdCCCEVZLza7hNCCCHF8NZbb5mf//znzTlz5pixWMxsaWkxjzzySPOWW24xR0ZG5P3S6bR53XXXmXvvvbcZjUbNWbNmmVdeeaXrPqZpjXr7yEc+4jvP0UcfbR599NG+21evXm0CMAGYTz75ZOAat23bZn75y182Z82aZUajUXPq1Knm8ccfb95+++3yPmJs2j333BN4jLvvvttcsGCBGY/HzYULF5oPPPCA+clPftJcsGCB77633367uWTJErOhocFsaWkxFy1aZF5++eXm5s2bS3qeO3fuNC+++GJzxowZZiwWM2fOnGmec845rjF9qVTK/Na3vmUeeOCBZjweNzs6OswlS5aY1113ndnb2xv4nFQeeughE4D5oQ99yHX7BRdcYAIw77jjDt9j4BlpZ5rWOLYZM2aYoVDINd4OgPnlL3/Zd4zZs2eb55xzTs61ZXtt1q5dawIwf/nLX7pu/93vfmcuXrzYjMfj5oQJE8zPfOYz5saNG3OewzSdkXbPP/984PmXLVvmuv3WW281FyxYYEajUXPKlCnmRRdd5Br5Z5r+kXb33nuveeKJJ5qTJ082Y7GYuddee5lf/OIXzS1btrge19/fb1555ZXm/PnzzVgsZk6aNMk84ogjzO9+97tmKpXK+1wIIYSMP5pplrnrCyGEEELKyiGHHILOzs6c48kIIYQQsmfCmnpCCCGkSkin07465scffxwvv/wyjjnmmPFZFCGEEEKqGjr1hBBCSJWwbt06nHDCCTjrrLMwffp0rFy5Erfddhva2trw2muvYeLEieO9REIIIYRUGWyURwghhFQJHR0dWLJkCX7+859j+/btaGpqwkc+8hHceOONFPSEEEIICYROPSGEEEIIIYQQUqOwpp4QQgghhBBCCKlRKOoJIYQQQgghhJAahTX1eTAMA5s3b0ZLSws0TRvv5RBCCCGEEEIIqXNM00R/fz+mT5+OUCi3F09Rn4fNmzdj1qxZ470MQgghhBBCCCF7GBs2bMDMmTNz3oeiPg8tLS0ArIvZ2to6zqshhBBCCCGEEFLv9PX1YdasWVKP5oKiPg8ict/a2kpRTwghhBBCCCFkzCikBJyN8gghhBBCCCGEkBqFop4QQgghhBBCCKlRKOoJIYQQQgghhJAahaKeEEIIIYQQQgipUSjqCSGEEEIIIYSQGoWinhBCCCGEEEIIqVEo6gkhhBBCCCGEkBqFop4QQgghhBBCCKlRKOoJIYQQQgghhJAahaKekBqnu38Ea7r7x3sZhBBCCCGEkHGAop6QGufsO57Dh25ejp0DyfFeCiGEEEIIIWSMoagnpMbZ1DOMtG5iO0U9IYQQQgghexwU9YTUOIZhAgDSGXOcV0IIIYQQQggZayjqCalxdNMW9YYxzishhBBCCCGEjDUU9YTUOLp06inqCSGEEEII2dOgqCekxhGiPmMwfl8IpmkixQ0QQgghhBBSJ1DUE1LDmKYJoeVTOoVqIVx536t41//7G7b3s7EgIYQQQgipfSjqScX45VNr8X8rNo33MuoaXXHnMzqd+kL459pd6BvJ4K1t/eO9FEIIIYQQQkZNZLwXQOqTHQNJXPenN9AYC+OUQ2aM93LqFjVyn6ZTXxAies9kAyGEEEIIqQfo1JOKMJzSAQBDKd3lJpPyYpgU9cWStEU9kw2EEEIIIaQeoKgnFUF1kNmUrHK4nXrna9M08cRb27G1d2Q8llXVpDLWhhM3QQghhBBCSD1AUU8qQkYRTElbRJHyY7hq6p1r/srGXpzzi+dw+R9eGY9lVTUidk9RTwghhBBC6gGKelIRVAc5Sae+YmSrqd/WZzn02+jU+xDJkTTj94QQQgghpA6gqCcVQa1XZvy+chhZ4vfia6Yk3OiGMwKQTj0hhBBCCKkHKOpJRcgYjN+Phje39GHHQP456nqWRnnia6Yk3KgbTBT1hBBCCCGkHqCoJxVBjYWPpCmeimFL7zA+8sPl+NydL+S9r5qIcDUnpKjHSFrHn17ejN6htLzNLeoZvyeEEEIIIbUPRT2pCKrY3JOFZSls7R2BYQJbeobz3lcdaRfkQifTe25K4g8vbcS//++/cOuy1fK2pO5cDzr1hBBCCCGkHqCoJxVBjd+zpr44dNtxVwV7NlR3Xr3m6Qyd+u39Sdd/Ac/Gxx58bQghhBBCSP1AUU8qgrv7/Z7rFpeCiIWr1zAb+RrlZQzTNepuT0II+JQevMGULuD6EkIIIYQQUu1Q1JOKwPh96QjHXS+g5jvbSLtUlq/3JJwShOBrwfg9IYQQQgipByjqSUXQXd3vKZ6KIVOEU69nEfXq18k9tFFhKqAEgfF7QgghhBBSb1DUk4qgRsH35GZtpSDEvF5ATb0q6jN6sMDfUzdVhCufyiLqC9k0IYQQQgghpNqhqCcVQQ8Yr0YKQ9TA64U49WbwdXZtqtRgTwPTNPHKxh4Mp0pfe1I69c4xXAKf70tCCCGEEFIH1Iyov/7663HEEUegsbER7e3tBT3m2muvxYIFC9DU1ISOjg6ccMIJ+Oc//1nZhRIAnkZ5e2j8u1REAzfdMGHmceuzOfWqeK1Fp/4fq3fg5FufwjcefL3kY4iNDfX5J3XG7wkhhBBCSH1RM6I+lUrhtNNOw0UXXVTwY/bdd1/ceuutePXVV/Hkk09izpw5OPHEE7F9+/YKrpQAcHVcr0VRWQjDKR1vbunLK7yLRb12+dz6eq2pX7djEACwfudQycdI2Q494/eEEEIIIaSeqRlRf9111+GSSy7BokWLCn7Mv/3bv+GEE07A3LlzceCBB+Kmm25CX18fXnnllQqulAB7xki7r9//Kj5083K8uH53WY+rXrt8dfV61pF26qZK7V3/gWQGADA4ivh9UKO8bBMCCCGEEEIIqVUi472AsSKVSuH2229HW1sbDj744Kz3SyaTSCaT8vu+vr6xWF7dkckyG7ye2Lh7GACwpnsA75ozoWzHVWP0pTv1tT1ScNAW9UP2f0shKH7P7veEEEIIIaTeqBmnvlQefPBBNDc3I5FI4Pvf/z7+9re/YdKkSVnvf8MNN6CtrU3+mzVr1hiutn5wO/X1KZ6EoO4fKV14BpExCo+Iq06++rhUjTv1UtSXxakPbpTH+D0hhBBCCKkHxlXUX3HFFdA0Lee/lStXjuocxx57LFasWIGnn34aJ510Ek4//XR0d3dnvf+VV16J3t5e+W/Dhg2jOv+eyp4QvxfPsW8kXdbjqi67kU/Uq5H7jPp1bdfUi9j9YKr0DRPRFC+ZpeN9mvF7QgghhBBSB4xr/P7SSy/Fueeem/M+c+fOHdU5mpqaMH/+fMyfPx/vec97sM8+++COO+7AlVdeGXj/eDyOeDw+qnMSdyx8vEVlKmMgFin//pVuO+N9w+UV9XqJTn3ayNIorwaTEk78vvQNIbGxkcoYME0TmqZlbZpHCCGEEEJIrTKuor6zsxOdnZ1jek7DMFw186QyVEtDsk09w/jg9/+BTx46A9edsrCsxxZPq6/M8ft02Wvqay8pIRrlpXSj5E2ZlOc9GI+EXRscjN8TQgghhJB6oGZq6ru6urBixQp0dXVB13WsWLECK1aswMDAgLzPggUL8Mc//hEAMDg4iKuuugrPPvss1q9fjxdffBHnn38+Nm3ahNNOO228nsYeQ7U49Su39GEgmcFz68rboR6onFOvNsrL69Rnm1NfJ049YI0OLIUgVz6VpRM+IYQQQgghtUrNdL+/+uqrceedd8rvFy9eDABYtmwZjjnmGADAqlWr0NvbCwAIh8NYuXIl7rzzTuzYsQMTJ07EYYcdhuXLl+PAAw8c8/XvaVSLUyxEb6oCa6hUTb3a8C5vTb0RLORrfU79oBK7H0xl0NYYLfoY3hKEFnjc+xrc7CCEEEIIIcRLzYj6pUuXYunSpTnvYyr1xYlEAvfdd1+FV0WyodaFj6dTLEV9BVxZcey+4XJ3vx+9U18vc+oBYKjEZnmqaE8GOPWM3xNCCCGEkHqgZuL3pLZQnfrxdERFI7lKrMEZaVfu+L2zVnVzJNcaAE9NfUZNStSeI612vR8ssVke4/eEEEIIIWRPgKKeVAS9SubUO/H7Cjr1FWyUV1T3+yxO/Ui69px6taa+1LF2yYC0gkvU1+BmByGEEEIIIV4o6klFyBjVEf+upKgXgnsgmXG566M/rurU5xb1mSxOfS03yktmdNcGRSlj7UzTDOwr4Oo7wPg9IYQQQgipAyjqSUXI6NXh1GfGoKYecNeAl/O4+US94aqpD24CV2uN8rxx+1Kc+oxhQgkxyNef8XtCCCGEEFJvUNSTiqA6yONZUy9Eb1o383aSLxZVcJezWV5R8Xsjf/y+1hrlDXo2SIZKGGnnfc8FOvU1lmAghBBCCCEkCIp6UhEyVVJTn8ky8q0cuER9GZvluRvlFSHqDUNOgEhXSVKiFLypB6/ILwSvC5/SA2rqGb8nhBBCCCF1AEV9nbOldxi7BlNjft6Mq555/Jxiw6ycuFVr3/uGyyfq00XE79VGeaYZPMKv1kR9RZ16T/xeHYNJCCGEEEJILUJRX8cMpTL4wE3/wKk/fmrMz101Tn0FR+u5nfoy1tTrRYh6z8/TuulvEldj8XufU19CTb33PSfn1CvXRd0EIYQQQgghpFaJjPcCSOXY0Z/CQDJT8kiw0aA69RnDhG6YCIe0MV+HXovxe8N97QpdA2BF8KOG5moSV+uN8krpfu+L3wfMqQes6xsJF314QgghhBBCqgY69XWMqCMeD0fSK0bHq1meGk8v5xoMw4T6FMsav1ec+nzN/bzXOZ0xXI8Hqj9+P5TKuNx5b/y+lE0p7wZO0Jz6oPsRQgghhBBSa1DU1zEjaXf98FiS8QnL8YmAu5z6Mopb3VOLXc74fTFOvVf0Zwwzq6CtRkzTxEd++CSO/97j8vXxxu9Lcep9NfUB8XuAHfAJIYQQQkjtQ1FfxySLnMn93UdW4bjvPY7eodG7zt5kwHi5xRUT9Z7nVymnXjdyrzkoEeF9ravZqU/pBtbuGMS2viS29Y0AcJz6WMT681SSU59N1AfE7wkhhBBCCKllKOrrGFXAeJ3zIP782ha8s30Qr23uHfW500ZwTfNY4x5pVz7H2ifqy1hTrx47r1Nv+p16n6iv4pp69bmKKQ0Dtoif3BIHUGL3+ywbG94NjvF6XxJCCCGEEFIuKOrrGDV27RXZQQgxWI6ovt+pH58IuBpPL6dj7RXbfcNljN8XMafeu1mT1g2kM9Vx7QshEyDqhVMvRH0pc+p9tfPSqXdfi7EuSyGEEEIIIaTcsPt9HeOO3+d36oUYLOS++fCKzZFxcoszYxS/7y+jU58uYqSd16lP6wZCmnvKQDXH79XxfTulqLeEd+donHpf/N5ulKczfk8IIYQQQuoLivo6xh2/zy/sRIO2criXGaM66rqNCnW/98fvx6dRnvc6p3UTIa06rn0hqA0Hd4v4vXTqEwCs7vjFkm0CgHgPaJo1FYLxe0IIIYQQUuswfl/HFOvUC4FTHlFfHSPt1MRAOceXVbJRnnrt8jn13qeU0Z1GeU2xsDxGIZs644H6/IRTP5Tyxu9Lqal3PyaVMaArYwibYtZ+JuP3hBBCCCGk1qGor2NcNfUFiBch/MshwKtlpF2lnHqvQ17ORnmZYuL33s0TRdQ3J5wgTrW69e6a+iQAYMAW8ZNbLVE/nNbzXgcvQd3v1dua4mHf+QkhhBBCCKlFKOrrmGK73zuN8kYvdIQIi4at+u7xEpWq+K5k/H4gmfEJ7FIpqlGed069biJl90Zoile/qFdr6v2N8hLyZ8Pp4jaFUt5NpbTuFvXCqa/S60IIIYQQQkihUNTXMa74fZ7u96ZpSoFYjkiyOEajLZ4qJSrvemYdjv/e49jcMxz4c/WpqPH7P728Gcd+93G8uaWvpPMKsR23Z6mbJtBfQpf2INKjGGmXVpz6eCSMWNhaX7V2wFc3XXZ6RP3E5hhCds+/Ifu23z3fhVN+9BS67Zn22fB1v9cNJO1IvqYBiWhY3k4IIYQQQkgtQ1Ffx6jzyfM5kqo7X86Rds22W1ypmvo/vbwZb28fxHNrd2VZR7BT/5fXtmDtjkE8tWZHSecVz68xFpbCvlx19bqrpj73dfOK/rTuzKmPhTW5tmqdVa8+V2+jvKZ4RDrqg3YH/N8+twEvb+jBk3leN/Faq89f3BYLhxC1by8kwUIIIYQQQkg1Q1Ffx6jubD7HVxXy5XAvHac+7FtLORGx7JEs8Wz1qahpATFir9RSA3E9w6EQWhuiAID+MnXAT7vi97nv6438q059NBxCPCqc+ioV9UrSYOdgCqZpSqe+OR5Bo137Lm7b0Z90fZ8NcQ1a7L4CKd0t6mN2WQgb5RFCCCGEkFqHor6OSbm63+dxfFWnPlO+mvpG26mvlFMsZphnF/XBTr24f6kJAl2KeqDVFo7lapbnbpSXz6n3zl03ZD15NBxCPFLZTZXRoj7X/pEM+pMZp0O94tQPpXSYponttqjPV+ogXteWhLXhkszocrMqFgkhapclMH5PCCGEEEJqHc6pr2OKGWmnihuvUCwFURfeJJ36yoinESHqsxxffdrqcxSivlSnVoj6iOLUlyt+X8yceu/y0xkTRsh26iMhJ35erU695/lt2DUkv26Mhh2nPpVB33BGvoYDeVIR4n7NyqaSdOoVUc/4PSGEEEIIqXUo6usYV/w+j3gtd/zeqTmvbE19/vh9NqdexO9LW5cTv9fQarvBfWWK3xc3p969/rRhwDCtaHksrCFW5TX13k0LIeqbYmGEQpp8/wwldWwfcJrjDRTo1MueDrpX1DN+TwghhBBC6gOK+jrGFb8voqZ+tPF70zSVRnljU1OfbeSZ6sQGxu9H7dRrsm67HE69bphQG9rnFfWeH6czBgy7ZbxVU1/d8Xvv8+sSot4W4yLpMZjKoLsvKe9XqFMvXhtfozzbqaeoJ4QQQgghtQ5FfR3jit+PYfd71X2VNfUVcOoNw5SOezYnWh35FiTqS3fqrceFQpoTvy9DTb13PYU69ZpmjdXLGKYU+lZNfXXH772lHht2WaMJhcMu3j9DyQy2DyiivlCnXmmUlwyoqS+1USIhhBBCCCHVAkV9HaMKuXx18i6nfrSiXhFKTRXsfp8MEOm+tSiiWF2DqMEvtSxAXM6IGr8fHn383htHz19Tb/08EQljOG01gwtpilMfqe459d63pXDqRS2949TryBjFi/oWWVOvu+L3EcbvCSGEEEJInUBRX8ekimiUV86aenUDoZI19UMpR9hlr6lXnPrARnmljrSzjhUOaWhtsJ5jfxmcet2znnxOvbjUiWgIw2kdGd2EBusxsYjmdL+v2pp6r1Mvauptp152v8+gb9i5FvlEvTPSTnS/d0b9WSPtGL8nhBBCCCH1AUfa1TGqO5tPvLjj924h+X8rNuHVjb0Fn1d16psrGL9X6+hHsohWl6i312CaZllr6p1GeWWI33tEbj5RL0Rxwq6dzzanPtumx3jjfX4bd7vj901yTr0ux9kBBdTUe+L3GaVUg/F7QgghhBBST1DU1zGu+H0RTr1af//O9gF85e4V+NrvVxR8XjUynohVzilWhepIlni57orfi473ppyFnq/XQDbEc3TV1Jcjfq9nj98/uXoHjv/e43hu7S55m7i7I+pNz5z6aq+pdz9fsckiGuWpTn23Iurzzqn3jLQDnCRFnPF7QgghhBBSR1DU1zGqkPY6wF6y1dTvHkrZ/y3chRbucTSsVbSmeziVv6Y+yKkfKSLBkA3D5dTb3e8r0ijP+f7RN7fh7e2D+PvKbt/PxXX2OfUifl+loj5bEsHf/b40p150v1cfE4swfk8IIYQQQuoHivo6JuVy30urqRdi0DsPPRfCbQ6HHFE/2jr9IAqK35v+mnp1A8Abv77lsdX4xp/eKCD27jzHljLG773nVS+beI0yyo3iS+HUZ3S1dryymyrlQFxHu7efRIxCzNb9fjit53yNxGvdEA0jbI/4E+5+NMz4PSGEEEIIqR8o6uuYpCJe83e/Dx5pJxzPfPF9FSHUoqFQRRu1Fd0oL+Mff+duJmjgpkffwi+eWovbnng757mdmvoQ2hrEnPpydL/P7tSL10CNrOuypl5snpiBNfXV2ihPJB4mNsVdtztOvUhBZLBrMOW6T65meWqne+HK9wunPlxa/P6BlzfjMz9/FjuVzQVCCCGEEELGG4r6OiZZYvd79b5CHOWL76sIoRkOa46orED821VTX0z8XrmvN5UgjP3v/+0tvLKxJ+u5dbWm3nbq+0fSMM3ROb/e10kV8OI1SLucenukneLUp+xURjRS/fF78fw6W9yi3plTb61fjLoLhzQp0gsS9crGhqipdzfKK/y6/Paf6/HUmp146u2dBT+GEEIIIYSQSlMzov7666/HEUccgcbGRrS3txf9+AsvvBCapuEHP/hB2ddWrXhd6Fxkq6lP6cU79UKYRkIhxMMVrKkvtvu9/VyG08E19er1yhgmvnr3ClcaIOi4EaVRnmFatd+jwXud1fVLp143fT9PRLJ0v6/y+L3YAPKKeq9TL+rpJzXHZJ18rrp6WYIQca5Bf0BNfTHva7nBVaUbJIQQQgghZM+kZkR9KpXCaaedhosuuqjox/7xj3/Es88+i+nTp1dgZdWLu/t9aSPtZPzeMAt2oVXBW0mn3tUor4Du945Tn2UDw/55SAOmtMbxzo5BfPvhVYHHVWvq44pI7BseXV29P35v+n6mpiZEzwARv08bZpaa+uoUohm5KRGSDQcBtft92HX/zpa4HFM3kHSu9ZrufmzcPSS/d8XvI25nP6Z0vy+m10Nalj9U57UkhBBCCCF7JjUj6q+77jpccsklWLRoUVGP27RpE/793/8dv/nNbxCNRiu0uurDMEx3o7w8jd+yOvUe97oQxOMjYU3Gv1OVEPVliN8HbWAkomF845SFAIBHXt+a5bj2cwxp0DRNzlPPFQkvBO81VtefDnLqdXf8Pp3xzqmvXE+DciA3gMIaJjY7br1olNekjKQDgM7muIzmC+e9fySNj97yJE6/7Rl5v5QrrRCW9wOAeLi0+L1sVFjg7wEhhBBCCCFjQST/XWoXwzDw2c9+FpdddhkOPPDAgh6TTCaRTDqNsPr6+iq1vIridSDzRYbTWaL6KU/9dtRtnAbicuor6BSPeOL3pmlC87RRd3W/D6qpz6jP1bo9Gg5h70lNvp+7jqvU1IvHAKMfkeZ9fMYVvxeiMsipD8v7y0aF4RBCIevrao3fiw2KkKZhQlMMa3cMAnBi900ep35ySwJDdonDYNL676aeYYykDWzuHUEqYyAWCeVulFdq/L6EUhRCCCGEEEIqTc049aXwrW99C5FIBP/xH/9R8GNuuOEGtLW1yX+zZs2q4Aorh1dE53MXXfH7TLBTX6hgzUj31Yk+J7M46aPBW+8etHGgCrCkGGmXCd60SCpCMBLKHc/OKBsXAMo2Ii1nTb39dTqgpl6UOaR1Q75+0UioquL3b2zuw7UPvO7qHm+YznWc0BSTt8v4vdepb4k7NfV2/H7XgNMVf9BOSqRkCYLTKE+dU19K/D5o+gAhhBBCCCHjzbiK+iuuuAKapuX8t3LlypKO/eKLL+Lmm2/G0qVLfe5tLq688kr09vbKfxs2bCjp/OON15nN2yjPUIWuIoRddfmFiZmMrjr1leu+rtbUA8ERc8Pj1Jum6Ynf+zcwYko8O9tz1pWaegBy82K0Tr1/Tr1/1GDGk54AghvlxcKVvf7F8rPl72Dp0+vw59eckganN0EIExodUS8i9g1Rf019kyd+v1MZdSfKH8RrGVc2NgZSzki7UcXvR/kaE0IIIYQQUk7GNX5/6aWX4txzz815n7lz55Z07OXLl6O7uxt77bWXvE3XdVx66aX4wQ9+gHXr1gU+Lh6PIx6PB/6slvAK3LyiPpN7Tj1Q+Fg7EQ+PKI3aMoYJ3TClCC4Hwx73fySjow3uvgleVzWtm67UQFAqIa40V8t23aQY1YRTX/zc8yC8jw/sfm/4nXpZU6+bUnTGIiG5oVUN8fteu4ngsJKwUEs1JjT7nfpwSENDNCxf684Wp6ZeCHh1fn3/SAa6YUJcomg4hJi9sSH2d2KRcN5NmyBYU08IIYQQQqqRcRX1nZ2d6OzsrMixP/vZz+KEE05w3fbBD34Qn/3sZ3HeeedV5JzVhDdWnE+85BtpV8gxvPcLh5zoM2CJ5oZYAUX5BeJtjhfULM/wCLCUbni63/sb0alzzDOGCcMwZe2897gixh0JlSl+71mvWj+flvH7oDn1QqQa0pWPhkNyE6UaGuWJaLx6jeR7JaxhYpPfqQeAprhH1HtG2qlO/WAq49qIUkfaqbeVsgkjJ0Gwpp4QQgghhFQRNdMor6urC7t27UJXVxd0XceKFSsAAPPnz0dzczMAYMGCBbjhhhtw6qmnYuLEiZg4caLrGNFoFFOnTsV+++031ssfc3xOfb6aeiOLqC8lfi8atYU02ZAMsNzicor6Yc9MeK9zr65FkMoY7kZ5utNgTzTKU2uuAevaxEPudWc88fuocPZHGXPP7dT7RaW3UV5Kd0baRZWYeTXE78Xro7uSBs4UAVFTH9KcTQoAaIxFAFjCfXJLHC0+p96p0R8YyS/qo2FNXpdUUU49R9oRQgghhJDqo2ZE/dVXX40777xTfr948WIAwLJly3DMMccAAFatWoXe3t7xWF7V4aupz9v93u1YS6HrGmlXXPw+HNIQsd1i3TDLLiyHfE69//jeGvVUxvDNtM8YJqJhzVVTr25GZHQTnn5tSmw8ZD+mPPF7X0296Xe10wHxe1nmoBtSfFrj3ISoH//4vXDq1Zp0sTkiut8DVud7tQ+GOqt+UnOe+H0y40qXREKaLKUQxNUkRjGN8uz39WjTGIQQQgghhJSTmhH1S5cuxdKlS3PexzRzf9jOVkdfj3hHseUT5F4xmtZNxCJeUV+YmBFCUwineCSEoZRe9ln1I6n88fsgUe9tsJfKGIiGQ67u91FF1AcJdVWMAkr3+1HWWwvhHguHkNINlysv0hRBjfIaokGN8kLS8a4Kp95+vVw9AZTu9zPaGwBYEXsVUV/fFAujKR5Bc8LqmyBE/U6l+/3AiCPqRU8B0SxQUEr83jRNKeZ1OvWEEEIIIaSKqBlRT4rDK+LyuYt+UW/P+85Sa5/7WO5ouhD15XaLfY3yChH1uu5z6sXzUmebh0MaQhpgmMFjz+QoNlFTHy5T/N4WjPGode0DG+XZ/zVNpyGc2ihPxu8jSvf7aqipDxL1Sk39PlNa8J1PHYR5k5tdjxNOvRD7zXHre1FTv3vIPdJONjxUNpVUYuFw0SMIg3ovEEIIIYQQUg1Q1NcpflGfz6n3dol3C12g8Jp6tU4agC0s04Hx+NHgF/UB8XtbfGua1f086ampBxzRrs42ByyhnsoYgSIu49m4KFf8Xhw3EQ1bndxd8Xs7/m1fX1Xwq3PqU0qjPDV+L0oqxgvp1KuN8pTu9wBw2rtm+R7XFLP+TE1uSQAAmuNup94XvxfPP5JF1EeKH2kX1JyQEEIIIYSQamBc59STyuGL3xft1Fv3T5ZQUy8eK1zsWKS4CLhpmnlLKQBHJIoaa28SwDRNXzw9lTECxv2Z8mfqemM53HfvxkUpc8+DyHhq5F1z6g23U6863sKpzxhOTDwWDkmn3jDHdxRbWjfkpon6PhLPLxzK/qfI59QnnDn1hmFi91Ba3ndgJOMqPwCyifriNmHU+7FRHiGEEEIIqSYo6usUIXCFoMk3Yz4ofu+9vXCn3t1ETqzBu9HwUtdufPXuf2Fb34i8zTRNnHn7szj51qfyOqLCcW9vjLq+F6gPF6I+yKkXot0r6oXwCxJxWWvqRzvSzr7eTuO7oO731n8NZeMjYYv3dMapqY+G3SMFvZsqwykdG3YNjWq9hTKk9D9QNxe8Tn0QjXFv/N5plNc7nHa9TwaSaVdvBPW/glg4xPg9IYQQQgipGyjq6xQhbIQAKkv8vkCnVzxWOPXxqBMBV7njybW4f8Vm/OXVLa51/3PtLry6qRebe4ZznkcIxY5Gq2u6N36vinExSi+o+733ucalqBebEf7nbZhuMRopV/xezp231uty6j3d791OvX2NdcMZKRjWXC510rOZcdFvXsT7v7MM63cOjmrNhaCOH3Q3+nMmJWTj2P0mY3JLHMctmAwAaEk4ol6dUQ8Ag0ndtzkT2Cgvwvg9IYQQQgipDyjq6xQhbETn8OLj9+4686D7ZMOJVKs19X6neLctyIY8c+MFW3pHkA3TNGVNfUeTEPUep145nRq/94p/sS5vTX2uSH1GafCmPma0oj7tcerVmvq016kPiN+rmzBRu/t7tvKHVVv7YZpA1xi49YOpjPxafS+Ky5VL1B+//xQ89/UT8P59OwE4G1W6Yfo2fvqTGVdSAYArrQDYI+1CpcfvR/saE0IIIYQQUk4o6usU4Yo3Sae+OFEv3OlSGuVJp1jOcA8WlT12LbR6DvXrrX3ZRb16rA4Zv8/u1Iu67JQeEL8P6H4PIGfdte6JjUtXf5TRbD2HU5/x1NS7GuVF/L/K3prybNd/LDrjD2eJ33t7ExRCYywM0e9vvWdDYmAknbU3gkBtlGeYhTnvpZShEEIIIYQQMhZQ1NcpQqiJ8V/54/dZnPoSGuV5XWzhlHpr6nuH84j63uzxe1Ukivi9txu+utyEy6n3inp3U8BYxOvUB3S/z1JTnxm1U+9ulCeOpzb983a/D2n+unF1TU5SwnneI2ldXq+xmGE/mFScekN9T7lTHYWgaRqa7Y74XXbpgNi0GUg6c+rjWZz6WNiJ3wOFOe9qCcZ4NhwkhBBCCCHEC0V9nZL0xe9LrKl3xY4Ldert+LMyp95ak1tM99jzxbOJ+lzxeyFIY+GQFHResZ61pt7X/d4bv7fumyt+r5tep75cI+2sx3ud+rSrYZ7pWkM4pMm1CkKaWv5gX3/lefcNOx3jva9LJVBLLNzx+/yN8oIQHfDX77Sc+r0mNAKwaupl/D4iSiPcNfXRSMh1vkJeM/dGBOP3hBBCCCGkeqCor1OEQJXx+zzuoi9+H+DUF9ogzHFfPU5xWt0gMDBou+3qxoH69dYcol40yUtEQ0pne7c4FaI3pCnCVonfx2RkvoT4vUwj5Hf1i8E30s4UTfHc7rZpmlIchzS/qFe/dxoVOsfocYn6yovUoWTu7ve5RtoFIerqRT8AIer7R5Tu99lG2ind74HCXjM2yiOEEEIIIdUKRX2dIjqdi5hyfqfe617759QX6kKLc0VzzKnvVUSlunGgCv9cTr0Q5g2xsHS1vQ682rAvFvHH70UXdXF+v6jP0Sgva039aLvf53fqxfnVDvzhkCbrzAF3HXlQ/L5Hme3u7YpfCYbURnlG+Zx6IepnT7RE/UAy4yuj8Mbvo2Hreokkg3i/runuxy5PN32BGr9nozxCCCGEEFJNUNTXKXKknS1+8jUE88XvpdANdlhz4a2TDppT7xKVavxed86Xy6kX8fvGWESOc/PG712iPuysYcQ+X2uD1WAve6O87O67ENRhUVMfcQvEUsl4a+plczzDdz9Z1+/ZWLDWo4p6cX3U6++I17Fw6ofT2UbauZ9DoQinXiQ2hFNvmE5pgdjIUTc4YvZEAMDZSEjpBrb0DuODP1iO85c+H3g+NsojhBBCCCHVCkV9neIdaQfkdhjTsp7c7U6nXGKmuEZ5kRyN2nqHHVHpcuqVr7v7R7Kec1jG78OIR4Nr6qWoV8a6Dacy8nbh1Hufq2iwlmuWuXfjIlam+L14vHDqTdMaXefdUEkbhhxpJ9MCijAWKQkguKfBWMfvB7PE70t26pX3NQDM7GiUSQUxKjEqGzU6NfVxVeArr9naHYPQDTPreD+XqGf8nhBCCCGEVBEU9XWKbJQXcwRNLjEiREtj3Bn9BrgFd+GN8txCLbCmO5tTr3xtmMD2gWTgOYTz2xANFRS/F8K2b8SJgUtR7xnf54xCyzXSzh7FFva7vqNBxO/VOnDdNH1rUJ16sbGguvPumnp/T4PeobFtlDfsmlPvbzpXTPd7wC/qJzbH5G0iQi+uoXot1SkBUWXCgHD31akKKq5GhWyURwghhBBCqgiK+jpFCDURvwecSH0QQrQ0RsPy+4xuQN0HKLhRnu4WvM6c+uCablejPM8as9XVC/HVEAsjIeLl3kZ5rpp6W9Tb4k3TgCa730C2RnmRUPbZ83Jsn0dQ57rGhSAb5Snusm6Yvsh3Rjdcz09dL+CtqQ9qlKfE78dgTv2gIpb1MtbUCyY0OaJ+py3qxTWIZRH16kaM6PEwnNZhmv7Xm/F7QgghhBBSrVDU1ylCwDVEwzKWnM7hMDpOvdNYz+s653q8ileoBc2pdzfKcwSf95zbsol66dTnaJQnR76FpMDrG7HOG4+EpMATzz0pG/y54/dBJQC+mnoxp36U0WxxLtVdzhimzx1OG6arvABwkgXqetRjqZsqu7MkJSrFkCLq3a538XPqAaAlnl3U7x4S8fs8Tr0Sv1ffj973kXUfxu8JIYQQQkh1QlFfpwihFo+EEQ0JcZo/fi/i+mnd8LnmhTqUaSnqvTX1wSPVss2pB/I79QmXqPfMqdedzQXHqc/Ix8U8DfyKGWmXvaa+TI3yVKdeN/3d73XD2bQQJQCuRnlqTb3/+o91/N7d/d7fKC8SLt2pT0RDaIxF5G0ifi/LKCLBCYaYsmmjivrhgGkAbqee8XtCCCGEEFI9UNTXKY6oD+UUpwIhGhtioqbeDBD1hTr17vi9dIpdNd1KozzluF7XeGtfbqe+MRYurPu9vQYh3hKRsE+Ie5sF5mp+5xWj4r/ea1YsYkMk4amp926opHW/Ux/N5tRH/dffFb8fY6c+qFFeSCu2pj4qv57YFLdvCxb1YlNDvQ0Ijt8D2US9P11ACCGEEEJINUBRX6eI2eOxSEg6uNka3RlKlFvUmad1wyf20gXX1Hud+jzd19PFO/UjgfF7j6g3FVHvid8noiFltnxwo7xcQl08x5Anfj9ap15siMQiIYhEesYwfKUPGcNfU+8aaZcnfu+eUz8Wol5tlBdUU1/cn6KmuCPUJzTFAPjH3BUXv3fWF9QsjzX1hBBCCCGkWqGor1NSut+pz9a1WxWMoqY+nfHX1Bc80s5TUy9j7srj8zXKE0Jsa+9w4Dlk/D4WRkMB3e+9jfIS0bBPiHvPnUuoi5p6IUbLPdIuHNKkWA9ulGfKkXZBot7dKC+g/GHM4/fBjfJKrqlX4vdeUS8Qr2Msy3UJ6n4PFCDq2f2eEEIIIYRUERT1dYpwX+OqeM0EC05ViDrd7wNq6gt16j3RdCkq1fh9tpp6WzztNaERQHanfkhx6kW8fCTj7lweJOoHlVp8UXcuOtaLc8c8YjDoefvGyZWtpt4uXQiFPKLek5rQDbkGkRaIuOL3uefU947xnPphV6O8MtTUu+L3tqj3dMQXr2NISWq4nPqQU5bC+D0hhBBCCKlVKOrrFLWmXgimbN3r1TFsuWvqixtpJ0Rpo33MgaQTcc4m6sW6Z0+0RP22vhHpSKuMpPzxe9N0u/5qzbkawQas+L23pl7G78Nupz4ofp+tpn7Uot4+bjSsyRSAbpi+0oeMYcryAnHubPF7ef1HMnKN6msxFqJ+UInfu5360c+pz+bUB431iwVco5Ruup36AFGvvgcYvyeEEEIIIdUERX2dIsbExSKhvN3vhdgPaZACOR0w0q7Q2LEjTK3zTmtLAAA29zhR+h61UV5A9/uZHY0IaZZDKuaOq7ga5SmN0NQIvurU+0W90ygv65z6nN3vxTXzOvWjHWknhLrj1GeyOPW67mxaWGtQnHrl+U4V199OPagbKsDYxO+zOvXKhIJicMXvm4NFvascIaATvhq/780Tv1ff+4zfE0IIIYSQaoKivk5xd7/PHQ0XQjQaDslZ50Hx+0IFq9epn9HRAADoG8mgfyQNw3DPBU8G1NQ3xMKY1Gx1Nd8aEMEXot6qjddkU7lk2l+7rcbvBYlIWIq6VMaEaZq++H3Omnr7pki5R9qJyQGemnr/SDvT1QhQXa+6HgCYaV//TbutTRW1nh4Ym0Z5g8ngmnrxHIrtft+kCPh88XtAceoD4vepjDd+76QKBK74PZ16QgghhBBSRVDU1yGmabrm1OeLhov4fTTs3gAofaSdEyEHgMZYBB2NVg30pp5h9CczUNPkqYwha+GFaxwLh6TDHzTWTripDbEwNE1TOuAHO/WxcNj1eLX7vTeV4KupDxBx3ti4rM9X7tvdP4L3f3sZbvrbW77HZyOjONeumvoCut+rHeRV135Gu1XKsLVvxHal3cmHSsfvDcN0RdrVUoJSa+rd3e/dI+0EsYCu90Hx+76RtKtOfjjlvx6u+L1huno3EEIIIYQQMp5Q1NchqrBUR9pljd/rQtRrLve61JF2Tgd35+01vd1xi/s88W/AH4GPR0MyNh7UAX9YaZQHOGUDqnjM5HLqo+GsqQSnpt6ZY+7FV1Mf8jv1r2zoRdeuIdz7wgbf47MhSiEi4ZBMAQR1v3fNqZdTBoLn1He2xBEJadANE9v6k9KpF8+v0vF7b426ujnknZRQKPFIWL6mE5qsDaPcNfXW+yMofr9jwL3JEdwoL3iyAiGEEEIIIeMNRX0dooq0eMQdqQ9Cjd9nc68Bp/45H3qAUJshRH3PsBSVwr0HHDEvI/DhEKa1WY8J6oA/nPKIelugqbPqDTO3qM+WShBiMJIjUi83DLTs8XuxKbK5d8TVmC4Xuu6kHNSaeu8aMgGi3u3UO1+HQxqmtTt9DcT1n9yScK2zUgx5atQNE7L5oR6wAVQocyc1IRYOYfbEJgC5nXoxISEofr+jP+l63EgBop4d8AkhhBBCSLVAUV+HqCItHgk5LnIWIeI49blr6gttEJZW6sIFM5S67h47/i1EJaCIeqUXgOPU56ipj7md+pEgp17TXK4tYIk8tft5SkkrhHx18v7r5hXUTvxeFfXOWt7uHvAdI4i0clwnfm/4RKQ7fu/uAQDAt4kxo129/raob7Vi65WuqR9K+Tc0xPMp1akHgN9c8G48/NX3yd4LuWrqA0fa2bft8DRiDFyvLynBZnmEEEIIIaQ6oKivQ5LKaDZN02REPFtNvCt+rwjZUhvlBdVJC1G5UXXqm6JSzAV1oBc19UFO/YjS/R4A4kLUK2s2lHUENcqLyVID3TfODggW6r7n6BHUad1U+gM4j1tToKjPKBssjqj3v3au+L19maNZ5tQDTl29lZSwROwU6dTrFa0RF069eK0A5/p5N0eKYWJzHHM7m+X3LcrsesC9ySGc+njA6+t16gNr6hm/J4QQQgghVQpFfR2iut1A7i7u1u1Z4veeWuuCR9rpbsELuDuwC6e4vSGmCGtP/D4SwtTWAhrl2WK+IeqP3wsXOBQ4pz4cuIER5OTmjN+LGfHKcxU/Uzvxry5Y1DvOdUTG742A7veG0v3e79RHPckEkZTYuNvZVJliO/WGWdk4uRD1rQlHdIs0h3gOpTj1XtTmeUD+mnrx/twx4BH1BcTvRzu6kBBCCCGEkHJBUV+HiNi3cCejMlJvCZHhlI77/7UJu+3YsRq/F83D1Jr6eCTkenw+vJ3hAbdT3Gs7xW0NUXlsIaqdlEEYE+3547uH3PFo0zSzNspz1dQr0W6vU98QDcnGcmndcM4bIPqCnrfhqamPKk3qxPUsyak3nA0WMeYtqPt92jCVRoD2el1Ovfv5zlR7Gsj4vVP+UMm6ehFnb21w4vG6nWgQjneoDKK+2Pi9+HqXJ34fXFPvfg/QqSeEEEIIIdUCRX0dImqkvQ3fRIT73pc24qu/W4Fbl60B4I7fB9XUi9h0oUImozj/AuEUb+9PotuOO7c3RqWwSnpFfSSEFtvZ7R/JuOLhyYwhR+J5a+rV+vCMIhi9NfWqU5/KGL4Z9dbXwfF70zRdnfW9zzWdCYrf96MQ1A0RWTYROKfecDYWPD0AvF8Dak+DIRm/n9wSlz9PBgjZciGcerWRXVrpCQCUx6mPR8Ied975etYE6/nP7GiUt0WV66uuYThViFPPmnpCCCGEEFIdUNTXIdJht4Wu6PIthGG3HWffZv/X5dSrzeOkqLfEWKFz6r2CF7A63QtX/c0tfQCAtgBRn3KJeuu8umG6OqirTqrj1Nvxe6VkQI12F9r9PmiOuVdQq3sbEdl5XnHqDbFB4ayla9dQoAOsYpqOeI+ENRmrNwJG2rm734fkY5y1e2vq/dMHJjTF5PMdC6e+KR6R69KVpAFQWk19EGoEX91oufTE/fB/Xz4SJx04Vd4W8XTcF5scQ+x+TwghhBBCagiK+jpEuNW+mnpbbAqBLP4bWFOfMZC0hYwQSgXH7xXnX6BpmnSL39xiudbtDY6odLrf63LtDdGwFHv9I05HchG9j4Scxn6JiD9+r+uO6+0X9eoGhiLqI35R6Bd0zveipl5TOuzL+L2SGjBMYO2OQeRCda6joZBSUx8UvzcCGuWpKQN3fbkYaTeSNrDOXkd7o1P+UFlR75RKyDF9yqYE4BfYpaJG8NXXPBEN4+BZ7a6Yv/c9McVuzDgS6NR74/d06gkhhBBCSHVQM6L++uuvxxFHHIHGxka0t7cX9Jhzzz0Xmqa5/p100kmVXWgVkFSEMaDG7y1hIkTWoD07XTr1kZB0e93xe9upL7RRXpaO5tNtt1jMbLfi95b4lN3vlRi8pmlotUVa/0haHkc2yVO6qYtUgtq5XF1HJKRBU5YTj4adXgGZbI3yguP36mUIKweV1y4gfg/kr6tX3d9IWJPH1gPj92aeRnnuax+PhNFpO9H99vVva4jJvgvJTAXj90mn+71oKJipkFPfrHTA94p2L95rJKYtsFEeIYQQQgipJWpG1KdSKZx22mm46KKLinrcSSedhC1btsh///u//1uhFVYPXoHqFafDdhzaceptUR9yu83iOMKp90bAs6E2e1MREXBBW0PU3/3eE4MXdfV9AU69iN4DwfF7w3REveaZVZ+IeOL3omQhKH6fyeHUhzTf/b3j+QRFifqQOtLO9JU+ZHR1Tr04f3YXGvBff8upDweutZzIkXbxiGu8olHmmnoAaFHq9r2i3Ys3HTClNbuo916fQn8XCCGEEEIIqTSR/HepDq677joAwNKlS4t6XDwex9SpU/PfsY4QDrEQbN7acOnUpzKu290j7Rz3uiFqvU3SBTj1akdzr/sqxtoJgrrfe8fxibr6vjxOfVD3e+nU2453LBKS18aK31u3u+P3flGfytH5PBIg6jOemvqprQls7RvJL+oV4R4JO43yvPXngNX9PuKtqQ/5164yo6MBKzb0yO/V6z8WNfWN0bBca1p3P6dydL8H3DX13maBXqKejQ8xQrGQRnmFplYIIYQQQgipNDXj1JfK448/jsmTJ2O//fbDRRddhJ07d+a8fzKZRF9fn+tfreGP3zvuKOA4kSIWrcbvXXXmnpp6vQB3MuOpC1cJdorF+ay1eMV1i4zf53HqZU29Uscuuprbzz/uqbEObJQXIOq9Ai5bbDyWJX5/4PRWAPmdejXSHQlpTv25YfpFpW74RtpFA9auMlO5/s3xCKLhkNOoMD02Tr3aKE9sjpTLpQeAZjvZEQtb5Ru5iHmc/Kk54vfeTRU2yiOEEEIIIdVCXYv6k046CXfddRcee+wxfOtb38ITTzyBD33oQ9D17PXDN9xwA9ra2uS/WbNmjeGKy4Mvfh9yxCsQ5NQr8XtljJu3pj5dgJBRXeywtwN7h1fUK93X0/6RdgDQKsfa+Z36hCLqG2LiOH6nXsx7d8Xvo2F5jrRuyqaAQWPhvPF7Qx4XLuEY8cTvpaif0QYAeGfHQM4JAqrI1TS1pt6QcW9xurRuOpsWoqbelRrwC1r1+rc1WNdV9CKoaE19yqmpFxsVacNwje8rF2JsXr56esAfv8/p1DN+TwghhBBCqpRxFfVXXHGFr5Gd99/KlStLPv6ZZ56Jk08+GYsWLcLHP/5xPPjgg3j++efx+OOPZ33MlVdeid7eXvlvw4YNJZ9/vEh6IuxO93t3/H44pbvGqHm738ua+pioqc/v5qqOsteBVZ36SEhDU8wR1im7xloIcW9NfZBT3xgUv1dr6j1OsCr0GhSnXjdMuRmgut1O08Bgl9YrCr29C4RQnjupCQ3RMNK6ia5dQ8iGeJwQuU5NvVP6INIJGcPwbVpEAzYkVNTr395oi/qxHGkXc1/zSjj1ItmRr54eCIjfK069abpfc28JBuP3hBBCCCGkWiippn5wcBBNTU2jPvmll16Kc889N+d95s6dO+rzqMeaNGkS1qxZg+OPPz7wPvF4HPF4vGznHA+8NfW++L0tsjKGiZRuKPF7zV1Tb9/eGBdz6otz6r1ibUprApGQhoxhoq0hajWvU2rqU8qGgHCQZU39sOPUjxQYv5eiN0DUJ6Ih6awDTkf+oDn1Kd2AaZrSlc/WM0DG9e3rJNIHiWgY8yY34bVNfVjdPYC5nc0Iwttg0Kmpd5z6hmgYQykdGd2UjQDF/Vxz6oMa5XUEiPqx6H4veyBEHKfeVT5QPlHfFCvcqVfj9+GQhonNzu/9SNpw9WwQvyMN0TCG0zqdekIIIYQQUjWUJOqnTJmC008/Heeffz6OOuqokk/e2dmJzs7Okh9fLBs3bsTOnTsxbdq0MTvneCBcZ3/3e7dTD1h19VLUq069YcjNAeHUF9IoT3W1vWItHNIwtS2BjbuH0dbo1D4D1kaE6haL21sbApx6Eb93jbSzu9+rc+rN7E59Ihp2jbgT4/3U+6gCXzdMZ3Mkixh14vzu+H08EsI+k1vw2qY+rOkewAcPRCBi00WcRzjw6px6kUhI66YUlkHlBYGN8lSnviEm1wZUuqbebpQXC8vXQjeU8oE8De2KQcypLzZ+39YQdW0SDad1l6gXr01jzBb1rKknhBBCCCFVQkmfpn/9619j165dOO6447DvvvvixhtvxObNm8u9NhddXV1YsWIFurq6oOs6VqxYgRUrVmBgwGk+tmDBAvzxj38EAAwMDOCyyy7Ds88+i3Xr1uGxxx7DKaecgvnz5+ODH/xgRdc63oj6cF/8Xjr1jvAdTGVc8XshDE3TuZ+IuetF1NSLunAvYlZ9e4PbKU4pcX9rLdZjg+bUDwWOtPN3vxeN/aRTr4jHeCTkauQ3kHQ3FwSs5IJA3azI5tQLwZryxO/jkRAOmGY1y/v58nfwxubg5oveWL8qgMX5hdDMGIYyss8+f4459YBVyiCSD2JTRaQ5Khu/d95HTmrE9JUPlAMx0i5oU8OLmmZoTVgpArEZ4G2WJ66/eJ8VUopCCCGEEELIWFCSqP/4xz+O+++/H5s2bcKFF16I3/72t5g9ezY++tGP4r777kMmk8l/kCK5+uqrsXjxYlxzzTUYGBjA4sWLsXjxYrzwwgvyPqtWrUJvby8AIBwO45VXXsHJJ5+MfffdF5/73OewZMkSLF++vObj9fkQrqsQzBElFm6aphTFgCW4HKdecwlZ4V7LRnn243MhHOVIlppm0YG9vdFyimNhe0660m0/FnE6lzsj7Zz31Egqu6gfVhznbE593D5+KKTJnwU59aqTq5YGZKsF926eSKc+GsKZh8/CwTPbsHsojX/7+bN4bVOv79oI5z0ia+qd+vOMEv8W93U2F9yJDCD7OLcZ3k0VOdJuLBrlReQ1zVSopr5JNMorRNQr10s0DhQbWOrGl2k6pSgNMrVCp54QQgghhFQHo8q9dnZ24mtf+xpeeeUV3HTTTXj00UfxqU99CtOnT8fVV1+NoaHsTcGKZenSpTBN0/fvmGOOkfcxTVPW6Dc0NOCRRx5Bd3c3UqkU1q1bh9tvvx1Tpkwp25qqFdlB3hbMUaWOOaUbLsd9MJkJjN8DTnd8dfZ3PrfeEabBby0xq17UdLtq6oUIVtbQEtT9Xjj1aqM8GSNXnHrfnHrr/mrXfPF8BwNr6lWnXq3VD+7aLp6Lt6Y+HgmjJRHFry54Nxbv1Y6eoTT+7WfPYv3OQdfj054NESF2M0oDwQYZv1dq0gMa5WVzqmd2NAIAOuxNFVlTP0bx+6jS36ESNfXzJlu9Pvaa0Jj3vuprLco8xPVVRb0atXdSK3TqCSGEEEJIdTAqUb9t2zZ8+9vfxgEHHIArrrgCn/rUp/DYY4/he9/7Hu677z58/OMfL9MySTGkMm6nXu1+7x3XNZTS5Vz1aDjkck0Hk47DKshXSywj5Fmc+lMPnYnjFkzGvx2+FwBHCCczunSLY65YtL+mvmfIEvjCXQWyxO89TrZwpRNRv3AfCHDqNU1TRGj++L3aWE88J/W8rYko7jr/cCya0Ya+kQz+b4W7ZCWjlEEATtmArsypT8j4vVqTHiDqs9SUn3/UHBy/YDI+tGiqvbYxiN8nnfi9M9LOlMI423ulFBZMbcWjXzsaPzjzkLz3VcsV2ryiXnkfqRs6DUpPA0IIIYQQQqqBkhrl3XffffjlL3+JRx55BAcccAC+9KUv4ayzzkJ7e7u8zxFHHIH999+/XOskReAVk2r3+yGPqHc79VYdfCwcQko3Ap36tG64nG4vMn6fxX3de1ITfnHuYfL7eIBTrwrrFllT74j6HQNJAMDEppi8zRlp54/JC+0Wk6LeWb/l3mcCRT1gCeW0rruEXb6aenHflGcKgfV8ovjIQdPw6qZerOkecD3ee+1cTr3sfu9E/L016a7u91mE8hHzJuGIeZPk95WO36vlHk3xiDLSzunoX06nHgDmTw6eLuAlKH6fCBT1joBvKKK/BCGEEEIIIWNBSaL+vPPOw5lnnomnnnoKhx12WOB9pk+fjq9//eujWhwpDe9IO7XW29sAbCily/pgcb9oWENKt5rlAUBDVHHq8ziU+eL3XkQE2hW/DxD16ki7nYMpAMAkZQRZIqj7vdept8+VUES2GGsWFL+3noe7+Z16XF9Nveh+n/HX1KvsY4vO1V5R7xG54r+GYcrXSK2pN7w9A/LMqQ/CEfWVcerVco8G1anXTV/Pg7EmFuDUB9XUqxs64r3DRnmEEEIIIaRaKEnUb9myBY2NuWtWGxoacM0115S0KDI6vI63OnveG78fTGWkCHXmo4cAOPdzjfYqMH5fqPsqa+r1bE69JbYGUhkYholQSMOOftupb3ac+gYlfi9mymd16pXnI4S46H7vdeq9Y+pyPUchEjN2Yztxv3jEK+pbAABvbx+AbpjyOMKpl6+Dy6l3j7TLGIpTHwpy6gsU9fbxKlVTL6L3ANAYDcvNHl1plFfO7vfFEBi/F6I+7SRD1CRLxDMekhBCCCGEkPGmJFGfyWTQ1+cfy6VpGuLxOGKxWMCjyFiRNX5v+OP37jn1/tpswBK20bBmzUbP0yBMN9zHyocav0/q2eP3pmkJ+5Z4BDsCnHohTg3TElyxiCadYOHUS1Gvjq3zNsoLiN8DhdbUO66+6uyr8XsAmNHRgHgkhGTGwIZdQ5gzyWruJoSieL3Csqbeiaqrc+oNT2KgkEZ5XiodvxfR+1gkhIjSs0Hd9ChnTX0x5Izfp5zXT+054ZQPUNQTQgghhJDqoKRGee3t7ejo6PD9a29vR0NDA2bPno1rrrkGBjtEjwtJT4xdzGNPZ0zZiVwwmMr44vexsN+BlqPI8jiU6SLrpGNK/Fs69YogTUTD8j79I1btu7if6tSrze9GbIHqdId3noc4pkA8Z1GW4HXVvc3vAH+sXyCc33TGdDnf3o2CcEjDvE5/BF8cV7xeYcWpFxsvak232GARTn00pIr64jZVKhW/H0o6ne8BdYPJhK4HX8exIih+H9QoL6VMh5B9E/i3jRBCCCGEVAklfZpeunQppk+fjquuugr3338/7r//flx11VWYMWMGfvKTn+ALX/gCfvjDH+LGG28s93pJAQhB6cTvHSHijd8Pp3Rf/N7bOd1yWd1N4LLh1JsXWFOfp1EeALQqdfU7BiyXvjEWdnXlj4VDECluUVcvnOyw2KwI6H4ftIGhIp93QAM+by14TJY5GFIkR0Ja4AbHPlMsUa82yxPXNuxplGfV1Lvn1Kd1A+KlEPcTDQ2b4xFoBUbaK939XiRDmuzXynHqnTF941VTHxS/F5sPam8GtSxCvB90xu8JIYQQQkiVUFL8/s4778T3vvc9nH766fK2j33sY1i0aBF++tOf4rHHHsNee+2F66+/HldddVXZFksKQziLQrBFlAi5r/t9KpM3fh+POLHjfDX14liFRqqFEE5mHCEc88TVWxNR7BhIoX8kI2PyavQesEo/EpEwhtO63NTwisbg7vfBNfTe9ak11Nlq6qPKxoe3BMKL0yyv3zmuJ34fctXUexrlKSPhxJz6ic1x3PCJRXIGfSHIOfUVit+LCQoNMc97UampL3f3+0JR0wytnvi9mmhx4vea3KxKM35PCCGEEEKqhJKc+qeffhqLFy/23b548WI888wzAICjjjoKXV1do1sdKQkpKKNupz6jG7LGWeCuqXc31hPEXLXQucVMNhc7G4FOvef8zli7tDPOrtkvXL0d8KVotEXv1NaE9d+2hHxMUP8AFdlk0AiK3wfPqU/rptL5Pnj8nxi7pjr12RrlWXPq7Zr6mNN9XbwUIWUdnz58L5y0cGrgOYOQ8fsKNcoblk69mMTgvBfHu/t9NCh+H/PX1Lvi98r6CSGEEEIIqQZKcupnzZqFO+64wxevv+OOOzBr1iwAwM6dO9HR0TH6FZKCWLayGxt3D6E/mcHuQWv8W8wj0lO6ieGgmno9e019JKQhFNKUTuy5xYzT7K3I+L1uIJXF3RYd8PtG0hi0u6l7nXr1WEJQe8X3Jw6dicmtcRy+90T5mKANDJVojvh9dlFvSJGczamfb3fAX9M9ILv6e5MFYaVTfMYXv3ec+tGI4krH7wdtUS/EstonQCYNxnGk3YSmGJJpHZ0t1vspqKbe1f1e2WghhBBCCCGkGihJ1H/3u9/Faaedhr/85S9yTv0LL7yAlStX4t577wUAPP/88zjjjDPKt1KSk5888TaeW7vLdVt7oyWGowHd7xtjYQyldGtOfQ6nXgjlSEAMPYhiI9VCVKYyhlI2kM2pz2CX7Hzvd+rVDYKgtcQiIRy3YIrrMfmc+qDnnckipouJ38+e2IhoWMNQSseWvhHMaG/wxe9VAemP3zvz30OjEvWVjd+LTSSnpl7E752O/uMl6kMhDfdc+F7ohilj90E19WmXU1/Y7wEhhBBCCCFjRUmi/uSTT8aqVavw05/+FKtWrQIAfOhDH8L999+POXPmAAAuuuiisi2S5Ofde0/AhMYYmhMRNMcjWDSjDTM7GgHA1blexKEnNcfRtWsIg8ncNfWOqC8sdpwZxUi77I3yrM2J/pEMdtqN8iY2BTj1YedYQGEbDLGIp9ld1pr6wp36lNIozzvOTr3vnIlNWN09gNXb+jGjvcHpR2C/XmpNvdP93nktRWhiVE591J1uKDdDHqdeLeMotlSjEogpBIKgmnqx+RCLhApOrBBCCCGEEDJWFC3q0+k0TjrpJNx222244YYbKrEmUgKXnrhf1p9FlPnpQ1LUx9C1a8h26t3xe7X7vYzwS4c1t0OZKXJMmTt+HyzqhVPfN5LGzsGkXL//WI7rDxQm6oOaArp/7lw7QT5Rn9FNuYZ4NPt12GdKM1Z3D2BN9wCO2W+yb267y6k3vHPqDWekXYGd7oOQ8fsK1dSryRDA3SgvW8PB8cSJ3/tr6iMhTUka0KknhBBCCCHVQdGN8qLRKF555ZVKrIVUiJgUm6qot5xud/d7f029bNpW4Eg76dQX2ihPcdeTWRvl2TX1wxns6Led+kJq6s0CnHpfTb3bWVeFuiCbwyw2QwqJ3wNOXf3qbQOu4/rn1DtRe1f3e3tJo6upr2z8XrwWYjPCceqNoscfjgUiUTCSyha/Z6M8QgghhBBSXZT0afqss87CHXfcUe61kAoh3FHDhDMSzm4M5u5+74/fC9FXaIOwYt3XmCIqk9ni9w1K93vp1PtFfdwTv5dryeFkR71x+2zd7xURl3WkXUitqc8dvwf8Y+3knHqPUz+iuMYNsvt9eRrNVbpRnndzQ4riKhhpF4Tsfh9QU++O39OpJ4QQQggh1UFJNfWZTAa/+MUv8Oijj2LJkiVoampy/fymm24qy+JIeVBnxveNWJ3xVadeOKXlaJSX8UT58xGLOMfNJupblJr6Hf254vciym8JMkOIxhz1/T6nPkv8Pqim3uswq1MG8nW/B9xj7UzTaYYnNgdCUtQ7AlN2vzcMiCWNStRXuKbeuQ7VWVPvpSHnnHqnUV6+0Y6EEEIIIYSMFSWJ+tdeew2HHnooAOCtt95y/UwbRX0vqQyqcBWivtMWxSNpA9GwLVoiOUR9gQ3CinXqVdErUgTZaup3DabQN2InDXLE74ty6j2CP5tTH1RT7+06L65fRonfe4+nsvekJoQ0oG8kg+39SaRFV33PnHpVcAvRaZqKs1+G+L3VYd8oeBRhofiden9N/Wi695cbcX3VdERaaf6oTpIghBBCCCGkGihJ1C9btqzc6yAVRHVCe4fdTj0ApVGe5vov4J91n8+hFLXGkQK736uid8AW9d7IuhD163YMArBEbFtD1H8sT/zeKMAJ9iYKvCLfEer5a+pjrpF2+Z36RDSMvSY0Yt3OIazZPgDdM9IuHODUx6POtRG3lyN+D1ibB2UX9cKpj/o3h/QsowHHk8D4fcbZbAkrSQNCCCGEEEKqgVF9gl+zZg0eeeQRDA8PAwBMkx90qxFV9PUNW8K5vTEGr5aKhnI49QU3yisuUq2mCAZGgp16OdLOFv0TmmKB7q63UZ7sDp9zpF3wCDvv94XU1Is4fkopJchVUw8AMzoaAABbekZ8104cTxwrpLk3CcTtoxH1sYDjlRPvdVBr0qu6+72rUZ490i4cKngKBCGEEEIIIWNFSaJ+586dOP7447Hvvvviwx/+MLZs2QIA+NznPodLL720rAsko0fTNClO++34fWMsjKaYO6iRO35f3Ei7Qh1fdW2iNCAeDhb1gqDovbpWEZUXSy3UqY+FQ77yEfFYd/zeFtNasKufzhhI2k5vrpF2ADCtzRb1vcO+OfViacKRj4RDrucibh/NSLtwyImUV6IDftb4vav7fRWJesWpF5uUKaWRpNiAyLe5RQghhBBCyFhRkqi/5JJLEI1G0dXVhcbGRnn7GWecgYcffrhsiyPlQzjtQug2xsJojHvHt9nx+4g/fh/U9XvXYAovb+jBw69twaNvbINpmiVFqoUY78/i1Iv4vSCoSZ76uFQxTn3ABoaKI9TV+L31X28DPrXeupD4PQBMb0sAADb3jihNBkX83u3UR0Oay9UWt49WFAsXPVVJp94bv9fV7vdVNNLOVd5gv4+U5o/i9yjfFAhCCCGEEELGipJq6v/617/ikUcewcyZM12377PPPli/fn1ZFkbKi1f4NUinPilvE9HiIKHrnc/9wMub8dW7/wVV29x5/uFKhLxwoRaLhICkU1PvFdfNPlEf7NTHPaJe9DLL7dQrGxhBol42dvM79f6aen8n/3zx+6m2U7+1dwQdjdZmhbdRnurUa5rlrKd1Uz7P0cbX45EQBpIVit97u98rjfKkU19g/4WxIKGI+uG0joZY2DWnvtDeEoQQQgghhIwVJVlkg4ODLodesGvXLsTjwYKLjC9ewdoYi7ic+nBIk452UPzeK2aeW7sThgm0JiJob7Ti8Su39DmivgihJsSwFPW+5nUhNMactU5sKtKpL3BOvfe81m3+uHXWmnqlUZ83dp6Nae22U98zLNcrxLx3pF1Uzq93H7Mcoh5wBHg58cXvlUZ5svt9FU3MCIc0uVbRLC8dEL9n93tCCCGEEFItlCTq3/e+9+Guu+6S32uaBsMw8O1vfxvHHnts2RZHyodXCDbGwmhUaupVx1oV9V4xJsZ7DdmNxL587Hx85t17AQA27h52auqLEJoimi2c2yDHXI3gT2rJ4tR7xs8JHZ5rgyFoA0PFEer+7ve+mvqg7vd5auqny5r6Ed+1E/91egO4UxOCUYt6252uTE2916mv7jn1gFJXb7/HUy6n3l+GQgghhBBCyHhSUvz+29/+No4//ni88MILSKVSuPzyy/H6669j165deOqpp8q9RlIGVCGo2V3UmxT3WxW3QSPtIh6nXgiehlgYrfZ4uU09w5hpd3Mvqqbe45AHudstiSi29VmlAoU69YXU96vnyhW/TwfMqffW1MeUaHmh8Xvh1PcOp2WjQHGt/UkAf5Ii6H7FIp36saypN0zpdldT93vAqqvvQVq+x9X4vdhYSTN+TwghhBBCqoSSnPqFCxfirbfewlFHHYVTTjkFg4OD+MQnPoF//etfmDdvXrnXSMqAKpwbo2FomobGuOrUB4vbmC82bYt6O5rcEA1jRrsl5DfuHlLi90XW1Of4HrBi/oK83e+lqM8f7/Z2v/cdM+yPW2cb2yc3ADKGUkue+zq0xCNyc2Xj7mH7OG6n3nt87+3exECxOKK+Ak592hu/D6ipr0JRDzjvcbGRFYs40wd0xu8JIYQQQkiVUJJTDwBtbW34+te/Xs61kAqiOvUiXux26oPj99ka5Yn4fWMsIt35jbuHccis4t3XQkR9izLWLquot9ed1N2iPlfTvnzx+2iu+L3nuOIapXSnpj7omCqapmFaewPWdA9gky3qxXG9XfsjAT0PrPuXp/t9ZWrqs8XvjayJh/Em4RH16kg7b2KFEEIIIYSQ8aZkUd/T04PnnnsO3d3dMDyu1dlnnz3qhZHyogpbIerdNfWhwK9j4bDrNunUS1EfxnTbqR9K6dgxkLLvX+74vbPWiVlH2rlHs8lGbDl0db7u95Gg+L0ZXFMfU+5baPweAKa1JbCme8AlHgG/gy274pe5pj7mid/f++JGzO1swqF7dYzquOoxvU69bphZEw/jTaOnpj6tO5tDYU9vCUIIIYQQQsabkkT9n/70J3zmM5/BwMAAWltboSniRtM0ivoqRO3y3hi1XvbGQmrqvY3ypFNvdapPRMNIRMOY3BJHd38S63YMAihu9rjPqQ/7hbDq1GcX9Z6RdmZ+p17dUAjaTIgGdL/X9eAO/+IaGqYjCPPF7wGnWZ5ArNcr1rOK/bLV1OtYubUP/3nPy5jb2YS/X3rMqI4rjgkoNfXK9azGOfWA0igvbb3H0/b7KRpxGuXpdOoJIYQQQkiVUNKn6UsvvRTnn38+BgYG0NPTg927d8t/u3btKvcaSRmIhgLi9/Hg7vfBc+rdseMRO6otNgZm2BH8DbuHfMfLh9fNDqypb7DW2pKIZHW/Y57a8IKc+rwj7fxOfbaRduqxBu3xfPm63wPA1LaE6/uIFO+eeH+W+L03pl8sYo3JjIE13QMAgN2DqVEdE7DceOFyy/i9rEl3nPoqS9878fuU9ZqL1z4W1pxGeex+TwghhBBCqoSSRP2mTZvwH//xH4Gz6kl1orrKjTJ+n82pD5hT75nPLZx6cYyZHdZ7QYi4YiLhXjc7uFGe5dR3ZqmnBxwBnsoYMAwTpmcUXK7HZDuv0/1erakP7qqvbmT0C1FfQPx+ertH1NvH9e4xZI3fj7pRnlNTv2GXVddfjk74KeUYiah7cyitm9LtDhfRVHEs8DbKEwI+Gg7Ja69T1BNCCCGEkCqhpE/TH/zgB/HCCy+Uey2kgqhCvVE2yguuqVdFo5j9HpYNziwxM6SMtAMgm+XJY5S9UZ611mzRe8DZHEjphqx7B3KL3vxz6gPi9/ahvV31o8rmwcCIEPX5f8WmeeP3cqSd+7HRLA7+aBvNqfF7kbQYSeswzfzC9em3d+D3z28I/JnaTV+ORlQ2h6q9pn5EiHp7cyISDvnKUAghhBBCCBlvSqqp/8hHPoLLLrsMb7zxBhYtWoRoNOr6+cknn1yWxZHyoYrXBlvMN8aDu98HuddRzygy4eQKV1OMtRPkcse9FNIo76CZ7YiENBy+94Tsx1Fq6lUnNZfojUWCn7f3NveceiHy3McNhTSEQxp0w5QubyHxe69TL1IR/tp5+7Uou1PvxO/FWD3DtNx09foE8dW7V6C7P4n3zJ2IvSa6kzviPRIJab6UgW6YsudBtc2pF/F7kUZR4/dRTxlKIewYSOKpNTtw0sKpBSU3CCGEEEIIKYaSRP3nP/95AMA3vvEN3880TYOul3/eNRkdqkBsjOZ26l115p6RdmndkA4m4HTQ9zn1xXS/V86nacHO7SGz2vHKtSe6OvZnO45P1I/CqRfXQo3fZ3KUGETDmuvchYi4qVmcem+tfFanftQ19Xb8PmNg464heXsyo+ccyZfRDXT3JwEA3f0jflGfdne+t9Yu3kfV2/1eNsrz1NRHw073+2Li9z949C38+tkufPe0g/GpJTPLvFpCCCGEELKnU1L83jCMrP8o6KsTVag3FFNTLx1Wx6EU0XtNc2qlRU29oCin3tOsTssiwnMJenWtqYwnfp9DNBY6p97t1GcXo94mdoXE75vjEdfIvnAep77cI+3EGodTunTqAacZYjZ6h9OBXwuczvfO+0wdaScSD9Xm1Htr6lO6v6a+mJF23X3OxgchhBBCCCHlpihR/+EPfxi9vb3y+xtvvBE9PT3y+507d+KAAw4o2+JUrr/+ehxxxBFobGxEe3t7wY978803cfLJJ6OtrQ1NTU047LDD0NXVVZE1VjNq9/vGPN3vg0baqY3yxLi2hmhYCnCvU19qo7xcznA+YmpNvV4eUR9UQy02DLw19d7jAYWJesA91k5cf++6haD0nqNc8fsNu4eQUp6nWhMfxO4hR8j3DPlF/UiQU68kPnIlHsYTb019RnHqRRmKaRbu1o/YZQj5NkkIIYQQQggphaIU1COPPIJkMim//5//+R/XCLtMJoNVq1aVb3UKqVQKp512Gi666KKCH/P222/jqKOOwoIFC/D444/jlVdewX//938jkUjkf3CdEQlolJfNqQ+qqQ9LUW9iyJ7f3aA4sIloGJOUJnbFjLRTxXShIjjXcZIepz6XZnSdO6imPiB+L536gOfofd6FblJMU+rqpSPvi9/7b9e0Moy0s0sExDg7QT4R2jPkjL3L6dS74veqU1+d8ftsNfXRsObqz5Ap0K0XmwNq2QohhBBCCCHloqiaem837EK6Y5eL6667DgCwdOnSgh/z9a9/HR/+8Ifx7W9/W942b968ci+tJghqlOd26vOMtFPi98OezveCGR2N2DFgCb1i3Fdv/L5UXPF7ZZZ8tji/93w54/fKeDbHYc5+f0GhjdGmKbPqxcaAV6wHzakvhyAWzfw29Qy7bs8nQncN5hP1wqlX4vdhZ3NIzqkvolRjLBClEH3DQtQ78Xt1wkFGNxEv4C9okqKeEEIIIYRUkOr6NF1GDMPAQw89hH333Rcf/OAHMXnyZLz73e/G/fffn/NxyWQSfX19rn/1gOog551THyCy1di0EPWNHlGvRvC94jYX+YR1oagj7TJGYdHuoFKDoJ+rNdS5HGb1uWha4YkFdaxd1pr6gDn1QSUAxSKum3ePLt+sejVyn7umPngTIqV0x68mJjXHAVhd6wHIkgS1UR4A+R7LR1LG7ynqCSGEEEJI+SlKQWma3/XM5YKOJ93d3RgYGMCNN96Ik046CX/9619x6qmn4hOf+ASeeOKJrI+74YYb0NbWJv/NmjVrDFddOdTGdY6oz19TLwRfRBlp58yod9uUM9v9wrQQ4q74fekjv8RjTdMRjPnqzS0n3/o6KCXgNMpT4vc5auojnmtX6O+H26l3lzw4t/u735fFqc9yzZN5ROjufPH7wJp65+sRW/RXW019Z4sl6rfbol6OtItort+NTIGz6oWYH2ZNPSGEEEIIqQBFx+/PPfdcxOPWh96RkRFceOGFaGpqAgBXvX0hXHHFFfjWt76V8z5vvvkmFixYUNRxAcupB4BTTjkFl1xyCQDgkEMOwdNPP43bbrsNRx99dODjrrzySnzta1+T3/f19dWFsI8q88ZFLXw4pCEeCSGZMfLW1Asxk9ENDKVFozy3CHY79SXG78tQUw849dD5RK+mWbPHUxnDlVAQiOsiasDDIS3nKDb1OhazQTFd2RCJZBldFzSnfrT19ED2PgYjSqO8lVv7cMtja3DJB/bF/MnNALyN8lK+xwfG75X1CtFfbU59p+3U9wylkco4Df2i9mSGcMgaW1ioUy96E9CpJ4QQQgghlaAoUX/OOee4vj/rrLN89zn77LMLPt6ll16Kc889N+d95s6dW/DxVCZNmoRIJOLrxr///vvjySefzPq4eDwuNy3qiajLqXde9qZ4BMlMKm9NfURxrEdk/N7j1Ctj7Yqpk66EqBcCKlzA5kLMFvXBTr3z+LRuIBwKO6PYAhvlldb0b2qbv1GeV+tKp145bzlc7rhncyYWDiGlG1J0A8Dvn9+Ih17dghkdDbjqw/sDKLVRnub7eTk2JspJW0MUEXvzZudgUsbvI0qCoihRn2FNPSGEEEIIqRxFifpf/vKXZT15Z2cnOjs7y3pMQSwWw2GHHebrxv/WW29h9uzZFTlnNaMKQbXBXWMsjF2D3vh9QE29Lbx0w5QuuLdRnurUF+O+qk7uaBrlhUOOiypKBAoZ9xaLhIBk7kZ5gFNDLRvlBRxbXb9XLOdielsDQhpgmM7jVFcYCHbwKxG/33tSE1Zt63c59YNJ6zXf2uvMWs8bvxdOvXId1E2IkSp16kMhDZOa49jaN4Lt/UlX93vAGu+YQvHxe4p6QgghhBBSCYoS9eNJV1cXdu3aha6uLui6jhUrVgAA5s+fj+ZmKw68YMEC3HDDDTj11FMBAJdddhnOOOMMvP/978exxx6Lhx9+GH/605/w+OOPj9OzGD9Ucao2uGuy3Xa3U6/hhP0nYyCZwYQma0ydnNduqPF7b/d7f4S8EMrVKE8ca9jQHVFfgGAUYi3IWVevSzpjAHHAMLPH79019YXH7xtiYVx/6iIMp3S0JqLydpeoD4rfl7FRnvh6ZkeDJeoVp1685t39iqgfzNMoL+2P32uaJl3wZJXW1ANWXf3WvhFs7R2RDQSdppEhAHpBTr1pmkqjPNbUE0IIIYSQ8lMzov7qq6/GnXfeKb9fvHgxAGDZsmU45phjAACrVq1Cb2+vvM+pp56K2267DTfccAP+4z/+A/vttx/+8Ic/4KijjhrTtVcDQd3vAaAxHrZ/rnZt1/Dzcw5zPV5Ej9WRdt7u942xCGZNaMDG3cOY0BhDoZQrfi8eP5zWnfh9QaI+lPXc4ZAmHXTh2ObqrF9q/B4APn34Xr7bIrYrbB1bxO8r59TP7GhAwn5d1UZ54jXv7nf6ZnidetM0XY0Bg+L31votUS+aD3p7B1QDk5qt9+8WJZkQ9aRWMnp+UZ/SDbkpMEynnhBCCCGEVICaEfVLly7NO6Pe9M7kAnD++efj/PPPr9CqagdVODUEOfWR3OJQbZSXbU49APzy3MOxvT+Jya0J38+yUW5RD6Aop144sLFwsLMeDVvNBEVttTcO772voFhRH4Qa8RdiPqo8p7I0ylPi8bMmNCJhi/wRZaSd2CTZ3qeKesedT+tWyUOTMrjdaZQX1PDPOXa1OvUAsLlnWN4mRb0y3hGwNjwiYS1wjKPqzjN+TwghhBBCKkH1WWSkIrid+ojyte3U53FLxaZA2jBlFLsx6t8Tmj+5Ge+dN7GotcUi5RPCQqAXI+rfv28nJjXHsf+0lpzHFM6yEPVB0feYsjky2g0KwN2ML+qKf1uUx6lXRH1HoxT5aqM84TL3JzMYTukwTdPX8d4bwXdq6t2bJd7NkGJKNcYKMat+s8upd/c00A0TI2kdR39nGU798VOBx1HTDozfE0IIIYSQSkBRv4eguohqLfx+Uy0hO7ezKefjI4FOfXnePrEyutvi8cN2M79CRP21Jx+I5646HhObg6ceiFF3Ga9TH7ARot5WTE19NlTRHtT9vjwj7Tzxe+nU++P3gFVXP5DMyDKEZtud7xnyiPp0lvi9Z83l6AtQbrxOfSSkydIC+btgGNjaO4Lu/iRe29Qnmwmq0KknhBBCCCGVpmbi92R0RJS6cVXoXnLCvjjjsFmucXSBjxd1xK7u9+V5+ySU+Pdout8DjjsunOVCut8DucWxeO6pCtfUB65Ljd+LRnll737vjt8Lx10VoWo9eHd/Uq4rEQ1hSmscA9sz2Z36wPi9+n31ivottqiPBqQj0rqJAUXId/cnsXfc/TuRzKhOPUU9IYQQQggpP3Tq9xCEy+ttbhcKaXkFvfV4pVGe7T42RkfvRAPuWvbxqKnPRzRL/D4oNq7G772x81JQBW8kyKkvR/f7qCd+bzv1SaWm3uXU9yVlk7yOxhjaGqxu/dlFvfs6eF+TaqypF/H7bXZjQLV8RY3fu0R93wi8qE691RyQEXxCCCGEEFJe6NTvIQhhWqoQVyPHItru3SAolbI2yrOfZzHd7/MeMyJEvTt+HySoy94oz1VTH9D9vgz16PFIGM3xCFIZA7MnNcrkRDanflvfCJrsqQntLlHvrrEXLrWaxFCfRzmfQ7kRTr14rdX3pdoobzjlNOfcpkwGEKglDIB1TYMa6hFCCCGEEFIqFPV7CMLxDepYX9jjHbdauOCJSoj6LB3oiz2WWGM5ot1RT7dzp6a+8qI+4ora+7vfF1pekItwSMMvzzsMad1AayIq1x3UKA+wYuYTmqyRbx2NUbTb4wt9Tn3AnHpxvlzfVwOTPP0VXK9DuBin3ivqDbQUPhiCEEIIIYSQvFDU7yFMtOduTy5RUajuqhAyZYvfV2CknYiLl6ORnLqhAVhpBSBYjKquczka5amnCHLqy/H8AOCwORPk14moiN9b11A3TKSUKH53/wimtFqit6PJcep9jfJk93uvU5+7xr4aaE1EEIuE5PNWRz6qNfX9iqjflid+b33PunpCCCGEEFJeKOr3EA7dqwM3n3kIDprZXtLjVQHbPyLi9+V5+6jN8coVvxfOclmcehG/z+SfU+/q5B+tkFMf9gvMciJEvRCkwx4hur0/KWfUdzRGc9TUB3e/rwWnXtM0dDbHsSlHo7yMYWBgRBX1/vh9MiB+TwghhBBCSDmhqN9D0DQNpxwyo+THq6KmzxZvpUb5/cfWoGmAaZZhTr3XqS9DPD2WJX4fFH0ve019UKM8RehXYhycWLcQoGqTPMBqlNdTQKO8kSzx+0g4t8ivFia1OKI+FtDHwIrfO8+5u78Qp56N8gghhBBCSHmpvtwrqUpUR1iMdCuXqNc0TYqmcne/L0cTNtn93jBhGCbsp1/ASLsydL93NcoL+W6rRJM5J35vCVCvu9zdPyKd+vac3e+Dnfqo57pV40g7AOhU6urdTr1TjjGYdE8F8OK9dt7UA2Btmnzkh8vx/x58Y9RrJoQQQgghex4U9aQgggRsuWrqAUeMj9bd9rrM5XCyhbOczhjQTafbeVAtuBqNH+0GBeCdU6/5zlERp97T/d5byrB7KC3rx61GeXlG2kVrL34POB3wAe/mih2/1w1ZigJkq6nPH79fta0fr2/uw/0rNo96zYQQQgghZM+Dop4UhKZpvlFk5XLqAUeMx0Y57ku44+Xsfq/G70X0HnCPmxOUv/u96srbTr2rzr4S8Xu3Uy/i95Nb4vI9sHpbP4A8jfKyxO+9jfLK0cG/EnTazSUB95rDsqbeHb8fTOmubviAcw0FQaI+ad/GentCCCGEEFIKFPWkYFRHNaSVR7QKyh2/H5Zz6ke/Rhm/94r6Ma6pd7rfa4E/LxfeOfVig6QhFpaRdKdRXiyHU5+/UV5IK18H/3KjOvXumnrr64xu+ES8d6xdsoD4/UjGaUhoKkkQQgghhBBCCoGinhRMVBHIDdEwtDI6rEKMl637fUqI+tGtC1BFvSn7CVjHDhL1yki7MpQnuBrlye73fte4nDjd790OcmMsgs5W90jEjsYoWm2nvm8kDUO5PjJ+73Pq/c+pGpnkqqlXNldUp37ELeq9HfBHPE59MqBRnhD+umEipbORHiGEEEIIKY7q/URNqg7VIW4o0zg7wQHTWxELhzC3s3lUxxGbAkIclUM0RrLE74Oi72Pi1Icq69SLdScz7pF2DdEwJivuNeBulGeacNWYF1JTX8Wa3uXUuzdSbKfecObUi80kbwf8QhrlqRH9kRRFPSGEEEIIKQ6OtCMFo44iayxjPT0A3PLpQ9E/kkZ7Yyz/nXPgdfrLEe2OKfH7jGGJLi1LbHwsaurVc1SiUZ7a/d40TZl6SMTCmNLqCN1wSENrIgJN09AQDWM4raN3OI22xigyygaI9zpEAjrJVyPZRL3aKG/QFvWzJzZidfeAr1leIY3yVFE/lM6gDdHRL54QQgghhOwxVO8nalJ1qKPIyi3qwyFt1IIe8DfaK0cjOSHoUroJW9Nnbe7mit+XYaRdOKApnmukXQXj94AlOB2nPoTJLU78vr0hKkswZLO84ZR8nMA3p77CSYNykS1+L66/Gr+f29kEICB+X8CcetF7AHDKRgghhBBCCCkUinpSMKrDmijjOLty4nPqy+BkR5XGaMKpzyZGo8r5vbHzUlD3KKIB3e8r0WROddaTaUMKTW/8vqPJ2YTxNstTRb33Nal09/5y0RSPyM2roDn1qYyBQfvazLPLRrr73aJeCHbRfDAwfq8I/SGKekIIIYQQUiQU9aRgIhV06suFX0CWQ9T7a+qzHVdtJlie+L3add0/p74SojgaDslNi5GM7jj1sQgmK/H7jkYnJt7qGWsnxGw0rPk2QKIV7t5fToRbr27WiGveo3T7F6LeH7+3BHt7Q8z+Pk9NPcfaEUIIIYSQIqGoJwWjxr6rVdR7hXQ5nOyg7vfZjlv++L3add126ivc/R5wruNIWvc0ylPi90q5RHuDx6nPMqPeu+ZqduoBp65eLT0J269xr72BEQuHMGtCIwD/SDsh0kWSIUi0q7fRqSeEEEIIIcVCUU8KRnWNy939vlxUtqbekCPbsjr1kXI79f5a7ugY1KSrzfJk/D4WcsfvFae+zSvq5Tg7/zVwNfqrdlEvnHq1UZ79eyD6BzTFnQaC2/qSrlnzYqSduD75nPqgeD4hhBBCCCG5oKgnBaO60A1lqBevBN74fTlEbzRix+8zhnTqw1m6tsfK3P0+FCDqXU59BbrfA0BCcepHFKd+YnMcYkkdilPvF/XWY4KuQS059UKsqz0kxOsgSg2aExGZYBhO6xhIKmP9fE597kZ5jN8TQgghhJBiqU67lVQl7pF21fnWqYSoF0I9Y5j5a+pdon708ftIYPxedeors7kSV5x6EQlPRMMIhzRMbI5je3/SHb8XjfKGPE59QEPFSA3V1H/mPbPRM5zGJw6dIW+TNfVC1MejaIiF0ZKIoH8kg219SbQkrOshroPYAMk3p57xe0IIIYQQUizVabeSqkQVYA1VWlPvjd+XQzQKEZdSGuVlO64qWMvT/d46XkhzXHu1GV+4Qr/BQTX1YiNHRPAnNPnj93KkXTp7/N5VUlDFc+oBYN8pLbj5zMWYazfCA5zNrd1D1nNtiVvXZUqr5dardfXCeW/LUVOvdr/nSDtCCCGEEFIs1f2JmlQVavy+sUZG2pUnfm83ynPF74OPq24qeDcYSsGZTe/vgm+tozK/wiJuPpI2nPh9zDrXkfMnIRYJ4ZBZHfL+bbYT7YvfBzn1rk2J6nbqgxCviXDVmxNC1Nt19f1+US+732fyzKln/J4QQgghhBRJdWaoSVXibpRXI6K+DDXnCTtGP5TS88bvWxuiiIQ0tDdGy9IEznHng+vQK+3UJzO6a049AFz14f3xtQ/s66ozb/ONtCvQqQ/XrqgXNAmnvkU49c6sejnSTjj1AU68q1EenXpCCCGEEFIkFPWkYFyN8qpU1HtFZDmc4Gntlljb3DOMjGHkPG5bQxR3fe5wtMSjgT8vliCnXtM0REIaMoZZuUZ5ilMv3GNVxCc8DrwQ9X0FNMobi5F8lSTi2UlptkV9p9IBHwBM08RIRjj1tqjPcKQdIYQQQggpLxT1pGBUp75a59THwu51lUM0zuqwZpBv3D2MjJ47fg8AR8ybNOpzCkS8PupxtCNhW9RXLH6v1NR7nPog2mVNff459epzqdSmRCXxOvUtCbdTL+L3ad2EmG4nmgoGOfEcaUcIIYQQQkYDa+pJwURcI+2qcz+oEjX109oSCIc0pHQDW3tHynbcQhCmsLehnGiWV7n4vTKn3tMoL4gJzZZoHUrpGEplpPsc1Cww7CofqEFRn8Wp9zbKU1359lyN8hRRz5F2hBBCCCGkWCjqScGoDmWtxO/LMQc9Eg5hqi3Y1u0cLNtxCyEcMMZO/X5MnHpPo7wgWuIR6eR39yVz19RnafpXK3hTE0LUT7Q3NnYNWl3xhUDXNMfND2yU54rfZ3w/J4QQQgghJBcU9aRg3HPqq1PUV8KpB4CZHQ0AgPU7h8p63HyIzYOoxx0Wr0WlnHpRM59U4vfeOnoVTdNk9/fuflXUB3W/r3z3/krife2FqBd9BXp9JQghueGRyjhjEQUpV/zeL/oJIYQQQgjJRe19oibjhqtR3h400g4AZk2w6urX7xos63HzIc7jTQaIbviVEsXCYR9O61Kg53vNJ4ua8r6R3I3ysnTyrxW8pRBipJ2I2PcOp60meUqDQTXZkvQ0y3N3v6dTTwghhBBCioOinhRMLTTKi4Q0qL3Xyu3Ur9sxtk59OKD7vfp9pdLrwpUXI+qA/CUXk2X39xHHpQ6oqVcj97VYU58tfi9m0ad1E0MpZzMkEQnLsYiAM+ZOwDn1hBBCCCFkNFDUk4KJ1MBIO03TEKvAyLSZdgf8gaTlpHrd2krhxO+z1NRXKH8vRP1uRdQnAqL0KqJR3Pa88Xvl9anB7ve++L3t1CeiIfne6xlOK059CKGQ8770CvekIvI50o4QQgghhBQLRT0pGDUq3Vil3e8BdwS/XKJROPXyuOMevxdOfWXWIWLzPUNW0zchTHMxRXXqC4zfh2uyUZ77ObXYTr2maWgTEfyhtHTkxQaJ2nxQRe2SP0JRTwghhBBCiqRmRP3111+PI444Ao2NjWhvby/oMZqmBf77zne+U9nF1ilqBLxanXrALSTLXVNf7uPmI5I1fh8s9stFXDr1lqgvpIeCU1NfRPf7Gozfe1/7prizwdVuN8vrGU45Y/3sayDEvTqrXjdMpHWncd4Q4/eEEEIIIaRIakbUp1IpnHbaabjooosKfsyWLVtc/37xi19A0zR88pOfrOBK65eo4hp7G9JVE5WI309piXu6to+NGA1ljd+HXD8vN0KIik7uBYl62f1erakPiN/XW019whH1sgP+UFo68HHp1NsTBRRnPuUZcTdMp54QQgghhBRJ9WaoPVx33XUAgKVLlxb8mKlTp7q+/7//+z8ce+yxmDt3btbHJJNJJJNJ+X1fX19xC61jhJCs1s73glgFnPpIOIRp7Qls2DVsfT9GYlTE7L2Rb6f7fWXO662pLySZIWrqu/uS2MtONuwJ3e+bYopT3yic+rTcXBLXUvzeqI3ygjrhG4ZZsc0aQgghhBBSf1Sv3Vpmtm3bhoceegif+9znct7vhhtuQFtbm/w3a9asMVph9SMc1mqO3gOVEfUAMLPdieCPlcN85D6TcMisdnzi0Jmu24U7rArKcpKwr6GYqV7Iaz65xXLq+5MZuRkQLOrV16f2/gSpr31TLOz6vs3ugN877Dj1CRm/txvlKW58MuOfS88O+IQQQgghpBhq7xN1idx5551oaWnBJz7xiZz3u/LKK9Hb2yv/bdiwYYxWWP0I17hax9kJVFFfTid41gSnWd5YifoZ7Q24/8tH4uSDp7tu/88T98MlJ+yL9+/bWZHzemPzhaQzmuMR+d7YuNsa/RfY/d4Vvx/NKscHNTWhRu8BxakPbJRnO/WKO5+U93GOSVFPCCGEEEKKYVw/Ul9xxRVZm9mJfytXrizLuX7xi1/gM5/5DBKJRM77xeNxtLa2uv4RCyFkGyrkDpcLtaY+VMbu8GKsHTD+teALZ7ThKyfsI4ViuUl4HPZCzqNpmozg7xiwGuwFzql3xe9rT9WrmxJqkzxAqanP0SgvKH7fEA3LjRPW1RNC9gTufHodjvvu49iwa2i8l0IIITXPuKqzSy+9FOeee27O++Sqfy+U5cuXY9WqVfjd73436mPtyYgGYQ0BQq2acDn1ZRyZpo61q8Va8GLwivhC+yhMbolj7Y5B+X3++H3tXUf1tW+JBzv1vcNpdDaLOfXukXaqEy8EfjwShqZpGE7rdOoJ2YPp7h/BYFLH3pOaxnspFedPL2/GOzsG8cd/bcJ/HL/PeC+HEEJqmnEV9Z2dnejsrEx8WOWOO+7AkiVLcPDBB1f8XPWMaJTXWO1OvRL5rlenvtJ4HfZCSy4mt7qTMPni97W4ORLJEb8XTn3PUFrWywsxLzZGkmm1pl50yA/J99QQnXpC9khSGQOf+PHT2N6fxFNXHIdJzfHxXlJFGUhmAADLV2+nqCeEkFFS3ZarQldXF1asWIGuri7ouo4VK1ZgxYoVGBgYkPdZsGAB/vjHP7oe19fXh3vuuQcXXHDBWC+57lgwtQXhkIZFM9vGeyk5ibnmoJfvLa469fUu6hMeMV5oc8QpLe4PoYk88ftavI5RZc3NWeL3Vk2916n3x+ul8I+E5TVm/J6QPZOHXt2MjbuHkcwYWKcknuqVwZQl6v/V1YP+kfQ4r4YQQmqb6rZcFa6++mrceeed8vvFixcDAJYtW4ZjjjkGALBq1Sr09va6Hnf33XfDNE18+tOfHrO11iuL9+rAS//9AbQmqvtto0a+y1myPaU1gWhYQ1o3a7IWvBi88ftCa/enFOTUV6aR4Vjh6n7vi98r3e8LaZSnOPWCEcbvCdnjME0Tv3xqnfxe9CWpZwaT1t+6jGHi2Xd24QMHTBnnFRFCSO1SM8pk6dKlME3T908IesD6n6K3Rv8LX/gChoaG0NZW3e5yrdDWEIVWxkh7JXB3vy/fWzwc0jC9vUF+Xc94a+ELrqlvdTv1+ebU1+I8dnVTwldT3+DU1AvxnrNRnqypD8mfM35PyJ7HS1278cpGx5TYOZgcx9WMDSJ+DwBPrt4+jishhJDap2ZEPSGFosbvyy2+RQS/3kV96Y3yPE59UPy+1mvq1fh9lpF2A8kMBkasD6zxHI3yRPw+HlG639OpJ2SP4xdPrnN9v7POnfq0biCVcTY4l6/eMY6rIYSQ2oeintQdqpAsu6hvt5rl1aIYLQafU19oTb3PqQ+I37u639fenyB1U6I5HnX9rCXhfN/dbzltCZ9THxC/j4RkM8LhlONeEULqn809w3j49a0AgBP2tyLoOwbq26kfVFz6cEjDOzsGsXE3R9sRQkip1N4nakLyEKtgzfYZh8/Ce+ZOwIcXTSvrcauNUEhzXcdCRb2/+32+OfW1tzkSDWXvfh8OabLnxLa+EQCOmG8IEPVypF00RKeekD2UXz27Hrph4r1zJ+Ko+RMB1L9TL6L3sUgIh8xqBwA8SbeeEEJKhqKe1B1qTX05R9oBwKF7deDuL7wXC2fUf48GNfFQaPy+OR5Bk7IBECjqw7Xd/T4U0iDeVs1x/3URzfKE0+adU++qqZdOvdP9njX1hOxZPPvOTgDAGYfNwkR7jF29O/Xi71xzPIL37TMJACP4hBAyGijqSd3hapQXrj3RWC2o0flCRT3gdMCPRUKBTRXV+H2tvj7CrffG7wFnrJ1hWt/7G+Up8XulUR6dekL2TLr7LAE/a0IjJjZbm4I7B/cMp74pHpai/qm3d0AXfzgJIYQUBUU9qTsq6dTvSagz5hMFxu8BpwN+kEsP1L5TDzjPwTunHnCa5Ql8c+oDGuUlomGlpp6inpA9BdM0sd3uvzG5JY5JtlO/s86delFT3xSL4OCZ7WiMhdEzlMbaHYPjvDJCCKlNKOpJ3VHJmvo9CbUDfmMJTn1QkzzA/ZqEa3TTRWxGtCT8ol449QKxORI40k5plJegqCdkj6NvOIOUbv1N6GyJY2KT5dTvHkojoxu5HlrTSFEfjyASDsmEQt9IejyXRQghNQtFPak7VIe4Vp3gakC9joU2ygMst8n7eBVN0+TrUquvz/5TW9GSiGDWhEbfz/yi3t0oLxk40o7xe0L2RLr7rYaarYkIEtEw2htjEH8Wd9VxBH8gaf2da7LTTk0x679iFCghhJDi8NtMhNQ4MYr6sqA69aXU1AfNqBdEQhp0w6zZmvpfX/BujGR0tCb8NfW++H0kx5x62f2e8XtC9kTE6EsxOSQc0jChKY4dA0nsGEj5JorUC8KpF81GReppIElRTwghpUCnntQdFPXlwVVTX4Son5wnfg84EfxanFMPWO+xIEEPAO0NMdf3cV/8Xhlpp8bv6dQTsseh1tMLJslmefVbVz+g1NQDTn8SinpCCCmN2vxETUgOYmFHTFLUl44qyhuLiN8fNqcDE5pieL/d0TiIiN33oB57HrRlceqD4vVq9/tG+8MtR9qVl8dXdePGv6ys6/pkUruI+H2nIuplB/w6nlWv1tQDQLO9Scr4PSGElAbj96TucDn1NdqIrRpQnfpiauqntTXgha+fgFAOwR6p8Zr6XHhr6oVTH1fm1JumCU3T3HPqA5z8IH73fBfWdA/gqg/vHzgykLi54c8rsWpbPw7fuwPHLZgy3sshxIUYZ6c69ROb6n9WvRO/p1NPCCHlgE49qTtcor5Ga7argYTi1CdyROmDyCXoAWckXD1uurQrol7TnIaBal8C0SBPNsqLhuTGST6n/n/+vBI/W74Wa7oHyrruekXM+355Q+84r4QQP9sHhKh3auf3hFn13kZ5rKknhJDRQVFP6g51pF09isaxQjrMkVBekV4sEbuWvh43XdobnZr6eCQk3XS1L4Fw453u9+GCut+nMgZ6h62RT/XcGbuciBFZr26iqCfVh3DqO1019bZT378nOPVh+7+WqO9n/L6m+PvKbXj4tS3jvQxCCCjqSR3CRnnlQdTUFxO9LxTh1NdlTb3i1Kt9CaLhkHw/iln1Mn6vOPUjOZz6nuGU8vXYz3MeSmVqKhI8ktaRsjdOXtnYC9M0x3lFhLgRNfXu+H39O/WDKU9NPeP3NcdIWseFv34JF/76JXTtHBrv5RCyx0NRT+oOzqkvD8JZbiyi832h1HNNvTrSLuEZ6+etm3c3yrPj92k9q/jcPegI+d6hsRf1p932DN73rWXYXSNio0/Z+NgxkMSW3pFxXA0hfmT3+1a/U7+zhjbQimXA1yhPzKkf+79rpDQ29QzLTdO/vrF1nFdDCKGoJ3UHG+WVB7E5kqiAU3/au2bh0L3acdDM9rIfe7xJRMPOtfNsiHhn1avxe3Ff3TCR1oNFvRq5V137sWBL7zBe39yH4bSOt7b1j+m5S6XPIxBe2cgIPqkeRtI6+uy4eWezv6Z+xx7Q/V449C106muOjbuH5dePvE5RT8h4Q1FP6g5RUx/S8jdsI9kRIrOhAk79hUfPw31fOlJ+oKs3RATf22BQxPGFUy/+qzr1ADCcJYK/e0gR9WPs1L+0vkd+vbl3OPsdq4heT4nCq5t6xmchezBvbevHG5v7xnsZVYlw6WOREFobnL+F0qkfTNZtycigp1GecOpZU187bNztRO5fWL+7pkqzCKlHKOpJ3SG66DbF6lMwjhXCVa6EqK93RATfG79v9HS4F059IhpCNBySZQnZmuW5RP0Y19S/sH6X/HpzT23E2PuG3QKBTv3YktENnHbbM/jkT572pSYI0N3vjLNTx1MKp34kbeSdhlGrDGRplEenvnbYsMvZ3DVN4NE3to3jagghFPWk7pjYHMe3P3kQvnf6weO9lJqmko3y6p32ButDedzj1HfYnfFFjF6dUw9AGWsX/MFWrWUf65r6l9bvll9v7qmsUz+SYwJAMQghKTZZXt3EZnk9QylZB1tpuvuT6B1OYzit4zVOH/Cx3W6Sp3a+B4DGWERuptar+yn+xjXG2CivVhFOvXj/MoJPyPhCUU/qktMPm4UTD5w63suoaQ6e1YaGaBjvmTtxvJdSc7TZIjLuceonNDmi3jRN15x6AHnH2u1SGuWNZU39cErH60qEupIN5372j3ew8JpHcMOf3xy1ABfx+3fN7kAsHELPUNrlLpUL0zSxpnsAulHdGwY7BpJ47w1/x9m/+OeYnE99n7y+iRF8L6pT76We6+qTGV32DfHG7weTmT1+461WEDX1Z79nNgDgqTU7uSlDyDhCUU8ICeTA6W145doT8eVj54/3UmoOWVPvKV2Y0OyMqkrrJsRnV69TX0hNvbdevJK8srEHGUWwVsqpf31zL7718EpkDBM//cc7uPr/XocxCqEsut9PbIpj/2ktAIBXKlBXf/+KTTjhpifww8dWl/3Y5WRN9wCG0zqefWfXmLx/tiqi/rXNdOoBK4Ui3tOy831Lwne/eu6AL+rpAaAp5o7fp3Vns5NUN0LUH7tgMvae1ISUbuDxVd3jvCpC9lwo6gkhWYmG+SeiFNqziPqJ0qlPyug94EwayOfUj1ejvBe7rOj9vlOaAVijjMpNKmPg0t+/jIxhYr8pLdA04FfPrscV973iulZrugdwxk+fweX3vpz3mKKzeFtjFItmtgEAXq1AXf3Ta3YCsDY/qhlVyK/Y0FPx821RGioyfm9dg/2vfhjf+esqAEB3nyXYvfF7AJjUXL+z6kXn+0Q0hIj9/xi1Bw7d3upnJK3L0pBZHY048cApAIBHXmddPSHjBT+xE0JImZlou2ze7v5q/F51o6Soz+fUj1NN/YvrLFH/0YOmA7A6VPeXufHZrcvWYOXWfkxoiuE3n383bjr9YIQ04PcvbMQHbvoH/vzqFtzzwgZ87JYn8c+1u/D7FzZKcZANcY1aExE5PvHlCgjvlVutEX/qiKdqpE8R9WqPhEqxrc9x6t/ZMZj39ap3nn1nJ0wTuPu5LuiGie0DOeL3TfXr1A94xtkB1qQaWVfPDvhVj/hb1xKPoLUhguMXWKL+2Xd2jueyCNmjoagnhJAy88lDZ+Ds987GeUfOcd0uRP3OgZRsBheLhGTna9EdP2tNveLU9yczSOuVj6mapimd+vfv24lWu/a1nHX1q7f140fL1gAAvnHKgZjUHMepi2fitrOWoLMljq5dQ/jSb17CZfe+4ro263YO5jyuaJTX2hDFQbZT/9qmvlFF+r1kdANvbbNE/aae4aquB1ad+pe6Ki/q1feIaQJvbNmz6+pFOcLuoTRWbOhBd5ZGeUB919SLzZ0mz6Ynm+XVDhvsJnkzOhqgaRrmdjYBsEpK1GTVeDKUyuCvr28dk/9PksLI6AbO+OkzuPBXL1b1/ytrFYp6QggpM5NbE/jGKQux75QW1+3CfVOdeuHSA0r8PqtT73bH+8agLvqdHYPoGUojHgnhgGmtmN7eAKC8dfVPrtkB3TBxxLyJMg0AACceOBWP/+cx+Mrx+6AhGkZIA/7zxH1xsC3Q1+0YynZIAI6ob2uIYn5nM8IhDQPJjGxQVg7W7RySr+VQSsfuMZ5KUAx9nvh9OTc3ghAiNhq2Nq329Aj+NuV99/eV22T8PqimXqR96rH7vRDt3rGztTyr/ufL38Etj63eY4SKcOpndjQCsErLYvb/y7b1Vsd79o7la/GFX72IW6q818mexLqdQ/jn2l14+PWte/wmbyWgqCeEkDHCFb9PC1Hv1N032B9yg2ZTpzKG/DActufZj8Ws+hftmPbBM9sRi4QUUV8+p15sEBwwrdX3s6Z4BJd8YF88dcVxeOKyY3HxcftgbqdV25/PqRfOdGsiikg4JOuUt5dR1K/c6v5gIsY8VSOqU98/ksGa7QMVPZ9w6sUEjdf28A74ajnCY292y3r5ya05aurr0qm3/r55y5Nq1anvH0nj/z30Jr73t7fwdoV/p6oF8XduZof1/wNN0zCtzdqc2txbHWVIq7ut1+KBlzfvMZst1Y66SfnnV7eM40rqE4p6QggZI8QH9d1DKRkjT0RVp976Oih+32NH78MhDVNbE/ZtlRf1ovb60NkdAIDp7da5t5Txg5vYIBAbBkFMaIph1gTLFZoz0Yp6rtuRJ34/bImD1gZLLIiY8/aB8m1IrNzS7/p+UxXX1Xs73leyrt4wTCliTzzAqrd9fQ/vgK+K+pVb+6EbJjTNaaCpImvqB8fO9Xx5Qw/+9kblG5058Xt3I9GWhBD11Zt2CUJtHPr023tGTblw6sXfZABS1G+t4MjTYhDlLet2DuGtbXvGZku14xb1W7nZUmYo6gkhZIzosD+8GybQbX/ALzR+L+rp2xui0vHvrfCsetM0sXz1DgDAYXOEqLeEdzk74Itj5RL1KnMmWR8kC62pFyMGO+1IcyWcerstQlU3yxOiXoxLq2Rd/Y7BJDKGiZAGHLPfZACWczaSpV9EvWOazibHFMWZn9gUkx3gVSa1jH1N/UW/fhGfv+sFPL9uV0XPM5Cvpn6M4/e7BlPYsKv0hI26kScmYdQ7Tvze+Zs9vc1OcVWJU6/+nX/k9a3juBIiUF+TtTsGZZNZUh4o6gkhZIyIhkOy0dzmXiHq/fH7IKd+lx3V7WiKob3REqmVdurf3NKPTT3DSERDOGLeJADKB7cyinpxrBkFivq9J1lO/docNfWGYcoa8taELepbyi/q37Sd+iV7WZse1Ry/FyP+jtmvEwDwUldPxc4l3LrOljhmdjRgUnMMumHizTLVUW7YNYTzlz6Py+55GXc/14V3qjz23DeSwYhdcnP6u2bJ2zsD6ukBYFpbA8IhDbsGU/jXGDQ1TGZ0+TfpV8+sr+i5BgO636vf949x/P4zP/8nPvD9J/Imf7KhbnA+885O6BXuVVENbPLE7wFgmkhxlbE0azRQ1Fcf3h4hjOCXF4p6QggZQ0QDrC32B8F4NMCpD4zfWwJ1QmNMOs+VFvWPvmlFcY+a3ynH7Qk3vVzd71MZQ472EtH+fMy24/c7BpJZ628HUxmIz9atDW5RX65GeX0jafmB/rj9LTe6kARDd9/IuIx3E069EPVrugcqNhpRvD+mtlndsQ+cbk8f2FweUX/Pixvx95XduOfFjbjivldx3PeewLKV3WU5diUQyZy2hig+tHCavD2o87243ycWzwAA3DwGjb5UAfSX17aUvPG1YddQXnE8kMri1CfG3qnvGUrhzS19GEkb+O1zXSUdQ3Xqe4fTZdu4qlaGUhmZIBGN8gBrIwoob2lWqYykdbmJCQCvb+4LTGP0DqezNqYl5WdHv/W+mWdPS3jo1S2M4JcRinpCCBlDRHR+S68/ft+YY06949RHHae+wo3yhKj/wAGT5W2ibnJLz0hZuqdv6xuBaVrXYUJAbXEQbUoJQjYBIT7QxSIhJOzNknLH70U9/fS2hBSt+eL3b28fwDHffRwX3PlCWdZQDELUz5nYhDkTrQ/j/9pQGRdYOPVT7aj5whlWE8TXy9QBXwipw+Z0yOfyXIVj46Nha5+4HgnsP61F/h4FzagXXHzcfIRDGh5ftR0rNvRUdH3q70RaN/G754sXuGndwKk/fgof/ME/sHpb9lhttpF2Lfb3Y7nhpdZa3/vixpLGsXl/559as2PU66o2DMOUYl387rUkInKDGXA2ZcvZRLVUxPs5Fgnh8L0nAAD+6ukXsXH3EI75zjK8+38exd3PdVV8GshoWL2tHw+9UvuutnDqzzxsL8TCIbyzfZD9DsoIRT0hhIwhQowKR1eN3ydsUT+U8n+o3S1EfWMM7Q12Tf1Q5eptt/aO4JWNvdA04LgFU+TtU9sS0DQgpRuye/do2KRE7zVRmF4AQshlq6sXDrSI3gPWqEGgjKLerqdfMK1Vlg5s2p17Vv2vnlmPoZSOF9fvHvMPkULUtzVEcahdLlCpCL4QscK9WzTD2vQolzgVJRufefdsnPWe2QCArp3VW/qwTYyva41D0zTZPFCUkgQxe2ITPn6I5dZXeiyXSK/YgzXw2392IVPkfO+1OwaxY8Aa13nFfa9mfX873e/djfKaxiF+/5ay+bBrMIVHXi++UeBG+714+BxLPNZjs7zr/vQ63nvD3/Hbf3b5xtkJqsmpF+mvzuY4TjpwKgB3BN80TVz7wOvYPZRG30gGV9z3Ks68/dmSSzAqzZd/+xK+/NuX8OTq2t4wEqJ+zqQmvH9fq6TvIUbwywZFPSGEjCETpVMvRL3zZ3iG7XQ8uXqH74ORaJSn1tR7u5mXwisbewI/hD220vpwe8isdldEOBoOYUqLcGRG/+FNHGNagdF7wZxJuTvgiyZ5ovM9oHa/L4+oF/X0C6a2yNrS/mRGdt33MpjM4A8vbgRgbYrsGMPO5iNpHamMJdLaGqNYbE8zqJQDLJ1625FeMnsComENK7f248X1o3fURTOu6e0Nshxj/a7q/EAOQGmSZ12Py09agBs/sQjnHDEn5+MuPm4+Qhrw2MpuvLqxctMDxEbXUft0YkJTDJt7R/BYkeUMq5SmVy+u343f/DO4Nl+UzDRmmVM/lvF7IepFPf9vs6w5F8K5Pu1dMwEAz6/bJX/X6oE3t/Thrmet6/KNB1/HE29tBwDMUurpAaffyu6h8Y+0dyubaCceaG2gvbBulyyDeeT1bXj0zW5Ewxq+dMw8NETDeG7dLnz6Z8/KVFy1sL0/Kd3sWu8NIP7OdLbE8eFFVhnSbU+8jd+/sGE8l1U31Iyov/7663HEEUegsbER7e3tBT1mYGAAF198MWbOnImGhgYccMABuO222yq7UEIIyYFw6oUzJqLhAHDMvpNx6F7tGEzpuO6BN1yPC6ypH6Wof3VjLz7+o6dw6o+eRv+I+1iP2lHFE/af4nvctDKOtROiXnwgLBQ51i6LO9s37O58D1Qgfq849YloWHaV35ClWd4DL292uZBjGVMV1yOkAc2xiHTOX9/UW5GaRvHeEDHzzpY4PrHYEj0/Xvb2qI5tGKZsxjW9PYHZdmpj/c6hqq3P9Ha+b4pHcObhe/maxXnZe1ITTrHd+p88saZi6xN/j2Z2NMhGfsU2zBORe7Fx+a2HVwX+jcjXKG8s59SLjYgLj56LkAY8+86uopoujqR16T4ev/8UTGyKYSil4+WNPZVY7rhww19WwjSBSEjDSNrA0qfXAfA79a0NEVlCNt5uverUz+xoxEEz22CYwMd/9BQefm0Lrn3gdQDAF98/D5eftAB/veT9mDupCVt6R/CVu/9VVc0O1U3Qx97cVrV/4/JhmqbsxTCpOYaPHTwdJx4wBamMgcvvfQVX/99rSBeZDiJuakbUp1IpnHbaabjooosKfszXvvY1PPzww/j1r3+NN998E1/96ldx8cUX44EHHqjgSgkhJDtC1Iv/L6tOfSik4fpTFyEc0vDw61vx2JtOFFS4B+2NUbQ3WscYbaO8pU+vg2FaUemb/vaWvH0wmcFTdoT0Awf4Rb0z1m70onRTATPqg8jn1PcO++P3wqkfSulSWIykdfx8+TtYW2Ts0jBMKQgOmNYCAJjRkX3cn2maPpFUzgkC+RDXoyURRSikYcHUFoRDGnYOpmQ0vJw4NfVOAuPCY+ZJ1/mNUTTM2zGYREo3ENIs53sve1Z2/0gGuyvcPLJUtvX5r0ehfObdewEAXlhXuS742+2Z3pNb4vJ8T729oyiBvcoW9RcdMw+H7tWOgWQG3/jTG777Ddourq+mPlE+Ub989Xas6c49Lss0TenUH7PfZBxrj1783yIa5onf9cZYGB2NUbxn3kQA9TPa7om3tuMfb21HNKzhNxe827VJOtPj1Gua5vRcGedZ9aojDAA3fGIR9prQiM29I7jw1y9ha98IZk9sxMXHzQcAzJrQiJ+ctQSJaAjLV+/ArX+v3AZasTyv/N5v7h2RCbHx4Bt/egP/ec/LJW169I1kkLJF+6TmOKLhEG47awkuOWFfAMBdz6x3fQ4hxVMzov66667DJZdcgkWLFhX8mKeffhrnnHMOjjnmGMyZMwdf+MIXcPDBB+O5556r4EoJISQ7E5vdzeDU7vcAsP+0Vlxw1N4AgKv/73VZX7/bjt9PKFP8fvdgCn96ZbP8/s6n1+E1u4nZo29uQypjYPbERuwzudn32Olt5Y/fFzrOTrC3dOpzN8prVT6ENsUdJ0k4kw++sgX/76E38Y0/vV7U+TfsHsJQSkcsEpKpAfEhN6hZ3r829OCNLX2IR0J43z5WLeF4iHrxoTwRDcsOxK9vLm+s2zRN+aF+mpLA2HtSEz5y0HQAwE+eKN2tFwmHKa0JRMNWI0QhltdneT+MN05NffGift+p1qZRd39SlpWUGyGCJrckMGtCI6a3JWCaxTU2FBHhBVNb8Y1TFgIAHnuz29d8zmmU566pb45b783Rxu/f3j6As3/xHM5b+nxOV3PHQAq7h9LQNGBeZzP+zd7MuO+lTQW7oZuUee2apuEIW9Q/9XZt1z4DgG6YuOHPbwIAzn7vHLx77kT8v48vlD/3inqg/NNRSsXZpLJ+3w6c3oaHv/o+nHfkHIjWLd84ZaErKbff1Bb8z6mWxvjBY2/h6SppePiC3QBU/L9L3ewfS3qGUvjFU2tx74sb8XQJ72+RaGmJR+R1D4U0fOWEffDtTx0EALjnhY1F9/IgDjUj6kvhiCOOwAMPPIBNm6w/0MuWLcNbb72FE088Metjkskk+vr6XP8IIaRcTGhyd7tWG+UJvnLCPpjR3oBNPcO4y3Z31Tn1zki70mv/7nlxA1IZAwdOb8VHDpoGwwT+v/tfw/f/9hYu/f3LAIAPHjg1sHmd88Ft9KJ0i1IbXQyzJ1nu7I6BlK90AFDj92430DurfpUdoX9lY/YYekY3fM0LX1xvuSf7TWlBJGz9r3RmuxD1/vj9r+2a1I8eNL3gTvmF0DuUxrceXokLf/UiTvnRUzj51icDUwdeUQ9AruP1Mo2ZE/QMpZG0a4ont7rf7186Zh4A4KFXNhedjhDIkg3lPbOXHcHvChhbVQ10e2rqi6E1EZWx/TXdlekU3e1xNhfNtN4brxRYxz+S1uWGyr5Tm3Hg9FZ0NEaR0g05JUJQ6Tn1q7b2wzSBDbuG8U6O95goF5g9oRENsTCO2mcSNA3YOZgquK56k2dT8r1zLVG/YkNPTUeJTdPEdx5ZhZVb+9GaiODfbUf7YwdPxxfePxcLZ7Ti3fZzVRGba1vGcMMyCK9TD1g9HK752IF48N+Pwu++8B4cvW+n73GfOHQmTlsyE6YJ/LqE/goqW3pzN00thKFURo4BFZv9j47T6E71b+u9dm+YYhCvyaSAiR+nLp6BjsYodgwk67LR5FhR16L+lltuwQEHHICZM2ciFovhpJNOwo9+9CO8//3vz/qYG264AW1tbfLfrFmzxnDFhJB6Z6JnbJsavxc0xiL44tFzAQBPrLKaEqk19e0NjlNfSgd1wzDx62etiOln3zMbV3/0ADTHI1ixoQc3P7YaGcPEiQdMkdFEL+WK35umKZ2uQmfUC1oTUXkt1wfU1QfF7wFnhJj4gPHOdutD/87BVNb59Z+94zm8/9vLpDADnIZFx+7nfDAUztUmj1hP64YcR3TWe/aSDRHL4dT/5rn1+Mnjb+Ph17fi5Q09eGVjLx58ebPvfsGi3h4zV2anXrh0E5tiLicMsJIoxy+YDMNEyRHXIFE/e4JTV19tGIYp31ulxO8BYL6dmFlTofFPjlNv/X4cNLMdAPBKgU79mu4BGCbQ0RhFZ7PV4f/gWdYxvM0YB7KNtCtTozx1Hvmz72QXCKJcYN8pVhIiHnESH4VuDonfdVF6s/ekJrQ1RJHK+DczaoW0buC//vAKbrPTNFd8aH9Z8gUAV314fzz47+9z/S0RTLN/JzePu1PvF/WCA6e3BW5ICE4+xEoTjSbm/v8efAPvveHvuOeF4sWvyoquHuiGiRntDfiMPeXj5Q09ZesLUwzq39aHX9tadFJwh9LnwEs0HMJHDrIa592/YtMoVrlnM66i/oorroCmaTn/rVy5suTj33LLLXj22WfxwAMP4MUXX8T3vvc9fPnLX8ajjz6a9TFXXnklent75b8NG9iRkRBSPryz2IOcegA4Yp4V0X6xazf6R9Lyg3BHY0xGyg3T72qlMgZ+/8KGnC7+P1ZvR9euIbQkIjj5kOmY0prAf55o1bVNbIrh1n9bjJ9+dolPEAtEU7tconQolcHz63bldCr6RjKyvrZYpx5w6uqDHF+n+737OThO/YjvsUHidiSt45l3dmLHQAr3vmR9QBtO6bID9In2uCTAaRzldeA37R5GMmMgEQ3hkFnt8rluLkPSQdT1f2TRNJxifxhdHyBIxtKp39pnPa9srvS/H78PAOC+f22UJR/FsKnHvxE0O8+Iw/Fk52AKGcOEplkNokphfqct6oto4lYohmE6or5ViHrh1PcUdAxRm77PlBaZ7jkkQNSbppnXqR9O674Ibu9QGt95ZCWu/r/XcO0Dr+N7f10VmNAB3I0qn30n+6SFtzyiHrBqq4HCRb1I5cxotx7n2syowWZ5Gd3AF3/1In7/wkaENOB/Tl0kyxIKYbqsqR9fp77bs0lVDPtPszY71+0cLKm/w19e3YKfP7kWAPBMjk2lQhD19O+a04EprQnZ4HTZOLj16u9EMuNsVBfKDunUB/8NFOM7H3ltK0bS4zs9oVYZV1F/6aWX4s0338z5b+7cuSUde3h4GFdddRVuuukmfOxjH8NBBx2Eiy++GGeccQa++93vZn1cPB5Ha2ur6x8hhJQLn6iPBv8ZntfZhM6WOFIZA3+3/wceDmloSVj1aA22A9rraQz28yffweX3voLrH3oz6xpEw7bTlsySY6XOPXJv3PelI/D3S4/BRw+annNm/OxJjYiGNWzvT+KZLFG5//nzmzjttmdwT46YntgUCHJ0C0F2wA8S9fZYOa+bJDvgDySR1g3XB5Wg5m2q63fvCxthmib+sXo7RtIGZrQ3SLcbcNw6b/xenGOvCY3QNM0R9WVoNPi2LfJOPmQ6jltgNfoKmtcuroe6yXGAvfaNu4d976PRsLXX+vAmmmZ5OWRWOz5+yHSYpjX/utiIalAfBjHWrhpn1YsmeZOa47JUo1ikU1+B+H3PcBoZO/Ez0S4POmhGOwDLnSukzEfU0++nCOQgUT+SNiDCRV6nXv1ezLIX/Pa5Lvxo2du465n1WPr0Otzy9zW4+dHVgWvZsMsRlM+8vTPr+0usWfQsACCbLm4o1KnvcWrqBYfYGyIrunoKOkY18djKbvx9ZTfikRB++tl3FSXoAcep3zKGkz28GIbpuMIliPpJzXFMaY3DNJ3yrELp2jmEy+99RX7/9ig34V6wO9+/a84EAMDx+1t/4x8dh7p68TshNibvebE409PpfB/8miyZ3YGZHQ0YTOnj8vzqgXEV9Z2dnViwYEHOf7FYabva6XQa6XQaoZD7KYbDYRhG7dY5EUJqm0Q0jKaYI2ATAfF7wHJ8RH3mn1+1dsQ7Gq3O5QBks7yeYfcH7sfetDYA/r6yOzCav3MgiWWrrPt85j3uD2yH7tWBtsZgd16lNRHFmYdZj/3eX1f5PjSbpolHXrf+p3zfS/lFfbEz6gV723X1awPc2b4s8Xu1pr5r15AUM0CwY62OzHtnxyBe6toto/fengNCZPaNZFwNzVRRDziphF2DqVHNczYME293W899XmdzznntshxB6THQ1hDFrAnWWsoZwd9qu3RTs4h6APivDy1AIhrC8+t246FXi3N8xGaIOgZRjrWrwpp67zi7UphXQVHfbadWJjTFELP/HrU1RuU1fTUgTbGldxhLn1orHTXpek/1i/q1OwblxoDqfDZ6NvJikZAsR+pPujeZhDg6cv5EKTR/+1wXdgfUvqubajsGknh7u//3wTRNvGWnXNSNiL2KdOq98XsAOGSvdgDAig2Vm1ZQKcQGzKmLZwROPsmHbKI6jk5973Aaad36u55NQOZDuPVvFBHBT2Z0fPm3L6E/mZG/O+9sHyxq09I0TbzUtRuDyQwyuoGX7N4th83pAOCMmF2+egdSmbHVMiJ+/4X3z0U4pOFfXT1F/T0SGy3ZXhNN02Ta7P5/+UvISH5qpqa+q6sLK1asQFdXF3Rdx4oVK7BixQoMDDhvqAULFuCPf/wjAKC1tRVHH300LrvsMjz++ONYu3Ytli5dirvuugunnnrqeD0NQgjBBCWCG8/hUL/X7qT8uF1Xr9Y1Os3ynA+/vcNp+aFs52AqUKQ+8dZ2GKb1oWVep7+zfaFcfNx8xCMhvLB+t4yiC1Zt65dx3ufW7spa/1fqjHqBELHvBHxod+L3wY3yuvuT8nFhe6Mk6Hp5u6n/73Mb5MbJBw90f+htikdkEkOtqxcOh4j2tjVE0WK7kkHj7wpla98IhtM6IiENsyc2yrrybX1JX3wxKH4PAAdOK08Ef9nKbnzqJ09j6VNrsdb+8JfNqbd+1oALj7aa5t3w55VFxS2Da+qt98L2/qSvqeF4Izrfl1pPDzhO/YbdQ2WPpnb3Bde6yrp6T7O8VMbAeb98Htf+6Q183x5BJcpA9lWmZbQ3xjDHFjfi75LsfB8Lyw1KFVFX73Xqhcg+/V2zcP3HF+KAaa0YSum485l1rvuZpinLX4R7HhSB3tI7gv5kBpGQhr3tMh6gOFGf1g1stTdsZirvxYPt6/b29sGKTSuoFKLcQrz2xSKc+v6RTFlGE5aCiN53NEblJlWxHCBEfRF/F//86ha8uqkX7Y1R3HX+4QiHNAwkM1l7tQRx59Pr8IkfP40P3PQEfv7kWgymdLQkIth3srXxdOD0VrQkIhhO63hnR2X6a2RD/E4smd0he8kU0zBPNsrLsdFyih3Bf+Kt7lE1Ag6ibySNU370FL78m5fKetxqomZE/dVXX43FixfjmmuuwcDAABYvXozFixfjhRdekPdZtWoVenud//ncfffdOOyww/CZz3wGBxxwAG688UZcf/31uPDCC8fjKRBCCAB3B/ygRnkC4dSLTuITFFHvOPXOh8an1+xwzY994i1/3d1jdpT/eDuqXSpTWhM4+71W457v/fUtlxux/C1n3I1hOk3lvIhmSqXU0wPAQru+8I3NfT6h05dFxKpO/Tu2+yfGUHXtGvJ9CBfuxJLZllPyh5c2onc4jYlNMRmJVJkhO+AP+44hBAMAJYJfuqgXmxJ7TWxENBxCe6OzWeCND2cV9WVqlverZ9fjhfW7ce2f3sCf7EZ9U/Ns1nzx/fMwvS2BTT3DuLvA2eAjaR07bXdWjd+3NUblc6u2ZnnCqS9lnJ2gszmO1kQEphm8iTUavPX0goNmBNfV3/r31Vhpi/i7nlmPrp1DcnNKrU8HHLf+5Q3W+ytbkzyBqKsf8Dj1XTvdJSwX2VMUlj69Tm4UiOeSzBgIacAnFlsCIahZnkgW7D2pySX8Zsn4ff7fy629IzBMK2GgCpWJzXGZgHllQ3mbUObCNE387B/vlFxvbRim3MARPRWKpTkekRsz49UBP1eTvEIRpUlvbClc1Iv3+CcWz8TsiU3y7/3bBbrZpmnKaTebe0dw41+snmLvmt0hN8A0TZO/Y29VqGlmEKmMIfskzJrQiE8tmQnA+v9hoVMeCimJ2HdKC/af1oq0buIvrwV/biiV7zy8Ci9v6MFDr24Z1TjgaqZmRP3SpUthmqbv3zHHHCPvY5omzj33XPn91KlT8ctf/hKbNm3C8PAwVq5cia997Ws5a0UJIaTSqB3wszXKA6xIsep2djQ5gqy9wTpGr7Kb/Y/V213H/8db7lmyad3AP2xX/dhRinoAuPDoeWiKhfHqpl4ZtweA5fZ8X/HB9i+vBcerS51RL5gzsRGTmmNI6Yav4Vr27vfW9dyuOPWH7tUhY6NvepwZ0XjttCUzMWtCA8TexQn7T5EOv4pwB1WnT3wtIpmA0+RtNKJeRJJF4kLTNDnazStss21yHDhDiPrROfWir4H4QA8Ez7FWaYiFZZT65QJHp4nr1RQL+1IYc7I89/FGxu9bShf1mqY5dfVlbpbnHWcnOChgrN1rm3rxo8etrugTm2IYTuu4/A/WCMzJLXF0eHqGOHX1Vow4W5M8QbP9/ulXOuCPpHXpiAuh9OFF0zBnYiN6htL4X2VDSDTJm9bWgKP2sdzEf75j1dWnMgb+1bUbm3qGA5vkqcff3DucN94sNu5mtDf4UgfCrX95DJvlvdTVg+v//CYu/PWL2FpC9/l1OwfRP5JBPBLCflNb8j8gC7KR6jh1wN8+4J5RXwoifr9qa59rozwXYgNAbJTOtRMgbxc4uvOlrt14Z8cgGqJhnPPe2RBS5fC93Z3697H/DoiRjGPBpp5hGCbQEA2jszmO4xZMwaTmGLb3J2VyLR9OTX3usuqP2l3w/1xkWVYuXura7RpRWOo41WqnZkQ9IYTUCxNcoj77n2G1rt77OOnU2/F70zSliP/qCVZ38Re7druc5xfW7Ub/SAYTmmLyw/ZomNgcx/n27Nyb/rYKumFiJK3jubWWM3bNRw8EYDWr2jngjyAGxaiLQdM0vGu25ZaLLsGA1cFZdNXP1v1+52BKiqO5nU04wO4E73VmhEDce1ITPnWoM+L0pIVTEcQ+tkhYaR/HNE3pmpfbqfeKeiB7bbl4H3hF/UL7eb+9faDk+v6Mbkgx9eC/H4Xvn3Ew/uukBTgsIMngZb4dKy20oZSsp29v8G3Q7yWa5QX0FAjCMMySxE+xCFE/ta105xCoXLO8bM7mgTPaoGlWVL27fwSpzP/f3p2HRVW2fwD/nlkZBoZ93zdBRVFRCTdUSDErU3Ml07LFrTLbzLc3295seetXvpXlUraYpaVZbmmauKHmgivuKMoiCrLLMjPP74+Zc5iBGZgBBEfuz3VxXcosnIFnzpz7ee77frR4cfVRaLQM93XxxvujuwKo7TBvKhDsFqjLcEm/UqTrfF/d8Eq9Usav1NcG9XzwrJSJhXOgWMThaX35xtJdmahS68Yuv8Ie4KpATIAT5BIRbpRV48+TeRj5xR6M/GIv+r63XVgFrRvUuzvIoJCKwVjjpTF196g3et368+uRVmyWx2fbVKm1+HSb6SaCDeEnbzr5qiBtYkNHoLZHSl4b1dUL5STNWKkPdlNCIRWjskZrUQDIGBMmhPlVfr4PhqUr9fz2d/d18cGbI6Lxy7Q+eHZweL1mhfxnzLlWXKmv2+xVJhHh4Vjd5+FKC7KsGGO43khNPW+Y/rM17UJBizRwrdFoMW/NcRi2Nrh4G3YRuRNQUE8IIa3MaKXeTPd73j1htUG9UU29fe1e9YCufjO76JbwYRvqroRGy7D3fO1qPd8gb2Ckh8lV5qZ4on8oVHYSnL1WhvXHcnDo8k1U1mjh6ShHYkdPRPupoGXAllP1u9nWBmhNX1HpqW8gdOhy7dZVhqt8Kjvj4MFVKQPHARotExqAhXk4GKSh1wb11Wqt0HQr2F2J0bF++lRbGfqEm97nmK/FzNB3TS6qqBG2HeS3vANqg/qrZgKHyhoNdp69jv9sOIX3N582meJYG9Qb1gTzXeCNL0TNpd97quzg7iCHltUeM+9KYQWOW7CCnltciRoNg0wiQoCLPUZ298f0gWEWjbFwT/1qVn6ZRQ2lGpoIsnav+hUHsnDPgm34cb9lqf9NxdfUNyf9HgAi+AmQFg7q+UZ5dVc2HeQSYcIo7UIBZqw4hNN5pXCxl+KtEdHC+7vu8Rnq6OMImViEmxU1yCqsQJm+Vl4pN52hZGqven6SJtBNaTSRM6qHHzwc5cgrqcTe87qJRKF/hYs95BKxcH6Y9sNhnMwpgUIqhkTECR34+QZkPI7jLK6rz65Tu2/IsPO/NY3SNFqGH/dnYfB/dwj9CixlWP+96uAVk7uCNITPKohpYj09z0fY8rSNVupbIP1eLOIQ5aMbz5ak4F+9eQulVWrIxCLhPcOv1F+04O9QUa3Gev0WcWN66lLbY4NcMGdIZL1zdgcv3fOfzW+9lXr+8yTAYGJ6Qm9dUL/z3PVGd4soqVQLmS+N/V1CPRwQ6eUItZa1SBf8ZbszhfNWsn4LWlqpJ4QQ0iJcLUy/B2C8Um9YU69Pv+dr6nfpU+97B7tCIRNjQAdd6mmqQQo+vzXe4BZIvec5KaR4aoBu69H/23oWO/QTB/3C3cFxHO7rYjqVTm3QZKqp6fdA7VY/By/fFLr98wGsUiaut4WYVCwSfo/8RUaIu1JYXTEM6vmUQzupCJ6Ocvi72OOPWf2wZnpfs383fnLgbF4ZajRaYcXcSyU32raPDwRMrdR/u/cSYt7cgke/PoAluzKxaMcFvPF7/a3fhM73Bs3JzAUk5oJ6w2M2DOALy6sx4vM9eOiLPUITNHP4EoVAV3uTzc8aEuiqhFjEobxaIwS/DcluIKg3V3pgzg79+2HZ7otWb6vXmO/SLuGTv87iVrVGCJqbk34P1K7Un2vhi/mGgiA+BX/OqqP4KyMfMokIH42NgbuDHBzH4bnEDsJ9I73rN96US8ToqB9f6VeKDBrlNVZTbxDUC/X0xn9zuUSMgfrz3D+XdJN6fMYIH3zcY5C63DfcDTteGogTbw7FH7P64dfpfdAn3L3eMTS2Vz0/wZZdxO9RX38sRvs5QSzicKOsyuI09CNZNzHi892Yt/Y4Lt4ox+d/n7eqkWaGPvh0Ukih0TJ8bOWkQHPr6XltvVc9vyLclD3qDQkTtBYE9fznRoSXg9CjwZqV+s0n8lBWpUagqz3iQhrOcOKzSy4XVAgZKrdb3R1cAF2j2n7h7mAM+Pmfhre34+vpHeQSi7av5TPhmltXX1RRjYX6rJV/De8kTPK1dF+SOwUF9YQQ0srcDNLPGkq/B3QXmHwA6Gyw3Vzd9Hu+Vr5/hO4iNUHfnXbn2etgjCGroALn88sgEXHor681bSmP9Q2Bq1KGSwUV+Havrm6tfwfdcQyL1gX1ey8UGG0/lV9aBY2WQSrmmrztEKALSO2kIhRV1Agr17Wd701vz2cYvHir7KCUS4TA9nx+qRDs88FqsMEKYaS3oxA8muLvooCjXIJqjRYXrpeZvBgCYHaveo2W4X/bz6NKrYW3yg7Du/iA44AV+7OEJkqALujhJ0XC3BtOv6/RaFHBlyPY1f+d9NZfRH6x47zwN/rPhgwUlldDo2X4Yd/leo8xxG/7F9zA78UcmUQkrLBbkoJf24ehfoAsrNRbmH7PX6xfuF5utJf6vLXHMfartCZ3Xy6+VYP5v5/EJ3+dw/D/7RJqSRva4s8SfFCfeaMcagubU1lCaJRnKqjXN8vTaBl8nOzwy7R4DI6q3fUhqaMnega5QCrm6tX+8rrrV63/PJmHm/rfqdlGeSZq6rP0KfV130MAhBKPg/ryG8P0ewAY0zMA/SPc8drwjvj+8Th4qexgJxWji7+T0Pyyrob2ql+66yI6vLYJ3d7agg36lVU/Eyv1dlIxovTlCJbsV3+tpBITluzDiewSONpJEOKuhFrLsGxXpsn7F5RV4ajBmFVrtELzwv+MjAYA/H40x+Lu7WqNVkjfb2rnex5/fsywYju4ltQS6feAwbZ2FvwO+dV8fiIAqF2pzym+1WhpE596/3Csf6N9vzwddU0zNVpmVXC65vBVzFmVjmW7M3E466ZVW+KZ6gsDQCgN+PnglQYb5t2wMnuCD+p3nrverF0Ulu+9hIpqDTr6qDC6hx9C9VltlpZ72RoK6gkhpJUZpt9bMms9Y2A4YvydjIJxZwWffl+NKrVGqGvlV+jvCXGDTCJCdtEtrEvPwa/6/eJ7BruYXK1tDqVcghn6btTV+g/2vvoVsBB3JTr7qqDRMvx8sHY2n9+mL9hNafXqriGpWITuAbqLc76uvuSW7iLA3Os0vLDgP+T9nBVwUkhRo2FCE63L+hS9uhcyDeE4TrgYzMgtMainVxrdjw/qc4tvCRkGgG4LwBtlVXC2l2LXK4PweUoPvJIcBQB4a/0pYfKGrwl0d5ALpRi6n6M71quFt4QGT4adfk1NdDzeNwShHkpcK6nCv347jrQLBcJ4AXQXgw1dWPG/p2A3pdn7NCRUn65qUVBfbH6lPpi/iC6qbLQjc3FFjdEKKv96d527jh/3Z+FAZiFe/uVYk1bwT+WUCPWb/EW3VMzBxb557zs/ZwXspCLUaJjZVeTDWTcx+6cjmLf2uMVdqfMbCOoHRXnCXiZGXIgrfp/Vr17Ax3EcvpvaG6kvDTLaGs5Qgv6ctPF4Hj7aols9Nt/9Xvc7MlqpN0i/r4tfeUu/WoQqtaZ2pV5f6uLtZIfvp8bhif6hFp9n+IyArDoZH4wxLN97CYzpJlP5vh3mmsrxKfgbj+c2OkH025FsVNZo0clHhR0vDsQbD+r6kfz0T1a9xxaUVeHBz/ZgxOd7hJ0JLhWUo0qthUIqxrBoH6HZ2EILa+vP5ZehskYLB7lECEabqk+YOzgOOJ5dLPSTaE38Sn3dLRqtZU0H/FN16ukBXUaes70UjJlP9y6trMHinReQdrEAHAeM1neVbwjHcUJd/VkLm+VVq7V4dc1xrDmcjbfXn8KoL/ZixOd7jD57GmJqBxdA1zC2tmGe+VR5S5vk8aK8HRHsZo9qtVbI/uMxxrAt41qjjQLLq9RYvvcSAGD6wDBwHIcQ/QT4pYJyi1+7LaGgnhBCWpmljfJ4E+MCsW5WP6OVPj6QyymqxDM/HsGtGg08HeXC6pBCfyEOALN/ThcaJyUarLK1pEfuCYKXfkusKG9Ho/rcKX2CAQDf7MlEtVoLjZZhya6LAIAJvQPrPZe1+LrYg/oUXGGl3sSqNGA6qOc4rnZvYv1FXO0KtHUXucLFYE6J0VZchrwc5RBxQI2GCamJQG2ZwpBOXkKzqqcHhGJUDz9otAzP/XQEZVVqk/X0gC7YlYg4VBuUN/Cd7x3lEpN17gqZGJ+M6waJiMPG43l4+nvdVrET4wIR6qFEebUGvx3JNvt6+d9TUBODgTCDuvrGGDbKq8vTUQ47qQgaLTPaUtCU0/r+Afzv44+juais0eD9zaeF+2w5da3RLAVT+PETH+qG4frykzAPh2bvvCMScQh1N90s70jWTYz6Yg9GfbEXv6Xn4Mf9WfjwzzONPmdFde1+4qZW0YLclEh/fQh+fjre7CqbvUzSYLPLQVGe+O8YXco+P9HkYFVNven3EKCbNHRTyvSd7YuQq5+oCTBxX0vxK811J05O5pTg6s1bsJOK8PusvvjykVj8MDUOnX1Np6vzGTAbjuei97vb8PzP6SaDXMaYMKk0KT4Ibg5yDIhwR5S3IyqqNUZjUK3R4pmVR4S0/C36XUdO6VfFo3wcIRZxeDZR1yx1y6k8i5px8pMD0X6qZk2yArpxxNflN3V7veYwt0WjtaK8HcFxuue73she8xkmVuo5jjOoq69/blu66yL6LNiOdzfqzjn3dfGxuBSNr6u3tGnmyZxiVKm1cJRLkNTREzKJCBm5Jdht0HPHHMNmr3XfV4YN815YdRRLdl40OZl4XV+CZGlWHsdxSNZn+dVNwV+47TymfnsQE5bsr7eVraGVB7JQVFGDIDd73Kdf+Q9w0X0+VtZokdsGE063GwX1hBDSylytaJRnDl9Tn110C1tOXYNExOGloZFGgcPcYVEYFu2NDl4OkIlFcFJIMVy/gtPS7KRiYUV5pH5/aN6Ibn7wUslxraQK69KzsfXUNWTeKIeTQopxvQJMPZ1VDOvqAYPt7BSmVwONgnqD1HW+lnTXOd2FTm3KoZVBvcHkwGVhldH4Yk0iFsFb3ziNb5an0dbuzcv3IgB0FzgLRnVBqLsSNytq8MO+yybr6QFdkMqXa1zWlw/U/j7MrxR39XfG8/fq6qNLKtVwd5DhleQopMQFAQB+2HfZ7Kr1ZaFMoWmBVJiwUt9wKiljrMGO4xzHCc3aVh1suMaTvwgfEOEOHyc7FN+qwQurj+JEdgkc5BLMGhQOAHh7Q4YwAWApftUuLtQVn03sjlVPx2Pp5J5WPYc5pra1K69S44lvD+JwVhFkYhGSOuom7hbvvIjNZraT5PHBikIqNrvNnMyCicfGPBzrj79fTMC0hDCEuCuFY6yrbk09Y6zBoJ7jOGG1/vejOdBodQ0bm7NKy2fVXCmsMBrzf57UvTcTOnigq78zkqO90S+ifk0+7/6uvnj7oWhEeTuiWq3F2iPZeHTZAaMdSQDdZMHZa2WQSUTC+57jOEzTd/dfvveSELx8uOUM9l4oEB6746wuaObHHJ8l1MHLEfeEukLLLOtOzm8p2dwmebxEfd+Wvyzc7ozX3NXTyhqNcL7zcGheuYu9TIIQ/bn/RI75hqFFFdXCeamjwUo9YHBuyzc+t53PL8U7GzJQWqVGmIcS74/ugo/Hxlh8bPx5ztKV+sP6EpDeIa5YOrkXJug/d3/6p/GxUVhejfJqDTjOdFPIpweEokegM8qrNfjPxgzc9+muen1YalfqLX9f8l3w/z6dL0yOf707E//311n9c1Zh9aGrJh9bpdZgqb50ZVpCmNBbRyIWCZN2mXdhXT0F9YQQ0srcDFLQ7BpplGeOYRpbFz8n/PFMP4zpaRwgd/Z1wqJHYrHl+QRkvJ2MQ68lNXn7OEuM6uGPI/++V2icx5NJRHisr27ruyW7LmLxTt0+14/cE2g2Ddca3QOdIeJ0Qfi1kkphZdpsTb3BhUWIwUo3P+Gx5WQeSitrhJp6a9LvARik35eaXakHamtx+ZU0PvXeSSEVyhd4cokYM/SB5tJdF4WLTMPt7Hh8mjK/utJQkzxD0xLChOyO+Q90hpNCiod7+MNOKsLpvFIczrpZ7zFaLRPq95uafh9mYZ1jQXk1qtVacBzgZaaTPL9CuWTnxQYbXPH1x519nTCqh24Siq+RfrJ/KF4Y0gGDIj1QrdZi2veHrGpYZlhfy3Eceoe4Gu180Bx8qvem43nCqvfyvZdQUF6NIDd77J47CEsn9xTegy+uPtbg9k2GTfKam0nQGEc7KeYOi8LfLw5EXKjp+ns+qOd3jLheWoXKGi1EnPmGmnxdPf/38zexb7w1+MCltEot9CwBaoN6c9tZ1iUWcZh0TxA2Pdcfa2f0gaejHGeulWLmisNGq5lrDuuyYO7t5GX0Hh3eVbdye6OsGkP+byeGL9yFr1J1GU5vjdCl55/ILsH10iqTK8WT7gkGAKw8cKVe/XRljQanckpw6HIhsotuCfX5za2n5yXqJ212n7/e4GqqoTWHryLmrS249+NUfJV6QWgw2ZjKGg1eXH0UCzZlCLuVyCQis5O61uBLKF755Zhw/lNrtNh59joO6SeR+fd7gKuiXnYYX1pUd6Wenzi+J9QVW59PwLhegY02zTXUwcpt7Q7rj7WHvo/EeH2G3NZT14wyxUzhz+/e+n4UdbkoZfhlWh988HBXuCplOJdfhpSl+41KDm5YuJ2doa7+TvB3UaCiWoMBH/6NkV/swVvrTwGo/bss2XlROA8a+u1INvJKKuGlkgvndx4/kW8qe8LWUVBPCCGtzF6mWwl8rG8wXJSW1ZjV5amyw/wHOuHtEZ2xdkYfIZA0Ryzi6nWCvx1clDKTwcGE3oFQysQ4e61MWFGcrE/Lby5HOymivHWv/59LhVal3xs2mevi54RwTwdUqbX442iuEBRbG9RHeDlALOJQWF4t1G3XrakH6u9Vbyr13tCIbr4IcNVd5PM9Ceqm3wP1t3azNKgXizh8+3hv/DUnAQ/E+OoeYy/FA111/+abIBrKK9HtXy4Vc/BpYiM4/iIrt7hS6I5uaN/FAvz3zzN4be0JALo0e3Orx/d28kJyZ2+otQyvrjlu8oIPADL0QX1HHxVG9aitY3VTyvBE/xBwHIf/jomBn7MClwoq8PCivTh3rRSMMey7WIAP/zxtsk62Sq0Raj07+Tb8nmyKMbH+cJRLcDy7GD/su4ySyhos3qkL9J5LjBDKXl4eGoneIa4oq1Lj0a8P4ER27UrjmbxSfLHjPG6UVTVYT98WHIT0e92Y5VfpfZwUZv/mfKYOP879m5F6D+iyjvgsGj6guXC9DGev6RqNDo60roSJ4zh0D3TBssm9oJCKsevcDczX72ZRo9FiXbouqH+4h3E9tVQswoxButX6rMIKocP60wNC8Wh8MLromxjuPHtdCOoNPweGdPaCp6McN8qqsOlELhhjWLrrIvp/sB0dX9+M+xbuwuhFaej73nbhuZvb+Z7X0ccRvk52qKzRYu+FhlO8K6rVeHH1UcxZdRSllWqcyy/Dgk2nEb9gO+avO9Foo7SNx3Pxy6Gr+Cr1IsYv3gdAN3HbEpNULw6NRKSXI/JLqzD+q314dc1x9Hv/bzz69QGM+XIvDl4qrK2nN/EZbG7Cco9+C8aBkZ5NmoDi0+8vFZRbNGnCT0j0CNQF9R19VIjxd0KNhmHNYdOr3TxzqfeGRCIOY3sGYNucBHTyUeFGWRUeWbpf+Gzjg3prmhdyHIevJsUKzX+P6LMNnuwfgh+fjIOLvRRZhRXYVCcbqaSyRtj54Yl+ofUmS/i/yd3YAZ+CekIIaQMvDo3E/Ac6N+s5Husbgknxwa0SrDeXk0JqVD8/qodfvX2xm4Ovq5/z81GsPKBLvW6s+71MIjLqXM1xHEbrL6y/TL2g23tdLBL2XbaUnVSMcIMVdIVUbLJBEB/UZxVWGKfemymRkIpFmJ4QbvQ9Uyv1dTvgl1gY1AvHXiel/5F7dCn4vx/NwZxV6Sg1SB/msxkCXOybPA5dlDKheWTdQHnXuesYv3gfPvv7PDbrV0ojvRsOlt94sDMc5BKkXynCiv31JyI0WoYz+pT6KB9HhHk4COPn2cQIIXvEzUGO1dPiEeahRG5xJcZ8lYbBH6Vi/OJ9+PzvC0hZsq/eauK5a2VQaxmcFNJmbdVojqfKDi8nRwIAPvzzDN7fdBrFt2oQ5qHEiG61K1ISsQifTeiOQFd7XL15C6MW7cXSXRfx8i9HMezTnfhg8xlM/vqAMPHT3PrjluKo/92X6/ezbyj1nsfvgMELMJEibK26W0Pyq/TxYW5GjSmt0cXfCZ+O7waOA37cn4Xxi/dh2e5MFJRXw91BJgQvhib2DsSGZ/vhxyfi8M2UXlgzow/mDtOVOfENCNccuYr80ipwHISeKoDufMGfc5fvvYTnfkrHOxsycKXwFhiDMEYl+qCyk4/KZHp1U3Ach8EddSn42xpIwa9SazDmyzT8cugqRBwwOykC747sgu6BztBoGb5Nu4whH6fi7zPmn2Otvt+HiKtN825u53uer7MCa2b0wdDOXqjWaLHyQBbySiohEXHQMuD5Vek4kKnr5dLJp/6EiLBSf71cKOVQa7TYf1EX1PcNM1++0RAPfQd8LWs8OM0puoXc4kqIRRxiAmqPkV+t/+mfK/VKqw5kFmLmj4dxILNQOEcEWTBZ5qKU4bupvRHqrkR20S2kLN2PH/ZdFp7D0kZ5vM6+Tvh+ahx2vTwIc+7tgNeGd8S8+zrCXiYRFgW+TL1gdPwfbD6NayVVCHazx6T4oHrPGSL0OaCgnhBCCGmSx/qFQCrmwHHAE/1DG3+AFcb2CkCAqwLVGi0Kyxu+sOvs6wRPRzmGdPKq1zjuoe6+4Ljai/kAV4XJ5nKN6ehTe3Ed6GpvctWID/p+2JeFez9OxY2yKqjsJA1e6I2O9RNWxOUSkcnAUdhnu85KfVPTUWMCnPHS0EiIOF2q8PCFu4WV30s3mpbNUFeYiQ74xRU1eGn1MQC6rRpfGhqJDx/uik/GdWvwubydagPf9zadxu5zxiuFlwvKUVmjhZ1UJJQM/G9CD3z5SCwerXMR6OuswC/T+qBbgDOKKmqQeaMcSpkYno5y5BRX4qnvDhmtlNVNvb8dJsYFoVuAM8qq1FixX1cTOzupQ71x6qmywx+z+iGpoyeq1Vq8syEDqw5ehZYBdlIRTuaU4BN9fWpzO4W3FGGlXr86KwQUDYwvwx0wgOY1yav7HFeEoF7XkG5oZ8tS780Z0tkbC0Z2gVwiwv7MQry3SdckbUQ3P5OTYhzHobOvE/qEu2NQlCd6BLoI42qgfttSftU32E1Zr5xpYlwgJCIOR7KK8PvRHEhEHOY/0AkHX0tC+uv3Ys/cwTj7zjAc+Fcifp/Vt0XHLJ+Cv/10vtl+HH+dysfJnBI4KaRY8cQ9mJ3UARPjArF2Rl/8MDUOAa4K5BRX4rFv/sFSfXNVQ/klldijb/a2elofYaKDX8luCUq5BItSYjF3WBTu7eSF/03ojv3zEuHvosCVQl1PG8B0Zk6Qmz0kIg4V1Rqhcemx7GKUVqnhbC9tcjYPx3G1Kfj5DdfV86v0HX0cYS+rHR8PxPjCXibGxevlwsQEoHvvzfrxMDYcy8W4xWlCo8aGJtYMuTvI8f0TcfB1skPmjXK89tsJnNM39HNv4mRLgKs9nk2MwBP9Q4Ux+mh8MOykIpzILkGqfleYfy4V4od9unPiu6O6mCwXqJ1oofR7QgghpEn8nBX4YWocfpgaV281uLk6+zph50uDsO2FBLz5YGfMHBRWr2Efz0khRdqrifhsYo96t/k4KYyC6qbWiRterJkLMoZFe2NQpAfEIk5YNRjS2bvBxmRyiVhooBXp7WgydVNYqdevopdUNrzFnyVmDgrHz0/Hw89ZgazCCsz88bCunl7oO9C8bbBMdcB/44+TyCupRIi7Eosn9cTMQeEY0zPAqNGkOSlxQUjo4IGKag0eW34A64/lCLfx+2dHejkKgbC3kx2So71NBjUuShlWPBGH2UkR+GB0Vxz4VxJ+fjoeTgop0q8U4SWDre9MbW3V0sQiDu+O7CIce6SXo9Blvy4neykWT+qJucOiIBOL0CvYBWtm9MEPU+MgE4tQpa+19jTTo6C18TX1fAmNJam/QG2mDlC7nV1z8AFMRm4J/rlUiKNXisBxutKY5hrfOxDbXkgQenhwHIQMIWt0C3CGyq42SDOcSOR5qeyEiQgXeyl+eCIOj/UNgbtBerpIxMHT0a7FM77iQ92gkIqRW1wppPfXtfqQLqsqJS4Q8WHGfRb6Rbjjz9kDMFk/0fbOhgz8Wqcx2u9Hc6BlQI9AZ8QGueCbKb3w6/Q+wpaALUUk0jUuXPJoTzwQ4ws3Bzk+HqvLuuCZes9LxSJhLPHN4/boJxnjQ92aNGHMi7Cwrp6v/edT73kOcolQWrVkV6ZwDvts+3nkl1bBQS4BY7VbXgZaMXHr56zAbzP7Ys69HRAX4gqpmIObUoaIFvzcd1XKML6XLttg6rcHMWPFIbzyi24SeHyvAPQxMznOr9RnF92yuN+DrWh+FwlCCCHEQuYaZLUEjuMQ5uFgMiW9roYupkbH+glb/TQ1WDVMxTS3wuHmIMc3j/VGYXk1tpzMw8mcEqGGtiF8OnxskIvJ2/mfV1KpRnFFDYorLE+/b0ivYFdsfLY/+n+wHZcLKrDjbL6Qft/Uzve8uh3wNx7Pxdoj2RBxwEdjY6CQWddQUizisPjRWMxZdRQbjuXimZVHUHyrBilxQUI3+8b6UBhSyiWYndRB+H+IXIIvH4nFpGX78cfRHMSHumFiXGCD9bUtqZOvCrMTI7Bw+zn8a3jHButy+YDk8b4hRhNG747qghdXHwVw56zUuzvKIRFxKK1UY8OxXIvS74HaunpAl13TXPxuFeuP5WK9vgFfbKBLi01++LvY4/OJPfBU/yJUqbVNmgSSiEXoH+GBDfpeHB3NlKW881A0uvo7YXhXnxZr2GgJO6kY/SLcsfXUNYz7Kg1DOnvj4Vh/oQloXnEldupXWB82sz+7vUyCNx7sDKlYhKW7M/Hyr8fgopRisH5rVj71fqR+UkQk4syeF1ta7xBXTEsIw6IdF+BsL4WvmZ4isUEuuHijHEt2XURCBw/s0fcYqNsM1Vp8NkJjHfD5zvemfi+T4oOw+tAV/JVxDe9syMAj9wRh2W5dRsSn47tBJOLw6q/Hcb2syuqdETxVdng2MQLPJkagskYDsYgz2SumOZ5LjMCF62XYde4GNh7Xlci4O8jx6rCOZh/j7iCDo50EpZVqXC6oEJqP3g1opZ4QQggxMLSzN+z1QWSwe9Mugg1XzRpLTXdVyjC+dyDefijaovp9sYjD5D7BiPYz3dTKXiYRugxn5JVY3CjPEk72UozV77Lw7d7aWsmm7lHPM0y/P59firm/6lZcpg8Mq7fCZCm5RIyF47vj0fggMAa8vu4kjmTdFFbqo5p5MRcf5iZs47hw2zldR3F9+n1nv9sb1APAM4kROPP2MAzQpxw3pm4GyMOx/pg7LAqdfVVCKndbU9lJMX2gbmLr3+tq03YbC+p7BLnATiqCTCJqdtYIAPQJc4enoxxSMQdXpQyhHkrMHBze+AOtFBPgLOxn3xQJBn97cxMDLkoZnk4Ia9WAnjctIQz+LgqUV2uw9kg2Upbux/f6dO61R7KhZUDPIBchJdoUjuMw776OGNXdDxotw4wVh/Hroas4e60UJ3NKIBFxuN9Mpsrt9nxSBzwzOBzvjepqtnTh2cQIyMQi7DlfgI3H83D4chGAlgjqdeevw1k3cVNfclZXZY0GJ/WlUqbOo9F+Tnh/dFcAwLLdmRj3VRpqNAwJHTwwOMoTgyI9seOlgUibOxjBzTjH20nFLR7QA7qx/f3UOGye3R8TegcgxF2Jj8bGNNj3guM4hPJ19XdZCj6t1BNCCCEG7GUSTE8Iw/f7LmNQpGeTnsPNQQ5vlR3ySiotrkVsSf3C3fBbeg4+3noWYv3FZkP71FtjUnwQlu3JROrZ60KTraaWKfDChK2fyjH5639QUqlGj0BnPJfYoZFHNkws4vDmg51xs6IGfxzNwfM/p+OWPuUyqgVW0yfFB+HrPZnILa7E+5tPo6xKDZlYZFG2SEtoztZtgC7o4ss57hTPDI7A1lPXhG0HgcYnxhzkEnw/NQ41Gm2LTF55qeywf17ibd/mr7kSIhsP6ttSbJALdr08CIezirBi32WsOZKNt9efQo9AZyH1fkzPxksPRCIO7z/cFSWVavyVcQ0vrD4q9BMZGOnZ5F1kmksmEeGFIZEN3ifA1R6P9Q3GVzt1jSqrNVr4Otk1O7spNsgFga72QjnUd4/3FkooajRaSMUiHM8uhlrL4OEoN9sEcUzPAJRXqfHGH6eQX1oFiYjD6w90Esa+nVRssjb9ThLlrcKCUV0tvn+ohwOOXi2+65rl0Uo9IYQQUscziRE48K+kZjXdejk5Eg91861XK9oaXkqOgp1UhAOZhTh4WdcEqSWCHUBXksBPdqi1DGIR1+yu2X4uui3LqtVaZBfdQoi7Eksn92qwv4ClOI7DOyOi4etkh0sFFbhWoqsRNZeubA07qRiz9Cu43+y5BADo4O1wW1al2guZRISPxsYIE0aOdhKLxm6vYFezdbRNcacH9IBu8uG9UV3w9ojOVu/S0Vo4TpcS/9HYGCRG6Zo2PrrsAC5eL4dCKsZwfV13Y6RiEb6aFIsX7u0AEaeriQZgtnfKnWTGoHC4KmUor9ZNKPYNd2/2+LKTirHk0Z6wl4mx90IB3tmQgdSz1zF+cRoi/rUJwz7dJTTCjDVosGjKlL4heCU5ClIxh9lJEa02KdlWalfqKagnhBBCSCNG9fDHJ+O7t8kqh5+zAjMG6oLNGo2uAVJLBfUAhO2EAMDfRdHsIFYsqk2JdFPKsPyxXhY1xLOUk70UHxk0tvJ1smvy1mR1jYkNMJrUuN319O1BZ18nPJsYAQCI8HSwiQC7rYzvHYhJ8cFtfRiN4jgO/x0TAx8nOxTo08WHRXsLzREtIRZxeCYxAj89FY9AV3tEeTsisWPTsqlak5NCitlJEcL/m5t6z4v0dsTHY7sB0G1bOPnrA9h3UTeJm5FbIuyM0CPIudHnmj4wDMfmD8WswRGN3tfWhfB71d+4u9LvKagnhBBC7kJPDQg1CjZbKv0eAPqHuwtBeEvUMAPAuF4BCPd0wLIpvVrsOQ3Fh7nhqQG6rRS7t2AzLZlEJASggC4gJc03c1A4/jsmRqj5JbbPRSnDwgndhUalD1uQem9K7xBX7Hx5EDY82/+OTw3nTegdiBh/J7gqZRb3wbBEcrQ3ntc38VRIxZjaLwR/zh6AD0Z3RUIHD0T7qfBgjGXZDNY2JLVVEZ6O6OyrsqpZqi3gmLnNIwkAoKSkBE5OTiguLoZKdXf98QkhhNzdNp/Iw7QfDgEADv/73hZd/f7l0FW8uPooXk6OFLIC7nQaLcNfGdfQI9AFHk3cM9kUtUaLoZ/sxMUb5djwTP87sr6ZkDvFX6euIbekEo/EBbarLIwqtQaMocUnIhhjOHq1GEGu9m3WX4DcHtbEoRTUN4KCekIIIbaKMYaF286DgRltydZSsotuwVtl16z9lu8WN8qqkH3zFmICnNv6UAghhNwFrIlDqfs9IYQQcpfiOA7PJd2+Gkm+AzXR7Y/sfofs904IIaR9oZp6QgghhBBCCCHERlFQTwghhBBCCCGE2CgK6gkhhBBCCCGEEBtFQT0hhBBCCCGEEGKjKKgnhBBCCCGEEEJsFAX1hBBCCCGEEEKIjaKgnhBCCCGEEEIIsVEU1BNCCCGEEEIIITaKgnpCCCGEEEIIIcRGUVBPCCGEEEIIIYTYKArqCSGEEEIIIYQQGyVp6wO40zHGAAAlJSVtfCSEEEIIIYQQQtoDPv7k49GGUFDfiNLSUgBAQEBAGx8JIYQQQgghhJD2pLS0FE5OTg3eh2OWhP7tmFarRU5ODhwdHcFxXFsfjpGSkhIEBATgypUrUKlUbX04xAbQmCHWojFDrEVjhliLxgyxFo0ZYi1bHDOMMZSWlsLX1xciUcNV87RS3wiRSAR/f/+2PowGqVQqmxmc5M5AY4ZYi8YMsRaNGWItGjPEWjRmiLVsbcw0tkLPo0Z5hBBCCCGEEEKIjaKgnhBCCCGEEEIIsVEU1NswuVyO+fPnQy6Xt/WhEBtBY4ZYi8YMsRaNGWItGjPEWjRmiLXu9jFDjfIIIYQQQgghhBAbRSv1hBBCCCGEEEKIjaKgnhBCCCGEEEIIsVEU1BNCCCGEEEIIITaKgnpCCCGEEEIIIcRGUVBvwz7//HMEBwfDzs4OcXFxOHDgQFsfErlDvPHGG+A4zugrKipKuL2yshIzZ86Em5sbHBwcMHr0aFy7dq0Nj5i0tp07d+KBBx6Ar68vOI7Db7/9ZnQ7Ywyvv/46fHx8oFAokJSUhHPnzhndp7CwECkpKVCpVHB2dsbUqVNRVlbWiq+CtKbGxsyUKVPqnXeSk5ON7kNjpv1YsGABevXqBUdHR3h6euKhhx7CmTNnjO5jyWdRVlYWhg8fDnt7e3h6euKll16CWq1uzZdCWoklY2bgwIH1zjPTpk0zug+NmfZj0aJF6Nq1K1QqFVQqFeLj47Fp0ybh9vZ0jqGg3kb9/PPPmDNnDubPn4/Dhw8jJiYGQ4cORX5+flsfGrlDdO7cGbm5ucLX7t27hduef/55/PHHH1i9ejVSU1ORk5ODUaNGteHRktZWXl6OmJgYfP755yZv/+CDD7Bw4UJ8+eWX2L9/P5RKJYYOHYrKykrhPikpKTh58iS2bt2K9evXY+fOnXjqqada6yWQVtbYmAGA5ORko/POypUrjW6nMdN+pKamYubMmdi3bx+2bt2KmpoaDBkyBOXl5cJ9Gvss0mg0GD58OKqrq7F37158++23WL58OV5//fW2eEnkNrNkzADAk08+aXSe+eCDD4TbaMy0L/7+/njvvfdw6NAhHDx4EIMHD8aIESNw8uRJAO3sHMOITerduzebOXOm8H+NRsN8fX3ZggUL2vCoyJ1i/vz5LCYmxuRtRUVFTCqVstWrVwvfy8jIYABYWlpaKx0huZMAYGvXrhX+r9Vqmbe3N/vwww+F7xUVFTG5XM5WrlzJGGPs1KlTDAD7559/hPts2rSJcRzHsrOzW+3YSduoO2YYY2zy5MlsxIgRZh9DY6Z9y8/PZwBYamoqY8yyz6KNGzcykUjE8vLyhPssWrSIqVQqVlVV1bovgLS6umOGMcYSEhLYc889Z/YxNGaIi4sLW7p0abs7x9BKvQ2qrq7GoUOHkJSUJHxPJBIhKSkJaWlpbXhk5E5y7tw5+Pr6IjQ0FCkpKcjKygIAHDp0CDU1NUbjJyoqCoGBgTR+CAAgMzMTeXl5RmPEyckJcXFxwhhJS0uDs7MzevbsKdwnKSkJIpEI+/fvb/VjJneGHTt2wNPTE5GRkZg+fToKCgqE22jMtG/FxcUAAFdXVwCWfRalpaWhS5cu8PLyEu4zdOhQlJSUCCtx5O5Vd8zwVqxYAXd3d0RHR+PVV19FRUWFcBuNmfZLo9Hgp59+Qnl5OeLj49vdOUbS1gdArHfjxg1oNBqjAQgAXl5eOH36dBsdFbmTxMXFYfny5YiMjERubi7efPNN9O/fHydOnEBeXh5kMhmcnZ2NHuPl5YW8vLy2OWByR+HHgalzDH9bXl4ePD09jW6XSCRwdXWlcdROJScnY9SoUQgJCcGFCxcwb948DBs2DGlpaRCLxTRm2jGtVovZs2ejb9++iI6OBgCLPovy8vJMnof428jdy9SYAYCJEyciKCgIvr6+OHbsGF555RWcOXMGa9asAUBjpj06fvw44uPjUVlZCQcHB6xduxadOnVCenp6uzrHUFBPyF1o2LBhwr+7du2KuLg4BAUFYdWqVVAoFG14ZISQu9X48eOFf3fp0gVdu3ZFWFgYduzYgcTExDY8MtLWZs6ciRMnThj1diGkIebGjGEPji5dusDHxweJiYm4cOECwsLCWvswyR0gMjIS6enpKC4uxi+//ILJkycjNTW1rQ+r1VH6vQ1yd3eHWCyu173x2rVr8Pb2bqOjIncyZ2dndOjQAefPn4e3tzeqq6tRVFRkdB8aP4THj4OGzjHe3t71GnOq1WoUFhbSOCIAgNDQULi7u+P8+fMAaMy0V7NmzcL69evx999/w9/fX/i+JZ9F3t7eJs9D/G3k7mRuzJgSFxcHAEbnGRoz7YtMJkN4eDhiY2OxYMECxMTE4NNPP2135xgK6m2QTCZDbGwstm3bJnxPq9Vi27ZtiI+Pb8MjI3eqsrIyXLhwAT4+PoiNjYVUKjUaP2fOnEFWVhaNHwIACAkJgbe3t9EYKSkpwf79+4UxEh8fj6KiIhw6dEi4z/bt26HVaoWLLNK+Xb16FQUFBfDx8QFAY6a9YYxh1qxZWLt2LbZv346QkBCj2y35LIqPj8fx48eNJoO2bt0KlUqFTp06tc4LIa2msTFjSnp6OgAYnWdozLRvWq0WVVVV7e8c09ad+kjT/PTTT0wul7Ply5ezU6dOsaeeeoo5OzsbdW8k7dcLL7zAduzYwTIzM9mePXtYUlISc3d3Z/n5+YwxxqZNm8YCAwPZ9u3b2cGDB1l8fDyLj49v46Mmram0tJQdOXKEHTlyhAFgH3/8MTty5Ai7fPkyY4yx9957jzk7O7N169axY8eOsREjRrCQkBB269Yt4TmSk5NZ9+7d2f79+9nu3btZREQEmzBhQlu9JHKbNTRmSktL2YsvvsjS0tJYZmYm++uvv1iPHj1YREQEq6ysFJ6Dxkz7MX36dObk5MR27NjBcnNzha+KigrhPo19FqnVahYdHc2GDBnC0tPT2ebNm5mHhwd79dVX2+IlkdussTFz/vx59tZbb7GDBw+yzMxMtm7dOhYaGsoGDBggPAeNmfZl7ty5LDU1lWVmZrJjx46xuXPnMo7j2JYtWxhj7escQ0G9Dfvf//7HAgMDmUwmY71792b79u1r60Mid4hx48YxHx8fJpPJmJ+fHxs3bhw7f/68cPutW7fYjBkzmIuLC7O3t2cjR45kubm5bXjEpLX9/fffDEC9r8mTJzPGdNva/fvf/2ZeXl5MLpezxMREdubMGaPnKCgoYBMmTGAODg5MpVKxxx57jJWWlrbBqyGtoaExU1FRwYYMGcI8PDyYVCplQUFB7Mknn6w30Uxjpv0wNVYAsG+++Ua4jyWfRZcuXWLDhg1jCoWCubu7sxdeeIHV1NS08qshraGxMZOVlcUGDBjAXF1dmVwuZ+Hh4eyll15ixcXFRs9DY6b9ePzxx1lQUBCTyWTMw8ODJSYmCgE9Y+3rHMMxxljr5QUQQgghhBBCCCGkpVBNPSGEEEIIIYQQYqMoqCeEEEIIIYQQQmwUBfWEEEIIIYQQQoiNoqCeEEIIIYQQQgixURTUE0IIIYQQQgghNoqCekIIIYQQQgghxEZRUE8IIYQQQgghhNgoCuoJIYQQQgghhBAbRUE9IYQQQqx26dIlcByH9PT0tj4UQgghpF2joJ4QQgi5y0yZMgUcx9X7Sk5ObutDa3U7duwAx3EoKipq60MhhBBCbgtJWx8AIYQQQlpecnIyvvnmG6PvyeXyNjoaQgghhNwutFJPCCGE3IXkcjm8vb2NvlxcXAAAEydOxLhx44zuX1NTA3d3d3z33XcAgM2bN6Nfv35wdnaGm5sb7r//fly4cMGqY6iqqsIrr7yCgIAAyOVyhIeHY9myZcLtqamp6N27N+RyOXx8fDB37lyo1Wrh9uDgYHzyySdGz9mtWze88cYbwv85jsPSpUsxcuRI2NvbIyIiAr///jsAXYnAoEGDAAAuLi7gOA5Tpkyx6jUQQgghdzoK6gkhhJB2JiUlBX/88QfKysqE7/3555+oqKjAyJEjAQDl5eWYM2cODh48iG3btkEkEmHkyJHQarUW/5xHH30UK1euxMKFC5GRkYGvvvoKDg4OAIDs7Gzcd9996NWrF44ePYpFixZh2bJleOedd6x+PW+++SbGjh2LY8eO4b777kNKSgoKCwsREBCAX3/9FQBw5swZ5Obm4tNPP7X6+QkhhJA7GaXfE0IIIXeh9evXCwE0b968eZg3bx6GDh0KpVKJtWvXYtKkSQCAH3/8EQ8++CAcHR0BAKNHjzZ67Ndffw0PDw+cOnUK0dHRjf78s2fPYtWqVdi6dSuSkpIAAKGhocLtX3zxBQICAvDZZ5+B4zhERUUhJycHr7zyCl5//XWIRJavO0yZMgUTJkwAALz77rtYuHAhDhw4gOTkZLi6ugIAPD094ezsbPFzEkIIIbaCVuoJIYSQu9CgQYOQnp5u9DVt2jQAgEQiwdixY7FixQoAulX5devWISUlRXj8uXPnMGHCBISGhkKlUiE4OBgAkJWVZdHPT09Ph1gsRkJCgsnbMzIyEB8fD47jhO/17dsXZWVluHr1qlWvtWvXrsK/lUolVCoV8vPzrXoOQgghxFbRSj0hhBByF1IqlQgPDzd7e0pKChISEpCfn4+tW7dCoVAYdcd/4IEHEBQUhCVLlsDX1xdarRbR0dGorq626OcrFIpmvwaRSATGmNH3ampq6t1PKpUa/Z/jOKvKBAghhBBbRiv1hBBCSDvUp08fBAQE4Oeff8aKFSswZswYITguKCjAmTNn8NprryExMREdO3bEzZs3rXr+Ll26QKvVIjU11eTtHTt2RFpamlHQvmfPHjg6OsLf3x8A4OHhgdzcXOH2kpISZGZmWnUcMpkMAKDRaKx6HCGEEGIrKKgnhBBC7kJVVVXIy8sz+rpx44bRfSZOnIgvv/wSW7duNUq9d3FxgZubGxYvXozz589j+/btmDNnjlU/Pzg4GJMnT8bjjz+O3377DZmZmdixYwdWrVoFAJgxYwauXLmCZ555BqdPn8a6deswf/58zJkzR6inHzx4ML7//nvs2rULx48fx+TJkyEWi606jqCgIHAch/Xr1+P69etGzQEJIYSQuwEF9YQQQshdaPPmzfDx8TH66tevn9F9UlJScOrUKfj5+aFv377C90UiEX766SccOnQI0dHReP755/Hhhx9afQyLFi3Cww8/jBkzZiAqKgpPPvkkysvLAQB+fn7YuHEjDhw4gJiYGEybNg1Tp07Fa6+9Jjz+1VdfRUJCAu6//34MHz4cDz30EMLCwqw6Bj8/P7z55puYO3cuvLy8MGvWLKtfByGEEHIn41jdYjVCCCGEEEIIIYTYBFqpJ4QQQgghhBBCbBQF9YQQQgghhBBCiI2ioJ4QQgghhBBCCLFRFNQTQgghhBBCCCE2ioJ6QgghhBBCCCHERlFQTwghhBBCCCGE2CgK6gkhhBBCCCGEEBtFQT0hhBBCCCGEEGKjKKgnhBBCCCGEEEJsFAX1hBBCCCGEEEKIjaKgnhBCCCGEEEIIsVH/D6VMS5oEUbvoAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAGJCAYAAADLxBNqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA7lxJREFUeJzsvXmYHGW5/n9Xr7MvmUw2spGEJIQECBiOgggIIqKgKJs/WQKCinJU5ICgR4TjlwN6FEVcEA+Q4PEIsnkQZBEMGPY1Yc1CyL7PvvdSVb8/qt633qquXqd7umdyf64rV2Z6qqvf6u5M+n7v57kfzTRNE4QQQgghhBBCCBl1BMq9AEIIIYQQQgghhBQGRT0hhBBCCCGEEDJKoagnhBBCCCGEEEJGKRT1hBBCCCGEEELIKIWinhBCCCGEEEIIGaVQ1BNCCCGEEEIIIaMUinpCCCGEEEIIIWSUQlFPCCGEEEIIIYSMUijqCSGEEEIIIYSQUQpFPSGEEEIqGk3TcO211+Z87KWXXlraBVUgS5cuxcyZM8u9DEIIIWWAop4QQsioYMOGDfjqV7+KWbNmoaqqCg0NDTjqqKNw8803Y3BwsNzLIyPI888/j2uvvRZdXV3lXgohhBBSdkLlXgAhhBCSjUceeQRnnHEGotEozjvvPCxcuBDxeBzPPvssrrjiCrzzzju47bbbyr1MUiIGBwcRCjkfWZ5//nlcd911WLp0KZqamsq3sAri97//PQzDKPcyCCGElAGKekIIIRXNxo0bcfbZZ2PGjBn4xz/+gcmTJ8uffeMb38D777+PRx55pIwrHD5DQ0OIRCIIBFhA50dVVVW5l1DxhMPhci+BEEJImeCnB0IIIRXNT37yE/T19eH22293CXrBnDlz8K1vfUt+n0wm8aMf/QizZ89GNBrFzJkz8b3vfQ+xWMx1v5kzZ+Izn/kMnn32WRxxxBGoqqrCrFmzcNddd8ljXn31VWiahuXLl6c87uOPPw5N0/Dwww/L27Zv344LL7wQEydORDQaxUEHHYQ77rjDdb+nn34amqbh7rvvxr//+79jv/32Q01NDXp6egAA9957LxYsWICqqiosXLgQDz74oG+/tGEY+MUvfoGDDjoIVVVVmDhxIr761a+is7Mz7+sUdHV14bLLLsPMmTMRjUYxdepUnHfeeWhra5PHxGIx/PCHP8ScOXMQjUYxbdo0XHnllSnPr5df/vKXCAaDrpL5n/3sZ9A0Dd/5znfkbbquo76+Ht/97nflbWpP/bXXXosrrrgCALD//vtD0zRomoZNmza5Hu8vf/kLFi5cKF+Hxx57LOP6AOe1+fOf/4zrr78eU6dORVVVFY4//ni8//77Kcffe++9OPzww1FdXY3x48fjnHPOwfbt27M+zrJly6BpGp577jl85zvfQWtrK2pra3Haaadh7969Kcf/5je/wUEHHYRoNIopU6bgG9/4Rkrrgd975O6778bhhx+O+vp6NDQ0YNGiRbj55ptdx3R1deHb3/42pk2bhmg0ijlz5uDHP/4xXX9CCBlNmIQQQkgFs99++5mzZs3K+fjzzz/fBGCefvrp5q9//WvzvPPOMwGYn/vc51zHzZgxw5w3b545ceJE83vf+575q1/9yjzssMNMTdPMt99+Wx43a9Ys8+STT055nAsuuMBsbm424/G4aZqmuWvXLnPq1KnmtGnTzP/4j/8wf/vb35qnnnqqCcD8+c9/Lu+3YsUKE4C5YMEC89BDDzVvuukm84YbbjD7+/vNhx9+2NQ0zTz44IPNm266yfzBD35gNjc3mwsXLjRnzJjhevyLLrrIDIVC5sUXX2zeeuut5ne/+12ztrbWXLJkiVxTPtfZ29trLly40AwGg+bFF19s/va3vzV/9KMfmUuWLDHfeOMN0zRNU9d188QTTzRramrMb3/72+bvfvc789JLLzVDoZD52c9+NuPr8vrrr5sAzL/+9a/yts9+9rNmIBAwP/ShD8nbXnnlFROA+fDDD8vbAJg//OEPTdM0zdWrV5tf/OIX5fP6hz/8wfzDH/5g9vX1yWMPOeQQc/LkyeaPfvQj8xe/+IU5a9Yss6amxmxra8u4RvHaLF682Dz88MPNn//85+a1115r1tTUmEcccYTr2DvvvNMEYC5ZssT8+c9/bl511VVmdXW1OXPmTLOzszPj44j7Ll682Pz4xz9u3nLLLebll19uBoNB88wzz3Qd+8Mf/tAEYJ5wwgnmLbfcYl566aVmMBhMeZ3PP/9813vkiSeeMAGYxx9/vPnrX//a/PWvf21eeuml5hlnnCGP6e/vNw8++GCzpaXF/N73vmfeeuut5nnnnWdqmmZ+61vfyngNhBBCKgeKekIIIRVLd3e3CSCrYBSsWrXKBGBedNFFrtv/7d/+zQRg/uMf/5C3zZgxwwRg/vOf/5S37dmzx4xGo+bll18ub7v66qvNcDhsdnR0yNtisZjZ1NRkXnjhhfK2L3/5y+bkyZNThOPZZ59tNjY2mgMDA6ZpOsJx1qxZ8jbBokWLzKlTp5q9vb3ytqefftoE4BJsK1euNAGYf/zjH133f+yxx1Juz/U6r7nmGhOA+cADD5heDMMwTdM0//CHP5iBQMBcuXKl6+e33nqrCcB87rnnUu4r0HXdbGhoMK+88kp5zpaWFvOMM84wg8GgvOabbrrJDAQCLmGsinrTNM3/+q//MgGYGzduTHkcAGYkEjHff/99edvq1atNAOYtt9ySdn2m6bw2Bx54oBmLxeTtN998swnAfOutt0zTNM14PG5OmDDBXLhwoTk4OCiPe/jhh00A5jXXXJPxcYSoP+GEE+Rza5qmedlll5nBYNDs6uoyTdN6nSKRiHniiSeauq7L4371q1+ZAMw77rhD3uYV9d/61rfMhoYGM5lMpl3Hj370I7O2ttZct26d6/arrrrKDAaD5pYtWzJeByGEkMqA5feEEEIqFlGSXl9fn9Pxf/vb3wDAVc4NAJdffjkApPTeL1iwAEcffbT8vrW1FfPmzcMHH3wgbzvrrLOQSCTwwAMPyNueeOIJdHV14ayzzgIAmKaJ+++/H6eccgpM00RbW5v888lPfhLd3d14/fXXXY99/vnno7q6Wn6/Y8cOvPXWWzjvvPNQV1cnbz/mmGOwaNEi133vvfdeNDY24hOf+ITrsQ4//HDU1dVhxYoVeV/n/fffj0MOOQSnnXZayvOqaZp83AMPPBDz5893Pe7HP/5xAEh5XJVAIIAjjzwS//znPwEA7733Htrb23HVVVfBNE288MILAICVK1di4cKFwwrAO+GEEzB79mz5/cEHH4yGhgbX9WbiggsuQCQSkd+L507c/9VXX8WePXvw9a9/3dXv/+lPfxrz58/POePhK1/5inxuxePouo7NmzcDAJ588knE43F8+9vfduUtXHzxxWhoaMj4OE1NTejv78ff//73tMfce++9OProo9Hc3Ox6PU844QToui5fK0IIIZUNRT0hhJCKpaGhAQDQ29ub0/GbN29GIBDAnDlzXLdPmjQJTU1NUiwJpk+fnnKO5uZmV1/6IYccgvnz5+Oee+6Rt91zzz0YP368FLN79+5FV1cXbrvtNrS2trr+XHDBBQCAPXv2uB5n//33T1k7gJS1+922fv16dHd3Y8KECSmP19fXl/JYuVznhg0bsHDhwpTjvI/7zjvvpDzm3Llzfa/Ry9FHH43XXnsNg4ODWLlyJSZPnozDDjsMhxxyCFauXAkAePbZZ10bEIWQy/Xmc//m5mYAkPcXr9W8efNS7jt//vyU91mxHycSiWDWrFkZH+frX/865s6di0996lOYOnUqLrzwwpRcgfXr1+Oxxx5LeT1POOEEANlfT0IIIZUB0+8JIYRULA0NDZgyZQrefvvtvO6nup+ZCAaDvrebpun6/qyzzsL111+PtrY21NfX46GHHsIXv/hFOWZNhIqdc845OP/8833PefDBB7u+V136fDEMAxMmTMAf//hH35+3tra6vs/1OnN53EWLFuGmm27y/fm0adMy3v+jH/0oEokEXnjhBaxcuVKK96OPPhorV67EmjVrsHfv3mGL+uFeb7Ger3I+zoQJE7Bq1So8/vjjePTRR/Hoo4/izjvvxHnnnSeDHw3DwCc+8QlceeWVvucQmzWEEEIqG4p6QgghFc1nPvMZ3HbbbXjhhRfwkY98JOOxM2bMgGEYWL9+PQ488EB5++7du9HV1YUZM2YUtIazzjoL1113He6//35MnDgRPT09OPvss+XPW1tbUV9fD13XpcuZL2Jtfinr3ttmz56NJ598EkcdddSwNge858y2eTJ79mysXr0axx9/fM4bJypHHHEEIpEIVq5ciZUrV8oU+4997GP4/e9/j6eeekp+n4lCHruYiNdq7dq1slpDsHbt2oLfZ5keZ9asWfL2eDyOjRs3Zn2vRSIRnHLKKTjllFNgGAa+/vWv43e/+x1+8IMfYM6cOZg9ezb6+voKfs8SQgipDFh+TwghpKK58sorUVtbi4suugi7d+9O+fmGDRvkmK6TTz4ZAPCLX/zCdYxwlj/96U8XtIYDDzwQixYtwj333IN77rkHkydPdgnPYDCIL3zhC7j//vt9hbHfmDIvU6ZMwcKFC3HXXXehr69P3v7MM8/grbfech175plnQtd1/OhHP0o5TzKZTBl3lgtf+MIXsHr1ajz44IMpPxPO8Zlnnont27fj97//fcoxg4OD6O/vz/gYVVVVWLJkCf70pz9hy5YtLqd+cHAQv/zlLzF79mzf0YUqtbW1AFDQdRaDD33oQ5gwYQJuvfVW1yi/Rx99FO+9917B7zMvJ5xwAiKRCH75y1+63Pvbb78d3d3dGR+nvb3d9X0gEJDVImLNZ555Jl544QU8/vjjKffv6upCMpksxmUQQggpMXTqCSGEVDSzZ8/G//7v/+Kss87CgQceiPPOOw8LFy5EPB7H888/j3vvvRdLly4FYPW/n3/++bjtttvQ1dWFY445Bi+//DKWL1+Oz33uczjuuOMKXsdZZ52Fa665BlVVVfjyl7/sCi4DgBtvvBErVqzAv/zLv+Diiy/GggUL0NHRgddffx1PPvkkOjo6sj7Gf/7nf+Kzn/0sjjrqKFxwwQXo7OzEr371KyxcuNAl9I855hh89atfxQ033IBVq1bhxBNPRDgcxvr163Hvvffi5ptvxumnn57X9V1xxRW47777cMYZZ+DCCy/E4Ycfjo6ODjz00EO49dZbccghh+Dcc8/Fn//8Z3zta1/DihUrcNRRR0HXdaxZswZ//vOf8fjjj+NDH/pQxsc5+uijceONN6KxsVEGAE6YMAHz5s3D2rVr5WuZicMPPxwA8P3vfx9nn302wuEwTjnlFCn2S004HMaPf/xjXHDBBTjmmGPwxS9+Ebt378bNN9+MmTNn4rLLLivK47S2tuLqq6/Gddddh5NOOgmnnnoq1q5di9/85jdYsmQJzjnnnLT3veiii9DR0YGPf/zjmDp1KjZv3oxbbrkFhx56qKxiueKKK/DQQw/hM5/5DJYuXYrDDz8c/f39eOutt3Dfffdh06ZNGD9+fFGuhRBCSAkpV+w+IYQQkg/r1q0zL774YnPmzJlmJBIx6+vrzaOOOsq85ZZbzKGhIXlcIpEwr7vuOnP//fc3w+GwOW3aNPPqq692HWOa1qi3T3/60ymPc8wxx5jHHHNMyu3r1683AZgAzGeffdZ3jbt37za/8Y1vmNOmTTPD4bA5adIk8/jjjzdvu+02eYwYm3bvvff6nuPuu+8258+fb0ajUXPhwoXmQw89ZH7hC18w58+fn3LsbbfdZh5++OFmdXW1WV9fby5atMi88sorzR07dhR0ne3t7eall15q7rfffmYkEjGnTp1qnn/++a4xffF43Pzxj39sHnTQQWY0GjWbm5vNww8/3LzuuuvM7u5u32tSeeSRR0wA5qc+9SnX7RdddJEJwLz99ttT7gPPSDvTtMax7bfffmYgEHCNtwNgfuMb30g5x4wZM8zzzz8/49rSvTYbN240AZh33nmn6/Z77rnHXLx4sRmNRs1x48aZX/rSl8xt27ZlfAzTdEbavfLKK76Pv2LFCtftv/rVr8z58+eb4XDYnDhxonnJJZe4Rv6ZZupIu/vuu8888cQTzQkTJpiRSMScPn26+dWvftXcuXOn6369vb3m1Vdfbc6ZM8eMRCLm+PHjzSOPPNL86U9/asbj8azXQgghpPxoplnk1BdCCCGEFJVDDz0Ura2tGceTEUIIIWTfhD31hBBCSIWQSCRS+piffvpprF69Gscee2x5FkUIIYSQioZOPSGEEFIhbNq0CSeccALOOeccTJkyBWvWrMGtt96KxsZGvP3222hpaSn3EgkhhBBSYTAojxBCCKkQmpubcfjhh+O///u/sXfvXtTW1uLTn/40brzxRgp6QgghhPhCp54QQgghhBBCCBmlsKeeEEIIIYQQQggZpVDUE0IIIYQQQgghoxT21GfBMAzs2LED9fX10DSt3MshhBBCCCGEEDLGMU0Tvb29mDJlCgKBzF48RX0WduzYgWnTppV7GYQQQgghhBBC9jG2bt2KqVOnZjyGoj4L9fX1AKwns6GhocyrIYQQQgghhBAy1unp6cG0adOkHs0ERX0WRMl9Q0MDRT0hhBBCCCGEkBEjlxZwBuURQgghhBBCCCGjFIp6QgghhBBCCCFklEJRTwghhBBCCCGEjFIo6gkhhBBCCCGEkFHKqBH1119/PY488kjU1NSgqakp6/GJRALf/e53sWjRItTW1mLKlCk477zzsGPHjtIvlhBCCCGEEEIIGQFGjaiPx+M444wzcMkll+R0/MDAAF5//XX84Ac/wOuvv44HHngAa9euxamnnlrilRJCCCGEEEIIISODZpqmWe5F5MOyZcvw7W9/G11dXXnf95VXXsERRxyBzZs3Y/r06Tndp6enB42Njeju7uZIO0IIIYQQQgghJScfHbpPzanv7u6GpmkZy/djsRhisZj8vqenZwRWRgghhBBCCCGE5M+oKb8fLkNDQ/jud7+LL37xixl3Om644QY0NjbKP9OmTRvBVRJCCCGEEEIIIblTVlF/1VVXQdO0jH/WrFkz7MdJJBI488wzYZomfvvb32Y89uqrr0Z3d7f8s3Xr1mE/PiEkP0zTxKqtXRiIJ8u9FEIIIYQQQiqaspbfX3755Vi6dGnGY2bNmjWsxxCCfvPmzfjHP/6RtR8hGo0iGo0O6zEJIcPjn+vbcP4dL+PsJdNw4xcOLvdyCCGEEEIIqVjKKupbW1vR2tpasvMLQb9+/XqsWLECLS0tJXssQkjx+GBvHwBgU3t/mVdCCCGEEEJIZTNqeuq3bNmCVatWYcuWLdB1HatWrcKqVavQ19cnj5k/fz4efPBBAJagP/300/Hqq6/ij3/8I3Rdx65du7Br1y7E4/FyXQYhJAd6h6yy+/6YXuaVEEIIIYQQUtmMmvT7a665BsuXL5ffL168GACwYsUKHHvssQCAtWvXoru7GwCwfft2PPTQQwCAQw891HUu9T6EkMqjZzABAOiPsaeeEEIIIYSQTIwaUb9s2TIsW7Ys4zGmacqvZ86c6fqeEDJ66BmyRH0fRT0hhBBCCCEZGTXl94SQfQen/J6inhBCCCGEkExQ1BNCKg7h1PfHdRgGK24IIYQQQghJB0U9IaTiEE49AAwkCgvLW7urF5//zXNYuX6v6/b7XtuGS//3dcSSDOEjhBBCCCGjH4p6QkjFIYLygMJL8P/+7i68vqULf3ljh+v2W5/ZgIff3Ik3tnQNZ4mEEEIIIYRUBBT1hJCKQ3XqCw3LG0oY1t8eR37APl8saRS4OkIIIYQQQioHinpCKgzTNPGzJ9bi8Xd2lXspZcE0TdlTDwB9Q4WJelFeH/OU7w/ZYj5OUU8IIYQQQsYAo2akHSH7Cmt39+KWf7yP6eNq8MmDJpV7OSPOUMJAQnfC8Qotv5dOfcLw3G6J/IROUU8IIYQQQkY/dOoJqTAG4pboHCwwIG6006u49EDh5ffCqVefR9M0KeoJIYQQQsiYgqKekApDt0e46fvoKLcej6jvjxcq6oVT74j6hG5CPK0svyeEEEIIIWMBinpCKgzhIO+7ot4t4vtihVUsCDGvino1NE8t8SeEEEIIIWS0QlFPSIWxzzv1gx6nvuDy+9SeerdrT6eeEEIIIYSMfijqCakwkraDnDRyE51vb+/GU+/tLuWSRpRej1NfsKi3xXxMcedjisBn+T0hhBBCCBkLUNQTUmEkbYc+R02Pb/zv6/jy8lexq3uohKsaObw99QXPqU+K8nt/pz5Op54QQgghhIwBKOoJqTCSttjM1anv6I8DADoH4iVb00jSM1hcp97VU68IfJbfE0IIIYSQsQBFPSEVhnTqTWsEWzZE7/1YEalipF0ooAEA+pWgvL5YEm9t687peRFl90nDlBsl7qC8sfF8EUIIIYSQfRuKekIqDNWhzyUsLznGRL0ov5/YUAXAXX7//Qffwim/ehavbOrMeh5X2X2a8XaEEEIIIYSMdijqCakwkorYTOYg6oXwjyfHhkgVQXlTmixRr5bfr9/dBwDY3N6f9TyxZGov/RCD8gghhBBCyBiDop6QCkN157M59aZpjrnyezHSbnJjNQC3Uy/yAwYT2WfXq6n3QtQPcqQdIYQQQggZY1DUE1JhJFRRn6V3XBX9uQbrVTrCqZ/c6C6/N00THXYY4EA8B1HvSr1PLb+nU08IIYQQQsYCFPWEVBi64iDrWfq+1fL8sVJ+L3rqhagX5ff9cV0K8YEsifiGYbpG1gkxH6NTTwghhBBCxhgU9YRUGEkj95561akfrSJ1b28Mu7qH5PdipN0ku/xepN939Dkj+7I59d4Z9DGfmfUMyiOEEEIIIWMBinpCKgxVyBvZyu/N0S3qDcPEZ25ZiZNu/qd008VIOxGUF9cNxJOGLL0HgIEsPfVDnp/7lt+PwueLEEIIIYQQLxT1pGT86OF38btnNpR7GaOOpCI2szr1+ugW9QnDwO6eGLoGEtjY1o+kbqDfduEn2eX3gFWC39Efk98PZnHqY55+eZl+zzn1hBBCCCFkjEFRT0rC7p4h3P7sRvz0ibUws7jNxI0q5PPqqR+F5eRq+8Dm9gFX0n1zTQRVYetXVF8siY7+hPzZQDxzT70akgeoTr1afk9RTwghhBBCRj8U9aQkCFGV0E32LueJOqc+r/T7UShS3aK+X/bTV4eDCAcDqIuGAAD9cbdTn62nXnXkAXVOPdPvCSGEEELI2IKinpSEhDJeLZeZ4qUk26z3SsPl1GcZU6eOsUt40t6vfuAtPPXe7uIvsIior82m9gGZfN9QbYn5WiHqU5z6LOX3XqfeJyhvNFY2EEIIIYQQ4oWinpQEr8AsFzu7B3H4//s7/vNv75VtDfmSV0+9K/3e+fqljR3408tb8Mun1hd/gUVEvb4tHf1S1NdXhQEAtRFL1PfF9Lyc+pjHqRc9+K6eejr1hBBCCCFkDEBRT0qCWkJeTlH/7o4edA0ksHJ9W9nWkC+ukXZ5zalXqiPsnvO+LPPcy42hOvVtA7L8vqHKEvN1aZz6wWw99UnvSDvre86pJ4QQQgghYw2KelISVMFUzvJ74WR7ndtKRi2pzzrSLs2celFaPpSobOGqbkrs6B5Eu+3GN1TbTn00CEAE5eXRU58y0s5vTn1lPzeEEEIIIYTkAkU9KQmqWMs2fqyUSFFf4eJWxRV+l6X8PplmpJ1w7St9M0O9VtO0KisApfzedur7hpLo6Hfm1Bc80s7l1LOnnhBCCCGEjH4o6klJqBin3hyFTr2afl9gT714/su5oZIL3ut7e3s3gHTl946oH0joGUclel9vOdJOuT1Op54QQgghhIwBRo2ov/7663HkkUeipqYGTU1NOd3n2muvxfz581FbW4vm5maccMIJeOmll0q7UAKgcnrqR6NT706/zyLqzcxO/VCFh8F5R/a9t7MXQKpT3zWYQM+Q00evG2aKG6/ibTvwK7/nSDtCCCGEEDIWGDWiPh6P44wzzsAll1yS833mzp2LX/3qV3jrrbfw7LPPYubMmTjxxBOxd+/eEq6UAO6+8MF4+cST01M/egRcXqI+zUg7IVh1w6zo3nHv9Qn33DvSblvnAABA05xjM1UhxLw99cnUyoVKfl4IIYQQQgjJlVC5F5Ar1113HQBg2bJlOd/n//v//j/X9zfddBNuv/12vPnmmzj++OOLuTziIVFhTn1cN2AYJgIBLcs9yk8+I+3cPfVKEr5npGA4WJn7d+k2LYRTX2cH5W3tGAQANNdE0DeURFw3MJDQ0ZzmvOl66tWyfIp6QgghhBAyFhg1on64xONx3HbbbWhsbMQhhxyS9rhYLIZYzEnZ7unpGYnljTlUsVkJ6feAJfSqI8GyrSVXVCFv5NFTH/dx6gGr5Ly+qogLLCLpRL3oqRdO/dYOy6lvrglDN0zEB42MY+1EmX11OIjBhJ4m/d6EaZrQtMrf6CGEEEIIISQdlWnfFZGHH34YdXV1qKqqws9//nP8/e9/x/jx49Mef8MNN6CxsVH+mTZt2giuduyglt+X1ak3VVFf2aFxgrycejUoL+lfil/O5z8bQtSHPBUUYqSdCMrrjVkCvqU2ilp7YybTWDvxWjfa5xGZCt7nggn4hBBCCCFktFNWUX/VVVdB07SMf9asWTOsxzjuuOOwatUqPP/88zjppJNw5plnYs+ePWmPv/rqq9Hd3S3/bN26dViPv6+iiqVKGGkHjJ6+endPfeY1p51Tr1xrJW9miGud2FCFiNIi4E2/F4yrjchqi8yi3rp+IeqHkjqSupGyScISfEIIIYQQMtopa/n95ZdfjqVLl2Y8ZtasWcN6jNraWsyZMwdz5szBhz/8YRxwwAG4/fbbcfXVV/seH41GEY1Gh/WYxO02V0z5/ShJwHePtMtybJqZ9q6RgmUMKsyGeH2ioQCmjavGhr39AIAGT/q9oLk2gpqIddtAxvJ726mvCcvv/SYBxJMGavnPnRBCCCGEjGLKKupbW1vR2to6oo9pGIarZ56UBnf5d/nT74HKdqxVdJdQz+bU+7vzrqC8Cr5uca2BgIYZ42qkqHeC8ty/oloKdeoThqv0PqABhkmnnhBCCCGEjH5GTU/9li1bsGrVKmzZsgW6rmPVqlVYtWoV+vr65DHz58/Hgw8+CADo7+/H9773Pbz44ovYvHkzXnvtNVx44YXYvn07zjjjjHJdxj5DogKD8sq5uZAPCUWoZxtpl86djyVHX0/99JYaebt3pJ3AcuoLEfVOWF4kFEAkZP3qi1PUE0IIIYSQUc6oSb+/5pprsHz5cvn94sWLAQArVqzAscceCwBYu3Yturu7AQDBYBBr1qzB8uXL0dbWhpaWFixZsgQrV67EQQcdNOLr39fYF4Ly3t7ejSff241Ljp2NaKh4qfq6q6c+9/T7RJrxdpW8mSFen4CmYWZLLQAgGNBQHbaez9qo+3ltUUR9pqwG8Z5rcol663moCgVgwnpeGJRHCCGEEEJGO6NG1C9btizrjHpTEXBVVVV44IEHSrwqko6KCcrTSxeU99Mn1uLptXsxb2I9PrVoctHOm9ALFfVqKb7znFe2U2+tORR0nPqGqpAcM+ctv3f31OcTlOeU31eFg/J5Y/k9IYQQQggZ7YwaUU9GFxUzp76ETn2/PWZtd89QUc+r9snnM9JOLSV3O/WVLOqtvwOahsXTmtBaH8WHZ7XIn1eHg7L/HXA79ZmC8mKeoLy4R9SL/IH4KJmIQAghhBBCSDoo6klJqJjy+xL21AtB3TmQKMl5AcAwc3fq1Y0UVaz6pb5XCtKpD2hoqonghas+jqAys17TNNRGQnJOfXOOQXlDHqceALoHrdepKhyACTr1hBBCCCFkbDBqgvLI6KJSnOJSpt8LEd05EC/Jeb1f+x6brvxeTb8vY/tDNqRTbwv5UDAgS+8FaljeuJoIasI5lN8Lp14R9WLzpSocRCRoB+VV8IYHIYQQQgghuUBRT0rCvjCnvlROfV5Bea6Se//xdpVcfp9UnPp0iLC86nAQ1ZGgEpSXvvxeXH9NJIRw0Dp3l735UhUKImyLegblEUIIIYSQ0Q5FPSkJqoNcMaK+yK6sKB3vKrJTr4pzPUv5vaunPplG1I+COfXBDKJehOWNq40AQG7l9/Z7LhoKoMqeTNBlb75Ew85IO5bfE0IIIYSQ0Q5FPSkJqlgajJdPOCVLWX5vn7ujv7iivjgj7VSnvnKFay6ivtYj6oVzn2mzSGzgVIWDiNrj8boG4/I24dRzTj0hhBBCCBntUNSTkqD2gsfK6NSrQXPFFrdCkHYVufxeFeRF6amv4PJ78RxmLr/3OPV2T72YPuCHEPXRUADVEevXXJfSUy9K8unUE0IIIYSQ0Q5FPSkJiQrpqS+pU1+ioDy3U59ZdLrS7w0Tpr2JkUhWnlPf3hfDQ6t3uF4H0V4Q0NKL+npb1LfYor4mn/L7sFN+L9PvQwGlp74ynhtCCCGEEEIKhaKeSJY9txHn/PdLGed/50rCIzbLJZ6MkgblWecbiOtFdcPV5y6fnnrAKcF3OfUV0lP/8yfX4Zt/egOPvLlT3iad+mB2p77ZI+rTbRYldUM+L1WhIKrC7p766gjT7wkhhBBCyNiBop5I/vDiZjz7fhtWbe0a9rmSHhFfLre+tEF5zrmLWYLvdd8zH+u+JrF54grKq5CRdrt7YgDcGQTiWjM59ScvmoyDpjTg5EWTAaQG5ZmmiW/+6Q3859/eA+De0IiGA6gK2+X3Sk+9CMqLM/2eEEIIIYSMcijqxzjrd/diW+dATscK0VsM8esdFVYuYakK5GL3lquCu1gl+KZpusvvs4hObwGEFPUV6NSL5199b+TSU/+R2S145JtH4/AZzQCsMXUAMGi/pza1D+Ch1Tvw+5UfIKkbrnaDqI9T7yq/p1NPCCGEEEJGORT1Y5i+WBKn/OpZnPW7F3M63s/lLZSkx0EuV1+3Wr5ebKdeDbErlqj3OvPZyu+9Tr0Q86pwrpSeetH+oK5ZOvUZRL2XWunUJ2GaJnb3DAEATNPqmxc9++GghmBAQ9Tuqe8dstpKouEge+oJIYQQQsiYIVTuBZDS0dYbw1DCwPauQZimCS1DiTPgiPliCB1vanu5yu9LO9LOeZ46+4tTfu993rKNtPPrqdcNs6QVCoUiKgaSPu0FmZx6L6L83jCtjRoh6gGgcyAhzyXEvCi/F1jl90y/J4QQQgghYwM69WMYtew6W282oISsFaX8vjJ66o0R6qkvnlNveL7PfU49YJWTe1+/ihH19jrUNYvXJ9Ocei+i/B6w+ur39sbk910Dcfm+j9p986L8XlAVDihz6tlTTwghhBBCRjcU9WMYtew6F0eyqE69R2wOlqmnPlnS9Hs1KK84ot4r0o08nfqkYbj66YHKKb8X6/Bz6vMR9cGAJoPuBuLJFKdevM5CzKc49SGW3xNCCCGEkLEDRf0YRnVos7nvpmlKMViUnvoUYVl+p76YgXGGYUJtd+8oUvm9N2Awq1PvOT6eNFNev2K3HRSKn1PvBOXl96tIjrWL69ijOPWdA3FZkSGd+pDXqVfS7xmURwghhBBCRjkU9WMYteTd6956UcVkSdLvK6GnvoiOdcJTJl8qpz7/nnojtfWhQkbaifeAmhsgggAzjbTzo9YuwR+I6y6nvmsgLjcxIjmU39OpJ4QQQgghox2K+jFMTBHSXpHtRRU32Y7NBdEbLkLLytZT70q/L94avGK7WD31XpGZTdT7zalP6amvEDdarMMv/T4UzE/Uq7Pq3U59Qpb5R9OV34eDiAQZlEcIIYQQQsYGFPVjGFdPfRZhpwrB4gTlWWKtvsqeKV4mUa+XKCjP65B3DBSn/H64Tn1ccepFn7pumGUXr4bhtAUkfMrv83Xqa5Sxdnt63EF5YvOmKpegvCSD8gghhBBCyOiGon4MM5RH+b3687g+fAEuRGR9VRhAhQTlFVHUe3vZi1V+n5p+n3nNKen3uimvU2yoAOVPwFefe/W5c3rq83TqbaHe1hdDXywpb+/oj8s2C+HURz2iPsqgPEIIIYQQMoagqB/DDOYRlKf+vCjl9x6nviKC8oq4Bq9D3tlfLFHvdeozH+870s6+U11UFfXlFa/qc5/0c+rzFPXCqd/UPuC6vXMgkTrSLpRafh8OFSbqy705QgghhBBCiBeK+jFMPiPtXE59MdLvDbewLJeoLJVT73XQe4aSKYn/BZ1X94r6/Jz6pGHIVotIKCD7ycstRtUNJvWakgU69WJW/eb2ftftXQNxn5F2qeX30WD+6fc3ProGh1z3BNbt7s1rrYQQQgghhJQSivoxzFCBQXnFTL+X5fcVEJQXTxowzeL0UAvxHVYC3roGh99Xnzp33vneNE1saut3XUNqT70zmjASDEhBW25Rn86pF5UU+cypBxynfmOb5dSLipDOgUTqSLsUUR9EOGQ9Xra2FJXXN3ciljTw3s6evNZKCCGEEEJIKaGoH8Ooc9nzK78v3pz6hhIH5d3x7EYc818rsK1zwPfnXue7WG69cMijoSAaq62Ni2L01XvdfnVTYvnzm3DsT5/GPa9sTVmHIJF0gvKioYCc0V7+8vvUxHvAEfiFivpNbZZTP29iPQDrNRAbCELUV3tEfXW4sJ56UZ3hfU8RQgghhBBSTijqxzBDcdWpzzanvsjp97ZYa7AF71CJgvL+9tZObG4fwMsbO3x/bnic+WLNqlfFaHONdY0d/SVw6hUB+YEtYDe29SvHpx9pFw4q5fdFHOdXCOrju5x6+/UJ5pl+Xx1xbxbNm2SJ+oRuosPON6jKMNLOEfW5C3Sx7mwTCQghhBBCCBlJKOrHMKo7mq3MOFbkkXZJmX5fWqdeJJ8PpNk08IrkYs2qF8IuHNTQVBMBUJxZ9ak99c73QoAmfNLjnWMMxO2fWz31lVd+X0ynXjCzpRYR25nf1TMEwL/8PhzUEAxoiBTg1Ivn3fueIoQQQgghpJxQ1I9h8im/V4XicMvvDcOE0D1OUF5pRGV/3BL16UbmGSmivjhOvToLflytJeqLUn7vcd51tX/efkz19RECU5SYx3XT5dRHw5VRfh9LE9ooQvNCweGJ+gkNUVkxsVuK+lSnXrQjhAsIyhPPv16kXAZCCCGEEEKKAUX9GMYdlJd7T30+4WF+JBRhWuqgvP6YdV4h7r2U2qkPBQJoKmL5vdd593O1VeEvfl5ti9ykUn4fCQXkOLdKderlSLu8y+89or6+Cs12xcTObkvUCzEvxD3gzKwXAYf59dTb5fecbU8IIYQQQioIivoxzGAeI+2KmX6vlpA75felEUKi/D6dU+8VycVyrN099cVz6r093upzKTZb4kkz5efCqU/oTlBeJBSQ4rfsoj5NT72zOZKfqK+1e+oFExui8nVo64sB8C+/F0JflOrns4Elg/JYfk8IIYQQQiqIUPZDyGhFFXLxLIFgxUy/V+8vRH0pgvLUULh0Tn1KUF7RnXqn/L4YPfUZnXpdiMpUp16IVbX8PhIMQA9ViKhPk34vnfo8RX2KU99QheZaq2JCvORRn6C8qrC7/D6RzF2giw0UBuURQgghhJBKgk79GCaWyGOkXYb0+66BeF69xwlfp774orI/5gj5nIPybHHZF0vi2fVtKSPkckXcLxTUZPl950Ax0u/t89oi191TL4LyFIFsClHvOPXuOfWi/L7cI+38nfpkgU692lNfGwmiLhqSgYUCce2ZnHoG5RFCCCGEkNHOqBH1119/PY488kjU1NSgqakp7/t/7Wtfg6Zp+MUvflH0tVUqQ3mU38fTpN+398Xw4RuewoXLXsn5cVVhWsr09T5V1McyB+WJUmzRWvDTx9finNtfwiNv7SzosZ3y+4As++7sL176vViv6grHZVBeqtMtRX1SGWkXKu3znw9up975Wo60G4aon9BQBQAyKE8QVULxxPlTgvIKKL+nU08IIYQQQiqJUSPq4/E4zjjjDFxyySV53/fBBx/Eiy++iClTppRgZZWL6o4nsjn1acrvN3cMYChhYN3u3pwfVwjTUFCTvd6lceqdcw6kOb8Q30IEivJ7Met9lx2qJrjq/jdxwZ0vY8PevoyPrZbfO0598dLvRem4WmovntekK/3e+tq3pz4YdER9uefUq069nlp9kK+orw47nUMT6qMAIDdXBGJjBIAMDKwaRlCeTqeeEEIIIYRUIKNG1F933XW47LLLsGjRorzut337dvzrv/4r/vjHPyIcDme/wxgin/T7RJrye3GO/MqUbac4UNqgNrdTn6anXop6SwQKp7570CqV91Yo3P3KVqxYuxcn37wSv//nB2ldWTUozxlpV4zye7dTr064EwLe5dTrbqfeNdIupCFa4eX30qnPM/1edeonSqfeW34fTPlalt/LOfW5C/SEdOqZfk8IIYQQQiqHMR2UZxgGzj33XFxxxRU46KCDcrpPLBZDLBaT3/f09JRqeSVHFVKxAkfaCRGcj/iRfdKKU5/QTSR0Q5Y9F4N8eupro+7NBSnqXdeqPF9JA9f/7T28tb0bv/zi4pTzCmEXDjrp950DcRiGmXfom2u9nvJ71alP+PTUyzn16kg73Xr8aDAAzRbL5S+/9x9pp26O5ENNVCm/F059rbf8PjUgT1RARJT2Bt0wc3r8JJ16QgghhBBSgYwap74QfvzjHyMUCuGb3/xmzve54YYb0NjYKP9MmzathCssLUNqSX2WlO90Tn1sOE59MOByS4stLN2i3t+pF0Fy6Zz6WJosgas/NR8A8OIH7b7nTShl46L83jCB3iH/deSK49Rbz5sqgBOyp95nTn3YCX7zH2lXbqc+tWUAcCopQsF8nXpnP1I49d6gPPd8erv83tNTD+T23jZNU5lTT1FPCCGEEEIqh7KK+quuugqapmX8s2bNmoLO/dprr+Hmm2/GsmXLpFuZC1dffTW6u7vln61btxb0+OVGN8y8xtSpTr6/U59HoJgtesLBgMstLbawVMvv+7PMqZc99QkDpmn6l98rqfEfnz8BQPrrdnrqA4iGgqi1zz/cvnrRLy/KxN0j7VKd4qQ3KE835WsWDgZkL3nZnXqlCkIVxWL9gTzL76vDalCef0+9a5RdyF1+r4r6XMLy1OdcNynqCSGEEEJI5VDW8vvLL78cS5cuzXjMrFmzCjr3ypUrsWfPHkyfPl3epus6Lr/8cvziF7/Apk2bfO8XjUYRjUYLesxKwjuPPdtIOtXJ9+upN0zkXqYs0u+D1sZMdTiIwYReUqd+MKuoF069jr5YUt4ec1UlOA53OEvPtbdsvDoSQn9cH3YgndepV8Wk6OlWXx/HqRc99YYs/4+EAhWUfu/fU69ujuRDMKAhGgogljQwoT5z+j2QOt4urFQGZAuRVNfp/ZoQQgghhJByU1ZR39raitbW1pKc+9xzz8UJJ5zguu2Tn/wkzj33XFxwwQUlecxKwuuKZx1ppzuiSxXwMY/bHwwE/e7ueSz37PHqiCXqi52Ar7rz/fEkTNN0VWUYivhyeuoNV6Cdr1MfCsie63SbIbpnnnxEpKlnaXPIhuyp93HqxWvoduqFs++k34t9F7X9ofzp96kbEerXeWp6AMB+TdXY3DGA/cfXAgAaqsIIaNb7F3CeQyA1KE/TNISDmp31kP0188sxIIQQQgghpBIYNUF5W7ZsQUdHB7Zs2QJd17Fq1SoAwJw5c1BXVwcAmD9/Pm644QacdtppaGlpQUtLi+sc4XAYkyZNwrx580Z6+SOO15nNVmLsFaPxpIHqSFC614AlbNQe+XSo5feA4yKnc9MLRS2/N03LdVfXp4ov1akXpfeA+3kRAj4SDLjmmHs3C9Rzi17wcMg5fjiIzQK/OfVJn6A86dRHVFGvOvWVnX5fqFMPAHcsXYL2/hgmNVpOfSCgobE6jE5700Zt/RDvQbVsPxwMIKHrObWWJH0mDhBCCCGEEFIJjBpRf80112D58uXy+8WLrUTyFStW4NhjjwUArF27Ft3d3eVYXsXhdcWzO/XunwtR7x6Ll5uYSSjl94DjmBbdqfeMseuPJV2i3jBVUS/m1BsuUR9TJwTYbnY0HJAjzwBLhIY9QW5J3S1GnXL94YnnzEF5Yk59qihWpwxocDYnopVSfu/TMgA4/emFDEWYOb4WM22XXtBcG5Gi3jXSLhJMuc16zXRXNUo6EgadekIIIYQQUpmMGlG/bNkyLFu2LOMxZpYAq3R99GORFKc+i3BJEfX2997y+1wQPcpC8FaXSFj2eUT9QFyHWpvhduqdoDxX+b1PKGAk6JTfA9Zz5x3F5+2pL76oD7i+t742XGs2DFOWmlcp6fewb4uEAjIgrtyiPubaHFIEspwiUJzMTissrx8AXBszpx26H7Z3DuI4OwARcMba5fKauVsGOKeeEEIIIYRUDqNG1JP8SO2pz7zh4RX9QjgOpRFjmRBCVLjb6UR9W18Mz65vw0kLJ+VU1u/F69R7Z9XruZTf+4y0s4LylCA1n+tO21M/XFEve+qVigPDRCCgyc0SkZCvprCrPfXi5kiwkkba+c+pF9UUwTzT79MhwvIiwYAMDASAExZMxAkLJrqOjeSxEZP0SewnhBBCCCGkEhjTc+r3ZWJ59tR7Rb0QkG6nPsfye93j1NvC0lt+f9Pf1+Hb96zCw2/uzOm8Xvpj7vN5Z9Xr6YLyBp2xc36iPhoKIBjQIHSm33OX0lMfzByslytJT0+9+lgJ8bf9OqjXJ0V90hllGHb11FdOUF7SMGVVjbfiYbiIWfVqSF46wnlsxPjlGBBCCCGEEFIJUNSPUfLtqff+fFhOve4WvFUyKM99/51dgwAsx74Q/MrvVYT40jRnDZmC8mKKU69pmnRy/YS67ikbd4L1hpl+L8rvFVEqrkM49H4p+NWKUy9+HglWTvm9N31fLN0osqgXTr06zi4dzkZM9tfM3QZBUU8IIYQQQioHivoxirfcOmtPvbf83tepz7X83naKg+7Z4N6NBiHKYwWWhudafh/UNOl8x5IGutONtJOi3lpvJMOseuGai/J7kX6fy8zzTAjhropS3TShK/3z4nVQU9hFNURcN5TRfJoy0q685ffeyQfiPVIypz6Ui1Ofe/m9eoxBUU8IIYQQQioIivoxinBmcy0xTufUx5IFpN9759SnKQHvHUqmPEY+CFFfX2X1y6eU35uOYBQiOZZ0B+WpmxZxxeEGFKGeoac+WOyeek9QHmCJd5eoNK0Ni6QS2CYc+YRuyI2FSDAoy+91wxz22grFNM2UhHmx4aJ7NkeGS7Mt6qtyKb8vMCiPTj0hhBBCCKkkKOrHKKLcuaHKKkfOJsi9oku41kOJApx63enpBtIH5QlRX2gfunD6J9RHAfg49boj6oXIyxSUJ3IIROl7pvL7pNepL1b6vZ4q6pOGkSIkE7ohhWZAc9ac1E25ORFWnHqgfCX4fiPjkh5RXyynflxt7uX30TxyEBI+YwQJIYQQQgipBCjqxyii3Fm42NmES4pTn/Rz6vNMv7eFmpgR7i3B7h1K2I+RvxA2TRP99vlabVHvLcf3c+qtoLzMTn1UOvWa63bXuWVuQHF76oVgDAcDEDpXN0y5USJIGqaysRCQmwtx3XDaCIIB1+ZAuRLw/TYTdL00ov7Ds1pw6LQmnPmhqVmPzfT6elGf/yRH2hFCCCGEkAqCI+3GKEKsNlRbzmXW9HvPz4WAdzv1eZbfB91OvdpTb5qm01NfQPn9UMJxqifUV1nnT9dTH9Ckkx1L6q7j4kn1aycoD1Dc9xF06uXkgKCGYECDoZvQTTP19Ukaruvze3wR+FcVDmAoYZTNqRfvoVBAg26aME0gYbjH8hWzp/4v3zgqp2PDGTITvKiVEnTqCSGEEEJIJUGnfowiBJxw6rP21NsJ4DUicM0vKC9HR12W33vT7xVRORDXZfBbIU69mnzfUmf1UffnEpSXMNA1oIy0U54XdaQdoJTf+4608/TU267vcIPy1B5zce6kbrrmpAOWKFaPjYQcgao69YDz/JdP1OtyHWITRLfH2hXbqc+HfDZimH5PCCGEEEIqFYr6MYoQUrKnPlv6vS1saqMh1/eqi55r2XFCKQsH/HvqRT89UFj6vSi1r40EUWeveTDNnHq1/L4/lnSJ/3jSkDPTYx6nPpIxKK9ETr2rpN4JufOK+qTulN8HFKdeTckX669SWg/Kgch3qAoHXBsVqjYOaiMv6iP5iHrOqSeEEEIIIRUKRf0YZdDj1GcrvxeiXwhk6dQrQjDXfnG1hBxQRb1zrr6Y/6z4XBFOfW00hJqItea0Tr0SlOc9xjAd59Ur6jPNMRciOxh0i/rh99Q7z53sqTdNWa4uUIPyQgFNVkWoOCMF7ekDBU4ZGC7idY+Ggu6NCuWagj7rLzXiOcs3KM+7wUIIIYQQQkg5oagfowghpabfC0faj5h06p1554AnKC/v8ntbVPoE5fWoTn0BYlM49XXRkGwZSOmp9wnKEwiXFnBEnQzK88yp9w3Kk2GAnv77IqXfhwIBmUngN44uoZuuFoBwMPWfsnTqK6b8XnHqDRPqPkVZnPpQ+tfXi7oBQaeeEEIIIYRUEhT1YxSnpz4sb0sXCGaaTh92bcTt1Kvues7l9ylz6i1ROaCIyr7hlt/HVac+6LpNoM6Sj3rmlovEfCC1KkE69aL83mczI+HpBS/2nPpgtp76FKc+9Z+yeP6jPpUSI0m6nnqXU1/OnnqfSgwv6vPP9HtCCCGEEFJJUNSPUaRTX+0MOEgnONXgL1F+n/Bx6nMtLU/KEvKA65xihJ31terUu9elGyaMLG5oX8xaV200KMvvB2Le8nvrb8upd7/Vx9VGZHm7cGrF38KhzyTU1TJ5oIhOvRxpp0n32jBTnXq1pz5oJ+Wrulgk3wNAlX3tXqd+KKFjV/fQsNabC+K9WBUOKk694XbqR1FQHo16QgghhBBSSVDUj1H8nPp0vcPq7XXKXHur7NtRMLmX37vn1DfVWGvoHnBEvdpTr24cmKaJz//2eXzyF//MKLZc5fdRUQngduplebqmIRIMQK3wbqwOO+XXovzeXoc3KM83/V73OPWh9P33+SBaF1xOvTKTXhB3OfXuFgAAiCpfV0dSpw8AwNf/+DqOvPEpbO0YGNaas6GW34s1JnWPU1/G8vt8g/Lo1BNCCCGEkEqCon6MIoRUXTQoHdx04kW9vVYJyvP2uuddfm8LuOYaa+Rc12BC9vWrTr26qRBLGli9tQvr9/Thg739aR+jXw3KE+X9HqfeUJx6TXO79Y01Ydk7L64z5hlp5wTljVxPvTxvMCCrAHTDSNlQSepG6saCIuTDyrWK9PuYR9S/ua0Lhgl80Jb+eS4GUtSHgq6NCnGtAc1K8B9pZFBeDq9ZQtlU0RmURwghhBBCKgiK+jGKSDqPhoNKMrslXvpiSfzhhU3Y02OVXgvRqmlO/3tcN1N63dP15HsR4l+IJuHU64YpA/LSld+rJeLr9/SmfQw1/V5sRAzE/TchhJBUw/JUpz4mnXr/9Hu/6056eurDebi+mUioTr0mRL1bVIo1pYzVU4S8KvBl+r2aj6AbaO+P27eXNkAvXU+9GmRYDvIqv3c59RT1hBBCCCGkcqCoH6PIPuZQUCkztsTI/a9tww/+7x385ukNANy95GpJuncEWi6jvwCl/F6OVAvKzYKuAUtIphP1aon4+t19aR/DL/3eG5RneESj6tQ3VYeddHuPqI96y+99rjvp6an3678fSui48r7VeOKdXWmvw4sq1NX+86RHeCYMI2XTIqSI43DI+dov/b6tLw4xDKHkoj7p31PvrTQYafIJylMT75l+TwghhBBCKgmK+jGKGO9WFQ6kiNe9vTHr776Y6/ZIUDlW11Oc+tzL792CFwCabbe+y+6rd/XUK6JSdZPf35Ne1MugvIgzp34wrrvG9qlBeYAjbgHLqY96e+rTjLTzc3K9gtRvTv2LH7Tjz69uw01/X5f2OryorQtBxdVOGWmXNFKd+mA6p94W9comzZ5eJyBv5Jx69zXJTZcy9NMDzuZNTuX3rvR7inpCCCGEEFI5UNSPUUSfeHUkmFJmLNzwAdvtFoIlEnKc+kTSTHHqcy+/d/ebA0Cj3VffmcWpz7X83umpD8qgvKRhugSargTlAR6nviacEoSXMtIuY/q9v6BWe9/FxsrOPBLm1fM6PfVmynPv6kn3hPVZXzsbGFGf8vs9PTH5dalH3anp9+Ka1PC/cjv1Oc2pd72vKOoJIYQQQkjlQFE/RlHL70UpthAvove83/5b7SWPKELH69TnWn6fm1PviHpVoKqifmNbf9p+Z1f5veLADyp99V6nXp1V31gdSevUe9PvvSP3xJqB1OR5VSCK+3UPJlzryoRa1u/01JspVRLeOfXWGpznO6J8LYLy1Od2T68j6r2p+MXG7dRbz5OuO2MLyy3qc5nqoGYaMP2eEEIIIYRUEhT1YxQ1nCziES+Ddu/5gP23EKJhb099wj94LhuOqHfeXs0ep75nyN3/LoS16hondBOb2/3HralBeSFl3f2KeC44KC+YPdFeCOqg6KkPpbr66ibIrp7c3Pqkb099qlOf0FOdblf5veLaN1S7N1SAkS2/F1UjVaGgHHPodurL82soUyWGFzr1hBBCCCGkUqGoH4MkdEMKJnU2uNepFyPgVKdePdbrUOcSKAakzqkHnAR86dQPJVz3EcLPW/L/fpoSfBGKV2cn34uwvEElLC9jUF5N6pz6mJwYkF3Uy40Lb0+9azyfcy27cizBF89dKBCQVQCGX099ljn16tf7NVUDALZ1OhskI+vU+wflyY2RMv0W8gZIZkI32FNPCCGEEEIqE4r6MYjqvFaF1fR7d0+9EMaJNE59iqjPcVybKFX2c+r90u8Bxy33zlJflyYBv18E5dmivtYOy+tXZtV7w+y8QXneAMGYx6n3/lxFT+OSJ3zK7wFgV8+g73V4UasLhIGdNEx5Lc61GT5OvVJ+r2xgTBsnRL2zhj1K5YC3zaLYqOX3ak6Ad1NipMmnp14V/qYJ2TpACCGEEEJIuaGoH4MIZ1TTLHfacZEtITKYwanPVH7vnZWejqRPT71w6jt9euoBR1h6XeP1aRLw+5SgPMAKBATcs+qFUx/K4tTHdP859ZmcXCFIwyml+s6xLlHfHUMuqOcVYtcv/T6umzII0C/9Xv16anMNAKC9Py5bLlxOfY79/oUi3kfRcFCW2if18s+pz7Rp48XbeqKbFPWEEEIIIaQyoKgfg0gRFQpA0zRX+B2gBuUlYZqmMqdec81bTy2/z3NOfUAV0U5PfVI35BrENLO4bpffexLo1+9OU34fc5ff10pR7w7gA4CAJ/0+HNRQHQ7KhPh40nA9D6L3PpOT63XJ/cbfuXrqu7M79abp9M4HlZ56Xek/l4/v69T799Q3VodRX2U9T9ttt96Vfp8cufL7UCDVqS9bUF4o9TVLh3djh331hBBCCCGkUqCoH4OoIXmAIl5kGJ31c8O03GQhalxOve7j1Odcfp8+/b57MOEqkRdl+UL4icc8cFI9AOCDtn5XSBlglT6LTQFRfu/r1Ms2AHdQXmN1BJqmSZEfS+pI6CaE+eodaefn5Ca9PfU+QXmxPIPyVJ0YDrpFvXdDxdVTH0wV9VFPo/o0263f2jkAwzDR1jdyTr2ovqgKBVzhf972iJEmn6A83ePUs6+eEEIIIYRUChT1YxB1nB0Al/sOuIVvfywpxWc4GEAk6LjXKU59zuX3ooRcLb93nPoeOyQvGgpIpz3mSb+fPaEOVeEA4kkDWzvdLne/4sbXeXrqVade9zj1VXYAXmO1dazaaqC68dGU8vvsTr1fUJ7bqc8u6tXHCXrT7z3PfUJXRbFYr/N8hz2ifmqz01ffMRB3idKhHCswCkXdZHKcesMJMtTKW36fS1CeN9NAz+E+hBBCCCGEjAQU9WMQUU4t3GuvOFWF70Bcd5z6YMBxp3VDprdX245/7uX3ziaBQM6p70/Ifvj6qrDLLQccAVgTCWJ2ax2A1BJ84fQHA47b7ufUe4V31L4OscGg9lSrAtwblJdppJ3oe/cTiK70+xycerWk2+qpdwSwt1pBTY/366lXy+8Bp69+W+egq/QeAIZK7NSLDZuqcFCGJ7pH2pV3Tn0uPfXeTRXOqieEEEIIIZUCRf0YRO2pBxzxIsSVGkbXH09KURNOCcqzbq+z+7HzTr/36anvjSXlrPr6qpAcHyedemWm+QETbFHvCcuTIXmRIDTb5XWc+tSgPO9IuyZ7bnvUlfRv3S8c1BDI4L4LkmlK39P11O/tjaUI85RzKhsCVvq9Un6fMtLOCZoTlQjq8+116p0E/AHXjHpgJHrqlfR75ZqMChH1+c6pB9hTTwghhBBCKgeK+jGI6JGWPfWKi5zQDZeb3B9znPpoykg76zz1dol7vun3avl9Y3VYhuJt67DK6eurQikJ5EPK2g+YaPXVpzr17pA8QHXqU4PyRHm3OEY69Up+gEy+93G74xnS70OecXJJRayq7QuGCezty5yAr7q/oYAmz500zJQScfecejusTym/T+fUb+0YlMn3YlNjpNLvq5U59Qm9/E59xJOD8Pb27rRtEilBhRT1hBBCCCGkQihI1Pf39xd7HVm5/vrrceSRR6KmpgZNTU053Wfp0qXQNM3156STTirtQiuAIVnu7B23ZqSMjBtQnfpgwFVyHvM69Xmm36tz6oMBDQ1VlkO+tXPAOm80JMPrvD31VeEA5thOvXdWfb8cZ+eIejHaTg3h8wblfWbRFHx60WSc+5EZANxOvXecnXg+xHPhRdwme+qV+4mgwJjHAd+Zpa9eFbma5k2/d8YUiseXPfU+QXmRoFsoOz31A9hri/pp4yyhX570e6Ps6fdqfsRz77fhlF89i6/84VXfY+nUE0IIIYSQSqUgUT9x4kRceOGFePbZZ4u9nrTE43GcccYZuOSSS/K630knnYSdO3fKP3/6059KtMLKQXVGAUe8JnQjxZXtj+nSifbOqReiVDjieaffe8Sa6Kvf2mGJelf5vb1mWX4fDmJ2a63reEGfj6ivscvvB3166kV5+vSWGvz6S4fh0GlN8noBa0NBbCqITQbr5+nT0dP11FvHWz/zlu3vzkPUA06FgW46oXjiNU1mmVOf6tRbor5zIIEP9lqbcjNsUT8YL11/uGma8jWNht3p9+UW9WJiQSxp4NqH3oFpAhvb/Dcs6dQTQgghhJBKpSBR/z//8z/o6OjAxz/+ccydOxc33ngjduzYUey1ubjuuutw2WWXYdGiRXndLxqNYtKkSfJPc3NziVZYOcS8I+2U0WxeUZ/i1IecUn3ZU2+L51yFTEKm37vfXqLsfUuHcOrVoDz3SLuqcBCTGy0h2htLysR8wEm/r3OJ+qDrZ4Di1KcRjWrpf8zHqVedXBXTTC0dV69VVDSIc4qHz+rUi7YF+w6iwkDXTZnOL0R9PI859YAVSthkb6q8saUTgOPUxxKlc+rjuiFHBabMqS9z+n1YCe0TuQ19saR836h4N3bo1BNCCCGEkEqhIFH/uc99Dn/5y1+wfft2fO1rX8P//u//YsaMGfjMZz6DBx54AMlkMvtJRoinn34aEyZMwLx583DJJZegvb094/GxWAw9PT2uP6ONwRRR7/SOD3idejX9PhRwHSsEtii/zyUl3DTNlPnpAiEqxYi6+qpM5fdB1EZD8j47upyxdn0xMaPecdVrMqTfB9KJeuWxfcvv0zj13nnygHsEnThenHNKk7U5kS0BP8Wp95npLnIBLKfe01OvPN/eDRXAces/sN3oGS22U19CUS9eT8AKPxTj9yyn3q40CJZX1KuYpntjSJAy0o6inhBCCCGEVAjDCsprbW3Fd77zHbz55pu46aab8OSTT+L000/HlClTcM0112BgYCD7SUrISSedhLvuugtPPfUUfvzjH+OZZ57Bpz71Keh6ehFzww03oLGxUf6ZNm3aCK64OKh96YC3p94tWAZiSZegVUWtHD2XR/m9GugWDrjfXs22Uy96ui1R7wnKU5LSAWCK7darot6vp77Gb069mcWpV4PylLF+cv1p0u/VQDu1dFwdBwg4GxVCPGebVZ/0VDgIB9swnZ56sXmRcDn11vGhDE49AExtqnF9P9126pM+6frFQlQBBDTr+RHPka5sVJSvp955jhbt1yjfJ71DPqKeI+0IIYQQQkiFMixRv3v3bvzkJz/BggULcNVVV+H000/HU089hZ/97Gd44IEH8LnPfS7j/a+66qqUIDvvnzVr1hS8vrPPPhunnnoqFi1ahM997nN4+OGH8corr+Dpp59Oe5+rr74a3d3d8s/WrVsLfvxyMeRx6mVJfdL0deqd5HfNJXR6bHEjnPpcyu9dCe5pnHpBfVVI6WsXPfX2hoTtoguXe0eXI4j90u/9nHpdz+bUC9GuS/EpevwBpTzfOyNe2bjwGyPn7amfPs7KBsgq6g13+J7qaiekUy82WFKd+rDPhoSKGGsnEJsNgPOeKTZq5YUa/pfUTWfkYJnK7yOhgHwPXXvqAtTb73N/Uc/ye0IIIYQQUpmEsh+SygMPPIA777wTjz/+OBYsWICvf/3rOOecc1yp9EceeSQOPPDAjOe5/PLLsXTp0ozHzJo1q5Alpj3X+PHj8f777+P444/3PSYajSIajRbtMcuBKqQAtzhN6amPJV3l96qo77X72Ovt1Ppc0u9Vp94r6oVTL7B66j3l955xfFOaqgC4nfruwYR9fz+nXhH1WUSj2s/v59Sr+QIq6uaG6jJHPGn5YqNCOvVZyu+FUBSCPKS42gnZU+88hncTQB0hGPVz6ptr0n4/lDBQX5VxeQWhBh8CUMb0pWYCjDTBgIbfn/chxJI6Dp8xDvVVYXQOJNAXS6Qc6y2/Z1AeIYQQQgipFAoS9RdccAHOPvtsPPfcc1iyZInvMVOmTMH3v//9jOdpbW1Fa2trIUsoiG3btqG9vR2TJ08esccsB7KnPuQJyvMZadcf1xGTc+UDCNjz0ZOGKR1LUebudaz9UEd/pZbfpzr1Tvq9LeqTnvL7ptTy+83tVluHKB8HFKc+lkdQXo4j7XQ7qV0dMScIBVL72MW5xN8iZX5XzxBM04SWZpMh4SlHF6n9aqm62LxIGn5z6jM79aKnHgAaqkKoCgdRFQ5gKGGUzKkXm0hV9trU6gOjzKIeAD4yu0V+LZz6Hh+nnkF5hBBCCCGkUilI1O/cuRM1NTUZj6mursYPf/jDghblx5YtW9DR0YEtW7ZA13WsWrUKADBnzhzU1VnzzOfPn48bbrgBp512Gvr6+nDdddfhC1/4AiZNmoQNGzbgyiuvxJw5c/DJT36yaOuqRGKevnQRCJdIpgblDcST0oEXojASCiAZ1x2nPo/0e2eMXGrZe6PXqVd66mX5fcLr1KeW33/QZiWVz2qtk7eJ0LyBRO5BedFgqqh3j7RTx9QZCAbskDrDSbVXzy2C9bw99SJlPp400DmQwLha9/Mg8AYMqknxCU/6fSLplN8HfMrvI77l986/2QkNVfJ8pRT13tdTTfQvt1PvJVP5vVfEe517QgghhBBCykVBoj6ZTPqmwmuahmg0ikjEX7QMh2uuuQbLly+X3y9evBgAsGLFChx77LEAgLVr16K7uxsAEAwG8eabb2L58uXo6urClClTcOKJJ+JHP/rRqC+vz4Zwu0VSusup95lTL0SqEIXW37os4xdix+tY+5HQ3edS8Tr1DUr6fdwn/R4A9rPL77fbTn0sqWObnZ6///haeS7Raz4Qc67PyCMoz5lTr7rdzv3iuiHXJARdyFOJIHvqPSPt6qIhjK+LoK0vjp3dg2lFvahyCMmeeqdUXYp6EZSnlK/nMqceAPZrcpz6CfXWvwHrmhKulPpiIjISovZzV0lz6r2INpPeodTye28LBp16QgghhBBSKRQk6puamtKWEAPA1KlTsXTpUvzwhz9EIJAqLgph2bJlWLZsWcZjTNP5oF1dXY3HH3+8KI892pDCOOQJylPK76vDQQwmdAzEkxAvZVRx6lXU3nXVsfbDm+Cu4tdTH0k7p95dfr+rZwi6YWJz+wBM09poGF/nnK824sxvT+gGwsGAXEv2oLw05ffKe1fNE0gnRiNpgvIioQAmNVahrS+O3T1DOGhKo+96HJEuStWFU+/8TE2/964jnGWkXW00hHG1EXT0x6WoF85/qcbaeV9Pp/ogdf3lRlSk5BKUx/R7QgghhBBSKRQk6pctW4bvf//7WLp0KY444ggAwMsvv4zly5fj3//937F371789Kc/RTQaxfe+972iLphkR7jxUe9Iu6QpR76Nr49ga8cg+uO6nG8ujvOWbov0eyB7CX4yw+xxv/R7tfzeMEwp7oUrPqG+CsGABt0wsbc3hg/2WjPWZ42vdW0sCQcbsMLyGqsDWUfaqVUCfkF5gYA1gi2hm648Aa9DLlBHBxqGc59oKIBJDVV4e3sPdmZIwPc+d0FFACd85tTn69QDwLTmakvU2+X3wkEvefl9yMepL3P6vRen/D59UF40FEAsacgqEEIIIYQQQspNQaJ++fLl+NnPfoYzzzxT3nbKKadg0aJF+N3vfoennnoK06dPx/XXX09RXwa8iePu9HtLOI6vi2Jrx6AVLGc7lOI4ryCsjzpiPJE0gAzdC4k0pemAj1PvEvVOCby69mBAw6SGKmzvGsT2rkHZT6+W3ou1i4C/wbiOxuqw03OeRjSqVQJ+I+0ASygndB2JpCPi9DQbF2qbg7oJIJx6ANidSdTrbpEeUgSwKM2vCTuhhWJkXzDo3rwRz4cf+4+vxept3TI0T6Tpl8qpFwGIYjMipIYPiuv12QAqB075ffqgvKpwELGkwZ56QgghhBBSMRRUG//888/LnnaVxYsX44UXXgAAfPSjH8WWLVuGtzpSEKL8XpRWh5Uy88GE7dTXWcp8QJlTL47zCsLqSBDClPamgHtxeupThVpNJOi6vS4Skk5xzBPWVqVsLKhj7TYKp14JyQOsPAchHPvtagRvOrwXtfw+5uPUW9eROqveCXhL01OvuzcooqEgptnj4+5/fTt2dg/Cj3Tl94YalBex0+N9nXplvF4ap/7bJ8zFv504F59bvB8AZ/OkZE590r/83uXUV0r5fQ5BeeI62FNPCCGEEEIqhYJE/bRp03D77ben3H777bdj2rRpAID29nY0NzcPb3WkIGKexHEh9hK6k34v+tH748qc+jROfTQccARrFjGTyOC+apqGJtutr4uGEAho0qmP64YUgKGAJh1dwD3W7oM2S9R7nXoAKaF72Xq21QoG4Sh7r10V/gKvo+49NqEbruPDQQ1nfGga9h9fi+1dg/jS71/C3t5Yynq8afBqqbpTfm9PItANWTEgjlM3JPw2VQBg5vhaXPrxA9Bgu9LV5Sq/VzMBKqb8PkNQniHK78UEBIp6QgghhBBSGRRUfv/Tn/4UZ5xxBh599FE5p/7VV1/FmjVrcN999wEAXnnlFZx11lnFWynJmUHvSDvFQXZEve3Ux3TEq4SgTXV8AauPOBK0eonVwDg/RJm4d0a9oLkmjL29MemKqj313uR7gSrqN7YJp95P1LsFuHfkmxdVwPfb8+3VkXaA+7mT15hms0DNLhAj+qKhADRNw7jaCP7non/Bmbe+gA/a+nHu7S/hnq98BI1KzoBMv/cZaSf67WvCIhAw1akP5dBT78Vx6ksT/CY2S6I+Tn26iodykcmpTyr5CACdekIIIYQQUjkU9Gn61FNPxdq1a3HyySejo6MDHR0d+NSnPoU1a9bgM5/5DADgkksuwU033VTUxZLsGIYpRYlwYR0H2ZTOqRD1cd2Q4XmRoPt4ANA0u19dcfszIYVmGqdYderVx1LL79OJ+nd39qCjPw7A36lXR9QB2UfaqePrxHPmFcNhn+vOqafeZ0Tefk3V+J+L/gXj66JYs6sX3/nzKhiKOPSK9IAq6nV3+n3SJz0+l/J7L1UlTr93RgW6nXrdMOW1p2n/H3HSiXrDMCFeJjnWkKKeEEIIIYRUCHk79YlEAieddBJuvfVW3HDDDaVYExkGb+/oRl8sibpoCDNt4Ssc5FjScepblHFwXQNWuXHYduojilstnGa/3nI/hPj1C8oDnFn1jlMflGvzjj8TiFn1b2zpAgBMbqxCTST1rStFtS0khfBKG5SnqMm+mL+oz6f83q+nPuJx/vcfX4tlFyzB53/7PJ5aswe/++cHuOTY2e7zBr3j35wk/Sox0i5ppFQM5BKU50U816Uqv5dTBULimuxMgIp06u3y+5i7/F4V8E5PPUfaEUIIIYSQyiDvT9PhcBhvvvlmKdZCisAza/cCAI6a0yJFXtin/L6+ypkRL0SL7KlXHF+nL98JaMuEM6c+jVNfbTv1toDKpfx+cmO1a51+Lj2Q6tTrWaoGxMg6wOmjjqY49ambGU4An2cDwEfUe88HAAv3a8R/nHoQAOC/Hl+DFza02+cVGyKip14RwMKpt5+bhOJ0i+PVDYlcnfpSz6mXUwVC7vA/3TCVSoOSPHTeNKRx6tWZ9HTqCSGEEEJIpVHQx+lzzjnHNyiPlJ+n11mi/pi5E+RtUSXATTiyNZEgaiOe/nGRfq8IQnFfvzJ0P5xZ6/5vraZat1MvnM94BqdelN8L/PrpASX4zttTnyGITdynN41T72yIOCIuYWTpqddN3/J7lbOWTMPnD9sPhgn865/eQM9QQmldEAIY8jpkT71doZDQjRSnO+wKysuv/D5Wop76uCeEUbyPki5RXxmqXh1pZypz6NXXnj31hBBCCCGk0igoKC+ZTOKOO+7Ak08+icMPPxy1tW6RxV768tA9kMAbWzoBAMfMa5W3hxWxK/rnq8NB1ERC6BxwSo0dp14V9W6nPnv5fWanfpbtsk8fV+M6v6v83lOy3lAVQl00JEvk9x/vHmfnd51AekddJRIKoD+uo29IBOVlL79P11PvGpFnB+Wlc8w1TcP1n1uEFze0Y0f3EF7f3JlS1u849YaSfm89N6bprMk70k7T0ucIeBHnG4yXdk69CMpznHrDGWlXMen31q9D3TAxmNDlBkpSec+LEYycU08IIYQQQiqFgkT922+/jcMOOwwAsG7dOtfPtAr5gL4v8uz7bTBM4IAJddhPcbdVd3QgZom36kgQtVF/p151eYVr7i2/f/Ld3fju/W/ip2ceguPmOVUBwlFO5xR//rCpmNpcg8XTm1yPGUsaykxz97o0TcOUpiqs290HIINTr1QkAMipvFvcR/bUew72Tb/Poac+m1MPWK/B7Al12NE9hI7+eGqavf23OvO+WqmuEJsgQiiPr4uitT6KCfXRnP8divWJ577YxDxOveyp103oGcYfloOaSBABDTBMy62Xol5WfDjXYZgU9YQQQgghpDIoSNSvWLGi2OsgReDptXsAAMfMbXXdHlZT3m3xWhMJpoTNCVHqLr9PnXUPAE+v24P2/jjue3WbS9Qn0ghe9TGOmjNeOb9TztwX8y+/B6wSfCnq0/TUp4y0M7OXd4vrE1kDUc9jq4n2gnQVACJo0N1T796g8CKmELT1xVJG2om2AbU0viacKurFc10VDuLpfzs259J7YCSdes+cesOUr0+m9oiRRNM01EVD6BlKoncogYkNVkCj2hahrp8QQgghhJBKYFjNrO+//z4ef/xxDA4OAoCrD5WMLKZp4hnRTz/PLer9ktBrwqG0Tr0q6r1OvRD1QgS/tLHD9bp7E9yzoYrensGE/ZipQlj01YeDGqY21/ieK11QXi5Ovfw+6P+cuNLv0/TUR3x66rMF1rXUWsGB7X2qU+9Ov1dddNWpH/Q49QBQGw3lHJIHOK0OQ8nS9NSLNgSx4SI2LNSgvFxbBUYCta9eIDZbwgFNtgqwp54QQgghhFQKBYn69vZ2HH/88Zg7dy5OPvlk7Ny5EwDw5S9/GZdffnlRF0hyY82uXuzpjaE6HMSSmeNcP/NzbqsigRSnXqaoZ+ipF068cHbb+mLY2NYvjxeiP11PvRdVgGYU9Y2WazqjpTZFTAvS9dTnEpTntx71nK7y+7Rz6p1NBa+YTUeLdOrj8rzi+oL2+YcUFz0aCkBcvpgWMJzydbFJULKRdp7NDcfpNpRNl0oS9akJ+OI9Hwxo8jVhTz0hhBBCCKkUChL1l112GcLhMLZs2YKaGsc1Peuss/DYY48VbXEkd4RL/5HZLSmiOBjQXMIpGNAQCQZc6fcRex69+FognPqQp/x+QBGaL2/skF9nm1PvJaiMlesaEKI+9b4LpjQAAA6d1pT2XJGgv1OfLShPJSUoL0NPfdr0+6SRu1NfZzv1/THp1IvnQ7jCopQ/GNCgaZp8HOHgDyc9vtRz6r1tCGLjSNfNihT1DX5OvZITEVKC/gghhBBCCKkECuqpf+KJJ/D4449j6tSprtsPOOAAbN68uSgLI/mRrp9eEAkGMGjY4+zCQWiahppoyPVzv6+FGPOKW5GiD1ii/uwjpgNQ+49zF2qRYAAJXUe3cOp9+tCPmzcBD3z9SMydWJ/+PN6eeuHU51N+n1P6fZqeemXjI9OcepXxdUr5ve7OAJDl97bgFucPBwOIJQ2IrofhlK/L8vsRcuplUJ4ypq+SRL3j1DtTIZJKoB976gkhhBBCSKVRkKjv7+93OfSCjo4ORKPRYS+K5M/RB7QinjTSivpwUIOtmVFlO/Rep14e6zun3l1+rzr1LylOvdN/nLt7HA0H0R9XRL1P+b2maThsenPG86SU35vZnfp0I+xSzqmUW3tT6r33jecRlNdSa/17ae+LpfSYB2VPvfs59W6YDCdoTrwXBkvm1GfqqbeOqUxRrzr1zvvIceop6gkhhBBCSGVQUN3u0Ucfjbvuukt+r2kaDMPAT37yExx33HFFWxzJnW8cNwcPfP0ozEyTDK+K1RpbyKk99WoPvMuptwW2t/xeTUvf3jWIbZ0D9s/zd+qF4OsZSl9+n8958hlpl67cXuDbU29/HUzXU580pajPtfy+rT/utC4E3aJe91Q/eDMShtNT7zj1pSknF60QqT31pixhryxRL8rvVafeeV2CSqUBIYQQQgghlUBBTv1PfvITHH/88Xj11VcRj8dx5ZVX4p133kFHRweee+65Yq+RFAFVCFbbQl1Nv1fFZ8THqU8tv7dL+SNBDMR1vLKpA1Oba7LOqfdDPEYmpz4X0pXfZ+o5T+mpD/s7937p95nm1OcclGc79fGkgS77+r1OvUBMFAh7bh+OKJZBeaUeaSfL70XQnAFR/BCskJF2gOPU9/gE5YUCGp16QgghhBBScRRkiS5cuBDr1q3DRz/6UXz2s59Ff38/Pv/5z+ONN97A7Nmzi71GUgSyO/X+PfVCYHvL7/vtnvojZ7cAcMLyklnm1PshStSHK+rDaYLyMolGrzMf9Y6081QoqOfN1FOfa1BedSQo2yB2dw9Z5w26+8+9aw17zjmsnnoRlJcsUU+97hb1fk79cCoNio3vSDtlo0pN7yeEEEIIIaQSKMipB4DGxkZ8//vfL+ZaSAlxOfURH6c+mNmpT1d+f+y8CXjyvT2yrz6R55x6wHHHhZAavlNvrSGXdPVsQXn+I+3S9NS7nPrceuoBa6xdf8cAdvcOuc7rLTAQr4H3cYfl1NvPdUI3kdSNvF63XHCcepF+b51fnVM/nEyAYlNnO/V9MaX8Xml/cJz6kV8bIYQQQgghfhQs6ru6uvDyyy9jz549MDyu1XnnnTfshZHi4i6/t1521amPpiu/D3uD8iwXWgidY+a2QtOAD/b2Y29vTDqYkTzT71UK7alPN9JuOKJefB/zSb9P21Ovmzk79YDVV7+lYwC7e2IAHNHuderF7Sk99cMaaedsOgwlDdQVWdRn7qnPv6qj1DT4BeXpTmVGUAb9UdUTQgghhJDKoCBR/9e//hVf+tKX0NfXh4aGBjnfHLBC8yjqKw9VZNfI9Hv/8nv1axGkJkRZUjdd4+wmNVZh/qQGvLezB69t7hiWU+99zHxxnHqrikCk32cS9aqTHgpo6WfPq+n3IjjNe6wI6kvmPtIOcPfVA0Aw6BbA3rV4Rf1wnHp1fYNxHXXRgvf5UkjqhhTuzhQFZ61xPfvrM9L4pt8rr7do5WBQHiGEEEIIqRQKsuUuv/xyXHjhhejr60NXVxc6Ozvln46OjuwnICOO6hiLkuuaXILywu6As7huyJC8cFBDOBjAov0aAABrdvW6ksJzxVuiXnD5vUeA6zmIxnTXLVCFuiCZpgLA3VOvpz2nFzGrXp4nTVCeI+o9AXrDEMWapjl99QWMtVu3uxfPrm/z/VlcqVH3OvUAELMfr7JEfWr6fUIpv/dOJCCEEEIIIaTcFCTqt2/fjm9+85u+s+pJZeLbU59LUF7IG5RnKMn31v3nTqwHYAk80Xue15x6j/AtuPzem35v5heU5yfAo56SfsARdF7H3L+nPrfye5WgLL/3pt/bt3ud+mEGzYlNnkJE/UXLX8W5d7yEnd2DKT+LKWPyxHOjtgrIyoSKEvWpTr2uBOWFAnTqCSGEEEJIZVGQevrkJz+JV199tdhrISVEFaBO+n06p94RWcKpV8vvB5VxdgAwb5Il6tfu6nW5mrmSKuqLPNIuw1r8QgFVwqHU9Pv0Tr1TKSDWEM3hWsbZ5ffe86ScP+AeLygYbk96lRT1+fWJG4aJbZ0DME1ga0eqqBcbIcGAJjciXE59RYr61PR7daSdaI3QdYp6QgghhBBSGRTUQPvpT38aV1xxBd59910sWrQI4XDY9fNTTz21KIsjxcNvpF2t0j/tcqyVsW5VMrXcKb8X4+yE4z/Pduo3tQ9g+jireiOfnnqvQ16oU1/ISLt0AYEp5/QJyks3pz6uOPVeAe6Ht/w+u1Pvvn246fHCqR+0nfqtHQNoqglLgQsAr23uxI2PvodrPnMQFk1tBAD0xpIQhnVbXyzlvN4Z9YD7mipT1Fv/JuK6gaGEjqpwUAblBQN06gkhhBBCSOVRkKi/+OKLAQD/8R//kfIzTdOg66WZeU0Kx2/2fG0ePfWqC+116lvro2iqCaNrIIG1u3qt4wuYU+9dX76kLb/PtafeR4B7E/UBx7X3njeiuPoxu6feGwLoR0uKUy9G2uUWlDdcpz6qlN/v7B7Ex3/2NA6e2oT7LzlSHvPX1TvwyqZOPLR6uxT1XQNx+fN2P1HvkysQCGjQNMA0nZ9n2nQZaeoiIbm+3qGkJepl+b3aU8/0e0IIIYQQUhkUZIkahpH2DwV9ZRJ2pd9bezkRpUdY/bn6tRDcYVl+n9pTr2ma7Kvf0W3PWs8n/b5Y5feKADcME7amz5J+r5bfpz6uDMrz6alPnVNvz3xPGk75fQ7PQ2pPvTucUK4lmPpaWccP16m3Hm8woePt7T1I6CY2tfW7jhETDzr6nQC5rgHn67a+OLykyxUQ1yV+nk+rRqkJBDTURURfvXV96kQHOvWEEEIIIaTSyEvUn3zyyeju7pbf33jjjejq6pLft7e3Y8GCBUVbHCkefj31mqbJr9M59aIUXjjvVlBe0nUewCnBdx4vD6feO9KuYKfebhFIGtKlB4aXfi/D75LKSDvDEXkqTv+96QjaXJx6j6gXIte7bhEyp76WwYDmGilZCFWKU7+lY0B+rSL67TsVd75r0BH17f1+Tr0Q9e7XU1yH2PgYbvtAsREl+H0x630ug/ICTL8nhBBCCCGVR16i/vHHH0cs5nx4/8///E/XCLtkMom1a9cWb3WkaLiFuiOyRF+9K/3ex712+sVNxal3zjN3klvUh/JKv/eU3+eQGO+HdMqV+ehAFlEf9G9B8N7ml36fsac+IXrqcwjKq/GI+nQj7UKpCfLF6EcXPfWxhIGttqgfTOgwlY0RIfJdot5Vfp/q1AvR7n1eU7IC8nivjAR1ngR8x6nX5Fop6gkhhBBCSKWQ16dp9UO+3/el5Prrr8eRRx6JmpoaNDU15Xy/9957D6eeeioaGxtRW1uLJUuWYMuWLaVbaIXi59SrX6frLZdOfYbyeyDVqS80/T6kJKXni9pTr4quTD3nWdPvfYLysqXfA5Bhgrk49aFgAM01TihdMJ2ot79XpxMMt58ecDZ5BhWn3jAdMSt+BgCd/aqoV8vv0/fUe59X7zSCCtP0KbPq1aA88RJT1BNCCCGEkEqhwj5Opycej+OMM87AJZdckvN9NmzYgI9+9KOYP38+nn76abz55pv4wQ9+gKqqqhKutDLxS78HHKc+3bx26dQr5feDPuX3cyfWuR+vwPT7Qkvv1fPEk4ar5zlTeXd2Ue8z0s7+OrWnXhH1dul2rs9DS50Tlic2B7wOtky/L7JT71d+DzhCHnCS7DsH/Hvqx5JTL8rve2yn3h2UZ29uUdQTQgghhJAKIa/0e01L7d8dbj9vrlx33XUAgGXLluV8n+9///s4+eST8ZOf/ETeNnv27GIvbVSg9rirwlk69UG3kI+EAkjqhkzIV8vv+22nvloR9U01EUxsiGJ3j+XY5ufUKyP0ChxnZ63RGbtn5Fh+n22kXdSn/D5tT71yzeLhc3HqAaClNoL3Pev1Lls8nvrcFsept847ENdl+T0AxBI6UG251kO26949mEBSNxAKBtA16Ah5f6fePyjP+3pU0kg7IHVWvXy9lZF2dOoJIYQQQkilkJeoN00TS5cuRTRquYpDQ0P42te+htraWgBw9duXG8Mw8Mgjj+DKK6/EJz/5SbzxxhvYf//9cfXVV+Nzn/tc2vvFYjHXdfT09IzAakuP2tvtcurtEvpwyO3+/uyMQxBLGlLg+Jbfh91vn7kT6x1Rn1dPfZGdet3r1Ge/D+DvqstRfj5z6v3EqRiHJvBL1PdjvOrU28+dplnBbOLxxPoirqC84bvcoqd+a8eAFOKA26kXYwwBS9i31EXRrTj1PUNJxJOG6/l0nHr/oDznGipN1LvT70VlhjrSjk49IYQQQgipFPJSBOeffz4mTJiAxsZGNDY24pxzzsGUKVPk9xMmTMB5551XqrXmxZ49e9DX14cbb7wRJ510Ep544gmcdtpp+PznP49nnnkm7f1uuOEGeT2NjY2YNm3aCK66dISVPmy1F14krzdVh13Hn3LIFJx++FTn/j7l9+qce8DdV19o+v1wRH3U3rgwTcdZz5YO761Q8CJFve6Tfh9IrVrxzpD3c//9UBPwVZGrfi0er/hOvXXda3f3um4XifeA49QDTliemn4PAB397hL8XJ36YlxDManPGJTHOfWEEEIIIaSyyMupv/POO4v64FdddRV+/OMfZzzmvffew/z58/M+t2F/6P7sZz+Lyy67DABw6KGH4vnnn8ett96KY445xvd+V199Nb7zne/I73t6esaEsFfFq1o2/83jD8DcifU45ZApGe/vzGt30u/V8wDuBPz85tQXqfxe2bgQznI2Fzhb+b3q/pumCU3TpHPrd+5IMOAK1fPr0/ejpVbtqVdEvbIhIZ5T70i74SJex/f39Lludzv1zjWJvno1CR+wSvAnNTp5FXF7IyBbT32gwkR9gzcozxCvd4BOPSGEEEIIqTjyEvXF5vLLL8fSpUszHjNr1qyCzj1+/HiEQiEsWLDAdfuBBx6IZ599Nu39otGobC8YS6jCqlpxw6c21+Cio7M/x45jbfiOtAPcTn0+7qsrKC/HcnXf8yhiV4xgC2bJfMg2p14V0AndRCSkuXqsU493Hk/Tcn8e0jn16v3FuYst6sXGg1p6D7hn1ceUr4Ujr5bfA6l99emcem/eQqU69c6ceuv1Dgc0uXb21BNCCCGEkEqhrKK+tbUVra2tJTl3JBLBkiVLsHbtWtft69atw4wZM0rymJWMk6iu5VwSrhJSyu8HZPq9++1zgJKA7y1Dz0SxeupDwQACmhVSJzYesgnGbKI+4hL1Vs+4nFPv02IQdpXzB3IOkhyviHqXaA9qKbeHi1x+7624EKhOvVp+3+Upv59QH8We3lhKAn48bfm9+/tM0wnKQfry+4CTfq9T1BNCCCGEkMqgsmZJZWDLli1YtWoVtmzZAl3XsWrVKqxatQp9fU7J8Pz58/Hggw/K76+44grcc889+P3vf4/3338fv/rVr/DXv/4VX//618txCWVFCMJ0Ai4bEZ/ye69TXxMJ4aNzxmN8XQRTm6tzPrdb1A/vLSmuUwjSbKXdaul/ppF2gCNS0/XUq48P5DfWTx1p5+qpd5Xfl2ikXZrqCOHOJ3XDlSnQ0Z+AYZhS3M+ZYG3mtPenc+q9QXmV7dTXRT3p90pQnlirYVLUE0IIIYSQyqCsTn0+XHPNNVi+fLn8fvHixQCAFStW4NhjjwUArF27Ft3d3fKY0047DbfeeituuOEGfPOb38S8efNw//3346Mf/eiIrr0SEOK0ukAnPJfyewC468IjENeNvBx3l7AehlMPWJsPsaQhe+qH69Sr7r+YVa8bGXrq1bn3eVxLS63j1KsVAOpjiFR876SC4eLd6GmoCqFnKCmD8oY8ZfldA3H0xpJybN/s1jo8v6E91anX/efUe9dcaT31dVF3+X1CmXbAnnpCCCGEEFJpjBpRv2zZsqwz6k0f9+zCCy/EhRdeWKJVjR6EC+0nxHPBXX5vB+WFU98+gYCGqkB+j6Gm3xe66SDPFQqgF04/eDbBGMnBWQ8HrY0CIVJF6XW2nvpCnXr1vL499YFU9344eKsj5k2qxyubOmW1g9pbD1g99aKfvjocxJQmqypjr7en3r5fSk99hTv1sqfe49Rb5ffsqSeEEEIIIZXFqBH1ZHgIt7Q6UthLrpbfpxtpVyjFLL8XQlpsPGQLylNFeDpnPWKLelGCnsy1pz6Pa2moCuFjc1vRH0u6xgsGXALeL/1++B00alVFfVUIExusBHsh5tUZ9YCVft81aLnyTTVhGfLndepF+b13c8Pr1FfqnHq/oDzp1OscaUcIIYQQQioDivp9hMOnj8Nh05twapbRdekQQlI3TAwk/EfaFUqx0u8BpzRduMzZBKOmWcGB8aSBaBpnPRIKADGnp14vQU+9pmm468Ij5Ng8gZ9TX6o59QAwo6VGfi+ew1jSK+rj6LKd+sbqsAz58/bUy6A8z+aGdzOk0kS9Wn6vG6YrKC9Ep54QQgghhFQYFPX7CI01YTzw9aMKvr8qxESXgzf9vlDcc+qH2VNvC+mhHEW99fiWqE83FUDNEwDUueX+c+rleQu4Fm9avnu8XSDlMYrSU6+sc/q4Gvm96KlXZ9QDtqi3k++bayJoqbVaB3J16r1tC9mqKUaauirnfd0fT8rXOxxkTz0hhBBCCKk8Rk36PSkvfq7zcPvfBUUtvxdOfY5BeerjpxX1Iescoqdez9RTH1LK+QsYHejFFZRnny+kvBbFduqnjauRr4HYGBnyOvX9cZl87y2/V3MtZPp9OH36vaZVXlBeNBSU7/e+oaR06oMBTb7mdOoJIYQQQkilQFFPcsI7d74qHCha2XSx5tQD+Y+0A5wNi3QiXPxclJOraejpHj/T+fJB7ZkXAXnhNOn4hZLeqXcH5Y23w/y6BxPSlW+qCcvb47qBXrsPHXDK9jP11FdaSJ6grspdgg9YmziqU+8XzEkIIYQQQshIQ1FPciIY0KBWSRer9B5w+tqB4oy0AxxRn4tojGRz6j3l9zI4zScoL1JkUR/KGpRX3PT76eNq5Gsgqh3E35MaLfFumMDWjgEAQGN1BFXhoOxDb+t1+upz6akPVFjpvUBcT+9Q0ndOPQDQrCeEEEIIIZUART3JGVVMFqv0XiBC6qqGKYSFkB6yhWguonHuxHqEAhr2H1/r+3Mn+V+MtEvfU6/OkE+3SZAP7vR74dSXrvze5dQn3XPq66Nh1Nti94O2fgBAc42V1C9L8PudvnpZfu8JPwymGdlXSYgE/N6hhCsoL6hsSIhee0IIIYQQQsoJg/JIzkSCAem+FmucnSAaDqA3NvxEfe9Iu1zmuP/6S4ehayCB1vqo78+95fdqOXa6Y4FUMVsIqugV5w4Vufw+GgrgmLmtGIzrmNqspN/bz6HYIKkKB9BcG0FvLImNtqhvEqK+NoLN7QNo70t16r2bG+o1VVo/vUBNwBfiPRTwOPXU9IQQQgghpAKgqCc5o4rJQufdp0MI4GGPtPP21Ofg1IeDgbSCXj1n3DOnPug7pz5VhA8Hv/7ziMupH/5jaJqGZRcskcn71RHrnKInXgTlVYWDaK4JY0uH1VcPWOX3ANBi99W39alOvXU/bxvCaOipl7Pqh5JI6s4IQ3Xtltgv7uYWIYQQQggh+cLye5Izatl3TbHL723hN+yRdnnOqc8FUVKfSIqRdrnNqff2kheCOu4tVCKnHnCP0hMbK96gvOpwEM21Edf9hFMvwvLUsXZiWoDXqS920F8pcDv1Svm98jwxAZ8QQgghhFQCFPUkZ1SHuGaYZfJeTjlkCuZOrMOiqY3DOo8QkPnMqc96TunUGzBNUym/zyzqi+HUqwJeiOFQiXvSq+zXVmyMiDn10XAQzTVuUS++H2/31Lcp5fexhOipT+/UV6yor/IPynM79RT1hBBCCCGk/LD8nuSMKjBrosV961z2ibm47BNzh30eWX5v94EHi5CuHrFnzyd0w+XO+vbUh4rs1Ktz6u1rixQ5/d6L49SLoDzHqfcGJKo99QDQ3q/01Ov+ot69KVGZ+4r1VdZ19Q4l5QjDUCAATbOEvW6YdOoJIYQQQkhFQFFPcqaU5ffFIuodaZdDUF42wkpQnurOZuupL0ZQnropIZ36oFqSX3xRL8IKZVBewgnK84r6xmqRfu/TU59Il36vBuUVc+XFwym/T0inXjzXQtTTqSeEEEIIIZVAhX6kJpWIa6Rdkcvvi4W3/L4Yc9DV8vuky6nPUn5fhJF27lC50syp9yLm1sugvIQSlKf01FeFAzIDQY6060t16jOl31euU+/TUx/QXH/rdoBe71BCPkeEEEIIIYSMNJX5iZpUJKoLXeyRdsVCrFG4zMXoOXeC8kwp5NKd2xWUVwRR7+qpDwlRr/SkF2HTwku1d6Sd7bhXe3rqm6qdr1tFUJ49pz6ptCpk6qmv0JZ66dT3Kun34rUV608aBoYSOo776dP43K+fS3uuLe0D+O3TG9AXS5Z41YQQQgghZF+E5fckZ1zl90UeaVcsIkF3yFsx5qALpz6hG3JmOeDvkkeK7NSrlQZh+/HcTn3x9+WE+z6UtIIBB11z6sPyONFPD0A6+F0DCeiGKV16YHQ69b5z6oMep94wsbtnCG19cbT1xZHUDTmhQOWWf6zHva9tQ11VCOd+eMYIXQEhhBBCCNlXqMxP1KQiUR1ib291pSAEpKiSL4ZTL84ZV9znYEBzjYETFLun3iWAfUbalaKnXgTl6YaJhG7KoDxv+r0q6kVvPWCVo4t+eiB1CoAqfIux6VIKXEF5uvOaW39b608aJgbiTtl9f9y/BF9UL+zsGizZegkhhBBCyL4LRT3JmXAJR9oVC68rXAzRKIS6GpSXrpc9HCquU6868ULAhwOqU1+KkXbO+YeSumtO/bha//L7cDAg3xPdgwnEkoZcn9e9ducEVKqot5z6roGEvE0876pT7xL1acrrxe3tSoggIYQQQgghxYKinuSMS9QXeaRdsYh4nOti9JyH1fJ7Pf2MevVYoDg99aoeFo53IODMSy+FKI4EAxBP21Bcx6DtuleFgy53Xv0acNz67sEE4kn/cXbeNVeqUy/K77sHHSGupt8DlqgfzEXUx21R309RTwghhBBCig9FPckZtbS8UkfaZerfHu45LafeyHjeYvfUu5x618x6t8AsJpqmyfaKoYSBmOLUR0NB1NqOfJNSig+4Rb1Izvd7DkaDU19nO/UJJRgxNSjPxEDcEfK9aUT9QMx6Ltr7Y74/J4QQQgghZDhQ1JOcCe2j5fdqUJ7oqfcLRANKkH6vrF8Vw95S8GIjwvIGE7oMHRSj7oSY9zr1DVWqqM/NqS/FpkQxqPOpREkZaWeY8rkBcnDqWX5PCCGEEEJKAEU9yZnIKCi/D3tD2YrSUy9EvZm9p77IQXniccJBdzCf6N0vRfo9AMWp111z6gHIvvqmao+or04V9b5OvZreX4KRfMUgGgq4XktADcpzRtrl1lNvO/V9dOoJIYQQQkjxoagnOeMqv69Upz5YAqfeFqaxpOLU5xCUV5ye+tQxdurjl8qpj9quvCXqnZ56AFi4XyMAYMGUBtd9/HvqU98n7kT/yhT1mqbJBHzAWrPYVEnXU98XS02/N01TOvX9cWeDhBBCCCGEkGJBUU9yRi05r/SRdoJiiF4hVjsH4kjo7pnlXqIlKr/3Xoe3v7vYVGcov/9/n1uIl793PA6e2uS6j3ieegaTTk+9T5uCKyivQp16wF2C7zdGMJlD+f1QwoDptOUzLI8QQgghhBQdinqSM5HR0FPvdeqLIBqnNdcAALZ0DChOfZqe+iKPtAukcepLGZQHKD31cV267uK2YEDDhIaqlPv4OvVhH1GvCuQK7akH3KLePUbQ+lrX3UF5fT6i3nsbS/AJIYQQQkixoagnOaOW39dWaE99KZz66eMsUb+3NyYTztP31KtO/fA3PkJpRf3IOPVdg4mU29LRWG29J3qyBOWpOQCVOtIOcBLwASDosxGRzGFOvSr6AYblEUIIIYSQ4kNRT3JGlN9rWnFKy0uBV9QXQ/Q21oRRbwu8zW39ADLNqXduL85IO7v83lPuL16L0qXfW+fvHIgrt2UR9TWpTn0kW099BYv6erX83uXU5z6nvt/TZ99Gp54QQgghhBSZylRmpCIR7nBNOOhKYq8kSiHqAcet32iL+nTnjRS5p16kw3ud+sgIld93DSTsxwtkfaxGn/R7f6de6amvZFGvOPVhH6deN91Ovd+c+n6vU8+eekIIIYQQUmQo6knOCCFZHanM0nsgVfwWS/SKvvoPhFOfw5z6ojj1Qf+gPOnUlyg9Xoj6TluE+vXGe1Hn1MdFUF6WOfWV7NSr5ffq8+w49dlH2nlv66CoJ4QQQgghRYainuSMEJK10coMyQNKE5QHANNb3E59tpF2mlYcwZqup14EFZZqCoG3pz5b6T1QmFNfqXPqAaAu6oy0C/uU3yd1E4MJR7R7S+0BuEQ/wPJ7QgghhBBSfCrXciUVhxCWlTrODkgVkcVygqc1VwMAtncNAkhfATC5oQpHzWnB5MbqorQoiFC5sMeRv+wTc7FgcgOOmTth2I/hh+ip77J76nN5zeVIu6GEnG3vJ+r9+tMrEbX8PuhTXZA6pz6X9Hs69YQQQgghpLiMGqf++uuvx5FHHomamho0NTXldB9N03z//Nd//VdpFztGEeX3lTrODkh1tIvVsz3N7qkXM8fTbRYEAhr+eNGH8dMzDinK4wot7y33P2x6M64++UBUl+i1kOX3A8Kpz6H83hb1pgl09FuOtN8EAL+Z75WIe069j1OfS/q9fZv4N9PeT6eeEEIIIYQUl1Ej6uPxOM444wxccsklOd9n586drj933HEHNE3DF77whRKudOzilN9XboFHKUbaAY6oF4yUwxwsccp9OrxBebmU31eFg9KZ32uXmWfrqS9We0QpcM2pdwXl2XPqDRODiSw99bboF0GLHXTqCSGEEEJIkalcdebhuuuuAwAsW7Ys5/tMmjTJ9f3//d//4bjjjsOsWbOKubR9hkOmNqEmEsSHZ7WUeylpKVX6/X5N1dA0x6n3VgSUCiGAixG6lw+OqI+7vs9GY3UYe3pj2NMjnPrMPfWVHJSnlt+r60zn1PuV3wuhP21cDdbs6kVbfxymabpaM0zTxPLnN2HupHocOXt80a+DEEIIIYSMbUaNqB8uu3fvxiOPPILly5dnPC4WiyEWc0pke3p6Sr20UcOCKQ1484cnpk1+rwS8IrFYor4qHMTE+irs6hkq6nmzIYSlSJYfKUQPfdKwdjHyFfXSqfd5r6g99ZU80s6Vfq+sOaSk37vm1Mf1FME+4HHq40kDfbEk6pXXc/2ePlz713cxs6UGT19xXGkuhhBCCCGEjFkqV50VmeXLl6O+vh6f//znMx53ww03oLGxUf6ZNm3aCK1wdFDJgh6wchRUV7uY4nu6UoI/Ug7zCQdOxPdPPhDfOXHuiDyewNtDX51DTz3ghOVJp97nfqPGqVfS7/1G2llOvePO64YpAwIFwr1vqYs4ffWeEnwxNpDj7gghhBBCSCGUVaFdddVVacPsxJ81a9YU5bHuuOMOfOlLX0JVVVXG466++mp0d3fLP1u3bi3K45ORI+oTalYM1L76kXLqq8JBXPyxWZjdWjcijyfwpt3n49QDkL3mvk69IpBHjVOvXIdY/2Bch13IIPGW4AvRXxsJoaUuAiA1LG/Afq684+8IIYQQQgjJhbKW319++eVYunRpxmOK0f++cuVKrF27Fvfcc0/WY6PRKKLR6LAfk5SPSCgA2LqpmHPQp42rll+PVE99ufCK+CqfFHs/RAK+IOqzGTBanHpXUJ5PT33vkCPgo6EAYkkD/bEkWuud3x9idn1tNISW2ii2dgymOPWihD9pmIgnjRHPTyCEEEIIIaObsor61tZWtLa2lvxxbr/9dhx++OE45JDijBkjlY0quIvpBE8vg1NfLryiPtfReY0eUe/n1IfVOfUVnH7vCsrzSb8Xoj4SDMgsAa9TL4LyaiNBjJdOvb+oByxnPxKKFPEqCCGEEELIWGfUWEJbtmzBqlWrsGXLFui6jlWrVmHVqlXo6+uTx8yfPx8PPvig6349PT249957cdFFF430kkmZUJ3OYjrB08rQU18uvD31fr3xfqQ69T499a7+9Mr9FRQNBeQoO1e4nyacemvcX3UkKF1971g7MdKuxnbqAaC9z7/8Xj2eEEIIIYSQXBk16ffXXHONK7l+8eLFAIAVK1bg2GOPBQCsXbsW3d3drvvdfffdME0TX/ziF0dsraS8jERQ3lh36r3OfK7l97k49e7xcAUsboTQNA110RA6BxJupz7oLr+viQRRK0R93L+nvi4axDjbqW9LKb9P+n5NCCGEEEJILlTwR2o3y5Ytg2maKX+EoAesec/eHv2vfOUrGBgYQGNj48gumJSNcImC8lrronLDYMw79aHilN9n66mvZKcecMLyVKde9tTHHKe+NmpdZ1/M7bQL574mEkJLbbrye0M5nk49IYQQQgjJj8r+RE1IAbic+iL2bAcCGqY1W2F5lT7ab7ikOvX5jbQTRH3uFxolQXkAUGePtQsHU9esOvVpy+9tkV4XDWF8nVV+35GSfu/chwn4hBBCCCEkX8a2MiH7JKUaaQc4ffWVLkaHS7Gcer8kd/U1qeSRdgBQb4v1YIb0+5pwSJbf9w2559aL0X41kaAz0i5N+j0A19x7Qsi+x56eIazf3VvuZRBCCBllUNSTMUc4lCrAisWs8da8+JrIqImjKAhvwF2+c+rleXyd+tIEGZYCkYCvtnQ4Tr1afm+L+pjqujtf1ypBeak99aqop1NPyL6KaZo483cv4FM3r0SbJ1CTEEIIycTYViZknyRSQqf+4o/tj7qqEL54xLSinrfSiIYC0DTANMX3uc6pd/9K8RX1wdHj1Ds99ak5AAndenJqIkHp6PfHUkvpgwEN0VBAOvUd/TEYhimvXU2/p1NPyL7Lhr192NQ+AADY1jkoW3YIIYSQbNCpJ2OOUqXfA8Dkxmp85xNzMaGhqqjnrTQ0TXOV4BcclOezGaDmHFS6Uy965UM+Tr2gOk36vROSF4SmaWiusUS9YQJdgwl53JDizjMoj5B9l+feb5dfdyu/I/YFNrf3440tneVeBiGEjFoo6smYI6IIyWIG5e1rqEI+16C86nDQFSrn11MfCGgQurjSX5/j5k1Aa30UR81pkbd5N4qqw2r5fapAr7VbNSKhgNz0UMPy1JL7wQRFPSH7Ks9vaJNf70uivj+WxOd/8zzOuPUF7OkZKvdyCCFkVMLyezLmUEXlWJ8nX0pUIZ+rU69pGhqrw7Jv3K/8HrD66uO6UfGvzwkLJuL4AydAU6sLgu41W+n31vOjlt8L116MuwOAltoIugcTaOuLY84E6za1/N6bnk8I2TfQDRMvftAhv9+XRP3dr2yVoz53dg+N+Uo4QggpBXTqyZgjWsLy+32JKtWpzzEoDwAalBJ8P6cecF6X0fD6aJ5qgoDmLb8PZQzKEz8DnOA9NSV/iEF5hOzzvLujxyXkuwfiGY4eO8STBv575Qfy+z5ubBJCSEFQ1JMxRymD8vYl1J5674i7TKh99eproRIaRaLei7envkbtqVc+kIpS/Bplc0QE76m99+459fxAS8i+iFp6D+w7Tv1fVm3Hzm6n5J6inhBCCoOinow5whT1RcHVUx/J/VeFEPXBgOYKmFMJ2iXslR6U54f3PWWV3/s49fbXdYpTL/rrexWnniPtCCHPb7BC8kTi/b4g6g3DxK3PbHDdplYxEUIIyR2KejLmKGX6/b5ElTKrPp/yeyHq0/XTA86s+kofaeeHt6e+OhyUYt3t1Iv0e0fUS6c+RlFPCLGIJw28vNHqpz9p4UQA+4aof+Ld3fhgbz8aqkI4+oDxANxVTIQQQnKHop6MOSjqi0N1uLDy+4YqS9Sn66cHHId+dDr17uuqiYScXnmfOfVqUJ7X0TdNk0F5JaajP463tnWXexmEpGX1ti4MJnS01EawZOY4APuGqP/zq1sBAOd+ZAYm2eF4LL8nhJDCoKgnY45whpniJHeitqgPBjTXRIFs5OLUi82WUenUZ+ipH0oYSOoGACX9XnXqPaI+ljRgms65ONKu+Hzjj6/jlF89i/d29pR7KYT48rw9n/7Ds1vQVBMBAHQPjn1xK3rpj9i/xQkbZfk9IYQUBEU9GXOoYtKbVE5yRzj1VaFASgJ8JoSoz+jUj6Ge+qpw0OXG99sOvXDda9Sees8H10FPuT2d+uKzsa0fAPDKpo4sRxJSHsR78yOzWuTvz559wKnvtMfYjauJyGon/g4khJDCoKgnYw6W3xcH0VOf64x6gePUp7+fHGk3Cjdd/Jz6aCgoqxnEh9IBO/2+Vnn+6j3p9wMeZ94r8snw6Rq0hMM72+nUk8pkU7u18TR/Ur38/TnWy+9N00SHPbavuTYsNzx7KeoJIaQgKOrJmIMj7YqDcOoziXM/Gmuyl9//y/7j0FgdxgET6wtfYJnwS78HkDLWrt9nTr0oxRfj7gY9oVD9FPVFZSihYyhhtUO8y/J7UoHEkwZ2dA0CAKa31EhR3xdLylaeschAXEc8aV3fuNqIbE2iU08IIYVBUU/GHBxpVxxE4r2agp8LH57Vgg/NaMbZS6alPeaGzx+MV//9BLTWR4e1xnIQ8gTliUoGR7Dboj6WGpTnlN9bLtxg3PpQKwoW6NQXF9XtXLurF4kxLJLI6GRH1yAM0/o921oXRUOVswnYM4b7yzvs0vtoKIDqsP9YUEIIIblDUU/GHCy/Lw5C1BdSfn/fJUfi3I/MzHhcOM0M+0rHo+nlyDrvh1Lh1Ksj7Zy+UUu8D9jHjLPDseK6Id0rMny6BhxRH9cNbNjbV8bVEJLKlo4BAMD0cTXQNA2hYED+LhnLJfiddun9uNoINE1Tfn9yY5MQQgphdH6qJiQDLlE/Cnu2KwXp1OdZfj/W8Tr1Tvm99be3p77OLyjPPkak3bfUReQxdOuLR5ctHATv7mAJPqksVFEv2Bf66oVT32xvaHqrmAghhOQHRT0Zc0RcI+34Fi8UUXZfFaaoV1GrPzTNyQ6oqxK9sLr9t3Dq08+pFwK+oSosg/YGEvte+enO7kGc/tvncd9r24p63i6PKHqHop5UGELUT1NEfcM+IOpVpx5IrWIipJjs6h7CY2/vgqnOkCVkjEHFQ8YcqlNPTV84B+/XhEgwgMNmNJd7KRWFmn5fEw7KcX91XqfeJyhPFfWmaWLAFvXVkaAs0x8NH2o7++P4zj2r8PO/ryvK+R57exde3dyJq+5/E6u3dsnb9/QOYeX6vQV/EOsecIsiOvWk0tjSbon6GS6nfuyX33f0W9fWXOtx6tlTT0rAv//lLXztf17D39/dXe6lEFIyKHnImEMV9XTqC2fR1Eas/uGJ+M4n5pZ7KRWF6tRXR/yS7UVPvQjKU0S97UbpholY0pDl9zWRoHT0K738fs2uHpz662fxwBvb8ct/rC/Kerd3WunfScPEt+5+A32xJF7f0omTfrES597+Mn7z9IaCzivG2c2zpyy8s6ObTg2pKGT5fcu+VX7vzKi3rlWm38eTMAz+GyXFZfW2bgDAK5s6yrwSQkoHFQ8Zc6gBbNT0wyPfkLx9gVBQFfXOG0wdaZdQAu/UOfU1SitDXywpBXF12BH1/fHMTtWfX9mK6x95d8TFafdgAn98aTM+/5vnsbXDEuGmCWxs6x/2ubfbI70AYFP7AC5c9gq+eNuLsu/2539fh7e3d+d9XhGUt2T/ZoSDGnqGkq7HKhY7ugZx+Z9XF7TGcvHujh4cecNTuOuFTeVeyj6LaZrYmqGnvmcMi3pnRr3l1AtRb5rAQKKyNzbJ6KJ7MIG9vTEAwNvbWa1Fxi6UPGTMwZ56Ukrc5feppfX9saQMyQPc6feBgJLyPJRUyu9DclMgm/P9/x55F79fuRHr94xMkvvqrV04/46X8aH/93d8/8G3MRDXcdScFhw4uQEAipIoL4T2xUfvj4AGvLyxA7GkgY/Pn4ATDpyIpGHisntWYSjPD/udtqhvravCnAnCrS/+h7o/vbwF97++DXc8uzGn43f3DJW9IuOWf6zHju4hPPLmzrKuY1+mayCBXruyZ2rzPurU26K+KhyQVVCcVU+KyfvK/5Vvs1qLjGGoeMiYw9VTz/B7UmSCykaRWslQq4xkEm57JBhwvR+t44L2cUlZfl8dDqI6nN2pjyV1Obu6zXYeSs3/e+RdPLNuLxK6ibkT6/Ddk+Zj+QVHYNF+lqj/YG8RnHq7/P6zh+6HKz45H8GAhvM/MgO3nXs4fvyFRRhfF8X6PX34r8fX5nXebrv8vqkmjIOmWOstRV/9ut29AIBtOVQB7OgaxNE/WYHz73i56OvIlR1dg3jC7i1t749nOZqUis22Sz+xIeoKJJWifmDsinpv+r2mabKqqXeIop4Ujw2KqO8dSsqWF0LGGqHshxAyuhBp5AENMsSMkGLhcupdyfZCrCek01QTTW1fsMR/zC6/dxLyxabAQIagvA5FgI2EGNMNU5Yr3v2VD+PDs1rkz2a31gEYvlM/GNfltUxtrsYlx87G0iNnyg2TlroofnL6Ily47FXc/uxGnPeRGZjRUpvTuUX5fVNNGAvsyoJSOPWiamJnd3ZR//yGdsSTBt7eUb5S/T++tBm63bfcQVFfNoS4mDHO/X7eJ5x6T/o9ANRXhdEzlKRTP4r4yxvb0TuUwDkfnlGxn7fe9/wf9db27pz/DyFkNEGnnow5mmsjqAoHMLmxutxLIWOQQDpRr4xkkiF5kdR903q1TF9JvxcidiCDU9/e5wiwkRBjG9v6MZjQUR0OYsnMca6fFUvUi9L72khQihlvlsPH50/Ev+xvPf4z6/a6fra1YyCtCBCivrHacerf21lcUR9L6thsJ5jv6h7KGvL1+pZOAMBAXM/4WpeKoYSOP728VX7fORCXAn80YZomtrQPjOpS2q0+4+wAZ6SdCHoci8j0+xpH1KtVTKTyWburF9++ZxV+8H/v4D8eHvmcl1wR5feiGu6tUZR9Qkg+UNSTMUddNIS/XvpR3PPVD5d7KWQMEsqSfr+jaxC9Q9YH1tq0Tn1q+X2tDMrLzakfCVH/ju0mz59c70r9B4BZrZbT8cHe/mGlVQtRv19zdUan52NzWwEA/1zXJm97Y0snjvvp07jy/jd97yOczqaaCA60Rf32rsGiOqAb2/qlKE7oJtr6M7dFvLGlS36tbtKMFH97ayc6+uOY1FAFTbOCyYRrOpp49O1d+Nh/rcBPn8ivJaOSEOPspntEvePUO+I2qRsjt7ASY5qmr1Nfx7F2o4pb/rFefn3nc5vwo4ffq0hhL0T9iQdNBAC8w7A8MkahqCdjkgMm1ruChwgpFkHPnHrB4unNqIuG8EFbP2556n3r5z5OvfrBVYSl1Shz6sVtQwkdz65vQyzpiPyRFvWi/1y43CrTxtUgHNQwmNCxq2eo4McQ/fT7NWWurPnYAZaof/GDdiRsgfPnV7chaZhYpQhllS5bODRVh9FQFUazPT5rRxET8Nftdlcq7OxK/1z0x5JYu8v5QLm3b2RyEVSWv7AZAHDuR2agyRaP5dhcGC4vb7RGUy1/fvOoKdfu7I/jK3e9in+ssfIMNndYeRTTW9zvfW/6/daOASz+0d9x7UPvjOBqS0fPUFJuhDXZ/yYBZcOTPfUVz/t7+vDIW1bI5lc/NgsAcMdzG/GLJ9dnutuIM5TQsbXT2jz73OL9AFhOfSVuPmTi+ffbcPOT60dlVRUZOSjqCSEkD9xOvSPqW+ujuOaUBQCAl+1ZuHXR9KK+X3XqI6kj7X7/zw9wzu0v4Q+2CAOANkUEjoxTL0R9Y8rPwsGA7EscTgn+DsWpz8RBUxrQXBNGXyyJVVu7kNANPPq29aFyd09q2Xs8aciqByEcptgbB7n0vufK+3ZIniDTud/c1g11mcUIO1yzqwef/dWzuP+1bVmP3bC3D6u3diESDOCsJdPQUhcFALSXYXNhuGyzP6j3xZL4y6rtZV5Nbvz1zR144t3duPzPq9EXS8rRkOmdekvUr1zfht6hJJ5eu2dkF1wAe3tjuPvlLfjW3W/gYz9ZgRsefS/lGJF8XxsJugIC60ULUxnaUkh+/HrF+zBN4MQFE3H1yQfiPz57EADgzuc2VpRg/mBvP0zT+jd15OwWhIMaugcT2NZZ/NGmpeQH//c2fv7kOjz7flv2g8k+C0U9IYTkQTBNTz0AnHH4VJxw4MS0Pwec3nvXSLtwMGWk3Zpdllhcp4hGd1BeaYWYaZqy/N7PqQeAWeNtUT+M8Xqy/L4pc2VNIKDho7Zbv3LdXjz3fpvsmU8aZkpwoBBEmmYFcAGQORvbM7jp+eJ16ndkOPcbWztd37cVwSF/5M2dWL2tG5ffuxp/fnVrxmNFufecCXUYXxeVpc+jMQFf/VD+hxc2V5SQSIdYc+dAArc9swE7uoWo9w/K64slkdQN+Ttgd09sxK6zrS+GnqH82lR0w8RnblmJqx54C/+3age2dAz4vjbeGfUC0cI00un3m9r68caWzuwHEgBWy9H/2Rtp3zz+AADAGYdPA2BVYXRW0NQGEZI3Z0IdoqEg5k2yRpu+PYr66g3DlKGao2ndZOShqCeEkDwIqSPtwm7RrmkabvzCIrTYH1ZrfZx6dfSdU34fUkbaWbcJx3d3j78739lf2g9OO7uH0DmQQDCgYe7Eet9jZk+wwvI+aCt8rJ0sv8/i1APA0QeMBwD8c30b/rraPV99t6cFQIyza6gKy42YKU1VAICdRSy/X7/HElzz7Ocok1Mv+unFetqK4JDvUd4f373/TTzwenrHXjxHExssh358nS3qR8Cp7xlK4LTfPIf/9/C7wz6XaZoyZE7TrA2w1zZXvijbrmxE/PaZDTBN63eIeB0EIigPsETSGrtlYzChj0i/eUd/HCf+/J/4wm+ez2sTYU/vEHb3xBAMaPjXj89BMKBhIK5jj6cixTujXuCEjY6cqE/qBs6+7UWc9pvn8dIH7QWf564XNuG3T28YFZtLw+U3K96HYQIfnz8BC/ezqriqI0FMarB+v24cxv8HxUb008+xg10X2lVnoyksb3fvEBK69b56t8hBr2RsMWpE/fXXX48jjzwSNTU1aGpqyuk+fX19uPTSSzF16lRUV1djwYIFuPXWW0u7UELImCaYpvxeML4uipvOOhRTm6tx4oKJKT93euoTrvJ7Eao3YH+g3dltCTBVrLaP4Eg7UXp/wIQ6V4msSjES8B2nPndR/+a2Ljz+zi4AQFXY+m9sV7db1Kvj7ASi/L5YPfWxpI5Ntvv9sbnW2nZ0+zv1pmlKN/AIe5JAMUT97l7r8fYfXwvTBP7t3tVpBa7YIJpof/huqbXL70fAqX/y3d14Y0sX7npx87D7QrsGEnLz69RDpgAA7lLaVCqVbfb7LhzU5If06eNqUgIiw8GA/D3RPZjA2l1OtY66yVcqHn3bClNcv6cvr1DJbUo+xuUnzsM0e6Pug71ukeedUS8odVDeOzu6cdHyV1zVT69s6pSZID986J2CAgn7Ykn88KF38OPH1uC9nb3Z7zCK2doxgAfesFz6f/34HNfPZo63qq02t1eOqN+gOPUA5CbE2yUYbVoq1Kqk9ypk3YNxHf9272r8z4uV/3t3X2LUiPp4PI4zzjgDl1xySc73+c53voPHHnsM//M//4P33nsP3/72t3HppZfioYceKuFKCSFjGfec+lQnHgCOmduKZ7/7cXxq0eSUnzk99bqr/F4k6Q/EdSR1Q4p51eVyOfUD8WGlzmdDlN4vSFN6DzgJ+Bv2FPYhLqkb8gP11Byc+smN1ThgQh0M0/ogPamhCkfNtsS0N6xPinrF9ZzcaInZdMI7Xza1DUA3TNRHQ1g8vRlA+iqAbZ2DaOuLIxzUcOw8q42gmE79Dz5zII6Z2wrDtEKV/NglnXpb1NeNXPm9GEUYTxrD/tAvPuS21kdx8dFWSNejb+/E3iJkFJQS4dRfcqwjhrzj7ASiBP/9PX2ucuY9wwilzJWHlSqY7XlsgImcA/FveabdnrPJ83qLf5spTn2JRf2Nj67Bk+/twU8eWyNvE5uDgFXx8YcCRMrWjgEIg/4x5Xxjkd88vQG6YeLoA8bL33mC/cXrXUFOvWgNE6J+kRD1oygsT1QlAcDG9v6KCAZd9vwm3PfaNtzwt/eG9Tnk5Y0dI/I7bV9h1Ij66667DpdddhkWLVqU832ef/55nH/++Tj22GMxc+ZMfOUrX8EhhxyCl19+uYQrJYSMZQIBDcJY8+uZz4Yov++NJTFoB0LVRJyRdgPxJPb0xmSgWkd/XCbgq6JeN8y8e17zIVNInmD2eOuD0q6eoYI+iO/qGYJumIgEA2i1Q9uycbTdVw8Anz54MibbJfXe8vsu22FsVNzA/YoclCccvwMm1skNg51pNgzEfPoFUxplxUBb7/DF9J5eR6iLD6zpUvX3eEV97ciU3+uGiX/aoh6Ay3kuBJFmPa25Ggv3a8Sh05qQ0E387a2dWe5ZPoYSutzEOf8jM3DIVOu1mtHiL+pFCf7LG90l4aIyo1Ts6R3CS8pjbs8jUGybHfwnRL0Qed5ybNlT73Hqa6PFKb9P6ga+e9+bWP78Jnnbzu5BGTL2jzV7sKt7CKZpSlH/Cbuq6qYn1uW9OaSKrsfertz34HDZ3jWI+16zcju+ZffSq8y0g1M3tg+k/Kwc6IYpW8NEVdm8SfUIBTR09Mdxbw7hopWA6tSbppO3Uy56hhK49ZkNAKx2QfH7OF+eWbcXZ/7uBXz7nlVFXN2+zagR9YVw5JFH4qGHHsL27dthmiZWrFiBdevW4cQTT0x7n1gshp6eHtcfQghREW69X/l9NqQbNeQuv6+Wol5PEYbiQ6ZXfBUjAf/Pr27FK3Zav0qmcXaCxpowxttifOPe/N0ZIRgmN1UhEEg/o17laLvMHQBOOWSKDL/zPmddUjgoTr0tpnd1p6blF8J62wU6YEK9FOq7e4Z8S3hFP/3iaU3yORuuU5/UDemyT6ivwgS7V35PmhLt3XIDwDrOSb8vrVP/1vZul9u8dvfwPpQ6jrAliD9mt2W8WyGlqX6Ilo/qcBDjaiP42ZmH4AuHTcX5H5npe3xjtfV7QozuE6R7bYvF42/vck1oyKdVRYgP8bqkE/VOT33YdbtIvx+uU//yxg7c8+pWXPfXd2RP9QOvb5duumEC97++DW9u68bO7iHURIK4+exDsWi/RvTGkvix4uTnwlZFdK3b3TesdqRK5nfPbEBCN/GRWS34kN1CpDKzwpz6rR0DiCcNREMBmdlSFQ7i7COsUL8r73sT//X4mpT/C97d0YNTbnkWK9YUPm3CMEy8u6OnKCPo1E0joPx99f+9cqOrLee9Atfzp5e2AABe3dwpx9SWmtc2d8qMkrHImBb1t9xyCxYsWICpU6ciEongpJNOwq9//Wt87GMfS3ufG264AY2NjfLPtGnTRnDFhJDRQMC26gtx6oWo7xxIyA/P1ZGgTH62RL37g/TunhjiSQM9dip0g/3hd7ii/vUtnbjyvjdx4Z2vuNyxzv64LLvNVH4PKCX4BXyQzaefXvCRWS2YP6keR81pwSFTG6XrnBqUl1p+P7E+ioAGJHSzKKXv6xWnfnxdFKGABsP0d8rf2NoFAFg8vQmt9ZZDOdw59W19cZimlfPQUhuR1Q7pzpvaU2+to9TjEcUoNrFvs84j6vP94CtGwU0bZ71v5k+23qOV/GFtuzK6UdM0zJlQj5+deQimp3HqRfm96P0VG4ml7qn/65uW0yx+T+VVft/lLr9P69T3Z06/74vpvufPtVz6PdvJNEzg5qfWwzRN3G8HSB45uwUAcM8rW/Ho25ZLf9z8CaiJhHDtqdZYtr+8sR3xZO4iwyu6Hnt77JXg7+4Zwt2vWC79N31cesBx6je191dEabvY0JnVWufKwvmPUxfi0uOsFphfr9iAK+5703W/m59ah7e2d+Pav75TkCg3TROX37saJ/9yJf740vB7ztWsCqC8m5cd/XHcvvIDAMAUuzrt3QJyJDr643hqzW4AVkuW9/+EUvD+nl6c+bsXcM5/v1QR789SUFZRf9VVV0HTtIx/1qzJb8dU5ZZbbsGLL76Ihx56CK+99hp+9rOf4Rvf+AaefPLJtPe5+uqr0d3dLf9s3Zp5RBAhZN9DfMAuSNTbglwt8bRG2jnl9zs9Y9H29Ayh03aegwFNflgebi/0CxusMtveWBIPvuHM+hal9zNaatBQFfa9r2A4YXnbO/MX9VXhIB779sfwx4s+DE3TZOJyuqA8tfw+FAxIQZuPWEmHdOon1iMY0OS5vWPtYkkd79oZBYdNb5ZOfe9QEkMJfwGTC2Ijo7UuikBAQ2u97dT7lGgndUNuZHh76ouxwZEJ0U9/sp0xoZaPPvjGNsz+3t/yEkJep36+PaZq7e7eojhjpSDf97oQ9eJ6Dpth9S+Xsvx+d8+QrNo5a4llaGQa0ejF69QLkbelfcD1uojfZeO8QXlVThWTlxc/aMfB1z0hy34zsVbZ3Hn4zR2455Wt+GBvP6rDQdx89mLUR0PY0jEgy/M/edAkAMBh05tQGwkiqYwQywUh6kX7y2gX9Xt7Yym/l+54biPiSQNLZjbjw7NSXXrAaSXpHUqWfKMwF973hOQJAgEN//bJefjpGYcgGNBw/+vbsNredG3ri+Gp96xNyM3tA3jyvd15P+4dz22S/5++umn4UzlEebtoESmnU3/rMxvQH9dx0JQGfNnOMylkk+GhVdtlWCgwMqP6lj2/Cbphoq0vPirHuOZCWUX95Zdfjvfeey/jn1mzZhV07sHBQXzve9/DTTfdhFNOOQUHH3wwLr30Upx11ln46U9/mvZ+0WgUDQ0Nrj+EEKIidv2rw/5BeZmos8W7KDENBzWEgwEZlNfvU36/u2dIlkg3KyXvw/3g9KpSdq/Ok35zexeAzKX3gtm2U+9NuM4F1b0slEmN1nOREpTn49QDyNr7no3N7f14Z0c3BuJJWWY6d6L1oVGOzPNUWqzd1YuEbqK5JoypzdVorA4jHLTeQ8N5DUWIoii7n1BvPf7e3tR55nv7Yi5XH3DS73uGknk5k9n4w4ub8eVlr2BH1yA6++NYZX9gFqF2m9r6pWj408vWxvlfV+/I+fyOeLTeNzNaalEVDmAoMfwQvlKR73u90fO+FS0GpQyV+ttbO2GalrhdYpdX57r5pRumLNUXr8uUpmpEggHEdcNVxp/OqVdDRL38dfUO9A4lceOja/BQlveK2DRqqY3ANIHv/+VtAMCnFk5Ca30Upx5qTUwYTOiIBAM4zg6u1DQN+7f6VxdkQoiuCz86EwHNajfxuvejhbW7enHkjU/h8ntXu24XpehLj9w/ZVqDoCoclO6tNxyxHIiQPPF/lJfTD5+Kz9rTM35vu89/eWM7ksoG1O0rN+b1mC9saMd//u09Zw3DbMVI6ob8v0psPq3Z2VPQlIbhktQN/MGeMvJvJ87DArtCqpDy+/vsyhkxzrPUIwa7BxK4/zXHuPAaJ2OFsor61tZWzJ8/P+OfSCSS/UQ+JBIJJBIJBALuSwwGgzCMkf/HQAgZO/zLrBZMbqySI3zyoS7q/rAu5tOLoLx40pBOZCRo/f7a3RuTH4TH1UZkavRwBKFumHjVHn2maZbLKZJob/un9QHnCJ++SS9ihv1LG9vzdp0LKb/3Ilzn3qEkBuJOC4HoqVdH2gHDG2v3t7d24oSbnsGnf/ksDr72CSTt5HtRLTBJ9Pd7PjCIDywL92uUVWhCUA/HJReO/ATboRdO/VDCQK+nL1mUbU+oj8r8gsbqsNygEu7pcDFNEz97Yi2eWrMHZ9/2Iu55dStM03LTD57aiKaaMAzTKo3tiyXxuv0eFMI/l/MLUT/NdoSDAQ3z7PdhuUOk0lGoUw9YYxtFD3Mpy+8fsUvvP33wFLnOXEX9HnuWdkipWAkGNOneqiK5s4D0e/VD/7/du1qOh/SiG6Ys5b3+tEXQNKfa4fTDpwIAzl4yXR7/0QPGo16pRtrfDv/c2JabGDNNU7aDHDqtGUfsb71Oj4/SFPy/v7sLCd3EE+/skr9P2/tiWLfbej4+YrcvpGOmbLko/6aGeM/Naq1Le8xFcnrGLmzrHMA9SotBOKjh5U0d0sXPxp7eIVz6v69DN0z5Pvhgb/+w8lt2djthsktmNqMmEkQsaZRl02RvXwyDCR2hgIZj5rZKUb+9azCv0Zfv7ezB29t7EA5qMnDxrW3Ov+/+WBIr1+8taon8n1/dKjOMAGBHkcJyK41R01O/ZcsWrFq1Clu2bIGu61i1ahVWrVqFvj7nF+/8+fPx4IMPAgAaGhpwzDHH4IorrsDTTz+NjRs3YtmyZbjrrrtw2mmnlesyCCFjgNvOPRwrrzwu7Ui7TIgye4E4hxq6J8oGD7Sd8t09Q2jvtz7Mj6uNYFzd8EX92l296B1KojYSxOmHWR9273phM6647010DSSwcL8G/H//MiPreT4yuwVTGqvQ1hd3lfDnghQ6w3Dq66vCckNELcGXPfVpRX1+O/V/fnUrLv3f15HQTURDAenmLJ7RLJ2rKXJknvsDw9vbLSdDzEgGgPH1wy99l0LdFlHVkSDqo6ntHdaxQ65jAasMVSSQF6sE/4O2ftn6sKVjADc+arXQHTO3FZrmiO91u3vx0gft8nnc3jXo2zbgpb0/jsGEDk2DnHwAWKnWgOViVSLbPC52NlRRf8CEekyxN4z29A6VpB+0oz+O12yh/KmFk+S/yb29MTl9wzBMvLCh3fd1EhstU5qqXf3LMz199bphKiGWadLv40mXEIonDayx+3YXT29CPGng4rteS8nRAKxKmqGEgapwAJ9YMBGftls+9muqxodnWYJ04X4NsgrpUwsnue6fLgcgHW19zvtxSlMVTrLd1Eyifm9vDCvW7qnIvt6X7GDGhG7ipQ+sr0VY4/xJ9SkbMV5mtFROWJ4U9eP9nXrAyow5ak4LdMPE5X9ejfV7+lAVDuCio/fHKbaLf/uzubn1f129E+39ccybWI/bz/8QwkENgwkdO4dRXbNN+T8yFAzgQFtIv1OGvnrvxnBjTVhu/uXze/c+e+rACQdOlNNs3tvVK8PyfvB/b+Pc21+WVVzDRTdMLH9hEwBrgxRIP3p2tDNqRP0111yDxYsX44c//CH6+vqwePFiLF68GK+++qo8Zu3atejudnZ77r77bixZsgRf+tKXsGDBAtx44424/vrr8bWvfa0cl0AIGSNomoZQsLBfn7WejQAh5iPBgOzV32KPBFo8rQmAlXgtBHxLXVT2og5H1L+62fqgdtiMZlxw1P4AgEfe2oln1u1FNBTAz888FJFQ9msMBwO48KPW/X//zw9ydiVM05Qu4NSm/CseVCbZYlotwZc99dXuD6FO+X3u/6kvf34TrrzvTRgmcPaSaXjnuk/in1cchzuXLsFNZx6Sem7PhoHoF1ykinqRgD+MsXZ7PU494Lj13pR0UbY9qcE9OlCUPxYrAV847/Mm1rvGtR1jlzjPU/rfV65vc933za3ZSzBFWfOkhipEQ85G2PxJIiyvsp36XEV9gyLq502qly0WQwknMLOYPPt+m6yomNJUjeaasPIB2Hrv/PnVrfji71/Eh//zKZx/x8v46+od8t+7d0a9YJZHJPcMOgGh3g03kX5vmsCA4qqt292LuG6goSqEuy48AnMn1qGtLybD71TEuMS5ds7FVZ+aj2PmtuIHnzlQVqhomobffOkw3Pj5RfiCvaHpXe+GHNuJROm9eD8eO28CAGD1tu60JdL/du9qXHDnK3h67V7fnxeDoYSOW55an1cAWVI35L9fAPLf54sfWNkr/7J/9sqt/e3qtXKX33cPJGTf9P4ZRD3guPViQ+PkhZPRUBXGlz/q/L+YS8WKcPRPOWQy6qvCcoNDtAEUwlbPvyvhjpcjLE9smqsbwwdOtn6f51qCn9QN/MXe/D/98KmY0VKD+qqQDMvrjyXlaNJ8WrIy8eR7u7GtcxBNNWF83v73Xmj7XaUzakT9smXLYJpmyp9jjz1WHmOaJpYuXSq/nzRpEu68805s374dg4ODWLNmDb7zne+k7QcihJBSEwho0lkGnPJ7TdOkwBfu5aG2qFd76luU8vvhhL0I92XJzHFYMKUBH7KDuADgqk/NxwG2o5oLZx8xHfVVIXzQ1o+/5xgs1NYXRyxpQNMcUV4oUtR3q6K+OOX3/1izG9f+9R0AwJc/uj9u+PwihIIBTG+pwXHzJ0hxDjgj89QNg3jSkELDT9QPJwHfm2YPOKLee16/YwEnLK9YwVav26P7jp3Xiru/8mHMn1SP+ZPq8aEZliAQ7Rprd/Vi5fq9rjXnUoLv7acXzJ9cueX3Sd2QG0775biBpTr18yfVoyoclFMv/PrquwcTeHVTB3Z2DxZU7vuMLTCPmev0l+/n+bci5rwbphV++K9/ekO6bt4Z9QKvUy9m1DdUhRD2bIxGQwHp8qvTOETp/aKpjaivcj6Y+7mVIvlehCdOba7B8guPwEkLJ7uOm9FSi7OPmJ4ySjNfp15sMolWkOnjalAdDiKeNLDZp6++dyiB5+zn8bXN/i0ExWD585vws7+vS0l2z8S7O3vQH3c2U55933pPvGg79qLSIRNqAn45+cBun5jYEJUVIOk4dm4rDlDC9M74kBUSedCURhw523LxRVl+JlZv6wIAHGL/vz17GJNhBN7wSVFhUo6wvN1yY1gV9aKvPrffu2t396K9P476qhA+ZldvLZxi/b/49vZu/P3d3RhKWJthL2/qkP+PF4ppmjIX4YtHTJebdjso6gkhhBQD9UOGmqCvuvgRpdTOKr93euqFEOssUIiZpilTrkUg1lc+ZrkVH5vbmnZ2djrqoiGc82GrVF/042fjbTsNfkpjdU4VAZkQQlUIJ90wpZvpDcoTZcy5/Ke+YW8fvvWnVTBN4P/7l+n4908fmHFT2O/cwmVsrA67BE8xkue9PfWA6tS7r088N15RP64Ivf0qwuk7bEYzJjdW42/fPBqPfuto+RoLsfXqpk5s2NuPgAZcaFeKiA/FmfB+yBUIp35Lx8Cw55wXm929MeiGiXBQc71WmWj0OPUAlPGNqa/VRctfwem3voCP3PAPLPjhY7jsnlU5h2mZpol/2hssH7NFPeBsgInWgTftvtf/PG0RTl5klZmvsMcVpntdhEgWIq9T+T3mRdM02VffO5Qq6kX7SqaALpF8P29SYSHHYhNib28MvT4p/F6kqB9nXXcgoMngzHU+G0wvbHBaToazAbVud29GJ/MR2+1cvbUr59A+sdF72PQmaBqwbncf3t3Rg7W2239ETk69KL8fGFZ7wZpdPTjzdy/IDZB8EZsy2Vx6wHrfXWz//zezpcaV7n+mLfAfXr0j4/V0DcSx2a6wO3i/JgDDmwwj2NbhceqnOE79SLdvSFHf6CPqcxwnKsT/QVMa5KbeoqnWv+u3tne7QjB1w8Q/7IDGQnnkrZ14eVMHIsEAzv3wDExuzG9Tf7RBUU8IISOMGN0EuHvpa5R++4mNUfmfZ89QUv4n1FIbkb2ohbqr2zoHsbsnhnBQk9UAJx40CU9+52P47/M+lOJe5cIFR85EJBjAa5s78dunN+DJd3dnLP188HWrBO+EAycUdA0qwjnYbYtpNbTHmyIuEupFr3BSN3D3y1tSyit7hxL4yl2vojeWxIdmNOPaUw7KWuUlerzb+mIyTf5tKUgaXPcXM+XbhlH2vkf2ODofsmQCfopTn7oBADiz6osx4qdnKIF1e6zX/LDpVuVHIKC5rltUgAjhfci0JhxtJ7uv3tqV1WUW5ajTPI7wuNoIJtol6msrzK0XpfeTG6tz/rflEvUT3aLe29O+qa0fr9ijs0IBDUMJAw++sR1/ysFdBKwP2nt7Y6gOB/GhmU7FjurUdw3E5Zi3Ty+aLEuWn9/QDt0wU2bUC4So2toxgHjSSJt8L3AS8B1RL/4NCbEkhMTGtn5XOCbgCOUDJ+VeaaTSWB2WLSmbcgh7EyF508Y51y3e42t9fv+JzRMAKb8f39/Tm7MA/+af3sC//ukNvGSXxrvXNCA3YADIcuZsCFH/iQWTZFXRTX9fB8B6D7bUZd+QmjauBppm/fsu9HebaZq45v/ewcsbO3DLP9YXdI5cQvJUTj9sKn7yhYNx23kfcv2+OmHBRERDAXzQ1p+xj321/XzvP74WjXZ1mBT1e7JXLWxpH0D3QOomkgwFtTeNRFtJe39cTj8ZKXbJXBbnfSD+La7Z1ZvTJqJoGxD3A5zNuuffb8c/7fGnIgvjiXfyHyko6BlK4Lq/vgsA+Ppxs/H/t3fncVXV6R/AP+fuLPey7/umqCDuCO5Kii0ulZVaaWWNaU2T5aT90nJqxpaZaaopa6bFFrO0LMspy1xzXxFXBEURRRCEyw4X7vf3x73nyz1wL3BZBZ736+XrJdwLnAtfDuc5z/N9Hn9XB/43mvbUE0IIaRPOFpl6sfwekGbt/VwcoNMo+L5WMSvl7qTmndPF5nmWjEaG1Owi3tzKGvHiLSbARXJTIdJb2+KsubdOg2kDTY2FXtt8FvM+O4yJb+6yOrO5uNLAG0ndNTiwweP2qr+nXizZ06oVDXofuDupoDa/xlx9FVbvvYglG05gwRdHJJmPF384hfPXy+Cr0+C9+wc16/vi4aSCSiEDY3VBdP0so6huT33Dn2FRebXVi3VLpnm7Ykl9w0z99QZ76k1v19/qIAYwN9pgT31KVhEYMwU4XjYy0i4OSt5QEABGRXmht68WGqUMxZU1yGyibNdWRhiw3Fd/czXLu2IOeO2Z8hDg5gB/Fw36B7rw76V4MV0/Uy9mZUdFeeLMy8n4v1v7AADe3HKuWV2pd5ovpBMjPCR9CngH/MIKvo5DPRzh4qhE/wAXaNUK6CsMOHVVb/Pn4q1Vw1Elh5GZbsjYmlEvqt8B37JJnhhoemnV8NaqwZg0211WVcOzpb1bGNQDQLi5A/6FZnTAr7vJVPe6xZsw6bnSj2eM8e81YKoqEW9e5JdW4Y539mDau3skNzSsKa408NctnsstiUG8OD1lU2rTQb1l9dawMHd+o02c025rNn19prF2pnXT0vGS+84X8Nd1+GIhiptRMVHfhWY0ybMkkwm4Z2gQ3x4kclYrkNTHNB++sVGKqeatQ/0D687zEd7Ny9T/cPwqxvx9Owa/sgUPfnwQXx/K4k3j6u+p1yjl/EZZR281slZ+H+LuCEeVabtJZn4Ztp7JxQMfHcDHuzOtruPTOabzSF+LoF78vb6QX4YaI0NfPx0eHxsBwHRusneqjujvv6ThekkVwjydMH+M6fOJa1OsnupuKKgnhJAOJgnqLTP1FuX3/i4aCIJgkZ1r2P2+0mCUZKoqDbVY+OVRTPn3Ht513BqxSd7QZoyss8fiSdG4f3gwxkd788Btv5Xg9H+pOaiqMSLK21myz7yl6srvTd8jcUa9S7399ICp1JKXFReWY/XeiwBMmZa9503Hmp5bwjv5vzt7oCQT3hhBEHizPLGy4qQ5MyHuGxTxoN5K2fsTXx7Dvf/Zj3WHbWdaC0qrYGSATIAkg+Zta099SePl99ZuENnrqLl7+uBgt0af18si4BoV5QmlXMa/P02Nj+IN2dwbBsh8X32OKWv00g+nsOLHU53eZbwlUx7UCjm2Lx6L7xaM4JlDcR3W7/ouBnG3xvpBKZdh7ohQRHg54UZZNd7bntHk19p5zlTiall6D1j0n9BX8MxvbKArAEAhl2G4ebzZ7+n5DWbUiwRB4PusM6+X4UaZ6XfTVqZenA4iBvWW21css+GWZcgiMfPtpVU3K6tsiz376sWgK9iiKWQvX+uZ+osF5bh8owJKuQA387lJPOaDmTdQYahFQVk1NjQxReTUlbrXbK0PhXiT54nxkZAJphuLTQXYGXmlKCw3QKOUITbABSMjpWshvhn76UXiqNfm9iWwxBjDm7+d42/XGBn2pNtfgn/hevPL75sidsG3bAxZn7h1qL/59wMAws176vNKqmzemDiRrcfi9cfBmOm17jp3Hc99ewJLvj2B6pq6XhyWN42iO2nSh9izxrfeBBXxeFb8eBrzPjuM39Pz8ZdNp5H46ja89Vs6/54xxnj5vWWmPsTdkU9tAYApA/zRz18HfxcNKgy12N2Cn//xy0X4fP8lAMBfp8VAY06eeGnVUMgE1BpZs6atdDUU1BNCSAeztadekqk3X1D71AsoPZxVcFLJeeZYbKBXXGnAnI8P4mdzZvzrQ5dt7gm1bJLXlry0arwyLRYfzx2KZyb2BmB93+u35uZadw0ObJPGpQ3K78utj7MTiYH3mgNZPMMIAKt2nAcAvLU1HYwBk/r5YHCIfd8j8XNfKaqAodbIX3/9mxe2Rtpl5JXwhmT/+DWtQXmxSLzJ4+GslowQs9b9vtJQy6cBWFtPpuNofaZebJI3KKTxoF7MZDqrFXz7h9hcqrFmeUZjwxn1lsSLyzM5xXju2xNYvfciPtlzERcL7JuZnV1YjqNZha26GZBdWM6nWIhbO+zJ1AOmwN7yZytWZFhejF40lwXLZQImmcepKeUyvHBbXwDAJ3su8uOwprSqBofNpftj6gX14k2Iq0WVSBWDFot1PDLSlM3dcDS7wYx6S2Jg9c2RbKw5YLrQtjUazdk8M77UvKf+hMXkCMtzhRgUWDYMO1uvSV5LhXk1L6ivqTXy0ZjWMvWZ+WWSiqmd5v4DQ0LceeWOuFVEzJIDwGd7Lza69sTtCIDp98XyuWLpvUww9QFJjDD9jP7XRAn+QfPXHxjkBpVChkEhrpIqsubspxeJN3Ey8krt/h3ak1GAQxcLoVLIcFt/Uwl2U1MC9BUGPPDRAfzz1zQApvPERTv21DdlbG8vaNUK5OgrcdhKc0PGGFLMkzsGBNX9fug0Sn6T9YKVaQp5JZV49LPDqKoxYny0N35bNBpPJ/WCIADfHs3G/05cBWOmMWxiRRUgLXnvSHn1RqjWPx5xgsZt/f0Q5ukEfYUBb/52jlc4XNVXQl9hgEImIMqnbluETCagX0BdkH9HnD8EQcBE8/ns19O2x0Pa8urPZ8EYMH1gABLN5ykAkFuco+wda9sVUFBPCCEdTCspv6/7v2WjPDE49K43gszDSQVBEHj5amF5NUqranDvB/txIPMGnNUK+LloUF5dy0fHWLpUUMYblA1pIvhqDctu5JYXdhfzy3D4UiFkgukPblsQv1fXS00ldUUV5s73DtYDB7FZjnihOyXOHwqZgN0Z+fj2SDZ//1MTetl9LOIF/b+3ZyDlchGqa4zQahSS8W5AXaa+sNwg2Yu45kAW/39ucRU+tjEjOZc3vpOuD3G9WGbqxYsxtUIGnYO0E7RnG3W/NxoZjpkz9YOayNTHm0t5k/p482ZJYlDfWKZe7FUgszExQSy/P3ypUDLuLLUZDfhEOfoK3P7Obtz53l7c+5/9vPrAHoZaI6a9uwdJb+7EySt6yazp1uBVOxY3bMS1mhjhIQmUx/b2wqgoT1TXGvHq5jM2P6fYuC3Ew5E3iRPx8vsiy0x9XdAyItKUvRXHv9WfUS8SA6vNp64hu7ACXlo1ppizn/U5mzP1ZdXSoL7+9hVro73S2iqob2amPkdfiVojg0ohk/Sq8NGpodMoUGtkkmBulznjOKa3Fz9PiIGZeGMFANLzSrHvvO3tNycsgvqCsmrJjUmxamN4uAc8ndU8MN50vImgPrOu9B4w3VASf097+ThLpnw0Rfz+fbDrAvou/wV3vLO7yQocQJqlnzUsGPcNNTWp256W1+jNgfd3nsfv6fl4d8d5FJVXI7ekEhWGWihkAt+L3hoapZwHmD8cb/g3NUdfifzSKshlAvr6Sddp3b56aQm+0cjw+BdHca24EpHeznjrvgGI9NbiqaQozDBvSVu+0TR1JdDNUXJDS1w7zR0j11z5pVX4Yv8lqx3ny6pqUGKunql/7hVvWCvlAlbeGYt3Zw3Cb4vG4MEEU/NccSKO+Lsa6e0s2eYD1FU4DAlx4+edW/qatj1sPZPXoFR+Y8oVvLcjA18eyMLmkzmSBEZWQTn2XSiAIADPTurd4LW0ZKxtV0FBPSGEdDAnSfl93Wm4/p56QFouLQiAqzmYtxxr9/2xKziTUwxPZxW+/sNw3sn+i/1ZDS6GxLLyEZGeNktg20KktzPkMgH6CoNkfvwGc7A1KsrLalavJcRstbjPnM+ot5GpD3C1KB8UgD8n98aUAaYgY/E3plLI5H6+vMTXHk9OiIKvToML18uwYM1RAKZOv/UrEtwcVRDjHzGgrqiuratiMI/ten/nBasl+mKmvv7WALEB342yat6sz7L0vv5x8PL7Vna/z7heipLKGjiq5E0GVeOjffDN/AS8PC2Gv2+A+aLudE6xzX4Q4sQEPxeHBuPQANMFtMIiqBTHVB2/rG/wXGuMRoZn1x/n6+dg5g3c+d5eLFqXIjmm749dwZBXtvBxbvVdKihDfqnp+7/wy6M8sAu0M1Nfn3gDJ9ciU29Zem9JEAQ8f2sfCALw04lrSLfRtFLsXj86yqvBY74uGgiCaV97jr4SgiANriO8nCU3leqX3ovEMVxqhQx/HB+JHc+ObRCki+p3vz+RXZeptyT+bp69Vswv+MUgp6Wd70XiPuzM62WNBpNiU7tAV2kDREEQ+J5+sby+qqaWB+qjzX0kANONiNKqGpwyr21x/7a4LcgaMVOvlJu+5jGLgPl/9dZDcj9fyGUCTucU44KNvd2MMRyqF9QDwO39/fnnsEdSHx8e2FcYanHiih4Lvzxqs+pIdOhiIY5cKoRaIcOCsREYFuYOB6UceSVVNke4XdNX8huftUaGrWfykGn+fQt2d7R6nmgJ8e/DTyeuNWgIJ96w6O2jlWynA4AIb+tj7Q5evIEjlwrhrFbgvw8OgVZT97fq2Um94axW8N8BW+M7z18v5ef41tp2NhfJ/9qFF74/iWfXH2/wuPg33FmtkGwfBICpAwLwdFIvrJ+fiJnDggGYMuLTzDftfz93HTUWVWuW++lFDyaEIKmPN56/rQ9/37Awd+g0ChSUVUsquE5e0eOpr1Lw+uY0PP/dCcz/4iieXHuMP/7NEdO2tZGRnlaro/joWcrUE0IIaS1p+b31UnzxbrLl/jU3RxXPhHlYNDgTm87NGxWOfv4uuHNQIByUcqTllkjKBRljPKhvqyy5LWqFnM/pFf+YM8b4ftG2aJAnksvqRoXl6Ct5UFZ/nJ3Iz+IPfVIfHwS6OfJGOmJC4KmkqBYdi6ezGu/dPwhKuYDr5sDbWt8AuUzgAbWYVd+UehXFlTUIdHPAa3fFIjbABaVVNXh7a8MO0Hl87rw0g+bmqOKBrbhP3lqDI5G4jsqqa1vckIgxxkdPxQW6NmhOaM2QUHfJhWyQuwPcnVQw1DIcvVTU4Plncorx9Nemi814G027VAoZz/gvmRzNmy01N1P/0e5M7MkogINSji/nxWPG4EDIBGDD0SuY//kRVBpqsTHlChatS0F+aTXe33neatB3zqJB2qWC8rry+1Zm6uv21FeBMWa19N5SHz8dJpqzXe/vbDhqMqugnN9ESjI/z5JSLpNs14jwcpZc0AuCgBEWpa22gvqJ/Xzx8dwh2LF4LBZN7N3o3HAni+731TVGnn23bEAGmEq8HZRyVBpMDbpqjYzvYW9tpj7Yw9TBvaSqpkFvCktZ9cbZWRIbrqVZZOIrDLXw0qrRx0/Lq0rScktw9FIhjMxUGbFksimz+NuZXN4/wnKNlVQaeBM48WcuVshcKijjpffJMabH3JxU/Gd073/24x+/pknGeekrDFiw5iiu6iuhksswMNiVP3bXoAD88qfReHKCfefCUE8nbH92LM6+nIzfFo1BgKsDsgsr8MYvaY1+3P9STWXad8T5w1ungVoh58duqwT/X7+dQ5W5egcwlWqfb8PSe9GICA94OKlwo6xa0uwQqOt8HxfU8DwvNl2sH9SLN+Mmx/g2OE5vrQZPjI/kb9ffahTg6gCtWgFDLWuymaO+wtBolURNrRHLvj+Jh1cf5luwtp7Na9CDIddK53uRg0qOp5Ki+FYqUVygK9wclSiurMGxy0U8U2/tZnmgmyM+nDNUUuWllMv4TSbLoF6sngpwdUBSHx8oZAJ2pF3H/gumSRzizdYZ5nGE9Yn9fq5Spp4QQkhraS1H2ll2v1c3Xn5vWV4r/j8zv4xngMSLPBcHJS9v/XzfJf4xR7OKcKmgHA5KudUgoK2JF65ic5xzuaXILqyARinjwUZb4c3yzPv2ANt76v0tgvq5iaEATBfhYpZscoyvpJGPvQYFu/E9zUDD0mGRZ7397GLp/cxhwVDIZVh6azQA4LN9l3Dne3vw+f5LvOGSmK31qpepl8kEXiorBv65fC9kwwsyrVrBu2Q3NtauoLSqwcilrIJy3P/hAcS+9CsfHTQoxNXm52iMZYD41FfHJFnF89dL8cBHB6CvMGBgsCv+MjXG1qfBqtmD8M38BPxhdDgv6Tx5VS/JrtUPxCsNtdh+No8HHctu74vESE+8MSMOnz48DBqlDNvTrpuz9sf5jZ+MvFKr+1rF7GxMgI7fYBGEuuqblhL7JVTXGKGvMNgsvbf0+FhTcLAx5UqDsY0rfjyFqhojRkR6YHSUp7UP5yMgAel+etFISVBvvdRZLhMwPtqnWa9fa9H9/uy1Yt4kr/4NA7lM4BnLMznF2JhyBUXlBrg4KCX7dVtCrZDzr5dpZS+0iHe+t9K0sX6mXpwCMjrKC4Jg2lMsE0wVNWIflKGhboj01mJkpCeMDLh71T4MfnkLer3wM740nxvEsWr+Lhp+vhIDHvH8MSrKS1Iu/+zEXvDSqnG9pArvbMtA4qvbMOnNXVj2/Unc/s7v+PnkNSjlAv4ytZ/kJrNYcdDSbLdGKUektzP+dmcsAFP1wREre9IBU5XML+bxZZNj6v42jYs2VZBstzKvPCOvhDcTXTGlHwBTt3QxeGzLoF4hl/HM89qDWZLHxKA5zqJJnqiuA37dOqo1Mv4zv7W/X4OPAYCHRoTyLVv1t24JgiBpCtqYZ9alYOq7e/Cjjc797+88zxvKPTIyDCMiPcCY6W+OpcZuDNsilwm8+eb2s3m82sKev63i99TyxqxYeXXX4EB8OGcI7htmCt7f+CUNezLycVVfCZ1GYfMag5ffU6aeEEJIazlZZOQl3e/NAb5aIeMX6ZYl6pYX7uKs+g1Hs1FjZIj21UouYu4fbtrP9vPJHF6+/d0x0x3s5BjfRrNlbaV+Q5/fzTOa48M8eDfatiJebHx9KAsbU0zVAG42xmb189fBWa3A0FA3JETUdXX+2/QY/HFClKQsvKUeTAjBvJFhiA1wwdhe3lafIwZp+SVVOHVVj5TLRVDIBNxjzjAkRnjikZFhkAmmGzLLvj+Jae/uQaWh1mJGfcNAne+rL5Fm6q1tdxAEgWfrbZXgbz6Zg4SV2zDpX7t4YM8Yw5INqdidkY/Sqhoo5QL6B7rg7sHWsyPNsWJKP0T7apFXUoWZ/92PrWdy8dIPp3Dne3uRX1qNvn46rJ47rEH5p/S1azAk1B2CICDc0wlatQKVBiPSzXtaT17Ro/+KX9Fv+WaM+/sO3PrW74h96Rc8tPoQqmuNuKWvD2YOq3sNo6K88OlDw+CkkuN0jqnU++7BgXy/p7UxV+LXmhLnj8XmPZ1Bbo4tHhcp0ijl/EZV2rUS/Pd3U/b9Dhv70wFgQJArEiM8UGNk+O+uumz9b6dzsfVsHpRyASumxNhsWBlgEajXz5YDaFam3h5OFkG9OIptWJi71eMTy3iPXy7ie7Hnj4losF+3JcQMq7V99dU1RlQaavn4PGtNG6O86zrg5xVX8uDzzkGmwFCjlPOGcuL5aqg5K/nwyFAAppLngrJqGGoZ3tp6DoZaIy+9jwlw4ZnRU1eLUVxpwNeHTF9D3Mss6h/oij3Pjce7swYhwdzFPi23BJ/vv4TLNyoQ5O6Ab+Yn4j5z6XRbG9PLC3cNCgRjwHPfplqtCEq9ose14ko4qeSSNTW2t+nceTSrUHJTsaK6Fi9vOgMjAyb29cH9w0MQ4OqASoORfz+bO6O+ucTS8m1n8/h+bKOR8R4H/a0F9eZqtUsFZXxM3ZFLhbheUgWdRoEREdZvpqkVcnzwwGA8PCLMasaZ3zBvZHxnXkkltplvhry55VyDfekZeaV4e6tpOsbrd/fHstv7Yt4o09a9dYcuS0bSXdObR6LauWVunPnn99OJHF7ZYk9Q39+8xsWeHgBw4kqR6THzTcY/jo+CRinDkUuFWLbxJADTlgBb1xi8/L4bZurb/6qOEEKIhLNF2bGk+735gtbPpW7vs2Ug5mER1Iv/v2ru+F4/8x4b6IK4QBccz9ZjwRdH8e7sQfwiub1L70V12QTThcfv5kZRo2xkBVtDbN6z3VymGentzEtQ6/N0VmPf0vFQymWSYMFbp8GiW+xvjmeNIAh44fa+jT5HzKal5ZbgQ/O+0EkxvpIZ78tu74s/jAnHDylXsWrHeVy4Xob1R7J5B3Rrgbq4rz6vQVBvvdmVu5MKOfpKXC2qwFeHLmP72TzcPTgQcxNDsfVMHpZsSIWRmYKMv/+ahpenxWDnuevYe74AKrkMax8bjtgAl1YHre5OKqyZF4+Z/92Pc7mleOTTw/yxaF8tPn9kmM0+CdbIZAJiAlyw70IBUrOL0MdPh0/3XuR7VS0DNk9nNUZHeWLZ7X0bBJDx4R74Yl48Fn+TisQID7x4Rz/8fDIHW07n4sfjV/HnSb0lHyPuX4/y0WJMlBfcnVQ8Y9daPloNisoNWLbxJIrKDejto8WdTfw+Pz42AnvPF+CrQ1l4cnwkjAx46UdTE655o8IR2cixWWbqY60ELT46DfoHuiA1W9+q6haRs7mK6UZZNS+5vtdGGa1Yxvv5/kuoqjHCS6vmlTetFebphJ3nrjcI6t/dnoF//XYOhtq6AMl6+b3pe3r5RgXe/C0dVTVGDAo23WAR9fbV4kJ+GcqrTUGuOI1kfLQP1syLR6WhFj46DeZ+cgi5xVX49VSuZBpAiIcj3ByVKCw34PXNZ6GvMCDQzYEHwpbEbvK39ffDjbJqHLhQgP0XCuCkVuAPYyLgYmOrUltZdnsf7Dx3HRl5pXh2/XG8fd9ASR8CsZJhXLS3JBgLcHVALx9nnMstxWOfH8bcxFAIgoCXN53GlaIKyGUC/pxs+v2b1M8XH+/J5N/PtszUA6a/KcPC3HEw8wa+PnQZf0rqhX0XClBaVQONUsZ/5pb8XRygUcpQaTDi8o1yhHs589L7W/r6NnrOjPbVYfkd1v+GNCdT/7/UHF5VdCG/DD8ev8qrDYxGhqUbUlFda8TY3l68Od+YKC+EeTohM78MG45m44GEUACW5ff2BfWje3lBEMAnkPi5aGxWFVkjBu6Z+WW8c36G+aapeJPRW6fBnMRQfLDzAr/RNmOI7e194qx68dqpO6GgnhBCOpjY4RmQlt+L77csU7XMxHpYjLVxd5b+YbRWTv/ilH6Y89FBHLx4AxPf3ImicgO8tWpJJqQ99TFnEy7kl6G40oADmaZtAqOsNOVqLTEj4qxW4E9JUZiTGNpo2ajlfu7OIpbf/8ecQfV0VuMZKzcVvLUazBsVDpVChuUbT2HV9gxUm4OK1mbqgbo598+uT+Xzwd/ZloH/7LqAKnMjplFRnvg9PR9rDlzCjCGBePXnswBMWcHBbThFwcNZjS8fHY77PzyAC/lluKWvD+4eFIhRUZ7N2qtfX/8gU1B/PFuPqQNqednr2zMHwkerRnFlDaJ9tQh0c2h0vOLAYDf8tmgMf3tCtA8cVXJkF1bg2OUivhfUUGvkgWCUtzNkMsHm3s6W8NapkZZbwvftr5jar8nvy8hIT8QGuODEFT2G/vU3fqHv76LBkxZ7d60Rm/uZOntbD9o/eGAwLt+oaJug3nxjc09GPgy1DL46Dcb2tn6+EL+euEb/OD6yQaOylhJnjJ/OKQZjDIIg4OcTOQ32hbs7qTAktOH693BWw9NZjfzSKl6u/ccJUdIu5r5avh5dHJSItMgsW56jZw0LwtvbMvDp3ovIN/fJiAk0jfiLC3LFjrTr+GK/6WvcPzzE6gSC+sc8OdYPk2Otl363B1dHFd66bwDmfnIQm1Jz4KVVY7n5BhpjjPeFsXYj9g+jI/DM+uM4kHkDBzLrRv8FuDrg5Wn9EGmuipjYzwcf76mbFiL+DNvS7PhgHtTPjg/BM+tMfT6mDQiw+nsokwkI93TG6Zxi/HQiBwvGRuLnk2Izw5ZvgRMz9WcbydRvTDFVEUV4OeH89TK8vTUdd8T5Qy4T8OXBLBy6WAhHlRyvTKur1JHJBMxJCMFLP57G6r0Xcf/wEAiCYFF+3/wpCIBprcUFuvItIvaeI9ycVAh2d0TWjXKcyNZDpZDByEwVA5Y3GOaPjsCX+7NQUlWD3j5aq31sRH7mG5XiNJXW3oy+mXSfV0IIIV2Es7ouoLS8CB3b2xuje3nh4ZFh/H1OagXfZyo2VgOkWftgd0f08WvYHGpQsBvWzU+Aj06NQnPp4tQB/k1e9LUVH50aro5K1BoZvj54GZUGI7y1aqsZjdaaMSQI780ehG3PjsG8UeFt1vW4PXlY7Hv1d9Fg3R+GN1oyes+QIHhr1bhqHqEEWN8nL2bqr5eaLsTqmupZD+o9zWuptKoGbo5K/N+tfRAb4MKDpcdGh+Ozh4dhSpw/jAyY8/FBnL1WAq1GgYXjGg8KW8LTWY1NT45E6osT8e6sQRgX7d2igB6Q7sn87UwuSqtqEODqgNtj/RAf7oFb+vogyN2x0YDeGgeVnJfgW+5XNZXZMjip5HbPpW8Oy2kHU+L8MTzco5FnmwiCgKdvMTU7EwP6AFcH/P2eOMkeamvCzGXoff10NgNmPxcHu+aYN0YM6sVM+D1Dg2z+7KN9tRB/bIFuDrh3aNuVj4ul1L+n5+O5b1NxJqcYi79JBWDae3xyxSSceGkiDjw/ocEEClFv37rf5bhAF4zpJb05YdnQb2iomyRzbWn28BAoZAIOXrzBJymIQYtlczKVQsa37tyMRkR64u8z4gAAn+y5yJs3pueVIjO/DCqFzGqVwV2DA7Fr8TgsGBsBT2c1VHIZFo6LwJZFozE+um7f9NBQd54FdlLJrd7wbK3kGF+4OSqRo6/E3e/vxbXiSoR7OWFZI1VZYtb477+ewwsbTyK3uApatQIjW1GxJvZsyC2uQqGVXihZBeVIuVwEmQB8OGcoXB2VuJBfhs/2XcTKn87gL5tMPVD+PKl3g14Ydw0OhLNagfPXy7Db3ABV7H5vbZRoU8ZZ/Ext3RhsjJiRP55dxPfWx9bbCuTmpMKiiaYb4o+NDm/0fO7hpIJKIQNjdTe8u4ub/6qHEEK6GSeLTL1l+b2PToPPHh7GgwWRGLh5WNlTD5guNGz9Eevjp8OGBSPQy8cZKoWsTS98myIIAr9w/cScQRkZ6Wl3ANUcGqUct8b62bzAvhmJNzdCPRyx/vHEJveAapRy3qUfMDVfszY/2stinjljjF+Q2QrqxYxWP38dfnhiJB4dHY4fnhiBtY8Ox0dzhmDp5GgIgoD/u60PnFRyfoPo8bER7TYWUSGXtUnfBTH4OZtTwvccTxvobzOAsscd5pFfm1Jz+H5VMYMe6e3cLutc3ELhqJLj+Vv7NPHsOuOjfbD7uXHY/dw4pL2SjD1LxiPRxn5eS4kRHnhlWgzemNG/xcdsDydJd33g3qG2g1RHlYLP7H46qVebZtwGBLnihdv6QCYA6w5n4/Z3dqO0qgbxYe5YOjkazmoFtBplozcPxQ74APDk+KgG68Fy9N6QUNs3RXx0GkkG299Fw3/vLYP6KXH+dpU2d4apAwLwgnls2Wubz+KPa4/x38tRkZ42+2UEezjiz8nR2L90PM68nIzFk6Ib3JCSywQk9TEFkGFeTu3y+6dWyHG3uVT9UkE5VAoZ/j1zUKM9auYmhvIxs2LDw6S+Pq3q/eCsVvAGjdaadf5oniSQGOGJME8nPGreK7/ix9P4YNcFVNcYMSHam5fXW9JqlJg2sG6EH1B3Y9je8nugrtkhYH+mHpDemBX31sdZ6e/x0AjTzbamJusIgsCb5V0t6l776imoJ4SQDibtft/0LigxWxZssXfTshS/qU72Aa4O+N8fR2H/0gmN7p9tD2KZoLh/rTXZie5mbC9vfP3YcPz45MhmZ3VnDgvmF/QeTiqrQUVdpr4Kv5zKRXl1LRxVcn4hU9+8UeH4/JFh+PbxRL4/WBAEJER4YEIfH0l/h6fN2wN8dRo8PCLM6ue7mQS6mUbl1RgZ7+nQVj0lRvfygk6jwPWSKhy4YNpakm4O6qN8WjdWzZakvj7w1qrx0h397M6aBbo5ItDN0a5gQiYTcP/wEP573N4sg7qxvbya/L14e+ZAvDNzIG9A15bmjQrHJw8Ng06jQK2RwUenxr9nDWp21Yh4Q6mvnw4T+jTMQAe7O/KbukOtlPBbmmPRK8BymsaAIFderVC/Qd7Nat6ocCye1BsywdRo8iOLfiJNUchljVaazYoPgUohwy192m+6i2VDwWW39bE6os2SIAhYOjkaDwyv+/lMbsZrbUpjJfhis0BxCs6cxFCeFOjrp8PHc4fgwzlDbH4vxckKO9LyUGtkLep+L4rxd0Gwu6lRqOXIxOYSM/Wp2fq6nhJW+nsAaLSJqiXeAb+b7aunPfWEENLBLO/qN2cP6Iqp/TBlgD8fDwOYLtADXB3g6azCwHrzYa1RymWdksWpvy1gZAft5+8KZDIB8c0on7bkoJLjD6PD8defztgMeMTKjmt6U2M7wFQybCvzrVHKm93n4KERYdBplIgLcm3zCQbtQRBMXfnFpmuxAS58D25rqRQy3Brrh68OXcaGY1eQGOmJc3mmrFl7bDEBTFtqDv5fUrt87puB5UX5rPimg9RePlpJRrytjenlhY1PjMSa/ZcwY0iQpIllU6bE+aO8uhbjo72tZo3lMgGv3dUflwrKJPO5rRkS4oa+fjqczimWTCFwdVThHzPiUF5da7X7+s1q4bhIJEZ44Jn1x3Hhepk5y976MacDglxxesWkFm/XaY4IL2f8bXosyqpq+JSZpgiCgBVT+kGrUSBHX2l1m4G9+vhqseV0Lk5k65GRV4LLNypgZAyF5Qacyy2FSi7jN0qc1QpsWJCIq0WViA9zb7JSaXi4BzRKGXL0ldh7Ph81RgZBgF3rXySTCVj72HCUVBok42SbKybABTJBGoBbG69pj7pmed0rU09BPSGEdDDLoN6xGUF9gKtDgwBOo5Rj15/HodbI2qSUuL1YZviifbUtKt8jUnMSQ2EwGm3upxYz9eJFkJujEo+ayz9bSy4TcE8jJdE3o/6Brjyon9bGkx/uHhyIrw5dxk8ncrBiSr+6zvdtdOOgp/F10cDPRQNXRxXG2WiQ19HCPJ2anGRhjUIuazLoa2wcoSVBEPDGjP5YcyCrwee8c1Dj5cY3q4HBbvjpj6Pwxf5LvKKmLbRnQC+aFW//NjaZTMCfk6Pb7BiizaXsG45dwYZjVxo8Pra3l2SqQYiHE0I8mtc8UKOUY0SEJ7aezeONHj2c1C3uVWO6fmlZjxEntQKR3s58a1OQu0Ort32JzfK626x6CuoJIaSDOasU8NaqUVVjbNUoIblM6LCmdy3Vy8fUzIoxytK3FZVChgVjbTeoq59NWTguErqboNt/ZxH3X8oE4I64tu34PTjEjY+A+uH41brO9+2Uqe/uLG9WdkRw1pX083fB36bHdvZhtCmNUs5noxP7DAl1g6NKjvLqWjip5Aj2cIJKLsBQy6BSyPBEE5MtmjIu2htbz+Zhy+lcAICvS9s3Hmyu/oGuPKhvi4oUccJQd5tVT0E9IYR0MJlMwKYnR6LGyLpECXNrOKjkiPbV4UxOMcZFt77kkDRNo5RDp1GguLIG/i6aZpeIdlcjIj0xIdobsYEubd5IURAE3D04EG/8koZ3tqbDUMvgqJLz8k5iP6Vchm5+WiSk1by1Gux/fgKqDEZ4OqvavDGg+PdanETRkv30bSUu0AXfHMkG0PrSewDwdxUb5VGmnhBCSCv1pDL0t+4bgHO5JZLZy6R9hXg44cQVPf50S69uf+OoKRqlHB/NHdpun//OQQH4x69pvBmkOJ+eEELak06jBNrpUiLA1QHRvlreXb8zr1kss/P1x9m1RG9fHRaOi0C4Z/eqqKKgnhBCSLtq72ZWpKE3ZvTH2ZwSTB3QvD27pOX8XBwwMsoLu86Z9u23VSM+QgjpTOOivXlQ35mZ+mg/LTyd1TDUGvlUidYIcHXA4klt19/gZkEblgghhJBuJtpXh2kDA9plVjNp6G6L2cjt1fmeEEI60niLLXOdGdSrFXJ8tyARPzwxAtoe3B+mKZSpJ4QQQghphYl9fXgfg16+lKknhHR9A4Nc4eKghL7CAF+Xzt0yGOTu2KlfvyugoJ4QQgghpBU0Sjn+dd8AHL5YiNFRN8coNkIIaQ2FXIa/To/BvvMFSIywPkKV3DwExhjr7IO4mRUXF8PFxQV6vR46na7pDyCEEEIIIYQQQlrBnjiU9tQTQgghhBBCCCFdFAX1hBBCCCGEEEJIF0VBPSGEEEIIIYQQ0kVRUE8IIYQQQgghhHRRFNQTQgghhBBCCCFdFAX1hBBCCCGEEEJIF9Vlgvq//vWvSExMhKOjI1xdXZv1Mbm5uZg7dy78/f3h6OiI5ORkpKent++BEkIIIYQQQgghHaTLBPXV1dWYMWMGHn/88WY9nzGGadOm4cKFC9i4cSOOHTuGkJAQJCUloaysrJ2PlhBCCCGEEEIIaX+Kzj6A5lqxYgUAYPXq1c16fnp6Ovbv34+TJ0+iX79+AIBVq1bB19cXa9euxbx589rrUAkhhBBCCCGEkA7RZTL19qqqqgIAaDQa/j6ZTAa1Wo3du3c3+nHFxcWSf4QQQgghhBBCyM2o2wb10dHRCA4OxtKlS1FYWIjq6mq89tpryM7ORk5Ojs2PW7lyJVxcXPi/oKCgDjxqQgghhBBCCCGk+Tq1/H7JkiV47bXXGn3OmTNnEB0dbffnViqV2LBhAx555BG4u7tDLpcjKSkJkydPBmPM5sctXboUixYt4m/r9XoEBwdTxp4QQgghhBBCSIcQ48/GYldRpwb1zzzzDObOndvoc8LDw1v8+QcPHoyUlBTo9XpUV1fDy8sL8fHxGDJkiM2PUavVUKvV/G3xm0kZe0IIIYQQQgghHamkpAQuLi6NPqdTg3ovLy94eXm1+9cRvwnp6ek4fPgwXn755WZ/rL+/Py5fvgytVgtBENrrEFukuLgYQUFBuHz5MnQ6XWcfDukCaM0Qe9GaIfaiNUPsRWuG2IvWDLFXV1wzjDGUlJTA39+/yed2me73WVlZuHHjBrKyslBbW4uUlBQAQGRkJJydnQGY9tGvXLkS06dPBwCsX78eXl5eCA4OxokTJ/DUU09h2rRpmDhxYrO/rkwmQ2BgYJu/nrak0+m6zOIkNwdaM8RetGaIvWjNEHvRmiH2ojVD7NXV1kxTGXpRlwnqly9fjk8//ZS/PXDgQADA9u3bMXbsWABAWloa9Ho9f05OTg4WLVqE3Nxc+Pn54cEHH8SyZcs69LgJIYQQQgghhJD2IrDm7LwnN6Xi4mK4uLhAr9d3qTtOpPPQmiH2ojVD7EVrhtiL1gyxF60ZYq/uvma67Ui7nkCtVuPFF1+UNPYjpDG0Zoi9aM0Qe9GaIfaiNUPsRWuG2Ku7rxnK1BNCCCGEEEIIIV0UZeoJIYQQQgghhJAuioJ6QgghhBBCCCGki6KgnhBCCCGEEEII6aIoqCeEEEIIIYQQQrooCuq7sHfffRehoaHQaDSIj4/HwYMHO/uQyE3ipZdegiAIkn/R0dH88crKSixcuBAeHh5wdnbGXXfdhdzc3E48YtLRdu3ahTvuuAP+/v4QBAHff/+95HHGGJYvXw4/Pz84ODggKSkJ6enpkufcuHEDs2fPhk6ng6urKx555BGUlpZ24KsgHampNTN37twG553k5GTJc2jN9BwrV67E0KFDodVq4e3tjWnTpiEtLU3ynOb8LcrKysJtt90GR0dHeHt7Y/HixaipqenIl0I6SHPWzNixYxucZ+bPny95Dq2ZnmPVqlXo378/dDoddDodEhIS8PPPP/PHe9I5hoL6Lurrr7/GokWL8OKLL+Lo0aOIi4vDpEmTkJeX19mHRm4S/fr1Q05ODv+3e/du/tjTTz+NH3/8EevXr8fOnTtx9epV3HnnnZ14tKSjlZWVIS4uDu+++67Vx19//XW8/fbbeP/993HgwAE4OTlh0qRJqKys5M+ZPXs2Tp06hS1btmDTpk3YtWsXHnvssY56CaSDNbVmACA5OVly3lm7dq3kcVozPcfOnTuxcOFC7N+/H1u2bIHBYMDEiRNRVlbGn9PU36La2lrcdtttqK6uxt69e/Hpp59i9erVWL58eWe8JNLOmrNmAODRRx+VnGdef/11/hitmZ4lMDAQr776Ko4cOYLDhw9j/PjxmDp1Kk6dOgWgh51jGOmShg0bxhYuXMjfrq2tZf7+/mzlypWdeFTkZvHiiy+yuLg4q48VFRUxpVLJ1q9fz9935swZBoDt27evg46Q3EwAsO+++46/bTQama+vL3vjjTf4+4qKipharWZr165ljDF2+vRpBoAdOnSIP+fnn39mgiCwK1eudNixk85Rf80wxticOXPY1KlTbX4MrZmeLS8vjwFgO3fuZIw172/RTz/9xGQyGbt27Rp/zqpVq5hOp2NVVVUd+wJIh6u/ZhhjbMyYMeypp56y+TG0Zoibmxv78MMPe9w5hjL1XVB1dTWOHDmCpKQk/j6ZTIakpCTs27evE4+M3EzS09Ph7++P8PBwzJ49G1lZWQCAI0eOwGAwSNZPdHQ0goODaf0QAEBmZiauXbsmWSMuLi6Ij4/na2Tfvn1wdXXFkCFD+HOSkpIgk8lw4MCBDj9mcnPYsWMHvL290bt3bzz++OMoKCjgj9Ga6dn0ej0AwN3dHUDz/hbt27cPsbGx8PHx4c+ZNGkSiouLeSaOdF/114xozZo18PT0RExMDJYuXYry8nL+GK2Znqu2thZfffUVysrKkJCQ0OPOMYrOPgBiv/z8fNTW1koWIAD4+Pjg7NmznXRU5GYSHx+P1atXo3fv3sjJycGKFSswatQonDx5EteuXYNKpYKrq6vkY3x8fHDt2rXOOWByUxHXgbVzjPjYtWvX4O3tLXlcoVDA3d2d1lEPlZycjDvvvBNhYWE4f/48nn/+eUyePBn79u2DXC6nNdODGY1G/OlPf8KIESMQExMDAM36W3Tt2jWr5yHxMdJ9WVszADBr1iyEhITA398fqampeO6555CWloYNGzYAoDXTE504cQIJCQmorKyEs7MzvvvuO/Tt2xcpKSk96hxDQT0h3dDkyZP5//v374/4+HiEhIRg3bp1cHBw6MQjI4R0V/fddx//f2xsLPr374+IiAjs2LEDEyZM6MQjI51t4cKFOHnypKS3CyGNsbVmLHtwxMbGws/PDxMmTMD58+cRERHR0YdJbgK9e/dGSkoK9Ho9vvnmG8yZMwc7d+7s7MPqcFR+3wV5enpCLpc36N6Ym5sLX1/fTjoqcjNzdXVFr169kJGRAV9fX1RXV6OoqEjyHFo/RCSug8bOMb6+vg0ac9bU1ODGjRu0jggAIDw8HJ6ensjIyABAa6aneuKJJ7Bp0yZs374dgYGB/P3N+Vvk6+tr9TwkPka6J1trxpr4+HgAkJxnaM30LCqVCpGRkRg8eDBWrlyJuLg4vPXWWz3uHENBfRekUqkwePBgbN26lb/PaDRi69atSEhI6MQjIzer0tJSnD9/Hn5+fhg8eDCUSqVk/aSlpSErK4vWDwEAhIWFwdfXV7JGiouLceDAAb5GEhISUFRUhCNHjvDnbNu2DUajkV9kkZ4tOzsbBQUF8PPzA0BrpqdhjOGJJ57Ad999h23btiEsLEzyeHP+FiUkJODEiROSm0FbtmyBTqdD3759O+aFkA7T1JqxJiUlBQAk5xlaMz2b0WhEVVVVzzvHdHanPtIyX331FVOr1Wz16tXs9OnT7LHHHmOurq6S7o2k53rmmWfYjh07WGZmJtuzZw9LSkpinp6eLC8vjzHG2Pz581lwcDDbtm0bO3z4MEtISGAJCQmdfNSkI5WUlLBjx46xY8eOMQDsn//8Jzt27Bi7dOkSY4yxV199lbm6urKNGzey1NRUNnXqVBYWFsYqKir450hOTmYDBw5kBw4cYLt372ZRUVFs5syZnfWSSDtrbM2UlJSwZ599lu3bt49lZmay3377jQ0aNIhFRUWxyspK/jlozfQcjz/+OHNxcWE7duxgOTk5/F95eTl/TlN/i2pqalhMTAybOHEiS0lJYZs3b2ZeXl5s6dKlnfGSSDtras1kZGSwv/zlL+zw4cMsMzOTbdy4kYWHh7PRo0fzz0FrpmdZsmQJ27lzJ8vMzGSpqalsyZIlTBAE9uuvvzLGetY5hoL6Luydd95hwcHBTKVSsWHDhrH9+/d39iGRm8S9997L/Pz8mEqlYgEBAezee+9lGRkZ/PGKigq2YMEC5ubmxhwdHdn06dNZTk5OJx4x6Wjbt29nABr8mzNnDmPMNNZu2bJlzMfHh6nVajZhwgSWlpYm+RwFBQVs5syZzNnZmel0OvbQQw+xkpKSTng1pCM0tmbKy8vZxIkTmZeXF1MqlSwkJIQ9+uijDW4005rpOaytFQDsk08+4c9pzt+iixcvssmTJzMHBwfm6enJnnnmGWYwGDr41ZCO0NSaycrKYqNHj2bu7u5MrVazyMhItnjxYqbX6yWfh9ZMz/Hwww+zkJAQplKpmJeXF5swYQIP6BnrWecYgTHGOq4ugBBCCCGEEEIIIW2F9tQTQgghhBBCCCFdFAX1hBBCCCGEEEJIF0VBPSGEEEIIIYQQ0kVRUE8IIYQQQgghhHRRFNQTQgghhBBCCCFdFAX1hBBCCCGEEEJIF0VBPSGEEEIIIYQQ0kVRUE8IIYQQQgghhHRRFNQTQgghxG4XL16EIAhISUnp7EMhhBBCejQK6gkhhJBuZu7cuRAEocG/5OTkzj60Drdjxw4IgoCioqLOPhRCCCGkXSg6+wAIIYQQ0vaSk5PxySefSN6nVqs76WgIIYQQ0l4oU08IIYR0Q2q1Gr6+vpJ/bm5uAIBZs2bh3nvvlTzfYDDA09MTn332GQBg8+bNGDlyJFxdXeHh4YHbb78d58+ft+sYqqqq8NxzzyEoKAhqtRqRkZH46KOP+OM7d+7EsGHDoFar4efnhyVLlqCmpoY/Hhoain/961+SzzlgwAC89NJL/G1BEPDhhx9i+vTpcHR0RFRUFH744QcApi0C48aNAwC4ublBEATMnTvXrtdACCGE3OwoqCeEEEJ6mNmzZ+PHH39EaWkpf98vv/yC8vJyTJ8+HQBQVlaGRYsW4fDhw9i6dStkMhmmT58Oo9HY7K/z4IMPYu3atXj77bdx5swZfPDBB3B2dgYAXLlyBbfeeiuGDh2K48ePY9WqVfjoo4/wyiuv2P16VqxYgXvuuQepqam49dZbMXv2bNy4cQNBQUH49ttvAQBpaWnIycnBW2+9ZffnJ4QQQm5mVH5PCCGEdEObNm3iAbTo+eefx/PPP49JkybByckJ3333HR544AEAwJdffokpU6ZAq9UCAO666y7Jx3788cfw8vLC6dOnERMT0+TXP3fuHNatW4ctW7YgKSkJABAeHs4ff++99xAUFIR///vfEAQB0dHRuHr1Kp577jksX74cMlnz8w5z587FzJkzAQB/+9vf8Pbbb+PgwYNITk6Gu7s7AMDb2xuurq7N/pyEEEJIV0GZekIIIaQbGjduHFJSUiT/5s+fDwBQKBS45557sGbNGgCmrPzGjRsxe/Zs/vHp6emYOXMmwsPDodPpEBoaCgDIyspq1tdPSUmBXC7HmDFjrD5+5swZJCQkQBAE/r4RI0agtLQU2dnZdr3W/v378/87OTlBp9MhLy/Prs9BCCGEdFWUqSeEEEK6IScnJ0RGRtp8fPbs2RgzZgzy8vKwZcsWODg4SLrj33HHHQgJCcF///tf+Pv7w2g0IiYmBtXV1c36+g4ODq1+DTKZDIwxyfsMBkOD5ymVSsnbgiDYtU2AEEII6cooU08IIYT0QImJiQgKCsLXX3+NNWvWYMaMGTw4LigoQFpaGl544QVMmDABffr0QWFhoV2fPzY2FkajETt37rT6eJ8+fbBv3z5J0L5nzx5otVoEBgYCALy8vJCTk8MfLy4uRmZmpl3HoVKpAAC1tbV2fRwhhBDSVVBQTwghhHRDVVVVuHbtmuRffn6+5DmzZs3C+++/jy1btkhK793c3ODh4YH//Oc/yMjIwLZt27Bo0SK7vn5oaCjmzJmDhx9+GN9//z0yMzOxY8cOrFu3DgCwYMECXL58GU8++STOnj2LjRs34sUXX8SiRYv4fvrx48fj888/x++//44TJ05gzpw5kMvldh1HSEgIBEHApk2bcP36dUlzQEIIIaQ7oKCeEEII6YY2b94MPz8/yb+RI0dKnjN79mycPn0aAQEBGDFiBH+/TCbDV199hSNHjiAmJgZPP/003njjDbuPYdWqVbj77ruxYMECREdH49FHH0VZWRkAICAgAD/99BMOHjyIuLg4zJ8/H4888gheeOEF/vFLly7FmDFjcPvtt+O2227DtGnTEBERYdcxBAQEYMWKFViyZAl8fHzwxBNP2P06CCGEkJuZwOpvViOEEEIIIYQQQkiXQJl6QgghhBBCCCGki6KgnhBCCCGEEEII6aIoqCeEEEIIIYQQQrooCuoJIYQQQgghhJAuioJ6QgghhBBCCCGki6KgnhBCCCGEEEII6aIoqCeEEEIIIYQQQrooCuoJIYQQQgghhJAuioJ6QgghhBBCCCGki6KgnhBCCCGEEEII6aIoqCeEEEIIIYQQQrqo/we6xZ7uKwLS0QAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -217,7 +214,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "## Performance *with* noise\n", + "## Performance *with* backend noise\n", "\n", "Now, let's add noise to our simulation. Here we create a fake device, using `GenericBackendV2`, which has a default noise model. As stated in the introduction, it is also possible to create custom noise models from scratch, but this task is beyond the scope of this notebook.\n", "\n", @@ -235,7 +232,7 @@ "text": [ "NoiseModel:\n", " Basis gates: ['cx', 'delay', 'id', 'measure', 'reset', 'rz', 'sx', 'x']\n", - " Instructions with noise: ['x', 'id', 'sx', 'measure', 'cx']\n", + " Instructions with noise: ['cx', 'id', 'measure', 'x', 'sx']\n", " Qubits with noise: [0, 1, 2, 3, 4]\n", " Specific qubit errors: [('cx', (0, 1)), ('cx', (1, 2)), ('cx', (2, 3)), ('cx', (3, 4)), ('id', (0,)), ('id', (1,)), ('id', (2,)), ('id', (3,)), ('id', (4,)), ('sx', (0,)), ('sx', (1,)), ('sx', (2,)), ('sx', (3,)), ('sx', (4,)), ('x', (0,)), ('x', (1,)), ('x', (2,)), ('x', (3,)), ('x', (4,)), ('measure', (0,)), ('measure', (1,)), ('measure', (2,)), ('measure', (3,)), ('measure', (4,))]\n" ] @@ -267,13 +264,15 @@ "outputs": [], "source": [ "noisy_estimator = AerEstimator(\n", - " backend_options={\n", - " \"method\": \"density_matrix\",\n", - " \"coupling_map\": coupling_map,\n", - " \"noise_model\": noise_model,\n", - " },\n", - " run_options={\"seed\": seed, \"shots\": 1024},\n", - " transpile_options={\"seed_transpiler\": seed},\n", + " options={\n", + " \"default_precision\": 1e-2,\n", + " \"backend_options\": {\n", + " \"method\": \"density_matrix\",\n", + " \"coupling_map\": coupling_map,\n", + " \"noise_model\": noise_model,\n", + " },\n", + " \"run_options\": {\"seed\": seed},\n", + " }\n", ")" ] }, @@ -304,8 +303,8 @@ "name": "stdout", "output_type": "stream", "text": [ - "VQE on Aer qasm simulator (with noise): -1.84320\n", - "Delta from reference energy value is 0.01407\n" + "VQE on Aer qasm simulator (with noise): -1.83629\n", + "Delta from reference energy value is 0.02098\n" ] } ], @@ -329,7 +328,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAGJCAYAAADLxBNqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC7mElEQVR4nOzdd3gUdf4H8PdsTe8hIfTQuxRFKVbsvevZUE89T8+fyunp2b3zUM9e7jzv9MCzY0VRRASlg/Sa0AkE0klPts7vj5nv7My2bMKGtPfrefKYbLbMbmLYz3yaJMuyDCIiIiIiIiLqcExtfQBERERERERE1DIM6omIiIiIiIg6KAb1RERERERERB0Ug3oiIiIiIiKiDopBPREREREREVEHxaCeiIiIiIiIqINiUE9ERERERETUQTGoJyIiIiIiIuqgGNQTERERERERdVAM6omIiKjTkSQJTz75ZMTXvfvuu1v3gJrhySefhCRJbX0YRETUQTCoJyKiTmv37t244447kJubi5iYGCQlJWHSpEl49dVX0dDQ0NaHR8fQ8uXL8eSTT6KysrKtD4WIiCiqLG19AERERK1h7ty5uPLKK2G323HjjTdixIgRcDqdWLp0KR544AFs3boVb7/9dlsfJrWShoYGWCy+tznLly/HU089hWnTpiElJaXtDiwCjz76KB566KG2PgwiIuogGNQTEVGns3fvXlxzzTXo06cPFi5ciO7du2vfu+uuu7Br1y7MnTu3DY/w6DU2NsJms8FkYtFdMDExMW19CC1msVgMJySIiIjC4TsBIiLqdJ5//nnU1tbinXfeMQT0woABA/B///d/2tdutxt/+ctf0L9/f9jtdvTt2xd//vOf4XA4DLfr27cvLrjgAixduhQnnHACYmJikJubi/fee0+7zpo1ayBJEmbNmhXwuD/88AMkScK3336rXVZYWIhbbrkFWVlZsNvtGD58ON59913D7X7++WdIkoSPP/4Yjz76KHr06IG4uDhUV1cDAGbPno1hw4YhJiYGI0aMwJdffolp06ahb9++hvvxer145ZVXMHz4cMTExCArKwt33HEHjhw50uznKVRWVuK+++5D3759Ybfb0bNnT9x4440oKyvTruNwOPDEE09gwIABsNvt6NWrFx588MGA19ffa6+9BrPZbCiZf/HFFyFJEu6//37tMo/Hg8TERPzpT3/SLtP31D/55JN44IEHAAD9+vWDJEmQJAn79u0zPN5XX32FESNGaD+HefPmhT0+wPez+fTTT/HMM8+gZ8+eiImJwRlnnIFdu3YFXH/27NkYN24cYmNjkZGRgeuvvx6FhYWG6wTrqf/xxx8xefJkpKSkICEhAYMHD8af//xnw3Va+joTEVHHxtPARETU6XzzzTfIzc3FxIkTI7r+b3/7W8yaNQtXXHEFpk+fjlWrVmHGjBnYvn07vvzyS8N1d+3ahSuuuAK33norbrrpJrz77ruYNm0axo0bh+HDh2P8+PHIzc3Fp59+iptuuslw208++QSpqak4++yzAQDFxcU48cQTtUFtmZmZ+P7773Hrrbeiuroa9957r+H2f/nLX2Cz2fDHP/4RDocDNpsNc+fOxdVXX42RI0dixowZOHLkCG699Vb06NEj4HnecccdmDlzJm6++Wbcc8892Lt3L9544w2sX78ey5Ytg9Vqjfh5AkBtbS2mTJmC7du345ZbbsHYsWNRVlaGOXPm4ODBg8jIyIDX68VFF12EpUuX4vbbb8fQoUOxefNmvPzyy9ixYwe++uqrkD+XKVOmwOv1YunSpbjgggsAAEuWLIHJZMKSJUu0661fvx61tbU4+eSTg97PZZddhh07duCjjz7Cyy+/jIyMDABAZmamdp2lS5fiiy++wO9//3skJibitddew+WXX46CggKkp6eHPEbh2Wefhclkwh//+EdUVVXh+eefx3XXXYdVq1Zp1xGv/fHHH48ZM2aguLgYr776KpYtW4b169eHbAvYunUrLrjgAowaNQpPP/007HY7du3ahWXLlmnXOZrXmYiIOjiZiIioE6mqqpIByBdffHFE19+wYYMMQP7tb39ruPyPf/yjDEBeuHChdlmfPn1kAPLixYu1y0pKSmS73S5Pnz5du+zhhx+WrVarXFFRoV3mcDjklJQU+ZZbbtEuu/XWW+Xu3bvLZWVlhse+5ppr5OTkZLm+vl6WZVletGiRDEDOzc3VLhNGjhwp9+zZU66pqdEu+/nnn2UAcp8+fbTLlixZIgOQP/jgA8Pt582bF3B5pM/z8ccflwHIX3zxhezP6/XKsizL//vf/2STySQvWbLE8P233npLBiAvW7Ys4LaCx+ORk5KS5AcffFC7z/T0dPnKK6+UzWaz9pxfeukl2WQyyUeOHNFuC0B+4okntK///ve/ywDkvXv3BjwOANlms8m7du3SLtu4caMMQH799ddDHp8s+342Q4cOlR0Oh3b5q6++KgOQN2/eLMuyLDudTrlbt27yiBEj5IaGBu163377rQxAfvzxx7XLnnjiCVn/Fu3ll1+WAcilpaUhj+NoXmciIurYWH5PRESdiihJT0xMjOj63333HQAYyrkBYPr06QAQ0Hs/bNgwTJkyRfs6MzMTgwcPxp49e7TLrr76arhcLnzxxRfaZfPnz0dlZSWuvvpqAIAsy/j8889x4YUXQpZllJWVaR9nn302qqqqsG7dOsNj33TTTYiNjdW+PnToEDZv3owbb7wRCQkJ2uWnnHIKRo4cabjt7NmzkZycjDPPPNPwWOPGjUNCQgIWLVrU7Of5+eefY/To0bj00ksDXldRPj579mwMHToUQ4YMMTzu6aefDgABj6tnMpkwceJELF68GACwfft2lJeX46GHHoIsy1ixYgUAJXs/YsSIoxqAN3XqVPTv31/7etSoUUhKSjI833Buvvlm2Gw27Wvx2onbr1mzBiUlJfj9739v6Pc///zzMWTIkLAzHsTz+vrrr+H1eoNe52heZyIi6tgY1BMRUaeSlJQEAKipqYno+vv374fJZMKAAQMMl2dnZyMlJQX79+83XN67d++A+0hNTTX0pY8ePRpDhgzBJ598ol32ySefICMjQwuySktLUVlZibfffhuZmZmGj5tvvhkAUFJSYnicfv36BRw7gIBjD3bZzp07UVVVhW7dugU8Xm1tbcBjRfI8d+/ejREjRgRcz/9xt27dGvCYgwYNCvoc/U2ZMgVr165FQ0MDlixZgu7du2Ps2LEYPXq0VoK/dOlSwwmIlojk+Tbn9qmpqQCg3V78rAYPHhxw2yFDhgT8nuldffXVmDRpEn77298iKysL11xzDT799FNDgH+0rzMREXVc7KknIqJOJSkpCTk5OdiyZUuzbuc/mCwUs9kc9HJZlg1fX3311XjmmWdQVlaGxMREzJkzB9dee6021VwEZNdff31A770watQow9f6LH1zeb1edOvWDR988EHQ7+v7y4HIn2ckjzty5Ei89NJLQb/fq1evsLefPHkyXC4XVqxYgSVLlmjB+5QpU7BkyRLk5eWhtLT0qIP6o32+0Xq9gomNjcXixYuxaNEizJ07F/PmzcMnn3yC008/HfPnz4fZbD7q15mIiDouBvVERNTpXHDBBXj77bexYsUKnHTSSWGv26dPH3i9XuzcuRNDhw7VLi8uLkZlZSX69OnTomO4+uqr8dRTT+Hzzz9HVlYWqqurcc0112jfz8zMRGJiIjweD6ZOndqixxDHFmzKuv9l/fv3x4IFCzBp0qSjOjngf59NnTzp378/Nm7ciDPOOCPiEyd6J5xwAmw2G5YsWYIlS5ZoU+xPPvlk/Pvf/8ZPP/2kfR1OSx47msTPKj8/X6vWEPLz85v8PTOZTDjjjDNwxhln4KWXXsLf/vY3PPLII1i0aJHWOnA0rzMREXVcLL8nIqJO58EHH0R8fDx++9vfori4OOD7u3fvxquvvgoAOO+88wAAr7zyiuE6IuN5/vnnt+gYhg4dipEjR+KTTz7BJ598gu7duxsCT7PZjMsvvxyff/550MC4tLS0ycfIycnBiBEj8N5776G2tla7/JdffsHmzZsN173qqqvg8Xjwl7/8JeB+3G63YW1cpC6//HJs3LgxYEMA4MtQX3XVVSgsLMS///3vgOs0NDSgrq4u7GPExMTg+OOPx0cffYSCggJDpr6hoQGvvfYa+vfvH3R1oV58fDwAtOh5RsP48ePRrVs3vPXWW4YVc99//z22b98e9vesoqIi4LLjjjsOALT7OtrXmYiIOi5m6omIqNPp378/PvzwQ1x99dUYOnQobrzxRowYMQJOpxPLly/H7NmzMW3aNABK//tNN92Et99+G5WVlTjllFOwevVqzJo1C5dccglOO+20Fh/H1VdfjccffxwxMTG49dZbYTIZz6U/++yzWLRoESZMmIDbbrsNw4YNQ0VFBdatW4cFCxYEDeb8/e1vf8PFF1+MSZMm4eabb8aRI0fwxhtvYMSIEYZA/5RTTsEdd9yBGTNmYMOGDTjrrLNgtVqxc+dOzJ49G6+++iquuOKKZj2/Bx54AJ999hmuvPJK3HLLLRg3bhwqKiowZ84cvPXWWxg9ejRuuOEGfPrpp/jd736HRYsWYdKkSfB4PMjLy8Onn36KH374AePHjw/7OFOmTMGzzz6L5ORkbQBgt27dMHjwYOTn52s/y3DGjRsHAHjkkUdwzTXXwGq14sILL9SC/dZmtVrx3HPP4eabb8Ypp5yCa6+9Vltp17dvX9x3330hb/v0009j8eLFOP/889GnTx+UlJTgH//4B3r27InJkycDQFReZyIi6qDabvA+ERFR69qxY4d82223yX379pVtNpucmJgoT5o0SX799dflxsZG7Xoul0t+6qmn5H79+slWq1Xu1auX/PDDDxuuI8vKqrfzzz8/4HFOOeUU+ZRTTgm4fOfOnTIAGYC8dOnSoMdYXFws33XXXXKvXr1kq9UqZ2dny2eccYb89ttva9cRa9Nmz54d9D4+/vhjeciQIbLdbpdHjBghz5kzR7788svlIUOGBFz37bfflseNGyfHxsbKiYmJ8siRI+UHH3xQPnToUIueZ3l5uXz33XfLPXr0kG02m9yzZ0/5pptuMqzpczqd8nPPPScPHz5cttvtcmpqqjxu3Dj5qaeekquqqoI+J725c+fKAORzzz3XcPlvf/tbGYD8zjvvBNwGfivtZFmW//KXv8g9evSQTSaTYb0dAPmuu+4KuI8+ffrIN910U9hjC/Wz2bt3rwxA/u9//2u4/JNPPpHHjBkj2+12OS0tTb7uuuvkgwcPGq7jv9Lup59+ki+++GI5JydHttlsck5OjnzttdfKO3bsMNzuaF9nIiLqmCRZjsIEFyIiImpXjjvuOGRmZuLHH39s60MhIiKiVsSeeiIiog7M5XLB7XYbLvv555+xceNGnHrqqW1zUERERHTMMFNPRETUge3btw9Tp07F9ddfj5ycHOTl5eGtt95CcnIytmzZgvT09LY+RCIiImpFHJRHRETUgaWmpmLcuHH4z3/+g9LSUsTHx+P888/Hs88+y4CeiIioC2CmnoiIiIiIiKiDYk89ERERERERUQfFoJ6IiIiIiIiog2JPfRO8Xi8OHTqExMRESJLU1odDREREREREnZwsy6ipqUFOTg5MpvC5eAb1TTh06BB69erV1odBREREREREXcyBAwfQs2fPsNdhUN+ExMREAMqLmZSU1MZHQ0RERERERJ1ddXU1evXqpcWj4TCob4IouU9KSmJQT0RERERERMdMJC3gHJRHRERERERE1EExqCciIiIiIiLqoBjUExEREREREXVQDOqJiIiIiIiIOigG9UREREREREQdFIN6IiIiIiIiog6KQT0RERERERFRB8WgnoiIiIiIiKiDYlBPRERERERE1EExqCeiJrk8XqzdfwQuj7etD4WIiIiIiHQY1BNRk95duheX/3M5PlxV0NaHQkREREREOgzqiahJh6saAQC7Smrb+EiIiIiIiEiPQT0RNcntVcruKxtcbXwkRERERESkx6CeiJokWukr651teyBERERERGTAoJ6ImuT1ygCAIwzqiYiIiIjaFQb1RNQktxrUV9az/J6IiIiIqD1hUE9ETfLKDOqJiIiIiNojBvVE1CSPmqmvdbjhdHNXPRERERFRe8Ggnoia5FEz9QBQxQn4RERERETtBoN6ImqSx+ML6jkBn4iIiIio/WBQT0RN0mfqj7CvnoiIiIio3WBQT0RNEivtAGbqiYiIiIjaEwb1RNQkfaaeE/CJiIiIiNoPBvVE1CSPV19+z0w9EREREVF7waCeiJqkD+orOf2eiIiIiKjdYFBPRE3ysKeeiIiIiKhdYlBPRE0ylN/XMVNPRERERNRedJigvqKiAtdddx2SkpKQkpKCW2+9FbW1tU3ebsWKFTj99NMRHx+PpKQknHzyyWhoaDgGR0zUeRgG5TUwU09ERERE1F50mKD+uuuuw9atW/Hjjz/i22+/xeLFi3H77beHvc2KFStwzjnn4KyzzsLq1avx66+/4u6774bJ1GGeNlG7YFxpx0w9EREREVF7YWnrA4jE9u3bMW/ePPz6668YP348AOD111/HeeedhxdeeAE5OTlBb3fffffhnnvuwUMPPaRdNnjw4GNyzESdiT5Tz+n3RERERETtR4dIWa9YsQIpKSlaQA8AU6dOhclkwqpVq4LepqSkBKtWrUK3bt0wceJEZGVl4ZRTTsHSpUvDPpbD4UB1dbXhg6irc3uYqSciIiIiao86RFBfVFSEbt26GS6zWCxIS0tDUVFR0Nvs2bMHAPDkk0/itttuw7x58zB27FicccYZ2LlzZ8jHmjFjBpKTk7WPXr16Re+JEHVQXl2m3uH2osHpacOjISIiIiIioU2D+oceegiSJIX9yMvLa9F9e71eAMAdd9yBm2++GWPGjMHLL7+MwYMH49133w15u4cffhhVVVXax4EDB1r0+ESdiX76PcASfCIiIiKi9qJNe+qnT5+OadOmhb1Obm4usrOzUVJSYrjc7XajoqIC2dnZQW/XvXt3AMCwYcMMlw8dOhQFBQUhH89ut8Nut0dw9ERdh19Mj8p6F3JSYtvmYIiIiIiISNOmQX1mZiYyMzObvN5JJ52EyspKrF27FuPGjQMALFy4EF6vFxMmTAh6m759+yInJwf5+fmGy3fs2IFzzz336A+eqAtxq5UvQiUz9URERERE7UKH6KkfOnQozjnnHNx2221YvXo1li1bhrvvvhvXXHONNvm+sLAQQ4YMwerVqwEAkiThgQcewGuvvYbPPvsMu3btwmOPPYa8vDzceuutbfl0iDocEdPbLcqfjCMclkdERERE1C50iJV2APDBBx/g7rvvxhlnnAGTyYTLL78cr732mvZ9l8uF/Px81NfXa5fde++9aGxsxH333YeKigqMHj0aP/74I/r3798WT4GowxI99RkJdhRWNqCygZl6IiIiIqL2QJJlWW76al1XdXU1kpOTUVVVhaSkpLY+HKI2Mf6vC1BW68ConsnYdLAKD5w9GHedNqCtD4uIiIiIqFNqThzaIcrviahtiZV26fE2AMCROmbqiYiIiIjaAwb1RNQkUX6fnqBshqhsYE89EREREVF7wKCeiJrk1YJ6JVPP6fdERERERO0Dg3oiapJbDMqLVzL1nH5PRERERNQ+MKgnoiZ51J76tHhm6omIiIiI2hMG9UTUpMDye2bqiYiIiIjaAwb1RNQkkanP0A3K4zZMIiIiIqK2x6CeiMLyemWI+F1k6j1eGTUOdxseFRERERERAQzqiagJHl1GPs5qQazVDACorGMJPhERERFRW2NQT0RhiR31AGA2S0iJswIAKhs4LI+IiIiIqK0xqCeisAxBvSQhJU4pwedaOyIiIiKitsegnojC0pffm0xASqyaqedaOyIiIiKiNsegnojC8uoy9RaTCYkxFgBATSMH5RERERERtTUG9UQUlr783iQBiTFKpp5BPRERERFR22NQT0RhiaDeJAGSJOky9eypJyIiIiJqawzqiSgs0VNvNkkAgCQ1qK/lnnoiIiIiojbHoJ6IwhKZehHUJ7CnnoiIiIio3WBQT0Rheb3Kf82SEtT7eupZfk9ERERE1NYY1BNRWG41qjeZRFCvZOqrmaknIiIiImpzDOqJKCyvX089p98TEREREbUfDOqJKCyPWn5vET31djEoj+X3RERERERtjUE9EYWlld9Lxun3zNQTEREREbU9BvVEFJY2KC9I+b2sluYTEREREVHbYFBPRGH576kXg/I8XhkNLk+bHRcRERERETGoJ6Im+O+pj7OZoX7KEnwiIiIiojbGoJ6IwtKCerWnXpIkbVgeg3oiIiIiorbFoJ6IwhJBvdhTD+j76jkBn4iIiIioLTGoJ6KwxJ56iyGoZ6aeiIiIiKg9YFBPRGFpmXrJF9Qn6SbgExERERFR22FQT0Rh+Q/KA/SZepbfExERERG1JQb1RBRWsJ76BDWor3UwU09ERERE1JY6TFBfUVGB6667DklJSUhJScGtt96K2trasLcpKirCDTfcgOzsbMTHx2Ps2LH4/PPPj9ERE3UOnjA99dUsvyciIiIialMdJqi/7rrrsHXrVvz444/49ttvsXjxYtx+++1hb3PjjTciPz8fc+bMwebNm3HZZZfhqquuwvr164/RURN1fP4r7QBOvyciIiIiai86RFC/fft2zJs3D//5z38wYcIETJ48Ga+//jo+/vhjHDp0KOTtli9fjj/84Q844YQTkJubi0cffRQpKSlYu3btMTx6oo7NV37vu4zT74mIiIiI2ocOEdSvWLECKSkpGD9+vHbZ1KlTYTKZsGrVqpC3mzhxIj755BNUVFTA6/Xi448/RmNjI0499dSQt3E4HKiurjZ8EHVlYqWdYVCenYPyiIiIiIjagw4R1BcVFaFbt26GyywWC9LS0lBUVBTydp9++ilcLhfS09Nht9txxx134Msvv8SAAQNC3mbGjBlITk7WPnr16hW150HUEfmm3/v+XIjyew7KIyIiIiJqW20a1D/00EOQJCnsR15eXovv/7HHHkNlZSUWLFiANWvW4P7778dVV12FzZs3h7zNww8/jKqqKu3jwIEDLX58os7ArfXU+y5j+T0RERERUftgacsHnz59OqZNmxb2Orm5ucjOzkZJSYnhcrfbjYqKCmRnZwe93e7du/HGG29gy5YtGD58OABg9OjRWLJkCd5880289dZbQW9nt9tht9ub/2SIOilv0D31YlAeg3oiIiIiorbUpkF9ZmYmMjMzm7zeSSedhMrKSqxduxbjxo0DACxcuBBerxcTJkwIepv6+noAgMlkLEYwm83wer1HeeREXYcnWE99jLGnXpZl/P2HfGQk2HHL5H7H/iCJiIiIiLqoDtFTP3ToUJxzzjm47bbbsHr1aixbtgx33303rrnmGuTk5AAACgsLMWTIEKxevRoAMGTIEAwYMAB33HEHVq9ejd27d+PFF1/Ejz/+iEsuuaQNnw1RxxIsU59gN+6pL6ioxz9+3o0Z32+HrJ4EICIiIiKi1tchgnoA+OCDDzBkyBCcccYZOO+88zB58mS8/fbb2vddLhfy8/O1DL3VasV3332HzMxMXHjhhRg1ahTee+89zJo1C+edd15bPQ2iDkf01Jt0e+qT1PJ7p9sLh9uDfeXK/3cuj4w6p+fYHyQRERERURfVpuX3zZGWloYPP/ww5Pf79u0bkCEcOHAgPv/889Y+NKJOzRMsUx/j+9NR2+hGQUW99nVNo0vL5BMRERERUevqMJl6ImobwfbUm00S4m1mAMqwvILyOu17HJ5HRERERHTsMKgnorB8K+0kw+UJurV2+8uNmXoiIiIiIjo2GNQTUVjBBuUB+rV2LkP5fTUz9URERERExwyDeiIKy6NugDQFBPW+CfiGoL6BmXoiIiIiomOFQT0RhSX21FtCZOr3l9ehXjfxnj31RERERETHDoN6IgrL41VS9SYpeKZ+66Fqw+UM6omIiIiIjh0G9UQUlii/D+ipV9fWbTlUZbicg/KIiIiIiI4dBvVEFJY3ZPm9EtTvLaszXM5MPRERERHRscOgnojC8qjT7wMH5Sk99WrMj5Q43zR8IiIiIiI6NhjUE1FYnhB76kWmXhiRkwyAmXoiIiIiomOJQT0RhRUqU59gNwb1w3OSAAQG9WLPPRERERERRR+DeiIKq6mVdsLwHkqmvlpXfr98dxlGPTUfn/56oJWPkoiIiIioa2JQT0RheTxq+b1fUJ+kK79PjLGgV2osAGOmftmuMtQ63Ji/regYHCkRERERUdfDoJ6IwhKZ+sA99b5Mfe+0OCTFKl/rM/UVdU4AwP7y+tY+TCIiIiKiLolBPRGFJXrizX5/LfSD8vqkx2lf1zrc2m3KatWgvqKevfVERERERK2AQT0RhSUy9WaT8c9Fgi6o75UWhyTdirs6p1KCX17rAAA43V4U1zQei8MlIiIiIupSGNQTUVhubaWd8XJDpj4tHnaLCVb1SqKvvlwtvweAfWUswSciIiIiijYG9UQUlq/83hjV2y1m2CzKn5A+6XGQJEnrs9eC+lpfUF9QUXcsDpeIiIiIqEthUE9EYYXaUw8Ag7MSEWM1YUh2IgBf9r6m0YVGlwe1Dt8k/H0clkdEREREFHWWpq9CRF2ZN8SeegD4+PYTUedwIz3BDkAf1Lu1yfdCAYN6IiIiIqKoY1BPRGGJnnr/lXYAEG+3IN6u21dv962105feA8B+lt8TEREREUUdy++JKCxPiJ76YESmvrrRjbI6ZfJ9rNUMANhfVg9Z5lo7IiIiIqJoYlBPRGF55eYE9WJQni9TP7JHsnKZw40j9a5WOkoiIiIioq6JQT0RheX2RB7UJ8Xqe+qVTH2P1Fh0T44BAOwrZwk+EREREVE0MagnorC0TH2Qnnp/wTL16fE29E6LA8BheURERERE0cagnojCCrfSzl+Sbvp9mQjqE+zomx4PgJl6IiIiIqJo4/R7IgpLrb4PutLOn36lncjwp8fbtM+ZqSciIiIiii4G9UQUlsfrBRBZpl5fft/oUm6XnmDT1t4xU09EREREFF0svyfqog4eqccvO0oDLj9QUY+aRt+Ueo8Sm0fYU6+utGtwo6LOV37fJ13tqa9gpp6IiIiIKJoY1BN1Ufd/shE3vbsa+UU12mUl1Y047YWfMe2/v2qXeZu1p96XqS+rVabfp8fb0FsN6stqnah1uKP2HIiIiIiIujoG9URdVFF1IwCgtMahXVZY2QC3VzZk1D3N2lOvZOpLax1wuH3l90kxVqTF2wAA+1mCT0REREQUNR0mqH/mmWcwceJExMXFISUlJaLbyLKMxx9/HN27d0dsbCymTp2KnTt3tu6BEnUQDrcHAOBSe+YBwK1m5V0e32WeZmXqLertldvE2cyIsymXiRL8/RyWR0REREQUNR0mqHc6nbjyyitx5513Rnyb559/Hq+99hreeustrFq1CvHx8Tj77LPR2NjYikdK1DGITLpbjLfXfe5yBwb1pgh66pPU8ntBZOcBoGeqEtQfqmxo4RETEREREZG/DjP9/qmnngIAzJw5M6Lry7KMV155BY8++iguvvhiAMB7772HrKwsfPXVV7jmmmta61CJOoRGl5Kpd3v0mXrlc5cu0BdBfSQr7ewWE2xmE5weUXpv176XEqsE/NWN7KknIiIiIoqWDpOpb669e/eiqKgIU6dO1S5LTk7GhAkTsGLFipC3czgcqK6uNnwQdTayLGuZepc3MFPv9Hghq730zSm/lyRJK8EHgAxdpt43Gd8VcDsiIiIiImqZThvUFxUVAQCysrIMl2dlZWnfC2bGjBlITk7WPnr16tWqx0nUFlweGWrMbsjUuzyB/fViUF4k5fcADEF9eoIvqE/SMvUM6omIiIiIoqVNg/qHHnoIkiSF/cjLyzumx/Twww+jqqpK+zhw4MAxfXyiY0EMyQP8eup1WXsR4DdnpR3gW2sHGMvvk7R1dyy/JyIiIiKKljbtqZ8+fTqmTZsW9jq5ubktuu/s7GwAQHFxMbp3765dXlxcjOOOOy7k7ex2O+x2e8jvE3UGDndgRh4wZupdbhmwNW+lHeCXqWf5PRERERFRq2rToD4zMxOZmZmtct/9+vVDdnY2fvrpJy2Ir66uxqpVq5o1QZ+oMzIG9brPdVl7MezO4zmKoD5I+T0z9URERERE0dNheuoLCgqwYcMGFBQUwOPxYMOGDdiwYQNqa2u16wwZMgRffvklAGVg17333ou//vWvmDNnDjZv3owbb7wROTk5uOSSS9roWRA1z4GKepz76hJ8se5gVO9XTL4HjJPu9QG+yNprmfqIe+p15ffxdt3laqaePfVERERERFHTYVbaPf7445g1a5b29ZgxYwAAixYtwqmnngoAyM/PR1VVlXadBx98EHV1dbj99ttRWVmJyZMnY968eYiJiTmmx07UUst2lWH74Wp8veEQLhvbM2r363Dps/P6QD6wFF/bUx/hKcCQmXo12Gf5PRERERFR9HSYoH7mzJlN7qgXK7gESZLw9NNP4+mnn27FI2t/vF4Zbq8Mm6XpKKzW4cbGA5WY0C8NFnOHKdzoMkRgrc+gR4NhUJ43cCe98tjK515Z7KmP7PdDn6nP0A/Ki1X+3NQ63PB6ZZgiLOcnIiIiIqLQGMV1QrfM+hWTnluIOkfTvcsvzs/Hdf9Zhe+2hF7zR23HqQbW+gx6NOh76l0hVtr5Tig0L1OfpMvUp8YFZuq9MlDnZF89EREREVE0MKjvhNbuP4LSGgf2l9c3ed2iqkYAwKHKhtY+LGoBLbD2RDtTH3w4nv8kfFn27bOPtKdeBO/JsVZDtYjdYoJNrQbhsDwiIiIiouhgUN8JiUCwQTcMranrNoa4rtcr49GvNuOztdEd1EaRcbmN2fJocegH5XlD9dd7DeX4zZ1+r19nByjtMByWR0REREQUXQzqOyFRqh0qUNcTGdtGV/BM8JZDVXh/ZQFe/nFH9A6QIiZOukS7/L4xRKZe/zhOt2w4mRBpUD+iRzLibWZMGpAR8D2x1q66gZl6IiIiIqJo6DCD8igyHq+sZVcbnEefqa+oc4b9PrUul/qzjHr5ve7nqc/G+6+088rND+p7pcVh3eNnwm4xB3xP9NvXMFNPRERERBQVzNR3MvpBZ5GU3zvVjK2+x1qvSl0/5gzxfWpdrVZ+H2JQnttvpZ0+4DdF2FMPIGhAD/gm47P8noiIiIgoOhjUdzLNDepFubUjxHW1oD7KmWKKjK/8/tgMyvPfU6/fpGeJwgo6sdaO5fdERERERNHBoL6T0QdlkZTMa+X37uDXrax3Ga5HraewsgEFfhsLxEo7d9RX2oUYlKf73OmRDV9HWn4fjpiMz/J7IiIiIqLoaFFQX1dXF+3joCjR915H0lPvbGJQngjqvbKx95qiy+OVcfEby3D+a0sMJ2N8u+Kj3VMfwUo7txcetadekpTp9UfLN/2emXoiIiIiomhoUVCflZWFW265BUuXLo328dBRcja3p94jeurDl98D7KtvTeV1DpTVOlDjcBt2uIugPtqvvb4ywx1mpZ34VqQ76pvCTD0RERERUXS1KKh///33UVFRgdNPPx2DBg3Cs88+i0OHDkX72KgF9OX3zdtTH2pQnlP7nH31rae0xqF97vIEDrGL/p56/WPoMvX+g/LUTH00Su8BXaaePfVERERERFHRoqD+kksuwVdffYXCwkL87ne/w4cffog+ffrgggsuwBdffAG3m2/Y24o+IGxsVvl9+J56//um6NIH9fqsvNPdWj31IbLzupMHTo8Mjye6Qb22p56ZeiIiIiKiqDiqQXmZmZm4//77sWnTJrz00ktYsGABrrjiCuTk5ODxxx9HfX1903dCUaUPCJsz/T5UUK8vv2dQ33qaytS7ot1Tbyi/12fqjY+tZeqjXH7PnnoiIiIiouiwHM2Ni4uLMWvWLMycORP79+/HFVdcgVtvvRUHDx7Ec889h5UrV2L+/PnROlaKgHGlXdOBoK+nPsSgPPbUHxOltb6gPtgOeVkdVBitjHlEK+3cvj31piiX39c0MFNPRERERBQNLQrqv/jiC/z3v//FDz/8gGHDhuH3v/89rr/+eqSkpGjXmThxIoYOHRqt46QIGXrqmyi/l2U57PR7WZZRxfL7Y6KkOnymXnxuNpmj8ngOV4hBeV6/TL0a1EdjRz2gL78Pn6mXZRkbDlRicHYi4mxHde6RiIiIiKhTa1H5/c0334ycnBwsW7YMGzZswN13320I6AEgJycHjzzySDSOkZrB0FPfRPm9vuzaEeS6jS6vYTie6O+m6NNn6p3uEEPsojgszxHqMTx+PfWtlKlvqqf+lx2luPQfy/H0N9ui8rhERERERJ1Vi1Jghw8fRlxcXNjrxMbG4oknnmjRQVHLNWelnT54bAyy0q5SN/keYKa+NRl76o0T6AV3FF9/w556b+jKAG+0e+rVTL3T7UWjy4MYa/DKgz2ldQCA/eWcy0FEREREFE6Lgnq3243q6uqAyyVJgt1uh81mO+oDo5Zx6QflNVF+bwzg5ICebf3ke4Ar7VpTmX76vcf3c/P/GUWLYVCe7n49Xr+Vdt7oTr9PsFkgScqMgJpGd8igXgxorHdyoB4RERERUTgtKr9PSUlBampqwEdKSgpiY2PRp08fPPHEE/BGeWI3NU0f+DVVfu8fpDv8svVVfsPMXByU12qMK+2CD65zR/H/p2DD+ADjSjuXx6uV/EcrqDeZJCTYmy7BF797dRGsZSQiIiIi6spalKmfOXMmHnnkEUybNg0nnHACAGD16tWYNWsWHn30UZSWluKFF16A3W7Hn//856geMIXnamH5PaD00MfpiiyYqT82Gpwe1Dh8GWnjHIPgU+qPlmH6fYiVdk637Cu/j1JQDyhr7Woa3agJMyyvWmTqHczUExERERGF06KgftasWXjxxRdx1VVXaZddeOGFGDlyJP71r3/hp59+Qu/evfHMM88wqD/GmhPU+5dz+2f2qwJ66jkorzXos/SAsSIi1CT8o6X/WbtDDMpze3Ur7aIX0/uG5YVZaycy9bUM6omIiIiIwmpR+f3y5csxZsyYgMvHjBmDFStWAAAmT56MgoKCozs6arbmrLTzDxL9d9X7l99zT33rKK1tNHwdKpBvren3hkF5fkPzvNpKuxb9qQjKt9au6aC+3umBLPNkEhERERFRKC16p96rVy+88847AZe/88476NWrFwCgvLwcqampR3d01Gz6INDh9gVlwQSW3xtPAviX30d7+v3CvGJc8c/l2FtWF9X77Wj8M/XOEMPxovn6OyLI1DvdsnYiIVor7QCl/B5A2PJ7EdS7vTLbPoiIiIiIwmhR+f0LL7yAK6+8Et9//z2OP/54AMCaNWuQl5eHzz77DADw66+/4uqrr47ekVJE/AO/RrcHcbbgP2b/YCkgqPfP1Ec5uPp49QGs2X8EC/NKcOvkflG9744kIKjXnWxxelq/pz7U2jyXxwuP1lMftYdGUjPK7wGg3uGB3RJ8Sj4RERERUVfXoqD+oosuQn5+Pv71r38hPz8fAHDuuefiq6++Qt++fQEAd955Z9QOkiLnH3g3OEMH9f7T7Btdx7b8vqxWCWb9p+53NSUhMvWyLPuV30fn9Xfrptor96urBvCbfi8qPaK1px5oXvk9ANQ53UiN55pMIiIiIqJgmh3Uu1wunHPOOXjrrbcwY8aM1jgmOgoutzGbG25YXpMr7Vq5/L6sVhnE53/MXU3goDzl9fB4ZejbyaM1qND/524svzdm6qO90g7wDcoLVX7f6PIYKgnqHF37pA8RERERUTjNLqq1Wq3YtGlTaxwLRUFA+X2YoD7wusEz9alx1qDXP1oiU+/0dO2gTQT1MVblf0fxevgH8dEqv/f/OeuH4+mz9k6P7MvUt0JPfajye//L65ycgE9EREREFEqLOmWvv/76oIPyqO35B94NztCBuH85vX+mvlJdaZeZaFfvO3oZ9XqnG/XqdP6uPlW/VD250SMlFoDvdXZ5QwffR8P/5yzL0FbX6U8cuNy+nnpTVMvvw2fq/ds+6pmpJyIiIiIKqUU99W63G++++y4WLFiAcePGIT4+3vD9l156KSoHR80X0FMftvw+/J56Mf0+M9GOHcW1ASvvjkZZjVP7PJonCzoikanPSYnF7tI67SSH/8yDaGXqHa7An6PL44XZZDaut/P49tRHt/w+fE+9f1DPTD0RERERUWgtCuq3bNmCsWPHAgB27Nhh+J4UxYweNV9Apj5c+X1Apt73tccra5nUzASRqY9eUC+y0/6P29V4vbLWhtAzVcnUixMzgeX30crUK/cTbzOjTq2WUPr35YAVeq0R1PvK74MH6/7Bfp2DQT0RERERUSgtCuoXLVoU7eNo0jPPPIO5c+diw4YNsNlsqKysDHt9l8uFRx99FN999x327NmD5ORkTJ06Fc8++yxycnKOzUG3gYBBec7IB+XpM/X6vuYMEdRHM1OvC+q7cvl9ZYNLC6S7J6tBvcjU+/18orVSUJTfx9stWlDv9shaAC+4dJe1zqC8SDP1LL8nIiIiIgrlqLZP79q1Cz/88AMaGhoAKCu4WovT6cSVV14Z8aq8+vp6rFu3Do899hjWrVuHL774Avn5+bjooota7RjbA/++65YOyhM76hPsFsTZzEGvfzT0QX20B/B1JKL0Pi3eFvA6h5tSfzS0TL3dd07P5TWuuROP7xV76ltlpV2Invp6/556ZuqJiIiIiEJpUaa+vLwcV111FRYtWgRJkrBz507k5ubi1ltvRWpqKl588cVoHyeeeuopAMDMmTMjun5ycjJ+/PFHw2VvvPEGTjjhBBQUFKB3797RPsR2wb9kO2xPfcCeet91RbY0OdYKq1lMZW+dnvqunKkXQX1mgh02i/o6h8jUR2tPvfg52y0mWEwS3F4Zbo8c8HhK+b3yeXTL75U/O7UONzxeOeC+q/zK8pmpJyIiIiIKrUWZ+vvuuw9WqxUFBQWIi4vTLr/66qsxb968qB1ctFVVVUGSJKSkpIS8jsPhQHV1teGjI/EvkW9e+b0uU1+vBN3JsVZYtWAzepUY5XW68vuunKmvbQSgDCO0qSdPRHDt30oRrYGCYlCe3WrWAmqXxxtQCeBye+FRTyS0xqA8AKgNkq0PnH7PTD0RERERUSgtCurnz5+P5557Dj179jRcPnDgQOzfvz8qBxZtjY2N+NOf/oRrr70WSUlJIa83Y8YMJCcnax+9evU6hkd59ERAKKqlww/KMwZx+lVnIrBKibMGBJvRwPJ7hZapT7RrFRGiPD6w/D66g/LsFpP2mG6vHLhCT9dTb4piUG+zmBBjVR432AR88bsn2hE4/Z6IiIiIKLQWBfV1dXWGDL1QUVEBu90e8f089NBDkCQp7EdeXl5LDtHA5XLhqquugizL+Oc//xn2ug8//DCqqqq0jwMHDhz14x9LIhBMVPulW9pTbyi/t7RCUK8rv+/K0+9Lqn1Bvc3vdQ4sv49WT73yOxFjNcNiVoJ1t27SveD0+Prso9lTD+gm4IcJ6rsnxwAA6rinnoiIiIgopBb11E+ZMgXvvfce/vKXvwBQ1th5vV48//zzOO200yK+n+nTp2PatGlhr5Obm9uSQ9SIgH7//v1YuHBh2Cw9ANjt9madmGhvRCCYFGtFdaM7ovJ7m8UEp9uLRl2mXuyoVzL1SkAXzd53ZuoVYrVfN12mXpTZB/a4R3dQntJT73vMYIP4xHUtUczUA0BqnA0lNQ7sL6/H8Jxkw/fE5oWclFjsLq1DPTP1REREREQhtSiof/7553HGGWdgzZo1cDqdePDBB7F161ZUVFRg2bJlEd9PZmYmMjMzW3IIEREB/c6dO7Fo0SKkp6e32mO1FyLwU/qWGyIalJcUY0FZrRMOV2BQnxxra5VBeaVcaQfAWH5vb2pQXpRef/2gPKvI1Hu92uOZTZKWtRe/E9EsvweAUwZnIr+4BnM2HMJ5I7sbvicy9Tnqij9m6omIiIiIQmtR+f2IESOwY8cOTJ48GRdffDHq6upw2WWXYf369ejfv3+0jxEAUFBQgA0bNqCgoAAejwcbNmzAhg0bUFtbq11nyJAh+PLLLwEoAf0VV1yBNWvW4IMPPoDH40FRURGKiorgdDpDPUyHp2Xq1Qnj+qD+4JF6Q9+8VqqvlkLry+D15ff+ZeFHq9HlQY1uQFpXDupFxUJGgj5TL4J6v8F1USu/F5l6Xfm9V9ZK7eOsZu26jep1o11+f+mYHgCAhXklASvstPL7FLX8npl6IiIiIqKQWpSpB5SVcY888kg0jyWsxx9/HLNmzdK+HjNmDABg0aJFOPXUUwEA+fn5qKqqAgAUFhZizpw5AIDjjjvOcF/623Q2WvZd3QUusrI7imtw1suLcf7I7njzurEAfJPyE2MC+++rGpQTHylx1oCy8KNVXmc8qdKVy++P6NocREa6tTP1vun3JljV8nv9SrsYmxk16sT5xlbK1A/tnoQh2YnIK6rBt5sP4boJfbTvBWbqGdQTEREREYXS4qC+srISq1evRklJCbx+U7NvvPHGoz4wfzNnzmxyR70s+4LOvn37Gr7uKnyZeiWoFz312w8rq/l2ldSGvK5xpZ0abMb6pt9HK6NeVuMwfN1VM/WyLOu2DNjgdCvr7ZzHaFCe3WIyDMpze5Sfs9UkwWY2wenxakF9tHvqAeCysT3wt+/y8OW6Qi2od7q9WnWJyNTXc089EREREVFILQrqv/nmG1x33XWora1FUlISJF1priRJrRLUU2RENj0p1lh+X16rZMcbg5bfB8vU+8rvRSwZrYy6KDkXgWNX3VPf6PJqJzRSYq2orFd+RlqmPmBPffjXSZZlvPzjDqTF2zBtUr+Q1zOU34tBeV4ZbvXknMWs9No7Pb4TPdHcUy9cfFwPPPt9HtbsP4KC8nr0To8z7KjPThLT75mpJyIiIiIKpUU99dOnT8ctt9yC2tpaVFZW4siRI9pHRUVFtI+RmiEgU68GZeV1SiCtn4bvVIPGBHX9nb6nvlIE9XG+nvpoBd8iqBeZ2K6aqa9UWxwsJglxNrNWESF+hoF76sNn6neV1OK1hbvwt+/ywlap+FbaGTP14oSQxSxpawy18vso99QDQFZSDCYNyAAAfLm+EIDvZFJijEWb9VDv9BieT1f9fSEiIiIiCqZFQX1hYSHuueeeoLvqqW35MvVqSb3TmKnXD87Tr78DfAGcLMva8LKUOJs2IT16mXrlWETPdFfN1PtK762QJMl38iRUT703/Ou06aAyT8KpC9CDEdl3JVMvfra+lXZWk0mboyAG5YngP9rEwLwv1x+ELMva3vrkWCvi7crAPrdX1k44PT8vD6Ofmo+dxTWtcjxERERERB1Ni4L6s88+G2vWrIn2sVAUhJp+LwJpfYm9M8SgvAaXRwu0k2N9g/Ki1lPPTD0A/dpA5aTK0e6p31xYpX3eEKYP3bCnXn1Mt9erK7+XtKoBcVKoNTL1AHD28GzYLCbsK69HQUW9oe0jzubrDhJ99Yt3lqLB5dFOYBARERERdXUt6qk///zz8cADD2Dbtm0YOXIkrFar4fsXXXRRVA6Oms8/+y6C+gq1/F7JyHphMZu064oyZ5GVFcGm1Swh3mbWrbSLzqA2cYKhR4qSqffKgMcrt0rfdnvmH9Tr2xxkWQ54vZuafr9FH9S7PEiGNej1xO55u1W3p16XqRc99YBvBoO5Raf/mhZvt2BodiI2HqzC5sIqeNQBDsmxVphNEmKsJjS6vKhzuJEWb0NZjfK7wzV3RERERESKFgX1t912GwDg6aefDvieJEnweDituq0ETLQX5fe6NXKNbi8SDEG98mvgdCvB5BF1YFtyrE0pCxcZ5ChPv89Rg3rx2LE2c6ibdErVusn3gC9TDygnUPwrGMLtqfd4ZWw9VK19XR8m6A02KM+tH5Rnknzl9+oJgGjvqdcb0SNZCeoPVqFHqvI7IU50xNssaHQ5Ue/0wOuVtSqPWg7PIyIiIiIC0MLye6/XG/KDAX3b0Wd3Q02/B3yl2SK4E6X64jLRT58ap5aFt9agvOQY7bKu2FcvBuWJANZu8f3vqPTFK6+JyOCHy9TvKa01zEvQf+5Pv9LOGmxQni6oF/djNrVSqh7AyB7JAJT2AfG7J05KxatDHGsdblQ1uLS1fpyIT0RERESkaNY79fPOOw9VVb4S32effRaVlZXa1+Xl5Rg2bFjUDo6aR1+uLYIit1dGrcNtyGyK7Kt/+b343hEtqBcZZCXwE2XhR0sE9dn6oL4L9tWH6qkHlKoI8fOJUysYwk2/1/fTA8bZCf7EyZwYa/CVdlazSTf9Xqy0i/BJtcAINajfUlhl2LoA+J57vdOt/d4AQJ2DJw+JiIiIiIBmBvU//PADHA7fG+u//e1vhhV2brcb+fn50Ts6ahb9YLUkXaBeeKTBcD0R8InsuBLcqT3ULq+v/F4NrET5vaz2vh/tMYqTBhkJ9qivywvH45WxruCIlqlua/rp94CyC16MFdBPsI+zKoFtuPJ7/6C+PsygPN/0+9Ar7Wyip16stGvFeQeDshJhs5hQ3ejW5gJo5fdqpr7O4UFpjT6oZ6aeiIiIiAhoZlDvn6WNRtaWokcf1MfZzVqAePBIveF6oqTape6pt1tMWum3w+3Rgk1Rfm+zGHu9j0aF2ttvkpRKgGj364fzxbqDuOwfy/HaTztb/bEiUdlgzNQDMKy1Ez/PWC1TH/o12uIX1Ieffu8rvxcncwyD8kwmLYPvEJn6Vuypt1lMGJqdCABYV3AEgG/Qoz5TX6rP1HNQHhERERERgBb21FP7JLLdkqT0RceqGd6DAZl64x50q9mEGPW6jS4vjqiBd7ABbk2VyReU12PTwcqQ3xfZ1rR4O8wm6Zhm6rcfVnab7yqpbfXHikS1X6Ye0K+105ffW7TLgtEPyctMtANooqdeZOqtZm2lnUu30s5qlgLmKLT2ZgJRgi9OGukH5QFAndOjbU0AWH5PRERERCQ0K6iXJAmSX8bO/2tqOyIgsppNkCRJy/CGytSLAN1m0Qf1vp56EWxadAFdU8H3rbN+xWX/WI69ZXVBvy/6ojMSlBMGIlMf6mRBVb0rZDDbXMU1jQCAI3WuqNzf0RI99SmxNu0yuy6YFj9PcXImVJXE3rJa1Ds9iLWaMSInCUDke+r1K+1cupV2ovxeaO2gXgzLEwLL790svyciIiIiCqJZK+1kWca0adNgtyvZwMbGRvzud79DfHw8ABj67enYEyXsIlAWgXphpTFTLwI+p8eXmbVbfSvMqtSp7GJQnlhrp5/IHozXK2N3aS28MvDT9mL8dkpuwHXEFH6RUbZafEP4/JXVOjDluUU4rlcKPrr9xCaff1NKqpWgvryuffyeiun3SbFBMvVuWXtNtPJ7b/DXXvTTD8tJ0oLgcD31xvJ732R9j8jUmyS4/SbjHatMveAL6tXye4dxUB5X2hERERERKZoV1N90002Gr6+//vqA69x4441Hd0TUYi5dkA4gZPm9COq0lWlmE+wWs/o93yC7FL9e76aC+upGF8Qst192lAYP6tWAOj2+6Uz9rhJlTduqveWod7q1MvSWKq5WHls8v7ZWVR9Yfu9rR/BoJ2mamn6/+aBSej+yR7K2nz78SjvdgET1d8Xl9WXqzbqVdkJrB/ViWJ74PUjWeur15ffsqSciIiIi8tesKOm///1vax0HRYG+/B6Arvw+MFPv9ni1AFwpv/dl6ivrjT31yn2qGfUwPfViCB4ArNpTETQQ9018V4N69WRCsPsV5eleGdh+uBrj+qSFfOymyLKMYjVTX1nvhMcrt3qgGo7HK6O6UQlMk4Nk6p1uOWBQXqgTKmJI3ogeydiszjMItdLO65W111opvzdpx+PWld/7D9pvzUF5gG9Y3saDftPv9YPydOX39eypJyIiIiICwEF5nYp+8B3gK7/XB9uAksXV92dbzSbEqMF1o9vr6/UOMsAtXE+9WIUnrrdyT3nAdaoblEA2KUYJ9kXvdrCAtVJ3f1sKq0M+biSqG9xahtor+04utJVq3eMbpt+bA3vqtUx9iJV2O0uUAYBDuyci1ha+/F7/87PrVhm6PMZBeTaLMYhvzZV2gr4EX/x+xKntBLUOD8vviYiIiIiCYFDfiWjl9GoJtyi/F9LUkvdGl9cQ3CnT79VMvdOjrVpL1WXqxX2GW2lX4TeA7uf80oDr1DQq10mMMa7LC5ap15fJ+69sa64iNUvvO1ZniGseG+KkQoLdYih1F1PnXW7fz0hUOwQrv5dlGTVqxj8t3qb9zEOV34vJ94DYUy966nWD8kymwPL7YzAQUwzLS7BbtONKUHvqaxtdhun3Drc35Iq/1XsrUF7bPuYmEBERERG1Ngb1nYgzRE+90DM1FoAS8OmDaKtZ0nrqy+oc8KgZYUOvt27VWihiFZ44QfDLjsCgXpScJ8WqmfowK+3EIDnANwyupYr9gnp9VUFbCLajHgDshky9Wn5vDV1+7/R4tQx+vN2iZfVDTb8X8xRM6tpDq9hT7/UFyVZzYE+9xdz6Qf34vmmQJN/vKeA7oXGoslH7vRTqgjzHzQercNW/VmD67I2te7BERERERO0Eg/pOJFRPvdAjRQmWGl0ew5A8SZK0QLy4Sgl+Y6y+NXf6+wzbU68GyqcO6garWcL+8vqA1Xb+mfpw91upy/zvLKkN2SceCf+gvrw28qC+zuHGc/PyjrpaQE+0FvgH9WIbgHFPfejye/2+9jirGTFNBvWin94MSZJg1tofZO3+LUGCetMxyNQP6JaAT24/Cf++cbx2mZh+v79C+T1KibNqJ62CrbU7oK5vLKioD/geEREREVFnxKC+ExHT0v176gUR1Dc4fZl6ESCJ6x5Wg3p96T0QfvWcIDL1vdJicXxfZajdL/klhuv4eurV8vswvfr6TL3HKyO/qCbkYzelpMZYjt2cTP33W4rwz59345UFO1r8+P58AwONQb14PRxuL1xuY099sEy9CGxjrEopfVPl9+LEiFhhaNWttBP3bzEd+z31wgn90tArLU77WmTqG9W2gcwEu2F3vT9xWW0je+6JiIiIqGtgUN+JhFppJz5PSxA99Z6A/nsR1IuMtn8GWSu/j2D6fWq8DacMygQA/OxXgu/L1CuBmb6H3J/oqRdJ4qMpwffP1Denp17c1r8v/2hUhSi/t+raHFzepnvqxcC4BDXQbbr8Xl1np7Zb6FfaubVKj7bJ1AcT77c9ISPBrl0WbFieOJnBQXpERERE1FUwqO9EnH7T72Ntvh9vWrxNC+QaXJ6A69rV4Dpkpl4LNkMPyhPZ77Q4G04ZrAT1q/ZUQJZ9txFD3URQbw+TqRd73EepA9S2Hmp5UF+kPi+xIq05Qb2Yut6ckv2mBNtRDxgHBwaW3we+RmIvvQj8mxyU5zZm6n2D8ry68nuTdrJFsLTR+j9Rfi9kJNq1ExjBJvyLdoR6pyegB5+IiIiIqDNiUN+JBPTU6zL1GQk2rce+UTcoTwSRdvW6IoANGWx6Qve16zP1vdUS6gaXRwu+PF4ZNQ4xKC+S6ffK/U0akAHg6NbaFavl90O6Jyn33YygXgTz5bVOwwmKoyEG5SWFqojw+MrvfXvq5YDHr1WDWFGSHqvb6x6MmH4vTuKIQXker6ydNLCYAjP1x6r83p94XkJmgh1xYiJ+kGy8/nnXhXgNiIiIiIg6Ewb1nUioPfUAkJ5g14L8RpdvB7pNu67yX5HcTAmVqXeHy9T7VuHFWs3afYvgXB+EaeX3WqbeeL+yLGuB7+SBSlCfX1QTdlBfOCVq6fyQ7EQAvqF+kSivc6jH6I1aWXelyNTHGl9n/epA/+n3AAInwGvl92bDdRtdwV8n/aA8wJepd3l85fcWkxTQU38s9tQHE2fzz9TbtEx98J5630kn9tUTERERUVfAoL4T8fXJqz31uoAoLd6mBfkNup567QSAxRg8pYYY4BZuUJ7I1KfFWyFJkpbtFwFstRqk2y0mLagMlanXr90b2SMZSTEWOD1e7Chu/rA8r1fWBuUNVTP1wcrvq+pduPvDdbjvkw2GjLi+7D5aJfihBuVZdYPy/PfUA4ET8EVgq5Xf2yIsvxeZerNvpZ02KM/s218vHIs99cHE2QIz9aKnPthKO32mnn31RERERNQVMKjvRJx+0+9jDZl6m5aN10+/95XfG38VAoJNi68sPBi3x6sFqqIf3z+o9/XT++47VFAvbmM1S0iwWzDiKPrqy+uc8HhlSBIwKEvN1PsF9QXl9bjsn8vw7abD+HJ9oWEoXrnuuiJrf7SqGoKvtLPpXmctU687OeP/+tf5DcoTP/NQ5fcig6/11Jt0mXpv6EF5bVV+bzb51i0CSk+9KL8PlqnX99nXMFNPRERERF0Ag/pOxBeUBempj9eV37v1g/LUlXZ+mfrA8nt1pV2I8ndRKi9JvkBV3IdYTScm3yfF+rKv+mnveqJkPyXOBkmStKC+JX31Ynp9RoIdmYl25f51gfqGA5W45B/LsLu0TncbJXj3emXDCYBoZep95ffBM/XKoDzjSjsgcAK+yFaLgXK+uQleeIMMihOZevHzFsG6/0o7axuttAsmQddXn5lgD1t+z0w9EREREXU1DOo7kYA99X7l91rA5wxSfu+3094/2LSFCL4FESQnx1q10m1xH6LXvjpIpt4eIlNf5Rf0il74nSXNL78XQX1Wkh1p8cqJhjqnR9vZ/siXm1FR58SIHknIzYw33KaqwWXoYy9vxoC9cLSVdiEGEja6fNPbY6xmba2fy28Cvghc4/1W2gHKyRt/Wk+91b/8XtdTb5a0n7dgbsO/FPoS/MxE/Z760NPvAfbUExEREVHXwKC+E9F66oPsqVfK73Ur7fzK72P8yu9T44MPcPMfaCdo/fS6DL8ow6+q98vUx/iCtFAnC/RD9wCgZ6oyTf9QZfN3xYuse1ZiDJJiLNp6tiP1Trg8XuQXKScK3rp+HAZ2S1BvozyOf7l9ee3Rl9/rhwAGlN+rPzt9GbnVLMFqEqvnjK9/vQjq1cBXX3ERbFe9b/p9kEF5Xt+JnsDy+7b7UxHnd3Iq8ky9q/UPjoiIiIiojTGo70ScYVbapcf7T78XJwDEnvrwg/JClckLWhCuOxmQEu+XqRdr3HSZepEpdoQovxeZ7JyUGADA4aqGoGXl4YgAvVtSDCRJ0o6xos6J/eV1cHtlxNvM6JESi+ykGMNtyvzK7aORqW90ebWTKv5tDuLkiT5gtZpNsIiMuif8SjuTrgc92LC8gEF5hvJ73/R7/z31bTUoD/A9t9Q4K6xmkxbk1waZG8CeeiIiIiLqahjUdyJaSb0akOkHrPln6h3+pfp+mfrk2OAr7UL11IsgPFUXpIp1bYGD8nSZevVkQkD5vTZ0Twnqs5NiYJKUjHJpM7PlJTWN2n0AvmqCI3Uu7CqpBQD075YASZLQTQvqlcfwH6gXSU/93E2HsWRnacjvi+dmNkmI91vZJl5n/Y51q9mkVRf4l9/7r7QDfCdzgmbqtZV26qA89fHcXlkr91cy9f4r7UI+nVYngnoxDyE+bKZeV37PnnoiIiIi6gI6TFD/zDPPYOLEiYiLi0NKSkqzb/+73/0OkiThlVdeifqxtRf+ffL6TL2y0s734xYBtq/83n9QXvCy8FCZev06OyFVm36vlt+rQVZSbOD0+4Dy+zrfoDxACT5FUF5Y2RD0GELRyu+TlKAwVT3G8jqHL6jPVMru/TP1/uX2TU2/31tWh7s+XIc7/rcW7hCvlRgcmBKrrP7T04J6NQNvNkkwm3zT6AMH5RlX2gG6oD5Ipl7MEbBbRfl94Eo7sylYT30bZurVEx8ZCcrPT5Tf1wfrqdeX3zNTT0RERERdQIcJ6p1OJ6688krceeedzb7tl19+iZUrVyInJ6cVjqz90IJ6NQDLSopBv4x4TOiXhhir2RC4i6A+WKY+wW4J6KkOFXwLIgg3lN/HifJ75Xui/D7Rrp9+H3yqfmWQPe45KbEAgEPNDurFoDwlYE+P903AF0H9ALWXPitE+X2vNOWxm8rUiwx9vdMTsv9fVC74D8kDfK+z6A0Xr48lxEmVOr9BeYCvQqM+TKY+Riu/950sENsTLEFW2lnaMKgXJyxEpl4rvw+WqXcwU09EREREXYul6au0D0899RQAYObMmc26XWFhIf7whz/ghx9+wPnnn98KR9Z+ON1q+bQasNksJvx438lallWUVbs8slYCru2p1/XU+2fpxW31j+Gvoj5wUJ5vpZ2x/F6fqQ81/V5k91N0bQA9UmOxZv+RFgf13fwy9RX1LuwqNWbqRTa/qMo4KG9Qt0QcqGhosqd+6c4y7fN95XXonR4XcJ2qEEPyAN+MA5GpF0G3b5+8f1CvXC8hSFAftKde21NvzNS7PLJWWRBsUJ6pDXvqRWuBf6a+zq+n3uXxaqsaAV9lCBERERFRZ9ZhMvUt4fV6ccMNN+CBBx7A8OHDI7qNw+FAdXW14aOj8C+/B5SydX2Jt8jWV6uT6EVZvV2XqU/1G96mv09nCzL1ldpKOzVTH9P0nvrKemNPPeDL1BceiTyod3m8WrY9y6+nvrzWgd0lym56LVOfHKMeqxsNTo+WmR+krtSrqHOGHNTn9nixYk+59vX+8rqg1/Nf16enDcoTmXqRUdetntMT14vX9dTHWZXXtzFIpl6suRMnD6yG8nvfoDybpf3sqb9kTA+clJuOS8f0AICQK+38KxNYfk9EREREXUGHydS3xHPPPQeLxYJ77rkn4tvMmDFDqwroaPxX2gUTYzWjptGtlcIH21MfNFMvyu9DDMqr8FtBp/+8sl4JhIPtqRdBrMMdfvo9oAvqdWXt/122Fy//uAOyrEx+H5KdiPduPUGrPCitUTLtFpOkBfNiV/2WQ9VocHlgMUnoo2bUE+0WxFrNaHB5UFLTqGXmxao7j1dGdaMrYGo9AGwurDJMXN9XXq99vqukBo9/vRWXj+2pZeqD3Yf4eYgycl/5fahMfWD5fUyY8vuD6gkRUbVgNpTft89M/Zjeqfjo9hO1r0OttKv3y9wHG6RHRERERNTZtGmm/qGHHoIkSWE/8vLyWnTfa9euxauvvoqZM2cGDCML5+GHH0ZVVZX2ceDAgRY9flsIlqn3F6tl6v0G5RnK7wODTXtTK+2CDMoT5eVeWSmFDren3r8CwDf93ncsPYP01L+/cj+qG92ocbhR1eDCqr0V2HigSvu+VnqfaIdJzTaLaoKthcr1+mbEa6+ZJEmGEnwxKK97cqxWYSAy/4vyS3DfJxtQpl5n2S6l9F5ktfWZ+tlrDmL57nJMn70R7y7ba3h99MTPw+n3s7Roq+f8MvV+K+0AIDbESjtZlrGjuAYAMCgr0XC/Lo9Xu++gPfVhThQda3G69gKPrnLBP3PPnnoiIiIi6graNFM/ffp0TJs2Lex1cnNzW3TfS5YsQUlJCXr37q1d5vF4MH36dLzyyivYt29f0NvZ7XbY7fYWPWZbc/ntqQ9GBPU1fpl6q1mCJAGyHLws3KqWYzdZfq8LwmOsZi3rXVXvQnVDYKbeGmQAnyzLWvl9sEF5Yvp9vdONPWVK4PzF7yfi7/PysWJPOXYU1+CEfmkAgIIKJVveXb0t4MvUi1L2AWo/vZCVFIN95fUornFomfr0BBsyEuyoaXSjvNaBAd0S8NL8HdhcWAWvLOPVa8ZgidpPf+bQLMzbWmTI1G877GvjOKz26wcL6v1XyYmTHiLYd+tW2jndvh7yBN30ezFYzn+lXUmNAzWNbphNEnIz49XH8620Ez8DiykwU9+We+r96U9g1DndSFJ/n/wz9dxTT0RERERdQZsG9ZmZmcjMzGyV+77hhhswdepUw2Vnn302brjhBtx8882t8phtzX9PfTBiyr3WU2/xZahjLEoAnhp2UJ7yGCv3lOOJr7fib5eNwMgeKdpQsrR4Y5Y/Jc6KhioPjtQ7fZn62CCZel35fa3DrQXc+pMEOSlKv3tVgwu1Djd2FtdAlpUBamN7p2JUr2QtqBe2H1Y+H6L2xAc7RtFPL4je+8IjDdrJhfR4G9LibdhbVoeKOifcHi/y1cf5esMhXDqmB9YVHAEAXHdib8zbWoSC8np4vDLMJgnb1aD+ntMH4N1l+1DrcCNb7d/Xs/v97Pwz9S5dpl4fxMbpeupjQqy0E69Ln/Q4rT1BZOA9Xll3UihwpZ2pDXvq/dktJlhMEtxeGfUOjxbUi0y9SVKqQ5ipJyIiIqKuoMP01BcUFKCiogIFBQXweDzYsGEDAGDAgAFISFCCsiFDhmDGjBm49NJLkZ6ejvT0dMN9WK1WZGdnY/Dgwcf68I+JSHvqAWhZc33wFmM1ocHlQXKYXm/xGHM2HkJ+cQ3eWLgLz10+CoASTCXFGE8IpMTZcLiqESU1Dq1vXp+pt2uZel+wKgJpu8Vk6PVPjLEiKcaC6kY3Dlc2aNnvYTlJAJQJ9QD8gnrlOkO6J2mXNRXUi2Bb3NYkKc8jXb1dWZ0Te8rqDCci/vDherg8MnqkxOKk3HRYzRKcHi8OVzXAZjGhrNYJkwTceeoAXDq2JxbvKMXFxwWuWPTPkIsKCdFTry+/F0GrzWLMrMeF6KnfUaxM+h+oe75iuj7gG6JnMZsCyu3bcqWdP0mSEGczo7rRbQjcG1zK55mJdhRXO1DrcEOW5Wa13xARERERdTQdJqh//PHHMWvWLO3rMWPGAAAWLVqEU089FQCQn5+PqqqqYDfvEpyRlN+rAZ+vZ9t/Mr4raKbe5hd8i5Vzy3aVY79a4p4aZwvI6IpSflEGL0n+e+oDM/WVQYbuCTkpsaguqkFhZQO2HlKDejVgH5wtgvpa7foiMB/W3Zep979f/6C+m7oPXdw2Ld4Gs0lCurpSrbzWoX1vYLcElNQ4tBkAkwdkwGI2oVdaHPaU1mF/eb12IqRfRjxibWb0y4hHv4z4gOcG+F5n/9dHP6VeCLbODvC1WDT6Zep3+vXTA8ZeeVk9X2AxBfbUt6dMPaA85+pGt2EYnng9spJiUFztgMcro9Hl1X7niYiIiIg6ow4T1M+cObPJHfWyHHzVmBCqj76zEJPpI+mpF/Sl+iIrHiyY9i+TF4G30+PF52sPKreLD7yd2Al/QA3qE2wWQ4BoC7KnXky+DzaFv0dKLPLUoH6bGtQPVzP1/TMTIEnK2rmyWgckKH3kADA425epj7GaEW8zo07NZIv+ckGU3+9Wd9inx9vV/yrPr6LOiUZ13/sJ/dIwODsRj3+9FQAweWAGAKBvejz2lNZhX3mdVhUxVFctEEpApl4rvw+saBDr7OL8glZtT31Apl4J6geGCOq1y0xSQG9/e+qpB3Rr7XQtCKIdISPBrs2HqHG4GNQTERERUafWqffUdzWRTL+P8Qvq9eX3pw3uhqwkO0b1TA64nX/5/RE1qAeUUnzAt/9dLzlWuUwE9fod9YBx2rs4KVPZEDgkTxDD8g5UNCCvyFh+H2szo0+asppuR1EN8op8PeT+2WxxAqJHSqw2WE4Q5fdisLoo109PEPvtnVqmfmj3JPzmhN6Y0C8NWUl2nDwwU3tMANhfXm+4blP8e9kD9sl79Jl6JYgNlamv12XqZVnGzhLlJMWgrODl94LFbIIkGQP7ttxTH0xckF314vM4m1l7TbirnoiIiIg6uw6TqaemaT31lqZ76gV9uffjFw7DYxcMDdqDLAI8UbYvyu8BX+92anxgEC5K+UX5fZLfxHf9CQiXR4bNImn3nRIbeJKgR6oS1C/fXaaUVlvN6Jvuy7QPzErEvvJ67Ciu0YbtDc0ODKbT4m04eKQB/f1K7wEgK9E4wE4E86L8vqzWgb3q1P2h3ZNgMZvw4W0nQoKvTF0c076yOu26wyIJ6gPK79WeepGpN6xwC9xRDwTP1BdX+ybf60v/TSbf1gP/x7SaTXB5lPtob0F9gjoYsM7QU6+u97NZkGi3oMav556IiIiIqDNipr4TEaXZliDZV8G//N4/MxxqqJjN4p+pVwJvfem3/wA6wJdtLwiRqddPexcnDI7UqT31QU4SiEz9poPK7IQh3RMNAedgtbQ8v7hWG6Q3RNdP73+s/uvsAKBbknGlYUaCsfx+d2mtVtYvpuqbTZKhrUBk6vOLa7QyflFREI7/z0Mrvw+aqQ/cUQ/o97j7Atpgk++1x/D7fRG/P/oTLu2u/F6trqg19NSr7Qh2MxJimKknIiIioq6BQX0n4oyo/D540NgUfU99o8uj9ZTrJ7gH68VPUS8Tk+/9p+MbMvWiX79BOWGQHCxTn2LMog/3C5QHqqXlO4trtHV2wcreRdb8xNy0gO/FWM2G0v90v/L7slrl+PqkxwUE1ILI1O8vr4dXVk4iiAF84fivI/QNygucfi/6yeP9esa1lXa6TL0I6sWGAD3/vnp9pl5oj4PyAONaP1ExEm+zaN+vYaaeiIiIiDo5BvWdSCTl9+EG5YXj66mXtSF5FpOEK8b11K4TNFPvV27vn6k3myQt0+4r7RfT74MNyoszfD2su7H/X0zAzy+qwa6SGvU6gUH9H88ajCUPnoYzh2UFfA8wluCna5l6Y1AerKxfO87UWEMFwdDuiRGtVgvM1Ivye3VPvW76fW2I8ntfpt533Z3Fgf30gn5dndkkaccpViO2t9J7QMnGA0Ctoaden6lXfneak6nfX16H6kZX01ckIiIiImpHGNR3IhFNv7eFL78PxaobaKefTj+mVyqy1HL1YJl6/4n4/j31+mPwTdYPPf0+M9FuCEL9S9r7ZcTDbJJQ43DD5ZGRaLegp9qHr2cySeiVFhcy0M5K1gf1NvX5WaG/erjBd1azyfC44U4AGG/nnzUX5fdBMvVNDMpr0GWxd5YETr73fwzAGOCLn3l7DOq16feOwEx9nNWs9dxH0lMvyzLeWLgTp77wM256d3UrHC0RERERUethUN+JuCLYU28PGJQXWcBm002/F0F9cqwVJpOEP583FFMGZmDq0MCsd1OZeuV4jZl6MVk/JchJArNJ0qbTmyRfD71gt5gNg+CGRJgh95elK5UX5fcWs8nwfIYG6dXX66Mb4BdJPz2gzDTQn2gRgXXw6fe+ae96Wvm9OjhOlmVdpj58+b3+d0d83t766QFlNSLgX34vMvW+8vumgvp6pxt3f7QeL8zfAVkGdqsbAoiIiIiIOgoG9Z2ELMtaaXaz9tQ3s6deln095SIzf/FxPfC/WycgOUhm3T8wT4wJkqlXB7eJTH2VWGkXJKsPKGvoAGUvfbAd5PoS8yERZsj9iV31gK/83v/zplbU9U33tQpEss5O0GfrxevenOn3IsgXmeui6kbUOJTJ930zjO0L+vsGjFl5Lahvh5n6OC1o15XfG3rq1fL7MEG9LMu47b01mLvpMMRTrHG44dW9xkRERERE7R2D+k7C45W1tWThSuoDpt9H2lOvy+iXVDcCCJ5J95fsF5j7D8oDfBPw/Sfr+5fuCyKoD5X91mejmxNM6wUrvwd8WftQZf16IlNvNUvoH2TKfij6n4lvaF2QTL0zRPm9GtQ3qpn6HWqWvm+Qyff6+/b/XPTUt8OYPuhKO1+mPrLp99UNbizbVQ4AmHnzCQCUk1a1Tg7XIyIiIqKOg0F9J+HS9Vpbww3Ks7Vs+r3+eqXqOrdgg+z82SwmQ9AZtvze7YXXK/sy9SHu/+RBmbCaJZw9PDvo941BffgS+VBE+b3NbEKi7vhFgB9JWb+oGBjWPSnikydA8BJ4USLvMvTUh1hpZ7Vo13V5vNgpJt8HKb0HjJl4fdbev5+/PYkPUl5f7zDuqff/vr8i7eSUFVMGZmgnw2q4Bo+IiIiIOpDg+7iow3HqMrhhV9pZWjYoz2KSIElKJlPsaA8VdPtLibNqwVXQQXliCJ/bi+pGl1ZxkBJkpR0AXDKmB84b2T1koCwm4Jsk3+fNJbLsOSkxhuA9Uy2/j6QCYFL/DPzt0pEY1ye1WY9tzNQby+/dXn1PfYiVdroTNw0uD/aU1QFAyGoBw6C8IP31pnbYUx8fZKWdqFyIs/ky9eEC9GI1qM9OUn7GSbEWlNU6Ud3g0qpBiIiIiIjaOwb1nYRLF9RbwtRLx/hPv48wgyxJEqxmE5xuL0pqIi+/V65nxcEjDQCCZ+ptusn6Yp1dvM0c9tjCfS83Ix73nzkIafE2xNla9is+ODsRf79iFHL9AuHfTOiDinoXbprYt8n7MJkk/GZC72Y/tv5Ei81vUJ7L7cvUh1ppZzObYDZJ8HhlNDo92FuqBPW5mfEIJuSgPG36fbOfQquLt4np976eem36vc2sG5QXekWdyNR3U+cnJMVYtaCeiIiIiKijYFDfSWg76s2msGXhLR2UJ+7b6faiuFqU30cW1OuvF6ynXhyD061flxfZfQcjSRLuOWNgi28vXDm+V8Blg7MT8fq1Y476vsMJ1lMvSuD1e+pFEOsf1EuShFirGbUON+qdHuwpU3rq9VsB9PQl94aVdurn+u+3F/F+K+tkWTa8HlpPfZjy+xItU69UXySqVSTVLL8nIiIiog6k/b1bpxYRGVz/Pef+Ylo4KE9/3yIYiqSnHjAOy0sKlqk36zL1TfTTdwXBeurFf4PtqRcBrp74OZfXObSTMKGCev3vjCXIY7fDmF7LxNerr4HD7YVHnVofZzP7eurDBOgiU5+lZeqV2zBTT0REREQdSTt8u04tIXrqmxpqFpipj7xfWpwAEJnMYCvsgtFn6oOvtPNNv6/UMvVdOagPLIfXpt/rMvVa+X2QFgOx1m7bYWVIXlq8LWT1g3E4nu6xRfl9O+ypF20VdU4PvF5fll58L5JMvTjZkaUrvweAmkYG9URERETUcbD8vpMQ5fdNldMHBPXNSMP633ek5fciQLeaJcRYAx/Ppiu/F8HZ0ZTfd3RBy+/Fnno1U+/2eOFwKz9z/5V2gO/nvO1QFQBlzkAo+p56Q/m9WGnXDnfa6Z9zvcujDcyzW5R5AuL7kQzK04L6WDVTz/J7IiIiIupAmKnvJHw99eEDMLvVGDA2J2Dzn5QfeVCv7naPsQbt99dPvz+iDspLCTIlv6sIt9JO7Kmv02Wm/XvqAd+u+q2HqgGELr33fzx91t6mTd5vf0F9jNUEcVh16uwAwPdaiKDe4fbC6fYGvQ/99HvAl6ln+T0RERERdSQM6jsJLVPfRI+83WKCiKubMyQv2PUjXmmnBujB+un19+v0yFr5faQnDDoje5CVdr7yeyVTL/rprWYp6FwEkanPK1LK7/uFmHwPGIP2jrLSTpIkLYCvaXRpr4doO9Cf6KgLUoLv9nhRWiPK75VBeUnaoDwG9URERETUcTCo7ySc2qC88D9SMRk9kuv60wePsVZzwNC9ULonK5nQzER72Pt1un0r7bp2T33oPfXi5E1diHV2gsjUiyx1xOX3QR7b3A4z9QC0XfIHjjT4MvVqr73VbNJaPYL11ZfVOuGVleeWnqBOv9cG5bH8noiIiIg6Dgb1nYQYoBZJoC6C+uZMvlfu2xfcNSfoPjE3HU9eOAxPXjQ86Pf1g/KisdKuo9P/XGwW5TXXMvVqT32dXxDrTwT1Qm5mQsjHMwzK0/fUq4/dXoP6vunKiYp9ZXW+TL1uE0CCXQy+CwzSRel9ZoJde37aoLwwu+2JiIiIiNobDsrrJCLtqQd86878e+Sboj9h0Jyg22SSMG1Sv5Df1w/Kq2pgT33YTL1f+X2wdXaAcSCiJAG90+JCPp4xU+/73NbOM/WipWBvWR3S4pXfxzjdyYzEGAvKah2ocwYG9do6O7WKBNANymOmnoiIiIg6EGbqO4lIy+8BaGXJzVlnBxgzyJHuqG/O/Tp1mfrU+K4b1NuC9NT7D8qrbaL8Xh/c9kiJDdsqod+AELT8vh321AO+4X97y+pQ51AqF+J0lQsJYXbVl4igXtcSog3KY089EREREXUgDOo7iUhX2gG+0uzmlt/rM/vRHGSnz9SLnvrk2C5cfh8ksBb/1crv1aA+2Do7wJipDzf5HvAbjmcKMiivvWbqdUG9WGkXb9OX36uD9IL01ItMfbYhU9+y6ff1TnfICftERERERK2NQX0nEen0ewCIsbRsUJ7++slRzNSL+21werT+52hWAnQ0hp56v7VyLq9xpV2cLUT5ve7y/mH66QG/lXaGEwqS4bHbGxHUF1Y2oKJOqfCI053kSIgJnakvrhaT731BvRiUV9PohizLER1Do8uDU/7+My79x7IWPAMiIiIioqPHoL6TaE5PfUsz9dZWLr8vrXVolyV36Z76wGF1lhCZ+pDT75uTqTdk53U99Zb23VOfHm9DYowFsgxsP1wNwJipTxTl9+rgO9G6APgG5emDelF+7/bKaHB5IjqGAxX1KK1xYOuhasP9ExEREREdKwzqOwmnpzk99S3N1PuCu2iW34v7LalRAq3EGIshY9zV2My+wDRgT73fSruQ5fe25pTf+15rc7Dy+3baUy9Jkvbcth5SgnpDT72aeV+99wgu/ccyDH5sHlbsLgfgC+qzdUF9nM2sPf9Ih+WV1Tq1z0X1BBERERHRsdR1I6dOxqX29EYSDLd0+r1dl6mP5so5cb8lakl0V95RD/iy84BviF3g9Ht1pV2UM/X69XaDsxNhkoCh3ZOac/jHlHhuJTXK746+HUG8Ngu2F2N9QSU8Xhkfri4AABRViUy9b1CeJElIErvqIxyWJ8r+Ad/wQiIiIiKiY4kr7ToJ36C8CMrv1en3zd9Trwvqo1geL46jTC2/j2YVQEdkGJQXsKfemKmPb6Kn3mYxoUdKbNjHMwzK030+tncq1j12ZrtuhfA/YaHvqe+mTrY3myScNrgbFmwvxs/5JahudKFa7bPXr7QDlGF5R+pdEQ/LK6/ztYwE690nIiIiImptDOo7CV9PfQTT77Xy++aVVeuD+miunBP3qyah23UQeSwEX2ln7KmvdYbvqRf94bkZ8U1Orw81KA+IbkVGa/AP6vUnOa4a3wt2ixkn5qahT3o8jn9mASrqnJi76TAA5f+DRL/XTz8sLxL68ntm6omIiIioLTCo7ySa1VNvO/rp99EM9vwrBpipDxLU+02/r29iUN6Juem44+RcnDIos8nHMwzKa6dD8UIJyNTreurj7Rb8ZkJv7evTh3TDZ2sP4oNV+wEo6+wkv3kBzd1VX6HP1DOoJyIiIqI2wJ76TqI5e+rFSrtm76k3TL+P/p56ocv31OteD5s2KM+Yqa9Uy8NFD7g/m8WEh88biokDMpp8PEuYTH1719c/U28P3o4AAFOHdgMAbClUhuqJ8nw9LaiPtPxePyiPQT0RERERtYEO8w7+mWeewcSJExEXF4eUlJSIb7d9+3ZcdNFFSE5ORnx8PI4//ngUFBS03oG2Ebe2p77pTOvALGVveVP7y/3p1+VFs0TeaulYJd+tzVh+79dT75Uhy7I2VLBbUkzgHTSTvg3D0syWjLaWFGNFRoLv9yUuxIwBAJgyMNNwAik7OfC1S4oVg/IiC9D1QT176omIiIioLXSYoN7pdOLKK6/EnXfeGfFtdu/ejcmTJ2PIkCH4+eefsWnTJjz22GOIiTn6QKi9cakZ3Eh66i8YlYMlD56G35/av1mPIbLFSTGWqO4ut/tn6rt4T714nSXJt2JOn0F3erza+r+sKAT1+on3VlOH+ZOg0Zfg68vv/cXbLTipf7r2dbDXLrGZ5ff6QXk1fpl6p5t764mIiIio9XWYnvqnnnoKADBz5syIb/PII4/gvPPOw/PPP69d1r9/8wLZjsLZjPJ7AOiVFtfsxxD3nRof3Ux6QE99FIfwdURixZ/VbNJ6vvXZ9JJqh3YSJzMhsIS8uSwdOFMPKEH9r/uOAADiwwT1gFKC/8uOUgDBg3pf+X2Emfq64OX3i3eU4rez1uCJi4bhugl9IrovIiIiIqKW6HhpuQh5vV7MnTsXgwYNwtlnn41u3bphwoQJ+Oqrr8LezuFwoLq62vDREYg99c0dftccIviOdnm8/zF39fJ78Xroqy702fTCygYAQEaCrdlzEYI/nn5PfccL6vV99XFheuoB4IyhWdrn+h31gq/8vulMvcvjRWW973r6QXlr9lXA6fFi5Z6KJu+HiIiIiOhodNqgvqSkBLW1tXj22WdxzjnnYP78+bj00ktx2WWX4Zdffgl5uxkzZiA5OVn76NWr1zE86pZrzp76lhLrvoINGDsa/oFpVy+/t2mZ+uD74wuPKEF9t8TotJGYTR13UB6grO0TmsrU56TE4sTcNFhMEobnJAd8vzmD8o7UOw1f69fgVam3j3TgHhERERFRS7XpO/iHHnoIkiSF/cjLy2vRfXvV1V8XX3wx7rvvPhx33HF46KGHcMEFF+Ctt94KebuHH34YVVVV2seBAwda9PjHmtZTH4XMbShnDsvC/WcOwh/PGhzV++VKOyPfcDzf6yJJktZfLzL1wTLNLXo8U+fI1EsSEGNt+vf/XzeMx4L7TwlYhwcASbGip77p8nv9kDzAWH6vBfUR9uYTEREREbVUm/bUT58+HdOmTQt7ndzc3Bbdd0ZGBiwWC4YNG2a4fOjQoVi6dGnI29ntdtjt0c1EHwvN7alviTibBfecMTDq98uVdkZ90+MRbzNjaPckw+UWkwSPV9Yy9dEYkgcYs/Ot+fvTWgZ2S8TpQ7ohKylw73wwybHWkNsbRDVKTQTBuH9QXxssqGemnoiIiIhaWZsG9ZmZmcjMzGyV+7bZbDj++OORn59vuHzHjh3o06fzDa4S5fcdMdOqz9RLkq8EuqtKjbdhxZ/PQJzV2B9uNZvgcHu1TH001tkBHX9Qntkk4d1px0flvpozKE8/+R4IEdRzzR0RERERtbIOM/2+oKAAFRUVKCgogMfjwYYNGwAAAwYMQEKCsm99yJAhmDFjBi699FIAwAMPPICrr74aJ598Mk477TTMmzcP33zzDX7++ec2ehatRwT1rVl+31r02eHkWCtMHfDERLQFO7EhAu6DR+oBRLP8PvhAvq6oOYPyRKY+McaCmka3YU+9COaZqSciIiKi1tZhgvrHH38cs2bN0r4eM2YMAGDRokU49dRTAQD5+fmoqqrSrnPppZfirbfewowZM3DPPfdg8ODB+PzzzzF58uRjeuzHguip74jl0/oTEV29nz4cEXAfqlR31EdpUJ4lxEC+rkj01DvdXjS6PIixhp6mLzL1fdPjsbmwKmim3hHB/RARERERHY0OE9TPnDmzyR31siwHXHbLLbfglltuaaWjaj8+uf1EeLxyRD3F7Y3NL1NPwYmAW8xPiFZPvWGlXQc8KRRNCTYLJAmQZSVbHzaoVzP1vdPjsLmwKuigPKDp+wmlptGFhXklmDo0C/H2DvOnmoiIiIiOsa79Dr4TkSQJFrNJm5DekeiDytQuPiQvHP9+92iV3+tL7q0d8PcnmkwmCQl2MSwvfD98eZ0S1PdJi1Ourwb1jS4PnG6vdr1I+vODeXvxHvzfxxvw7yV7WnR7IiIiIuoaGNRTm5MkScvWp7D8PiR977vZJCE9ITpBvf5EUEc8KRRtke6qL69Vyu/7pCtBvdPthdPtNWTpgZavtdtZXAsAWLPvSItuT0RERERdA4N6ahdEX31XX2cXjj5Tn5lgj1oArp/D0NXL74HId9WLTH3vNN+++zqHOzCob+GwPLHlYNPByqCtRUREREREAIN6aidECX5KLDP1oejL5KNVeg9wUJ6/JHVXfXWDCxsPVGLaf1dj26HqgOtVqD31WUl2xFiVn02twx0QxLd0rZ0I6qsb3dhXXt+i+yAiIiKizo9BPbULIlOfGs9MfSj6gDtaO+oBrrTzJzL1lQ0uPPDZRvycX4oHP98Ir9eXLW90ebQe+vR4OxLsym1qo5Spr3e6UaFWAgBKtp6IiIiIKBi+g6d2QQT1nH4fmr40npn61pOoZuo/WLkfO9S+9i2F1Ziz8ZB2HRFwW0wSkmIt2m2CBvUt6Kk/pGbphY0HqkJck4iIiIi6Ogb11C7YLcrKr7R4lt+HYtH10EdrRz1gDOrZU+8blJdXVAMAGJSVAAD4+w/5aHR5APiC+vQEGyRJQrxd+f0Nnqlvfvn9wSPGoJ6ZeiIiIiIKhe/gqV24bUo/nD08C8f3TWvrQ2m3RDUDEL0d9YB/+T0z9Um6apHuyTH49I6TkJ0Ug8LKBry3Yh8AoEydfJ8er1RMiDV4tY2BQb3/15EQ/fR91cn6Ww5Vwe3xhrsJEREREXVRDOqpXbj6+N741w3jEWM1t/WhtFv6gLtbq5Xf80+CGJQHAPedOQgpcTbcf9YgAMAbC3ehst6J8lpfph7QBfUOt5aZj1V/l1tSfl+oZuonD8xAgt2CRpcXO0tqW/iMiIiIiKgz4zt4og7C2FMfxUy97n65px7onhwLABjYLQGXj+0JALh8bE8MyU5EdaMb/1myF+V1IlNvDOr1K+16pir305JBeSJT3ys1DiN6JAFgCT4RERERBcegnqiD0A+xi3ZQn2i3wG4xacFpV3bW8Cw8ffFw/Pfm47WTHGaThHunDgQAzFq+D3vLlBVz6Qlq+b2a3a/Rld/3SlNK51uy0k5k6nNSYjG6ZwoAYONBDssjIiIiokB8B0/UQYh1czazCalx0dsSYDZJmHXrCXC5vYi1sf3BajbhxpP6Blx+1rBsDM5KRH5xDT5bewCAb7BjvC5TLzLzvdRMfU0LMvVi+n2P1FiYJOXEAjP1RERERBQMM/VEHYTofe+WZIckRbdMfmzvVEzITY/qfXY2JpOEu08fAABweZSd9RlqT32iPXClnS9T37yg3uXxoqi6EQDQMyUWo3omAwDyi2q06ftERERERAKDeqIOQkypj2bpPTXPeSO7o39mvPa1mH4vMvU1hp56NahvcEOW5Ygfo6iqEV5ZqcjISLCjZ2os0uJtcHlkbD9cHa2nQkRERESdBIN6og5CZOqzojj5nprHrMvWA0BaQuCgPJGZ75WmlN87PV40uiJfRyeG5OWkxMBkkiBJEsb3SQUAzFy+76ifAxERERF1LgzqiToIMaW+WyIz9W3pwlE5GNkjGUkxFvTPTAAAJKqD8o7Uu1DvVErkc5JjIZYJNKcEXwzJ66H25APAPWcMhCQBX284hLX7j0TjaRARERFRJ8GgnqiDOGt4FgZnJeKCUd3b+lC6NIvZhNm/OwkrHj4DybHKwEJRfi8G3AFAUqwVSer3m7PWTmTqe6T4gvoRPZJx5Thlvd5fvt0Grzfycn4iIiIi6twY1BN1EBP7Z+CH+07G+L5pbX0oXV6M1awF8oCv/L60RtlfnxhjgdkkISlGDepbkqlPiTNc/sezBiPeZsaGA5X4emPhUR1/c3i9Mjw8iUBERETUbjGoJyI6Sgl243ZQEcwnxSqXVzdEvqu+sDKw/B4AuiXF4PenKf38z32ff8wm4T/3Qx6GPjYPu0pqj8njEREREVHzMKgnIjpKCTHGoF6U5bcoUx+k/F64dXI/ZCTYUFTdiA0HKlt4tJFze7z4aFUBnB4vlu8ua/XHIyIiIqLmY1BPRHSU/DP1AUG92lNfWNmAlXvKQ96P1yuHDepjrGaM7a1Mwt9SWHX0B96EjQcrUd2oVBmItgAiIiIial8Y1BMRHaV4W/CgXvxXBMZ3f7gO17y9EusLgk+wL6tzwOn2QpKA7OTgWw5G9EgGcGyC+l92+LLzBysZ1BNR9CzbVYaHv9iMqmYMEqX25UBFPT799QBe+CEf93+yAd9vPtzWh0TUZVmavgoREYVjMkmIt5lRp66z0zL1ak99VYMLjS4PNh1UAvFlu8owRs246x2qbAQAZCXGwGYJfs51pBrUbz4mQX2p9jkz9dSRrdlXgaykGPRKi2v6ynRMPDN3O7YdrkZqnBUPnjOkrQ+Hmsnl8eKiN5biSL3vpMxPeSU4e3g2TGKfKxEdM8zUExFFgX4avgjm9eX3O4prtCnya0Lsmj9QUQ8gcEiensjU7ymrQ60j8gF8zVVR58Smg5Xa14XM1FMHtaWwClf+awUu/cdy1DRjvgW1nlqHG3lF1QCAD1cXoMEZ+eBPt8eLncU1kGVu5WhL+8vrcaTeBZvFhOtP7A27xYSqBhf2lde19aERdUkM6omIokA/LM+XqfcNytt2qFr7/rr9R4Luml+UVwIAGJGTFPJxMhPtyE6KgSzDcJ9NaXB6UFLTGPY6O4pr4HR7AQBLdpZCloHuahtAaY0jqhP3HW4P7vpgHd5ctCtq90kUzNcbCiHLQFmtA68v5O9be7DpQCXEn8DKehc+X3cw4ts+9vUWnPnyYvywtbiVjo4isaukBgAwNDsRf71kpHbCeaPuZDBRazpc1YD/LNmD7Ycjfy/UmTGoJyKKgkR7sKDet9Jum+4fnepGN3aVGlfENTg9+GFrEQDgouNywj5WS/rqb3tvDSY/uwj7yoJnURblleCslxfjN/9eiUaXB4vVfvqLRucgxqr8U1FUFf6kQHMs31WOuZsP48X5+VqFAlG0eb0y5m7y9fn+d9le7Cnlesa2tlatVoqzmQEA7y7bG/REp789pbX45NcDAIztQXTs7SxW/j8a0C0RAHBcrxQAwMYDrd8a5q+iztmsao+jJctyRL+v1Dp2ldRg+qcbMeW5Rfjr3O248PWleGXBDrg83rY+tDbFoJ6IKAqM5feBK+1EVt2s9hqu2Wcswf8prxh1Tg96psZqE+5DGdnMoH5LYRWW7iqD0+PF6r0VQa/z1YZC5bj2H8G9H2/A4p3KG+ZTBmVqk/ijWYK/Xl3J55WB91fuj9r9tld/+247Hpi9MarVDl2Z2+PF3E2HmzwhtK7gCA5VNSLBbsGUgRlweWT8de72Y3SUFMo6dVjo70/tj0S7BXtK6yIK0t9ctFvL8G89dOyDR/LZWaIE9QOzEgAAo9Wg/lisW9UrrGzAKc8vwknP/oT3V+7X2txai9vjxfmvLcXop+bjqW+2dpiThKv2lOOtX3Zjzb4KrSKvI9pbVocLX1+Gz9cdhNsro296HNxeGa8s2IlL3lyGpTvLumxrDoN6IqIoSAiaqVf+W1nv0srDzhyaBQBYs98YXM/ZcAiAkhmXpPBDhkb2VMrzxbC8RpcHz83Lw9KdwXfJf7CqQPs8v7gm4Ptujxc/5ytvqCUJmLe1CKU1DsTZzBjXNxU9UpXhYtEclqd/4/fxrwdaLcvyr19246p/rUBBefOqAWRZRkF5PeZvLcIbC3di5rK9LQ7IS2oa8fbiPZi99iDu/XhDq7/p7Ar+vWQv7vpwHU594Wfc98kGbDpYib1lddh+uBrltQ7tet+qWfozh2XhyYuGw2KSsDCvBIvyS9rq0FvFX7/dhtNf+LlZLTltxeuVsa6gEgBw8qBMXHNCLwDAO0v3hr3d/vI67eQjAOQdrunQwUl7UlTViCN1zmbdRgvquylB/XE9UwAobWHH8ucyf2sRahxuVNa78OhXW3Dxm0tbNdBesqsM2w5Xo8bhxn+X7cPpL/6CP3+5uV0Hkm6PF7e9twbPfp+HK95agdFPzcdfvt3W1ofVIu+v3I8GlwfDc5Lw1V2TsOiPp+K1a8cgJc6KrYeqcf07q3DB60vxXRfcxMCgnogoChKCZOpFcH/gSD3qnB7YLSZcOb4nAF/5KQBU1bu0oPri43o0+VgjcpRM/e7SWtQ73Xhz0S788+fd+L+P1wcEnrUON+bo3gjvCBLUr9l/BFUNLqTGWfHK1cdpl5+Umw67xYweKUpffbTW2smyjI1qUB9nM6OqwWV4sy58vaEQN727uslZAKF4vTLeXLQLq/dW4Lp3VjarfeDpb7fh5L8vwu3/W4sX5u/Ak99swzmvLMbyXcFPnISztdAXaM3bWoQn5mxp128AO4I5G5WTYB6vjC/XF+KiN5bhtBd+xrmvLsGJM37CvC2H4fHKmKu+sbtgVHf0z0zAzZP6AgD++fPutjr0qDtQUY93lu3FnrI6XP/OqqD/jx9re0prMenZhbjrg3UBv+t7yupQ1eBCjNWEod2TcNPEvjBJwNJdZdgfZsjam4t2weOVccqgTCTFWOD0eNvFc+3o5m8twsnPL8KFbyyNuKTc45Wxu1SU3ytBfa+0WKTGWeH0eLUhiMeCqPCYMjADiTEWbCmsxpPftF7A+tV65d+q04d0wxlDukGSgA9XFeBfi/e02mMera2HqlHd6IbNYkJavA0NLg/eWboXFc08kdPWGl0ebf7G9LMG4bheKZAkCReNzsH8+07GTSf1QazVjK2HqvH7D9aFTHR0VgzqiYiiIOigPLX8XrynHZKdiPF90yBJyuTg0holozhv62E4PV4MzkrE4OzEJh+rW1IMuiXa4ZWBBdtL8Lb6ZqK8zqll/IWvNxSizunR+uKDvQlesE0ZOHXakG64+LgeeOLCYUi0W3DtCb0BwFd+H6VM/b7yelQ1KFOT7z59AABg1vJ9hjf/sizjue/z8MuO0iYzeKHsKatFdaOyIeBARQOu+89KlOmyuKE0OD1a3+6Q7ERcclwOspLs2Fdej9/8ZxUe/mJTsyoLRJtE3/Q4SBLw/soC/POXtgkqZVlutRMK1Y0u1Dvdrd5rur9cycibTRLeu+UEnDsiGzFWExLsFiTHWuHyyLjnow14feFOlNY4kBRjwZSBmQCAmyb2BaCsuCuP4HehI3hvxT7tb0xFnRO/+fcqLeA6FpbtKsObi3Zp2ziq6l347aw1KKxswNzNh7HE7421KL0f1SMFVrMJPVPjcHzfNAAIuK5woKIeX6xTgqn/mzpQmysSrATf7fFixnfb8emaA9F5gh1EvdON3/x7JR75cnPEvcVfrS/EnR+sg9PjxcEjDdgeYTB+oKIeTrcXdovy8wMASZK0EvyNx6gEv9HlwYrd5QCAR88fho9uOxEA8Oveilbpr651uLXZN/ecMRDvTDsef7l4BADg+Xl5WKK2re0srsHsNQfaTbvVqr3Ka3TywAyseWSqdiJmbYhNPNFQ3eiK+ryc77ccRmW9Cz1SYnHKoG6G73VLjMFTF4/A8odOxxlDlO/9lNe1hmkyqCciioLg5fcWw3WG5SQhOdaKQepgIfEP6tei9L6JAXl6oq/+kS83w+H2ItbqGzglgjZZlvGhWnp/x8n9AQDF1Q5U1vvOzsuyjAXblX/4pqqtATdP6odNT56FqcOUr8WKvcLK6PwDveGA8rxH5CThuhOUM+t5RTVYucfXkrD1UDUOqZn1z9cebFE557r9lQCAwVmJyEmOwe7SOpz36hL84aP1eHvxbvy6rwIOd+Cbrp/yilHv9KBXWiy+/78peOWaMfjx/lNw/YnKSY6PVh/AJW8uw+7SWjS6PJi35TD+8u22kEMIt6iBx3UT+uCJC4YBAN5YuOuYv+GrqHNi4rML8dtZa6IeeL/04w6MenI+hj3+A3L//B1O/fsi7aRVtM3borypPjE3DScPysQ/rx+HvL+ciy1PnY11j52Jc4Znw+nx4pUFOwEAZw/Phs2ivN3pmRqHET2S1BNiHf8NX53DjY/VE1AvXTUaQ7snoazWgRv+s6rZLS1bD1Xhx23FzTrpM3vNAdzwzir8/Yd8nPvqYqzcU467P1qHPWV1EF1Ef/8h33Cf69S/e2P7+GaHTBqQAQBYvjt4UP/xrwVwe2VMGZiBsb1TtaB+c5C5Ij/lleBfi/fgwc82Yeaylp0Q7Ih+3FaM5bvL8cGqAvzhw/VN/s38eHUB7vtUaQeyq/9/6P8GhyNK7/tnJmhzYgBgtFqCv/4YBfWr9lbA4fYiOykGg7ISMKy78m9sg8uDra3QijJvSxEaXV7kZsRjdE/ld/C6Cb1x1fie8MrAHz5ajyv+uRxnvrwYD3y2Ca8v3Bn1Y2gJ8XOd0C8dJpOknURbsy+yn3ek9pbV4cX5+bj0H8sw5ukfMeX5Rfh3FCsYxPuZa47vZfi900uNt+GSMUrFY6gZQp1Vhwnqn3nmGUycOBFxcXFISUmJ6Da1tbW4++670bNnT8TGxmLYsGF46623WvdAiahLig8S1MdazbDo/uEZ1l3phR/XV3kzu3Z/Bb5cfxAr9ihn0S8aHXlQL97U1jS6IUnAOzeNR5xNCY6X7VLub+PBKmw9VA2bxYRpE/tqGfcdxb4s3u7SOuwrr4fVLGHKwAztcn1ff48UJRNzqDI60+83qP20x/VKRXKcFZeOVf4BnrV8n3adH7f5Aq6yWicWqmfcPV4ZM77bjn9FkOkWGcHThnTD+7+dgKwkO0pqHPhm4yH87bs8XPnWCox8cj6u/tcK7bqAb77BhaN88w2SYqz46yUj8eFtE5CRYEd+cQ0ufH0pjv/rAvzu/XV4Z+lePPb1lqDHId5cDu+hlBpnJdlR7/RgpfpzjwavV0ZlvTNsJcKivBIcrmrET3kl+CSKWcyDR+rxll85+77yeq1MNdrmqZmyc0Z0D/ie2SThlWuOw4m5adplF/j9f3X2sGwA6BQr0b5YdxA1jW70y4jHJcf1wPu3noAeKbE4VNWI2Wsj/xl7vDJuevdX3PbeGtz94XrUNLqavM2s5fvwwGeb4JWBeJsZByoacM3bK7FkZxlirWa8d8sJiLeZsbmwSstuAr7/L8f2TtEumzQgHQCwYnd50BNOC/OUDOhl6t8KX1AfGLjpq5We/GYbZkfxd33xjlJc/s/luPiNpbj4zWW44p/LceO7q3Hn+2vx2k87Ue90R+2xmmvBdt+ciHlbi/D7D9YFPWkJKHM+Hp+zFbIM3HRSH9w7dRAARPw3aae6zk4MyROOO8aZ+l/UtrVTB2dCkiQ1YFX+ff01CgHdrpJaPPt9npZxFn/TLh3TQ/u3QZIkPH3xCIzumYzKehfW6LLfC7a1/ewOj1fWXosJ6t9F7TWKUlC/Ync5bp35K05/8We8vnAX1hdUarNjngnz73VzTiDuKK7Br/uOwGyScNXxvcJe94R+yvPcdrga1RH8LessOkxQ73Q6ceWVV+LOO++M+Db3338/5s2bh/fffx/bt2/Hvffei7vvvhtz5sxpxSMloq4oUS2/j7OZYTUrf1olSdL66wElUw8A49UM1azl+3HfJxshy8A5w7PRKy0u4scTmXoAuHxsT0wckIErxyn9+u8u24v8ohr86bNNAIDzRmQjNd6GQeobMH0J/k9qtvLE3HQkxviOVU9k6g9XNQR9w+1we4L+4xwqEy2G5B2nvqmfppZEz99WhINHlDdPIqjvm668Jh+tVt6Yv714D/61eA9mfJ/X5BtQETyM6Z2C3MwE/DT9VMy65QQ8cPZgnD08CxkJNjjdXqzaW4E7/rcWNY0uVDX45htcGOQky8T+Gfju/ybjxNw01Ds9qHG40T1ZmTmwdFdZwIaAynonDqptC8NzkiFJEk4folRA/LT96N/wrSs4gknPLsSAR77DcU//iPF/XYCPVxcEve7y3b7X69nv80KeADh4RAnIH/lyMx7+YjNW7ikP++br5R93wunx4sTcNGx96mw8ct5QAMC3rTCo6HBVA9YXVEKSgLPVShJ/MVYz3r5xPCb2T9c+9M4ZoQT1S3eWRRS8Ho1Glwd/nL3RcMIqWrxeGf9V7/emk/rAZJKQnmDHHafkAgD+s2RvxEMZtx2q1n4f5m4+jAtfXxp26N57K/bhiTlbAQC3TOqH5Q+fgcvH9tS+//LVozFlYCZundwPAPDC/B3weGVUNbi0k4r6TP2onimIt5lxpN4VUAJ+uKoB2w9XQ5KgldyKv3/bD1cbyqxrGl1aBcaZ6u/Hnz7fZDhJ2FKyLOOvc7dh7f4j2HiwChsPVGLN/iNYvKMU328pwks/7sCZLy1u0WM1ujy49u2VOOeVxXhuXh7W7q9oVjWNy+PFL+rwx3unDoTdYsKC7cV4ck7w3vJ3lu6F0+3F2N4pePKi4dr/I6v3Rva4u4qNQ/KEUT3FvJe6Vgum9H+Lft6hPOdTBmVql4ks9OqjDFi9Xhl3f7gOb/2yG5e8uQzfbjqEZWolicgECzFWM/51w3hcNrYHHjh7MObfdzJMkjKY9lAUt8a0xHZ1qF+C3aIlFsRrtLmw6qgrxv63cj+u/fdK/JRXAllWTrA8f/koLP3Tafi/MwYCAGZ8n4dn5m7DvC2HsWJ3Of67bC+u/88qDHr0ezz61eaIHkdk6acO7YaspJiw181KikHf9DjIMrDWb9NQZ9ZhgvqnnnoK9913H0aOHBnxbZYvX46bbroJp556Kvr27Yvbb78do0ePxurVq1vxSImoK4q3KUF9kl9gnKTrtR+crWbq1TezTo8XVrOEB84ejDd+M6ZZjze6VwpsFhPibGb88azBAIBpk/pBkoCFeSW48I2lyC+uQXq8TetbH5SllP0bg3rlTZEovQ8mK9EOs0mCyyOjxK+k+ttNh3DcUz9i6ku/4FO1h/CHrUW45M1lGP7ED3jpxx2GwKLR5cE2dRPAGDWrMygrERP7p6vr7Qpw8Eg9th2uhkkCXlIH9y3eWYoF24rx0o/52n39de62kG9AqxtdWomoWBGYYLfglEGZuOu0AfjXDePx6yNTseD+U9AvIx6lNQ689tNOzN9aBKfHi4HdEjAkxHyDbokxeP/WCXj1muPwye0nYtmfTseJuWmQZaVVQE9k6XunxWkVHFOHqv1+232lzi6PF8t2lcHdzD7Q137aicLKBuhfhse+3hJQVinLMlaob0iTYiyoanDhGb/VboerGjDtv6sx+blFuPeTDfhgVQE+Wl2Aa95eiTNe/AXfbDTOawCAvKJqfLFeec4PnTsU8XYLLh6TA5OkZOui3VM5X82uj+2dim5h3tglxVjx4W0n4sPbTtROsgkDuiUgNyMeTt3Wh9by3op9+GztQfx17rao9/D/lFeCPaV1SLRbcMV4X+bqinE9kRJnRUFFvdaq0JSl6gDIET2SkJMcg33l9bj0H8vwya8FASd01hccwdPqILI/nD4Aj10wFMmxVrx41Wh8dNuJ+PC2CVoVxW9PzkVyrBW7Smrx5y824+3FSsauT3ocMhLs2n1azSZMyFUCy+W7jCfrFqlZ+jG9UpAWb1NunxaHBLsFTrcXu0p8lUfztxbD4faif2Y83r5hHK4e3wteGZjx3fajniWx6WAVdhTXwm4x4a3rx+HfN47HP68bixevHI3HLhiGHimxKKxswG3vrcHDX2xq1uN9tlap2MorqsE/f96Ny/+5Ar97f23Egf2afUdQ3ehGWrwNfzh9IN66YRwA4NM1BwL+H6xqcOGDlUqA9PtTB0CSJAzPSUKCXfm7IP4+hyP+tood9UJ6gh290pSTwJsPVsHjlaMW1Lo8Xtzz0XpMenYh1u6vwIGKeuwprYPZJGHiAF+V2fFqlvbXfc07MeLvh61FyCtS/q0sr3Pi7g/XQ5aVLHewE/DZyTF46arjcNdpAzAoK1GrWlgcZlWjLMtYmFeMO99fG/BvR7SIk9/H902FxSzakGKRlWSHyyMf1QrCdQVH8PQ3ysm9y8f2xE/TT8HMm0/AVcf3Qs/UONx35iDcO1UJ7P+9ZC9+9/46XPvvlXjqm21YuqsMLo+Mj1YfaLJVq87h1gbk/WZCn4iOTWTrV3WhEvwOE9S3xMSJEzFnzhwUFhZClmUsWrQIO3bswFlnnRXyNg6HA9XV1YYPIqKmiEF5ybF+Qb36dd/0OK3vvndaHM4bmY0T+qVhzt2TcddpA7R/bCOVmWjH7DtOwtd3TUK2minulxGvDYhxur04bXAm5t17svbGSwT1+eoblYo6p7Za74yh3fwfQmMxm5CtBlCir16WZfxnyR7c/eF6NLg82F1ahwc/24RRT83HHf9biw0HlPK7137aiVtm/qqtS9p2uBouj4z0eBt6qhUAgC9b//GvBZirriEb1ycVY3un4qTcdMgycMf7a+HyKH21iXZlyrH4h97fhoJKyLIykTkz0R70OpIkYUC3BDxxodLn/t9l+/CfJUoP7oVNrBa0mE24+LgemJCr9ChepQZVs9ceMLyRFEPyRvRI0i6bNCADMVYTDlU1am+gn5yzFdf9ZxX+Pj8fkTpQUa9Nfp5z9yTk//UcnD+yO1weGb97f51h2v/+8nocqmqE1SzhXzeMhyQBX64vxJuLduGXHaX49NcDOOvlxfg5vxRmkzLw6rYp/XDN8b0QZzNjT1kd7v1kQ8DcgL/Py4csA+eNzNbexHZLjMGEfkqA1tRaofJaB/6zZA+q6iPL6n2/Rbm/c9Vse0tIkoSzhosS/MiC3paodbjx1i9KP6nLI+OrDYEnRVriQEU9Hpi9EXf8bw0A4IrxPQ0zPeJsFtx4ovLG9+3FuyMKLpepQf0VY3ti7j1TcNrgTDjcXvzp882YPnujVlZeVe/C3R+uh9sr4/yR3XH/mYMM/5+c1D8dE/v7AqykGCt+f6oyz+OTNQfw5iIlqBcn2vREtniZX1+9WD94+hDf3yiTSQlEAd//YwDw9UaxGlQpj378wmGIV39/j/bNvRi8d+6IbJwzIhtnDsvCuSO74/JxPXHr5H748f6T8btT+sNskvDR6gOYvSayIM3jlfHvJcrvyVXje+Ki0TmwWUyYv63YMFFdluWQlSWi4urUwZkwmyScNrgbpgzMgMcr4y2/0uf/rdiHWocbQ7ITtdfUYjZpJdlNVUB5vbJ2IsW//B7w9dX/5dttGP/XHzHx2YV46ccdYe+zqd9RWZbx5y82Y87GQzhU1Ygb31mN135S+tXH9k4x/Ls7IicZsVYzKutd2NXCgZFer4xX1fu//eRcnDfS9/fm0jE9Q93MQFSVhDpxuGBbMc59dQlumbkG328pwp8+32T4XfYnhpw2d9jpKq303lexJEkSxh9lX31ZrQO/f38dXB4Z543MxgtXjkL/zMDfh3unDsLzl4/C6UO6YWzvFORmxOPE3DQ8ct5QDM9JgscrN9mq9fGvB7Q2oym6EzjhnNBPVJ9Er82tvevUQf3rr7+OYcOGoWfPnrDZbDjnnHPw5ptv4uSTTw55mxkzZiA5OVn76NUrfN8GERGglLMNyU7Uej4F8WZDlN4Dyj+o/7huHD694yQM7Z6ElhrdKwUDs4yZkofOHYqTB2Xir5eMwLvTjjcEtGKy/o7iGsiyjK83FMIrA8NzkrQJxqGIEvyDRxogyzKembsdf1UzvTed1AePnDcUWUl2ON1eJMZYcNdp/fHMpSMQYzXhlx2luOD1pdh8sErrpx+trqIRzhiahZ6psaisd2kDzkT5rNhj7fHKyEiw4eWrj9OqD/7+Qz7qHIF9rOvVxwkWPPg7dXA3nDksC26vjHy1iiFY6X04547ojgS7BQcqGrBS9yZii+inz/G1S8RYzZg8QCkX/Wl7CbYfrsZHasn8zGX7UFwd2eyCD1YVQJaVVU6jeqbAbjHj71eOwpDsRJTVOnDH+2u1nlpRej+mdypO6p+O69Vsx99/yMdN767Gg59vQk2jG6N7JuOHe6fg67sm4ZHzh+HZy0dh9SNTMXmAEiC8uWiX9vgr95Tjp7wSmE2SVi0iXDBaydSKPfHBuD1e3P6/tfjr3O340+ebmny+ByrqtcFHZw9veVCv3F753VqUV9JqAwtnLd+HijqnNtBp9poDR50t/mFrEc548RfMXnsQXln5f0T0Q+vdOLEv7BYTNh6sUnrfZ2/E+L8u0DLleo0uj9ZbO3lgBlLjbXjnpuPxwNmDYZKAL9YVYsLffsLDX2zCPR+vR2FlA3qnxWHG5SPDnvgSbj85Fy9dNRrXntAb4/qkol9GvLZZQ0+cDFi9t0Ib8uZwe7QTDqcONp54FCX4IhAqq3Vo1xVDR+PtFu3zUG0pkWhwerRe/avGB39fGGez4KFzh2j/Lzz5zVbsVU+CLcovwf2fbAgaQH2/5TD2l9cjNc6KJy8ajteuHYO/XDwcAPDC/Hys2VeBPaW1uObtlRj91Pyg6xgX5gVWXN19mvI3cvaag9rflAanB+8u2wcAuPPU/jCZjCdkgKaH5RVWNqDB5YHVLKFPkIy1OLmXV1SDI+rJutd+2ol5WwL/FuQVVeOcVxZjxBM/4NxXl+DO99cGXRv68o87MHvtQZgkZTZNndOD2Wpm2//3wmYxYYza2tXSQWnztylZ+kS7BXedOgBvXDsWD587BBeOzsElYyL7t+HUwcrf+GW7ygIm8W89VIXb/rcGeUU1iLeZMSQ7EW6vjPs/3RDw98jl8eK+TzYg98/fod/Dysf5ry3FnghOWHi9svYaTOiXZvje8X1EX33zy9PrHG784cP1KKpuRP/MeDx/xeiwfwuuOr4X3p12PL74/SQs/OOp+Pj2k3Dbybn4zQTl78CnYf42ujxevKtuwLltSq7hdzYc8Xw3Haxq9tDQjqpNg/qHHnoIkiSF/cjLy2vx/b/++utYuXIl5syZg7Vr1+LFF1/EXXfdhQULFoS8zcMPP4yqqirt48CBrrUShYhaJi3ehnn3now7TulvuDwlTikX1Qd1rWlAtwS8d8sJuP7EPgH/yA7olgBJAo7Uu1Ba68DHap96qDepetpau8oGrNxTgf+o/8g+ct5QPHnRcNx2ci4WP3gavrprEpY/dDoeOHsIrpvQB1/+fhL6pMehsLIBl7+1HO+v2g/A98ZPMJsk3HiSEmg2qG9qzlQHmp09PBvpatntjMtGISPBjmmT+qJ3WhxKahxB9wP7hnE1HdQDwOMXDNMmpI/skYx+GfER3U6ItZm1EwH6DN1WLVNv/PnrS/D/OnebVj7vcHsNgbPevrI67c25w+3RMofXn+grR4yzWfD2DeOREmfFxgOV2s9YDGMU2dBHzh+K6WcOwtShWRjYLQHZSTGYfuYgfH7nxICS2gS7BfefpQSOX6wvxIGKetQ0uvDAZxsBKJOIc/0yNOcMz4ZJUno2Q+0e/8fPu7UNEPO2FgV9My98u+kQzn9tCbyy8rvTnPkTwYzumYKsJDvqnB5DD7TXK+PztQfx2k87Iz65Ekx1o0tbNfnEhcNgt5iQV1QTdFq7UF7rUKom1hzQPkRVDaAM7br/kw3a/IIvfz8R/75xfEB1EABkJNhxuTpj48lvtmH22oMoq3Xghfk7cLjKWA69bv8RONxeZCXZtUybySThrtMG4MPbTkSvtFjUNLrx0eoD+GVHKaxmCW/+ZmxAq1EokiThsrE9MeOykfj8zolY9MdTtdJYvSHZiUiLt6He6cHGg5UAgFV7KlDv9CArya5l5gX/CfjfbT4Mj1fG6J7G/3+vOV4JHL7bUmTY/CFUNbjw5fqDuO+TDTjhmQX4zb9XBgRW87YeRo3DjZ6psTgxNz3gPvTuODkXJ+Wmo97pwT0frcddH6zDzf/9FV+sL8RV/1qBVxfs1FqSZNmXSb/xpL6IU9u4rhrfCxcflwOPV8Yd/1uLc19dglV7K+CVgefm5eHlH3doQdCe0lrsKasLGHY6ITcdx/dNhdPjxduL98Dl8eK1hTtRUedE77Q4nD/SOGhSPK9Ve8vDzmIQWfrcjISgFWZXju+Fy8b0wO0n5+Lj20/ELZOUuQrTP92InbrWr5/zS3DFP1cgr6gGdU4Pth+uxvdbijDtv78agvF3lu7FawuVv4nPXKr8Dk3WZWv1/fSC6BmPdBBco8ujva5LdpZqJ5ZvntQXyXFWmEwS7jilP16/doz2M2rKyB7JSIu3ocbh1jY+CK8u2AlZBk4bnInlD52BD347ARkJNuworsXLC3xVDV6vjD/O3ogv1xdCH/NuO1yNS/+xHCv3lKPe6cb/Vu7HTe+uxrPf56Gkxvd3K6+oBlUNLsTZzAH/BolM/br9RyKevQEor+m5ry7Bij3liLOZ8a8bxhkqhZrjwtE5sFtM2FlSi40Hg/9tnLvpMAorG5CRYAtImoTTMzUW3ZNj4PbKWH+ga/TVt+ynECXTp0/HtGnTwl4nNze3Rffd0NCAP//5z/jyyy9x/vnnAwBGjRqFDRs24IUXXsDUqVOD3s5ut8NuD16qSUTUXLdN6Yc4qzmiwLm1xVjN6JMWh33l9Zi95iDyi2tgt5hwyXFN/0Op31Uv9gJfN6E3bjvZ9zfabjEHBOtDuydhzt2TMf3TDViwXekBBgKDekB5I/vSjzvQ6PJiQLcE7Y15jNWMj28/EWW1Ti2bZLeY8fC5Q3DnB+vw9uLduPaEXuierByj1ytjfTOD+l5pcZh+5iDM+D5PO7nQXFeN74mPVhfgu82H8dTFwyEB2KNm6vwDElH2Kt7I2Mwm/PXSEXjws034aHUBbj85V6ueaHR58PKCHfj34j2wW8x47opR8HplVNQ50T05Rmu5EHqnx+GPZw3Go19twZuLduGq8b20fvqT1DfuMVYz/qAOMYrE2N6pmDIwA0t2luEfP++Cw+3FgYoG9EyNxUPnDgm4fnqCHRP7Z2DprjLM3XwYvz91gOH76wuOaOWtw3OSsPVQNZ78Ziu+u2eKIVA4UufE099uw5dqeebonsl47ZrmzZ8IxmSScN7I7vjvsn34v4/XY0thFS4cnYOnvtmqZa5eX7gTlxzXAxcf1wM5KTHonhyLWJs5ovt/d+leVDW4MKBbAq6b0Adr9x/B1xsO4dM1BzBKLU8W5mw8hGe/266tcDQcpwT84fSBuHVKP9z5/lrUOT04MTcN7986ocmWndun5GLOhkPwyjIuGNUd+UU12HiwCq/9tBMzLhulXU/000/qnxFwIvDE3HT88sfTsHJvOb5YV4gVu8vxf1MHYmTP6J+kNJkknNQ/HXM3HcayXWU4vm+aVnp/2uBuAccmgpRth6vx9YZCbRihf5XNqJ7JGNo9CdsPV+PL9YW4WQ0yAWUDyR3/W2cYGllS48BT32w1vEaf/qqcqLtyXK8mM4Umk4SXrh6Nc15Zgs2FVdhcWAWzScKYXilYs/8IXl6wA4t3luLq43vBbjFhS2E1Yqwm3KS2IAHKiZBnLh2JTQertGz/lIEZGNkjGf/4eTdeVSft3336QG0uyoR+gcNO7z59IG56dzU+WLUf87YUaYM8f3dK/4Dfn2Hdk5Bot6Cm0Y3th6sxokcyZFkOeN3F5PsBQUrvAaU6TcxCAZTBsNsPV2PFnnLcPPNXTOiXDpfHi283HYJXVlZTPnbBMBRXN+L9lQVYmFeC295bg8/vPAmf/HoA/1Zbou45Y6BW4fGfm8bjsa+2QJJ8W2X0xEmjSCfgv7FwV0AFRILdglsm9wtxi6aZTBJOHpiBrzYcws87SrXy9y2FVZi/rRiSpJxcTY5TfmZ/u3Qkbv/fWry9eA+SYqyY2D8dX64vxNcbDsFikvDGb8bihH5pqGl04f8+3oANBypxwzurEGs1o7pRqVb7ZUcp3l22F5eP7YnxfVK1darj+6YFzBYZkp2IBLsFNQ438otqYLOY8Nnag7hodI6hslDwemW8+GM+/vHzbsiy8p7g5auPCzgJ3BxJMVacMyIbX284hNlrDgS8L5BlWTtpP21iX8RYI/v7Cyj/Dx3fNw1zNh7C6r0VhragzqpNg/rMzExkZgaeYYsGl8sFl8sFk8n4S2w2m+H1Nn/fMRFRS4zqmYJRV6S09WFoBmUlYl95vfYG5ryR3bU3FeGI8vuf80tRWNkAs0nC7/yqEkJJjrXi7RvG45+/7MYL8/Nht5gwOkhQnxJnw5XjeuF/K/cHZJEGZiVioN8sv3NGZOOEvmlYva8Cz8/Lx8vqG8k9ZbWobvz/9u49LMpq3wP49x1gRgSG+1UQRFBUBM3bxhspbMVbeEsjTlt3bd2WdlFze9mmuXcnO7l3p7Sym2ntY5pWSJlaKEJpqIHiFREMBeSWIPf7zDp/AG+OgDKmjAPfz/PM88C87wzrhR9r5jdrrd+qRxczBfxc2/6G46/BPfHYkO5t+n20ZICHDXydLJHWuA1SeGNy4WrdRacoGAA4qbsg0N1aTur/PNILswZ7IDr5Go6mF2LToXQ8H+qLM9kl+Pf3qXJhqqq6htE/m8Y2Rgzt3mJyN2uwB96Lv4zsG1V4+evzuF5eiy5mCnnHgbvxfIgvfky7jp0/Z0GIhoTzzdkDWt01YVKAK46kX8fXyTl4ckQP+Q3Zr2U1eOHzhv2xpwS64Z/h/TDmX3G4lF+O/zt2FXNH9IAQAlGnruGVb1NQVFELhQQsHOOD50J8m705vVtL/tgLRRW1iE7OwfuNuyoADTtY+Dpb4XRWMXYnZcvTfAHA28FCXjce0sepxTeZVwsr5NoML4T6NmzBNNgD0ck5iE7OwepJfeXHNa2Pr6nXQpIa6mJ0t+sKhSShrLoOP19p+PBj69EMlFbXw8lKhU0RD7WpBoeXgwWOrhgLpYkC5koT/HylCI++l4BdidmYP7qn/KFZ05T1Ea2sVVUoJAzv6dAub4qHNyb1B87lYZSvAw43Tiu/dYo10PC3sFCaoKJWg+d3JgMATBVSs6RekiREDPXAmujz2HkiC3OHe0GSJOw4kYk10edQpxHwtO+Kif1d4WrdBWu/Po8dJ7IwsLstZg32kBNSSQJmDGrbSKGrtTk2zAzAos9OoV83Nf57an/0dVMj6lQ2XtpzHklXb8izVICG2QRNRQCbWKpM8cETg/Cv71MR2scZMwe5Q5Ik2Fko8cq3Kfjwxwxs++kKzBtjaaxf89/RaF8HBLhb40x2SeNopwoLgr0RMbT5h8ymJgoM6WGH2IsF2Bx3GaXVdUi4XIhnx/ri+dDfPgBMa6XyfWtMTRR4+/GBmLLpCLJvVCH7xm//TzMHuePVaf2hNFWgn5s1grwdEPHhMSRnFWPixiPyMoy/hfXG0ze93nQxM8GGRwNb/ZkDu9vAVCE1bO2YmIW9Z3KRkluKAHcbjPSxR0gfZ3m2z9XCCnlWzZjejkgrKEf2jSo8F+Ijz7S7W8G9HbEnOQfxqb9ieVjDh59NswAeCXTTSYjH9XPBjIfc8eXJbGz47rfaKpIE/HtWoLxrh52FEjvn/wFLd53Gt2dzUaeph6d9V8x4yB1xqQU4mVmMHScy5SVdQPOp90DD32Vgdxv8mHYd6745j1OZxajVaLHtpwz8+9EBmBTw22twTb0GS3adluvdzBzkjjVT+rZ5ts7tPDqooW/8+nQOXprcV6dP/THtOlJyS9FVaaIzI62thvb4LamvrdciraAMTlZdWq2zY+wMmtTrIzMzE0VFRcjMzIRGo0FycjIAwMfHB5aWDR2Ln58f1q9fj2nTpkGtViM4OBjLli2Dubk5PD09ER8fj08//RRvvPGGAa+EiMhwertY4fsL+ShvXIc++w77vTa5efo9AEwd0E2vKdBN03kf7u0IrbZ5QcEmf5/UByN8HFp8g3orSZKwenIfPPL2UUSduoY5w70wwMMGJ68WAwACutnonQDebULf1J6l43rh6e0n8dnxTBxrnNHQ2tKL0D7OOJ1dAnsLJRY2rn9d8sfeOJr+Ez5PzNLZS97BUoX/nuaP5KxibI67jOLKOpgqJDzWyt9PaarAc2N98bcvz8jPM8TLDirTto903Gqwlx2G97SX1+cvGuMjT+Fsyfh+LlgbfR4X88ow/s0f8PeJfZBxvQKbYtNRXlMPN+sueGWqP6zNzbC0cWbBhu9S8eXJaygoq0Z+acPoaW9nK7w6vb+8a8S9YtXFDG89NhCTA9zw96izKCirwZjejvjnVH+423ZF0tUb2Ho0AxdyS5FbXI2qOg1+uV6BX65XYPvxTDirVVg01hezB3vISzdq6jVY9NkplNfUY4iXLSY2VoEP8raXq6MfOJcnb4n1yrcXUFOvxbAedtgyd0izaazRydewOuocSqvrYaqQ8G7kQ3q9Ib35/2yIlx3G9HbE4dRf8UbMJWyKGIiSyjqcaZy+3lpS355GNdaauJhXhhmbEwAAZiYSRvo2b5tCISF8YDfsTsxCH1c1Hupui/H9XFrc7ip8QDe8ui8FqflliPjwGApKa+RZNBP7u2DDzEBYNP7uSyrr8O+YS3hpzzlEJ1+T432kj8Mda4/cbFw/F5xeO05ndse0ge4Y7GmH3YlZiE+7jjPZxbBUmuIvo1oeEfZ1tsL7TwzWue8vo7xhb6nEu4cvI62gHHWahr68pR1MJEnCq9P6482Dl/BwbyfMHOR+29HOIG97xF4swLc3Fbj834OX4GrTBbMGe+BacZX8+/DVY4TW3lKFPQtHYO+ZXNRqtNAKAW8HC4zv56IzE8BcaYKP5gzG9Hd/QmZRJcxMJGyYGdhsC7k76ao0Rb9u1jidVYxlX/xWr+NgSj4OpuTjlW9T8Oq0/pg1xAP/3JuCWo0Wo3wd8PHcIZAkCdV1Gr1GhVsz2tcRktQwmyT2Yj6supjhYEq+PAPnVq9O90c/NzUSfilE4pUilFTV4R/h/ggf0HwLvU0RA/HHvs6wNjdDcC9HKBQSnh3rg+MZRYhOvobMokpcu1EFhSQhfEDLdQCGeNnhx7TrcjE9Z7UK+aU1WPjZSaTk+iC4tyPMTBRYvy8FxzOK7vrvcTvDe/7WN/7p4xPoqjRBRU09coqr5aVCs4d43NUHLE0fZhz7pRD+a79DrUYLewsl9j0/6o7b4hkjSfzeqi3tZO7cufjkk0+a3X/48GE8/PDDABo6r61bt8pT+vPy8rBy5Up8//33KCoqgqenJ+bPn4/Fixe3qbgLAJSWlsLa2holJSVQq+++oBUR0YPgm9M5eHbHKQANo4KxS4Pb1B9e/rUcIf+OB9AwchCzOBg+bRypud+W7ErGVyevYbCnLR4b2h3/G3MJ14qr8Ndgb6yc0Kfd27PzRCZWfPXb3rsvhPq2WMysuLIW6765gJmD3HUSqqf/Lwn7z+XBRCHBx9ESf/C2wwuhvWDbOJJ34Fwu/rk3BeED3PC3sOZT35vUabQIfSMeVwsbdiz4W1jvZtPg9ZV4pQizPziGgR422DG/+XZxtzqUko9VUWflBL1JgLs1Xp8ZAL/GbR41WtGwN/pN22mpTBV4LsQX80d737PR+daU19TjamEF+rqqW/x/EELgRmUdEq8UIeGXQnx3Lk+eLu9hZ46ng30wY1A3/M/+VHx8NAM2Xc2w77lRcLP5bYeHNw9ewpsH02Db1Qyb/2sQauq1mPPxCZgoJOx7bpRcyPJWWUWVeOdwOoJ7OWLCLTNY9HU+pwSTNh4BALwy1b9hCnDUOfR0tMChpQ//rue+V6JOZWP/2TwkXb2BwopaTAl0w6aI1pdcaLWiTcWzXtx9Gl/cNOtCkoClf+yFhWN8dP7mWq3AU5/8jMM3VS0f3tMe66f3h6e9frU27qS4shZCQP7f1ld6QTliLuTDzaZLs8TvbmTfqET420dh2cUU0we6o7S6DluOZMBUIWHVxD54N+4yrpfXwNFKhZjFo3/3SHZrmkbPwwd0a7H+QltsPJSGN2IuwVJlilmDPRDa1wmns0pwMCVfniUxvp8zvjufD1OFhAMvjPpdU8lbE/7OUZy+Zdu4qQPc8OYdlhEJIVBRq7nr9eptcSa7GI+8fRT2FkqsmdIXk/q7Yv3+i9jSWDPnZlYqU7z/xCCd7QPvlbcOpunUEriZs1qFqGdG6PSlbSWEwMj/OSwPRigkQCsaPqD79MmhbS66Z0j65KFGk9QbCpN6IupIUhtHTQFgxQS/Nk+hr67TwO+lAwAaRrbejRx039qor7ySaoz5V5xcYA9o2PLviwVB9/xNeFv959hVvLTnHADgoz8NRmjf5qNoramp1yCrqAoedua/a2QdAL46mY0luxoK2u1ZOKLFWgb6yi2pgp2Fss1tq6ipx8bYNGz5MQO2FkosD/PD9IHdmr2hKiirxtH067A2N4O9hQpe9ha/a+bE/VRTr8HnP2dhU2y6vMeyg6US18sbCrG19DcvqarDE1uO40x2CUwVEmwtlPi1rAZPjuiBNY3bKraHZ3ecwjendbfXmxPkiXXh/u3WhrYQQqCgrAb2Fkq9t/xsyY2KWuxOyoK1uRncbbvC18kSTq2M1pVU1mH9/hQ4Wqnw6CAPdLf/fYUZjZUQAs/vTMbXN8WLn4sVtswdIs/eelDVabRIunoD/dzUOkuEtFqBNw+lyVviAcBTI3vgpcn353/wfE4JPvzhFxzPKEJuSTW6mCnw7XOjWtz+zRDS8svgbN1FZyr9F0nZ+OSnKyirrkN1nRZOahVemx7Q4lr7e6G6ToOvT+egTqOF0kSBrkpTuNp0gbutORwsVL8r+b5yvQIX80rR19UatRotJm/6EdV1Wqye1Ad/GXV3ddvaE5P6e4hJPRF1JLX1Wgx/7RCqajWIWzZGr6m8oW/E48r1CuxZOKJZJV1Dezs2Df/6/hJsu5phQXBPPBHk2eYqxfdLdPI1nLx6A6sn973vI82taaienYg6jcCWOYPvSXJ0t25U1MJcaXJPprU+KKpqNdj5cyY++OEX5DaO3N8uQaiq1eDFL35bm+pgqUTsiw/fk7WpbVVZW4/343/BoYv5OHetYWbEZ/OGdYpCUqS/6joN/uuj40i8egMhfk54K2LgfR09bi97Tl3D3744AwdLJQ4sHn3f/weFEMi+0VCP5m5Gnene2H78Kv4edQ5KEwWiFg5vt52J7haT+nuIST0RdTSZhZXQCKH3tm05xVUoqapDnxaqDRuaEAKnsorRy9mqQ7zhJONSW69FdPI1FJTVYN4ob3mNfUuEEHg7Nh07TmRiXbg//qjHLI57raC0GsVVdejlfO+nHVPHUVOvwfmcUgS628DECKYst9WNilooFFKrNV6o4xFCYP5/khBzIR89HS2w99lRbd7VxBCY1N9DTOqJiIiIiIiMX1FFLaZsOoLIP3THX0f3fKA/qNInD+VwBhEREREREXV4dhZKHFoa3KGWggGA4RbXEREREREREbWjjpbQA0zqiYiIiIiIiIwWk3oiIiIiIiIiI8WknoiIiIiIiMhIMaknIiIiIiIiMlJM6omIiIiIiIiMFJN6IiIiIiIiIiPFpJ6IiIiIiIjISDGpJyIiIiIiIjJSTOqJiIiIiIiIjBSTeiIiIiIiIiIjZWroBjzohBAAgNLSUgO3hIiIiIiIiDqDpvyzKR+9HSb1d1BWVgYA8PDwMHBLiIiIiIiIqDMpKyuDtbX1bc+RRFtS/05Mq9UiJycHVlZWkCTJ0M3RUVpaCg8PD2RlZUGtVhu6OWQEGDOkL8YM6YsxQ/pizJC+GDOkL2OMGSEEysrK4ObmBoXi9qvmOVJ/BwqFAu7u7oZuxm2p1WqjCU56MDBmSF+MGdIXY4b0xZghfTFmSF/GFjN3GqFvwkJ5REREREREREaKST0RERERERGRkWJSb8RUKhXWrl0LlUpl6KaQkWDMkL4YM6QvxgzpizFD+mLMkL46esywUB4RERERERGRkeJIPREREREREZGRYlJPREREREREZKSY1BMREREREREZKSb1REREREREREaKSb0Re+edd+Dl5YUuXbpg2LBhOHHihKGbRA+Il19+GZIk6dz8/Pzk49XV1Vi4cCHs7e1haWmJGTNmID8/34Atpvb2ww8/YMqUKXBzc4MkSdizZ4/OcSEE1qxZA1dXV5ibmyM0NBRpaWk65xQVFSEyMhJqtRo2NjZ46qmnUF5e3o5XQe3pTjEzd+7cZv1OWFiYzjmMmc5j/fr1GDJkCKysrODk5ISpU6ciNTVV55y2vBZlZmZi0qRJ6Nq1K5ycnLBs2TLU19e356VQO2lLzDz88MPN+pkFCxbonMOY6Tw2b96MgIAAqNVqqNVqBAUFYf/+/fLxztTHMKk3Up9//jmWLFmCtWvX4uTJkwgMDMT48eNRUFBg6KbRA6Jfv37Izc2Vb0eOHJGPLV68GN988w12796N+Ph45OTkYPr06QZsLbW3iooKBAYG4p133mnx+Ouvv46NGzfivffew/Hjx2FhYYHx48ejurpaPicyMhLnz59HTEwM9u7dix9++AHz589vr0ugdnanmAGAsLAwnX5nx44dOscZM51HfHw8Fi5ciGPHjiEmJgZ1dXUYN24cKioq5HPu9Fqk0WgwadIk1NbW4qeffsInn3yCbdu2Yc2aNYa4JLrP2hIzADBv3jydfub111+XjzFmOhd3d3e89tprSEpKQmJiIsaOHYvw8HCcP38eQCfrYwQZpaFDh4qFCxfK32s0GuHm5ibWr19vwFbRg2Lt2rUiMDCwxWPFxcXCzMxM7N69W74vJSVFABAJCQnt1EJ6kAAQUVFR8vdarVa4uLiIDRs2yPcVFxcLlUolduzYIYQQ4sKFCwKA+Pnnn+Vz9u/fLyRJEteuXWu3tpNh3BozQggxZ84cER4e3upjGDOdW0FBgQAg4uPjhRBtey3at2+fUCgUIi8vTz5n8+bNQq1Wi5qamva9AGp3t8aMEEIEBweL559/vtXHMGbI1tZWfPTRR52uj+FIvRGqra1FUlISQkND5fsUCgVCQ0ORkJBgwJbRgyQtLQ1ubm7w9vZGZGQkMjMzAQBJSUmoq6vTiR8/Pz90796d8UMAgIyMDOTl5enEiLW1NYYNGybHSEJCAmxsbDB48GD5nNDQUCgUChw/frzd20wPhri4ODg5OaF37954+umnUVhYKB9jzHRuJSUlAAA7OzsAbXstSkhIQP/+/eHs7CyfM378eJSWlsojcdRx3RozTbZv3w4HBwf4+/tj5cqVqKyslI8xZjovjUaDnTt3oqKiAkFBQZ2ujzE1dANIf9evX4dGo9EJQABwdnbGxYsXDdQqepAMGzYM27ZtQ+/evZGbm4t169Zh1KhROHfuHPLy8qBUKmFjY6PzGGdnZ+Tl5RmmwfRAaYqDlvqYpmN5eXlwcnLSOW5qago7OzvGUScVFhaG6dOno0ePHrh8+TJWrVqFCRMmICEhASYmJoyZTkyr1eKFF17AiBEj4O/vDwBtei3Ky8trsR9qOkYdV0sxAwCPP/44PD094ebmhjNnzmD58uVITU3FV199BYAx0xmdPXsWQUFBqK6uhqWlJaKiotC3b18kJyd3qj6GST1RBzRhwgT564CAAAwbNgyenp7YtWsXzM3NDdgyIuqoHnvsMfnr/v37IyAgAD179kRcXBxCQkIM2DIytIULF+LcuXM6tV2Ibqe1mLm5Bkf//v3h6uqKkJAQXL58GT179mzvZtIDoHfv3khOTkZJSQm++OILzJkzB/Hx8YZuVrvj9Hsj5ODgABMTk2bVG/Pz8+Hi4mKgVtGDzMbGBr169UJ6ejpcXFxQW1uL4uJinXMYP9SkKQ5u18e4uLg0K8xZX1+PoqIixhEBALy9veHg4ID09HQAjJnOatGiRdi7dy8OHz4Md3d3+f62vBa5uLi02A81HaOOqbWYacmwYcMAQKefYcx0LkqlEj4+Phg0aBDWr1+PwMBAvPXWW52uj2FSb4SUSiUGDRqEQ4cOyfdptVocOnQIQUFBBmwZPajKy8tx+fJluLq6YtCgQTAzM9OJn9TUVGRmZjJ+CADQo0cPuLi46MRIaWkpjh8/LsdIUFAQiouLkZSUJJ8TGxsLrVYrv8mizi07OxuFhYVwdXUFwJjpbIQQWLRoEaKiohAbG4sePXroHG/La1FQUBDOnj2r82FQTEwM1Go1+vbt2z4XQu3mTjHTkuTkZADQ6WcYM52bVqtFTU1N5+tjDF2pj+7Ozp07hUqlEtu2bRMXLlwQ8+fPFzY2NjrVG6nzWrp0qYiLixMZGRni6NGjIjQ0VDg4OIiCggIhhBALFiwQ3bt3F7GxsSIxMVEEBQWJoKAgA7ea2lNZWZk4deqUOHXqlAAg3njjDXHq1Clx9epVIYQQr732mrCxsRHR0dHizJkzIjw8XPTo0UNUVVXJzxEWFiYGDhwojh8/Lo4cOSJ8fX1FRESEoS6J7rPbxUxZWZl48cUXRUJCgsjIyBAHDx4UDz30kPD19RXV1dXyczBmOo+nn35aWFtbi7i4OJGbmyvfKisr5XPu9FpUX18v/P39xbhx40RycrI4cOCAcHR0FCtXrjTEJdF9dqeYSU9PF//4xz9EYmKiyMjIENHR0cLb21uMHj1afg7GTOeyYsUKER8fLzIyMsSZM2fEihUrhCRJ4vvvvxdCdK4+hkm9Edu0aZPo3r27UCqVYujQoeLYsWOGbhI9IGbPni1cXV2FUqkU3bp1E7Nnzxbp6eny8aqqKvHMM88IW1tb0bVrVzFt2jSRm5trwBZTezt8+LAA0Ow2Z84cIUTDtnYvvfSScHZ2FiqVSoSEhIjU1FSd5ygsLBQRERHC0tJSqNVq8ec//1mUlZUZ4GqoPdwuZiorK8W4ceOEo6OjMDMzE56enmLevHnNPmhmzHQeLcUKALF161b5nLa8Fl25ckVMmDBBmJubCwcHB7F06VJRV1fXzldD7eFOMZOZmSlGjx4t7OzshEqlEj4+PmLZsmWipKRE53kYM53Hk08+KTw9PYVSqRSOjo4iJCRETuiF6Fx9jCSEEO03L4CIiIiIiIiI7hWuqSciIiIiIiIyUkzqiYiIiIiIiIwUk3oiIiIiIiIiI8WknoiIiIiIiMhIMaknIiIiIiIiMlJM6omIiIiIiIiMFJN6IiIiIiIiIiPFpJ6IiIiIiIjISDGpJyIiIr1duXIFkiQhOTnZ0E0hIiLq1JjUExERdTBz586FJEnNbmFhYYZuWruLi4uDJEkoLi42dFOIiIjuC1NDN4CIiIjuvbCwMGzdulXnPpVKZaDWEBER0f3CkXoiIqIOSKVSwcXFRedma2sLAHj88ccxe/ZsnfPr6urg4OCATz/9FABw4MABjBw5EjY2NrC3t8fkyZNx+fJlvdpQU1OD5cuXw8PDAyqVCj4+PtiyZYt8PD4+HkOHDoVKpYKrqytWrFiB+vp6+biXlxfefPNNneccMGAAXn75Zfl7SZLw0UcfYdq0aejatSt8fX3x9ddfA2hYIjBmzBgAgK2tLSRJwty5c/W6BiIiogcdk3oiIqJOJjIyEt988w3Ky8vl+7777jtUVlZi2rRpAICKigosWbIEiYmJOHToEBQKBaZNmwatVtvmn/OnP/0JO3bswMaNG5GSkoL3338flpaWAIBr165h4sSJGDJkCE6fPo3Nmzdjy5YteOWVV/S+nnXr1mHWrFk4c+YMJk6ciMjISBQVFcHDwwNffvklACA1NRW5ubl466239H5+IiKiBxmn3xMREXVAe/fulRPoJqtWrcKqVaswfvx4WFhYICoqCk888QQA4LPPPsMjjzwCKysrAMCMGTN0Hvvxxx/D0dERFy5cgL+//x1//qVLl7Br1y7ExMQgNDQUAODt7S0ff/fdd+Hh4YG3334bkiTBz88POTk5WL58OdasWQOFou3jDnPnzkVERAQA4NVXX8XGjRtx4sQJhIWFwc7ODgDg5OQEGxubNj8nERGRseBIPRERUQc0ZswYJCcn69wWLFgAADA1NcWsWbOwfft2AA2j8tHR0YiMjJQfn5aWhoiICHh7e0OtVsPLywsAkJmZ2aafn5ycDBMTEwQHB7d4PCUlBUFBQZAkSb5vxIgRKC8vR3Z2tl7XGhAQIH9tYWEBtVqNgoICvZ6DiIjIWHGknoiIqAOysLCAj49Pq8cjIyMRHByMgoICxMTEwNzcXKc6/pQpU+Dp6YkPP/wQbm5u0Gq18Pf3R21tbZt+vrm5+e++BoVCASGEzn11dXXNzjMzM9P5XpIkvZYJEBERGTOO1BMREXVCw4cPh4eHBz7//HNs374djz76qJwcFxYWIjU1FatXr0ZISAj69OmDGzdu6PX8/fv3h1arRXx8fIvH+/Tpg4SEBJ2k/ejRo7CysoK7uzsAwNHREbm5ufLx0tJSZGRk6NUOpVIJANBoNHo9joiIyFgwqSciIuqAampqkJeXp3O7fv26zjmPP/443nvvPcTExOhMvbe1tYW9vT0++OADpKenIzY2FkuWLNHr53t5eWHOnDl48sknsWfPHmRkZCAuLg67du0CADzzzDPIysrCs88+i4sXLyI6Ohpr167FkiVL5PX0Y8eOxX/+8x/8+OOPOHv2LObMmQMTExO92uHp6QlJkrB37178+uuvOsUBiYiIOgIm9URERB3QgQMH4OrqqnMbOXKkzjmRkZG4cOECunXrhhEjRsj3KxQK7Ny5E0lJSfD398fixYuxYcMGvduwefNmzJw5E8888wz8/Pwwb948VFRUAAC6deuGffv24cSJEwgMDMSCBQvw1FNPYfXq1fLjV65cieDgYEyePBmTJk3C1KlT0bNnT73a0K1bN6xbtw4rVqyAs7MzFi1apPd1EBERPcgkcetiNSIiIiIiIiIyChypJyIiIiIiIjJSTOqJiIiIiIiIjBSTeiIiIiIiIiIjxaSeiIiIiIiIyEgxqSciIiIiIiIyUkzqiYiIiIiIiIwUk3oiIiIiIiIiI8WknoiIiIiIiMhIMaknIiIiIiIiMlJM6omIiIiIiIiMFJN6IiIiIiIiIiP1/9LauLlWh3AfAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/UAAAGJCAYAAADLxBNqAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAwlFJREFUeJzs3XecFPX9P/DXbL/euMLB0XsREbAgigpRYzeKmJ8NxRqNRo3GElvyNahJjC0RTVSwxa6xoqIoRQQpJ72Xo13vbev8/pj5zM7szu7tHXtcez0fj3vA7W2Z3T2Oe8+7SbIsyyAiIiIiIiKiLsfS0QdARERERERERG3DoJ6IiIiIiIioi2JQT0RERERERNRFMagnIiIiIiIi6qIY1BMRERERERF1UQzqiYiIiIiIiLooBvVEREREREREXRSDeiIiIiIiIqIuikE9ERERERERURfFoJ6IiIi6HUmS8PDDD8d83VtuuaV9D6gVHn74YUiS1NGHQUREXQSDeiIi6rZ27tyJG264AYMGDYLL5UJqaipOPPFEPP3002hqaurow6Mj6IcffsDDDz+M6urqjj4UIiKiuLJ19AEQERG1h88++wwzZsyA0+nElVdeiTFjxsDj8WDp0qW46667sHHjRrz44osdfZjUTpqammCzBX/N+eGHH/DII49g1qxZSE9P77gDi8Ef//hH3HPPPR19GERE1EUwqCciom5n9+7duPTSS9G/f398++236N27t/a1m2++GTt27MBnn33WgUd4+Jqbm+FwOGCxsOjOjMvl6uhDaDObzWY4IUFERBQNfxMgIqJu54knnkB9fT1eeuklQ0AvDBkyBLfddpv2uc/nw5///GcMHjwYTqcTAwYMwH333Qe322243YABA3DOOedg6dKlOPbYY+FyuTBo0CC8+uqr2nVWrVoFSZIwf/78sMf98ssvIUkSPv30U+2yAwcO4JprrkFubi6cTidGjx6Nl19+2XC77777DpIk4a233sIf//hH9OnTB4mJiaitrQUAvPvuuxg1ahRcLhfGjBmDDz/8ELNmzcKAAQMM9xMIBPDUU09h9OjRcLlcyM3NxQ033ICqqqpWP0+huroat99+OwYMGACn04m+ffviyiuvRHl5uXYdt9uNhx56CEOGDIHT6URBQQHuvvvusNc31DPPPAOr1Woomf/73/8OSZJwxx13aJf5/X6kpKTgD3/4g3aZvqf+4Ycfxl133QUAGDhwICRJgiRJ2LNnj+HxPvroI4wZM0Z7HxYsWBD1+IDge/POO+/g0UcfRd++feFyuTBt2jTs2LEj7PrvvvsuJkyYgISEBPTq1QuXX345Dhw4YLiOWU/9119/jSlTpiA9PR3JyckYPnw47rvvPsN12vo6ExFR18bTwERE1O188sknGDRoECZPnhzT9a+99lrMnz8fF198Me68806sWLECc+bMwebNm/Hhhx8arrtjxw5cfPHFmD17Nq666iq8/PLLmDVrFiZMmIDRo0dj4sSJGDRoEN555x1cddVVhtu+/fbbyMjIwBlnnAEAKCkpwfHHH68NasvOzsYXX3yB2bNno7a2Fr/73e8Mt//zn/8Mh8OB3//+93C73XA4HPjss88wc+ZMjB07FnPmzEFVVRVmz56NPn36hD3PG264AfPmzcPVV1+NW2+9Fbt378Zzzz2HtWvXYtmyZbDb7TE/TwCor6/HSSedhM2bN+Oaa67BMcccg/Lycnz88cfYv38/evXqhUAggPPOOw9Lly7F9ddfj5EjR2L9+vX4xz/+gW3btuGjjz6K+L6cdNJJCAQCWLp0Kc455xwAwJIlS2CxWLBkyRLtemvXrkV9fT1OPvlk0/v51a9+hW3btuG///0v/vGPf6BXr14AgOzsbO06S5cuxQcffIDf/OY3SElJwTPPPIOLLroIRUVFyMrKiniMwmOPPQaLxYLf//73qKmpwRNPPIHLLrsMK1as0K4jXvtJkyZhzpw5KCkpwdNPP41ly5Zh7dq1EdsCNm7ciHPOOQdHHXUU/vSnP8HpdGLHjh1YtmyZdp3DeZ2JiKiLk4mIiLqRmpoaGYB8/vnnx3T9wsJCGYB87bXXGi7//e9/LwOQv/32W+2y/v37ywDkxYsXa5eVlpbKTqdTvvPOO7XL7r33Xtlut8uVlZXaZW63W05PT5evueYa7bLZs2fLvXv3lsvLyw2Pfemll8ppaWlyY2OjLMuyvGjRIhmAPGjQIO0yYezYsXLfvn3luro67bLvvvtOBiD3799fu2zJkiUyAPmNN94w3H7BggVhl8f6PB988EEZgPzBBx/IoQKBgCzLsvzaa6/JFotFXrJkieHrc+fOlQHIy5YtC7ut4Pf75dTUVPnuu+/W7jMrK0ueMWOGbLVatef85JNPyhaLRa6qqtJuC0B+6KGHtM//+te/ygDk3bt3hz0OANnhcMg7duzQLvv5559lAPKzzz4b8fhkOfjejBw5Una73drlTz/9tAxAXr9+vSzLsuzxeOScnBx5zJgxclNTk3a9Tz/9VAYgP/jgg9plDz30kKz/Fe0f//iHDEAuKyuLeByH8zoTEVHXxvJ7IiLqVkRJekpKSkzX//zzzwHAUM4NAHfeeScAhPXejxo1CieddJL2eXZ2NoYPH45du3Zpl82cORNerxcffPCBdtlXX32F6upqzJw5EwAgyzLef/99nHvuuZBlGeXl5drHGWecgZqaGqxZs8bw2FdddRUSEhK0zw8ePIj169fjyiuvRHJysnb51KlTMXbsWMNt3333XaSlpeEXv/iF4bEmTJiA5ORkLFq0qNXP8/3338e4ceNw4YUXhr2uonz83XffxciRIzFixAjD45522mkAEPa4ehaLBZMnT8bixYsBAJs3b0ZFRQXuueceyLKM5cuXA1Cy92PGjDmsAXjTp0/H4MGDtc+POuoopKamGp5vNFdffTUcDof2uXjtxO1XrVqF0tJS/OY3vzH0+5999tkYMWJE1BkP4nn973//QyAQML3O4bzORETUtTGoJyKibiU1NRUAUFdXF9P19+7dC4vFgiFDhhguz8vLQ3p6Ovbu3Wu4vF+/fmH3kZGRYehLHzduHEaMGIG3335bu+ztt99Gr169tCCrrKwM1dXVePHFF5GdnW34uPrqqwEApaWlhscZOHBg2LEDCDt2s8u2b9+Ompoa5OTkhD1efX192GPF8jx37tyJMWPGhF0v9HE3btwY9pjDhg0zfY6hTjrpJKxevRpNTU1YsmQJevfujWOOOQbjxo3TSvCXLl1qOAHRFrE839bcPiMjAwC024v3avjw4WG3HTFiRNj3md7MmTNx4okn4tprr0Vubi4uvfRSvPPOO4YA/3BfZyIi6rrYU09ERN1Kamoq8vPzsWHDhlbdLnQwWSRWq9X0clmWDZ/PnDkTjz76KMrLy5GSkoKPP/4Yv/71r7Wp5iIgu/zyy8N674WjjjrK8Lk+S99agUAAOTk5eOONN0y/ru8vB2J/nrE87tixY/Hkk0+afr2goCDq7adMmQKv14vly5djyZIlWvB+0kknYcmSJdiyZQvKysoOO6g/3Ocbr9fLTEJCAhYvXoxFixbhs88+w4IFC/D222/jtNNOw1dffQWr1XrYrzMREXVdDOqJiKjbOeecc/Diiy9i+fLlOOGEE6Jet3///ggEAti+fTtGjhypXV5SUoLq6mr079+/Tccwc+ZMPPLII3j//feRm5uL2tpaXHrppdrXs7OzkZKSAr/fj+nTp7fpMcSxmU1ZD71s8ODBWLhwIU488cTDOjkQep8tnTwZPHgwfv75Z0ybNi3mEyd6xx57LBwOB5YsWYIlS5ZoU+xPPvlk/Pvf/8Y333yjfR5NWx47nsR7tXXrVq1aQ9i6dWuL32cWiwXTpk3DtGnT8OSTT+Ivf/kL7r//fixatEhrHTic15mIiLoult8TEVG3c/fddyMpKQnXXnstSkpKwr6+c+dOPP300wCAs846CwDw1FNPGa4jMp5nn312m45h5MiRGDt2LN5++228/fbb6N27tyHwtFqtuOiii/D++++bBsZlZWUtPkZ+fj7GjBmDV199FfX19drl33//PdavX2+47iWXXAK/348///nPYffj8/kMa+NiddFFF+Hnn38O2xAABDPUl1xyCQ4cOIB///vfYddpampCQ0ND1MdwuVyYNGkS/vvf/6KoqMiQqW9qasIzzzyDwYMHm64u1EtKSgKANj3PeJg4cSJycnIwd+5cw4q5L774Aps3b476fVZZWRl22dFHHw0A2n0d7utMRERdFzP1RETU7QwePBhvvvkmZs6ciZEjR+LKK6/EmDFj4PF48MMPP+Ddd9/FrFmzACj971dddRVefPFFVFdXY+rUqVi5ciXmz5+PCy64AKeeemqbj2PmzJl48MEH4XK5MHv2bFgsxnPpjz32GBYtWoTjjjsO1113HUaNGoXKykqsWbMGCxcuNA3mQv3lL3/B+eefjxNPPBFXX301qqqq8Nxzz2HMmDGGQH/q1Km44YYbMGfOHBQWFuL000+H3W7H9u3b8e677+Lpp5/GxRdf3Krnd9ddd+G9997DjBkzcM0112DChAmorKzExx9/jLlz52LcuHG44oor8M477+DGG2/EokWLcOKJJ8Lv92PLli1455138OWXX2LixIlRH+ekk07CY489hrS0NG0AYE5ODoYPH46tW7dq72U0EyZMAADcf//9uPTSS2G323HuuedqwX57s9vtePzxx3H11Vdj6tSp+PWvf62ttBswYABuv/32iLf905/+hMWLF+Pss89G//79UVpain/961/o27cvpkyZAgBxeZ2JiKiL6rjB+0RERO1r27Zt8nXXXScPGDBAdjgcckpKinziiSfKzz77rNzc3Kxdz+v1yo888og8cOBA2W63ywUFBfK9995ruI4sK6vezj777LDHmTp1qjx16tSwy7dv3y4DkAHIS5cuNT3GkpIS+eabb5YLCgpku90u5+XlydOmTZNffPFF7Tpibdq7775reh9vvfWWPGLECNnpdMpjxoyRP/74Y/miiy6SR4wYEXbdF198UZ4wYYKckJAgp6SkyGPHjpXvvvtu+eDBg216nhUVFfItt9wi9+nTR3Y4HHLfvn3lq666yrCmz+PxyI8//rg8evRo2el0yhkZGfKECRPkRx55RK6pqTF9TnqfffaZDED+5S9/abj82muvlQHIL730UthtELLSTpZl+c9//rPcp08f2WKxGNbbAZBvvvnmsPvo37+/fNVVV0U9tkjvze7du2UA8iuvvGK4/O2335bHjx8vO51OOTMzU77sssvk/fv3G64TutLum2++kc8//3w5Pz9fdjgccn5+vvzrX/9a3rZtm+F2h/s6ExFR1yTJchwmuBAREVGncvTRRyM7Oxtff/11Rx8KERERtSP21BMREXVhXq8XPp/PcNl3332Hn3/+GaecckrHHBQREREdMczUExERdWF79uzB9OnTcfnllyM/Px9btmzB3LlzkZaWhg0bNiArK6ujD5GIiIjaEQflERERdWEZGRmYMGEC/vOf/6CsrAxJSUk4++yz8dhjjzGgJyIi6gGYqSciIiIiIiLqothTT0RERERERNRFMagnIiIiIiIi6qLYU9+CQCCAgwcPIiUlBZIkdfThEBERERERUTcnyzLq6uqQn58PiyV6Lp5BfQsOHjyIgoKCjj4MIiIiIiIi6mH27duHvn37Rr0Og/oWpKSkAFBezNTU1A4+GiIiIiIiIuruamtrUVBQoMWj0TCob4EouU9NTWVQT0REREREREdMLC3gHJRHRERERERE1EUxqCciIiIiIiLqohjUExEREREREXVRDOqJiIiIiIiIuigG9URERERERERdFIN6IiIiIiIioi6KQT0RERERERFRF8WgnoiIiIiIiKiLYlBPRERERERE1EUxqCeiFnn9AazeWwWvP9DRh0JERERERDoM6omoRS8v3Y2Lnv8Bb/y4t6MPhYiIiIiIdLpMUF9ZWYnLLrsMqampSE9Px+zZs1FfX9/i7ZYvX47TTjsNSUlJSE1Nxcknn4ympqYjcMRE3cfBauXfzNaSlv/NERERERHRkdNlgvrLLrsMGzduxNdff41PP/0UixcvxvXXXx/1NsuXL8eZZ56J008/HStXrsRPP/2EW265BRZLl3naRJ2CX5YBAOX17g4+EiIiIiIi0rN19AHEYvPmzViwYAF++uknTJw4EQDw7LPP4qyzzsLf/vY35Ofnm97u9ttvx6233op77rlHu2z48OFH5JiJuhN/gEE9EREREVFn1CVS1suXL0d6eroW0APA9OnTYbFYsGLFCtPblJaWYsWKFcjJycHkyZORm5uLqVOnYunSpVEfy+12o7a21vBB1NMxqCciIiIi6py6RFBfXFyMnJwcw2U2mw2ZmZkoLi42vc2uXbsAAA8//DCuu+46LFiwAMcccwymTZuG7du3R3ysOXPmIC0tTfsoKCiI3xMh6qJ8Iqiv83TwkRARERERkV6HBvX33HMPJEmK+rFly5Y23XcgoKzeuuGGG3D11Vdj/Pjx+Mc//oHhw4fj5Zdfjni7e++9FzU1NdrHvn372vT4RN2JyNQ3ef1ocPs6+GiIiIiIiEjo0J76O++8E7NmzYp6nUGDBiEvLw+lpaWGy30+HyorK5GXl2d6u969ewMARo0aZbh85MiRKCoqivh4TqcTTqczhqMn6jlEUA8oJfhJzi4xjoOIiIiIqNvr0N/Ms7OzkZ2d3eL1TjjhBFRXV2P16tWYMGECAODbb79FIBDAcccdZ3qbAQMGID8/H1u3bjVcvm3bNvzyl788/IMn6kFCg/r+WUkdeDRERERERCR0iZ76kSNH4swzz8R1112HlStXYtmyZbjllltw6aWXapPvDxw4gBEjRmDlypUAAEmScNddd+GZZ57Be++9hx07duCBBx7Ali1bMHv27I58OkRdjs8Q1LOvnoiIiIios+gyNbRvvPEGbrnlFkybNg0WiwUXXXQRnnnmGe3rXq8XW7duRWNjo3bZ7373OzQ3N+P2229HZWUlxo0bh6+//hqDBw/uiKdA1GUFQjL1RERERETUOUiyLMstX63nqq2tRVpaGmpqapCamtrRh0PUIa56eSW+31YGALh9+jDcNn1oBx8REREREVH31Zo4tEuU3xNRxwrtqSciIiIios6BQT0RtYhBPRERERFR58SgnohaxKCeiIiIiKhzYlBPRC3yBQLa3zn9noiIiIio82BQT0Qt8uvGaZbXMVNPRERERNRZMKgnohb5dZn6OrcPzV5/Bx4NEREREREJDOqJqEX+gPFz9tUTEREREXUODOqJqEX6TD3AvnoiIiIios6CQT0Rtcinm34PsK+eiIiIiKizYFBPRC0KqEF9qssGgOX3RERERESdBYN6ImqRyNTnpbkAMKgnIiIiIuosGNQTUYv8alCfmyqCevbUExERERF1BgzqiahFoUF9GTP1RERERESdAoN6ImqRCOrz1KC+gkE9EREREVGnwKCeiFrk0zL1TgAsvyciIiIi6iwY1BNRiwJhPfXM1BMRERERdQYM6omoRaHT76sbvfD6Ax15SEREREREBAb1RBQD0VOfmeSA1SIBACpYgk9ERERE1OEY1BNRi/yyEtQ7rBZkJTkAtL4Ev6zOjfdX70ez1x/34yMiIiIi6qlsHX0ARNS5ybKsZeotFgm9kp0orXO3eq3dk19vxX9X7oNflnHJxIL2OFQiIiIioh6HmXoiikqN5wEANouEHHUCfklNs+F6siwjmv1VTQCAg9VN8T1AIiIiIqIejEE9EUXlCwQH4lksEvqkJwAwBuceXwDnPrcU185fFfF+qhqVHvzqRm87HSkRERERUc/D8nsiisqvS9XbLBLy1aD+QHUwU7+zrB4bDtRiw4FauH1+OG3WsPsRwXxtE4N6IiIiIqJ4YaaeiKLSB/VWi4S+GSKob9Qu31cZ/Htlg/lUfBHU1zCoJyIiIiKKGwb1RBSVIaiXgpn6g7pM/b6qYCl+eV14UO/xBVDv9gEAqhnUExERERHFDYN6IorKF5KpFz31h2qaEFC/ps/Um626q24KBvrM1BMRERERxQ+DeiKKSgTuVosESZKQk+KE1SLB65e1tXb6oN5s1Z1+OB4H5RERERERxQ+DeiKKSmTqrZIEALBZLchLdQEIrqnbVxU9U1+l67OvbfK2uP6OiIiIiIhiw6CeiKLy6zL1gn6tnSzL2FcZ7KmvqA/vqdf30Xv8ATR5/e11uEREREREPQqDeiKKSgT1Nn1Qr03Ab0JFg8cQpJv21DcaA3321RMRERERxQeDeiKKSpTfW3RBfX66Un5/sLrJ0E8PRCi/D+mjZ1BPRERERBQfDOqJKKqAbJKpT08EAByoatLW2Ykvm620qwrJ1HNYHhERERFRfHSZoL6yshKXXXYZUlNTkZ6ejtmzZ6O+vj7qbYqLi3HFFVcgLy8PSUlJOOaYY/D+++8foSMm6h58/vCeepGpP6DL1I/ISwUQofy+gZl6IiIiIqL20GWC+ssuuwwbN27E119/jU8//RSLFy/G9ddfH/U2V155JbZu3YqPP/4Y69evx69+9StccsklWLt27RE6aqKuz2xQXl9dT/1+dfL90f3SAQCVjR7tNkJopr6GmXoiIiIiorjoEkH95s2bsWDBAvznP//BcccdhylTpuDZZ5/FW2+9hYMHD0a83Q8//IDf/va3OPbYYzFo0CD88Y9/RHp6OlavXn0Ej56oa/PLZpl6Jaiva/Zh48FaAMC4vmmQJECWgcqGkHJ7NTPvsCk/cpipJyIiIiKKjy4R1C9fvhzp6emYOHGidtn06dNhsViwYsWKiLebPHky3n77bVRWViIQCOCtt95Cc3MzTjnllIi3cbvdqK2tNXwQ9WT+QACAMahPdNiQkWgHAGw4UAMA6J+VhMxEB4DwEnwx/b5fptKLX90U3ndPRERERESt1yWC+uLiYuTk5Bgus9lsyMzMRHFxccTbvfPOO/B6vcjKyoLT6cQNN9yADz/8EEOGDIl4mzlz5iAtLU37KCgoiNvzIOqKzHrqgeBaO1Fp3y8zEb2SnQDCg3ox/X5AVhIAZuqJiIiIiOKlQ4P6e+65B5IkRf3YsmVLm+//gQceQHV1NRYuXIhVq1bhjjvuwCWXXIL169dHvM29996Lmpoa7WPfvn1tfnyi7sBvMv0eAPLTErS/260SclNd6JUSnqmXZVnL1A/IUjL1NU2+dj1mIiIiIqKewtaRD37nnXdi1qxZUa8zaNAg5OXlobS01HC5z+dDZWUl8vLyTG+3c+dOPPfcc9iwYQNGjx4NABg3bhyWLFmCf/7zn5g7d67p7ZxOJ5xOZ+ufDFE3JYbeWSTzTD0A9ElPgNUiaZn6ivpgeX2Dxw+vmu3v30vJ1Fc3svyeiIiIiCgeOjSoz87ORnZ2dovXO+GEE1BdXY3Vq1djwoQJAIBvv/0WgUAAxx13nOltGhuVidwWi7EYwWq1IqD2CBNRy3xqUG+zhgT16cGgvkDtlc9KUoL6Ml2mXgTwDqsFvVOVVXi1LL8nIiIiIoqLLtFTP3LkSJx55pm47rrrsHLlSixbtgy33HILLr30UuTn5wMADhw4gBEjRmDlypUAgBEjRmDIkCG44YYbsHLlSuzcuRN///vf8fXXX+OCCy7owGdD1LUEtJV2xh8X+qC+b4YS1Gvl93XBTHy12k+fnmhHujpcr5pBPRERERFRXHSJoB4A3njjDYwYMQLTpk3DWWedhSlTpuDFF1/Uvu71erF161YtQ2+32/H5558jOzsb5557Lo466ii8+uqrmD9/Ps4666yOehpEXY7I1Ick6rW1dgBQkKn83WxQnthRn5HoQFqCEtRzUB4RERERUXx0aPl9a2RmZuLNN9+M+PUBAwZAVgd6CUOHDsX777/f3odG1K2JnnpbaKZe11MvVtVli576Bn1QH8zUpyUGg/pAQIYlZPgeERERERG1TpfJ1BNRx/AHzFfaZSU54LQpP0IK1PL7rGSz8vvwTL0sA3VuTsAnIiIiIjpcXSZTT0QdI1JQL0kSfnvaEGw+VIfR+akAguX3FQ1uyLIMSZJQ1aBk6jOS7HDarEiwW9Hk9aO2yasF+URERERE1DYM6okoqkhBPQDcctpQw+ciU+/1y6hp8iI90YHqJiVTn5bgUP+0o8nrR3WjFwWZ7XnkRERERETdH8vviSiqaEF9KKfNilSXcq5QDMsT0+8z1H56DssjIiIiIoofBvVEFJWvFUE9oJ+Ar2To9dPvAWjD8kQGn4iIiIiI2o5BPRFF5ZfF9PvWBvVKpl4//R5gpp6IiIiIKJ4Y1BNRVH5/AABiXj/XK0VMwBfl92qmPkm5PF0N6kVZPhERERERtR2DeiKKyhdoa6ZeLb9vUP4UwbzI1NcyU09EREREdNgY1BNRVAG5dT31WUnB8nt/QEZts7KPPl3tqRdl+Cy/JyIiIiI6fAzqiSgqbVCe1Mry+3qPIXAP7aln+T0RERER0eFjUE9EUfn9avm9NbagPlstv998qBbFNc0AgBSnDXar8uMmNYZBeZsP1WLSowvxyrLdbT5uIiIiIqKegEE9EUXlb2X5/fGDs9Ar2YkD1U145JONAID0JLv2dVGGXx0lqH91+V6U1bnx9aaSth42EREREVGPwKCeiKLyt7L8PtVlx5xfjQUArNhdCQBIT3BoX29pUJ7PH8BXG4uV6zSzRJ+IiIiIKBoG9UQUldZTb4n9x8UvRuXiV8f00T4X/fRAcAp+pPL7lXsqUaFOzK9t8rX6eImIiIiIehIG9URkUNXggccX0D4PBFrXUy88dO5o5KW6AAAZieGZ+nq3D15/IOx2n68/pP2dE/KJiIiIiKJjUE9Emop6N46f8w2unrdSu0xk6i0xlt8LaQl2PHXp0Riak4zzxuVrl4tBeUB4Cb4/IGPBhmAffV2zVzupQERERERE4WwdfQBE1Hnsq2qC2xfAtpJ67TLRU2+LcVCe3vGDsvD1HVMNl1ktElJcNtQ1+1Dd5EWWOi0fAFbtqUR5vRvJThvq3T4EZKDB40OKyx5610REREREBGbqiUjHH1DK4X26sngR1FvaENRHEmlX/RcblAF5Z4zOg0NdgVfbHOyrf2fVPlzwz2UorW2O27EQEREREXVlDOqJSONTd9J7/cGSd99hZOojGZCVBADYcKBGuywQkPHFBqWf/uyj8oL77HWB/1sri1C4rxrLd1XE7ViIiIiIiLoyBvVEpBFZef0Au0CgdXvqYzF5SBYAYMn2cu2ytfuqUFLrRorThhOH9EJqgtIdpF9rV6UG+M1ef9yOhYiIiIioK2NQT0Qar0lQ72uHoH7KkF4AgB93VWil/l9tVAbknTYyB06bFamu8H32VY3Kqju3L3xqPhERERFRT8Sgnog0oqc+IAez9uKyeJbfj85PQ3qiHfVuH37eXw1ZlvHlxmA/PRCcki966v0BWVtx5/YyqCciIiIiAhjUE5GOT9dLL7L14qJ4ZuqtFgmTBysl+Eu3V2B7aT32VDTCYbNg6rBsAMFheiKQr2nyQlaPheX3REREREQKBvVEpPEHTIJ6NVMfz6AeAKYMUYL3pTvK8KU69f6kIb2Q5FR66VNdak+9GtSL0nuA5fdERERERAL31BORxmsI6pW/i+x9/IN6pa9+bVG1NgDv9NG52teD5ffK16p1QT0z9URERERECmbqiUgjsvJAcFd9QI7/SjsA6JeViILMBPgCMnaU1sMiAdNH6oJ6l7H8vrIhODCPmXoiIiIiIgWDeiLS6HvqPWpQL6bfW6T4BvVAsAQfACb2z0RWslP7XPTU1zYpg/KqmKknIiIiIgrDoJ6INH6T8ntxmc3aHkF9L+3v+tJ7AGF76qvZU09EREREFIZBPRFp9D31Pm1QXvtl6icPzoLNIkGSgqvshNA99frye2bqiYiIiIgUHJRHRBq/P5gBDy2/t1nifw4wI8mBF6+cAI8vgILMRMPXtEF5TczUExERERFFwqCeiDQ+k/L7QKB9pt8Lp43INb1c66lvVnrqKxvYU09EREREFIrl90Q9lNvnR3FNs+Eyn0n5va+dg/pIxJ76ercPPn8A1Y2cfk9EREREFIpBPVEPdfMbazD5sW+wr7JRu0w/KM8T0lMf75V2LUlRe+oBJbDn9HsiIiIionBdJqh/9NFHMXnyZCQmJiI9PT2m28iyjAcffBC9e/dGQkICpk+fju3bt7fvgRJ1ETtK6xGQgSJdUK9faecLmX5/pDP1DpsFCXYrAGVXvT6o9zBTT0REREQEoAsF9R6PBzNmzMBNN90U822eeOIJPPPMM5g7dy5WrFiBpKQknHHGGWhubm75xkTdXLNXCYy9uuF4/kDw796QTP2RDuqBYF99TZPXUH7PTD0RERERkaLLDMp75JFHAADz5s2L6fqyLOOpp57CH//4R5x//vkAgFdffRW5ubn46KOPcOmll7bXoRJ1CW6fEhjrs/New6A80VOv/NkRQX1qgg3FtcDB6iZDvz976omIiIiIFF0mU99au3fvRnFxMaZPn65dlpaWhuOOOw7Lly+PeDu3243a2lrDB1F3JAJjfbDsN5t+r150pHvqgeCu+j0VjYbLGdQTERERESm6bVBfXFwMAMjNNa7Lys3N1b5mZs6cOUhLS9M+CgoK2vU4iTpKMKgPBsiGrH1Ipt7SIZl6Jajfqwb14sQCy++JiIiIiBQdGtTfc889kCQp6seWLVuO6DHde++9qKmp0T727dt3RB+f6Ejw+QNaVl4fyJv21Ps7Zvo9EOyp31vRAADITXUBUKoLfH5m64mIiIiIOrSn/s4778SsWbOiXmfQoEFtuu+8vDwAQElJCXr37q1dXlJSgqOPPjri7ZxOJ5xOZ5sek6ir0Jev6wfleU3K7/1yxw3KE7vqRaa+d5oLB6qbACjPwWbttsVGREREREQx6dCgPjs7G9nZ2e1y3wMHDkReXh6++eYbLYivra3FihUrWjVBn6g70gf1+j56v0n5fUdOvxfl9wdrlEA+N82lfc3tCyCJ59+IiIiIqIfrMmmuoqIiFBYWoqioCH6/H4WFhSgsLER9fb12nREjRuDDDz8EAEiShN/97nf4v//7P3z88cdYv349rrzySuTn5+OCCy7ooGdB1Dnoe9L12XmfyfR7EdR35KA8tVgAWUkOONTsPPvqiYiIiIi60Eq7Bx98EPPnz9c+Hz9+PABg0aJFOOWUUwAAW7duRU1NjXadu+++Gw0NDbj++utRXV2NKVOmYMGCBXC5XCDqCoprmnH724W4avIAnDkmL273q8/U63vTfYaeerXnXg3qLVLH9dQL6YkOOO0WePwBTsAnIiIiIkIXCurnzZvX4o56WZYNn0uShD/96U/405/+1I5HRtR+Fm8rw/JdFXDZLXEO6oNZbv2gvOiZ+iNf2JOaYPwRlZloh9NmRR18zNQTEREREaELld9Tx2n2+hEIyC1fkeLOrQbWXn98X3+3V5+dj7Gn3tpx5fdCRpIDLrvyY4uZeiIiIiIiBvXUgupGD477yze44fXVHX0oPZLXJ4L6+AawkcvvdVl7Mf1eBPUdUH6fGlJ+n5HogNPGnnoiIiIiIoFBPUW1raQeNU1e/LyvuqMPpUcSwbwvzpUS+vJ746C8YIDvCXnsjph+H9pTn5HogMtuBcBMPRERERERwKCeWlDX7AUQ/0wxxabdgnqveabeH9JTr2+76Mjp90J6op2ZeiIiIiIiHQb1FFVdsw9A/Hu6KTYeMYG+Hcvv/SYl9+Lv+pMJlg4I6pNdIYPykpipJyIiIiLSY1BPUdUyU9+htEx9nE+qGPbU6+5bH+B7/AHD5x2RqbdaJKSogb3DakGiw8pMPRERERGRDoN6iiqYqWdQ3xHEoDx9r3s8GAbl6XfTB/Rl+TL8ujWRHdFTDwRL8DOS7JAkiZl6IiIiIiIdBvUUVW2TkqkPyMYsLh0ZR2RQXoRMvdcfMKy467CgXh2Wl5HoAAAtU+9mpp6IiIiIiEF9d7RkexneWLE3LvdVq2bqAWbrO0Kwpz7eQb2+p96YnRe8/oAhi98RK+0AIFUtvw8G9czUExEREREJtpavQl3N3e+tw6GaZpw8NBsFmYmHdV9i+j2gBHmi9JmODHEiJe576r3mgbyhFF9Xfm+ROmZQHhBca5eRpPzpsjNTT0REREQkMFPfDYmS+apGT4vXLdxXjTveKURpbbP5fRky9Sy/P9JEMB/v1ofIe+pDyu87cEe9IMrv00WmXj2x1MxMPRERERERg/ruyKMGgk2eljOZ85btxgdrDuDz9YdMvx6aqaf2c8/76/Db/66FLBsDa/2f8WIYlBdlT31nCOr7pCcAAPqpVScu9tQTEREREWlYft/NyLKsZdQbYwh6GtXAvyHCCQCR9QcADzOj7aamyYu3ftoHAHjkvNHITFKy0h6f2lMf50y9fh2cL8Keeq9fDgb1HdRPDwDXnjQQQ3OTcdqIHAC6TL2X349ERERERAzquxl9iXxzDJl6kQGOtPO7joPyjoiD1U3a3/UnT9pv+r15pt7YUx/QHrcjM/UpLjvOOSpf+1ybfu9jpp6IiIiIiOX33Yw+8G6MIaj3tCKoj3dgSUGHaloI6tuz/D4QeaVdQP3cZu08PyqYqSciIiIiCuo8v6lTXOgDwqYYyu+9anm3WYDk9QcM98Hy+/ZzsDo4qNDjDw/qAzK0ADse9P3oXr95gO/zy9rnlg4svw/lYqaeiIiIiEjDoL6b0QdosQzKc0fJ1Ouz9KH3TfEVKVPv0fe4B+L3+hv31Osy9brH8+gG5dk6sPw+FDP1RERERERBDOq7GX2WN7ZMvRrUm2Th9ZPvAa60a08RM/URgu/DZVhpF+HEQWeZfh+KmXoiIiIioiAG9d2MPst7uD31tU3GTH28+7opSD8oz2tSfq/8PZ5BvflwPH+E8vvOFNQzU09EREREFMSgvpsxTL+PJVMftfzemKn3MKhvN4dqdJl6k0F5QHxPqugDYv0aO31PfWctv2emnoiIiIgoiEF9N9PannoRQLpNsp61LL8/IgIBGcURg3rzyfSHSx8Qi0DeH5Ah6x7Cp99T34mCembqiYiIiIiC2hTUNzQ0xPs4KE702fTG1mTqTbKetRyUd0RUNHgM71ukv3vjOv0+vALAFzKIr7P21Af31PP7kYiIiIioTUF9bm4urrnmGixdujTex0OHybDSLpbp975o5fcM6o8E/eR74MiU37tNqgFCKwF8AVkbnNeZgnqXmql3x3DSioiIiIiou2tTUP/666+jsrISp512GoYNG4bHHnsMBw8ejPexURsYyu+9vijXNF7frJS5tql9y+9/2lOJm99cExbU9jT6IXlASFBvGGjXXuX3IlMffv8io9+Zgnpm6omIiIiIgtoU1F9wwQX46KOPcODAAdx4441488030b9/f5xzzjn44IMP4PO1HExS+2hrT31HZOpfWbYbn607hC83FMf1frsa/To7IPLEe187Tb8XGXqz+xffF50pqBeZeo8/gEAcT3QQEREREXVFhzUoLzs7G3fccQfWrVuHJ598EgsXLsTFF1+M/Px8PPjgg2hsbIzXcVKMPL5gkNPSSjt/QIaIiWKZfh/voL6szq08dg/PuIaV36uvsyzLxp76OL3+siybDuML7akHgt8XnWn6vcjUA8zWExERERHZDufGJSUlmD9/PubNm4e9e/fi4osvxuzZs7F//348/vjj+PHHH/HVV1/F61gpBvogsKWVdvrAziywDp1+74lzAFXR4GmX++1qDtYYM/Xi9TDrcY+H0EBY9OqLx7NbJS3QF99DFqmzBvV+JDisHXg0REREREQdq01B/QcffIBXXnkFX375JUaNGoXf/OY3uPzyy5Genq5dZ/LkyRg5cmS8jpNipO/BbilTb5iy7lNKmS26jKwov3dYLfD4A3Ht6QaASjWo7+kD+A6pPfUpThvq3D7tfQmdYeA3yaS3Rej6Qm9I+b3NYoEEpUqgSb2uzdp5gnqb1QKbRYIvIHOtHRERERH1eG0qv7/66quRn5+PZcuWobCwELfccoshoAeA/Px83H///fE4RmoF46C86EF9aDAdmsEVmfrMJIdy/Thm1H3+AKoblfv39PCgXvTU9++VCCCYqQ99XeI1qNAdsr5Q66kPiKBe0oL4YE/9YXXqxJ02Ad9kFSMRERERUU/Spkz9oUOHkJiYGPU6CQkJeOihh9p0UNR2rRmUF1r23uw1ljKLTH1mkgPFtc1xzahXNQZL+72+njvszOcPoLRODeqzkrDhQK32voS+3vEalBd68sYfkCHLslYJYLNKsMgSAD+a1aC5EyXqASgl+PVu860NREREREQ9SZuCep/Ph9ra2rDLJUmC0+mEw+E47AOjtnGHrEDz+gOwW82zrKFBY3NI1lME9VnJyvvpieP0dVF6r9xvz822ltS5EZCVPvb8NBeA4PsSFtTHq/zeJ/rkoQ1K9PplLVNvtVhghdpT72GmnoiIiIioM2tTUJ+eng4pyuCsvn37YtasWXjooYdg6WTBQHcXWqLd5PVHDOrDM/XBz2VZ1vbUZ6nl9744Zuor6t3a33typl700+emuoKr2kSmPuR1iVemXrzPSU6bduLGFwjoeuol7d+3uG5nmn4PBIflMVNPRERERD1dmyLuefPmIT8/H/fddx8++ugjfPTRR7jvvvvQp08fPP/887j++uvxzDPP4LHHHovbgT766KOYPHkyEhMTw/r3zXi9XvzhD3/A2LFjkZSUhPz8fFx55ZU4ePBg3I6pMwrN7kYrwQ/t2dZPy2/2BgfjZYie+ngG9bpMfU8elCcm3+enJ2gnX8T7Evr+xC9Tr9xPsjN4Ts8X0GfqJe1YtPL7ThbUO9Sgnpl6IiIiIurp2pSpnz9/Pv7+97/jkksu0S4799xzMXbsWLzwwgv45ptv0K9fPzz66KO477774nKgHo8HM2bMwAknnICXXnqpxes3NjZizZo1eOCBBzBu3DhUVVXhtttuw3nnnYdVq1bF5Zg6o9Dse9Sg3qSnXhBD8iwSkJ7Q3uX3PTioVzP1+WkuLVD1qBn60JMd8R6Ul6ibn+DzB3vq7VZJ24LQ5OmcQb2oamCmnoiIiIh6ujYF9T/88APmzp0bdvn48eOxfPlyAMCUKVNQVFR0eEen88gjjwBQqgRikZaWhq+//tpw2XPPPYdjjz0WRUVF6NevX9yOrTMJDQSjrbULDRL1AVKdGtSnuOxasNlemfqevKdelN/3Tk+AIyRTH/p6h+6tbyux0i7BYdX66n3+YPm9MVPfucvvmaknIiIiop6uTeX3BQUFptnyl156CQUFBQCAiooKZGRkHN7RxVlNTQ0kSYpavu92u1FbW2v46EpCs97R1tqFZep9+ky90mudmmCDXR19Hs+e+soGXU99T87Ui/L7NBfsWqZeeR/CM/XxHZTntFlhU4N3r6783maxBIN69fvH0smCembqiYiIiIgUbcrU/+1vf8OMGTPwxRdfYNKkSQCAVatWYcuWLXjvvfcAAD/99BNmzpwZvyM9TM3NzfjDH/6AX//610hNTY14vTlz5mhVAV1Ra3rqw/bU68vv1SF5KU67FuDFq/wbMJbfx/N+u5pDNWqmPi1Be03E6+EJHZQXr0y9ejLHZbfAbpHgAeDXTb+3WYN76sX3BDP1RERERESdU5sy9eeddx62bt2Ks846C5WVlaisrMQvf/lLbNmyBeeccw4A4KabbsKTTz4Z9X7uueceSJIU9WPLli1tOUQDr9eLSy65BLIs4/nnn4963XvvvRc1NTXax759+w778Y+ksJ56NShr9PjwmzdW4+Ofg4MCQ/eVG8vvlUx9issWNsAtHsrr2VMPANWNysmTzGSHrqc+0kq7+JbfGzP1geCeen35vXpdZuqJiIiIiDqnVmfqvV4vzjzzTMydOxdz5sw5rAe/8847MWvWrKjXGTRo0GE9hgjo9+7di2+//TZqlh4AnE4nnE7nYT1mRwrNejd6lOB82Y4KfL6+GPsqm3DeuHz1upEH5dVp5fd2rfw+nmXyleypBwDUu9WTJ05by0F93MvvLVoG3ueXDT31or+/iZl6IiIiIqJOrdVBvd1ux7p16+Ly4NnZ2cjOzo7LfZkRAf327duxaNEiZGVltdtjdRaR1tRVNSpBtAjygfBgWp+5r9UG5dnaZVBeJVfaQZZlNKhBfbJJRUR4UB/f8nunzaKV2Xv9AUNPvbhcfP9w+j0RERERUefUpvL7yy+/PKa1cvFUVFSEwsJCFBUVwe/3o7CwEIWFhaivr9euM2LECHz44YcAlID+4osvxqpVq/DGG2/A7/ejuLgYxcXF8Hg8kR6my/NGWGlXo5Z56wP36Jl65fqpLjtslvj21PsDsnaSwew4egq3L6C9pskmmfrQFYLeOO+pd9qs2nvrDxh76kMH5VmlzhXUM1NPRERERKRo06A8n8+Hl19+GQsXLsSECROQlJRk+HpLvfRt8eCDD2L+/Pna5+PHjwcALFq0CKeccgoAYOvWraipqQEAHDhwAB9//DEA4Oijjzbcl/423Y3I8opVZY1qUFbdpATR+sxmeFZfl6lvUsvvXba4l99XN3og6+LVnlp+L0rvASDJYQtfaRfyuvjjdFJFBOpOuyW42UDXU68vvxffE1Zr5wrqRabezUw9EREREfVwbQrqN2zYgGOOOQYAsG3bNsPXpHbK6M2bN6/FHfWyLlIcMGCA4fOeQgTeqQl2VDd60axm6qu1TH0wsxltpZ1+T709zuX3+tJ75X573vsEAPXq3IJkpw0WiwSHzXjyJGylXZyn3zttFq2s3qvrqbdZgtPvxQkG9tQTEREREXVObQrqFy1aFO/joDjxqmvQ0tSgvlEE9eqKOnfUTL3ZoLxgBtnri09QqZ98b3YcPYXI1Cc7lX+GDquSfT6cQXlri6qQ6LBheF5KxOuINXUuu1Urs/fpVtpZdXvqhU5Xfm9Xg3pm6omIiIioh2tTT72wY8cOfPnll2hqUnZt98TMeGfjFpl6lx1AcHq56Kn3+APwq8FbaJBuKL/XZepFljZePd0iU5+RqBxjT+2pFydOkl1qUN9CT72/hUz9weomXPLCclz2nxVRr2c2KM8XCA7Ks1slrSxfsFoO60dF3GmD8pipJyIiIqIerk2/qVdUVGDatGkYNmwYzjrrLBw6dAgAMHv2bNx5551xPUBqHdGHnZagBvUeY089oA8ajQGR2yRTn+KytUP5vRsAkJeWYDienkZk6pPUTL09pOQ9rPy+hTaFhZtL4PXLKK93R83qmw3K8/ll+P3BnvrQTL2tk/XUa+X3zNQTERERUQ/XpqD+9ttvh91uR1FRERITE7XLZ86ciQULFsTt4Kj1RCCoBfVeY089ECyzF0GiSy1lNvbUi0F59riX31eomfq8VKfhmHuaerdaDeE0z9SHDsrztVAp8fWmEu3vTd7IGWxtT71dt6c+oF9pFx7UWzpZ+T0z9UREREREijb11H/11Vf48ssv0bdvX8PlQ4cOxd69e+NyYNQ2wUF5ylvbGLLSDghmakXwmOqyo9nrDpl+H9xTL4L/eA/KE5l6r1+GLMvtNmSxs6p3K+9NcmhQ7w9AluVWZeprm734cVeF9nmTx48UtQUjlMhuG/fUG3vqQzPznXZQHjP1RERERNTDtSlT39DQYMjQC5WVlXA6nYd9UNR2WqCuy9T7/AHU6daniUy9KPNOUXu6xeWBgIx6jyi/t+sCv/gEUBX1IlPv0i7riRPw60N76tXsuCwr/fPhPfWRX//F28oMr2H0TH2w/F5k5P0BWevZt1uDK+0Ea2cL6pmpJyIiIiIC0Mag/qSTTsKrr76qfS5JEgKBAJ544gmceuqpcTs4aj0RCIry+2avH7XNPsN1wjL1uusCSum9mHmYlqArv49T4F2h9tT3TgsG9T1xAr4ovw/N1APK6yFOooh42hfl9V+oK70HghUaZrQ99YaVdgHt/s166jtdUM9MPRERERERgDaW3z/xxBOYNm0aVq1aBY/Hg7vvvhsbN25EZWUlli1bFu9jpFYI7alv9PhR3WhcIRfsqReZehHUK5/XqKX3CXYrHLbgerN4l9/n6oJ6ry8A9LAij3rdMEIAhuy4xxcM6hMdNtS7fRH31Hv9AXy7pRQAIElKpj9aUC9O6rjsukF5AVnr2dfvqRc6W1DPnnoiIiIiIkWbMvVjxozBtm3bMGXKFJx//vloaGjAr371K6xduxaDBw+O9zFSK3hDV9p5/NqOeiG8p14tv1cDJLHOTvTl27W1Z3Jc1haKoD472alloXvisLy6kD31VosEMVZAn6lPcCgBbKTy+5/2VKK22YfMJAcGZycDCJ64MaMNyrNZgu+tP2Doqe/05ffM1BMRERERAWhjph4A0tLScP/998fzWCgOzHrq9UPygMiZendIpl5k+226AM/rl+GwtT3ACwRkVKnHk5XsgN1qgdsX6Jnl9yE99ZKk9LK7fQE1U68E2QlqVjpS+8PCTUqW/rQROdhRWg8gtky9027R3ltfSE99Zy+/1zL1UU5eEBERERH1BG0O6qurq7Fy5UqUlpYiEJJBvPLKKw/7wKj1AoHgBHP9nnr9jnogGAi5tRMAxkF5oUG9wxDUBwy9361V0+TVgseMRIchiDXT4PbBZbd2uqAyHupDMvWA0lcfDOpF+b0SwEbaPf/dViWonz4yFweqmgAAjR6f6XUB/fR7a3ClnV829NR3men3Eb5viIiIiIh6ijYF9Z988gkuu+wy1NfXIzU11bCKTJIkBvUdxKs7uaLfU1/ZYF5+H1qqHymot+sCvJbK5JduL8fB6iZcMqnA9OtiSF6qywaHzaKcIHCbZ6ErGzyY+sQiHN0vHa/NPi7q43ZFpkG9biiheK1FVtoXoaf+UE0zAGBU71TtBECs5fciWPcGAoae+q6SqXf7lPV/767ej17JDpw2IreDj4yIiIiI6MhqU8r1zjvvxDXXXIP6+npUV1ejqqpK+6isrIz3MVKM9NluEZADQGlts+F62kq7sJ56Y/m9KOEP7fWO5o53CnH3++uw+VCt6dfFOrusZGUqXrQhfDvL6lHn9mHZjvKomeeuKlKmHlDeG49PCeKDmfrwoN4fkLX1dUlOK1zqdWMqv7dZg+X3uj31NqvFcCIH6HxBvVNXLfL6iiLc/d46/PbNtXGZ+UBERERE1JW0Kag/cOAAbr31VtNd9dRx9NluEagDwMEaY1AfzNQr1xc99f6Akh0OzdRLkqQLviMHTYGAjLJ6JRO/crf5yR0xJC8zyQEAsKv9+WYnC0TPeUAGNh00P0nQlYX21AO6oN7vDy+/NxmUp99Hn+S0IdEePaiXZTm40s5uMQxB9EdZadf5yu+t2t///OkmAECDxx/1ZAYRERERUXfUpqD+jDPOwKpVq+J9LHSYRBCorCSzaNnM4pomw/XCMvUJNsPXakWm3hXM9tstwSnpkdS5g/vtV++tMr1ORUhQL8rNzXrqRSYbANYfqIn4uLHy+QP4aU9lpxmuJp5filP3Omuvh6ybfq+8P2YnVBrU+7BaJDhtlhbL730BGaKK32ULzirw+QNa+4ZZ+b1F6lxBvd0qaZsT9N87YnMDEREREVFP0aae+rPPPht33XUXNm3ahLFjx8Jutxu+ft5558Xl4Kh1RHAjArIEhxVuXwDFavm91SLBH5DDeuqTdUFlszc8Uw8AdpsF8Pij9tTX6lbnRQrqqxvVoD7RYThWs/uNd1D//pr9+MP76/GbUwbj7jNHHPb9HQ5/QNayyoZMvQjq9Svt7BbtNqFEUJ/osEKSpBbL7/WD5ZRMffj0eyVTHzIoz9q5gnpJkuC0WdHk9SPVZYNPfT1rm3zondbRR0dEREREdOS0Kai/7rrrAAB/+tOfwr4mSRL8/s6RCe1pRAm7CMgS7VZUw4titfw+O9mJ4tpmuEOm3ztsSlbf7Qug2es3D+p1GeRIanRB/YHqJhyqaULvtATDdbTd7GogK8rNTYP65mBQvyEOQX3hPuU+dpc3HPZ9HS79CYskZ7CU3NBT7xc99SJTH/4aieA9Sb1Oot1muDyUW5fBd1h1g/J0e+rtVovJoLy2bzxoL3lpLuwub8BjFx2FJxZswZ6KRmbqiYiIiKjHadNv6oFAIOIHA/qOI4I+ERiKrK0o285NcwEIn37vsFp008SD5ff6oN4RJaMu6IN6AFi1Jzxb3xAyHC7ayYI6XeC7o7T+sIfl7VGD+dDj7AgiqFdOqOiCet3r7PWJ8vvI0++1TL16YqCl8nvtRI7VAovapgEoVQDReuqtnaz8HgBevGIC3rj2OJw1trf2vVrbCd5bIiIiIqIjqVVB/VlnnYWammDG9LHHHkN1dbX2eUVFBUaNGhW3g6PW8aqBsQgME+xWw9fzUpWJ81pPvXYSQIJLLfE2lN8nBoN6mzZQLfag3qwEXxsOpwb1+nLzSNcF4jMsb0+FEtR3hmyueG4pTmOxjD5THyy/j7ynvsFjfD2D5ffmJ0CCk++Vxwlm6uWQlXade/o9AAzNTcGJQ3oBCG5q6AzvLRERERHRkdSqoP7LL7+E2+3WPv/LX/5iWGHn8/mwdevW+B0dtYpWfq8GbCJrK+SmhmTqtaytVcvUx6P8XgSKpkG929hHLo7VazIor8FtDEwPp6++yePX9rm3NlNf2+zFg//bgDVF5nMC2qLerRyDvp8eMA/qE6Nm6v2G67Q0/V7bUa+exNFO1ujK700z9Z0wqNcTQx1rm7rf6kMiIiIiomhaFdSH7oDmTujOJXRQnstuHtSHZurtNgkumwjqA6hVs8iG6fetKL+fNCATALDpUG1YYC6C2SQtUx/s6Q4lStTFpPzDCer3Vgb76GsaWxfUL1hfjFeX78Vz3+5o8+OH0k5uhGTqRYZcGZSn/PtKiLKnXmTktZ76Fsrvm73BHfUAYLeED8oz76nv5EG9usGhM7RWEBEREREdSZ1v+hW1mddvDOr1mXqX3aLtrm/2BiDLshY02q0Wrfy+osGtBXfGnvrIwbcgAqrheSnIT3PBH5Dx875qw3VEZjklpKfe7H5FT/3xg5STBIczLG9PeaPhfgMmWe9IyuqV6pSKencL14ydKL9PCiu/V94zZVBey3vqtUx9WPl99EF5YZn6gKydNDCdft/Zg3oXe+qJiIiIqGdqVVAvSRKkkIFZoZ9TxwkdlKfvqU9PcMCpG4an72F32Cza10prlcDVoQv0AWgD1cx2pQv6sv0JarZ+VUgJvsi+a5l69VjdZnvq1f7o4wdlATi8YXminx4AZBmoa479firqlTV81XEMGEXFQlhPvelKu8jl98FMvbH8vqmFlXYiU2+z6MvvI++p7/yZevbUExEREVHP1KqVdrIsY9asWXA61YFrzc248cYbkZSUBACGfns68jxaj7wSgCU4gm9veqJdG47W7A0YgnP99PsSdad9aoLdcMLG3opMfVqCHRP6peOTnw+G9dXXR5h+b3ayQGShB2cnIyfFidI6NzYdrMVE9YRBa+wJWWNX0+Q1DAKMprJB+b6ubmXZfjTipEJ4T736Ovv00++V65iV34syfnGSRKy/a2ph+r02KE/3+ut76m1dNahnTz0RERER9TCtCuqvuuoqw+eXX3552HWuvPLKwzsiajNPSPm9PlOflmA3rK3z6DLjdqsFLjXIK6lzq9cP7fVuuadevwpveF4KAGBtyHC50On30e5XfwJgbJ80fLOlFOsP1LQpqA/dTd+a3uuKBiVTX9vshT8gxyXADT25IRgz9WJPvVhNaLan3pipT3BY1MtbGJQXMv3eFwiE9NR3tfJ75XVkpp6IiIiIeppWBfWvvPJKex0HxYEIArXye0cw2xqeqVcCRKtFgtUihWXq9f30QOv21Kcl2FGQmQgAqG32we3zw2mzwucPaBlkkaGO1qtf1xycED9GF9S3hSi/t0jKerzWBPVVjUpQL8vKiYsMdXDf4aiPmKkPTr/3xFB+H9pTL7L6EcvvxaA89T5FT70/EJyxYLVI2vstWDp7UM/yeyIiIiLqoTgorxsJH5SnK79PcJhm6h3apHzlz1Jd+b2eTZvKHrmnvla33z7FaYOo3hcl0Q26QDPJqRyLPojVk2XZkM0elqtk/osqGtFajR4fStRZAUNykgG0LqivVHvqgfj11YvnFtpTL947faZdTL/3B+SwjROReuo9/oDpXvvwPfXBkzV+XU99aPl958/UK9+vnH5PRERERD0Ng/puJDxQ1w3KS7TrdtEHdKX6kuG6IvgNzdSLYNMsUBT0mXqLRdICVnG5CGQdVktwpZqu3FyvyeuHSEwnO23IS1PmOBSrJx1aQ0y+T0+0o19mkuGYWiLLslZ+DwDVjZ4o145dxPJ7NdjWrwLUbzEIzdaLEyVJWqY+eF2zvvrQ8nu7tqc+2FNvMym/7+w99aJdhD31RERERNTTMKjvRrwhgbo+GEzTld+7fYHgCQA1uBZBvQgEW1t+L8uytt9e3Da0JLpBm3wfPK5IPfUi6JUk5XnkproAKNP5Q7PVLRGl9wOykrRjizWob/T4DZP5452pT3aFvM7qe1SvD+rtwcA/dFieeE1FVYbTZtEqJMyCerGnXrzfWqZet6feapG0/fVCZw/qRaa+rtnbqnWFRERERERdHYP6bsTTwko7rfze6w+uvxOZepvxWyFSpj7SSrt6t08LCkWAlZZg3B1uNvFdHKvXZ7xf/UA9SZKQk+LSnmNlg3m2fNmOcryzal/Y5WJI3sBerQ/qQx+rJk4T8EMHBgoOk/J7p261YOiu+tATJZIkRV1rF5qpt2o99QHthIHNIsGizloQOn1Qr76vARloaOPaQyIiIiKirqhVg/KocxOBsTb93mEsv9cG5el76tXLnLoTAIBJUK+uWgvtfRdEkKzfbx/a56wFoLpef0eE8vvQnnOHzYJeyQ6U13tQXNuMrGSn4fqNHh+ue3UVGj1+TOyfgUHZydrXxDq7AVlJYcfbktCgvuoIld/rWxX0O+NDM/Ui+NfPT0hwWNHg8ZtOwA/dUy8y8kr5fXB4IqBUfIgTNTZL5z7/57Jb4bBZ4PEFUNvsQ4ortnWFRERERERdXef+TZ1axeNXgriWVtp5/bJWhm036b8HggG5IIK60EyxIIJk/X77VNHnrGaltUBdl6m3awP4QoJ6k6y+KMEvMemr/35rmRbE7q00DtPTyu97Jep6r9sW1MdrV33EPfVWY0+93apkzEVJvTfk9dcG5elaGsTJHNOeem36vdhTH9w+oF9pp/8TAKxS587UA8Hv2VjfWyIiIiKi7qDLBPWPPvooJk+ejMTERKSnp7f69jfeeCMkScJTTz0V92PrLEJX2hl66hOCmXoAqHd7Ddd12Y3fCqHT77Uy+Qjl98EhecEgNbT8vl4rFdcF9Vr5vTFYrTO5bp4a1BfXuMMe//MNxdrfD1Y3Gb62Wx2UN7BXEtISw8vv31xRhGvm/YTF28rC+vUrQsvv491T38L0e3voPvmwnnp1UJ4uUy968GMpv9cG5QWCg/KCmXpdUG/tAkF9gnEwIxERERFRT9BlgnqPx4MZM2bgpptuavVtP/zwQ/z444/Iz89vhyPrPFqafq8P6kX2XMvU21oov7dGL7+v1U2+F0Izp2Z95JEG8DWYBL25aSKoNwbtzV4/vt1con2uD+rrmr0or1dOAgyI0FP//Pc78O2WUlz58krMfOFHrCmq0r5W2WA8gdDW6fc7y+pxwT+XYen2csO6vpQIe+rr3cb3R1RK+HVD4PwBWcvG609+uNSTObGU31v15fe6nnrlsXU99V08U79kexmueGkF9lW2fiUiEREREVFn1mWC+kceeQS33347xo4d26rbHThwAL/97W/xxhtvwG7v3n22npA99caeegdsVosWsIny72CmvqWgPvr0+xqToD4twvR7Q1Av9tRH6ql3mWTqQ8rvF28r01a7AcDB6uDX96p77bOSHEh12cOC+kBARnGNcn2bRcLKPZW49MUftWOtbPAajqOt0+8/WLMfhfuqMff7nWj2BkvdI/XUi7J6cdJDXyYvNOoGwumrMhLtkcvvxfNKsIdUAAQCYT31+j76zj4oD9BvWwgflPf6j3uxZHs5Pl136EgfFhERERFRu+oyQX1bBAIBXHHFFbjrrrswevTomG7jdrtRW1tr+OgqRAm7GGqXkeiAJCmBY5LDuLqurjk42E65PGT6fWKkPfUtld/rMvUhAbRZybl2siBk+n2dSVY/T2Tqa43Z8y/U0vt89ev6TL2YfD+gV5Lh+MQxlde74fXLsEjAd3edgrQEOzy+gHY7kakXg/eq2thTL040rCmqQnWTku0X6/r0QtscRLZce/11mXqRibdaJEMVhrjPJpMp8AfU16Z3eoLxfv1yWE+9Q3eftq4Q1Lsiz0sorVPeR7N5DEREREREXVm3Duoff/xx2Gw23HrrrTHfZs6cOUhLS9M+CgoK2vEI4yu4pk55WzOTHHj21+Px/OXHaMPrRPDe+kx9eKZYzzyoF0GWcVBekklQHylTn+wM3p/I1JfUBAMzt8+PhZuU0vtZJw4AABzUleeHTr5P1VUPBAIyDqr3lZvqQt+MRAzKVq5XpJZpi0F5g9WTAjVtLL8XwXSjx48VuyrV52bT3hfBYTX+k7Spn1tNeuqDO+qthvuJVn6/v0o5joKMRPX+g+9reE998D4tXSGoD6kM0StTg3rxJxERERFRd9GhQf0999wDSZKifmzZsqVN97169Wo8/fTTmDdvXljgFM29996Lmpoa7WPfvvC9551V6KA8ADjnqHycNDRb+1z0UotMvQjc9Jl6q0XSMvtCpOBbiFZ+H5qpTzHbUx9p+r1uqnswUx8M6pftKEed24e8VBfOGttb+XpNs5Z13l0hdtQnGo5JlpVhfIdE5lq9bxH8i4n5YlCeCPbbWn6vrx74ZkspgOC6Pj39ewfoJtHryuQFMSQvtIQ/Uvl9g9unnaTom6lk6kUG3uMPQMwItIWU33eFLD2gH8xorFCQZVkL5pmpJyIiIqLupkP31N95552YNWtW1OsMGjSoTfe9ZMkSlJaWol+/ftplfr8fd955J5566ins2bPH9HZOpxNOp9P0a52dGIJmt0Y+V+MMy9QrAaBTNygv1RWeQW65p165v1SzQXnNkQflRRrAp/Xfm6y0q2nyotnrh8tuxefrldL7M8fkIS/VBYuknNwor3cjN9UVzNSrmXanzQqX3YJmbwC1TV4tUy/K0ftlKsF/kdqLX6UF9cnaYwcCcqsy135d3z4AfL+1NOy5CaGZeof6+tisxrJ8AGjwBDP1esHye2NQL7L0aQl27b0R9ytWHALBSfdi8n5X6KcHgt9vodPv69w+7d9GKTP1RERERNTNdGhQn52djezs7Jav2AZXXHEFpk+fbrjsjDPOwBVXXIGrr766XR6zo3n9MQT1WqY+uAcdMJbfh5be66/Xmp76WFbaRZp+X2dSfp/qsiHBbkWT14/immYM6JWElbuVUvbTRuTAZrUgL9WFgzXNOFjdpAT1anAuMvDiuJq9btQ0ebVMvejHH6Bm9CNl6mVZee3SEu0orWvGxoO1OGVYtuEkyHdbS5HismNC/wwASsm3vhe+1uTkhhD63gWn34vXP3xQXlLI/UQqvxeT3/tmJATv3yRgt6sZenFCocsE9aLdI6T8Xl9yX1LbDFmWW1W9Q0RERETUmXWZnvqioiIUFhaiqKgIfr8fhYWFKCwsRH19vXadESNG4MMPPwQAZGVlYcyYMYYPu92OvLw8DB8+vKOeRrvSeuptkd/WYE+9Evg4TfbUmwf1xvL7oopG/OmTTVpZebRBebXNPsMaN32G2m6SgQZ0WX3ddSVJMpTgVzV4tN73cQXpAIB8NeN+sLoZNU1erdxcZOr1x1jT5MUhkalPE5n6JO35eXwB7eRHXqpLy4BXqX31f/xwA65+5Se8/VOwRePnfdWY9cpPmPXKSi0AF/30eakuJOhOnoQG40Dk8nvR+65faSfK78My9WJPvTc0U6+8VqKfXrnf8O+V0On3XSaoj7DSTh/Uu30B0+n4RERERERdVZcJ6h988EGMHz8eDz30EOrr6zF+/HiMHz8eq1at0q6zdetW1NTUdOBRdqzgoLzIQZgI4utC99Trgs3UKEG9eIz5y/fg5WW78e8lu5T7i5Kp9wdkNHj8UVfauX0RVtqFBL65qUprRHFNM37eXw0AGKjbP99bC+qbtNL77BSn4TH1Qb0Yqpefrpws6J+lBLyHapu1knmrRUKqy4509Xair37DAeV77dlvd2ivy3OLdiivR7MP+9Ryd3Hio19Wopa9B8J31AMwTLEHgiXwIsD2Gqbfm2f8ExzKdUPL78XxFGQGM/VmAbu2p95mrBLo7CKttAsdjlca577677aWYvXeqrjeJxERERFRrDq0/L415s2bh3nz5kW9jiybl4YLkfrouwtPDD31IngXgY/DJKiPlqkXGfWKeiVQKtxXDUCXqdetwnPaLHBYLfD4A6hp8kZfaRdh+n1oNlu/q15k6Y/qm6Z9XQTnB6qbtBL6gbrSe/3zU8rvjZn6rCQHkp021Lt9KFRPGmQk2mGxSEhPdOBgTTOqGz1o9vq1fvwD1U34cM0BjO2bhq/VSfwAsKO0HgN7JWlBfZ/0BAzslYSlO8rDXofQ10NwaCvtwsvv67VMfWhQr3zeGLLSTmTq++oy9faQE0CSFJx03+XK7yOstAsL6uvcGJqbEpfHrGrwYPb8VUh12bD2wdPjcp9ERERERK3RZTL11DKP37hn3EwwU69Ovxfl97oMsXmm3rjSTgTxmw7WwqsG7YDxhIAkSbq1duZBfaSeerPrAkCuKL+vacY6Neg+qm+69vU+aqb+UE2Tbkd9ouE+xPOrbPCgtE4E9S7tmMWwvLVFSvY1M8kBAEhPDJ4M2Kv26gvPLdqBZ77ZbrhsR6nSGiKC+vx0F44dmKl9XT8vQIhUfq+ttNNn6rUTH6Hl92L6vfE13VcZnqkXFQDa4+k+72rl92kRVtqFDseL5wT8sno3/AEZVY3eiEMkiYiIiIjaE4P6biS2nnol4BPl7g6tZ9uilVnHkqkXQbzbF8DP+6q1YDP0tvoAWkxYN2TqbcaTBYLoqQ8tUe8tdtXXNqNwn1L+fnSBLlOfFuypD518L4hj3F5Sh4CsnLDolRzceCBOAqwtqgYQHtRXNXiwu1wJ2IflJiMzyYGiykZ8sUGZxP/LMXkAgkH9AbUaID89AUcXpGsnSEyn30fsqVf+NOyp90TK1Ivp9y1n6kNL6/UBvDb9vosMlRPfa/VuHwK6kx9mmXphbVGVNmyxLfST9kMHExIRERERHQkM6ruRmMrvbcasrj6IFAF/9KBeeQx93/Li7eXqdSTDIDggOLxMv6fdfPq9rAViPn9AG/IWmqkXg/IK91WjvN4Nq0XCqN7BoL63Wn5/sLoJu9VseqTy+y3FdQCUVXn6FXViWN6mg7UAgKwkp3o7JbivbvJid7ly3yN7p+LakwZqt50+MhfnjssHAOwoC83UJ8Blt2KcWllgtqc+tBxe21Mvyu8DJtPvQwblJZhMv69p8mrvmX76vcUiQR/X64N8MRnfGmVGQ2ciTgCJDQVCmdoq0itZef9Epr7Z68fl/1mBX//7R20zQGvpS/1DZxgQERERER0JDOq7keCgvJb31Av664rSfLOg3mEzL78HgCXby7Tbha4KE/d1UM1WO2wWw4kEu+7vXjVgFVPdgfCeerGrXkytH5abogWxQLD8vqLBgx0lStAeKVMvMukiuy8MUIfliUn/oZn66kZvsAogKwlXnjAAmUkOSBLw29OGYEiOstN+Z2k9ZFnWpt+LY7vu5EEYV5COU0fkIFTYnnqb6Gs32VOvvk6hr1Gw/D74OoosfVaSIyyzr5+Ab9MF8MF1el3jx4TTZtW2OOhL8EWmfnS+cvJHZOp3ltWjweOHPyDjnVX70Bb6xwmdYUBEREREdCR0mUF51LLWlN8L+sxwTJl6X3hQ/7M6LM+sFz81wZipD82864NYr1+G0wbUub3a8wh9LiJTL4zTDckTx57osKLR49fK0wdEyNSLlgGR3Rf6ZRl78DNEUK8bsCcC9UHZSUh22vDejSegqtGDcQXp8PgCsFok1Lt92FXeoL1Wom//jNF5OGN0HsxIkqQNFwR0mXqLWGkXzNSLbQKJYdPvRfl9MKgX/fR9M43PTdy3R/271aI/4aI8ZhdpqQegVIY0e92oafKiQL0sGNSn4vttZdr0e3FSBwDeXbUft00barriL5qaRpbfExEREVHH6hopOIpJsPy+5ZV2gkNXji/Kl0VmWk+/Uq3Z69ceCwBE+7LZyYA0dVCeWB0XGtTrWwXECQORgTYrT89OdhqCTP2QPEAJinvrAv+8VJchk292nL1DMvX9Q04CZKmvR0aiWn7f6DFk6gFgUHYyJvRXhuA5bBb0V4PnxduUKoZUlw0prvDXx4zdLFuuDSrU99Sbl98nmpTfB/vpjc8VMPbR2wx/71qZekC/1k4Jtv0BGZUNSlA/po8xU79NreQAlG0K36vvVWvo21CavQzqiYiIiOjI6zq/rVOLQrO7ZqJl6v9w5ghcf/IgTBqQGXozQ/m9yDxbpGDAC5gH9aKnXmS2Q0vFrRZJCyrF8dermXqzQXI2q8Uw1O6okEw9oPSuC6GT782OMz8kU9871WWoEBAnOcS6voPVzVpgGFraLwxWS/BFoKg/ppYY2hPCBuXpe+qjr7Qzlt+rk+8zTDL1uu8XfYAvjqOrTL8H9GvtlGC7osGNgKx8r47IU9bYldQ2Q5ZlbC9RMvXi/f3vytaX4HNQHhERERF1NAb13YjI4kYrvw/P1Ac/P3VEDu47a6RpEKcvvxeBTGqC3RBUmwb1IeX30YbDiey/GHJmtscdCJbgO20WDM8L3zfeRxdADzQJulvK1FssEgp0Ge2skPL7baVKhjczyWH6nAFoffU/7qoIO6aW6N8TsSveZrLSriHCSjsxrNDjC8CvXj9apt7YRx/+964U1IeutROl91nJTu19bvYGUOf2Ybtafn/btKEAgEVbS1u97q6WQT0RERERdTAG9d2EPyBrAVz0QXkh0+9j7CHWr7TT76TXl7+bl98rl4l1dqEBqPG+RaY+elAvhuWNzk81rUowZOqzYgnqXWHX0d8uM1kMylP+lGVxnfCstzAkWwnqxfNuTaZe/5xCh9UZ9tR7IgzK05Xji+FtwR314cesL6+3mpTfd6WgXiu/bzIG9dnJTiQ4rFqLyb7KRuytUFoofjkmDxP7Z8AfkPHe6v2tejz9oLwmr3FQnizLoVcnIiIiIoo7BvXdhH7Pu72NmfpotJ7uQEAbDpaWYMe4ghYy9SF95MkmfeXimESlQX0LmXqRbR5XkG76dX2QblYeHzrQzyzg1g/Ly0w0Tr8XBvZKNn18IJipj/YYkZhtB9BW2vnDB+UlhZTfO20WiCUETV4/ZFmOOVOvD/DFcYTusu/MxPdbWFCforRsiBNCP+6qREBWvmezU5y49Nh+AIBXl+8xlNS3JFL5/YpdFRj/56/x4drWnSQgIiIiImotBvXdhEcf1EcZlBfeUx/bt4DI6MsyUNmgzEpvTaZeSI6SqRfl91qm3qSnHgCuOXEgrjtpIK4/eZDp11sqv3fZrdqJBKfNgozE8OPur8toi+n3oc9loEm/vjA4LKgPrwaIxGGSqbeald+rWfjEkEF5kiRpJfhNHj+qGr3aJgCzNgB90K7PyovvI0tXCurVwYxigF1pSFCfo/65bEc5AGBoTjIkScI5R/XGgKxElNS68fDHG2N+PNG7Dxi3DfywswLVjV4s2tL64XtERERERK3BoL6b8Oqm0dujTCt3tTFTrw/+y+qVQCk1wY5eyU4tUAzNyivXMQbmZtl3LaiPsfy+IDMR9589KqwXXuijZqMlCehnUm4OBAP0/PQESFJ40NpfPRmQ6rJpx+eyW7VgGYg8JE8cu75i4HB76u3aoDwlqPcHZF1LQ/jrpJ+AL7L0OSnOsJM6+vtW/m42/b4LBfUtZOpFUC9mHQzNVWYyuOxWPDnzaFgk4MO1B/DpuoMxPZ5xT30wqBdVFK3J+hMRERERtQWD+m5ClK7brVLUzGpoT32smXr99Srqg5l6ADjnqN5w2S2m5fCh2W2zANSurWtTg/rm6Jn6lvTLTMRVJ/TH708fbhrE6o/LrJ8eAMYXpKNXsgMnDc02XK4vwTfr19fTl+D3MSl7j8QsUy8Ca6+6p170ygPmcwq0XfVef9R+esBYfm/I1HfF6fehg/Lqgz31QLD8XgTgQ3Xv0TH9MnDzqUMAAPd/uAHFNcaheR5fQDtJIEQqvxdVFAzqiYiIiKi9MajvJoI76qO/pWGZ+piD+mBgV6Hu/RaB8b1njcTPD51uOok+rKfeJKh32JQANHRQntmk/FhIkoRHzh+jBWhmgkG9ebCdnujA8nun4bn/N970doB5ab/eYHVYntUiISelFeX3UVfaKSdvRABps0im76G+/H5vpTIQzqyfXjm+4O31PfVOq+jn7zo/JsT3W3WjeaZe/CkMyzV+z946bSjG9klDTZMXjy/YYvjaAx9twLF/WYgNB2oAAIGArH2vAkCT7kRLvVt5f2oZ1BMRERFRO+s6v61TVLHsqAdMpt/HWH4vSZKWLS6vNwb1AOC0mWfEU1wtl987Qlfaaava2hbUxyJYfh852LZbLWGl+SJTn5PibPH4RKY+L9XVqmy3oRw+ZFid2HAggslEh9W0fUDbVe/x4+d91QCAUb1TzR8vQk/91OHZOGloL1w6qSDmY+9o/dUBh+sO1KC60YNyNajPCRmUJwzNNc4+sFstePi8UQCArzeVwO1TgvNGjw8fFR6ALAOF6utZ1+yDfsA9y++JiIiIqCMwqO8mRJa7pSDdZTd+PdpQvVAi2CyvM5bfR2OzWgyBvFlJfehKu4YWeurjYWxfZWr/Mf0zWnW79ARlaF60fnrh+EFZsFokTBzQuscw3VMf0qLQ6DZfZyckqidvGr1+rCmqBhD5uRqm3+v+npvqwmuzj8Ppo/NadfwdaXR+KkbkpcDjC+CDNQci9tQDyryEnJDMPQCML8hATooT9W4fftxVCQBYsr0cbvWkkxi+p++nB5TXWhAnXWqbvVxtR0RERETtikF9N6EF9S1l6m1ty9QDwRMAZpn6aFJ1gbx5T70YlGdcaRea5Y+n26YNxU/3T8epw3NadbuMJOU5D2yhnx5QMvWr7p+OJy85ulWPYVZ+HzooL9Lke0H01O8oqUNZnRs2i4SxfdJMr6uvDOhKQ/HMSJKEy45T1tPNX75Hq/oIXWkHKEPyzKocLBYJ00bmAgC+3lSs/lmifV2cKAjNwjeZZOq9fhlNumCfiIiIiCjeGNR3E8Ge+uhBWWimPtaeeuW+letWNiqZerNp92b0e+HN+uRFEOsNXWnnjO3+20KSpLD+6licOKQXEuxWTBsZ28mAjCRHqwfNxbLSTgzKi1TNIIL6ZTuVKe+j8lMjDg20Gsrvu/6PhPPH90GC3Yq9FcrUf5c9WC2Skxp8z4eFlN7rnT5KCeoXbiqFzx/At1tKta+JoD60X14/vLBB12vPEnwiIiIiak9d/zd4AtCKnvrDytQHd9UDrcjU664XPVOv9tQf5vT79nTOUfnY8MgZ7VqSHm36vS8gTnwo2d9ER/Tye9H/fUy/yC0A+uF4rWnH6KxSXXacO6639nl2ilPLyCc6bNqJpSE54YMdhRMGZyHRYUVxbTPmL9+LygaP9jUxUT+0/F6fqRfvD8CgnoiIiIjaF4P6bkKstGt9T30rgnqbMeCLvfw+eD3z6fchK+20TL15ZrmjtfeKN0NPvc18T32jNkwwevm9GKw3vl96xMezR1hp15X9+th+2t/FOjtBrBcc2TtyUO+yWzF1mLLO8MmvtgIABmUrLRdltcqqOxGsi39TZoPyAKCmkUE9EREREbUfBvXdhDfGlXbxyNQLsQb1+uuZBfVapt4XgCzLukF57Vd+35nZzTL1IYPyGjzRM/UJIb32UTP13ainXji6IB0j1Wn/oW0Wf/nVWDx4ziicMCgr6n38Qi3BF6/1/1NPFJTVuyHLMmqblO9TsRZRBPX+gLGPnpl6IiIiImpPDOq7CU+Mg/KsFsmQmW1NEKe/b0mKfZBdakL0QXkObfq9jAaPX+sb19+uJ9GfaBGl8aEr7VrK1Cfag69dr2RnxB31+vsGukdPPaDMTLjplMEAgEkDMg1fO6ZfBq6ZMtB0SJ7eaSNytMoFh82Ci47pC0D5Pq1p8mrl97lqn74I5Bt0vfUAUNts/JyIiIiIKJ56ZtTUDYkMbmiJvBmXzQqv3weHLXwPezT6dWcpThssMZ4QEJl6h81iWhkgdrF7fAFUqP3KiQ5rxCx0d2dWfi+Ce29ATL9XV9pFzNQH7+OYfulR32d9UN8deuqF88blY8qQXkiPsaIkVHqiA5MGZODHXZU4cXAWMpIcSEuwo6bJi7I6t5aBz1Mn6otBefrSe4CZeiIiIiJqX90jLUfa9PtYptk71R7g1ky+B4xl4WmJsQdKoqfebPK9/ji8/gDK65WBZFnJjlYdW3fisOqDbGP5vU+U36uBY2LE6ffBy8dHKb1X7jv4vnaXnnohM8kR88knMzdMHYz8NBeuO2kQgOCe+9I6tzb9Pk8tv2/2BhAIyAzqiYiIiOiI6pmp0G4o1un3QLCvvjX99KH3HWs/vf66ZqX3yv0G+8XL1Ux9VlLr1811F2Z76kWm3hcw7qlPirSnXre+7pgoQ/KUx2hbO0ZPcOrwHPxw7zTt8+wUJ7aX1odk6oPfq80+v2HyPRC++o6IiIiIKJ6Yqe8mtEF5MQTqIlPf2lJrRxuD+owke9TbiCDW4w+gQs3U9+rRmfrIg/JEpr5RrLSLcKIkUQ32rRYJY/umRX287ranvj2JoXtldW6tVz5HLb8HlGF5zNQTERER0ZHETH03IVbaOWPI1LvamKnX99S3JqifPLgXLpnYF78YZb7bXT/9XvTU90ruuZl6/YkZEeCLEzCxZurF8LZxfdNanE1gnLbPTH00Yj1eWX2w/D49wY4EuxVNXj+aPH5tJaPAoJ6IiIiI2hOD+m6iVeX3Wqb+yJTfu+xWPHHxuBbv11B+z0w9gODgQ21QnnryRmSJxbyCUMf0y8DcyydgdH5qi49nnH7PoD6aHPVkSWltsxaspybYkehQgnqzTH1by++X7SjHPR+sw8BeyTh5aC+cNiIHg7KTD+8JEBEREVG3w1rbbsLja930e6D1g/L0109t40RxM05bMGAtb1AH5bGnHoC+p16stFPe5+pG5XVKjzCwUJIknDkmDwWZiS0+nj6oZ099dFr5fb1bW2mXlmBHglox0ejxaUG9OPHV1kz9Z+sPYV9lExZvK8P/fbYZ05/8HmuLqg73KRARERFRN8OgvpvwtiJT7xLT71s9KC8Y8EXKELeFVn7v15Xfp/TcoN5p2FOvZurV18inZuqrG9XS78TDr2gwTr/nj4RospOV/vkDVU1o9ir/5lJddm2GgVJ+r8w7yE9XpuK3NaivUk9wnTYiB30zEhCQgQ0Haw/r+ImIiIio++Fv8N2ECOpjCdSdbczU29pYft8SfU+9WGnXK6nnlt+L18NhtWj75cU8A28gAH9A1rLEkTL1raGflWBjT31UIlNfVNkIAJAkIMVl01YI6svv89OUEwBtDurVaowLxvfBqcNzAABltc1tP3giIiIi6pYY1HcTotc6lkDddYR76lu+3+BKuwqtp77nZurFiRl9ZYRdzaD7/TJqm7yQlbc7Lu+D3RJeGUDmxJ56dV4hkp02WCwSEtUVgo3e4KA8kal3+wJo9vrD76wFohojI9GuPW5Jrfuwjp+IiIiIup8uE9Q/+uijmDx5MhITE5Genh7z7TZv3ozzzjsPaWlpSEpKwqRJk1BUVNR+B9pB3L7231PvaOP0+xbvVz2OJo8fVWogw5V2xin4YoCdNyBrGdwUp63VJ2bMWDkoL2ZpCXbDyRbx7yBYfh/sqc9Lc0EttGjTsLxKtfw+I9GBXHVtXkkdM/VEREREZNRlgnqPx4MZM2bgpptuivk2O3fuxJQpUzBixAh89913WLduHR544AG4XK6Wb9zFtKWnvrNk6kUQW6KWFluk+PSKd1V2W/j7Y9ftqa9WA8S0OJTe6+8bYKa+JRaLZFi3KGZLBAfl+bV1g8lOm/Z10S4RK1mWg5n6JAeytan7zNQTERERkVGXWWn3yCOPAADmzZsX823uv/9+nHXWWXjiiSe0ywYPHhzvQ+sUWtVTr5YKO1u9p759e+oP1ShBfWaSo0dnjPtmJMBmkTAgKzi5Xj8or0Yry47PiQ/9+2qLQ+a/u8tOcWrfq6kJyo/QRF1QLwblJTltSEuwo6bJ2+q++gaPX1tTmZFoR26KciKylJl6IiIiIgrRbX+DDwQC+OyzzzBs2DCcccYZyMnJwXHHHYePPvoo6u3cbjdqa2sNH12BWGnniGHQmcukZzsW7VV+LzLTooWgJ6+zA4CcFBe+v/tUzLv6WO0ykUH36crv4zEkT3/foX8nczm6zQzB8nsluG/SDcpLdlrbvNZOTL532ixIsFuRq2bqy+s92gk8IiIiIiKgGwf1paWlqK+vx2OPPYYzzzwTX331FS688EL86le/wvfffx/xdnPmzEFaWpr2UVBQcASPuu1aU34vdsyntHItnb2d9tSHDvfrldJzS++FPukJSHIGC2nEVHpfIKCVZcfrxIp+4n1PrpCIVXZKePm9y64rv1eD+iSnTcvktzaor9ZVY0iShIxEh3bCpbyeJfhEREREFNShQf0999wDSZKifmzZsqVN9x0IKEHu+eefj9tvvx1HH3007rnnHpxzzjmYO3duxNvde++9qKmp0T727dvXpsc/0jxi+n0MJfUXHdMXt04biutOGtSqxxAZ9RSnLa7Bn8NmvK+enqk3Y1Mn1Hv9MqobgwPU4nnfQOvnLPRE2fqe+tBBeV6fNv1elN8D0FomYlUZUo1hsUicgE9EREREpjq0p/7OO+/ErFmzol5n0KDWBZ5Cr169YLPZMGrUKMPlI0eOxNKlSyPezul0wunsekGltxXT7zOSHLjjF8Na/RjivuOZpdffr5DVgyffR6JvlahoiG/5vZ2Z+lbJNi2/D8/UJ+uD+iZfqx5DnLjJTAr+W8hJdeFgTbM2UJKIiIiICOjgoD47OxvZ2dntct8OhwOTJk3C1q1bDZdv27YN/fv3b5fH7EgXjM/HuIJ0DMlJbrfHEMFfPPvplfsNKb/vwTvqI9EH26L8Ol4bAmzcU98q2SnB7RmpLuVHqGH6vW5QnjgB1trp91UN4dUYIlNfWsdMPREREREFdZnp90VFRaisrERRURH8fj8KCwsBAEOGDEFyshLIjhgxAnPmzMGFF14IALjrrrswc+ZMnHzyyTj11FOxYMECfPLJJ/juu+866Fm0n5mT+rX7Y4jgO95BfWjLQE/eUR+J/sRHeb2aqY/T+2Blpr5VDJn6RGOmvqbJq02tT3bY2jwor1It19dXY4hd9aXM1BMRERGRTpcJ6h988EHMnz9f+3z8+PEAgEWLFuGUU04BAGzduhU1NTXadS688ELMnTsXc+bMwa233orhw4fj/fffx5QpU47osXcXY/ukwWW3YPLgrLjeb+igPPbUh9Nn0MvqRKY+TuX37KlvlRyTQXkJduVHqX6IXdJhTL83Lb/XeuoZ1BMRERFRUJcJ6ufNm9fijnpZlsMuu+aaa3DNNde001H1LGP6pGHdQ2fENIyvNcLK71MY1Idq1/J7ZupbxTD9PqSnXpxwcdossFktWtDf6pV2WqY++B5rmXqW3xMRERGRDtNy1CrxDugB46A2AMhKYvl9KEmStGx9o0fp2W6PQXnsqW+Zy27VMujie1UE9XXNwSF5QLBVpbaNe+ozk4LvcU4qp98TERERUbguk6mn7iu8p56ZejM2qwRfIFiNEreeel35PTP1sfnLhWOxp6IBg7KVeR5iUJ6QFBLUtz5TLzYc6Mvv2VNPREREROEY1FOH05ffJzmsYQESKewWC5oR0D6P18BCfXbexp76mJw5Js/weaLD+KM0NKhvbaa+Wi2/zzCU3ysnuyoaPPD6A5x/QEREREQAWH5PnYB+UF4Ws/QR6afUp7hscQvA9cEhy+/bJjHkRFSyU/lcBPUNHj+8/kDY7SKpFOX3uqA+I9GhtUqUsa+eiIiIiFQM6qnDWSzBfvEsrrOLSL9PPiNOQ/IAY8k9y+/bJlL5fYormMGPNVvf7PWjyavOTdD11FssErKTuaueiIiIiIwY1FOnILLFXGcXmX6gXbyG5IXer83KoL4tEu3mQb3NatGG5sXaVy/66W0WCSlOY1l/jjoBvy1r7faUN2DhppJW346IiIiIOjcG9dQpiMAyO4WZ+kj0WfR49dMDxj56fTUAxc5mtRjaSJJ1PfatHZZX1RBcZydJxpMsYld9W4blXf/aKlz76ipsOFDT6tsSERERUefF3+CpUxAT8Jmpj0zf+x7P8nu7hSvt4kFfgp+ky7CntjKor1Yz9Rkm1Rht3VW/t6IB20rqAQB7KhpadVsiIiIi6tw4/Z46BZHlZE99ZPqAO57l9+ypj49Eh1UL3MWgPABIS1B+zC7eVo5dZQ1IdtowY2LfsCy8UKkF9eH/FnK1XfWty9Qv3lam/b2i3tOq2xIRERFR58agnjoFu5qp5476yPRl8ulxzNTr75dr0touUqZelN+/vGy34etnH9Xb9H6qxDq7pPATN2JXfUlt6zL13xuCeg7ZIyIiIupO+Bs8dQoi8MlPd3XwkXRehkx9HHvq9YPymKlvu8QIQf2F4/tiQFYixvVNw+j8VADGAD9UdUPkTH1Oauun33t8Afyws0L7vIyZeiIiIqJuhZl66hT+dP4Y/LyvGsf0y+joQ+m0bO02/V6fqWdQ31aJ9uCP02RdUH/mmDycOSYPAFBa14wTH/sWq/dWoXBfNY4uSA+7H1F+b1aNofXUt6L8ftXeSjR6/NrnsWTqi2ua8fKy3bj+5EGsniEiIiLq5Jipp07h6IJ0XDV5QMQ+YwLs7bSn3m614PqTB+Hy4/vFtay/p3FFyNTr5aS4cO64fADAy0vNs/XVavl9pmn5vRJgVzR44PEFYjouUXovqmHKYwjqn/l2O15cvAvPfbsjpscgIiIioo7DoJ6oizCstItjph4A7jtrJP7vgrFxvc+eRr+rPslpjXi9a04cCAD4fP0hHKppCvt6VZRMfUaiQ6umKK2LLVu/eFs5AODccUoPf0VDy+X36/ZXAwBW7q6M6THa6pvNJdhWUteuj0FERETU3TGoJ+oiDOX3ceypp/jQ99QnR8jUA8CYPmk4dmAmfAEZry3fG/b1qig99RaLhMHZyQCAn/a0HHCX1DZj86FaSBJw4fg+AFqefu/2+bG1WAm0txTXoq45tlV8rbW7vAGz56/Cja+tbpf7JyIiIuopGNQTdRHttaee4iPS9HszIlv/5soiNHp8hq9VRSm/B4DpI3MBAAs3lbZ4TGKV3dg+aRiamwIAqHf70Oz1R7zN9pJ6eP0yACAgA2uLqlt8nLYoqmwEAOwqbwh7DYiIiIgodgzqiboIMf1ekoBUZuo7nVgz9QDwi1G56JeZiOpGL95auc/wtWjl9+K2APDd1lK4fUpwLssyPl9/CHvKGwzXXb5LmXp/8tBspDhtcKirI6P11a8/UGP4fFUMFQFtoR/Yt6usIco1iYiIiCgaBvVEXYQov0912bl6rhNKcAQD+ZYy9VaLhBumDgIA/GfJLm3ondcfQF2zkrWOVI0xtk8aclKcaPD48eMuJeB+b/V+/OaNNbj7vXWG6+4srQcAjOmTCkmS0CtJuc/yKCX4IqgXU+9X7a2K+lzaSt8GsLOsvl0eg4iIiKgnYFBP1EXY1On38VxnR/Gjz9Trh+ZFctExfZGd4sTBmmb8r/AAgODke0kKTqsPZbFImKaV4JfA6w/gWXVK/caDNZBlWbvungqlxL1/VhIAIEsN1KOttduoBvWXHdcPgFJ+7/XHNmm/NfQD+5ipJyIiImo7BvVEXYTI1HNIXuckgvokhxWWGCopXHYrZk9Reuvnfr8TgYCMarX0Pi0hejXG6WoJ/sLNJfhwzQGtP73B40dZnRKwVzV4UNOknCQYoAb1vZKVTH2kYXlefwCb1SF5F4zvg7QEO5q8fmw6WNvi82kt/YkFZuqJiIiI2o5BPVEXIXrquUu+c0pQs/Mtld7rXXZcP6S6bNhZ1oCvNhWjMsrke70TBmchwW7FoZpm/N9nmwxf26X21e+uUP7MS3VpQ/xEpr4sQqZ+e0k9PL4AUlw2DMhKxIT+GQDapwS/kpl6IiIiorhgUE/URdisLL/vzBLVnvqWhuTppbjsuPKEAQCA37yxBje9sQYAkNHCe+yyW3HysF4AgNpmH7KSHDh2YCaAYIC8Vw3q+2clarfLaiFTv0EtvR+TnwZJkjBxgBrUt8OwvHJdUL+7vAGBgBzl2kREREQUCYN6oi7Crmbquc6uc8pOcRr+jNU1UwZiQFYiAnIwey3K5aMRq+0A4IapgzAmPw0AsLu8Xv1TKckf2Ct4X9lqpj7S9HsxJG9Mn1QAwKQByomCVXurDL368aAvv2/y+nGotjmu909ERETUU8SeUiKiDjUkJxkAMKp3agcfCZmZ2D8Df734KIzvl9Gq22UmObDo96egvN6DnWX1KK5pxklDe7V4u+kjc5HqsiHZacPlx/fH+2uUYXsiUy/W2w3QBfVapr7BPKjfcFAE9coJgrF90uCwWlBW50ZRZaM2cC8exAmMBLsVTV4/dpXVo096Qtzun4iIiKinYFBP1EVcfnx/nDYyF/lpro4+FDJhsUiYMbGgTbeVJAnZKc5WZfkzkhxYeMdU2KwWJDpsGKwG77vLjeX3A3Tl97206ffh5fc+fwCbDykD8caqQb3LbsWYPqlYU1SNNUVVcQvqGz0+NHr8AIDx/dLxw84K7Cytx0lDs2O6/eJtZUhx2Vp9AoWIiIioO2L5PVEXIUkS+qQnQJK4o54UOakuZKq75wdmKwF3UWUjvP6AFtwbMvVJkcvvd5Y1oNkbQLLTZij/P6pvOgBg44HWTcCXZRl1zV7Tr4mTCg6bRbt/MeCvJaV1zbh63k+48uWV8LXDqj0iIiKiroZBPRFRN5CX6kKC3QpfQMa6/dWobfYBAPpnBgN0sdKussEDf8hgusXbygAAo/JTDSv5RLvHpkOtC+r//OlmHPXIV1i4qSTsa6L0vleSA4PVkxGxrrXbdLAW/oCMumaftsovmleX78E1836KeIKBiIiIqKtjUE9E1A1IkqQNxVu0RQnQ9evsAGhZ/YAMVDUGS/CbPH68sHgXAOCCo/sY7ndUvhLUbzxYG/OwvK82FuPlZbshy8Dfv94WdjvR05+Z7MCgbGVWRKxr7baV1Gl/317a8omA577dgW+3lOKL9cUx3T8RUVf18c8H8fO+6iP2eLIss2KKqJNgUE9E1E2IEvxvt5QCAAb0SjR83Wa1aOvy9H31r/24B+X1bhRkJmDGxL6G2wzNTYbNIqGmyYuDNS1PqC+ta8Y9H6zXPt98qBbfq1UAgnjsrCSnlqk/VNOMBrevxfvfWhwM5LfrAnwztc1elNYpJxC+314W9bqhqhs9WL6zolW3oY4TWnlCnd9/luzCqX/7Dl+bVPNQ620trsOt/12LS1/8MebKp8MhyzIu+NcPOOOpxayEIuoEGNQTEXUTYlieKJXXr7MTsrRheUqw2+D2Ye73Spb+1tOGwm41/rfgtFm1zQsb1ZV3kciyjLveXYfKBg9G9U7FlSf0BwA8/91Ow/Uq1PL7rGQH0hMdyFIrCHbH0Fevz9RvK4n+i+tOXSZ/6fbyVgV+17+2Gr/+94/4fP2hmG9DR5bXH8D/Cg/g/OeWYsQDX2CRejKLOj9ZlvHC4l3YXd6A615dhTlfbGbG9zBtKVZ+7jd5/bj1v2vh9vnb9fHK6t34eV81dpY14KWlu9v1sYioZQzqiYi6CZGpF8ym1Yu++jI1qJ/3wx5UNngwsFcSLhzfJ+z6ADA6X5mG31Jf/fwf9uD7bWVw2ix4+tKjcdMpg2G3SlixuxJriqq064kTCiKYHxRjX70/IIcE9dEz9Tt1Jf01TV6sb+GkhPDTnkqs3F0JAHht+d6YbtNV1DZ70ext31/2j4QtxbWY+sQi3PZWIX7eXwOvX8YfP9rQLZ5bT7DxYC3K6tywqvM7Xvh+F2a98hMrLg6DvoVp48Fa/HXB1qjX9/kDqD2MDPu+yibt7/9evEv7uU5EHYNBPRFRNzGoV7Lh8wEmQX2Wbq1dvduHF9Ve+tumDYXNav5fgr6vPpJtJXX4yxdbAAD3nTUSQ3NT0DstQTtRMFeXrQ9m6p2G497ZQl99UWUj3L5gNm9XWUPU7F7oSYLF22IrwX/h++CxLt9VgT0xTuaP5rutpfhqY8f29ZfWNePEx77Fda+u6tDjiIf/FR7EwZpmZCU58LvpQ5Gf5sKB6ia8oFadUOf23ValquK0ETn412XHIMFuxdId5Vi1p7KDj6zrEpVOkwdnAQD+s3R31J95/+/fK3DUw1/hnGeX4K9fbsGO0ugnSUPtrwoOKm3w+PGvkIosovYiy3LMM356Egb1RETdRGim3qz8vpeaHS+vd+O9VftQ0+TFoF5JOHdcfsT7Ha0G9Zt0QX2z16+Vd7p9SrmnxxfA1GHZWtk9AFx/8mBIEvDVphItOA721CvHMjhHOc6WeuS3FitfH9U7FQl2Kzz+QNQJ+KL8fnhuCoDYgvptJXVYuLkUkgSMVCf/v71qX4u3i6am0YvrXl2FG15fjX0xTOxvL6v3VKGu2Ycl28tR09S1e2B3qyeAbj51CH43fRjuO3skAOBf3+0wBBvUOS3aqvxbPHV4Ds4a2xunjsgGAKzWVfRQ64igftbkAbjieOVnsDhpG6qkthkr1RMoGw7U4p+LduKSF35sVaXE/iolU98/S5nd8tryvThQ3RTtJkSHrbzejRMf+xaz569iZU+ILhPUP/roo5g8eTISExORnp4e023q6+txyy23oG/fvkhISMCoUaMwd+7c9j1QIqIOkuqyo5ea/QaAfpmJYdcRXy+rc+NVtbT86hMHaGWwZkRwe6C6CdWNHlQ2eDD1r4tw9CNf47f/XYu73l2HLcV1yExy4K8zjoIkBe9rSE4yJvXPBKCUtQPB6fdZaivAMf0yAABLd5RH7QMV5fYje6dqff7R+upFpv7qEwcAANbuq26x3FRkes8cnYfbpg0BALy3ej+8/gCaPH7M+Xwz/rOkddnglXsq4fXLkGXgiw3mPfrbS+pw42ur41IVEIn+tVq3v7rdHudIEAGMaN04e2xvHDcwE25fAHM+39KRh0YhZFnG8p0VqFcHYVY1eLBWDd5PGa4E8xPUnxGr98QvqJdlGVuL6/Dq8j3d/kSPLMvYpf68G5SdhJmTCgAA6w/UmGY0xc/iYbnJ+PuMcUhyWFHZ4NFOnMZCnKC8cHwfHD8oEx5/AE8v3Ha4T4Uoqrd/2oeDNc34dksp5n7P6hC9LhPUezwezJgxAzfddFPMt7njjjuwYMECvP7669i8eTN+97vf4ZZbbsHHH3/cjkdKRNRxBqnZ+d5pxnV2gih5X7i5BLvKG5DitOFXx/QNu55eWoIdBZkJAJS++rnf70RJrRtNXj8++fkgPv75IADg8YuOQk6KK+z2Y/oYe/IrddPvASWoz0lxoq7Zhx92BCfO7ylvwH9XFmln47eqQf3wvGQMVYP6SNl9rz+AvRXKL50nD8vGoOwk+AOy4f5DHappwv8KDwAAbpg6GKeNyEWvZAfK6tz4aO0BXPHSCryweBf+77PN+GjtgaivmZ5+iv7nEVbrvbB4FxZsLNZWC7aHbbry2sKi6nZ7nL9/tRUX/HMZqnVrE+MpEJCxu0IN6tXWDUmS8NC5o2GRgM/WHzqia70oundX78ev//0jrnhpBXz+ABZvL0NAVipo8tOVnysT+isn9lYXVbVYVvve6v345dNLIv7bl2UZ85btxi/+sRhnPLUYD/5vI+77cEN8n1QnU1bnRoPHD4sEFGQmGraWiIy63k/qzJDJg3vhogl9MV49sbqmFZUS+9QTJQUZibjz9OEAlJV6Hh8HHlL7kGUZ7+gq5/7x9TZsiHFWTk/QZYL6Rx55BLfffjvGjh0b821++OEHXHXVVTjllFMwYMAAXH/99Rg3bhxWrlzZjkdKRNRxRObSrJ8eCGbHqxqVjPXFE/siyWlr8X5Hqdn677eWYf4PewAAD5wzCrOnDMSg7CTccuoQ/GJUrvltdeX7siyjXO2pz1TL7y0WCb8ckwcA2rT5QEDGda+uwr0frMfrPyoVBdvULNKw3BQMVUvqt0XYVV9U2QhfQEaiw4reaS6cPFTJCC6Ostpu7nc74QvIOH5QJo4uSIfDZsFF6gmPu95bh1V7q7SKhgc+2hBzKf2Pu4JBfeG+atMSVdHaUNiOwag+CFrbTo+ztbgOzy3agcJ91fisnTYHHKxpgscXgN0qoU9Ggnb5qPxUrY3krZ+KTG/b7PXjn4t2tDhkkeIjEJC1eRpri6rx4pJd+E4tvT9FLbkHlJ8vTpsF1Y1e7IpSrbJiVwX+8P46bD5Ui/nL95he5+tNJXj4k03YUVoPu1X59/rjzgo0elpemdkahfuq8dqPexHoBCXA4jXrm5EIp80Kp82KYerPSLNZKCvViohjByoVEuP7pQNQ3qNYiUF5BZmJmNAvA1lJDjR7A+36M6wzq2324uGPN+I/S3bhYCdsQ5BlGd523jCxt6IBTy3chn8u2oHXf9yL77aWxrX3/cddldhb0Yhkpw2njciBLyDjd28X4tstJfjTJ5twxUsrWnViqrvpMkF9W0yePBkff/wxDhw4AFmWsWjRImzbtg2nn356xNu43W7U1tYaPoiIuoqxfZWs+Jg+qaZf15fnA9B6L1siJuD/e8kuuH0BTOifgWtOHIAHzhmFb+88Bb8/Y3jE24oTApsO1aLO7dMyOeIEAwD8cmxvAErvvdcfwFebSrBdDdhfXrYbzV6/9ovr8LwUDMuNnqnfod52cHYyJEnCycN6AVD66s1+ydhRWo/XVyiB4K2nDdUuF2WsAJCT4sT/bj4RE/pnoM7tw+1vF7a4hqu60YPN6qopUV2wYIMxW+/1B7Tj3VpcG/fgAwA8voBhOnbhvup2GTT01MJtEHcb62DC1hLPo39WUljbiHi/Pvn5kOnr+K9FO/DXL7fi3g/Wt8uxdQa1zV6s3luFBRuK8caKvdqqs47wtVoRZFPfp6e+3o6F6l76U4fnaNdz2CwYV5AOIHIJfnFNM25+c41WubNwk3nA8G+1PebSSQVY/cAv0Cc9AR5/ACt2tTyEb19lI0prm1u8ns8fwPWvrsIDH23AR4WxV+20l9B2FEA/C8WYyaxp8mrfExMHKBl60QK1NsaAyB+QtcC1b0YCLBYJJ6gD+n7YWd7Wp9GlPfvNdsz7YQ/+77PNmPzYt7jo+R+0n+vx9MaKvXjh+52t+vnt8wcw84UfMeKBBfjl00twz/vr4vo+ybKM/64swi+fXoKnFm7HX7/cij9+tAGzXvkJb6wwP8HaFiJLf+643vjbjHHITnFiR2k9rpm3Ci8v240l28sxe95P7drG1pl166D+2WefxahRo9C3b184HA6ceeaZ+Oc//4mTTz454m3mzJmDtLQ07aOgoCDidYmIOptLJhbgtdnH4nfTh5l+vZcukJ46LBuDspNNrxdKBOYiKXXn6cMMvfPRDMlJhsNqQV2zD+v3K79gJjqsSHQEKwQmDchEr2QHapq8+GFnBZ7/bof2tb0VjXhx8S74AzJSXTbkpbq0LFSkCfiin36w+kvu8YOy4LBasL+qyXR13pzPN8MfkDF9ZC4mD+mlXT4oOxmzJg/AsQMy8f5NkzGmTxqemnk0Upw2rNpbhWe/3RF2X3ordldClpXjuOy4fgCAL0Iy2DvL6uFRn0NAhvYaxdOeigb4AjKSHFY4rBZUNniiDhkMJcsy6t0+7C5vwOq9lagzmU2w8WANvtCdsFi2o6JdMkMigDEbBHn8wCz0y0xEvduHL0JaHRrcPsxX50isKapCWV37r+Dy+QN4fMEWra2jPVU2ePD4gi04/i/f4KLnf8CNr6/G/R9uwIy5y9u1pzwQkLHhQA3eX70fc77YjP+uLNKy12KTxPUnD8L0kTnw+AOoc/uQ4rRpJfeCVoK/NzywdPv8uPH11Siv92BEXgoSHVYU1zaHZaHXFFXhpz1VsFsl3PGLYUh12XHyMKUi4PsWTjLtq2zE6f9YjPP/uazF79sl28tRqn7/vLh4V4dP4jb7NyHanjaEvkZ7qyDLwICsRK1dSmTqd5U3oKqh5baZ4tpm+AIy7FYJuanKfUwerPzc/GFn5BanrqDZ68fibWUR57vIsoz/FR7Q2s4AZRjqm2rwOrJ3KiRJ+T5+aenumB6zcF81KmN43XeXN+D+DzdgzhdbIg5BNPPKsj1YuacS/oCMzYdq8dZP+3Dd/FVx+fnc6PHhuldX494P1qPR48fE/hmYObEAJwxSTvI8/sUWlKgnyuqavbj5zTW478P1rV4/WtPk1Sr5Zk7qh8wkB/4+YxwcNgvy01y4dFIBxvRJRVWjF9fM+6nd2r86sw4N6u+55x5IkhT1Y8uWtg+8efbZZ/Hjjz/i448/xurVq/H3v/8dN998MxYuXBjxNvfeey9qamq0j337Dm/qMRHRkWS3WnDS0OyIJfX6TP2syQNivt/Rusz/5MFZ2i9wsXDYLBiqZtZF+bsovResFglnjFZK8P/y2Wb8vL8GLrsFl0xUyt+fW6QEz8PzUiBJEvqkJ2gT8PeaBKc7S5VfcgerJy0SHTYtk/T1plLDdZduL8c3W0phs0i496wRYff18Hmj8c6NJ6BAHTxYkJmIP18wBgDwzLfbsWhradhtBFF6f/ygLJw5RqlGWLW3CsU1wWzg5kPGX7rbo3xVlJsPy0vR2iFieZwdpXV47IstmPzYtxjz0Jc49W/f4aLnl2PG3OXa4DPhH19vBwCcc1RvZCY5UO/2xVTO29pf7rSspElQb7FImDFB+Z4J3VrwjrrtAQBkGfhmc4np/W8rqYtblcGn6w7h+e924u731sW0ceCm11fjxMe+xYIIAxUj+e/KIkx5/Fs8/91ONHr8yE11Yny/dPTNSEBdsw+3vdVyVUlb+PwBXPXKSpzz7FLc+e7PeOH7Xbj3g/X4zRtrsGR7GdYUVcNhtWDWiQPwl1+NRXqiHQBw0rBesIes0JygZotX7Q3PqL/xYxEK91UjLcGOF6+YqLXTfL3J+B7+Ww10Lji6D3LUYHOqqNKJ0noDKJsTmrx+HKppxsrd0bP6763er/19S3EdFm/v2Oy0qF7R/5sYra0iNZ4kFFPvJw3I1C5LT3RoWf61+1rO1ovWoz7pCVq1jFilt7aoCk2e1v2b7ix2lNbjgn8uw5Uvr8TtbxeGfb3e7cMtb67FbW8V4tb/rtWCzNd+3IMGjx8j8lLw+a1T8K//dwwAYMXulk9wzP9hDy745zLc+PrqFq/7ru5n2uMLtmBJC9/TgPJePfm1MsDw/rNGYu7lE5DksKLB4zdUb7XVPxftwMLNJXBYLbj/rJF454YT8PjFR+H1a4/DuIJ01Ll9eOSTjWjy+DF73ip8tu4Q3lxRhBteW93iz/5Gjw+bD9Wi3u3Dx4UH4PYFMDw3BePUisSTh2Vj0yNnYNk9p+Gxi47Cy7MmoU96AnaVN+DG11f3uPkOHRrU33nnndi8eXPUj0GDBrXpvpuamnDffffhySefxLnnnoujjjoKt9xyC2bOnIm//e1vEW/ndDqRmppq+CAi6i6SnDbcdMpg/L/j+mHqsOyWb6DKS3Whb0YCJAnaUKTWEJn+JduUX36zQtoAAOAstQRfDMS7dFI/3P6LYbBZJO0/Z5Ght1gkbQK+WQm+lqnPCVYiiJ7/rzcFM7j+gIz/+2wTAODy4/trJwFacsH4Pvj1sf0gy8Bt/12LvRXmvxz9qJb8njA4C3lpLi0b+aVuZ/2WQ8rxO9Qgp32CeuX1GJaTgqPVMueWAu673/sZ059cjLnf78Qh9SREstMGl92CLcV1uOPtQi0ju7aoCgs3l8AiAbf/YhimDAm2O0Tzzqp9GPHAAkPWqyW7TEqN9S6e2BeSBKzcXamdAPD6A/jPEiVrJqo3vtoUHtR7fAH8v3//iCtfXok/frT+sDNZr6p9325fAJ+08By3FNfiiw3FOFDdhBtfX4Pfv/uzaUVEqB2ldXjgow1o9Pgxpk8q/nPlRPx47zR8+JsT8d/rjkeK04bVe6vwzDfbYz7uTQdrsSHC5HS9pxZux5Lt5XDYLDh2YCZmTOgLh9WCBRuLMeuVnwAAvzqmD3JSXMhJceEfM4/GqN6pmD1lYNh9HaP+29hZFp4tFsH7rdOGol9WIqZr/5aD7+Ge8gYsUP9dXXdy8HfHyUN6wWqRsKusIWLFwv6qRry7Khioh54s0Ktu9GhfF9/nLy7u2Cncu8uVf98DewV/fomMcUmt21CVIobkTRqYabgPUYK/Zm91i48ngvq+GcENK/2zEpGf5oLXL5uemGlP32wuwX+W7MLc73fihe93tqky5b3V+3Hus0uxRZ3d8vn6YsM8lJ1lSsCvnxVyz/vrsKusHq8s2wMAuHHqYEiShMmDe0GSlJMtpXWR2zl+2FmOP32q/P+zcncliioiH7fPH8D7a5Tv0RF5KQjIwC1vro16G1mW8cD/NqDJ68exAzNx7UkDceaYPG2jzaZDh1cVVtXgwTz1uT996dG47uRBsKgneawWCXMuHAurRcLn64tx4b+WYeWeSqQ4bUiwW/H9tjJcO39VxBNAsixj1ss/4ZdPL8GYh77EI58or9MlkwoMVYI2q0X7PCfFhZdmTUSy04Yfd1VG3DbTXXVoUJ+dnY0RI0ZE/XA4HC3fkQmv1wuv1wuLxfgUrVYrAoGedeaGiEjvD2eOwF8uHKv95xsLSZLw2uzj8N6Nk8PKZmOhDctTs9K9ksJ/th83MBMZaibPZpFw/cmD0DstQQv2ASVTL4jsf+haO1mWdeX3wV9yp49UAoG1+6q1X3I/WnsAW4rrkJZgx23ThqI1Hj5vFMb3S0dtsw83vLY6rIe7qsGjZeGPG6hksUIHAgLB1+SXY5WvtUtQr/6iOjQ3OTgUK8rj/LSnEu+s2g+LBEwfmYPnLzsGGx45AxseOQNvXnc8HFYLvtpUgr9+tRVPLdyG//fvFQCUkx2Ds5NjLnkWQxdfizD0zIxZAKPXOy1By+SKzNZn6w7hQHUTeiU78OQlRwNQVig2hFQbLN5WhnJ1O8PrPxZh1isr21zGueFADdboTpy8uyp65d9Haw+qx++CJClBxun/WIzP1h2KGFzLsowH/7cRvoCMaSNy8MktUzB9VK72S25BZiL+8itlwPCzi3YYgpRI9/fPRTtw9rNLcM6zS3Hq377Dk19vM+0NXrq9HP9U22T+PmMc3rnhBPx1xji8cd1xyEi0a73v154UDLBPHZ6Dz287SVthp5eZZJ4trmv2aivYpo1Q+vBPG5EDi6T82xGDJ/+zdBdkGTh1eLZ28g9QVn2OV09kLd5mnlH/lzokU1QQfbWxOOJr/vHPB+HxBzCydyoeu0gJWpbtqGjTFO56tw/l9cY2kMoGD256fTXejjDsMZTPH9BaaQbqTnQlOW1aOb7I1jd7/VintvccO8D4HgR/LrScqRcT9cVWFED5P+KEDijBX1NUhdnzV+H/PtuMx77YgjlfbDHNskezZHsZfv/uz2jy+nHikCxccLQycPNPn2yCPyBjR2kdZsxdjh2l9chNdeKt64/HuALlZ/+vnv8BFQ0e9ElPwDlHKf9XpSXaMSJP+T8vUtXHvspG3PyGMiNCzJz4ZF3kE3+Lt5ehpNaNzCQH3rtpMsYVpKOmyWuYMxHq03WH8N3WMjisFvzlwrHazwXx//HmQ4c3MPQ/S3ehwePHqN6pOFP9v01vVH4qrlVP4G0prkOC3Yp510zCvKsnIdFhxdId5bhm3k+m809W763SqkoAwBeQkeK04cLxfaIe04i8VFx2vNLqtmxHz5rv0GV66ouKilBYWIiioiL4/X4UFhaisLAQ9fXB/2hGjBiBDz/8EACQmpqKqVOn4q677sJ3332H3bt3Y968eXj11Vdx4YUXdtTTICLqsgb2SmpTQA8EM/VCaPk9oJxxFwPzfnVMH23dlT6rp/9lXfw9dJJ5Wb0bdc0+WCQleyTkpblwVN80yDLw7ZYS+ANKAAMoGZYMk2OKxmmz4vnLJqBXsgNbiuvwwEcbDV9fof4yNzQnGdkpSmWCeH4r91RqJxbEL1aXTCyARQIO1TRrPYgt2VFaj5teX41Ve6JnxsQ6u+F5KRhfoLyHmw/Wwu3zo7bZiy83FhtKIZ9TZwXMnNQP/7lqEn45tjeS1ZaOY/pl4NELlfaD57/biacWbkeTV+mlvPeXIwEAJw9VfrnfcLAGFfXmvetFFY1aT/SqvbH1uDd7/VpAYdZTL4iBefN+2INZr6zEX7/cCkBpOTmqbxr6ZSbC4wuEla+KoWfHDcxEosOKZTsqcOmLP7apjFNk6U8a2gs2i4Sf99dEHFoXCMha3/2D54zCOzecgH6ZiTikDoe7/KUV+NuXW3H724W4+pWVeHfVPgQCMj5bfwg/7KyA02bBw+eNNp1zce64fFwysS9kGdrrYKbR48Mt/12Lv365FbKsVI7sqWjEM99sx/Qnv8dZTy/Bv77bgf8VHsCn6w7i9ncKIcvAr48t0LYOAEpZ94e/ORGnjcjBHb8YplXUxGKi+vNllW5Y3rId5fAFZAzqlYQB6nuemeTARPXEwDebS/DF+kN4a6Vy0uT6kweH3a84yWRWOXKwukk74fLUzKORYLfiYE14v74gSu9nTOiLvhmJWiD3+IIt+Hz9ISzeVhbWmmLG7fPjgn8uw0mPL9K2XwDAo59txhcbivHHjzYYqpB+3leNB/+3IayK4UB1E7x+GU6bBb1TjStFxYBT8Vx+3lcNjz+A7BSn4WcjEMzUFxZVRwwSBbHOTp+pB4Il+GZBvSwrsxee/Hobzn5mCc5+ZknUE1axEhUWI/JScNExfWGzSPhpT1VY20E0z6sbGi6e0BevXnMcHjx3NFJcNmw6VKudtKxs8GBMn1R88tspOH5QFp6eeTQSHVZUq5tkrj95EGy6lpLj1EoIswGNbp8f1726ClWNXhzVNw0PnjsKAKJW87zzk/I8Lzi6D5KdNrxw+QSkuGxYr86zCOUPyPjbV8q/95tOGWz4d6gNr43wPR6LqgYP5v+gzCi5bfrQiDN2bps+FENykuG0WfDilRMwoX8mjhuUhVevORbJThuW76rArFd+Cvs3I6ofZk4swM8Pno4PfjMZX/zuJNPfHUKJfv7lLZzE7G66TFD/4IMPYvz48XjooYdQX1+P8ePHY/z48Vi1apV2na1bt6KmJviP+K233sKkSZNw2WWXYdSoUXjsscfw6KOP4sYbb+yIp0BE1GONzDcG9Wbl94BSRfDnC8bgoXNHa5eNK0jH/zuuHyYPztJKxwFoJYTfbinFLt3wO9FPX5CZCJfdarj/X4wMlu1+uu4gdpU3ID3RjitOiG0LQKi8NBee+3/HwCIB76/Zb9hfr++nF/qkJ2BcQTpkWSnBL6tzo7zeDUlSMmXiRIUojff5A9hWUoe1RVVYtqPcMJm7psmL2fN/whcbivGbN9agptG8VNvt82OvWqI5LDcFBZkJyEpywOMP4IM1B3Dus0txw2urcd2rq+DzB7B+fw2+31YGiwTcNDU8QAKAGRMLtAxM34wEPPf/xuPdG0/QTl7kpLowsncqZFnJiJvRl0bKMrAwQo+7XlFlI2QZSHHaDEMfQ00bmYO+GQlo9Pjx3dYyHKhuQqLDisuP7w9JkrRWjK82Bh+z3u3TjuH+s0fi/ZsmIzNJOWEj1irGqqrBg/8VKr+g/276UK1KRPxiHmrF7kocqmlGisuGU0fkYNKATHx1+8m4bdpQOGwWLNtRgecW7cCHaw9g0dYy3PXeOsx4YTn+rJbu3nTKYG3mg5k7Tx+uDe8yK032+gO44qWV+GzdIdgsEh69cAzWPPgLPDXzaJw6PBs2i4RNh2rxxIKtuO2tQtzy5lqU1bkxLDcZD54zOuz+BvRKwsuzJuHWVla/mA3LW7RFCcRPHZFjuO70UcrnL3y/C7f8dy18ARkXHJ2P4weFVwGIoH7ZzvKw2QLPf7cTXr+yyvLkYdk4ST0hZVaCv7W4Duv218BmkXC+ms29Xi31X7K9HL95Yw2ufHklpv39O8PPJDPzf9iDHaX1aPL6ccc7hWj2+vHTnkqtxNrrl3H/hxsgyzL2lDfgypdX4tXlezFPrW4RdumG5IVWX40J6asXFQ/HDsgMC8KG5aYg2WlDg8ff4srH/bp1dnqThyg/69bvr0atrnVElmXc9d46nPPsUjzzzXZsPFiLjQdrcfOba3Dx3OVtHg7a7PXjUzW7/eA5o/D3S8ZpGePXlsf2b3bjwRr8sLMCVouE238xDFaLhMwkh1a59ey3O1Ba58bw3BS8ds1x2nDBAb2S8PB5yvd+VpIDl0w0DtYW34dmffUvfL8LW4rrkJXkwAtXTMD54/rAbpWwpbjOtJ2sot6t/Wy6ZJIyMyQvzaVtavnrV1vDguJvNpdgb0Uj0hLsuGGqsZVZXznX1pMqLy3djXq3DyN7p+L0COtsAWWezae/nYKV903HSUODLX8TB2Ti1dnHIsVpw8rdlbjq5ZVau9HB6iatlebqKQOQlmjHMf0ywk4iRTJpQCZsFgn7KpsMq2fr3b6I/092B10mqJ83bx5kWQ77OOWUU7TryLKMWbNmaZ/n5eXhlVdewYEDB9DU1IQtW7bgjjvuiHliMxERxUeqy24o1YwUkKUl2HHF8f3DBv395cKxePO64w1B+pQhvXD8oEw0evy4+c21WqZZlN4PMemPF724S7aXaz3Gs08cqGWh2+L4QVn4rfrL1R8/2oC9FQ14b/V+bf2OPqgHgLPUXzq/2HBIK88fmJWERIdNO2lRuK8aNU1enPvcMpz+j8W48F8/4LL/rMDUv36H91bvRyAg4463C7VgvbTOjT+rswFC7Spr0DYH5KQ4IUmS9jj3frBeu48l25X+zn+pJdXnjctHv6zIv0Tdf/ZIfHHbSVh4x1Scc1R+2P+tYo3g91vNS/DFpHyRMdTPGYhEDHYamJ0U9f9yp82KL393Mt66/ng8euEYXH/yIPzrsmOQnqh834lfQr/dWqoFeV9tLEazN4BBvZIwtk8aRvZOxe/V+RFPf7NdK8MXQVa0X4bfXb0Pbl8Ao3qn4ph+Gdov4h+u3W+a9Rcng84a01v7HnfZrbj9F8Ow8PapmDV5AC4/vh/u+eUI/G76UCQ6rFi9twoltW70y0zEjRFOvgi5qS4cr7aAfPJzeJ/ps99sx+q9VUh12fDmdcfjsuP6I9lpwwXj++CVq4/Fyvun49ELx+AXo3Jx4pAsHDsgE1OG9MLzl09AgsMadn9tJcry1xZV40B1k7KOWB1EqV+BBwTbaQ5UN8EfkDFjQl/8/ZKjTb8vxvZJQ3qiHXXNPkN7y6GaJrz9k/Lv9LZpysaQX5j069c0evHq8j24+c01AJTyf3FicnR+Gv549kicMjwbkwZkIDvFiZJaNy598UctsN9X2YjP1wfXLFbUu/HsN8q/MxHMPb5gCx74aIN2DAl2K1buqcQry/bg2ldXaYMWQ6tLdpeFT74X9Jn6erfv/7d353FRlfsfwD8zLCMg+74voqIgaCqI+0KKmqFtptzrml63fpXldanc6ma37i2zutqqaS5pXtdbJopgKkogiAouEIoKiILsss08vz+GOTmCwqQCI5/36zWvl8w5c3gOfufMfM/zPN8HO2tvNGmWsruTgVyGIHf1/nev9a1UCa26IX/01Jto7edsaQIfOzOoBBB/Rw/198cv48fEq7UFUR3xr+eD8GpYe5gYqeN47Jdx96xLcj8H0/JQUlEDF8s20nV2Ym0B2J3J1xqVwGlqbYzo4gxXqz/OZ0Kol/Q39bEzw4aXguuM5nq+uxu+ntADm6b1qvM+CK59v124XqpV2f5yfplU+HXxqM5wtjSBpamRVOOmvt76HUnXUKMSCHKzlIb1A8CE3p7wtDXFjZJKrInRruvwdW3l/fEhHlorzQDqGzhymXqqR96fWAUkv7RSurn0ypB799JrtDEygGXt1Lo7PeFhje9fCoFFG3Xdj/FfncDN0kqsj7sMpUog1MdW63wby0xhiMDaYnqa3vrC8ioM/PAQgpbvx8APD+GVLUnSaKrHhd4k9UREpN/uHILfmCF0DTGQy/DJi91ga2aMtJxiLN+bimPpN6Xhse3qGfbr52QON2sTVNaokHGjDOZtDDGxj9cDt+Xlwb7o6WWN0soaPP3ZUbyx7RTKq5QI9bGVehQ1NDUCjv9egKO1awVrRh1oku2TWbfw6pYkpOUUQ2Eoh5u1CVytTHC7Wok3tp3CU58ewcFzeTA2lGN5hL80B7u+SvxS5XtHc+nL150jHvq1t8MHzwVCJgPWx12Wku1Zg3zve84ymQydnC3qjIbQGFDbKxNz4YZWbwmgTqaSrxRCJlPfsAGAY+n5DRaGu1/l+7uZKQzRy8cWkSGeWDSiEwbekRR297SGtakRCsurpTmvmp71p7v+cYNibE93+DmZo+h2NVYeuIii8mpM35CIgf+KwZxNSVKhwDtV1aiwvraXcGJv9ciA/u3t4WCuwK3y6jpV9yuqlVKNhdH1zBf1sDXF0qf98e7oLpgxoB1eDeuAg68PwMjaVQZWPNPlnv8Hd3q6tmf57qKEiZdvSUnGe890QbB3/fPdI0M88dWEHtj4Ui9snRGK718KaXRhycZqZ2+GYG8bVClVeO+nNJzNLkZeSSVMjQ3Q01s7EfWxb4uOtSNb/trLE/98NlCqxH43A7lMKmp3Z+X6NTEZqFKqEOxtI62OMaSTozRfP/NmGVYeuIDg9w5g8a6zSM8rhYmRAWYO1L6J8lI/H6ybHIxtM3rj51f6oYNjW+SVVGLsl8cR8dkR9PvgEGZtPImIz44iPa8UKw9cREllDfxdLPB5baX0tUcv4VxuCaxNjfDBs4F47Un1jcLle1ORnlcq3QjV3PDT+F2qMVFfUq++rlzOL8ffNiTUHkeBpwJd6uwLQJqac3exvCW7z2DAhzHYmXQNVTUq5NaOGHKvp+dU83fcFJ+FW2VVOH21CO/sTQMALBzuhy/+2gPPdXfDq2EdEDNvILp7WqO8SonXt56Shv0fSL2Okat+bTDp+m/tqIbR3VylUQo9PK3h52SOimoVtiWqp6l8d+wS5mw6ieza+gsaOUW3pSR6Wj/t4o3GhnJ8NaEHZg5sh03Tekk99HeSyWQI6+yoVetFw8bMGB1q677E1/bWa2pgVNWo0MfXFk/fMW1FM4Vlz11TEk5m3ZKmiT1/12gAhaEBFg5Xr9jy1a+/S/UlTl8tQnxmAQzlMkwM9arTtjZGBtJ7988MwX9nbypKK2vQuYFe+sYIcrfCpmm9YGNmjNPXivD8mjhsjlfXk5hST0HNxtLE4fHaqSBbE65I9VIu5ZdjV3K2tAzh44JJPRERNQlNrxFw7+H3unK0aIOPxnYFAGw6kYXxX5+QeuJC6klO7hx6DQCTe3vBok3dHgRdGRrIsfLFbrBoY4ii29UwkMswb1hHfP9SCBSG2gmXu40purhaQqkS0hBRv9ovhV1ri1XFZxbg0PkbUBjK8eOM3jgyfzB+/fsgvDG0g5RwAMA/RgdgQqgXpvRRf/lZuP00Nhy/jP+l5Ehf1jRJffs76hGM7uaKLq6WeGVIe6ybHIwXerhjfvgfy/kN83fUql/wZ3T3soajhQIFZVUY+vFhfHMkU/rSvq/2xkF3D2v0bmcLHzszVClVOHRXr/6tsir83+YkLN+TCpVKNFgkr7EMDeRST++czUn4MfGqNE1gdNc/EmsDuQxvjVTPd/3++GWMWPWr1IP7v9M5+PjAhTrHXncsE1dvqYvyPR3kKv2+Z2uX2lu656xWT+ihc3koqayBs2WbemO2Ps6WJvh8/BM4+faT6OPbuOUlw/2dYCiXIS2nGOm1NRbKKmswd2syVAIY3dXlnsleU5HJZFgyqjPkMnVxQ82c4D6+dnXeRwDw5YTu+GZiDyyP8G+w8Odfeqmn2Gz57Qp+u1SA68UV2Cz10v8xTcDGzBg9aovIjfr0CFYeuIjKGhX8nMyx+KnOOLZgMLp53Lu2iF1bBTZN64WOjua4UVKJU1eLIJepp4xczCtFxGdHsKk2aXlzZCcM9XfCuOA/krX54X6wNjPG5D7e0nVBYSjHt5N6op29uhc8LuOPKS31rVGvYW1mLPU+H03PRxsjOb6e2EOaJnM3TUX8/am5Uu9y5s0yKflZFX0RV2+pp8CYGBnUO+JqZO1Ny+hzeej/4SG8tP43VClVCOvkWGfVA0eLNvjkxa5oqzBEwuVb+OJwBrYnXsXfvk/E2exiLN51Fkt3n4VSJVBVo8L+s7n478mrqKhW4mZpJWJqayQ884SbdEyZTCb11q+Pu4yJa+OxZPdZ7E3JwZR1v2ndOFx39BJqVAIh3jYIdLOqcy6+Dm0xP9wPTpZ1E/rG0BRI1ayC8vOZXMReUBeueyciQKuHO6yTI9oYyZF5swyJl29BCIF9Z3Ix7svjuFVejS6ulnjmibo3/Yb5OyHE2waVNSpM+y4B6Xkl+OaIemnHkYHO92z73cVrG+vQ+TzsTM6GXKa+CahLwd17CXC1xI8zQuFqZYLMm2Uoul0NDxtTDL5ryo0uQn3U18W43/OhUgl8f1wdw2+N7ITvpgRj7pMdMC7Y44Hb3pL8+fGGREREOrizp972IfTUawzoYI85g3zx2aF0mCsM8XRXF7zY0wNd3Czr3X9oZyesPXoJZsYGmNznz/cE3M3VygRfTuiBjSeyMKWP132/+A/v4oTT14pQXrucj6anvr2DubSGMAB88FygdB5yuQxzBrdHd08bvPdTGgb7OUg9N28M7YiDaddxKb9cGsILqNeM1xSg6+j4RyLsbmOKPS/31WrT3/r7ILeoAntTsjH3Sd2XLbybwtAAW6aHYsH2FJzILMA7e1OxI+kq3hrZWRoNEB7gBJlMhqH+TlgTm4FfzuZKvVfZhbcx4dt4qfK6q7WJ1vD7BzV3aAecyS5GWk4x3th2CoC618jrruSob3s7DPFzwMFzebhWeBseNqYY3dUFq6LT8Wl0Onwd2iKi9kbA9eIKfHJAPa1jfrif1pDcqX29EZV6Hel5pXjxi+N47ckOuFZYLo0QiOjq+lC+IN+LtZkx+newR/S5POw+lYM5g8ww78dTuJxfDhfLNlgWEfDIfrcu/F0sMS7YAxtPZCGm9ibP3UPvNTxtzeBp27hY6OVjixd6uGFrwlUs2J6CXj62qKpRoYentVTgTWNoZ0fEZxagtLIGdm2NsWSUP54KdG709E11Yh+CNbEZ8LA1Q7i/EwQEXt6UJBXQfLKzI3rXVot/a2RnXCm4DZs75mYbGcjx0QtdsXT3WUzr74NANyv0a2+PjBtl+PXiTYQHqJNnzfD7ey3x6O9iIfXgfvxCV61ROnfr62uHzs4WSM0pxsdRF/DO6ACsOngRmgEpv98ok0ahqJc4rfv36O1rh++mBGPFT2k4l1uCkooauFqZ4N/PB9W7v5u1KZaM6ox5P6bg3/svSDf+untaI/HyLaw7dglJWbeQVVCOW7XD6VceuIgentZQqgSC3K3qFGOM6OqC935KQ1ZBObIKytHGSA5TY0Ocyy3BrI0n8dWEHtiWcAUbamtlTO+vPef8YQnxscGG45dxIrMAO5KuSsVUZwzwgc9do1zMFIYY0skR/0vJwXNr4qAwlKNKqYIQ6uken47rVmcYPaC+ibEswh9jvziO1JxijFh1RBpBVN/SkRqdnS2wKzlbp6S+tLIGb/73NABgch/v+8aSrnzs22L7zN6Y8O0JXLheipf6ed9z5E1jdPe0hpGBDDlFFfgu7hKyCsph0cYQkSGeMDE20GlJX30hEw9advIxV1xcDEtLSxQVFXHNeiKiB5BdeBu9348GAMQtHAxnS5MGXtF4Qgik5hTDx65tg3N8hRDYFJ8FH7u20hC9ppZ5swyD/hUj/Xx0wWCpR23y2ngcOn8D0/v7YNGITo0+ZlZ+Ob4+8juuF1egoKwKiZdv4c7R4ZteCkHvRvbqPkwqlcCW365gxU9pKLmrmNOR+YPgZm2K5CuFGP35UZgZG+DriT1RVlmDxbvOILuoAm0VhiitrIGxgRyGBjKUVymx9+W+CHCt/6aNLiqqlfjnvnNSpeUlozrXe6Pn0s0yTFufgM4uFlgeEQBLEyO8//M5rInNgLGhHEtH+WNsT3fM3ZqMXcnZ6OZhhe0zetdJ0ksra/DG1lNSESgNHzszbJrW60/3CDbWzqRrePWHZHjZmsLLzgwx52/AUK5errK53gv1KSirwqB/xUjDzI8tGCythvEgCsurEPZRrDQMFwA2TA3WKuAFqEeIvLw5CV52pnhjaEepFsODqlGqsOrgRcRfKsCHzwXdt7hhfQ6mXcfU7xLgYWOKw38fhHO5xQhf+SsAIOntJ+tdwWNn0jX8fXsK5of73TfJ04jLyMe4r47DQC7DZ+O6Yfamk1DVJpbR5/JgIJdBqRIY1NEeaycH3/M4KpXArlPXcCAtD3MG+Uo3LusjhMDfNiRif+0omJf6emPRiE7YdzYXr/2QjMraOhT25grIZcD14j/mgS+P8MeEeoaYf/jLOXx+KAP+Lhb45MVuuF2lxAtfxOF2tRLmCkPpWhTsZYMt03s9khtqeSUVCP7HQa3ngr1tsH5KcL1TZk5m3cKs709K0xsAIDLEA8ue9teqrF+f68UV+PuPKdIyosFeNtg6I/Se+x++cAMTvo2Hj50Zot8YqLWtuKIa2YW30fGOKVsAsGTXGXwXdxnuNib45dX+9d5keFBllTU4dbUQoT62D1wD7YU1cYi/VIA2RnJUVKswta833n6q80NqadPQJQ9lUt8AJvVERA+H5otbeZUS66cEP9JeSX0w/JNfkZZTDIs2hji1ZKj0BeZ6cQVSrhZhiJ/DA/2NTl8twsIdKThzrRgyGfDbm2Gwe0jTHv6Mm6WVWHngAjbHX4FSJRDoZondc9SjBVQqgd7vR2t9mQXUvY/rpwRj2Z5UrcJlZ5YNe6Dihnc7mn4Tp64WYlo/Hxg18OVZQ6USmLkxEb/UVtD3sTfD7zfKIJMBu2f3vedIESEE1sT+jrVHMxHazhbPd3dH73a2TfJ+KKusQfd3o1BRrU6S2hjJsfov3e/ZE96cvjt2CUt2n4W/iwX+93/9Htpx95zKxsubkwAAT3hYYfvM3npTQLmssgZdl+9HtVIgdt5ALNuTiuhzeRgZ6CzNza9PtVLV6LgGgOnrE7A/9TrkMkAl1CMX3hkdgL7/jEa1Up02TAj1xPKHOLqjoKwKy/ecRXdPa2mVCkC9DN/O5GsY0MEefX3tUFGjwsdRF7DumHq0Vcy8QfXWaFGpBE5fK0InZwsYG6rPPSr1OqZvSIAQ6tFir4a1x4vBHjr9bXQ1+N8x+P1GGQzkMrwypD1mDWzXYIJeUa2URljpcuNHCPUN1N3J2XhzZKf73vi8UVKJnv84AJkMOLN0GGQy4Ltjl3HoXB4Ss25BqRKYPagd5g1TT8v6+XQOZm5UF4r8fmoI+rZv+hvEuvoo6oJUEBcADr0x8L5LobZETOofIib1RET0KHx68CL+HXUBvXxssGX6vXtUHkSNUoXtJ6/CyECuNe+0OaXnlWD7yWt4OshFq/duW8IVrIlVV3A2lMvh69gW70QEwMbMGAVlVRj+yWFcL66Eg7kC8W+GNVfztVQrVdgQdxkrD1xAcYW65y8yxAP/qC3+1xLN3nQS/0vJgaWJEb6d1FNaRq6lUakE9p7OQYCLRZ2hyg9CCIHZm07il7PXsWFqsDQEXl+M/SIOJzILMCrIBXtOZcNQLkPU3AEPNVm5dLMMT34cKyXwP7/ST70axLZTUqHBN0d0wrRHNGy9MTSrIzR2mTON6HPX8fuNMozt6Q7zh1BPpSG7T2VjW8IVvBrWocW914L/cQB5JZXYPK0XPo2+iGMZdZffe3d0AHp4WeOZ/xxDeZVSr3q7j/+ejxe/PA5AXRB2w9SQZm6R7pjUP0RM6omI6FEoqajGv/dfQERXl/vOvye1Yxk3MXVdAkYGOuNfzwc1d3O03CqrwqfR6cgpuo0Vz3R5aMO1H4XL+WVYe/QS/tLLA74OD1YMUV8pVQJFt6sfyiocTe2z6Iv41/4/CjT+pZcH3h398G8irfgpDV8c/l1rFMCF6yUY+vFhAMDqyCcwvLYoHumnid/GI/bCDdibK3CjpBJmxgaYP9wPgzo6YPvJq1h54CLkMnVh2xsllejra4d1k3s2ONKgpaisUSJo2X5UVKvw1YQeWkVy9QWT+oeIST0REVHLUFpZAzNjA70ZLk30sJ26UoiIz48CUFegj/37wHqXW3tQNUoVDp7LQ19fO5jdMdVl0Y7TiD1/A7vn9Hloq5hQ8/jnvnNYXbu+vbGBHGsn95RW0xBCYMH20/ghQb1ChLuNCXbP7ltv3YaWbG9KNi7nl2PmgHZ6OeVPlzyU1e+JiIhILzzMefRE+ijA1RJWpkYoLK/GtH7ejyShB9TLMA7zd6rz/HsteGoJ6ca/dlk7mQz4eGxXreUxZTIZ3h0TgMoaJRKzbuGrCT30LqEH0OzLdDYlfjoSEREREekBA7kMS0f5Iy4jH38b0K65m0N6LKyTI8YFe6Cvrx1GBtadSmFkIMfKF7tBCMHRUXqAw+8bwOH3RERERERE1JR0yUP1o9IBEREREREREdXBpJ6IiIiIiIhITzGpJyIiIiIiItJTTOqJiIiIiIiI9BSTeiIiIiIiIiI9xaSeiIiIiIiISE8xqSciIiIiIiLSU0zqiYiIiIiIiPQUk3oiIiIiIiIiPcWknoiIiIiIiEhPMaknIiIiIiIi0lOGzd2Alk4IAQAoLi5u5pYQERERERFRa6DJPzX56P0wqW9ASUkJAMDd3b2ZW0JEREREREStSUlJCSwtLe+7j0w0JvVvxVQqFbKzs2Fubg6ZTNbczdFSXFwMd3d3XLlyBRYWFs3dHNIDjBnSFWOGdMWYIV0xZkhXjBnSlT7GjBACJSUlcHFxgVx+/1nz7KlvgFwuh5ubW3M3474sLCz0JjipZWDMkK4YM6QrxgzpijFDumLMkK70LWYa6qHXYKE8IiIiIiIiIj3FpJ6IiIiIiIhITzGp12MKhQJLliyBQqFo7qaQnmDMkK4YM6QrxgzpijFDumLMkK4e95hhoTwiIiIiIiIiPcWeeiIiIiIiIiI9xaSeiIiIiIiISE8xqSciIiIiIiLSU0zqiYiIiIiIiPQUk3o99vnnn8PLywtt2rRBSEgI4uPjm7tJ1EIsXboUMplM6+Hn5ydtr6iowOzZs2Fra4u2bdvi2WefxfXr15uxxdTUDh8+jFGjRsHFxQUymQw7d+7U2i6EwOLFi+Hs7AwTExOEhYXh4sWLWvsUFBQgMjISFhYWsLKywtSpU1FaWtqEZ0FNqaGYmTRpUp3rTnh4uNY+jJnWY8WKFejZsyfMzc3h4OCA0aNH4/z581r7NOazKCsrCyNHjoSpqSkcHBwwb9481NTUNOWpUBNpTMwMHDiwznVmxowZWvswZlqP1atXIzAwEBYWFrCwsEBoaCh+/vlnaXtrusYwqddTP/zwA+bOnYslS5bg5MmTCAoKwrBhw5CXl9fcTaMWwt/fHzk5OdLjyJEj0rbXXnsNe/bswbZt2xAbG4vs7Gw888wzzdhaamplZWUICgrC559/Xu/2Dz74AKtWrcKaNWtw4sQJmJmZYdiwYaioqJD2iYyMxNmzZxEVFYW9e/fi8OHDmD59elOdAjWxhmIGAMLDw7WuO5s3b9bazphpPWJjYzF79mwcP34cUVFRqK6uxtChQ1FWVibt09BnkVKpxMiRI1FVVYVjx47hu+++w7p167B48eLmOCV6xBoTMwAwbdo0revMBx98IG1jzLQubm5ueP/995GYmIiEhAQMHjwYEREROHv2LIBWdo0RpJeCg4PF7NmzpZ+VSqVwcXERK1asaMZWUUuxZMkSERQUVO+2wsJCYWRkJLZt2yY9l5aWJgCIuLi4JmohtSQAxI4dO6SfVSqVcHJyEh9++KH0XGFhoVAoFGLz5s1CCCFSU1MFAPHbb79J+/z8889CJpOJa9euNVnbqXncHTNCCDFx4kQRERFxz9cwZlq3vLw8AUDExsYKIRr3WfTTTz8JuVwucnNzpX1Wr14tLCwsRGVlZdOeADW5u2NGCCEGDBggXnnllXu+hjFD1tbW4uuvv2511xj21OuhqqoqJCYmIiwsTHpOLpcjLCwMcXFxzdgyakkuXrwIFxcX+Pj4IDIyEllZWQCAxMREVFdXa8WPn58fPDw8GD8EAMjMzERubq5WjFhaWiIkJESKkbi4OFhZWaFHjx7SPmFhYZDL5Thx4kSTt5lahpiYGDg4OKBjx46YOXMm8vPzpW2MmdatqKgIAGBjYwOgcZ9FcXFx6NKlCxwdHaV9hg0bhuLiYqknjh5fd8eMxsaNG2FnZ4eAgAAsXLgQ5eXl0jbGTOulVCqxZcsWlJWVITQ0tNVdYwybuwGku5s3b0KpVGoFIAA4Ojri3LlzzdQqaklCQkKwbt06dOzYETk5OVi2bBn69euHM2fOIDc3F8bGxrCystJ6jaOjI3Jzc5unwdSiaOKgvmuMZltubi4cHBy0thsaGsLGxoZx1EqFh4fjmWeegbe3NzIyMrBo0SIMHz4ccXFxMDAwYMy0YiqVCq+++ir69OmDgIAAAGjUZ1Fubm691yHNNnp81RczADB+/Hh4enrCxcUFKSkpmD9/Ps6fP4///ve/ABgzrdHp06cRGhqKiooKtG3bFjt27EDnzp2RnJzcqq4xTOqJHkPDhw+X/h0YGIiQkBB4enpi69atMDExacaWEdHj6sUXX5T+3aVLFwQGBqJdu3aIiYnBkCFDmrFl1Nxmz56NM2fOaNV2Ibqfe8XMnTU4unTpAmdnZwwZMgQZGRlo165dUzeTWoCOHTsiOTkZRUVF+PHHHzFx4kTExsY2d7OaHIff6yE7OzsYGBjUqd54/fp1ODk5NVOrqCWzsrJChw4dkJ6eDicnJ1RVVaGwsFBrH8YPaWji4H7XGCcnpzqFOWtqalBQUMA4IgCAj48P7OzskJ6eDoAx01rNmTMHe/fuxaFDh+Dm5iY935jPIicnp3qvQ5pt9Hi6V8zUJyQkBAC0rjOMmdbF2NgYvr6+6N69O1asWIGgoCB88sknre4aw6ReDxkbG6N79+44ePCg9JxKpcLBgwcRGhrajC2jlqq0tBQZGRlwdnZG9+7dYWRkpBU/58+fR1ZWFuOHAADe3t5wcnLSipHi4mKcOHFCipHQ0FAUFhYiMTFR2ic6OhoqlUr6kkWt29WrV5Gfnw9nZ2cAjJnWRgiBOXPmYMeOHYiOjoa3t7fW9sZ8FoWGhuL06dNaN4OioqJgYWGBzp07N82JUJNpKGbqk5ycDABa1xnGTOumUqlQWVnZ+q4xzV2pj/6cLVu2CIVCIdatWydSU1PF9OnThZWVlVb1Rmq9Xn/9dRETEyMyMzPF0aNHRVhYmLCzsxN5eXlCCCFmzJghPDw8RHR0tEhISBChoaEiNDS0mVtNTamkpEQkJSWJpKQkAUB89NFHIikpSVy+fFkIIcT7778vrKysxK5du0RKSoqIiIgQ3t7e4vbt29IxwsPDRbdu3cSJEyfEkSNHRPv27cW4ceOa65ToEbtfzJSUlIg33nhDxMXFiczMTHHgwAHxxBNPiPbt24uKigrpGIyZ1mPmzJnC0tJSxMTEiJycHOlRXl4u7dPQZ1FNTY0ICAgQQ4cOFcnJyWLfvn3C3t5eLFy4sDlOiR6xhmImPT1dLF++XCQkJIjMzEyxa9cu4ePjI/r37y8dgzHTuixYsEDExsaKzMxMkZKSIhYsWCBkMpnYv3+/EKJ1XWOY1OuxTz/9VHh4eAhjY2MRHBwsjh8/3txNohZi7NixwtnZWRgbGwtXV1cxduxYkZ6eLm2/ffu2mDVrlrC2thampqZizJgxIicnpxlbTE3t0KFDAkCdx8SJE4UQ6mXt3n77beHo6CgUCoUYMmSIOH/+vNYx8vPzxbhx40Tbtm2FhYWFmDx5sigpKWmGs6GmcL+YKS8vF0OHDhX29vbCyMhIeHp6imnTptW50cyYaT3qixUAYu3atdI+jfksunTpkhg+fLgwMTERdnZ24vXXXxfV1dVNfDbUFBqKmaysLNG/f39hY2MjFAqF8PX1FfPmzRNFRUVax2HMtB5TpkwRnp6ewtjYWNjb24shQ4ZICb0QresaIxNCiKYbF0BEREREREREDwvn1BMRERERERHpKSb1RERERERERHqKST0RERERERGRnmJST0RERERERKSnmNQTERERERER6Skm9URERERERER6ikk9ERERERERkZ5iUk9ERERERESkp5jUExERkc4uXboEmUyG5OTk5m4KERFRq8aknoiI6DEzadIkyGSyOo/w8PDmblqTi4mJgUwmQ2FhYXM3hYiI6JEwbO4GEBER0cMXHh6OtWvXaj2nUCiaqTVERET0qLCnnoiI6DGkUCjg5OSk9bC2tgYAjB8/HmPHjtXav7q6GnZ2dli/fj0AYN++fejbty+srKxga2uLp556ChkZGTq1obKyEvPnz4e7uzsUCgV8fX3xzTffSNtjY2MRHBwMhUIBZ2dnLFiwADU1NdJ2Ly8vrFy5UuuYXbt2xdKlS6WfZTIZvv76a4wZMwampqZo3749du/eDUA9RWDQoEEAAGtra8hkMkyaNEmncyAiImrpmNQTERG1MpGRkdizZw9KS0ul53755ReUl5djzJgxAICysjLMnTsXCQkJOHjwIORyOcaMGQOVStXo3zNhwgRs3rwZq1atQlpaGr744gu0bdsWAHDt2jWMGDECPXv2xKlTp7B69Wp88803ePfdd3U+n2XLluGFF15ASkoKRowYgcjISBQUFMDd3R3bt28HAJw/fx45OTn45JNPdD4+ERFRS8bh90RERI+hvXv3Sgm0xqJFi7Bo0SIMGzYMZmZm2LFjB/76178CADZt2oSnn34a5ubmAIBnn31W67Xffvst7O3tkZqaioCAgAZ//4ULF7B161ZERUUhLCwMAODj4yNt/89//gN3d3d89tlnkMlk8PPzQ3Z2NubPn4/FixdDLm98v8OkSZMwbtw4AMB7772HVatWIT4+HuHh4bCxsQEAODg4wMrKqtHHJCIi0hfsqSciInoMDRo0CMnJyVqPGTNmAAAMDQ3xwgsvYOPGjQDUvfK7du1CZGSk9PqLFy9i3Lhx8PHxgYWFBby8vAAAWVlZjfr9ycnJMDAwwIABA+rdnpaWhtDQUMhkMum5Pn36oLS0FFevXtXpXAMDA6V/m5mZwcLCAnl5eTodg4iISF+xp56IiOgxZGZmBl9f33tuj4yMxIABA5CXl4eoqCiYmJhoVccfNWoUPD098dVXX8HFxQUqlQoBAQGoqqpq1O83MTF54HOQy+UQQmg9V11dXWc/IyMjrZ9lMplO0wSIiIj0GXvqiYiIWqHevXvD3d0dP/zwAzZu3Ijnn39eSo7z8/Nx/vx5vPXWWxgyZAg6deqEW7du6XT8Ll26QKVSITY2tt7tnTp1QlxcnFbSfvToUZibm8PNzQ0AYG9vj5ycHGl7cXExMjMzdWqHsbExAECpVOr0OiIiIn3BpJ6IiOgxVFlZidzcXK3HzZs3tfYZP3481qxZg6ioKK2h99bW1rC1tcWXX36J9PR0REdHY+7cuTr9fi8vL0ycOBFTpkzBzp07kZmZiZiYGGzduhUAMGvWLFy5cgUvv/wyzp07h127dmHJkiWYO3euNJ9+8ODB2LBhA3799VecPn0aEydOhIGBgU7t8PT0hEwmw969e3Hjxg2t4oBERESPAyb1REREj6F9+/bB2dlZ69G3b1+tfSIjI5GamgpXV1f06dNHel4ul2PLli1ITExEQEAAXnvtNXz44Yc6t2H16tV47rnnMGvWLPj5+WHatGkoKysDALi6uuKnn35CfHw8goKCMGPGDEydOhVvvfWW9PqFCxdiwIABeOqppzBy5EiMHj0a7dq106kNrq6uWLZsGRYsWABHR0fMmTNH5/MgIiJqyWTi7slqRERERERERKQX2FNPREREREREpKeY1BMRERERERHpKSb1RERERERERHqKST0RERERERGRnmJST0RERERERKSnmNQTERERERER6Skm9URERERERER6ikk9ERERERERkZ5iUk9ERERERESkp5jUExEREREREekpJvVEREREREREeur/AapLNOJ2+BfUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -358,7 +357,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "In this tutorial, you compared three calculations for the H2 molecule ground state. First, you produced a reference value using a classical minimum eigensolver. Then, you proceeded to run `VQE` using the Qiskit Aer `Estimator` with 1024 shots. Finally, you extracted a noise model from a backend and used it to define a new `Estimator` for noisy simulations. The results are:" + "In this tutorial, you compared three calculations for the H2 molecule ground state. First, you produced a reference value using a classical minimum eigensolver. Then, you proceeded to run `VQE` using the Qiskit Aer `Estimator` with a target precision of $10^{-2}$. Finally, you extracted a noise model from a backend and used it to define a new `Estimator` for noisy simulations. The results are:" ] }, { @@ -371,8 +370,8 @@ "output_type": "stream", "text": [ "Reference value: -1.85728\n", - "VQE on Aer qasm simulator (no noise): -1.85160\n", - "VQE on Aer qasm simulator (with noise): -1.84320\n" + "VQE on Aer qasm simulator (no noise): -1.86154\n", + "VQE on Aer qasm simulator (with noise): -1.83629\n" ] } ], @@ -386,7 +385,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can notice that, while the noiseless simulation's result is closer to the exact reference value, there is still some difference. This is due to the sampling noise, introduced by limiting the number of shots to 1024. A larger number of shots would decrease this sampling error and close the gap between these two values.\n", + "You can notice that, while the noiseless simulation's result is closer to the exact reference value, there is still some difference. This is due to the sampling noise, introduced by limiting the target precision to $10^{-2}$, which in turn puts a limit on the number of shots the Estimator uses. A larger number of shots would decrease this sampling error and close the gap between these two values.\n", "\n", "As for the noise introduced by real devices (or simulated noise models), it could be tackled through a wide variety of error mitigation techniques. The [Qiskit Runtime Primitives](https://quantum.cloud.ibm.com/docs/api/qiskit-ibm-runtime) have enabled error mitigation through the `resilience_level` option. This option is currently available for remote simulators and real backends accessed via the Runtime Primitives, you can consult [this documentation](https://quantum.cloud.ibm.com/docs/guides/configure-error-mitigation) for further information." ] @@ -403,7 +402,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_ibm_runtime0.19.1
qiskit_aer0.13.3
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:18:09 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_aer0.17.0
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 11:12:50 2025 CEST
" ], "text/plain": [ "" @@ -415,7 +414,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -450,7 +449,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/04_vqd.ipynb b/docs/tutorials/04_vqd.ipynb index 4ba3b728..fcb1b890 100644 --- a/docs/tutorials/04_vqd.ipynb +++ b/docs/tutorials/04_vqd.ipynb @@ -57,7 +57,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "You can set up, for example, a `TwoLocal` ansatz with two qubits, and choose `SLSQP` as the optimization method." + "You can set up, for example, a `n_local` ansatz with two qubits, and choose `SLSQP` as the optimization method." ] }, { @@ -71,7 +71,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAgMklEQVR4nO3deXxU9b3/8ddM9p1skLCEEJJACEsQREGlYHFBEJCWilVcHq4VxIUSftIqolUQrCjuVsWLItILVBCoSgUkCopcFiFBlixAEgKEBLPv8/sj12BugmTCLDmT9/Px8PEgZ75z+pk077wzZ2bOMVksFgsiIiIGZXb2ACIiIhdDRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0NydPYA0ZbFYqCmvdPYYVnH38cJkMtlsfxYLVNTabHcO4e0GNvwWtHtGy4Ey4LwMqMjaoJrySpb1vM3ZY1jl1vQP8fD1ttn+Kmrhqg02251DpNwAPkqUzRgtB8qA8zKgQ4siImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUNTkYmIiKHpUy8uJGJoItevnttoW3VpOUUZJ0hfuZUD727AUlvnpOnsr3jfFg79dWSjbWZvP7w6xxM6Ygodxz6EyU0/8q5MGWifGXC9RyRkrE4he9MuMJnwCe9A7KTfMGTunQTFdWH7zLecPZ7dBQ+/haBBN4DFQnVhHme2LCX7vceoyD5A96lvO3s8cQBloH1lQEXmgs7syyRjVUrD1wff/5ybUl4m/o+/Zdf85VSeKXLidPbnG3MJoSPOnREi/IYHSX2wN/kb36Hzbc/iERTuxOnEEZSB9pUBvUbWDtSUV3J612FMZjOB3Ts5exyHc/P2w6/X5WCxUJmX7uxxxAmUAdfOgIqsnQiIrg9v5dkSJ0/iHD+H190/xMmTiLMoA66bAR1adEHuPp54hQQ0vD7Q6/ZrCe0Xw+ldhynKOOHs8eyurrKMmqL8+rOnF+Zx+rM3Kc/YjW/cELy7xDt7PHEAZaB9ZcDliyw/P58FCxawevVqsrOzCQ8PZ+LEiTz33HNMnz6d9957j1deeYVp06Y5e1SbGZg8mYHJkxtty1r/Ld89/o6TJnKsE8vncGL5nEbbOgydSNT9rzlporYhqxiyy6DWAmFekNABzC562RlloH1lwKWLbM+ePYwePZq8vDz8/Pzo06cPubm5LF68mPT0dAoKCgBISkpy7qA2dvCDL8j6dDtmD3eCe0fRd+oE/CJDqa2saljzmzceBbOJr+5/sWGbZwd/JmxZxM6nl5KxOqW5XRtC2HX3ETxsEpbaasqP7iNv9fNU5Wdj8jh3iY3i1BSOPD26yX0tNVVY6moZ9C+DXQjqPGotsDEH/jsL9hY0vi3KD34XDRO6g5+L/SZQBtpXBlzsx/ec/Px8brzxRvLy8pgxYwZz5swhICAAgAULFjBr1izc3d0xmUz079/fydPaVlFGHidS9gGQs2k3J3f8yA1rnmHo8/fz1Z8WAbD98X8wftPf6THhCjI/+QaAy5+7h1M7fjR0gAG8IuMITBoFQNCg0fgnXMnBx6/k2BsPEDPzYwACEq9i4IrGr5VUncnlxxmDCR/jGs/OK2vhr/8Dm/Oav/1YKSxKhXXH4eXLoKOPY+ezJ2WgfWXAZd/sMX36dLKzs5k2bRovvPBCQ4kBJCcnM2DAAGpqaoiOjiYwMNCJk9rf6Z0HSV+5lR4TriB8cC8Aqs6WsG3GG1z27D34dAqm+5jLiRiWyPZZrvcZG/+EYYSMmELh1ysoObCt2TV11ZVkzJ+If58riZw028ET2l6dBZ7cdf4S+6XDRTDtWyiutv9czqIMuHYGXLLIDhw4wIoVKwgLC2PevHnNrhk0aBAAAwYMaLQ9MzOTcePGERAQQHBwMLfffjtnzpyx+8z2tnfRSupqahk48+aGbTmb95D16TaGvzqdy+ffy7YZb1BZ6Jrv6Iq8+Qkwu5H70ZPN3n7s9Qeoq64g+uH3HTuYnWw/BV9a8Z6GjGJYnmG/edoCZcB1M+CSRbZ8+XLq6uq49dZb8ff3b3aNj0/9cZRfFllxcTEjR44kOzub5cuX8/bbb5OSksLYsWOpqzP2aW2Ks/LIXPMNnYf3p+NlCQ3bd85dSkCPCHI27Sb7y11OnNC+vCNjCblqMsU/fElxauPDRqc+XcxPO9fR8/FPMHv5OmlC21qZZf19/nUUaoz9Y/6rlAHXzYBLFtmmTZsAGDly5HnXZGdnA42L7O233yYnJ4dPPvmEsWPHMmnSJD766CO+/fZb1q5da9+hHeCHl1dRV9v4L9Ka8kpKjp6i8MAxJ07mGBGT/gJmc6O/SIt/2Ez20lnEJP83Xp2inTecDRVUwtcnrb/f6QrYkW/7edoSZcA1M2CyWCwWZw9ha926dSM7O5vdu3c3+47EmpoaIiMjyc/PJz09nZiYGOBc8W3evLnR+p49ezJixAjefffdVs0zePBg8vJa8GLF//KwmJlTN6RV/1utcf2quRzf+D+kvtn6sp5r3kG1yXZ/zps8fej00mGb7a85lSez+PHPlxI5eQ4dbfDi9slH4rBUldtgsovj3rUPYbO/aNV9f1qWTPk3H9l4otZxZA6UAednICIigp07d7bqvi75rsXS0lIAysub/4auWLGC/Px8AgIC6NGjR8P2tLQ0Jk2a1GR9YmIiaWlprZ4nLy+PnJycFq/3NLmBwc6ik3silyqL7d6ua/byteu3oK6yjPR5EwgaMs4mAQbIzc2lrrLMJvu6GD4eoYS18r6FhQWcseJn1Z6MlgNlwHkZcMkii4iIoLCwkF27djF06NBGt504cYKZM2cC0L9/f0ymc58ILSwspEOHDk32FxISwsGDBy9qHmt4WMxgsNcqOkd2tvlfo/ZUuG0V5Zl7qcg5ROHXK5rcnvhqGp7hUVbts3Pnzm3iGZnJy4KlrhaT2c3q+wZayvHu0sUOU1nPaDlQBi4uA9b+nvwllyyyUaNGceDAAZ5//nmuueYa4uPrT8ny/fffM2XKFPLz618IcNQHoa19ulxdVsGynrddeKGNfPa7ORdedAGHDh/Cw9f7wgtbqLwGrtpgs901ETpyCqEjp9h0n4cOHcanjSTqsR2wteVHswHo6A3ffr4M9zbyyrkjc6AM2IazMtBGfmRtKzk5mdDQUI4fP05iYiL9+vUjLi6OIUOGEBMTw9VXXw00fet9cHAwZ8+ebbK/goICQkJc70Sb4romRVt/n4ndaTMlJmINl/yx7dq1KykpKYwZMwZvb2+ysrIICQnhrbfeYv369Rw6dAhoWmQJCQnNvhaWlpZGQkJCk+0ibdVl4XCtFUcI4wJhcoz95hGxpzZyIMT2EhISWLduXZPtJSUlZGVlYTab6du3b6Pbxo4dy+zZs8nOzqZr164AfPfdd6Snp7Nw4UKHzC1iC2YTPJUEFgtszP31tb2C6k9R5e/hkNFEbM4ln5H9mtTUVCwWC3Fxcfj6Nv7g33333UdkZCTjx49n3bp1rFy5kltuuYUhQ4Ywfvx4J00s0jqebvDsIJg/GAaFNr09JgCS+8E7V0CY7V7aEXE4l31Gdj779tWfSPT/HlYECAwMZNOmTTz88MNMnjwZd3d3xo4dy6JFizCb213niwswm2BU5/r/jpXA7zaBBTABK0aAyUUv4yLti4rs/+jZs2ezhyRFjC7Kv77Afi4ylZi4ChWZCwnu051hLzyAh78Ppdmn2frQKwTHd2PUstkUpefyxeRnqDhThJuPJ1f8/UHCknpiqbOwa95HHF3/LQCDn5hC9PhhFOzLZNNdC5z8iKxTlrmXo6/dS115MZ7h3Yl+9AMqjqVy+OnReHfpRdxTX+DRoSM5H8ymcPtqzB5emNw86HzbswRdch0AJ9cs4vSG1zD7+NPnpT3OfUBitZZm4GdBcV248fMFHPpwIzuefB+APveNpfed11FTWsHaa2Y66ZG0TkszAHBqw+ucXv8KuLljMpnpvfA7zJ7eZC+ZScHXK/DteQmxsz9x7gNqoXZXZD+fh9EVXfnSNL559DUKUrOInXw1lz55O0c+3kxRem6jQPZ9YBx1VdWsHvYQ/t06MmbDPPK27aeysISdz3zA2YPHiRrtuFNk2UrWy3cSPX0JvjFJ5P/nPbKX/Jmw396Fd5dejUrJv89VRP7hCcxePpRl7uXg7OH0X5KLm7cfncY/im/MQI6/+4jTHoe0XkszAGByd2PYwgc4+u8djbanvb2Ogn2ZDHn6TgdObhstzcDZ79ZQ8NUyei/4Fje/IKp/Oo3Jrf7dPl3vWoh3VCJnv/vEOQ+iFfTCj4sI6duDmrIKClKzAEj/5xa6XTsYs2fTv1Wix1/BwaX15+IrOX6KvG2pRI2+zJHj2lxZxm7cfPzxjUkCIHTkHfy0Yy2Wmqoma4MGjcbsVX/WBJ/u/cBioean044cV+zAmgwAJD02iaxPt1OcYcX1btowazKQ96+FdJ48Bze/IAA8gsIxuVl/Jpi2ot09I3NV/lEdCe4dxbiN5z4m4O7jhW9E0w9y+3cJoyT73C/ukuOn8OvS2rPztQ2VJzMpP7qPtEeSGrbVVZZRdebXzxt45ssleEXE4Nmxu50nFHuzJgNhA+MIHxTPFzc/TdKMPzhyTLuxJgMVx9MoPbKT3I/nYqmuJHTk7XS8cboDp7UtFZkLOb37MBtv+VvD15P3t+5s/UblF3cZcXM/b/h675TwX11ftPdLcj+eS/zcjY3OuSnG1ZIMuPl4cvn8e9hyz98dOZpDtDQDltoaqk5m0uu5rdSWFnJw9m/wjIihw6VjHTWqTanIXETJ0ZONnlV5+Pvg7utNWV5B07U5+fh3Daf81FkA/Lt1JPervY4a1S68OsVQlX/uelK1ZUXUVpTiGdr86S2K939F1uK7iP3rp3h37eWoMcWOWpqBgO4R+HcJ4/pVTwHgGegHZhOeQf58/fCrjhzZpqzJgGd4FMHDb8Hk5oZ7YBhBg26g9OC3hi0yvUbmIgpSs6irriVyeH8Aet95HZlrvqGuqqbJ2qOfbqfX7dcC9SUWMSyRY5/taLLOSHxjkjC5eVC0ZyMApze8TsiVN2Ny92yytjh1K5mLphD7lzX49nC9d6+2Vy3NwNkfj/Fx37tZOeRBVg55kLR/rOfIx5sMXWJgXQZChv+Rol2fAVBXWU7x/i2GzoKKzIVsnfoyg2bfysRtrxAxLJGdz3zQ7Lr9r6/BzduTidtf5Zrlf+W72e9QWVDs4Gltr8djy8hZ+jj774+leP8Wut7V/GnFjr5yN5bqSrIW30XaI0mkPZJEedY+B08r9tDSDLiqlmag0/jHqD57ktSpfTgwYzBBl4wm+Iqm12I0Ch1adCFnfzzGuutnXXBdTXklXz2wyAETOZZPdD8SXrzwJXP6vmnfq+6K87Q0A7+05+//tNM0jtfSDJg9venxyH85YCLH0DMyF1dbXYNXcADjNi7EOzTwgusHPzGFfg/dROXZEgdMZ38md09qis6Q9kgS1WdPXXD9yTWLOPbmg7gHGPtdnHKOtRnoc99YLp9/DxUucJQCrM9A9pKZ5K2ch7tfsAOmsw2TxWKxOHsIaczRF9a0hVvTPzTURQXtIeUG2syFNc9nyNr6iy6bgR3jnD3NrzNaDpQB52VAz8hERMTQVGQiImJoOrTYBlksFmrKK509hlXcfbxs+qFiiwUqam22O4fwdmv7Z5Q30qFFo+VAGXBeBtr4Ef32yWQy2fRYuxGZTG3/9Saxr/aeA2Wg5XRoUUREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxN1x9tg4x2iXfQZd7BeZd5d1VGy4Ey4LwMqMjaoJrySpb1vM3ZY1jl1vQPbXpZ+opauGqDzXbnECk36NL0tmS0HCgDzsuADi2KiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUPTxzddSMTQRK5fPbfRturScooyTpC+cisH3t2ApbbOSdPZX/G+LRz668hG28zefnh1jid0xBQ6jn0Ik5t+5F2ZMtA+M+B6j0jIWJ1C9qZdYDLhE96B2Em/YcjcOwmK68L2mW85ezy7Cx5+C0GDbgCLherCPM5sWUr2e49RkX2A7lPfdvZ44gDKQPvKgIrMBZ3Zl0nGqpSGrw++/zk3pbxM/B9/y675y6k8U+TE6ezPN+YSQkecO7VR+A0Pkvpgb/I3vkPn257FIyjcidOJIygD7SsDeo2sHagpr+T0rsOYzGYCu3dy9jgO5+bth1+vy8FioTIv3dnjiBMoA66dARVZOxEQXR/eyrMlTp7EOX4Or7t/iJMnEWdRBlw3A+2iyPLz80lOTiY2NhZvb2+6devGww8/TGlpKXfffTcmk4lXX33V2WPajLuPJ14hAXiFBtKhdxSXPXcPof1iOL3rMEUZJ5w9nt3VVZZRU5RP9U+nKc/ax7E3p1KesRvfuCF4d4l39njiAMpA+8qAy79GtmfPHkaPHk1eXh5+fn706dOH3NxcFi9eTHp6OgUFBQAkJSU5d1AbGpg8mYHJkxtty1r/Ld89/o6TJnKsE8vncGL5nEbbOgydSNT9rzlpIueqqIHPcmDNMfj5/Xp1wJLDMD4KQrycOZ19KAPtKwMuXWT5+fnceOON5OXlMWPGDObMmUNAQAAACxYsYNasWbi7u2Mymejfv7+Tp7Wdgx98Qdan2zF7uBPcO4q+UyfgFxlKbWVVw5rfvPEomE18df+LDds8O/gzYcsidj69lIzVKc3t2hDCrruP4GGTsNRWU350H3mrn6cqPxuTx7lrRRWnpnDk6dFN7mupqcJSV8ugfxnsiobnsfkEPL0Hiqub3vbaAXjrR7gnHu6Od62LgioD7SsDLn1ocfr06WRnZzNt2jReeOGFhhIDSE5OZsCAAdTU1BAdHU1gYKATJ7Wtoow8TqTsI2fTbva/voYv75hPWFJPhj5/f8Oa7Y//g46X9qLHhCsatl3+3D2c2vGjoQMM4BUZR2DSKIIGjSZiYjKxf/mUsiPfc+yNBxrWBCRexcAVJY3+S3z9EO4BYXT+4zNOnN52Ps+B5O+bL7Gf1VjgzYOwOM1xczmCMtC+MuCyRXbgwAFWrFhBWFgY8+bNa3bNoEGDABgwYEDDtp+Lb8iQIXh52fbS5c5yeudB0ldupceEKwgf3AuAqrMlbJvxBpc9ew8+nYLpPuZyIoYlsn2W633Gxj9hGCEjplD49QpKDmxrdk1ddSUZ8yfi3+dKIifNdvCEtpddCk/tBksL13+QXv/szVUpA66dAZctsuXLl1NXV8ett96Kv79/s2t8fHyAxkV25MgRVq1aRUREBJdeeqlDZnWEvYtWUldTy8CZNzdsy9m8h6xPtzH81elcPv9ets14g8pC13xHV+TNT4DZjdyPnmz29mOvP0BddQXRD7/v2MHsZFUWVFt5AovlGXYZpc1QBlw3Ay5bZJs2bQJg5MiR512TnZ0NNC6y4cOHc+LECdauXcuoUaPsO6QDFWflkbnmGzoP70/HyxIatu+cu5SAHhHkbNpN9pe7nDihfXlHxhJy1WSKf/iS4tTGh41OfbqYn3auo+fjn2D28nXShLZTWQtrj1l/v11nIN2FPyesDLhuBlz2zR5Hjx4FoHv37s3eXlNTwzfffAM0LjKz2fbdPnjwYPLy8lq83sNiZg5DbD7HDy+voseEKxg482Y+//1TQP0HRUuOnqLwQCt+8/1CfFw81SbbncPO5OlDp5cO22x/ABGT/kJBynJyP3qSXs9uBqD4h81kL51F3JP/xqtT9EXtPz4+DktVuQ0mvThuEbGEP7mlVfe97q6HqfhulW0HaiV75EAZaLsZiIiIYOfOna26r8sWWWlpKQDl5c1/U1esWEF+fj4BAQH06NHDrrPk5eWRk5PT4vWeJjdoxckH8ran8n7k7897+0+Hc1ja9ebz3n4xck/kUmWx3buczF6+Vn8LAvqNYNCa878q5NMtodE7sSpPZpGx8A90vXMhAf1GtG7QX8jNzaWusuyi93OxfL070doTEP1UVkW+FT+r9tSaHCgD7TMDLltkERERFBYWsmvXLoYOHdrothMnTjBz5kwA+vfvb/c3dERERFi13sNiPveBH4PoHNnZ5n+N2lNdZRnp8yYQNGQcHcdMs8k+O3fu3DaekQXUf+8sFovVP9tBXma8unSxx1hWM1oOlIGLy4C1vyd/yWWLbNSoURw4cIDnn3+ea665hvj4+k+zf//990yZMoX8/HzAMR+EtvbpcnVZBct63nbhhW3IocOH8PD1vvDCFiqvgas22Gx3TRRuW0V55l4qcg5R+PWKJrcnvpqGZ3iUVfs8dOgwPm0gUXUW+P0mOFZqXYm5m2DHitcI8WobH5o1Wg6UAedloA3Ezj6Sk5P56KOPOH78OImJifTu3ZuKigqOHDnC6NGjiY6O5vPPP2/0+lh79dnv5lx4kYsJHTmF0JFTnD2GXZhN8PtoeDHVuvuN6uyaZ/loCWXA2Fz2XYtdu3YlJSWFMWPG4O3tTVZWFiEhIbz11lusX7+eQ4cOAajIxCXdGAWdrHhy4GmG22LtN4+IPbnsMzKAhIQE1q1b12R7SUkJWVlZmM1m+vbt64TJROwrwANevhz+tA0Kq359rbsJ/nYJ9A5yzGwitubSRXY+qampWCwW4uPj8fVt+pmJlStXApCWltbo6+joaAYPHuy4QUUuQmwgLLkKFuyDbaeaX9MrCB5NhMFhjp1NxJbaZZHt27cPOP9hxUmTJjX79R133MH7779v19lEbKmrHyy+vP6UVWuOQU5Z/ZtBQr1gdFdI7OBaJwuW9klF1gyLpaVnqBMxhq5+MDXhwutEjEhF5kKC+3Rn2AsP4OHvQ2n2abY+9ArB8d0YtWw2Rem5fDH5GSrOFBE7+WoS7xtDUFxXdj69lLR/rG/Yx+AnphA9fhgF+zLZdNcCJz4a65Vl7uXoa/dSV16MZ3h3oh/9gIpjqRx+ejTeXXoR99QXeHToSM4Hf+Hs92sxmd0AiJj4/wgZXn/tquwlMyn4egW+PS8hdvYnTnw00hotzcCVL00lcnh/Ks/Un5Mrd+sP7HzmA6B9ZCD9uZuoPJXZcL/yrB/o+fgndLhsHCfXLOL0htcw+/jT56U9znswVmiXRfbzeRhdzZUvTeObR1+jIDWL2MlXc+mTt3Pk480Upeey9pqZDevO/JDOlvtfpN9DE5vsY+czH3D24HGiRtv+FFn2lvXynURPX4JvTBL5/3mP7CV/Juy3d+HdpVejQHa6aSZdpjwLQNWZHFKnJhCYNAr3wDC63rUQ76hEzn73iXMehFyUlmYAIPWNtY3+iPtZe8hAz9n/avh36eGdHJ57PYGXXA9Ap/GP4hszkOPvPuLg6VvPZd9+396E9O1BTVkFBalZAKT/cwvdrh2M2bPp3yqFaUf56XAO1BnotAkXUJaxGzcff3xjkgAIHXkHP+1Yi6Wm6Vv23P07NPy7rrwELBYsLvS9aK+syYArsiYDv5T/n3cJHXEbZg9PB0xpH+3j/+F2wD+qI8G9oxi3cWHDNncfL3wjQpw4leNUnsyk/Og+0h5JathWV1lG1Znmzxt46tPFnNrwGtVnsuk+7R08OnR00KRiL9ZmIOGeG4idfDWlOfnsfn55QwEalbUZqL+9nMKU5fR6ztgXElWRuZDTuw+z8Za/NXw9ef+7TpzG8fziLiNu7ucNX++dcv5T53a8cTodb5xOWeZeMhfdRmDStbgHhjpiTLGjlmZg1/zllJ0sBIuFqNFDGLXsL6we9hA1ZRWOGtUurMkAQOG2lXh1jscnup+9R7MrHVp0ESVHT+LX5dyHgTz8fXD39aYsr8CJUzmOV6cYqvLPXYajtqyI2opSPEN//QS4vj0G4BnSheL9W+w8odibNRkoyyuA/3138rF/76C6uIyg2M4Om9UeWpOB/P+8S9ioux0xnl2pyFxEQWoWddW1RA7vD0DvO68jc8031FXVOHkyx/CNScLk5kHRno0AnN7wOiFX3ozJvelx//JjaQ3/rjyRTlnGbry79XHYrGIf1mTAN/Lc4cbwS+LwCgmgKLPl1wxsi6zJAEDFiSOUHdlJyPBbHDmmXejQogvZOvVlrnxpKp7z76U4K4+t0xYT3Kvp2atj/zCCgbNuwbODH1HXDyHxgXF8ecd8CvZnNrNX4+jx2DKyFt/FsTf+hFdkLD0e+5Dyo/ubrMv5r2QqT2ZicvfAZHYn6v5X8emmD1m5gpZm4MqXpuETHoSlto6aiiq23Pt3qoudfy25i9XSDACc+c97dBj6O9x8Ax08pe2pyFzI2R+Pse76WRdcd+SfWzjyzy32H8jBfKL7kfDihS+ZE/tE0/NvimtoaQa+uPlpB0zjeC3NAECXKc/ZeRrH0aFFF1dbXYNXcADjNi7EO/TCf3kNfmIK/R66icqzJQ6Yzv5M7p7UFJ0h7ZEkqs+e54SDv5C9ZCZ5K+fh7hfsgOnEEZQB6zJwcs0ijr35IO4BxjkBp8mi8zG1OUa7oCDArekfGuqigvaQcgNt4sKarsJoOVAGnJcBPSMTERFDU5GJiIih6dBiG2SxWKgpr3T2GFZx9/HCZMPrgVgsUFFrs905hLebLoliS0bLgTLgvAyoyERExNB0aFFERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAzt/wP8FhzNWy95tAAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIDJJREFUeJzt3Xl8VPW9//HXTPadbJCwhBCSQAhLEERBpWBxQRCQlopVXB6uFcSFEn7SKqJVEKwo7lbFiyLSC1QQqEoFJAqKXBYhQZYsQBIChASz7/P7I9dgboJkwiw5k/fz8fDxIGe+c/qZNO+8M2dmzjFZLBYLIiIiBmV29gAiIiIXQ0UmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNDcnT2ANGWxWKgpr3T2GFZx9/HCZDLZbH8WC1TU2mx3DuHtBjb8FrR7RsuBMuC8DKjI2qCa8kqW9bzN2WNY5db0D/Hw9bbZ/ipq4aoNNtudQ6TcAD5KlM0YLQfKgPMyoEOLIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFDU5GJiIih6VMvLiRiaCLXr57baFt1aTlFGSdIX7mVA+9uwFJb56Tp7K943xYO/XVko21mbz+8OscTOmIKHcc+hMlNP/KuTBlonxlwvUckZKxOIXvTLjCZ8AnvQOyk3zBk7p0ExXVh+8y3nD2e3QUPv4WgQTeAxUJ1YR5ntiwl+73HqMg+QPepbzt7PHEAZaB9ZUBF5oLO7MskY1VKw9cH3/+cm1JeJv6Pv2XX/OVUnily4nT25xtzCaEjzp0RIvyGB0l9sDf5G9+h823P4hEU7sTpxBGUgfaVAb1G1g7UlFdyetdhTGYzgd07OXsch3Pz9sOv1+VgsVCZl+7sccQJlAHXzoCKrJ0IiK4Pb+XZEidP4hw/h9fdP8TJk4izKAOumwEdWnRB7j6eeIUENLw+0Ov2awntF8PpXYcpyjjh7PHsrq6yjJqi/PqzpxfmcfqzNynP2I1v3BC8u8Q7ezxxAGWgfWXA5YssPz+fBQsWsHr1arKzswkPD2fixIk899xzTJ8+nffee49XXnmFadOmOXtUmxmYPJmByZMbbcta/y3fPf6OkyZyrBPL53Bi+ZxG2zoMnUjU/a85aaK2IasYssug1gJhXpDQAcwuetkZZaB9ZcCli2zPnj2MHj2avLw8/Pz86NOnD7m5uSxevJj09HQKCgoASEpKcu6gNnbwgy/I+nQ7Zg93gntH0XfqBPwiQ6mtrGpY85s3HgWzia/uf7Fhm2cHfyZsWcTOp5eSsTqluV0bQth19xE8bBKW2mrKj+4jb/XzVOVnY/I4d4mN4tQUjjw9usl9LTVVWOpqGfQvg10I6jxqLbAxB/47C/YWNL4tyg9+Fw0TuoOfi/0mUAbaVwZc7Mf3nPz8fG688Uby8vKYMWMGc+bMISAgAIAFCxYwa9Ys3N3dMZlM9O/f38nT2lZRRh4nUvYBkLNpNyd3/MgNa55h6PP389WfFgGw/fF/MH7T3+kx4QoyP/kGgMufu4dTO340dIABvCLjCEwaBUDQoNH4J1zJwcev5NgbDxAz82MAAhKvYuCKxq+VVJ3J5ccZgwkf4xrPzitr4a//A5vzmr/9WCksSoV1x+Hly6Cjj2PnsydloH1lwGXf7DF9+nSys7OZNm0aL7zwQkOJASQnJzNgwABqamqIjo4mMDDQiZPa3+mdB0lfuZUeE64gfHAvAKrOlrBtxhtc9uw9+HQKpvuYy4kYlsj2Wa73GRv/hGGEjJhC4dcrKDmwrdk1ddWVZMyfiH+fK4mcNNvBE9penQWe3HX+Evulw0Uw7Vsorrb/XM6iDLh2BlyyyA4cOMCKFSsICwtj3rx5za4ZNGgQAAMGDGi0PTMzk3HjxhEQEEBwcDC33347Z86csfvM9rZ30UrqamoZOPPmhm05m/eQ9ek2hr86ncvn38u2GW9QWeia7+iKvPkJMLuR+9GTzd5+7PUHqKuuIPrh9x07mJ1sPwVfWvGehoxiWJ5hv3naAmXAdTPgkkW2fPly6urquPXWW/H39292jY9P/XGUXxZZcXExI0eOJDs7m+XLl/P222+TkpLC2LFjqasz9mltirPyyFzzDZ2H96fjZQkN23fOXUpAjwhyNu0m+8tdTpzQvrwjYwm5ajLFP3xJcWrjw0anPl3MTzvX0fPxTzB7+TppQttamWX9ff51FGqM/WP+q5QB182ASxbZpk2bABg5cuR512RnZwONi+ztt98mJyeHTz75hLFjxzJp0iQ++ugjvv32W9auXWvfoR3gh5dXUVfb+C/SmvJKSo6eovDAMSdO5hgRk/4CZnOjv0iLf9hM9tJZxCT/N16dop03nA0VVMLXJ62/3+kK2JFv+3naEmXANTNgslgsFmcPYWvdunUjOzub3bt3N/uOxJqaGiIjI8nPzyc9PZ2YmBjgXPFt3ry50fqePXsyYsQI3n333VbNM3jwYPLyWvBixf/ysJiZUzekVf9brXH9qrkc3/g/pL7Z+rKea95Btcl2f86bPH3o9NJhm+2vOZUns/jxz5cSOXkOHW3w4vbJR+KwVJXbYLKL4961D2Gzv2jVfX9alkz5Nx/ZeKLWcWQOlAHnZyAiIoKdO3e26r4u+a7F0tJSAMrLm/+Grlixgvz8fAICAujRo0fD9rS0NCZNmtRkfWJiImlpaa2eJy8vj5ycnBav9zS5gcHOopN7Ipcqi+3ermv28rXrt6Cusoz0eRMIGjLOJgEGyM3Npa6yzCb7uhg+HqGEtfK+hYUFnLHiZ9WejJYDZcB5GXDJIouIiKCwsJBdu3YxdOjQRredOHGCmTNnAtC/f39MpnOfCC0sLKRDhw5N9hcSEsLBgwcvah5reFjMYLDXKjpHdrb5X6P2VLhtFeWZe6nIOUTh1yua3J74ahqe4VFW7bNz585t4hmZycuCpa4Wk9nN6vsGWsrx7tLFDlNZz2g5UAYuLgPW/p78JZcsslGjRnHgwAGef/55rrnmGuLj60/J8v333zNlyhTy8+tfCHDUB6GtfbpcXVbBsp63XXihjXz2uzkXXnQBhw4fwsPX+8ILW6i8Bq7aYLPdNRE6cgqhI6fYdJ+HDh3Gp40k6rEdsLXlR7MB6OgN336+DPc28sq5I3OgDNiGszLQRn5kbSs5OZnQ0FCOHz9OYmIi/fr1Iy4ujiFDhhATE8PVV18NNH3rfXBwMGfPnm2yv4KCAkJCXO9Em+K6JkVbf5+J3WkzJSZiDZf8se3atSspKSmMGTMGb29vsrKyCAkJ4a233mL9+vUcOnQIaFpkCQkJzb4WlpaWRkJCQpPtIm3VZeFwrRVHCOMCYXKM/eYRsac2ciDE9hISEli3bl2T7SUlJWRlZWE2m+nbt2+j28aOHcvs2bPJzs6ma9euAHz33Xekp6ezcOFCh8wtYgtmEzyVBBYLbMz99bW9gupPUeXv4ZDRRGzOJZ+R/ZrU1FQsFgtxcXH4+jb+4N99991HZGQk48ePZ926daxcuZJbbrmFIUOGMH78eCdNLNI6nm7w7CCYPxgGhTa9PSYAkvvBO1dAmO1e2hFxOJd9RnY++/bVn0j0/x5WBAgMDGTTpk08/PDDTJ48GXd3d8aOHcuiRYswm9td54sLMJtgVOf6/46VwO82gQUwAStGgMlFL+Mi7YuK7P/o2bNns4ckRYwuyr++wH4uMpWYuAoVmQsJ7tOdYS88gIe/D6XZp9n60CsEx3dj1LLZFKXn8sXkZ6g4U4SbjydX/P1BwpJ6YqmzsGveRxxd/y0Ag5+YQvT4YRTsy2TTXQuc/IisU5a5l6Ov3UtdeTGe4d2JfvQDKo6lcvjp0Xh36UXcU1/g0aEjOR/MpnD7asweXpjcPOh827MEXXIdACfXLOL0htcw+/jT56U9zn1AYrWWZuBnQXFduPHzBRz6cCM7nnwfgD73jaX3nddRU1rB2mtmOumRtE5LMwBwasPrnF7/Cri5YzKZ6b3wO8ye3mQvmUnB1yvw7XkJsbM/ce4DaqF2V2Q/n4fRFV350jS+efQ1ClKziJ18NZc+eTtHPt5MUXpuo0D2fWAcdVXVrB72EP7dOjJmwzzytu2nsrCEnc98wNmDx4ka7bhTZNlK1st3Ej19Cb4xSeT/5z2yl/yZsN/ehXeXXo1Kyb/PVUT+4QnMXj6UZe7l4Ozh9F+Si5u3H53GP4pvzECOv/uI0x6HtF5LMwBgcndj2MIHOPrvHY22p729joJ9mQx5+k4HTm4bLc3A2e/WUPDVMnov+BY3vyCqfzqNya3+3T5d71qId1QiZ7/7xDkPohX0wo+LCOnbg5qyCgpSswBI/+cWul07GLNn079VosdfwcGl9efiKzl+irxtqUSNvsyR49pcWcZu3Hz88Y1JAiB05B38tGMtlpqqJmuDBo3G7FV/1gSf7v3AYqHmp9OOHFfswJoMACQ9NomsT7dTnGHF9W7aMGsykPevhXSePAc3vyAAPILCMblZfyaYtqLdPSNzVf5RHQnuHcW4jec+JuDu44VvRNMPcvt3CaMk+9wv7pLjp/Dr0tqz87UNlSczKT+6j7RHkhq21VWWUXXm188beObLJXhFxODZsbudJxR7syYDYQPjCB8Uzxc3P03SjD84cky7sSYDFcfTKD2yk9yP52KpriR05O10vHG6A6e1LRWZCzm9+zAbb/lbw9eT97fubP1G5Rd3GXFzP2/4eu+U8F9dX7T3S3I/nkv83I2NzrkpxtWSDLj5eHL5/HvYcs/fHTmaQ7Q0A5baGqpOZtLrua3UlhZycPZv8IyIocOlYx01qk2pyFxEydGTjZ5Vefj74O7rTVleQdO1Ofn4dw2n/NRZAPy7dST3q72OGtUuvDrFUJV/7npStWVF1FaU4hna/Oktivd/Rdbiu4j966d4d+3lqDHFjlqagYDuEfh3CeP6VU8B4BnoB2YTnkH+fP3wq44c2aasyYBneBTBw2/B5OaGe2AYQYNuoPTgt4YtMr1G5iIKUrOoq64lcnh/AHrfeR2Za76hrqqmydqjn26n1+3XAvUlFjEskWOf7Wiyzkh8Y5IwuXlQtGcjAKc3vE7IlTdjcvdssrY4dSuZi6YQ+5c1+PZwvXevtlctzcDZH4/xcd+7WTnkQVYOeZC0f6znyMebDF1iYF0GQob/kaJdnwFQV1lO8f4ths6CisyFbJ36MoNm38rEba8QMSyRnc980Oy6/a+vwc3bk4nbX+Wa5X/lu9nvUFlQ7OBpba/HY8vIWfo4+++PpXj/Frre1fxpxY6+cjeW6kqyFt9F2iNJpD2SRHnWPgdPK/bQ0gy4qpZmoNP4x6g+e5LUqX04MGMwQZeMJviKptdiNAodWnQhZ388xrrrZ11wXU15JV89sMgBEzmWT3Q/El688CVz+r5p36vuivO0NAO/tOfv/7TTNI7X0gyYPb3p8ch/OWAix9AzMhdXW12DV3AA4zYuxDs08ILrBz8xhX4P3UTl2RIHTGd/JndPaorOkPZIEtVnT11w/ck1izj25oO4Bxj7XZxyjrUZ6HPfWC6ffw8VLnCUAqzPQPaSmeStnIe7X7ADprMNk8VisTh7CGnM0RfWtIVb0z801EUF7SHlBtrMhTXPZ8ja+osum4Ed45w9za8zWg6UAedlQM/IRETE0FRkIiJiaDq02AZZLBZqyiudPYZV3H28bPqhYosFKmpttjuH8HZr+2eUN9KhRaPlQBlwXgba+BH99slkMtn0WLsRmUxt//Umsa/2ngNloOV0aFFERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTdcfbYOMdol30GXewXmXeXdVRsuBMuC8DKjI2qCa8kqW9bzN2WNY5db0D216WfqKWrhqg8125xApN+jS9LZktBwoA87LgA4tioiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQMTUUmIiKGpiITERFD08c3XUjE0ESuXz230bbq0nKKMk6QvnIrB97dgKW2zknT2V/xvi0c+uvIRtvM3n54dY4ndMQUOo59CJObfuRdmTLQPjPgeo9IyFidQvamXWAy4RPegdhJv2HI3DsJiuvC9plvOXs8uwsefgtBg24Ai4XqwjzObFlK9nuPUZF9gO5T33b2eOIAykD7yoCKzAWd2ZdJxqqUhq8Pvv85N6W8TPwff8uu+cupPFPkxOnszzfmEkJHnDu1UfgND5L6YG/yN75D59uexSMo3InTiSMoA+0rA3qNrB2oKa/k9K7DmMxmArt3cvY4Dufm7Ydfr8vBYqEyL93Z44gTKAOunQEVWTsREF0f3sqzJU6exDl+Dq+7f4iTJxFnUQZcNwPtosjy8/NJTk4mNjYWb29vunXrxsMPP0xpaSl33303JpOJV1991dlj2oy7jydeIQF4hQbSoXcUlz13D6H9Yji96zBFGSecPZ7d1VWWUVOUT/VPpynP2sexN6dSnrEb37gheHeJd/Z44gDKQPvKgMu/RrZnzx5Gjx5NXl4efn5+9OnTh9zcXBYvXkx6ejoFBQUAJCUlOXdQGxqYPJmByZMbbcta/y3fPf6OkyZyrBPL53Bi+ZxG2zoMnUjU/a85aSLnqqiBz3JgzTH4+f16dcCSwzA+CkK8nDmdfSgD7SsDLl1k+fn53HjjjeTl5TFjxgzmzJlDQEAAAAsWLGDWrFm4u7tjMpno37+/k6e1nYMffEHWp9sxe7gT3DuKvlMn4BcZSm1lVcOa37zxKJhNfHX/iw3bPDv4M2HLInY+vZSM1SnN7doQwq67j+Bhk7DUVlN+dB95q5+nKj8bk8e5a0UVp6Zw5OnRTe5rqanCUlfLoH8Z7IqG57H5BDy9B4qrm9722gF460e4Jx7ujneti4IqA+0rAy59aHH69OlkZ2czbdo0XnjhhYYSA0hOTmbAgAHU1NQQHR1NYGCgEye1raKMPE6k7CNn0272v76GL++YT1hST4Y+f3/Dmu2P/4OOl/aix4QrGrZd/tw9nNrxo6EDDOAVGUdg0iiCBo0mYmIysX/5lLIj33PsjQca1gQkXsXAFSWN/kt8/RDuAWF0/uMzTpzedj7PgeTvmy+xn9VY4M2DsDjNcXM5gjLQvjLgskV24MABVqxYQVhYGPPmzWt2zaBBgwAYMGBAw7afi2/IkCF4edn20uXOcnrnQdJXbqXHhCsIH9wLgKqzJWyb8QaXPXsPPp2C6T7mciKGJbJ9lut9xsY/YRghI6ZQ+PUKSg5sa3ZNXXUlGfMn4t/nSiInzXbwhLaXXQpP7QZLC9d/kF7/7M1VKQOunQGXLbLly5dTV1fHrbfeir+/f7NrfHx8gMZFduTIEVatWkVERASXXnqpQ2Z1hL2LVlJXU8vAmTc3bMvZvIesT7cx/NXpXD7/XrbNeIPKQtd8R1fkzU+A2Y3cj55s9vZjrz9AXXUF0Q+/79jB7GRVFlRbeQKL5Rl2GaXNUAZcNwMuW2SbNm0CYOTIkeddk52dDTQusuHDh3PixAnWrl3LqFGj7DukAxVn5ZG55hs6D+9Px8sSGrbvnLuUgB4R5GzaTfaXu5w4oX15R8YSctVkin/4kuLUxoeNTn26mJ92rqPn459g9vJ10oS2U1kLa49Zf79dZyDdhT8nrAy4bgZc9s0eR48eBaB79+7N3l5TU8M333wDNC4ys9n23T548GDy8vJavN7DYmYOQ2w+xw8vr6LHhCsYOPNmPv/9U0D9B0VLjp6i8EArfvP9QnxcPNUm253DzuTpQ6eXDttsfwARk/5CQcpycj96kl7Pbgag+IfNZC+dRdyT/8arU/RF7T8+Pg5LVbkNJr04bhGxhD+5pVX3ve6uh6n4bpVtB2ole+RAGWi7GYiIiGDnzp2tuq/LFllpaSkA5eXNf1NXrFhBfn4+AQEB9OjRw66z5OXlkZOT0+L1niY3aMXJB/K2p/J+5O/Pe/tPh3NY2vXm895+MXJP5FJlsd27nMxevlZ/CwL6jWDQmvO/KuTTLaHRO7EqT2aRsfAPdL1zIQH9RrRu0F/Izc2lrrLsovdzsXy9O9HaExD9VFZFvhU/q/bUmhwoA+0zAy5bZBERERQWFrJr1y6GDh3a6LYTJ04wc+ZMAPr372/3N3RERERYtd7DYj73gR+D6BzZ2eZ/jdpTXWUZ6fMmEDRkHB3HTLPJPjt37tw2npEF1H/vLBaL1T/bQV5mvLp0scdYVjNaDpSBi8uAtb8nf8lli2zUqFEcOHCA559/nmuuuYb4+PpPs3///fdMmTKF/Px8wDEfhLb26XJ1WQXLet524YVtyKHDh/Dw9b7wwhYqr4GrNthsd00UbltFeeZeKnIOUfj1iia3J76ahmd4lFX7PHToMD5tIFF1Fvj9JjhWal2JuZtgx4rXCPFqGx+aNVoOlAHnZaANxM4+kpOT+eijjzh+/DiJiYn07t2biooKjhw5wujRo4mOjubzzz9v9PpYe/XZ7+ZceJGLCR05hdCRU5w9hl2YTfD7aHgx1br7jersmmf5aAllwNhc9l2LXbt2JSUlhTFjxuDt7U1WVhYhISG89dZbrF+/nkOHDgGoyMQl3RgFnax4cuBphtti7TePiD257DMygISEBNatW9dke0lJCVlZWZjNZvr27euEyUTsK8ADXr4c/rQNCqt+fa27Cf52CfQOcsxsIrbm0kV2PqmpqVgsFuLj4/H1bfqZiZUrVwKQlpbW6Ovo6GgGDx7suEFFLkJsICy5Chbsg22nml/TKwgeTYTBYY6dTcSW2mWR7du3Dzj/YcVJkyY1+/Udd9zB+++/b9fZRGypqx8svrz+lFVrjkFOWf2bQUK9YHRXSOzgWicLlvZJRdYMi6WlZ6gTMYaufjA14cLrRIxIReZCgvt0Z9gLD+Dh70Np9mm2PvQKwfHdGLVsNkXpuXwx+RkqzhQRO/lqEu8bQ1BcV3Y+vZS0f6xv2MfgJ6YQPX4YBfsy2XTXAic+GuuVZe7l6Gv3UldejGd4d6If/YCKY6kcfno03l16EffUF3h06EjOB3/h7PdrMZndAIiY+P8IGV5/7arsJTMp+HoFvj0vIXb2J058NNIaLc3AlS9NJXJ4fyrP1J+TK3frD+x85gOgfWQg/bmbqDyV2XC/8qwf6Pn4J3S4bBwn1yzi9IbXMPv40+elPc57MFZol0X283kYXc2VL03jm0dfoyA1i9jJV3Ppk7dz5OPNFKXnsvaamQ3rzvyQzpb7X6TfQxOb7GPnMx9w9uBxokbb/hRZ9pb18p1ET1+Cb0wS+f95j+wlfybst3fh3aVXo0B2umkmXaY8C0DVmRxSpyYQmDQK98Awut61EO+oRM5+94lzHoRclJZmACD1jbWN/oj7WXvIQM/Z/2r4d+nhnRyeez2Bl1wPQKfxj+IbM5Dj7z7i4Olbz2Xfft/ehPTtQU1ZBQWpWQCk/3ML3a4djNmz6d8qhWlH+elwDtQZ6LQJF1CWsRs3H398Y5IACB15Bz/tWIulpulb9tz9OzT8u668BCwWLC70vWivrMmAK7ImA7+U/593CR1xG2YPTwdMaR/t4//hdsA/qiPBvaMYt3FhwzZ3Hy98I0KcOJXjVJ7MpPzoPtIeSWrYVldZRtWZ5s8beOrTxZza8BrVZ7LpPu0dPDp0dNCkYi/WZiDhnhuInXw1pTn57H5+eUMBGpW1Gai/vZzClOX0es7YFxJVkbmQ07sPs/GWvzV8PXn/u06cxvH84i4jbu7nDV/vnXL+U+d2vHE6HW+cTlnmXjIX3UZg0rW4B4Y6Ykyxo5ZmYNf85ZSdLASLhajRQxi17C+sHvYQNWUVjhrVLqzJAEDhtpV4dY7HJ7qfvUezKx1adBElR0/i1+Xch4E8/H1w9/WmLK/AiVM5jlenGKryz12Go7asiNqKUjxDf/0EuL49BuAZ0oXi/VvsPKHYmzUZKMsrgP99d/Kxf++guriMoNjODpvVHlqTgfz/vEvYqLsdMZ5dqchcREFqFnXVtUQO7w9A7zuvI3PNN9RV1Th5MsfwjUnC5OZB0Z6NAJze8DohV96Myb3pcf/yY2kN/648kU5Zxm68u/Vx2KxiH9ZkwDfy3OHG8Evi8AoJoCiz5dcMbIusyQBAxYkjlB3ZScjwWxw5pl3o0KIL2Tr1Za58aSqe8++lOCuPrdMWE9yr6dmrY/8wgoGzbsGzgx9R1w8h8YFxfHnHfAr2ZzazV+Po8dgyshbfxbE3/oRXZCw9HvuQ8qP7m6zL+a9kKk9mYnL3wGR2J+r+V/Hppg9ZuYKWZuDKl6bhEx6EpbaOmooqttz7d6qLnX8tuYvV0gwAnPnPe3QY+jvcfAMdPKXtqchcyNkfj7Hu+lkXXHfkn1s48s8t9h/IwXyi+5Hw4oUvmRP7RNPzb4praGkGvrj5aQdM43gtzQBAlynP2Xkax9GhRRdXW12DV3AA4zYuxDv0wn95DX5iCv0euonKsyUOmM7+TO6e1BSdIe2RJKrPnueEg7+QvWQmeSvn4e4X7IDpxBGUAesycHLNIo69+SDuAcY5AafJovMxtTlGu6AgwK3pHxrqooL2kHIDbeLCmq7CaDlQBpyXAT0jExERQ1ORiYiIoenQYhtksVioKa909hhWcffxwmTD64FYLFBRa7PdOYS3my6JYktGy4Ey4LwMqMhERMTQdGhRREQMTUUmIiKGpiITERFDU5GJiIihqchERMTQVGQiImJoKjIRETE0FZmIiBiaikxERAxNRSYiIoamIhMREUNTkYmIiKGpyERExNBUZCIiYmgqMhERMTQVmYiIGJqKTEREDE1FJiIihqYiExERQ1ORiYiIoanIRETE0FRkIiJiaCoyERExNBWZiIgYmopMREQM7f8D/BYczVsvebQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -82,13 +82,13 @@ } ], "source": [ - "from qiskit.circuit.library import TwoLocal\n", + "from qiskit.circuit.library import n_local\n", "from qiskit_algorithms.optimizers import COBYLA\n", "\n", - "ansatz = TwoLocal(2, rotation_blocks=[\"ry\", \"rz\"], entanglement_blocks=\"cz\", reps=1)\n", + "ansatz = n_local(2, rotation_blocks=[\"ry\", \"rz\"], entanglement_blocks=\"cz\", reps=1)\n", "\n", "optimizer = COBYLA()\n", - "ansatz.decompose().draw(\"mpl\")" + "ansatz.draw(\"mpl\")" ] }, { @@ -104,11 +104,14 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit.primitives import Sampler, Estimator\n", + "from qiskit.primitives import StatevectorSampler, StatevectorEstimator\n", "from qiskit_algorithms.state_fidelities import ComputeUncompute\n", + "from qiskit_algorithms.utils import algorithm_globals\n", "\n", - "estimator = Estimator()\n", - "sampler = Sampler()\n", + "algorithm_globals.random_seed = 42\n", + "\n", + "estimator = StatevectorEstimator(seed=42)\n", + "sampler = StatevectorSampler(seed=42)\n", "fidelity = ComputeUncompute(sampler)" ] }, @@ -191,7 +194,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "[-1.85725689 -1.2445823 -0.88272936]\n" + "[-1.85727501 -1.24519007 -0.8838798 ]\n" ] } ], @@ -217,7 +220,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA+QAAAK9CAYAAACtq6aaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACs2ElEQVR4nOzdeXxU9b3/8feZSTJJCISdgGwKuCCLSt1wwxXUWrVYtWoVF2qt1Ku0tcXW3ZbWq2ita1vFpfpr64ZWq6i04lK1aou4XFEpuCA7QghLkpk5vz9mzsmZNUPInHPmzOvZRy7JZDLnm0ng+p7P5/v5GqZpmgIAAAAAAK4Keb0AAAAAAADKEYEcAAAAAAAPEMgBAAAAAPAAgRwAAAAAAA8QyAEAAAAA8ACBHAAAAAAADxDIAQAAAADwAIEcAAAAAAAPEMgBAAAAAPAAgRwAgDLywAMPaNddd1VlZaW6d+/u9XI63dKlS2UYhm644Qavl1J2rOf+3nvv9XopAFAyCOQAsA3uvfdeGYaR8+3111/3eolATh9++KGmTJmiYcOG6fe//71+97vfeb0keOD222/3fWj+29/+pquuumq7HuOXv/yl5syZ0ynrAYBiqfB6AQBQiq655hrtuOOOGbcPHz7cg9UAhXnxxRcVj8f1m9/8ht/VMnb77berd+/emjJlitdLyelvf/ubbrvttu0K5b/85S910kkn6YQTTui0dQFAZyOQA0AHHH300fra177m9TK0adMmdenSxetllLytW7eqqqpKoVCwG8dWrVolSZ3aqr5582bV1tZ22uMBAFBOgv1fHgDgEec+1t/97ncaNmyYIpGI9t57b7355psZ9//www910kknqWfPnqqurtbXvvY1Pfnkkyn3sdrl58+fr+9///vq27evBg4caH/+tttu00477aSamhrts88+evnllzVhwgRNmDBBktTU1KQuXbrof/7nfzKu/8UXXygcDmvmzJl5vy+rujp69GhVV1erT58+mjRpkt566y37PtFoVNdee639PQ8dOlSXXXaZmpubUx5r6NCh+vrXv65XXnlF++yzj6qrq7XTTjvp/vvvt+/z1ltvyTAM3XfffRlrmTt3rgzD0FNPPWXftmzZMp1zzjnq16+fIpGIdt99d91zzz0pX/fiiy/KMAz96U9/0s9//nPtsMMOqq2tVWNjoyTp4Ycf1siRI1VdXa1Ro0bp8ccf15QpUzR06NCM5+Lmm2/W7rvvrurqavXr10/nn3++vvrqq23+Pi3r16/XJZdcoqFDhyoSiWjgwIE688wztWbNGvs+zc3NuvLKKzV8+HBFIhENGjRIl156acbzm27o0KG68sorJUl9+vSRYRgp1cfbb79du+++uyKRiAYMGKALL7xQ69evT3mMCRMmaNSoUXr77bd18MEHq7a2Vpdddlne6xbyu71u3Tr96Ec/0ujRo1VXV6du3brp6KOP1jvvvJPxeFu3btVVV12lnXfeWdXV1erfv7+++c1vavHixRn3LeTvXjaF/BxWrVqlc889V/369VN1dbXGjh2b8Xvq/HfA+vtZW1uro446Sp9//rlM09S1116rgQMHqqamRscff7zWrVuX8hjW789zzz2nPfbYQ9XV1Ro5cqQee+yxlPtdddVVMgwj43ux/t1YunSp/Xjvv/++5s+fb2+1sf6NsL73iy++WIMGDVIkEtHw4cP161//WvF4POM5mjJliurr69W9e3edddZZGb8vubS2turqq6/WiBEjVF1drV69eunAAw/U888/L0maMmWKbrvtNklK2RJkueGGGzR+/Hj16tVLNTU1GjdunB555JGUaxiGoU2bNum+++6zv97ZEVDIvxUA4AoTAFCw2bNnm5LMF154wVy9enXK25o1a+z7LVmyxJRk7rnnnubw4cPNX//61+b1119v9u7d2xw4cKDZ0tJi3/e9994z6+vrzZEjR5q//vWvzVtvvdU8+OCDTcMwzMceeyzj2iNHjjQPOeQQ87e//a35q1/9yjRN07z99ttNSeZBBx1k3nLLLeb06dPNnj17msOGDTMPOeQQ+zFOP/10s1+/fmY0Gk35vq6//nrTMAzz008/zfv9T5kyxZRkHn300ebNN99s3nDDDebxxx9v/va3v7Xvc9ZZZ5mSzJNOOsm87bbbzDPPPNOUZJ5wwgkpjzVkyBBzl112Mfv162dedtll5q233mrutddepmEY5nvvvWffb6eddjKPOeaYjLWcffbZZo8ePezncsWKFebAgQPNQYMGmddcc415xx13mN/4xjdMSeZNN91kf90//vEP+3ncY489zFmzZpkzZ840N23aZD711FOmYRjmmDFjzFmzZpmXX3652aNHD3PUqFHmkCFDUq5/3nnnmRUVFebUqVPNO++80/zJT35idunSxdx7771Tfr6Ffp8bN240R40aZYbDYXPq1KnmHXfcYV577bXm3nvvbf7nP/8xTdM0Y7GYedRRR5m1tbXmxRdfbN51113mtGnTzIqKCvP444/P+7N7/PHHzRNPPNGUZN5xxx3mAw88YL7zzjumaZrmlVdeaUoyjzjiCPO3v/2tOW3aNDMcDmd8L4cccojZ0NBg9unTx/zBD35g3nXXXeacOXNyXrPQ3+0333zTHDZsmPnTn/7UvOuuu8xrrrnG3GGHHcz6+npz2bJl9v2i0ah5+OGHm5LMU0891bz11lvNmTNnmocddpi9jm35u5dNIT+HzZs3m7vttptZWVlpXnLJJeYtt9xiHnTQQaYk8+abb7Yfy1rLHnvsYY4cOdKcNWuW+fOf/9ysqqoy99tvP/Oyyy4zx48fb95yyy3mRRddZBqGYZ599tkp6xkyZIi58847m927dzd/+tOfmrNmzTJHjx5thkIh87nnnrPvZ/0M01n/bixZssT+PRg4cKC56667mg888ID5wAMP2I+zadMmc8yYMWavXr3Myy67zLzzzjvNM8880zQMw/yf//kf+zHj8bh58MEHm6FQyPz+979v/va3vzUPO+wwc8yYMaYkc/bs2Xmf48suu8w0DMOcOnWq+fvf/9688cYbzW9/+9v2v2f//Oc/zSOPPNKUZK/xgQcesL9+4MCB5ve//33z1ltvNWfNmmXus88+piTzqaeesu/zwAMPmJFIxDzooIPsr//nP/9pmmbh/1YAgBsI5ACwDaz/uM32FolE7PtZ/yHeq1cvc926dfbtTzzxhCnJ/Otf/2rfdvjhh5ujR482t27dat8Wj8fN8ePHmyNGjMi49oEHHpgSqJubm81evXqZe++9t9na2mrffu+995qSUgL53LlzTUnmM888k/J9jRkzJuV+2fz97383JZkXXXRRxufi8bhpmqa5YMECU5J53nnnpXz+Rz/6kSnJ/Pvf/27fNmTIEFOS+dJLL9m3rVq1yoxEIuYPf/hD+7YZM2aYlZWVKc9jc3Oz2b17d/Occ86xbzv33HPN/v37p7wwYpqmeeqpp5r19fXm5s2bTdNsC+Q77bSTfZtl9OjR5sCBA82NGzfat7344oumpJRA/vLLL5uSzAcffDDl65999tmM2wv9Pq+44gpTUkpQtVjP7wMPPGCGQiHz5ZdfTvn8nXfeaUoyX3311YyvdbJC2+rVq1PWUlVVZR511FFmLBazb7/11ltNSeY999xj33bIIYeYksw777wz73Ushf5ub926NeXappn4OxSJRMxrrrnGvu2ee+4xJZmzZs3KuJb1HG3L371sCvk53HzzzaYk849//KP9uZaWFnP//fc36+rqzMbGxpS19OnTx1y/fr193xkzZpiSzLFjx6b8nf32t79tVlVVpTxf1u/Po48+at+2YcMGs3///uaee+5p31ZoIDdN09x9992z/n2/9tprzS5dupgfffRRyu0//elPzXA4bH722WemaZrmnDlzTEnm9ddfb98nGo3aL0q0F8jHjh1rHnvssXnvc+GFF2b9fkzTzPh729LSYo4aNco87LDDUm7v0qWLedZZZ2V8faH/VgCAG2hZB4AOuO222/T888+nvD3zzDMZ9zvllFPUo0cP++ODDjpIkvTf//5XUqJV9+9//7tOPvlkbdy4UWvWrNGaNWu0du1aTZw4UR9//LGWLVuW8phTp05VOBy2P37rrbe0du1aTZ06VRUVbaNBTj/99JRrS9IRRxyhAQMG6MEHH7Rve++997Rw4UKdccYZeb/nRx99VIZh2G3PTlY76d/+9jdJ0vTp01M+/8Mf/lCS9PTTT6fcPnLkSPs5kRKt1Lvssov9/EiJ57C1tTWlRfe5557T+vXrdcopp0iSTNPUo48+quOOO06madrP45o1azRx4kRt2LBB//73v1OufdZZZ6mmpsb++Msvv9S7776rM888U3V1dfbthxxyiEaPHp3ytQ8//LDq6+t15JFHplxr3Lhxqqur0z/+8Y9t/j4fffRRjR07VieeeKLSWc/vww8/rN1220277rprynUPO+wwScq4biFeeOEFtbS06OKLL07ZQz916lR169Yt42cWiUR09tlnt/u42/K7HYlE7GvHYjGtXbtWdXV12mWXXVJ+bo8++qh69+6tH/zgBxnXS2/Xbu/vXi6F/Bz+9re/qaGhQd/+9rftz1VWVuqiiy5SU1OT5s+fn/J13/rWt1RfX29/vO+++0qSzjjjjJS/s/vuu69aWloy/s4PGDAgZT3dunXTmWeeqf/85z9asWJF3u9nWzz88MM66KCD1KNHj5TfryOOOEKxWEwvvfSS/f1XVFToggsusL82HA5n/blk0717d73//vv6+OOPO7RO59/br776Shs2bNBBBx2U8Xc8m478WwEAxcRQNwDogH322aegoW6DBw9O+dgKCNY+408++USmaeryyy/X5ZdfnvUxVq1apR122MH+OH26+6effiopc8J7RUVFxr7nUCik008/XXfccYc9jOvBBx9UdXW1vvWtb+X9XhYvXqwBAwaoZ8+eOe/z6aefKhQKZayloaFB3bt3t9dqSX9+pMRz5NyHPXbsWO26667685//rHPPPVeS9Oc//1m9e/e2g+jq1au1fv16/e53v8t5lJc10MxS6PNo3eb8j/SPP/5YGzZsUN++fQu6ViHf5+LFizV58uSsj+e87v/93/+pT58+BV23ENb3vcsuu6TcXlVVpZ122injZ7bDDjuoqqqq3cfdlt9tazbB7bffriVLligWi9n36dWrl/3+4sWLtcsuu6SE2Fza+7uXSyE/h08//VQjRozIGAK422672Z/PtxYrnA8aNCjr7elrHD58eMYLDjvvvLOkxD71hoaGvOst1Mcff6yFCxe2+/v16aefqn///ikvXEmZv0O5XHPNNTr++OO18847a9SoUZo0aZK+853vaMyYMQV9/VNPPaXrrrtOCxYsSJmdkG0PfbqO/FsBAMVEIAeAInJWsp1M05Qke1DSj370I02cODHrfdMDorM61BFnnnmm/vd//1dz5szRt7/9bT300EP6+te/nlLB216F/Iex1P7zYznllFP0i1/8QmvWrFHXrl315JNP6tvf/rYdzKzn8YwzztBZZ52V9THT/2N/e57HeDyuvn37pnQaOKUHmkK/z0KuO3r0aM2aNSvr59MDXjEU+rxty+/2L3/5S11++eU655xzdO2116pnz54KhUK6+OKLM4aJFaqznvPOkGstnbnGXH/nnC9utCcej+vII4/UpZdemvXz1osA2+vggw/W4sWL9cQTT+i5557TH/7wB91000268847dd555+X92pdfflnf+MY3dPDBB+v2229X//79VVlZqdmzZ+uhhx5q99od+bcCAIqJQA4AHtppp50kJdpdjzjiiA49xpAhQyQlKpKHHnqofXs0GtXSpUsz/uNy1KhR2nPPPfXggw9q4MCB+uyzz/Tb3/623esMGzZMc+fO1bp163JWyYcMGaJ4PK6PP/7YrhZK0sqVK7V+/Xp7rdvqlFNO0dVXX61HH31U/fr1U2Njo0499VT783369FHXrl0Vi8U65XlMl37bsGHD9MILL+iAAw7Y7hdInI/53nvvtXufd955R4cffnjBL3q0x/q+Fy1aZP8+SlJLS4uWLFnS4edzW363H3nkER166KG6++67U25fv369evfubX88bNgwvfHGG2ptbVVlZWWH1tWeQn4OQ4YM0cKFCxWPx1Oq5B9++KH9+c5kdRs4f+YfffSRJNldMFYHwPr161OOtUuv1ku5w/uwYcPU1NTU7s9ryJAhmjdvnpqamlKq5IsWLSro+5Gknj176uyzz9bZZ5+tpqYmHXzwwbrqqqvsQJ5rjY8++qiqq6s1d+5cRSIR+/bZs2dn3DfbY3TGvxUA0JnYQw4AHurbt68mTJigu+66S8uXL8/4/OrVq9t9jK997Wvq1auXfv/73ysajdq3P/jggznbc7/zne/oueee080336xevXrp6KOPbvc6kydPlmmauvrqqzM+Z1X0jjnmGEnSzTffnPJ5q6J77LHHtnudbHbbbTeNHj1af/7zn/XnP/9Z/fv318EHH2x/PhwOa/LkyXr00UezhqlCnscBAwZo1KhRuv/++9XU1GTfPn/+fL377rsp9z355JMVi8V07bXXZjxONBot+Pgnp8mTJ+udd97R448/nvE56/k9+eSTtWzZMv3+97/PuM+WLVu0adOmbb7uEUccoaqqKt1yyy0pldm7775bGzZs6PDPbFt+t8PhcEZV+OGHH87YSz158mStWbNGt956a8bjdVblu5CfwzHHHKMVK1boz3/+s/25aDSq3/72t6qrq9MhhxzSKWuxfPnllynraWxs1P3336899tjDblcfNmyYJNn7vCXZx36l69KlS9bf0ZNPPlmvvfaa5s6dm/G59evX2/++HHPMMYpGo7rjjjvsz8disYJe2JOktWvXpnxcV1en4cOHp7Sfd+nSxb6uUzgclmEYKZX/pUuXas6cORnXyfZ9dsa/FQDQmaiQA0AHPPPMM3Y1zGn8+PEpVcZC3HbbbTrwwAM1evRoTZ06VTvttJNWrlyp1157TV988UXWs5idqqqqdNVVV+kHP/iBDjvsMJ188slaunSp7r33Xg0bNixrlei0007TpZdeqscff1wXXHBBQdXGQw89VN/5znd0yy236OOPP9akSZMUj8f18ssv69BDD9W0adM0duxYnXXWWfrd736n9evX65BDDtG//vUv3XfffTrhhBNSKvjb6pRTTtEVV1yh6upqnXvuuRn7d3/1q1/pH//4h/bdd19NnTpVI0eO1Lp16/Tvf/9bL7zwQsb5ztn88pe/1PHHH68DDjhAZ599tr766ivdeuutGjVqVEpIP+SQQ3T++edr5syZWrBggY466ihVVlbq448/1sMPP6zf/OY3Oumkk7bp+/vxj3+sRx55RN/61rd0zjnnaNy4cVq3bp2efPJJ3XnnnRo7dqy+853v6C9/+Yu+973v6R//+IcOOOAAxWIxffjhh/rLX/6iuXPnFjTbwKlPnz6aMWOGrr76ak2aNEnf+MY3tGjRIt1+++3ae++92x32l0+hv9tf//rXdc011+jss8/W+PHj9e677+rBBx/M+Lt05pln6v7779f06dP1r3/9SwcddJA2bdqkF154Qd///vd1/PHHd3itlkJ+Dt/97nd11113acqUKXr77bc1dOhQPfLII3r11Vd18803q2vXrtu9Dqedd95Z5557rt58803169dP99xzj1auXJlSFT7qqKM0ePBgnXvuufrxj3+scDise+65R3369NFnn32W8njjxo3THXfcoeuuu07Dhw9X3759ddhhh+nHP/6xnnzySX3961/XlClTNG7cOG3atEnvvvuuHnnkES1dulS9e/fWcccdpwMOOEA//elPtXTpUvtc9A0bNhT0/YwcOVITJkzQuHHj1LNnT7311lt65JFHNG3atJQ1StJFF12kiRMnKhwO69RTT9Wxxx6rWbNmadKkSTrttNO0atUq3XbbbRo+fLgWLlyY8X2+8MILmjVrlgYMGKAdd9xR++67b6f8WwEAncblqe4AUNLyHXsmx3E/1nFH//u//5vxGJLMK6+8MuW2xYsXm2eeeabZ0NBgVlZWmjvssIP59a9/3XzkkUcyrv3mm29mXdstt9xiDhkyxIxEIuY+++xjvvrqq+a4cePMSZMmZb3/McccY0qyz+YtRDQaNf/3f//X3HXXXc2qqiqzT58+5tFHH22+/fbb9n1aW1vNq6++2txxxx3NyspKc9CgQeaMGTNSjnIyzcRxTtmOPjrkkEOyHsn08ccf28/zK6+8knV9K1euNC+88EJz0KBBZmVlpdnQ0GAefvjh5u9+9zv7PtaxZw8//HDWx/jTn/5k7rrrrmYkEjFHjRplPvnkk+bkyZPNXXfdNeO+v/vd78xx48aZNTU1ZteuXc3Ro0ebl156qfnll1926Ptcu3atOW3aNHOHHXYwq6qqzIEDB5pnnXVWyvFMLS0t5q9//Wtz9913NyORiNmjRw9z3Lhx5tVXX21u2LAh6/dkyXbsmeXWW281d911V7OystLs16+fecEFF5hfffVVxpp33333vNdIV8jv9tatW80f/vCHZv/+/c2amhrzgAMOMF977bWsz9HmzZvNn/3sZ/bvV0NDg3nSSSeZixcvNk1z2//uZVPIz2HlypXm2Wefbfbu3dusqqoyR48enXHcV6615PodzPZ33Pr9mTt3rjlmzBgzEomYu+66a9bf37ffftvcd999zaqqKnPw4MHmrFmzsh57tmLFCvPYY481u3btmnE04saNG80ZM2aYw4cPN6uqqszevXub48ePN2+44YaUM9zXrl1rfuc73zG7detm1tfXm9/5znfM//znPwUde3bdddeZ++yzj9m9e3ezpqbG3HXXXc1f/OIXKY8fjUbNH/zgB2afPn1MwzBSjkC7++67zREjRtjPxezZs7Me+/bhhx+aBx98sFlTU2NKSjkCrZB/KwDADYZpejDdBABQdPF4XH369NE3v/nNrC3OJ554ot59992se6aRao899lCfPn30/PPPe70UlJmhQ4dq1KhReuqpp7xeCgCgCNhDDgABsHXr1ow9tPfff7/WrVunCRMmZNx/+fLlevrpp/Wd73zHpRWWhtbW1pR9+JL04osv6p133sn6PAIAAGwP9pADQAC8/vrruuSSS/Stb31LvXr10r///W/dfffdGjVqVMr54kuWLNGrr76qP/zhD6qsrNT555/v4ar9Z9myZTriiCN0xhlnaMCAAfrwww915513qqGhQd/73ve8Xh4AAAgYAjkABMDQoUM1aNAg3XLLLfaxZGeeeaZ+9atfqaqqyr7f/PnzdfbZZ2vw4MG677777AnNSOjRo4fGjRunP/zhD1q9erW6dOmiY489Vr/61a/Uq1cvr5cHAAAChj3kAAAAAAB4gD3kAAAAAAB4gEAOAAAAAIAHAr+HPB6P68svv1TXrl1lGIbXywEAAAAABJxpmtq4caMGDBigUCh3HTzwgfzLL7/UoEGDvF4GAAAAAKDMfP755xo4cGDOzwc+kHft2lVS4ono1q2bx6sBAAAAAARdY2OjBg0aZOfRXAIfyK029W7duhHIAQAAAACuaW/bNEPdAAAAAADwAIEcAAAAAAAPEMgBAAAAAPBA4PeQAwAAAECQmKapaDSqWCzm9VLKVjgcVkVFxXYfrU0gBwAAAIAS0dLSouXLl2vz5s1eL6Xs1dbWqn///qqqqurwYxDIAQAAAKAExONxLVmyROFwWAMGDFBVVdV2V2ix7UzTVEtLi1avXq0lS5ZoxIgRCoU6thucQA4AAAAAJaClpUXxeFyDBg1SbW2t18spazU1NaqsrNSnn36qlpYWVVdXd+hxGOoGAAAAACWko9VYdK7O+DnwkwQAAAAAwAMEcgAAAAAAPEAgBwAAAADAAwRyAAAAAEDRrF69WhdccIEGDx6sSCSihoYGTZw4Ua+++qp9H8MwNGfOnG1+7KFDh+rmm2/ulHW++OKL2muvvRSJRDR8+HDde++9nfK4+TBlHQAAAABQNJMnT1ZLS4vuu+8+7bTTTlq5cqXmzZuntWvXer0025IlS3Tsscfqe9/7nh588EHNmzdP5513nvr376+JEycW7bqGaZpm0R7dBxobG1VfX68NGzaoW7duXi8HAAAAADpk69atWrJkiXbccUdVV1fLNE1taY15spaaynBBZ6CvX79ePXr00IsvvqhDDjkk632GDh2qTz/91P54yJAhWrp0qRYvXqzp06fr9ddf16ZNm7Tbbrtp5syZOuKIIyRJEyZM0Pz581Mey4q3r7zyimbMmKG33npLvXv31oknnqiZM2eqS5cuWdfwk5/8RE8//bTee+89+7ZTTz1V69ev17PPPpv1a9J/Hk6F5lAq5AAAAABQgra0xjTyirmeXPuDayaqtqr9OFlXV6e6ujrNmTNH++23nyKRSMZ93nzzTfXt21ezZ8/WpEmTFA6HJUlNTU065phj9Itf/EKRSET333+/jjvuOC1atEiDBw/WY489prFjx+q73/2upk6daj/e4sWLNWnSJF133XW65557tHr1ak2bNk3Tpk3T7Nmzs67ztddes4O+ZeLEibr44ou34VnZduwhBwAAAAAURUVFhe69917dd9996t69uw444ABddtllWrhwoX2fPn36SJK6d++uhoYG++OxY8fq/PPP16hRozRixAhde+21GjZsmJ588klJUs+ePRUOh9W1a1c1NDSooaFBkjRz5kydfvrpuvjiizVixAiNHz9et9xyi+6//35t3bo16zpXrFihfv36pdzWr18/NTY2asuWLZ3+vFiokAMAAABACaqpDOuDa4q3v7m9axdq8uTJOvbYY/Xyyy/r9ddf1zPPPKPrr79ef/jDHzRlypScX9fU1KSrrrpKTz/9tJYvX65oNKotW7bos88+y3u9d955RwsXLtSDDz5o32aapuLxuJYsWaLddtut4LUXG4EcAAAAAEqQYRgFtY37QXV1tY488kgdeeSRuvzyy3XeeefpyiuvzBvIf/SjH+n555/XDTfcoOHDh6umpkYnnXSSWlpa8l6rqalJ559/vi666KKMzw0ePDjr1zQ0NGjlypUpt61cuVLdunVTTU1N+99gB5XGTw8AAAAAEBgjR45MOeassrJSsVjqgLpXX31VU6ZM0YknnigpEbSXLl2acp+qqqqMr9trr730wQcfaPjw4QWvZ//999ff/va3lNuef/557b///gU/RkewhxwAAAAAUBRr167VYYcdpj/+8Y9auHChlixZoocffljXX3+9jj/+ePt+Q4cO1bx587RixQp99dVXkqQRI0boscce04IFC/TOO+/otNNOUzweT3n8oUOH6qWXXtKyZcu0Zs0aSYmJ6f/85z81bdo0LViwQB9//LGeeOIJTZs2Lec6v/e97+m///2vLr30Un344Ye6/fbb9Ze//EWXXHJJEZ6VNgRyAAAAAEBR1NXVad9999VNN92kgw8+WKNGjdLll1+uqVOn6tZbb7Xvd+ONN+r555/XoEGDtOeee0qSZs2apR49emj8+PE67rjjNHHiRO21114pj3/NNddo6dKlGjZsmD0MbsyYMZo/f74++ugjHXTQQdpzzz11xRVXaMCAATnXueOOO+rpp5/W888/r7Fjx+rGG2/UH/7wh6KeQS5xDjkAAAAAlIR8517DfZ1xDrmnFfI77rhDY8aMUbdu3dStWzftv//+euaZZ+zPb926VRdeeKF69eqluro6TZ48OWOjPQAAAAAApcjTQD5w4ED96le/0ttvv6233npLhx12mI4//ni9//77kqRLLrlEf/3rX/Xwww9r/vz5+vLLL/XNb37TyyXD5z5c96E2NG/wehkAAAAA0C7ftaz37NlT//u//6uTTjpJffr00UMPPaSTTjpJkvThhx9qt91202uvvab99tuvoMejZb18/Hf9f3X8E8dr/IDxuuvIu7xeDgAAANCpaFn3l5JvWXeKxWL605/+pE2bNmn//ffX22+/rdbWVh1xxBH2fXbddVcNHjxYr732Ws7HaW5uVmNjY8obysMXTV9IkpZvWu7xSgAAAACgfZ4H8nfffVd1dXWKRCL63ve+p8cff1wjR47UihUrVFVVpe7du6fcv1+/flqxYkXOx5s5c6bq6+vtt0GDBhX5O4BfbIlukSRF41GPVwIAAAAA7fM8kO+yyy5asGCB3njjDV1wwQU666yz9MEHH3T48WbMmKENGzbYb59//nknrhZ+tjW6VZLUGm/1eCUAAAAA0L4KrxdQVVWl4cOHS5LGjRunN998U7/5zW90yimnqKWlRevXr0+pkq9cuVINDQ05Hy8SiSgSiRR72fAhK5BTIQcAAABQCjyvkKeLx+Nqbm7WuHHjVFlZqXnz5tmfW7RokT777DPtv//+Hq4QfrU1RiAHAAAAUDo8rZDPmDFDRx99tAYPHqyNGzfqoYce0osvvqi5c+eqvr5e5557rqZPn66ePXuqW7du+sEPfqD999+/4AnrKC/sIQcAAABQSjwN5KtWrdKZZ56p5cuXq76+XmPGjNHcuXN15JFHSpJuuukmhUIhTZ48Wc3NzZo4caJuv/12L5cMH2MPOQAAAIBS4mnL+t13362lS5equblZq1at0gsvvGCHcUmqrq7WbbfdpnXr1mnTpk167LHH8u4fR3mjZR0AAADwn9WrV+uCCy7Q4MGDFYlE1NDQoIkTJ+rVV1+172MYhubMmbPNjz106FDdfPPN273G5cuX67TTTtPOO++sUCikiy++eLsfsxCeD3UDOotVIY+ZMZmmKcMwPF4RAAAAgMmTJ6ulpUX33XefdtppJ61cuVLz5s3T2rVrvV6arbm5WX369NHPf/5z3XTTTa5d13dD3YCOsvaQS1TJAQAAUAZMU2rZ5M2baRa0xPXr1+vll1/Wr3/9ax166KEaMmSI9tlnH82YMUPf+MY3JCWq3JJ04oknyjAM++PFixfr+OOPV79+/VRXV6e9995bL7zwgv3YEyZM0KeffqpLLrlEhmGkFOReeeUVHXTQQaqpqdGgQYN00UUXadOmTTnXOXToUP3mN7/RmWeeqfr6+m38QXQcFXIEhlUhlxL7yCvDlR6uBgAAACiy1s3SLwd4c+3LvpSqurR7t7q6OtXV1WnOnDnab7/9sh5R/eabb6pv376aPXu2Jk2apHA4LElqamrSMccco1/84heKRCK6//77ddxxx2nRokUaPHiwHnvsMY0dO1bf/e53NXXqVPvxFi9erEmTJum6667TPffco9WrV2vatGmaNm2aZs+e3XnPQSegQo7AsPaQSwx2AwAAAPygoqJC9957r+677z51795dBxxwgC677DItXLjQvk+fPn0kSd27d1dDQ4P98dixY3X++edr1KhRGjFihK699loNGzZMTz75pCSpZ8+eCofD6tq1qxoaGux5YzNnztTpp5+uiy++WCNGjND48eN1yy236P7779fWrVvlJ1TIERjOCjkt6wAAAAi8ytpEpdqraxdo8uTJOvbYY/Xyyy/r9ddf1zPPPKPrr79ef/jDHzRlypScX9fU1KSrrrpKTz/9tJYvX65oNKotW7bos88+y3u9d955RwsXLtSDDz5o32aapuLxuJYsWaLddtut4LUXG4EcgeHcQ06FHAAAAIFnGAW1jftBdXW1jjzySB155JG6/PLLdd555+nKK6/MG8h/9KMf6fnnn9cNN9yg4cOHq6amRieddJJaWlryXqupqUnnn3++LrrooozPDR48eHu/lU5FIEdgOFvWqZADAAAA/jVy5MiUY84qKysVi8VS7vPqq69qypQpOvHEEyUlgvbSpUtT7lNVVZXxdXvttZc++OADDR8+vChr70zsIUdg0LIOAAAA+MvatWt12GGH6Y9//KMWLlyoJUuW6OGHH9b111+v448/3r7f0KFDNW/ePK1YsUJfffWVJGnEiBF67LHHtGDBAr3zzjs67bTTFI/HUx5/6NCheumll7Rs2TKtWbNGkvSTn/xE//znPzVt2jQtWLBAH3/8sZ544glNmzYt71oXLFigBQsWqKmpSatXr9aCBQv0wQcfdPIzkooKOQKDQA4AAAD4S11dnfbdd1/ddNNNWrx4sVpbWzVo0CBNnTpVl112mX2/G2+8UdOnT9fvf/977bDDDlq6dKlmzZqlc845R+PHj1fv3r31k5/8RI2NjSmPf8011+j888/XsGHD1NzcLNM0NWbMGM2fP18/+9nPdNBBB8k0TQ0bNkynnHJK3rXuueee9vtvv/22HnroIQ0ZMiSjKt+ZDNMs8AC5EtXY2Kj6+npt2LBB3bp183o5KKJ9HtzH3kf+l6//Rbv18s+wBgAAAGB7bd26VUuWLNGOO+6o6upqr5dT9vL9PArNobSsIxBM00wZ6kaFHAAAAIDfEcgRCM2x5pSPoyaBHAAAAIC/EcgRCM794xIVcgAAAAD+RyBHIDiPPJOk1hjnkAMAAADwNwI5AsG5f1yiZR0AAACA/xHIEQjpLeutcSrkAAAAAPyNQI5ASG9ZZw85AAAAAL8jkCMQ0lvWqZADAAAA8DsCOQKBKesAAAAASg2BHIFAIAcAAABQagjkCAT2kAMAAAD+tHr1al1wwQUaPHiwIpGIGhoaNHHiRL366qv2fQzD0Jw5c7b5sYcOHaqbb755u9f42GOP6cgjj1SfPn3UrVs37b///po7d+52P257COQIBPaQAwAAAP40efJk/ec//9F9992njz76SE8++aQmTJigtWvXer0020svvaQjjzxSf/vb3/T222/r0EMP1XHHHaf//Oc/Rb1uRVEfHXBJxjnkVMgBAAAQcKZpZvx3sFtqKmpkGEa791u/fr1efvllvfjiizrkkEMkSUOGDNE+++xj32fo0KGSpBNPPNH+/NKlS7V48WJNnz5dr7/+ujZt2qTddttNM2fO1BFHHCFJmjBhgj799FNdcskluuSSSyQlnhNJeuWVVzRjxgy99dZb6t27t0488UTNnDlTXbp0ybrO9Cr7L3/5Sz3xxBP661//qj333LPwJ2YbEcgRCOwhBwAAQLnZEt2ifR/a15Nrv3HaG6qtrG33fnV1daqrq9OcOXO03377KRKJZNznzTffVN++fTV79mxNmjRJ4XBYktTU1KRjjjlGv/jFLxSJRHT//ffruOOO06JFizR48GA99thjGjt2rL773e9q6tSp9uMtXrxYkyZN0nXXXad77rlHq1ev1rRp0zRt2jTNnj27oO8vHo9r48aN6tmzZ4HPSMfQso5ASA/ktKwDAAAA3quoqNC9996r++67T927d9cBBxygyy67TAsXLrTv06dPH0lS9+7d1dDQYH88duxYnX/++Ro1apRGjBiha6+9VsOGDdOTTz4pSerZs6fC4bC6du2qhoYGNTQ0SJJmzpyp008/XRdffLFGjBih8ePH65ZbbtH999+vrVu3qhA33HCDmpqadPLJJ3fm05GBCjkCgaFuAAAAKDc1FTV647Q3PLt2oSZPnqxjjz1WL7/8sl5//XU988wzuv766/WHP/xBU6ZMyfl1TU1Nuuqqq/T0009r+fLlikaj2rJliz777LO813vnnXe0cOFCPfjgg/ZtpmkqHo9ryZIl2m233fJ+/UMPPaSrr75aTzzxhPr27Vvw99kRBHIEAnvIAQAAUG4MwyiobdwPqqurdeSRR+rII4/U5ZdfrvPOO09XXnll3kD+ox/9SM8//7xuuOEGDR8+XDU1NTrppJPU0tKS91pNTU06//zzddFFF2V8bvDgwXm/9k9/+pPOO+88Pfzww/Ze9WIikCMQrJb12opabY5upmUdAAAA8LGRI0emHHNWWVmpWCyWcp9XX31VU6ZMsYe9NTU1aenSpSn3qaqqyvi6vfbaSx988IGGDx++TWv6f//v/+mcc87Rn/70Jx177LHb9LUdxR5yBILVsl5XVSeJPeQAAACAH6xdu1aHHXaY/vjHP2rhwoVasmSJHn74YV1//fU6/vjj7fsNHTpU8+bN04oVK/TVV19JkkaMGKHHHntMCxYs0DvvvKPTTjtN8Xg85fGHDh2ql156ScuWLdOaNWskST/5yU/0z3/+U9OmTdOCBQv08ccf64knntC0adNyrvOhhx7SmWeeqRtvvFH77ruvVqxYoRUrVmjDhg1FeFbaEMgRCFaFvGtlV0m0rAMAAAB+UFdXp3333Vc33XSTDj74YI0aNUqXX365pk6dqltvvdW+34033qjnn39egwYNso8ZmzVrlnr06KHx48fruOOO08SJE7XXXnulPP4111yjpUuXatiwYfYwuDFjxmj+/Pn66KOPdNBBB2nPPffUFVdcoQEDBuRc5+9+9ztFo1FdeOGF6t+/v/32P//zP0V4VtoYpnVQW0A1Njaqvr5eGzZsULdu3bxeDork9KdP18I1C7VHnz20YPUCHT/seF134HVeLwsAAADoNFu3btWSJUu04447qrq62uvllL18P49CcygVcgTCllhiqJvVsh41qZADAAAA8DcCOQIhvWW9NcYecgAAAAD+RiBHIFiB3K6Qs4ccAAAAgM8RyBEIdoW8KjnUjZZ1AAAAAD5HIEcgWHvI7UBOhRwAAAABFfC53CWjM34OBHKUvNZ4qx3A6yo5hxwAAADBVFlZKUnavHmzxyuB1PZzsH4uHVHRWYsBvNIcbbbfZw85AAAAgiocDqt79+5atWqVJKm2tlaGYXi8qvJjmqY2b96sVatWqXv37gqHwx1+LAI5St7WWGL/uCFDXSq6SCKQAwAAIJgaGhokyQ7l8E737t3tn0dHEchR8rZEE/vHqyuqVRlOtIvQsg4AAIAgMgxD/fv3V9++fdXayn/zeqWysnK7KuMWAjlKnjVhvaaiRhWhxK80FXIAAAAEWTgc7pRACG8x1A0lzwrk1eFqVRgEcgAAAAClgUCOkmftIa+pqKFlHQAAAEDJIJCj5Dn3kFst6wRyAAAAAH5HIEfJs1vWK2hZBwAAAFA6COQoeVbLunPKOoEcAAAAgN8RyFHy7Cnr4RpVGgRyAAAAAKWBQI6Sxx5yAAAAAKWIQI6Sl7KHnHPIAQAAAJQIAjlKnr2HPFytylCiZd2UqVg85uWyAAAAACAvAjlKnr2HvKLGrpBLUtSkSg4AAADAvwjkKHnZ9pBLUmuMfeQAAAAA/ItAjpLnbFlPqZCzjxwAAACAjxHIUfKcQ93CRliGDEm0rAMAAADwNwI5Sp5zD7lhGExaBwAAAFASCOQoec495JLaziJnDzkAAAAAHyOQo+Q595BLjkBuEsgBAAAA+BeBHCXPuYdckn0WOS3rAAAAAPyMQI6S59xDLjkq5HEq5AAAAAD8i0COkpfesk6FHAAAAEApIJCj5KUPdSOQAwAAACgFBHKUNNM0M/aQc+wZAAAAgFJAIEdJa441y5QpiT3kAAAAAEoLgRwlzaqOS1IkHJEkVRhUyAEAAAD4H4EcJc0a6FYZqrQr45Vh/+8hf+q/T+nS+ZeqOdbs9VIAAAAAeIRAjpKWPtBNKo095LPfm61nlj6jd1a94/VSAAAAAHiEQI6SZp9BHq6xb7Na1v28h9x6scDPawQAAABQXARylDT7DPISq5DHzbgkKWbGPF4JAAAAAK8QyFHSsrWsW+eQ+7n6bAfyOIEcAAAAKFcEcpS09DPIJSrkAAAAAEoDgRy+FDfjenbJs1rWtCzv/bLuIS+Bc8its9MJ5AAAAED5IpDDl95a8ZZ+/NKPNfONmXnvl20PudWyXgoVcutPAAAAAOWHQA5fWt+8XpL0VfNXee9XqseeWUHcz2sEAAAAUFwEcvhSXInAappm3vvZe8jDmYHczy3rVMgBAAAAEMjhS/F4YUPPSr1lnT3kAAAAQPkikMOXrAp5exXk5lizJCkSjti3lUIgZ6gbAAAAAAI5fMlqVW8vsLbGEm3pVgiXHHvITf8Gcs4hBwAAAOBpIJ85c6b23ntvde3aVX379tUJJ5ygRYsWpdxnwoQJMgwj5e173/ueRyuGW6wgbrWu52JVwSvDmYHcCut+RMs6AAAAAE8D+fz583XhhRfq9ddf1/PPP6/W1lYdddRR2rRpU8r9pk6dquXLl9tv119/vUcrhlsKrpAnB7dVGBX2baVQIbe/PyrkAAAAQNmqaP8uxfPss8+mfHzvvfeqb9++evvtt3XwwQfbt9fW1qqhocHt5cFDhU4hz1YhL4U95HYHAFPWAQAAgLLlqz3kGzZskCT17Nkz5fYHH3xQvXv31qhRozRjxgxt3rw552M0NzersbEx5Q2lp9DAmq9C7udjz6yhbn6u4gMAAAAoLk8r5E7xeFwXX3yxDjjgAI0aNcq+/bTTTtOQIUM0YMAALVy4UD/5yU+0aNEiPfbYY1kfZ+bMmbr66qvdWjaKxGrpLjSQZ9tD7ucKOeeQAwAAAPBNIL/wwgv13nvv6ZVXXkm5/bvf/a79/ujRo9W/f38dfvjhWrx4sYYNG5bxODNmzND06dPtjxsbGzVo0KDiLRxFYR171t4ecrtlPcuUdT9XyJmyDgAAAMAXgXzatGl66qmn9NJLL2ngwIF577vvvvtKkj755JOsgTwSiSgSiWTcjtJSaAXZblkPtf0ql8Ie8kKH1gEAAAAILk8DuWma+sEPfqDHH39cL774onbcccd2v2bBggWSpP79+xd5dfBSoceC5auQ+zmQW98XgRwAAAAoX54G8gsvvFAPPfSQnnjiCXXt2lUrVqyQJNXX16umpkaLFy/WQw89pGOOOUa9evXSwoULdckll+jggw/WmDFjvFw6imx7KuR+b1k3TdMe6kYgBwAAAMqXp4H8jjvukCRNmDAh5fbZs2drypQpqqqq0gsvvKCbb75ZmzZt0qBBgzR58mT9/Oc/92C1cFOhFXJ7qFuodI49s8K4lBhmCAAAAKA8ed6yns+gQYM0f/58l1YDP9nWc8hLaQ+583uiQg4AAACUL1+dQw5YrCpywceeOfeQG/7eQ+58IYpADgAAAJQvAjl8yToOrNAKeSkde2Yd6SZx7BkAAABQzgjk8KVCzyFvjWU59izs75Z1ZwinQg4AAACULwI5fMlq6y64ZT1cQi3romUdAAAAAIEcPmUF1bgZzzv8zx7qZpTOsWfOFxnae8EBAAAAQHARyMvZsn9Lt4+XPnnB65VkcIbwfKE1a4U85O8KufP78esaAQAAABQfgbycfTRXWvW+9H9/9XolGQqtImcb6ub3Y88KfbEBAAAAQLARyMtZdGviTx+GwpRArgIq5FmmrEdNfwbylCnr7CEHAAAAyhaBvJzFWhJ/+jyQ5zoazDRNO5A7p6zbe8hj/t9DzrFnAAAAQPkikJezaHPizzxD07zirCLnaut2VpdzVcjzDYTzSkogp0IOAAAAlC0CeTmLWYHc5xXyHKHVOUU92x5yyZ9t6wRyAAAAAJJU0f5d4IbpL07X6s2rXblWn9o+unr81eoaLY2W9VwVcufQtpyBPB5N+dgPnFV7WtYBAACA8kUg94kP1n6gZU3LXLvepKGTdFSAKuTZ9pBb96lRTRFW2HGFtOMDAAAACD4CuU9csd8V2hLbUvTr3PnOnfpw3YdqjjVL1tAzH4bCbamQVxgVMgzDvt0ZyP149Fk8Tss6AAAAAAK5b4zfYbwr13n848f14boPE0E1WhoV8lyBPNuEdUkKGSGFjbBiZsyfgZxjzwAAAACIoW5lxz4SLN7q62PPTLXts84ZyGOZZ5Bb7EnrfgzkDHUDAAAAIAJ52bHCa2u81dcVcuews1yh1QrbleHcgdy5z9wvGOoGAAAAQCKQlx07kMdaHcee+e+s7oIq5FbLupG588L6Pv1eIWeoGwAAAFC+CORlxqomJyrkVsu6/wJ5IW3dhVTIfRnIHXvI/XhOOgAAAAB3EMjLTErLuo+PPXOGcOdUcqdcQ92ct/mxZT2lQp7jewMAAAAQfATyMpO6h9zHQ92c+6zbOYc861A3w8cVcoa6AQAAABCBvOxk30Puv0DuDK3O/eRO9jnkWSrkKa35PlPIiw0AAAAAgo9AXmbsvdVm1NcV8kKqyHkr5H7eQ+783piyDgAAAJQtAnmZsSvHJVQhz7XP2h7qlqdl3Y8VcudQNyrkAAAAQPkikJeZUjmHvJDQmm+om/XCgx8r5LSsAwAAAJAI5GWnbQ95s2TtzfZjIC/grO5SHeqWMkHeh889AAAAAHcQyMuMHcit6rhU8ueQZ62Qh/xbIXd+b35cHwAAAAB3EMjLTNsecmcg91+V1tnWnbNCHmt/qJsf95AX8r0BAAAACD4CeZlpa1lvabvRh6GwkLbuqJl7qJuvK+QMdQMAAAAgAnnZKZVAvi0V8mwt6xx7BgAAAMDvCORlpq2V29+B3Fk5bvcc8nCec8hNfwdyWtYBAACA8kUgLzOlUiEvJLTaQ92M3BVyq4ruJylD3Xz4ggEAAAAAdxDIy0zKOeQWHwZyU+2f1Z2vQm7vIfdh4DXTptpTJQcAAADKE4G8zNhT1lOmj/vv2LOChrrFcw918/OU9fTvh33kAAAAQHkikJeZrNPHfVihdVaR26uQl9xQN6UFciatAwAAAGWJQF5m2lrWnYHcfxXylD3k8RxT1uOlfw65RCAHAAAAyhWBvMxkD+T+q5CnBHK1M9QtS4Xcz+eQpwdwAjkAAABQngjkZcYO5GYJBfJc55AXUCH3YyDPqJCzhxwAAAAoSwTyMtM21M0RAv0YyB1V8VyBtVRb1jOGulEhBwAAAMoSgbzMtB0H5vNAHt+Gc8hLrGU9Y6gbFXIAAACgLBHIy0xby7rPA7mzQt7eOeRZKuR+DuScQw4AAABAIpCXHSuoxmTKjrk+DITO0NreHvKSO/Ys7fuJmv5bIwAAAIDiI5CXGWsPuSRFjeQ7Pgzkzqp4rgp5NJYIsln3kBuls4ecCjkAAABQngjkZcYZXluVTOQ+P4c8vcXbkq9Cbr3wUAoVcvaQ5xeLx7Rq8yqvlwEAAAB0OgJ5mXGG11bDCuT+q9A6Q3jOCnk8T4Xczy3r6UPdmLKe1y/e+IUOf/hwvb/2fa+XAgAAAHQqAnmZCRmhtnZuHwdyZ0ht9xzycO6WdT8Gcoa6bZslG5ZIkj5r/MzjlQAAAACdi0Behuwzun28h7yQCnkhQ91KYQ85Q93ys54vXrgAAABA0BDIy5B99Jmf95Cr8HPIS+3Ys/QXGJxnriOTqcTvJ4EcAAAAQUMgL0NWi7efW9ad4StoFfL0lnX2kOdn/S5YwRwAAAAICgJ5GSqFlnVnIG93D3m+oW4+bAfPmLJOIM/Ler6YRg8AAICgIZCXIbtlvUQq5NvTst4a82GFPK3SS9DMjwo5AAAAgopAXoYyA7n/gs62VMjztaz7cQ85FfJtw1A3AAAABBWBvAzZe8itG3wYdArZQ17QUDda1kseQ90AAAAQVATyMlQKLevO9uRcU8gLGurmw5b19GBJ0MzPbln3YScHAAAAsD0I5GWoFAK5c191tgqyaZqBqZD7sa3eT+yWdfnv9xQAAADYHgTyMlQKgby9c8idQdtqwXfy9R5yUSHfFlZlnOcJAAAAQUMgL0N29di6wYdBx9menK1C7mxFrzC2bajbZ42f6cJ5F+o/q/7TGUvdZumt136s4vuJ9fOnZR0AAABBk5lkEHj2UDcfV8idITxbECu0Qm7tM3d6dumzeumLl9S7prf27LtnZyx3m2TsIc+xRx4J1jwBht8BAAAgaKiQlyG/t6ynB/COVMit7zFuxjMCcFNLkyTv2tmZsr5tGOoGAACAoCKQl6G2QG7dYvrqLPJCppA7J6wbhpHxeefk9fTg3dSaCOReBWEC+bZhqBsAAACCikBehtr2kDuCrI8DebbAmm/CutROIE9WyL1qFWeo27ZhqBsAAACCikBehiqt/dXOyrKPwk4hgTXfGeTpt6fvI/e6Qp4x1M2Hk+D9xPp9oGUdAAAAQUMgL0MVRuLH3prS6e2fsNMpFXKjQkayA6Al1pLyuU2tmyS1DQtzWyEt+Whjt6zzPAEAACBgCORlqNIO5D6tkG/jHvJsDMNQXWWdpLYAbrEr5HH2kJcC9pADAAAgqAjkZagy+WNvVekH8lwVckmqq0oE8o0tG1NutwK6VxXXjEDu0QsDpYIp6wAAAAgqAnkZqkwG8VKukLfXsi5JXau6SpI2tqYGcq/3kFMh3zZWEOd5AgAAQNAQyMtQqQXyrOeQt9OyLsluWXdWyE3TbJuy7lELdPredYJmfgx1AwAAQFARyMuQHcjDjjDr40De0Qp5t6puklID+dbYVjsAe3bsGS3r24ShbgAAAAgqAnkZsiJsa8ifgbyQCnJrrPA95FZFXEod8OaXPeQEzfzsc8gZ6gYAAICAIZCXoQqrQh4Kt93oo3bg9Ipxtkp2IS3r1h7yxpZG+zZnOPfsHPK0FxyiJueQ58NQNwAAAAQVgbwMVSaDTWvI8eP3UZU2PbBu71A3a4ib5I8KecYLDj567v2IlnUAAAAEFYG8DFXKCuTOCrl/ws42DXUL56mQVyanrDv2kDvDuVcBL6Mlnz3keRHIAQAAEFQE8jJUmcyDrYYhGclfAR+FnfQAvt0VckebuvN9r/eQh43ECyJMWc/PnrIuWtYBAAAQLATyMmS1rEd9GsjT9wpnC85WhbyQoW4pe8hbvd9Dbn0/1toJ5PnZ55DTSQAAAICAIZCXocp4smXdp4G8kAr5tgx1c4ZwX7SsJwOmHcgJmnnZQ92okAMAACBgCORlqDIZeFslXwby9Ap5tgpyQS3rWfaQ+2Gom9WCbb2YQIU8N9M07SDOHnIAAAAEDYG8DFUmjxFLrZD7p/pYyDndhbSsZ91D7sOWdYJmbs6qOM8TAAAAgsbTQD5z5kztvffe6tq1q/r27asTTjhBixYtSrnP1q1bdeGFF6pXr16qq6vT5MmTtXLlSo9WHAwVyWDj1wp5elDOVyHP17Ju7SFvam2yw9ymFh9UyE0q5IVyPje0rAMAACBoPA3k8+fP14UXXqjXX39dzz//vFpbW3XUUUdp06a20HTJJZfor3/9qx5++GHNnz9fX375pb75zW96uOrSVxm3WtZNSUbiRh8F8kLOId+WCrkp025V39ja1r7udSCvDLOHvD3O7QtUyAEAABA0ucuLLnj22WdTPr733nvVt29fvf322zr44IO1YcMG3X333XrooYd02GGHSZJmz56t3XbbTa+//rr222+/jMdsbm5Wc3Oz/XFjY2PGfcpdWyBXybasF7KHPBKOKBKOqDnWrI0tG9W1qqsv9pBnDHWjQp6T82dEIAcAAEDQ+GoP+YYNGyRJPXv2lCS9/fbbam1t1RFHHGHfZ9ddd9XgwYP12muvZX2MmTNnqr6+3n4bNGhQ8RdeYqxAHpUpGf6rkG/LHvJ8LeuSVFeZaFu3Brs595N7todcHHtWKOfPPn3YHwAAAFDqfBPI4/G4Lr74Yh1wwAEaNWqUJGnFihWqqqpS9+7dU+7br18/rVixIuvjzJgxQxs2bLDfPv/882IvveS0VcjjKXvIX/z8RS3ZsMS7hSWlB/BsgbU11n7LutTWtm4Fcj9UyK3vx3oxgcpvbs7tC7xwAQAAgKDxtGXd6cILL9R7772nV155ZbseJxKJKBKJdNKqgqky2e7dKtMO5Is3fqYfvPJD7d5rd/3p63/ycnmFtaybyZb18LYFcj+eQ2613yMTFXIAAAAEmS8q5NOmTdNTTz2lf/zjHxo4cKB9e0NDg1paWrR+/fqU+69cuVINDQ0urzI4KmPJQG62VchXblkjSVq3dZ1n67JsS4W8wsj/mpJ99FkyiPuhQp4+ZZ0KeW4pe8jF8wQAAIBg8TSQm6apadOm6fHHH9ff//537bjjjimfHzdunCorKzVv3jz7tkWLFumzzz7T/vvv7/ZyA8MK5DGZiiUD+ZboFklte7O9lFEhj+cZ6tZOhdzaQ97Y0ijTNH2xhzyjQm5SIc+FoW4AAAAIMk9b1i+88EI99NBDeuKJJ9S1a1d7X3h9fb1qampUX1+vc889V9OnT1fPnj3VrVs3/eAHP9D++++fdcI6ClMZawvdUSOksKTNPgrk6ceeZa2Qx7exQt7SpOZYc0r49axCnjbULdsLDkigZR0AAABB5mkgv+OOOyRJEyZMSLl99uzZmjJliiTppptuUigU0uTJk9Xc3KyJEyfq9ttvd3mlwVIZa7Hfbw2FFJG0OZYM5DHvA7kVwA0ZMpP/S2efQ74Ne8id+8cl71vW7XPIGVaWk/NnT4UcAAAAQeNpIC+k4lVdXa3bbrtNt912mwsrKg8V0bbQ3Wq3rCfObvdDhdy5x7o13po1sFot6+0de+bcQ+7cP+68jtvs7y9Z3SeQ58YecgAAAASZL4a6wV3heIvCyRdDWpPHkDtb1r1uDbaubw89y9LSbVfICzz2rLGlMaNC7tk55OkV8jiBPBda1gEAABBkBPJyFG1RpRXIQ4lfgc2xrW2f9njImBWUrbCdr0LeXiC3hro1tTRpU0uiQl5TUSPJ+2PPmLLePmcIp5MAAAAAQUMgL0exZlUmc0402bK+OeoI5B6fi11IYLWHurXTst6tqpukxB7yja0bU27zumWdKevtc7apUyEHAABA0BDIy1G0RZWyWtYTPevOCrnX+8gL2WNdaMt6XVWiQr6xdaO9h7xbxONAnj5lnQp5Ts7tCjxPAAAACBoCeTmKNavC3kNutaw325/2etJ6+h7rbEFsW4e6bWzZaJ9B3rUycZvX55Bba6cVOzdnhZyhbgAAAAgaAnk5ira1rNtD3fxUIVfblHUpf8t6u0PdKtsCeXqFPNdjF1vGHnmGuuXEUDcAAAAEGYG8HMUcQ92sY8+cFXKvA3lay7opMyOMFTrUzaqQt8ZbtW7rOklte8id13KT81g3r9ZQKpw/d54nAAAABA2BvBxFm1WRsYfcf4HcalmXMtu6rbb69lrWaytrFUq+6LB803JJ3gdyK2TaQ908HqLnZynnkBPIAQAAEDAE8nIUa8loWd/iwz3kVoXceZvFmkzeXoU8ZITUpbKLJEcgd7Sse7F/m6FuhUuZsi5a1gEAABAsBPJyFG12tKxnVsi9rtimt3RLHa+QS20V8RWbVqR87LyWm+wKeZhjz9rDOeQAAAAIMgJ5uYnHpXhr3kDul5Z1Z9hOD872ULdw/gq5JNVVJo4+88secitYWh0AVMhzc4ZwhroBAAAgaAjk5SbWIkkp55BHJTU7qrR+DOTp1dFCh7pJbYPdLPWR+oxruSl9jzxT1nNjqBsAAACCjEBebpKVcHsPuQxtSVbJLV7vIbf2CjsDuTOYmaZpt3kX0rJeV1WX8rEzoHvRBs055IVjqBsAAACCjEBebqLJCrndsi5tDqX+Gni9p9lu6c5RIXfucS+kQu5sUZcSZ5MbSrwI4UmFPG2oG4E8N4a6AQAAIMgI5OXGbllPBNJWw4cVcquCbFRkDc7OlvqCKuSVqRXyuqo6hY1wxuO6xW5ZZ8p6u2hZBwAAQJARyMuN1bKePJs7KmlzKC2Q+2QPuWEYdnB27rN2rq8je8i7VHaxzybnHHJ/o2UdAAAAQUYgLzdWy3ryR99qGBkt614HcquFO2SEsgZna32G2gJ7PumBvLai1n5cL9rF01vyCZq5EcgBAAAQZATycpNWIW81pM3pLeseB3KrguwM5Nn2kFeEKmSkrT0bZyCvrahVOBRuC/px7yvkMTPGkV45OPeNE8gBAAAQNATycmNVyJOV5VZlDnXzeg+5Fbzaq5AX0q4upQZyaz+5vYdc3g11y3fOOhJSziFnqBsAAAAChkBebqwKeSgRSKNS5lA3n+whDynUtofczNxDXshANyl1qJt1BFoo5F3LevpQN+dtSEXLOgAAAIKMQF5uolbLeiLMJirkPgvkclTIk8HZ2dJtVfALrZA7jz2zwnlIPmhZD7et3+uj5vyKKesAAAAIMgJ5uUkee1aRrJC3GtIWw19D3Zwt69kq5FZ4LbhCXtVWIe9S2cV+7PTHdYv1/VUYtKy3x/m8sM8eAAAAQUMgLzcZFXLTfxXy9vaQb2OFPGUPeVXqHnIv9iXbLevOCjlHn2WVMtTNg/3+AAAAQDERyMtNskJeGXK0rKdXyH041C3blHVnoM2na2VbILcr5D7YQ85Qt/axhxwAAABBRiAvN1aFPFldbjUy95B7Xa11HntmT0PPMmW90Jb1ynClqsPVkvyxh9yq9IaNsAwlnnsvXhgoBQRyAAAABBmBvNzYU9YdLevJKetWJdnrlnUrnBoyslbIt/XYM6mtbd2esu7hHvJsLzjE4gTybAjkAAAACDICebmxziEPVUlKPYe8WyQxjdzrQG4Fr3AonHUPuVXBL7RCLrUFcfsc8pD3e8hDRsheBxXy7BjqBgAAgCAjkJebZIW8wmpZd1TI6yP1idvcDOSv/kaafYzUstm+yQrJhoy8LesdqZBnTFl3uTJtmqb9/eXaI482zkFuDHUDAABA0BDIy41VIQ87AnmyQl5f5UEg//f90qevSssX2DdZ4TTXlHV7qNs2BPIdu+0oSRrabWjisZX5uG5wXi+kkH30GS3r2XEOOQAAAIKs8J5fBIO1hzwckZRoWd+SrJDbLetuTlm3gqhjkJwVwsJGOO8e8m1pWf/5fj/XWbufpeHdh0vybsq6s8prGIa9DsJmdrSsAwAAIMgI5OXGmrIetvaQt51D7kmF3MwM5FYIMwxHy3p8+yrk1RXVGtFjhP2xfQ65yyHPeT3nULeoyTnk2TDUDQAAAEFGy3q5sc4htyvkprYYHg51s4J2PDN45dpj3ZEKeTqv9m47Q2XYCGfdI482zqF7XgzgAwAAAIqJQF5urAp5RVsg97ZCngyijmCcLZCnDHWLbftQt3R+2ENuGEbblHX2kGflfF54jgAAABA0BPJyk1Yh32TGFEufsu7mHnK7Zd0RvBxD3exzuh2B3Wrv3q5A7tUecudQtxzfH9o4q+JMWQcAAEDQEMjLjV0hr5YkbTDbwne3qkTLejTu4n5mK6BmGeoWUluF3Ln32nrBYHta1r1qFXeGypBCtKy3g6FuAAAACDICeblJq5C3JCuQ1UZYEauN3dU95MnKsLNlXfn3kHdGhdxQoivA7SDsDJWGYdjfn6svgpQQhroBAAAgyAjk5SYZyCuSFXJLrVFhB1xP9pDHs+8ht/ZYZ9tDvl0V8iyP64b0lnXreyBsZud8AcOUSZUcAAAAgcKxZ35x79elxi+Lf53kNSoralJurglV2oHck5b1LJVQZwU525T1yvB27CH3wZR1ZwcAx55ll75v3JRpdzcAAAAApY5A7hfrP5PWf+ra5Sp7DUv5uNYIe1Mhj+c+hzzXsWAdOYc8nVd7t60hZVYQZw95funPS9yM288dAAAAUOoI5H7xrdlStMWda3Xtp8ra7ik31RoVdsXZ3Snr+VvWjeQE+M4+h9x6XLeDsHV0l3Xsmj1lnSO9skr/+dCyDgAAgCAhkPvFDuNcvVxly8aUj2uMsCqMxK+Du3vIswx1c+4hD2iF3HpBwKvj10pF+s8nZsZUqY7/3AEAAAA/ofezTKWH2ZQKucdD3exjzxx7rFOGull7yLfnHHKP95Bb17deBCGQZ5deEae1HwAAAEFCIC9TmYHc4z3kjqBlhVNDRtZKdme0rHt2DnlaIPfqhYFSkW2oGwAAABAUBPIyFQ6FU4ZjeRLITVOyApZjqJsVusJGOPs55J3Qsp6t8u4GZ/Vfajt+jT3k2WUb6gYAAAAEBYG8jDkDba3aAnncjLsTEJ3hKstQN8PIXyEvxZZ163rpQ90ImtnRsg4AAIAgI5CXsZRAboRTzvV2pUruDP2OYGyHVscecucLBFaFfHta1r2qkFst2NZQNyuQu3r2ewlhyjoAAACCjEBexlIDeSjlY1cCYo4KuRW6nC3rnV0h92zKenrLOhXyvDJa1sXzBAAAgOAgkJcxZ6CtUTil4uxKhdzZLp6jZT1ba7l1Tnop7iFPH+pm7yFnqFtW6QGcFy4AAAAQJATyMuZsUa9Roj3c1bPIc7SsZzuH3DlduzNb1r0+9owp6/kx1A0AAABBRiAvY+kt65LcPYu8naFuufaQ2y3r4RJsWU++sGANdbPPIWfKelYMdQMAAECQEcjLmLPCXGsFxORtVlt4UTnDlbNCnmxTDikU2Cnr1lC3UIgKeT4MdQMAAECQEcjLWOqxZ0bKbe5XyNuGyGWtkJtZKuSdEMjdDngMdds2GXvIGeoGAACAACGQl7HUQJ5WIXd7D3mOlnVr6FnWCvl2tKz7ZQ+5FcipkGdHyzoAAACCjEBexrK1rLtbIXcOdWsLWs4qspGs3Hf2lHWvKtP2BPnk92VPWWcPeVbpL1TQsg4AAIAgIZCXMWeFudZMa1l3ew+5I5A691kHbQ+5NdTNCuJUyPOjQg4AAIAgI5CXsax7yN2csp7Sst62h9wKYWEjnHXoWSnvIU+vkHPsWX4Zx56xhxwAAAABQiAvY1agDZumqpLB1LOhbu2dQ+4IzqVcIc+5h5yW9awyAnmcQA4AAIDgIJCXMSvQ1pimDKUG8qijYl007bWsy8gIzqZp2msrxXPIcwVyWrGzs1r8LVTIAQAAECQE8jJmBdraeNwOx65WyOM5hrqprWU9PbA6XyjolAq5y5Vpu2XdSB3qFjVdeAGkBHEOOQAAAIKMQF7GrEBbGze9CeTtnENuGJkVcue6OmUPubw5h9x6oYEKeX4ZLes8TwAAAAgQAnkZc7as24E87OaU9QLOIU8LrJ0dyF3fQ67sx565skWgBDHUDQAAAEFGIC9jbRVyj1rWCxjqZrV2W63l1rpCRsgOsx3hlz3k1p9UfrOjZR0AAABBRiAvY3Ygd4Qcz/aQF1ohj23/hHXrsSXv9pBb168wKhLr4NizrDKGuvHCBQAAAAKEQF7Gsg11qwglAqI7U9bbD+R2BVmpLeudFcjd3kOePtTNqxcGSgV7yAEAABBkBPIylnUPuast644w3M455Nb5050dyN2uTFst16HkXz3rBRAq5NkRyAEAABBkBPIytv+A/dW/spsmbN6SGcjdGOqWo2XdqlqHFMo5ZX17A3l60HeLVelP30NOIM8ufc84gRwAAABBQiAvY3v23VPPjbxQhzsDedj7oW5WOM27hzxcmhXy9D3kHHuWX/pUdbe3GAAAAADFRCAvd8lg6E3LurNCnnkOecgIKRQqToXc6z3k6YGcPeTZ0bIOAACAICOQl7scgdydoW6OcOVoHbf3WRshe691+jnk1t7rjvJ6yro11M06uo2W9ewI5AAAAAgyAnm587JC7gzDWVrWDcMo/h5yr84hV1qFnECeFeeQAwAAIMgI5OUuWam1Jp67u4c8x1C35FrCRtiuIFu3lfoecntgHUPdCpIx1E1UyAEAABAcBPJyl6tC7saUdWfYcu4hV1tbd7Eq5Onnm7slYw95iD3k+aT/fGhZBwAAQJAQyMtdWiC39mZ72bJuHUUWUpYp650dyF0+9sy5P15iynp72EMOAACAICOQlztPp6xnH+pmVUXDRjhwe8id++Od63BliF4J4hxyAAAABBmBvNz55dgzZ4XcMYm8aBXykDd7t3MNdSNoZpf+82GoGwAAAIKkQ4F806ZNnb0OeCVXy7obe8jj7Z9DblWS7Qp5Zw11SztOzS0ZLesce5YXQ90AAAAQZB0K5P369dM555yjV155Zbsu/tJLL+m4447TgAEDZBiG5syZk/L5KVOmyDCMlLdJkyZt1zWRxg7kXkxZd7asZ1bIQ4ZjD3m8cyvknh17ptShbkxZz4+hbgAAAAiyDgXyP/7xj1q3bp0OO+ww7bzzzvrVr36lL7/8cpsfZ9OmTRo7dqxuu+22nPeZNGmSli9fbr/9v//3/zqyZOTilz3kWVrWQ0YoYxq6tS6rkt9R9uN6dQ558voVRuL7YMp6dpxDDgAAgCDrUKo54YQTdMIJJ2j16tV64IEHdO+99+ryyy/XxIkTdc455+gb3/iGKiraf+ijjz5aRx99dN77RCIRNTQ0dGSZKIR9DrmPhrplq5B38h5yr1rFnfvjJe/2spcKhroBAAAgyLZrqFufPn00ffp0LVy4ULNmzdILL7ygk046SQMGDNAVV1yhzZs3b/cCX3zxRfXt21e77LKLLrjgAq1duzbv/Zubm9XY2JjyhjzSW9bdDORZjj0zTVOm2vZZZ0xZj3VOIDeUCMReV8itFxwI5Nml/3x4ngAAABAk2xXIV65cqeuvv14jR47UT3/6U5100kmaN2+ebrzxRj322GM64YQTtmtxkyZN0v3336958+bp17/+tebPn6+jjz5asVju/yifOXOm6uvr7bdBgwZt1xqCL3uF3JVjuMzMoW7OAJZyDnmygm6tq1T3kNtD3ZiyXpD0PeTWizUAAABAEHSoZf2xxx7T7NmzNXfuXI0cOVLf//73dcYZZ6h79+72fcaPH6/ddtttuxZ36qmn2u+PHj1aY8aM0bBhw/Tiiy/q8MMPz/o1M2bM0PTp0+2PGxsbCeX5pO8ht4a6uTFlPctQN2cAMwwj9znk2ztl3atjz5Tasm63zrOHPKt4nKFuAAAACK4OBfKzzz5bp556ql599VXtvffeWe8zYMAA/exnP9uuxaXbaaed1Lt3b33yySc5A3kkElEkEunU6waal0PdcrSsW8JGOGP4WslPWU9ez7o+Lev5OafSx804Q90AAAAQKB0K5MuXL1dtbW3e+9TU1OjKK6/s0KJy+eKLL7R27Vr179+/Ux+3rPllynqyEuoMpln3kHdSIPdqD3nGOeQE8rys5ytshBU341TIAQAAECgdCuTRaDTrsDTDMBSJRFRVVVXQ4zQ1NemTTz6xP16yZIkWLFignj17qmfPnrr66qs1efJkNTQ0aPHixbr00ks1fPhwTZw4sSPLRja+CeSJveHOCqhzyrp1e2cNdbNaxd0OeFbwtqesWy840LKelfXzqQhVqDXemrGnHAAAAChlHQrk3bt3twNFNgMHDtSUKVN05ZVX2nt1s3nrrbd06KGH2h9be7/POuss3XHHHVq4cKHuu+8+rV+/XgMGDNBRRx2la6+9lpb0zpQWyK3zvV0Z6palZT1lqJsRytjr3Wl7yA1v9pCnD3Wznm8qv9lZATz9hRkAAAAgCDoUyO+991797Gc/05QpU7TPPvtIkv71r3/pvvvu089//nOtXr1aN9xwgyKRiC677LKcjzNhwoS8/4E9d+7cjiwP2yJXhdyjoW7OgGwYRvHOIfdqD3naUDfrhYGo6cILICXI+veBFy4AAAAQRB0K5Pfdd59uvPFGnXzyyfZtxx13nEaPHq277rpL8+bN0+DBg/WLX/wibyCHD6SfQ56sPEfNqOJm3A6MRWEWPtSt0/eQG/46h5ygmV08rXODvfYAAAAIkg6lrX/+85/ac889M27fc8899dprr0mSDjzwQH322WfbtzoUn5H9HHLJhbZ1Zwg145Jpph57piwV8mTl3gpoHeX1OeT2lHWOPcsrfSo9LesAAAAIkg4F8kGDBunuu+/OuP3uu++2z/xeu3atevTosX2rQ/HlaFmXXBjslh5C4zE7gBkyZBiGXckOyh7y9KFuTFnPL71CTicBAAAAgqRDZcYbbrhB3/rWt/TMM8/Y55C/9dZb+vDDD/XII49Ikt58802dcsopnbdSFEe+QB5rlbYv9+aXHkLNWM5zuoOyhzx9qBuBPL+MCrmokAMAACA4OhTIv/GNb2jRokW66667tGjRIknS0UcfrTlz5mjo0KGSpAsuuKDTFokisveIJ1upQ4l923EzXvxBY+ntx84KedrQs84O5H7ZQ+78/kzTzHt6QTkyHb+XEhVyAAAABMs2B/LW1lZNmjRJd955p2bOnFmMNcFNaRVyKRF2m2PNxZ+0ntGyHm136FmpV8jTp6w798LHzJgqjO3bGx806RVyAjkAAACCZJv3kFdWVmrhwoXFWAu8kCOQSy7sIU8PV46W9fQKsr2HPNY5gdzrc8itgOmcYk/YzBRP20pByzoAAACCpEND3c4444ysQ91QgjwN5OkV8njbHuv2KuTbOdTNswp5Wku+tQ7Jhan2JSj9BQxetAAAAECQdKg/NhqN6p577tELL7ygcePGqUuXLimfnzVrVqcsDi5IO/ZM8rZCblWsraFn6XusO6tlPX1vulvs7896wSHUFsgJm5ms54tzyAEAABBEHQrk7733nvbaay9J0kcffZTyOYZSlRi7Qt7WCmxVnz3ZQ57cYx0KpVbIpURgtarIpRrIc01Zlwib2aQPdeMccgAAAARJhwL5P/7xj85eB7ySpUJuVSNdr5DHY3YAswKr8wWeuBkv+T3k6UPdCOT52eeQG5xDDgAAgODp0B5yyyeffKK5c+dqy5YtkqhelSSfDXWzQmmuwNrZe8gld0Ne+h55wzA8q9aXAnvKOseeAQAAIIA6FMjXrl2rww8/XDvvvLOOOeYYLV++XJJ07rnn6oc//GGnLhBF5mUgz2hZj7U7hbyz95Bbj+uW9CnyzvcZ6pYp/feBKesAAAAIkg4F8ksuuUSVlZX67LPPVFtba99+yimn6Nlnn+20xcEF+QJ5sfeQZ2lZz5hC7hh6FjWjdgU9SIGcduzcrBZ/axsFzxEAAACCpEN7yJ977jnNnTtXAwcOTLl9xIgR+vTTTztlYXBJlkDu3h7yWMbHuc4hl6TmaLP9/vYGcq/2btvfnzIr5LH0jgG07SFP/k6yLQYAAABB0qFAvmnTppTKuGXdunWKRCLbvSi4KFuFPLk/u+gt1Fla1uNGaouyMzhvjW3NWGNHeVYhTxvqJrV1ATDULRPnkAMAACDIOtSyftBBB+n++++3PzYMQ/F4XNdff70OPfTQTlscXOCzoW52YFUisOaqkFtt3h3lp5Z1K2wSyDNxDjkAAACCrEOp5vrrr9fhhx+ut956Sy0tLbr00kv1/vvva926dXr11Vc7e40oJkcwlGlKhuFdII9HFTczW9VDRkhxM67mWCKQh41wyt7yjvAqkKdPWXe+T9jMxFA3AAAABFmHKuSjRo3SRx99pAMPPFDHH3+8Nm3apG9+85v6z3/+o2HDhnX2GlFM6YFcHlbI4/G8U8itlvXt3T8u+WAPeZahbuwhz8RQNwAAAARZh/t+6+vr9bOf/awz1wIvOPYyJwJyyN6fXfQp6+kB1IwpniyAprd0RxW1K+SdEcgNw5AhQ6ZMb1rWnUPdQpxDnot9Djl7yAEAABBAHQ7k69ev17/+9S+tWrVK8XjqfySfeeaZ270wuCSlQp74ObpXIc8y1M3M3DtuvW/tId/egW7Ox405Jru7If1YN6ktbEZNziF3ck5UZ8o6AAAAgqhDgfyvf/2rTj/9dDU1Nalbt24p4cIwDAJ5KckSyN079qywPeRWYLUq5Nb6tpcngVy5h7pR/U3lfD6smQHW8wcAAAAEQYf2kP/whz/UOeeco6amJq1fv15fffWV/bZu3brOXiOKycsKeZaW9XxDzzpzD7nkzXTzbN+fFTaLfsxciXGGb2ufPRVyAAAABEmHAvmyZct00UUXZT2LHCXG05b1zKFuVji2jj2THBXyaOftIZfaQnH6lotiynfsGRXyVFkr5DxHAAAACJAOBfKJEyfqrbfe6uy1wBPpQ90cgbzYQ92ynENuHWvlnIJubYmwK+SduIdccrcNOl/LOlPWUznDN+eQAwAAIIg6tBn32GOP1Y9//GN98MEHGj16tCorUwPSN77xjU5ZHFyQrUIe9qhlPR7NW0HuzCnrzmu4euxZshrv7ADgHPLsnO3p9jnktKwDAAAgQDoUyKdOnSpJuuaaazI+ZxiGYjGCRcnI07Je9D3NGS3rsbaWdSMzsHZ2ILdbxd1sWc9SIeeM7eyyVcgZ6gYAAIAg6VAgdzPAoMhSAnmi+ujZsWeOoW7OlvVi7yH3eqib9T7HnqXKNtSNFy0AAAAQJNu0h/yYY47Rhg0b7I9/9atfaf369fbHa9eu1ciRIzttcXCBkWcPuetD3WJZz+ku1pR163GtfetuyHcOOWEzVUrLeoiWdQAAAATPNgXyuXPnqrm52f74l7/8ZcoxZ9FoVIsWLeq81aH4DEP2YDe3W9Yzjj2LZ99DHkrbQ97JQ91c3UOe/P5SOgBCDHXLJmXKOi9aAAAAIIC2KZCnV6eoVgWEFX7Th7q5PWU9x1A3ew95J7ese7GH3KrGh5RlyjpD3VI4nw97qJuL3QwAAABAsXXo2DMETHog97Jl3Rp65vjVtN4vVsu6m0E429A6Anl2zv321vNFhRwAAABBsk2B3DCMlCBh3YYSlxbIrYnWrh97ZsayV8hDxZmy7sUe8mxD3WhZz87+XVCIFy0AAAAQSNs0Zd00TU2ZMkWRSESStHXrVn3ve99Tly5dJCllfzlKiB0O3Z6ynqx2hiqkeDRlqFvec8g7ew+5i0E4X0s+YTOV9UKJYRhtL56wTQYAAAABsk2B/Kyzzkr5+Iwzzsi4z5lnnrl9K4L7crWsF30PeTKAhqvyBvKi7yF3sQ063wsOtGOncj5XtKwDAAAgiLYpkM+ePbtY64CXvNpDblWmw5VSq1Ja1rPtse70PeQhD84hzzPUrehT7UuMM5BbL2A4zyYHAAAASh1D3eAI5MmW9bBbLevJ9uNwVeJPR4XceSyYXSHv7D3kcr8NOt9QN6q/qVKGuiWP5qNlHQAAAEFCIEfyLHK5fw65s2U9+XHePeTJlnVr6Nz28mLvdt6hbuwhT2E9HyE5KuS8aAEAAIAAIZDD+2PPrIDtOIfcqohKbdVku2W9k4a6+WUPOUPdsrPa0xnqBgAAgKAikCOjQu76sWd2y3rc3mPtbFnPmLJewnvIs73gYD3fHHuWKus55OwhBwAAQIAQyJFZIXdtD3kyXDla1q1Q6txjHaQ95PYLDqHMPfJUyFM5uwnsc8h50QIAAAABQiCHD449SwbseKxtCnmWPeSWTgvkHgThbBVyhrpl53yu7BdPRMs6AAAAgoNADg+PPUurkDv2kGfbY23ptD3kIX/sIefYs+yc2xc4hxwAAABBRCBH3kBe1HbubC3r1mTtgFfInd+ftYc8ahLInZxn0jPUDQAAAEFEIEdGIHceK1bUkJitZd3MHOqWUSHv5D3kXlTInXvkXdsiUGKcL15w7BkAAACCiEAOx5T1RBh2Bt6ihkS7Ql5pf5wtsBYtkIfcD3n25HDHXz3XhuiVGGcgt/bcM2UdAAAAQUIgR84p61KRQ2LGsWeOPeTKs4e8kwK5J+eQK7NlvSqU+P7ZQ54qZagbLesAAAAIIAI5MlvWjbaW9aIG8iwt69kCa8Ye8k4a6uaXPeSuDdErMc6J+1bHBEfDAQAAIEgq2r8LAs8O5IkAZBiGKkOVao236tC/HFq86zZ0ldRVA7e8pz+HDHUzY9mnrIeCt4c8JZAnX2BoibW4to5SkO0ccvaQAwAAIEiokCOjQi5JX+v3Ndcu/4XZrA+rqhIV8jzHglk6rWXdw2PPsg51o0KeIttQN1rWAQAAECRUyJE1kN915F1at3Vdca978xid17tOn1RVqcUwcgbyog1186BlPetQNwJ5VvZzxVA3AAAABBSBHFkDuWEY6lXTq7jXjUVVG0+ErhbDkMxYSgizFHsPuRdD3Zzfkz1lnWPPUlgvlHAOOQAAAIKKlnVkDeSuiMdUaToCeTyWEsIsxa6Q+6VlvSXOHnInZzcB55ADAAAgiAjkcJxD7nLYMeOKJENXqyHJMdTNWUEO1LFnTFkvmHPivvUCBoEcAAAAQUIghyQrkLvcDmzGVGVVyGVI8ah91JW1Z1gK1h7ybIG8KnkOOy3rqZzdBNaee+v3AwAAAAgCAjm8aVlPBnErWjcbhhSPKxZPhGM39pB7USG32rCdLzhQIc8uW8s655ADAAAgSAjk8CaQJ4N3ld2ynhzqlqyAutGy7kUbtLMN22J9P9F41LV1lAK7myDEHnIAAAAEE4EcHlXIUwN5+rFnzqFnRTuH3Gd7yFtiDHVzsl+8EOeQAwAAIJgI5PAokCeulRrIo4E+h9wZJlMCeZiW9WycvwsMdQMAAEAQEcjhi5b1lrQp6/kCeUWoolOW4HaF3Bn8U4a6hZJD3QjkKRjqBgAAgKAjkMNHFfJ4u4G8IlSR0s6+Pdyuujor5NnOISeQp7KHuhnsIQcAAEAwEcjh8R7yxIctyaFudiBX9inrndWu7nxct0KetSdaSv3+rJZ19pCncv4u0LIOAACAICKQQ7KrtS62A8dz7CHPMoU82wC0zuD2HnJnmEyv+kuJCjlDy9pYvwuGYTDUDQAAAIFEIIejQu5i2Mnasp59D3k4FIwKea6hblXhKvv9qMnRZxbr+QobYbujgHPIAQAAECQEcnjbsp78sDWtZd25xzrbRPLO4HYbdK4KufNFhtYY+8gtKUPdQgx1AwAAQPAQyOHtUDclQnFz2lA3577xoOwhd1Z3sw11kxjs5uTslrAq5OwhBwAAQJAQyOHpsWeVZiKYthiS4tGUydqWoOwhT2lZTxtaZyRfmCCQt2GoGwAAAIKOQA5vK+SGFcgTLetWOM7Zsl7CFfKUKeuO78kwjLajz2hZtzHUDQAAAEFHIIene8gjVmVYiaFuzkFelmIFcq/2kBsyMs5Stwa7USFvk/UcclEhBwAAQHAQyNF27JmrLevWHvLEr6B9DrnaQqslZQ95Jw5182rKuvMFBotdISeQ25x7yK3fB1rWAQAAECQEcnjasl4pR8t6PG63rAdxD3m2dnyL9X21xFpcWUspSBnq5vgdoG0dAAAAQUEghzcVcuvYM+ce8hxD3Yo+ZT3ucoU8y187q/JPhbyNdcRZSKmBnLPIAQAAEBQEcjgq5C5WHs30lnWlnEPuRoXcqlS7FfCsdnxa1gsTi7d1FFAhBwAAQBARyOHpsWeRlJb1AgJ5EfaQW5XYYrOHumVrWadCnsGukKe1rDPYDQAAAEFBIIenU9Yrk6HYHurWTiCvCFV02hLsPeRxd88hd7bgW9hDninbUDfn7QAAAECpI5DD23PIlQinrXkq5EXfQ+72sWd5hrpRIW/jPCaOlnUAAAAEEYEcHrWsJwN5MptGDUMxZyBX8KasZ3uxwUIgz5SzZZ0KOQAAAALC00D+0ksv6bjjjtOAAQNkGIbmzJmT8nnTNHXFFVeof//+qqmp0RFHHKGPP/7Ym8UGmZdD3RzV7xbFsg4+K1aF3LqGW3uSs73YYKkKV0mSWmMEcktKy7qjq4A95AAAAAgKTwP5pk2bNHbsWN12221ZP3/99dfrlltu0Z133qk33nhDXbp00cSJE7V161aXVxpwHu4hr3IE7xYznvXYs2INdbMDuUvHnllBMl/LejQedWUtpSDlHHLRsg4AAIDg6bwJWR1w9NFH6+ijj876OdM0dfPNN+vnP/+5jj/+eEnS/fffr379+mnOnDk69dRT3VxqsHlxDnlykFqFEZahqEyZajVjdvu4M7SGQ8HYQ85Qt22TEsg5hxwAAAAB5Ns95EuWLNGKFSt0xBFH2LfV19dr33331WuvvZbz65qbm9XY2JjyhnZ4ONTNCFWoygqjhmQmb3eG1qDtIWeoW2GcQ90Mw7AnrbOHHAAAAEHh20C+YsUKSVK/fv1Sbu/Xr5/9uWxmzpyp+vp6+23QoEFFXWcgeLKHPGZf29o/3Zwc7CalhlZnu3JR9pC7NWU9y/54C+eQZ0ofgmf9Scs6AAAAgsK3gbyjZsyYoQ0bNthvn3/+uddL8j8PK+QyQm3t2jKyn0MeKs4ectePPYvnHupGhTyTc8q61PYiDRVyAAAABIWne8jzaWhokCStXLlS/fv3t29fuXKl9thjj5xfF4lEFIlEir28YPHw2LNEhTwZRg0ja8t60aesu1whz9eyzh7yNukt/tYLGVZQBwAAAEqdbyvkO+64oxoaGjRv3jz7tsbGRr3xxhvaf//9PVxZEHkw1M1qWQ+FFQknXkBpMYy2oW5ytKwHZA95tgnyFlrWM6UPwXP7BRQAAACg2DytkDc1NemTTz6xP16yZIkWLFignj17avDgwbr44ot13XXXacSIEdpxxx11+eWXa8CAATrhhBO8W3QQedqyHlZlcg+5c6ibq+eQu1Uhz1L9t9Cynim9Qk7LOgAAAILG00D+1ltv6dBDD7U/nj59uiTprLPO0r333qtLL71UmzZt0ne/+12tX79eBx54oJ599llVV1d7teRg8qRl3THULWQF8hx7yIt0Drnre8jzTFm3Btu1xgjkFqtzwWpVZ6gbAAAAgsbTQD5hwoS8/3FtGIauueYaXXPNNS6uqgx5WSEPhe0wmiuQF61CHvLm2DOGuhUmfaib9bxxDjkAAACCwrd7yOEiw8M95I5jz5yB3JVzyOW/oW4E8jYZQ92SL6BYzyMAAABQ6gjk8MGU9cxAnnIOeZGHurndsp51qJsVyGlZt2WcQy5a1gEAABAsBHI4ArmLQcfZsr4te8g7MZCHQ+7uIc83Zd3eQ06F3GY/X+IccgAAAAQTgRwe7SHP0bKudvaQd+JQN+toNdf3kOerkBPIbem/Cxx7BgAAgKAhkKMtkMuDCrnhHOrmOPZMLlTIXZ6ybg8py/LXriKUmK/YEmtxZS2lIL2jwG5Zd/P3FAAAACgiAjk8P/bMCtkthqGYB1PW3QrkseT3nLVCHqZCns7qXOAccgAAAAQVgRzetqyHwoqEI5KsPeSZ+6yt4Cy1VZI7g+vnkDNlfZtkDHXjHHIAAAAEDIEc3p5D7thD3ipDZoD3kOcd6hZiqFu69KFu1vPGOeQAAAAICgI5PD/2zKoONzta1p1VZCs4S6W9hzzvULfkCw3sIW+T3lHAUDcAAAAEDYEckhV+vaiQh8IpU9atqqizKm4dTyaV9h7ybBPkLdb3FY1HXVlLKcjZss5QNwAAAAQEgRy+Ofas1cgeWgMzZd3MPWWdPeSZ0lv8rU4JKuQAAAAICgI5HBVyb449Sx3qlmxTdrSpF2sPuRWM3dqTnD413Ml+USJGILfkqpATyAEAABAUBHJ4e+xZKJxy7Jk1Zd3Zpu6skFcYnTdl3e2W9XxD3aiQZ0o/t50p6wAAAAiazks3KF2etqwbdnW42TAUT4YwZ4W8rrJOEwZOUGW4UrWVtZ22BK+GuuU79qwlzlA3i3Vue8Y55KJCDgAAgGAgkMPjY8/C9pFfLY6g6qwiG4ah3x7+205fgtst0NZ1nC34FrtCTsu6LX2egFUpp2UdAAAAQUHLOjw/9syqkG/NEciLxe1zrdNbsJ2svfGt8VZaspPSW/zZQw4AAICgIZDD2wq549izrSFvArnkTsjLN9TNqpCbMl17gcDv0gf8EcgBAAAQNARy+ObYs2aXK+TO1nE3Ql4hQ90kqSXGPnKprWXdGvDHUDcAAAAEDYEc3hx7Zk1Zd+wh96plXXInkKcf4+XkPM6NSesJVvC2KuT2UDcq5AAAAAgIAjl807K+xRFU3Q7kbrSJ5wvkzuPcCOQJGeeQW0PdmLIOAACAgCCQwxHIXayQO449s9q1U1rWXfjVdLtCnm+om2EYdqdANB4t+lpKQUYgp2UdAAAAAUMgh0cV8mSoMtoq5C0uD3Vzew95vnPIJcekdY4+k5T5fNGyDgAAgKAhkMOjY8/ahrpFwpGMT5fbHnKpbbBbS5yhbpLj+RLHngEAACCYCOTwdsq6Yw95ypJyVJE7k5/2kEttgZw95Al2iz/nkAMAACCgCOTwdqibEU458ktKbSUvJq8q5NbU8HR2IKdlXRJD3QAAABB8BHJ43rKeXiF3ozpuscK/m0PdrHO101nPAxXyhPRz2xnqBgAAgKAhkEOyKraeHHsWsqeLW9yYsG5fy8U26PYq5BWhxNFn7CFPSK+QM9QNAAAAQUMgh2R4EcjbKuThUFgVjpCaq4JcDFbY89UeclrWJbX9TKwXMNhDDgAAgKAhkMObc8jjbXvIJanSEchzVZCLwQ55cR9MWQ8z1M0pY6hb8p8r63YAAACg1BHI4e1Qt2Q1vMoRUt048sxi7yF3YVBYey3rVus+gTyBc8gBAAAQdARyeHvsWfLaVfImkPuyZZ1ALinLlHVa1gEAABAwBHJ4fuyZ5F2F3M2W9fQW7HR2yzp7yCW1TVO3uhgI5AAAAAgaAjk8P/ZMkqocZ49TISeQS23bCBjqBgAAgKAikKMtkLs5LMsKwCFvA7lVfXVjUFh7gZw95KkyziFnqBsAAAAChkAOj1rWk6EqW8u6B+eQu1kht4aTpaNlPZX1M+EccgAAAAQVgRy+aFmvdFTIcwXWYvDk2LMcf+2slvWWeEvR11IK0l/AoGUdAAAAQUMgh2QFYE+PPWsL5GHH+8XmZoW8vaFuFaEKSbSsW+yWdaVOWbduBwAAAEodgRyOCrkHe8iT144YFW3LcbFC7qc95PZQN1rWJbUNdbNb1pPD3dw4Mx4AAABwA4EcPjn2zOMp63Hvp6xXhRnq5sQ55AAAAAg6Ajm83UOebFmvDHnbsu5GyGt3qJu1hzzGHnIpy5R1AjkAAAAChkAOjyvkiXBa5VHLuifnkLcz1I0KeQJD3QAAABB0BHL4o2U91BbI3Tz2zN5D7sL++faGutnHnhHIJWW+gMFQNwAAAAQNgRzeTFlPO/YsJZCHgn0Oec495CH2kDsx1A0AAABBRyCHtxVy+9izSvtTblbIvdhD3t6U9Wg8WvS1lAJa1gEAABB0BHJ4FMitCnmWlnUXp6xbLeuunENuFtayzlC3hFxD3WhZBwAAQFAQyOFoWXcx6ORrWffg2DM3Qp4V+q3W63QMdUuV3lFgVcqpkAMAACAoCOTwuGXdCuSOlnUvziH3Q4WcQJ4ifQietZWBQA4AAICgIJDDEchdrJDbU9YT1670OJC7sodc7ZxDbk1ZjxHIpSxT1kMEcgAAAAQLgRy+OPYskpwwLgV3D7kVJK1rprNelGiJs4dccrT4W0PdrAo5U9YBAAAQEARyeBPIrT3k1pT1cFuFPNce62Jws0JOy/q2YagbAAAAgo5ADo+nrCdb1sNtFfJwKHsFuRjcbINOr/imswM5LeuSGOoGAACA4COQwxct6ylD3dw8h9zFQWF2xTfH91eVfFGCCnniubKGulkdE5xDDgAAgKAhkMPblnXr2DNny3qOCnIxuLqHXKkV33S0rLexwrjU9jOyXshwfg4AAAAoZQRyeDRlPXmtZMt4JByxP5Vr6FkxuDpl3SwwkNOynvLzsF6goWUdAAAAQUMgh2RVpL3cQ+6Ysu5qhTy5X90XQ93CVMgtzsFt6UPdCOQAAAAICgI5PG5Zt6ast1XI3Tz2zNqf7OaxZ+0OdSOQp/w8COQAAAAIKgI5vB3qluXYMy/OIXe1ZZ2hbu1KaVlnqBsAAAACikAOSd63rFeFq+1PuTpl3cVjzwod6hY344rGo0Vfj585B7fZFXKGugEAACBgCOTwx7FnFd60rHtRIW+vZV2iSu78eXAOOQAAAIKKQA6P9pBbgTxZIQ8Ffw+5Nags1xR5AnmbbIGclnUAAAAEDYEcHlXIkwE42TLuWYXcxSnr7VXIK0IV9vvlfvRZvinrppvH8wEAAABFRCBHWyB3c29unpZ1N489c/UccuUf6mYYBpPWk6znSmrrYrD+dH4OAAAAKGUEcjgCuSS3qo/x9HPI2wJ5rpbuYnB1D3k8/1A3yXH0WZlXyO1uAhn2CzS0rAMAACBoCOSQnBVpt8JO2rFnRrhCVfHEiwFB3UNuVXbzdQBUhqmQS44j4hy/CwRyAAAABA2BHGkVcrcCeWqFXEZYVcmWeSsku8HNPeTtDXWTRMt6Urb99gRyAAAABA2BHO4HctPM2EOuUIWqrMAacq9l3dU95O0MdZOkqlCVJAK59eKFc789Q90AAAAQNARyeBPILVb4DoVVaXpQIXdzD7kK2EOebFlvibUUfT1+Zj1XzhdnGOoGAACAoCGQw4NA7tivbVWLjZBdIXd1D7nh4h7yeP4p6xIt6xbnUDcLLesAAAAIGgI5PAjkjmsYbRVyLwK5FxXyvEPdCOSSHC3rWYa60bIOAACAoCCQw/1AHndWyJPXDlWoKpmz3AzkblZds4XMdPaU9TI/9szqWHC+eGG9T4UcAAAAQUEgh7cVcmuPsFEGFfLkNQqZst4SL+895Fkr5KJlHQAAAMFCIEdaIHehHThlD3mWlnUXfy1d3UNewJR1WtYT7HPInVPWQ8lAzlA3AAAABASBHG2D1STvWtadQ92KvwKbmxVyU+2/4GAH8jJvWc+2354KOQAAAIKGQA73A3nWY88q7GPP3PyldHMPuVWFz7uH3AcV8rdWvKVL/nGJVmxa4dkarJZ1Z3s/Q90AAAAQNARyJFgh0atjz0JhRexAHtBzyAtoWa8KV0nyNpD/edGf9cJnL+j5T5/3bA3ZniuGugEAACBoCORIcDWQJ6/hHG5mhNumrBd/BTar6urGHvKCpqz7oGV9Y+tGSVJTS5Nna7Ba1rMOdWMPOQAAAAKCQI4ENwO5tYc85AjkobCqknus3auPO1rW4+5VyAs69szDCvnm1s2SpE2tmzxbg/XzSBnqRss6AAAAAsbXgfyqq66SYRgpb7vuuqvXywomO5C7OGXdGUyNsBqiUUlS3+qexV9Dkh3IXai6btNQNz8E8qiHgTzLUDc3J+IDAAAAbqjwegHt2X333fXCCy/YH1dU+H7JpcnrlvVQSGdv2Ki9tjZrzxMmFX8NSV7sIff7UDerMu5lhTzrOeRUyAEAABAwvk+3FRUVamhoKPj+zc3Nam5utj9ubGwsxrKCx4uW9bRgGjHC2mdrc+rU9yKz95DHi191tSq7ec8hT7ast8Rair6eXDZHExVyq1LuhWwvXrg5ER8AAABwg69b1iXp448/1oABA7TTTjvp9NNP12effZb3/jNnzlR9fb39NmjQIJdWWuJcrZBb09vSfv2sirkL4djiZsjbpqFufmhZ93IPeb5AzlA3AAAABISvA/m+++6re++9V88++6zuuOMOLVmyRAcddJA2btyY82tmzJihDRs22G+ff/65iysuYVbV1tU95OHU20PJho14tPhrSLJb1l0IeaXQsh6NR7U1tlWSxy3rWfbbW+/Tsg4AAICg8HXL+tFHH22/P2bMGO27774aMmSI/vKXv+jcc8/N+jWRSESRSMStJQaHD1rW7anrLrYku3rsmfx/7NmW6Bb7fat13QucQw4AAIBy4OsKebru3btr55131ieffOL1UoLHi6FuobQKubUGL1rW3Tz2LM9fu6pwlSTvKuTOqriXFXLrBRL2kAMAACDISiqQNzU1afHixerfv7/XSwkeVwN5exXyYO4hL2iom8ct685Bbr6dsi5a1gEAABAMvg7kP/rRjzR//nwtXbpU//znP3XiiScqHA7r29/+ttdLCx6vjz2TAr+HfJuGunnUsu5sU98S3eJZNdpuWZejZT35vhsT8QEAAAA3+HoP+RdffKFvf/vbWrt2rfr06aMDDzxQr7/+uvr06eP10oLH1T3kVsu6f6asuxHyChrqFva2Qp5eFd/cull1VXWuryPbfnsq5AAAAAgaXwfyP/3pT14voYxYU9ZpWS8G0zQLGupWFfJ2D3n62eNNrU2eBHLr5xF2dFHY3QzsIQcAAEBA+LplHS7yQ8u6PdTN/SnrRQ/kjqpuvqFuVst6S6ylqOvJZVM0s0LuBaasAwAAoBwQyJFgB3IX2oFzHnvm4R7yIoc85+PnG+pmTVlvjjUXdT25pAdwrwa75R3qxjnkAAAACAgCORIMN1vWcxx75mHLerHPIXcG8nwt612rukqSNrZsLOp6cskI5FFvArk9kT7LUDc3BvABAAAAbiCQI8EOiS5UH3PtIfdwqJubFfJ8gbxbVTdJUmNLY1HXk0t6APeqQm6Fbs4hBwAAQJARyJHg6pR1K5BTIU9nVcibWps8CZ7Zpqx7gZZ1AAAAlAMCORJcHeqWDFTpx56F3K+QW3vIix3yUoa6FRDI42bckzDslz3k+Ya6FfvFEwAAAMAtBHIkuBrI/dey7mqFPM9fu+qKavvoMy/a1v0WyJ3HnlnPGxVyAAAABAWBHAl+OPYswOeQFzplXfJ2sNvmaCKQ11TUSPJwynqyo8D5XNkT8RnqBgAAgICo8HoB8AlP9pD7p0LeGm/Vuq3rinadDc0bMq6ZS9eqrlq7da0nFXIrgPep6aPPNn5mB3S3WS9gOLsJOIccAAAAQUMgR4IXFfKMY8+Sv44uVsitquvyTct1yJ8PceWazqO8sukW8W7SuhXIe9f01mcbP+MccgAAAKCIaFlHgqvnkOeasp78dXSxQj6s+zAN7TbUtesdNugwX7esb4lukST1re0rybuWdfsccsdzxbFnAAAACBoq5EiwK+QuVB/tlvW0YOpBy3ptZa2ePOFJ167XXhiXpG6ViQq5F4Hcblmv7SPJu2PPsrasJzsL2EMOAACAoCCQI8GTY8+8H+omFRaS3eRly7q1Z7xPTSKQ07IOAAAAFA8t60go02PP/MirlnXTNO2KuFUh3xT16NizZBXcGcg5hxwAAABBQyBHgqt7yHMde5Zs2IhHi78GH/MqkG+JbrGPG7Mq5J63rGepkEtUyQEAABAMBHIkeHHsWUbLurWG8q6AdqtKtqw3u9uybrWrh4yQelb3lOR9y3q2c8glBrsBAAAgGAjkSPBVy3p5hy2rQu72HnIrfNdW1Kqusk6S1NTa5OoaLNkq5M5wzmA3AAAABAGBHAlenEOeHsg9GurmN1aFfGOruy3rdiCvrFVtZa0kKRqPqiXW4uo6pOxT1p3v07IOAACAICCQI8GTY8/SAzl7yCUPW9aT+8VrK2rVpbKLfbsXbetWBTzbOeQSLesAAAAIBgI5Elwd6pbj2DOmrEvybqibtYe8S2UXVYQqVB2uluRRIG+vZZ1ADgAAgAAgkCPBzQq5vYecoW7ZWBXyzdHNirrYLWBXyJPt6tafXgRyqyXdOcgtZcq6aFkHAABA6SOQI8GLKesMdcuqrqrOft/NKrkVvLtUJNrVrbZ1q3LuJqsCntKy7vjnirPIAQAAEAQEciR4MdQt49gz9pBLUkWoQrUVieq0F4HcqoxbgdzLPeTOEO4M5wx1AwAAQBAQyJHgh2PPKhJ7lhXdWvw1+Fy3SHLSuouB3KqE2y3rFd63rHMOOQAAAIKMQI4EPxx7VpWc7N3ifgD0G2uw24aWDa5d09pDntGy3up+y7rVks5QNwAAAAQZgRwJru4hz9GyXpWoyMqDAOg3XSvdn7SeXiH3smXdqpCH0l60sT5mqBsAAACCgECOBD+0rFvDzFqair8Gn/OiZd0e6laZWiH38tgzQ0bK7daecirkAAAACAICORJcPYfcallPr5DTsm6xjj5rbGl07ZrpQ93sY8+i3g11C6f9jlht6wRyAAAABAGBHAl+OPaMQG6z9pB70rJekdqy7sUe8nZb1pmyDgAAgAAgkCPJqpC7EHRyHXtWSSC3WBVyVwO5NdTNalmv8EHLupHWsp4M5JxDDgAAgCAgkCPBF3vICeQWq0Le2OxBy3pFWsu6h4E8vUJu7SmnQg4AAIAgIJAjgZZ1X7EDeat7gdxqWU8f6uZFy3quoW7WnnJrjzkAAABQygjkSHC1Qp6sbmYce0Ygt3jRsp4+1M0K5E2t7k+9z1khZ6gbAAAAAoRAjgQ7+Lixh7ydCnnrJnf2svuY2y3rpmlqS+sWSZlD3Tw5h1wMdQMAAEDwEciR4GqFvJ1jz8y4FN1a/HX4mNsV8pZ4i6JmVJK/WtZzBXIq5AAAAAgCAjkSvNhDnjFlvbbt/TJvW3c7kDur4DUVNZIcFXIvziFvZ6gbe8gBAAAQBARyJFjHS3k5ZT0UbgvlLe7vW/YTq2W9Jd6irS50C1hV8JqKGoWTL5Q4K+Rut4jTsg4AAIByQCBHgict61l+/exA7n6btJ/UVtba4dONKnn6kWfO902Z2hLdUvQ1OOWasm4NdeMccgAAAAQBgRwJdiB3ofIYzxPImbQuKVEJtqrkbgRyK3DXOrYN1FTU2C8KuD3Yrb095FTIAQAAEAQEciR4USFP30MuSVV1iT/LvGVdkrpWJiettxR/0roVuK02dSlRjbaq5H4J5PY55Ax1AwAAQAAQyJHgaiDPsYdcokLuYB995mIgd7asS20Vc7cHu+VsWWeoGwAAAAKEQI4EPxx7JklVyUDowVFbftMt4t6k9c3RxPPtbFmXvDv6zGpJD6d1UdCyDgAAgCAhkCPBD8eeSbSsO1hHn3nVsi5JXSq6pHzeLVYFPL1CzjnkAAAACBICORJoWfcdN4e6WRXw9JZ1+yxyn+wht6asE8gBAAAQBARyJLh6Dnkhx54RyK0KuZst6+kVcnsPucuB3GpJz5iynvwnyzqnHAAAAChlBHIkuBnICzr2jJZ1T4a6+WQPuXXOuFURt3AOOQAAAIKEQI4EN88hL+jYM4a6+apl3eUp63aFXNnPIadlHQAAAEFAIEeCq4Hc2kOeLZCzh9zi5lA3v7WsW0Pdcp1DzpR1AAiY1i1StMXrVQCA6wjkSPBiynrWlnVrDzkt63bLerN3Let1lYmOBbdb1hnqBgBlJNoi/fZr0u8muFMYAAAfqfB6AfAJL84hz9uyToXc1aFuycBtHXNmsSrmTa3uvkDCUDcAKCMbv5Qav0i8RbdKlTVerwgAXEOFHAl+O/bM5YqsH9mBvLX4gdzaI56rQu5Gld7JqoCnD3VjDzkABNDWDW3vb1nv2TIAwAtUyJHgaiA3U6/pxB5ym3Oo2/VvXl/Ua61oWiEpM5D3ruktSVq7dW1Rr5/O3kMuWtYBIPCcgXzrBqlbf+/WAgAuI5AjwYs95Nla1is59sxSH6lXJBxRc6xZD3zwgCvX7FXdK+VjK5Cv2bLGletbcu0hp0IOAAGUHsgBoIwQyJHg5jnkhbSsUyFXVbhKN024SW+tfMuV6w3vPlwDuw5Muc0K5F9t/Uqt8VZVhipdWUuulnVDVMgBIHAI5ADKGIEcCV4Mdct77Bl7yCXpoIEH6aCBB3l2/R7VPRQ2woqZMa3bsk79uvRz5bo5h7pZFXIRyAEgMJz7xgnkAMoMQ92Q4OY55HmPPUtOWW/dJMUJXV4LGSG7jX3NVvfa1nO1rHMOOQAEUEqFfL1nywAALxDIkeCbY88cQ8WYtO4LvWqSgXyzi4GcoW4AUD4I5ADKGIEcCX459qyiRkruE2YfuT/0qe0jyd3Bbu22rBPIASA42EMOoIwRyJHg6pR1aw95ll+/UMhxFjmB3A+swW6rt6x27Zo5h7olPzZFyzoABIazKk4gB1BmCORIcnPKep6WdYlJ6z7jxdFnOY89ExVyAAgcKuQAyhiBHAl+aVmXpMrkPnICuS/0qXG/Zd0O5KJlHQACj0AOoIwRyJHgl2PPpLZJ6y1NxV8L2uVJhVz5W9YJ5AAQIARyAGWMQI4EO/i4eOxZuy3rTFn3Ay8CuTXULZz2og0t6wAQQM5zyJ3vA0AZIJAjwU8t61W0rPuJM5C7df53rqFu4RDnkANAoMRaU4e4UiEHUGYI5EiwA7kLQce6Rs5AblXIaVn3AyuQN8eatbF1oyvXzDXUzUgOH7Ra2gEAJW5rY9rHG9z5bxEA8AkCORJcPfasvQq5tYecCrkfVFdUq2tlV0nuta1bx5pxDjkABJx15FmoIvGnGeP//wMoKwRyJHgx1K29PeSt7CH3i961ybb1ze4E8ljyRRurIm6xzyGnegIAwWAF8rqGtlBO2zqAMkIgR4Ine8hzBHKOPfMdq2199ZbVrlyPCjkAlAkrfNd0l6q7p94GAGWAQI4ET449a69lnT3kfuH2pPVce8iZsg4AAWOF7+r6xJvzNgAoAxVeLwA+4cUe8naPPaNC7hd+CeT2OeQMdQOAYHAG8tYtydvWe7YcAHAbgRwJvqqQcw653/Sp6SPJxaFuJi3rAFAWsgZyKuQAygeBHAnWec++CuS0rPuF23vIrQp4+lC3sME55AAQKFvWJ/4kkAMoUwRyJLh5Djkt6yXHCuRrt6x15XrttqxTIQeAYLAr5N0J5ADKEoEcCb5sWSeQ+4XrFfL2hrqxhxwAgsHZsh4lkAMoP0xZR4Kfjj2zpqy3ehDIHzlXuuOAtlfpIaltD/mG5g1qibUU/XpWILcq4hbOIQeAgMk6ZX29Z8sBALcRyJHg5h5yq2U9V4Xcq3PIWzZJ7z0qrXxPWr7Q3Wv7XH2kXhWhREONG23r9lA3MdQNAALNCt/OQG7tKweAMlASgfy2227T0KFDVV1drX333Vf/+te/vF5S8Li1h9w0JSWv4bc95KsXyV7b2o/dvbbPGYbh6tFnVkt6OK2LgkAOAAGTUiHvnnobAJQB3wfyP//5z5o+fbquvPJK/fvf/9bYsWM1ceJErVq1yuulBYtbLevOx8+5hzzZsh7d2lZNd8Oq/2t7fw2BPF3vavf2kedsWRdD3QAgUKzwXdPd0bJOIAdQPnwfyGfNmqWpU6fq7LPP1siRI3XnnXeqtrZW99xzj9dLCxZfBfIube+7WSVf9UHb+2s/ce+6JaJ3rXsV8nbPIWeoGwAEAxVyAGXO14G8paVFb7/9to444gj7tlAopCOOOEKvvfZa1q9pbm5WY2NjyhsK4FYgd1a8c7WsV0Ta1uNVIKdCnsHVlvUcU9Y5hxwAAqR1a6IbTkob6kYgB1A+fB3I16xZo1gspn79+qXc3q9fP61YsSLr18ycOVP19fX226BBg9xYaulza6ib6QjkuSrkhtHWtu5qIHe0rK/7rxSLunftEmBNWnczkFst6hbOIQeAALGDtyFVdW0L5M2NUpx/5wGUB18H8o6YMWOGNmzYYL99/vnnXi+pNLg21M3Zsp6jQi45Brs1FXc9ls3rpI3LE++Hq6R4q7T+U3euXSLcPIvcaknP2bJOIAeAzrO10ZvTRex29W5SKNQWyM241LLR/fUAgAd8Hch79+6tcDislStXpty+cuVKNTQ0ZP2aSCSibt26pbyhAF60rOeqkEttgbx1c3HXY1n9YeLP+kFS750T79O2nsIK5G4ce9beUDdTtKwDQKf524+luw6S/vuiu9e1A3n3xJ+V1VI4kvo5AAi4Cq8XkE9VVZXGjRunefPm6YQTTpAkxeNxzZs3T9OmTfN2cUHjxVC3XHvIJffPIrf2j/fdLXHtle8ljz6b5M71S4AVyD9Z/4mmvzjdlWty7BkAuMAK4kteknaa4N51nWeQW6rrpU2rCOQAyoavA7kkTZ8+XWeddZa+9rWvaZ999tHNN9+sTZs26eyzz/Z6acHipynrkmMPuUst69b+8b67JVrWJSrkaQZ2HagKo0Jbolv0/KfPF/16NRU1qqmoSbmNQA4AnaxpldSUnMuz4j13r+2csG6p6U4gB1BWfB/ITznlFK1evVpXXHGFVqxYoT322EPPPvtsxqA3bCfXW9aNtkFy2dh7yN2qkFuBfKRkDRLj6LMUPat76u6Jd+vjr9x5oWL33ruruqI65Tarhf3tlW/rV//6VVGvHzJCmjBwgvbpv09RrwMAnnLuHV/pdiBfn/gzvUIuEcgBlA3fB3JJmjZtGi3qxWYF8o3LpUfPK951Wrck/szXri5JVVbLugt7yE0ztWXdetGACnmGvfrtpb367eXZ9btVJWZCfLL+E32yvvgvmDzwwQM6ZOAhmv616dqpfqeiXw8AXLfCEcgblyWGnNb2dOfa6XvIJQI5gLJTEoEcLqjtlfizpUl692H3rpeLmy3rTSulLV8lXpTovbMUa03cbrXMOV+5h6eOH3a8WmOtamxpLPq1Vm9ZracWP6X5X8zXK8te0dg+Y1URKv4/md0j3bVn3z21Z789tUuPXVy5JoAytiJtuvqKd6WdDnHn2lborunedhuBHECZ4b/0kNB7hPTtP0vrFrtzvaEH5v+8my3rVnW85zCpsibxVteQ2FO35hNp4LjirwEFqauq05RRU1y73rmjztWst2fpH5//Q/9e9W/Xrvvcp89JSgy1Sz/6rRiqw9U6fMjhOnWXU7V7792Lfj0APrLi3cSf1d0TLeQr33MvkG9Zn7x2lpZ163MAEHAEcrTZxUcTxV0N5I6BbpbeIxKBfO3HBPIyNrR+qG457Ba9v/Z9fd74edGvZ8rUsqZlenvl21qwaoGaWpsUM2Ptf+F2ao23as4nczTnkznavdfuGtZ9WGI9pmmvy/oz5Tazbd32fUwz5Vg65/2zPZ511+7Vyc6AvntqaLehGUfeASiC5iZpbfKF+NHfkt78fVtAd0O2oW5W+zoVcgBlgkAOf6q0ziF3sULed2Tbbb2GS0tfZh85JEm799pdu/dyr3J83ujzFIvHtHrLaleut6xpmR756BHNXTpX7699X++vfd+V66ab88kcSVKXyi6qDFUW/XpV4SodNeQonTHyDO1Qt0PRrwf4zsr3JJlS1/7SsEOTgdzFwW5ZAzkt6wDKC4Ec/uSHCrkkrfmo+NcHsgiHwmro0uDKtRq6NGhcv3H68d4/1gufvqCm1sTsBiP5P0kpFWtDhv1xIZ/Peh+j7XZJ+rLpS/171b/17up3tcmNF+KS/vh/f9T/+/D/6cghR7r2osvwHsO1X//9mA8A71nV8IbRUr9RifdXfyhFW6SKquJfn6FuAEAgh09Zgbx5oxSLFu86Zlxa9WHi/ZQKeTKQc/QZykjP6p46eZeTPV1DS6xFXzR9IUfXe9F80fSFHvjgAb2+/HU9u/RZPbv02eJfNKlndU8dvePR2q//fgob7Zw60QlqKmo0oscI1UfcH1Jpmqa+av5KXSq7KBKOuH595LH8ncSfDWOk7oOlSL3UvEFasygR0ouNY88AgEAOn7IC+cfPSde2M5G9M4SrpJ6OY616D0/8uXZx4hi09o5pA9ApqsJVrh0xt1P3nXTwwIP14boPNeeTOdrYsrHo12yNter15a9r3dZ1evD/HtSD//dg0a/p1K+2n4Z3H+5KMI6aUS3ftFxfbPxCW6JbVBWq0h5999A+Dftol567pAwsdHZLpHdbpH8+9d38X5fyGIahblXdEm+RbqoKuVABllQRqvDvTARrwnr/MZJhSA2jpE9fTbStuxLIaVkHAAI5/GmHcVKkm9Rc/OOtJEm7fl0KO/46dB+SCOmxZmnD51KPoe6sA4Drdu25q366z09du15rvFWvffmanv7v01rauNSVa25o3qBlTcu0cvNKrdy80pVrpmuJt+hfK/6lf634lyfX90rYCKtrVVd1q+qm2sra1BcXinjN7tXd1bO6p7pHuiucfFE55QUOMy6j+XOpR72MrxZI//5UqqtKfPzJI5K5JueWFOefbX9k38aS7THs26tiMiq7Sp8/J2P1G4nbNyyTunWVofXS+/dlXtfIfJEm3wse6c931nXk+RjeGNFjhPbqt5fXywBcYZjW2NuAamxsVH19vTZs2KBu3bp5vRxsi2iz1LrZhQsZiVfk0/8f+m37JvbS7Xy0VNe3uEuorJH2OkvqN7L9+wJAB2xs2aiPvvpISzcsdWV6f8gIqV9tPw3qOkgD6gZoWdMyvbniTb2x/A0ta1pm3885oT+bbFP7M27PcR+naDyqptYmbWjeoNZ4a8e+KQCuOG3X0zRj3xleLwPYLoXmUAI5kMuj50nvPuze9UIV0vgfSAdfKlXVunddACgjpmlqS3SLKy9KmDK1NbpVG5o3qLGlUVuiW4p+TSkxi2F983qt27pOG5o3KG7GM1/4WL1IWjxP6jZA5sjjE59rWiW995jMioi011mpRxQ6vy8z8/ZcL6yk325/3LJJev9xyQjJHHtq2xdEt8p87/HEfcacLBlGzsdIfpBxrZwf51gb/OfAHQ7UN0d80+tlANul0BxKyzqQy5HXJKbOxlyopCx7W/roGemVm6T3HpN2OSazYl8MFZFEd0Ckm1RZ6841jVCiI6CyRqqoSXyc9/6FrKmd+7T7GEX++oLu4sYa/PA8BGUNhuP9XLdneT/j+ttye2c8Rpps99+ux27n9kLua4QTHxfp3yPDMFRbmfaip2km9ixvWZeYMN5jSOLfqE7Qraqb+tYWucuqI56dIa1bL404VbK2bLRulV6+VzJj0sgpUrcBxbv+yg+k+XdLtb2kA3/Rdnu0RXrxD4n39/6JVNOjeGsAAB8gkAO5dBsgHXixe9f78Gnpbz+W1n8qvXGHe9cFAD8yQolwHgonQ3qoOCHdNKXoFinuPNHDSEwd7zUs8cJhsRmGVD9Q6rOL1Gc3qUtvFfTi0vb44q3Enw1j2m6rrE4c+7n6w8Rgt2IG8mwD3aTEcWuVtYkta1s3EMgBBB6BHPCLXY+VdjxY+vcD0qbVLlzQTFRDmhsT/9HT6k4rpeJRKbo18R9brVsS/zGcVzufL2jXTQH32d51FHgXV74fXz0nQfx+TMfdTcfjmm2fz7gtyzU66/agMuOJNzf3e1fVJYJ/c2PixdH1n7p3ba+kT1NvGJ0I5H+/VlpQxFMAmlYl/kwP5NZtrZult2YX90UBKTHAtc+uiRku2dZSLFu+kj59TfrstcQahh0mDdpHCle6twYAvkAgB/wk0lXa//terwJAqTKLEPjdvt00E8dNmrG0P+MqmorqROt0ZXXi+ptWS2s+ktYtSaucF0k8Kn21NLGve/Ui9478GjhO6ps2THTgPon5KSsWth2LVkzdB2fe1qW3tHG59OrNxb++U7eBbceuFlOsJfHzdv49ePmGxPaxHcYlAnqxhSoSA2u79k/8WVH8oxAlJV70qumReGtvW0jejpg8n+vo13HN4l1ze7qbcn1tqFKK1HX8cX2EoW4AAABIiDZL789x59jRUFja5Vipa7/U2xf/Q/rPH4v7IoyleaO06v+kxi+Kf610vXeWBu+f6BZbPE/avNb9NQClardvSKc84PUq8mKoGwAAALZNRUQae4q3axh2aOLNTVu+ktZ8nKheF52R2KvvPFI1HpO+XJDYLuDGlpRoc2LbwMblUtNKdzpBTFNqaUo811u+Sqwh331zf7Lzv45rFva1KAoCOQAAAMpbTY/EHm6vhMKJLQQDx3m3BqCj8oX87ZnfEuxGbhuBHAAAAADQMfn2iLtxpG6JI5D7xI3PLdK6TW60SUl9u1br3IN2VF2EHz8AAAAAeIVE5hNzFizT5+tcOnZK0t8XrdL9Z++j+lqO1wAAAAAALxDIfeLs8TuqcWvxz1qNm9L9ry3VO5+v17d//7oeOHcf9apz6agLAAAAAICNY8/K0IcrGnXGH97QmqYWDe9bp5PGDSz6NUOGNG5IT+01uLsM9pIAAAAACLBCcyiBvEwtXt2k03//hlY0bnX1ujv17qJv7rWDxg3p6cqMh4E9ajSwR23xLwQAAAAASQTyJAJ5bl98tVl3v7JEG7cW/+zJTc1Rvbhotba0xop+LaeQIZ2wxw666PARGtq7i6vXBgAAAFCeCORJBHL/2NQc1TPvrdATC5Zp+YbiV+bjcVP/XbNJkhQOGTp6VIN6dakq+nUNw1BVRUiRipCqwiGFQu606FeGDUUqwopUhBQOGa5tDTCUONHCMCRDLl0zeZmQYbh+mob1Pbp5XetS7PbofMP71ml4365eLwMAAAQMgTyJQF7eFn6xXrOe/0gvLlrt9VIA+NDFR4zQxUfs7PUyAABAwBSaQ5myjkAbM7C77j17H7396Vd6+ePViseL//pT3JRaY3E1R+NqjsYUjxf9kjJlKho3E9dsjSvqxkUlmaZkSnL7dT3TlOKmqbgH1zWl5P9xl+nBRYP9cm3CgPoar5cAAADKGIEcZWHckB4aN6SH18sAAAAAAFvI6wUAAAAAAFCOCOQAAAAAAHiAQA4AAAAAgAcI5AAAAAAAeIBADgAAAACABwjkAAAAAAB4gEAOAAAAAIAHCOQAAAAAAHiAQA4AAAAAgAcI5AAAAAAAeIBADgAAAACABwjkAAAAAAB4gEAOAAAAAIAHCOQAAAAAAHiAQA4AAAAAgAcI5AAAAAAAeIBADgAAAACABwjkAAAAAAB4gEAOAAAAAIAHCOQAAAAAAHiAQA4AAPD/27v7mCrr/4/jr3NUTogiKHKniKCmFkplykjTDCZ4l3elKSspp1OxlZrzZibaWn2nWyvLtBvTaubdSk1nNlLBNNQkyRuUhGF4A5Iagvcon98fzbPfSU0w5TrA87FdG+f6fM513p/ttevyzXW4BADAAjTkAAAAAABYgIYcAAAAAAAL0JADAAAAAGABGnIAAAAAACxQ1+oC7jdjjCSppKTE4koAAAAAALXBjf7zRj96OzW+IS8tLZUkhYSEWFwJAAAAAKA2KS0tVaNGjW47bjN3atmrufLycp08eVINGzaUzWazuhwXJSUlCgkJ0bFjx+Tt7W11OajFyCLcBVmEOyGPcBdkEe6CLFacMUalpaUKDg6W3X77vxSv8XfI7Xa7mjdvbnUZ/8rb25tAwy2QRbgLsgh3Qh7hLsgi3AVZrJh/uzN+Aw91AwAAAADAAjTkAAAAAABYgIbcQg6HQ8nJyXI4HFaXglqOLMJdkEW4E/IId0EW4S7I4r1X4x/qBgAAAACAO+IOOQAAAAAAFqAhBwAAAADAAjTkAAAAAABYgIYcAAAAAAAL0JBbZMGCBWrZsqUeeOABRUVFaffu3VaXhBpu9uzZstlsLlu7du2c45cvX1ZSUpKaNGmiBg0aaMiQITp16pSFFaMm2bZtm/r376/g4GDZbDatXbvWZdwYo1mzZikoKEienp6KjY3VkSNHXOacPXtWCQkJ8vb2lo+Pj0aNGqXz589X4SpQE9wpi4mJiTedK+Pj413mkEXcC++88446d+6shg0byt/fXwMHDlR2drbLnIpcm/Pz89W3b1/Vr19f/v7+mjJliq5du1aVS0E1V5EsPvXUUzedG8eOHesyhyzeHRpyC6xcuVKTJk1ScnKyfv31V0VGRiouLk5FRUVWl4Ya7uGHH1ZBQYFz2759u3Ns4sSJWr9+vVavXq20tDSdPHlSgwcPtrBa1CQXLlxQZGSkFixYcMvxuXPnav78+Vq0aJF27dolLy8vxcXF6fLly845CQkJOnjwoFJSUrRhwwZt27ZNY8aMqaoloIa4UxYlKT4+3uVcuXz5cpdxsoh7IS0tTUlJSdq5c6dSUlJUVlamXr166cKFC845d7o2X79+XX379tXVq1f1888/64svvtDSpUs1a9YsK5aEaqoiWZSk0aNHu5wb586d6xwji/+BQZXr0qWLSUpKcr6+fv26CQ4ONu+8846FVaGmS05ONpGRkbccKy4uNvXq1TOrV6927jt06JCRZNLT06uoQtQWksyaNWucr8vLy01gYKCZN2+ec19xcbFxOBxm+fLlxhhjsrKyjCTzyy+/OOd8//33xmazmRMnTlRZ7ahZ/plFY4wZOXKkGTBgwG3fQxZxvxQVFRlJJi0tzRhTsWvzxo0bjd1uN4WFhc45CxcuNN7e3ubKlStVuwDUGP/MojHG9OjRw7z66qu3fQ9ZvHvcIa9iV69eVUZGhmJjY5377Ha7YmNjlZ6ebmFlqA2OHDmi4OBghYeHKyEhQfn5+ZKkjIwMlZWVueSyXbt2atGiBbnEfZeXl6fCwkKX/DVq1EhRUVHO/KWnp8vHx0ePP/64c05sbKzsdrt27dpV5TWjZktNTZW/v7/atm2rcePG6cyZM84xsoj75dy5c5Kkxo0bS6rYtTk9PV0dOnRQQECAc05cXJxKSkp08ODBKqweNck/s3jDsmXL5Ofnp4iICE2fPl0XL150jpHFu1fX6gJqm9OnT+v69esuYZWkgIAAHT582KKqUBtERUVp6dKlatu2rQoKCjRnzhw9+eSTOnDggAoLC+Xh4SEfHx+X9wQEBKiwsNCaglFr3MjYrc6LN8YKCwvl7+/vMl63bl01btyYjOKeio+P1+DBgxUWFqbc3FzNmDFDvXv3Vnp6uurUqUMWcV+Ul5frtddeU9euXRURESFJFbo2FxYW3vLceWMMqKxbZVGSRowYodDQUAUHB2vfvn2aOnWqsrOz9e2330oii/8FDTlQS/Tu3dv5c8eOHRUVFaXQ0FCtWrVKnp6eFlYGAO7j+eefd/7coUMHdezYUa1atVJqaqpiYmIsrAw1WVJSkg4cOODybBfACrfL4v9/TkaHDh0UFBSkmJgY5ebmqlWrVlVdZo3CV9armJ+fn+rUqXPTEzJPnTqlwMBAi6pCbeTj46MHH3xQOTk5CgwM1NWrV1VcXOwyh1yiKtzI2L+dFwMDA2968OW1a9d09uxZMor7Kjw8XH5+fsrJyZFEFnHvTZgwQRs2bNDWrVvVvHlz5/6KXJsDAwNvee68MQZUxu2yeCtRUVGS5HJuJIt3h4a8inl4eKhTp07avHmzc195ebk2b96s6OhoCytDbXP+/Hnl5uYqKChInTp1Ur169VxymZ2drfz8fHKJ+y4sLEyBgYEu+SspKdGuXbuc+YuOjlZxcbEyMjKcc7Zs2aLy8nLnPwqA++H48eM6c+aMgoKCJJFF3DvGGE2YMEFr1qzRli1bFBYW5jJekWtzdHS09u/f7/JLopSUFHl7e+uhhx6qmoWg2rtTFm8lMzNTklzOjWTxLln9VLnaaMWKFcbhcJilS5earKwsM2bMGOPj4+PyVELgXps8ebJJTU01eXl5ZseOHSY2Ntb4+fmZoqIiY4wxY8eONS1atDBbtmwxe/bsMdHR0SY6OtriqlFTlJaWmr1795q9e/caSebdd981e/fuNX/88Ycxxpj//e9/xsfHx6xbt87s27fPDBgwwISFhZlLly45jxEfH28effRRs2vXLrN9+3bTpk0bM3z4cKuWhGrq37JYWlpqXn/9dZOenm7y8vLMjz/+aB577DHTpk0bc/nyZecxyCLuhXHjxplGjRqZ1NRUU1BQ4NwuXrzonHOna/O1a9dMRESE6dWrl8nMzDSbNm0yTZs2NdOnT7diSaim7pTFnJwc8+abb5o9e/aYvLw8s27dOhMeHm66d+/uPAZZvHs05Bb54IMPTIsWLYyHh4fp0qWL2blzp9UloYYbNmyYCQoKMh4eHqZZs2Zm2LBhJicnxzl+6dIlM378eOPr62vq169vBg0aZAoKCiysGDXJ1q1bjaSbtpEjRxpj/v6vz9544w0TEBBgHA6HiYmJMdnZ2S7HOHPmjBk+fLhp0KCB8fb2Ni+99JIpLS21YDWozv4tixcvXjS9evUyTZs2NfXq1TOhoaFm9OjRN/3CnCziXrhVDiWZJUuWOOdU5Np89OhR07t3b+Pp6Wn8/PzM5MmTTVlZWRWvBtXZnbKYn59vunfvbho3bmwcDodp3bq1mTJlijl37pzLccji3bEZY0zV3Y8HAAAAAAASf0MOAAAAAIAlaMgBAAAAALAADTkAAAAAABagIQcAAAAAwAI05AAAAAAAWICGHAAAAAAAC9CQAwAAAABgARpyAAAAAAAsQEMOAEAtc/ToUdlsNmVmZlpdCgAAtRoNOQAAbiQxMVE2m+2mLT4+3urSqlxqaqpsNpuKi4utLgUAgPuirtUFAAAAV/Hx8VqyZInLPofDYVE1AADgfuEOOQAAbsbhcCgwMNBl8/X1lSSNGDFCw4YNc5lfVlYmPz8/ffnll5KkTZs2qVu3bvLx8VGTJk3Ur18/5ebmVqqGK1euaOrUqQoJCZHD4VDr1q21ePFi53haWpq6dOkih8OhoKAgTZs2TdeuXXOOt2zZUu+9957LMR955BHNnj3b+dpms+mzzz7ToEGDVL9+fbVp00bfffedpL+/Vt+zZ09Jkq+vr2w2mxITEyu1BgAA3B0NOQAA1UhCQoLWr1+v8+fPO/f98MMPunjxogYNGiRJunDhgiZNmqQ9e/Zo8+bNstvtGjRokMrLyyv8OS+++KKWL1+u+fPn69ChQ/r444/VoEEDSdKJEyfUp08fde7cWb/99psWLlyoxYsX66233qr0eubMmaOhQ4dq37596tOnjxISEnT27FmFhITom2++kSRlZ2eroKBA77//fqWPDwCAO+Mr6wAAuJkNGzY4m98bZsyYoRkzZiguLk5eXl5as2aNXnjhBUnS119/rWeeeUYNGzaUJA0ZMsTlvZ9//rmaNm2qrKwsRURE3PHzf//9d61atUopKSmKjY2VJIWHhzvHP/roI4WEhOjDDz+UzWZTu3btdPLkSU2dOlWzZs2S3V7x3/cnJiZq+PDhkqS3335b8+fP1+7duxUfH6/GjRtLkvz9/eXj41PhYwIAUF1whxwAADfTs2dPZWZmumxjx46VJNWtW1dDhw7VsmXLJP19N3zdunVKSEhwvv/IkSMaPny4wsPD5e3trZYtW0qS8vPzK/T5mZmZqlOnjnr06HHL8UOHDik6Olo2m825r2vXrjp//ryOHz9eqbV27NjR+bOXl5e8vb1VVFRUqWMAAFBdcYccAAA34+XlpdatW992PCEhQT169FBRUZFSUlLk6enp8hT2/v37KzQ0VJ9++qmCg4NVXl6uiIgIXb16tUKf7+np+Z/XYLfbZYxx2VdWVnbTvHr16rm8ttlslfpqPQAA1Rl3yAEAqGaeeOIJhYSEaOXKlVq2bJmee+45Z2N75swZZWdna+bMmYqJiVH79u31119/Ver4HTp0UHl5udLS0m453r59e6Wnp7s03Dt27FDDhg3VvHlzSVLTpk1VUFDgHC8pKVFeXl6l6vDw8JAkXb9+vVLvAwCguqAhBwDAzVy5ckWFhYUu2+nTp13mjBgxQosWLVJKSorL19V9fX3VpEkTffLJJ8rJydGWLVs0adKkSn1+y5YtNXLkSL388stau3at8vLylJqaqlWrVkmSxo8fr2PHjumVV17R4cOHtW7dOiUnJ2vSpEnOvx9/+umn9dVXX+mnn37S/v37NXLkSNWpU6dSdYSGhspms2nDhg36888/XR5kBwBATUBDDgCAm9m0aZOCgoJctm7durnMSUhIUFZWlpo1a6auXbs699vtdq1YsUIZGRmKiIjQxIkTNW/evErXsHDhQj377LMaP3682rVrp9GjR+vChQuSpGbNmmnjxo3avXu3IiMjNXbsWI0aNUozZ850vn/69Onq0aOH+vXrp759+2rgwIFq1apVpWpo1qyZ5syZo2nTpikgIEATJkyo9DoAAHBnNvPPP/ACAAAAAAD3HXfIAQAAAACwAA05AAAAAAAWoCEHAAAAAMACNOQAAAAAAFiAhhwAAAAAAAvQkAMAAAAAYAEacgAAAAAALEBDDgAAAACABWjIAQAAAACwAA05AAAAAAAWoCEHAAAAAMAC/wd9tUpzffUEvwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA/QAAAK9CAYAAACKBSdyAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAqo1JREFUeJzs3Xd8U/X+x/F3kibpoi2F0jIKZSkgU1QEZaggiAO97nERVBz3cr2K96p4nagXL1dxe9XrdaD4u9eB47qRq6g4QZYKiFhAgRZoaUt3k5zfH6c5TdqUDlraHl7P++sjyckZ3ySlP9/5fIfDMAxDAAAAAACgTXG2dAMAAAAAAEDDEegBAAAAAGiDCPQAAAAAALRBBHoAAAAAANogAj0AAAAAAG0QgR4AAAAAgDaIQA8AAAAAQBtEoAcAAAAAoA0i0AMAAAAA0AYR6AEAQL09//zz6tevn9xut5KSklq6OU1u8+bNcjgcuvfee1u6KQed4Hv/7LPPtnRTAKDNINADwAH07LPPyuFw1Prz5ZdftnQTgVqtX79e06ZNU+/evfXPf/5TTz75ZEs3CS3gsccea/Wh+5133tHtt9++X+f461//qtdff71J2gMAzSWqpRsAAAejOXPmqGfPnjW29+nTpwVaA9TPxx9/rEAgoAcffJDf1YPYY489po4dO2ratGkt3ZRavfPOO3r00Uf3K9T/9a9/1VlnnaXTTz+9ydoFAE2NQA8ALeCkk07SEUcc0dLNUFFRkeLi4lq6GW1eaWmpPB6PnE57d3zbuXOnJDVpV/vi4mLFxsY22fkAADiY2Pu/PACgjQodx/vkk0+qd+/e8nq9OvLII/XNN9/U2H/9+vU666yzlJycrOjoaB1xxBF68803w/YJdvdfunSpfve736lTp07q1q2b9fyjjz6qXr16KSYmRkcddZQ+/fRTjRs3TuPGjZMkFRYWKi4uTn/84x9rXP/XX3+Vy+XS3Llz9/m6gtXdQYMGKTo6WikpKZo0aZKWL19u7ePz+XTnnXdarzkjI0M33XSTysrKws6VkZGhU045RZ999pmOOuooRUdHq1evXlqwYIG1z/Lly+VwOPTcc8/VaMv7778vh8Oht956y9q2bds2XXLJJUpNTZXX69Vhhx2mp59+Ouy4jz/+WA6HQ//+97918803q2vXroqNjVVBQYEk6eWXX9aAAQMUHR2tgQMH6rXXXtO0adOUkZFR47144IEHdNhhhyk6Olqpqam64oortGfPnga/zqC8vDxde+21ysjIkNfrVbdu3TR16lTt3r3b2qesrEy33Xab+vTpI6/Xq/T0dF1//fU13t/qMjIydNttt0mSUlJS5HA4wqqfjz32mA477DB5vV516dJFv//975WXlxd2jnHjxmngwIFasWKFxowZo9jYWN100037vG59frdzc3P1pz/9SYMGDVJ8fLwSEhJ00kknafXq1TXOV1paqttvv12HHHKIoqOj1blzZ/3mN7/Rpk2bauxbn397kdTnc9i5c6cuvfRSpaamKjo6WkOGDKnxexr6dyD47zM2NlYnnniifvnlFxmGoTvvvFPdunVTTEyMpkyZotzc3LBzBH9/PvjgAw0dOlTR0dEaMGCAFi1aFLbf7bffLofDUeO1BP9ubN682Trf999/r6VLl1pDhYJ/I4Kv/ZprrlF6erq8Xq/69Omjv/3tbwoEAjXeo2nTpikxMVFJSUm6+OKLa/y+1KaiokJ33HGH+vbtq+joaHXo0EHHHnusFi9eLEmaNm2aHn30UUkKG9IUdO+992rUqFHq0KGDYmJiNHz4cL3yyith13A4HCoqKtJzzz1nHR/aI6E+fysA4IAwAAAHzDPPPGNIMj788ENj165dYT+7d++29svMzDQkGcOGDTP69Olj/O1vfzPmzZtndOzY0ejWrZtRXl5u7fvdd98ZiYmJxoABA4y//e1vxiOPPGKMGTPGcDgcxqJFi2pce8CAAcbYsWONhx9+2LjnnnsMwzCMxx57zJBkjB492njooYeMWbNmGcnJyUbv3r2NsWPHWue48MILjdTUVMPn84W9rnnz5hkOh8PYsmXLPl//tGnTDEnGSSedZDzwwAPGvffea0yZMsV4+OGHrX0uvvhiQ5Jx1llnGY8++qgxdepUQ5Jx+umnh52rR48exqGHHmqkpqYaN910k/HII48Yhx9+uOFwOIzvvvvO2q9Xr17G5MmTa7Rl+vTpRvv27a33Misry+jWrZuRnp5uzJkzx/jHP/5hnHbaaYYk4/7777eO++ijj6z3cejQocb8+fONuXPnGkVFRcZbb71lOBwOY/Dgwcb8+fONW265xWjfvr0xcOBAo0ePHmHXv+yyy4yoqChjxowZxuOPP27ccMMNRlxcnHHkkUeGfb71fZ179+41Bg4caLhcLmPGjBnGP/7xD+POO+80jjzySGPlypWGYRiG3+83TjzxRCM2Nta45pprjCeeeMKYOXOmERUVZUyZMmWfn91rr71mnHHGGYYk4x//+Ifx/PPPG6tXrzYMwzBuu+02Q5Ixfvx44+GHHzZmzpxpuFyuGq9l7NixRlpampGSkmL84Q9/MJ544gnj9ddfr/Wa9f3d/uabb4zevXsbN954o/HEE08Yc+bMMbp27WokJiYa27Zts/bz+XzGCSecYEgyzjvvPOORRx4x5s6daxx//PFWOxryby+S+nwOxcXFRv/+/Q23221ce+21xkMPPWSMHj3akGQ88MAD1rmCbRk6dKgxYMAAY/78+cbNN99seDwe4+ijjzZuuukmY9SoUcZDDz1kXH311YbD4TCmT58e1p4ePXoYhxxyiJGUlGTceOONxvz5841BgwYZTqfT+OCDD6z9gp9hdcG/G5mZmdbvQbdu3Yx+/foZzz//vPH8889b5ykqKjIGDx5sdOjQwbjpppuMxx9/3Jg6darhcDiMP/7xj9Y5A4GAMWbMGMPpdBq/+93vjIcfftg4/vjjjcGDBxuSjGeeeWaf7/FNN91kOBwOY8aMGcY///lP47777jPOP/986+/Z559/bkyYMMGQZLXx+eeft47v1q2b8bvf/c545JFHjPnz5xtHHXWUIcl46623rH2ef/55w+v1GqNHj7aO//zzzw3DqP/fCgA4EAj0AHAABf/jONKP1+u19gv+h3yHDh2M3Nxca/sbb7xhSDL++9//WttOOOEEY9CgQUZpaam1LRAIGKNGjTL69u1b49rHHntsWCAvKyszOnToYBx55JFGRUWFtf3ZZ581JIUF+vfff9+QZLz77rthr2vw4MFh+0Xyv//9z5BkXH311TWeCwQChmEYxqpVqwxJxmWXXRb2/J/+9CdDkvG///3P2tajRw9DkvHJJ59Y23bu3Gl4vV7juuuus7bNnj3bcLvdYe9jWVmZkZSUZFxyySXWtksvvdTo3Llz2BcrhmEY5513npGYmGgUFxcbhlEV6Hv16mVtCxo0aJDRrVs3Y+/evda2jz/+2JAUFug//fRTQ5KxcOHCsOPfe++9Gtvr+zpvvfVWQ1JY0A0Kvr/PP/+84XQ6jU8//TTs+ccff9yQZCxbtqzGsaGCoW/Xrl1hbfF4PMaJJ55o+P1+a/sjjzxiSDKefvppa9vYsWMNScbjjz++z+sE1fd3u7S0NOzahmH+G/J6vcacOXOsbU8//bQhyZg/f36NawXfo4b824ukPp/DAw88YEgyXnjhBeu58vJyY+TIkUZ8fLxRUFAQ1paUlBQjLy/P2nf27NmGJGPIkCFh/2bPP/98w+PxhL1fwd+fV1991dqWn59vdO7c2Rg2bJi1rb6B3jAM47DDDov47/3OO+804uLijB9//DFs+4033mi4XC5j69athmEYxuuvv25IMubNm2ft4/P5rC816gr0Q4YMMU4++eR97vP73/8+4usxDKPGv9vy8nJj4MCBxvHHHx+2PS4uzrj44otrHF/fvxUAcCDQ5R4AWsCjjz6qxYsXh/28++67NfY799xz1b59e+vx6NGjJUk///yzJLOr8f/+9z+dc8452rt3r3bv3q3du3crJydHEydO1MaNG7Vt27awc86YMUMul8t6vHz5cuXk5GjGjBmKiqqaWuXCCy8Mu7YkjR8/Xl26dNHChQutbd99953WrFmjiy66aJ+v+dVXX5XD4bC6bYcKdod95513JEmzZs0Ke/66666TJL399tth2wcMGGC9J5LZFfzQQw+13h/JfA8rKirCuhh/8MEHysvL07nnnitJMgxDr776qk499VQZhmG9j7t379bEiROVn5+vb7/9NuzaF198sWJiYqzH27dv19q1azV16lTFx8db28eOHatBgwaFHfvyyy8rMTFREyZMCLvW8OHDFR8fr48++qjBr/PVV1/VkCFDdMYZZ6i64Pv78ssvq3///urXr1/YdY8//nhJqnHd+vjwww9VXl6ua665JmwOgRkzZighIaHGZ+b1ejV9+vQ6z9uQ322v12td2+/3KycnR/Hx8Tr00EPDPrdXX31VHTt21B/+8Ica16ve3byuf3u1qc/n8M477ygtLU3nn3++9Zzb7dbVV1+twsJCLV26NOy4s88+W4mJidbjESNGSJIuuuiisH+zI0aMUHl5eY1/8126dAlrT0JCgqZOnaqVK1cqKytrn6+nIV5++WWNHj1a7du3D/v9Gj9+vPx+vz755BPr9UdFRemqq66yjnW5XBE/l0iSkpL0/fffa+PGjY1qZ+i/2z179ig/P1+jR4+u8W88ksb8rQCA5sSkeADQAo466qh6TYrXvXv3sMfBgBEcZ/3TTz/JMAzdcsstuuWWWyKeY+fOneratav1uPrs+lu2bJFUc4b9qKioGuO+nU6nLrzwQv3jH/+wJjNbuHChoqOjdfbZZ+/ztWzatEldunRRcnJyrfts2bJFTqezRlvS0tKUlJRktTWo+vsjme9R6Dj0IUOGqF+/fvrPf/6jSy+9VJL0n//8Rx07drSC7K5du5SXl6cnn3yy1qXYghPCBdX3fQxuC/2P/I0bNyo/P1+dOnWq17Xq8zo3bdqkM888M+L5Qq+7bt06paSk1Ou69RF83YceemjYdo/Ho169etX4zLp27SqPx1PneRvyux2cm+Gxxx5TZmam/H6/tU+HDh2s+5s2bdKhhx4aFoJrU9e/vdrU53PYsmWL+vbtW2MSxf79+1vP76stwXCfnp4ecXv1Nvbp06fGFxaHHHKIJHOcflpa2j7bW18bN27UmjVr6vz92rJlizp37hz2xZdU83eoNnPmzNGUKVN0yCGHaODAgZo0aZJ++9vfavDgwfU6/q233tJdd92lVatWhc0dEWkOgeoa87cCAJoTgR4AWrHQSnoowzAkyZpo6k9/+pMmTpwYcd/qATO0OtUYU6dO1d///ne9/vrrOv/88/Xiiy/qlFNOCasg7q/6/Ie1VPf7E3Tuuefq7rvv1u7du9WuXTu9+eabOv/8861gF3wfL7roIl188cURz1k9LOzP+xgIBNSpU6ewng6hqgei+r7O+lx30KBBmj9/fsTnqwfE5lDf960hv9t//etfdcstt+iSSy7RnXfeqeTkZDmdTl1zzTU1JmOrr6Z6z5tCbW1pyjbW9m8u9MuRugQCAU2YMEHXX399xOeDXyLsrzFjxmjTpk1644039MEHH+ipp57S/fffr8cff1yXXXbZPo/99NNPddppp2nMmDF67LHH1LlzZ7ndbj3zzDN68cUX67x2Y/5WAEBzItADQBvWq1cvSWZ33fHjxzfqHD169JBkVkSPO+44a7vP59PmzZtr/MfpwIEDNWzYMC1cuFDdunXT1q1b9fDDD9d5nd69e+v9999Xbm5urVX6Hj16KBAIaOPGjVa1UpKys7OVl5dntbWhzj33XN1xxx169dVXlZqaqoKCAp133nnW8ykpKWrXrp38fn+TvI/VVd/Wu3dvffjhhzrmmGP2+wuW0HN+9913de6zevVqnXDCCfX+0qQuwde9YcMG6/dRksrLy5WZmdno97Mhv9uvvPKKjjvuOP3rX/8K256Xl6eOHTtaj3v37q2vvvpKFRUVcrvdjWpXXerzOfTo0UNr1qxRIBAIq9KvX7/eer4pBXs7hH7mP/74oyRZvXCCPRDy8vLCliWs3ltAqj389+7dW4WFhXV+Xj169NCSJUtUWFgYVqXfsGFDvV6PJCUnJ2v69OmaPn26CgsLNWbMGN1+++1WoK+tja+++qqio6P1/vvvy+v1WtufeeaZGvtGOkdT/K0AgKbEGHoAaMM6deqkcePG6YknntCOHTtqPL9r1646z3HEEUeoQ4cO+uc//ymfz2dtX7hwYa3di3/729/qgw8+0AMPPKAOHTropJNOqvM6Z555pgzD0B133FHjuWBFcfLkyZKkBx54IOz5YEX55JNPrvM6kfTv31+DBg3Sf/7zH/3nP/9R586dNWbMGOt5l8ulM888U6+++mrEMFaf97FLly4aOHCgFixYoMLCQmv70qVLtXbt2rB9zznnHPn9ft155501zuPz+eq9fFeoM888U6tXr9Zrr71W47ng+3vOOedo27Zt+uc//1ljn5KSEhUVFTX4uuPHj5fH49FDDz0UVhn+17/+pfz8/EZ/Zg353Xa5XDWq0i+//HKNseRnnnmmdu/erUceeaTG+Zqq8l6fz2Hy5MnKysrSf/7zH+s5n8+nhx9+WPHx8Ro7dmyTtCVo+/btYe0pKCjQggULNHToUKu7fe/evSXJGucuyVq2rbq4uLiIv6PnnHOOvvjiC73//vs1nsvLy7P+vkyePFk+n0//+Mc/rOf9fn+9vhiUpJycnLDH8fHx6tOnT1j3+bi4OOu6oVwulxwOR1jPg82bN+v111+vcZ1Ir7Mp/lYAQFOiQg8ALeDdd9+1qnGhRo0aFVblrI9HH31Uxx57rAYNGqQZM2aoV69eys7O1hdffKFff/014lrcoTwej26//Xb94Q9/0PHHH69zzjlHmzdv1rPPPqvevXtHrFJdcMEFuv766/Xaa6/pqquuqle187jjjtNvf/tbPfTQQ9q4caMmTZqkQCCgTz/9VMcdd5xmzpypIUOG6OKLL9aTTz6pvLw8jR07Vl9//bWee+45nX766WE9CBrq3HPP1a233qro6GhdeumlNcYv33PPPfroo480YsQIzZgxQwMGDFBubq6+/fZbffjhhzXW947kr3/9q6ZMmaJjjjlG06dP1549e/TII49o4MCBYSF/7NixuuKKKzR37lytWrVKJ554otxutzZu3KiXX35ZDz74oM4666wGvb4///nPeuWVV3T22Wfrkksu0fDhw5Wbm6s333xTjz/+uIYMGaLf/va3eumll3TllVfqo48+0jHHHCO/36/169frpZde0vvvv1+vuR1CpaSkaPbs2brjjjs0adIknXbaadqwYYMee+wxHXnkkXVOlrgv9f3dPuWUUzRnzhxNnz5do0aN0tq1a7Vw4cIa/5amTp2qBQsWaNasWfr66681evRoFRUV6cMPP9Tvfvc7TZkypdFtDarP53D55ZfriSee0LRp07RixQplZGTolVde0bJly/TAAw+oXbt2+92OUIcccoguvfRSffPNN0pNTdXTTz+t7OzssKr0iSeeqO7du+vSSy/Vn//8Z7lcLj399NNKSUnR1q1bw843fPhw/eMf/9Bdd92lPn36qFOnTjr++OP15z//WW+++aZOOeUUTZs2TcOHD1dRUZHWrl2rV155RZs3b1bHjh116qmn6phjjtGNN96ozZs3a8CAAVq0aJHy8/Pr9XoGDBigcePGafjw4UpOTtby5cv1yiuvaObMmWFtlKSrr75aEydOlMvl0nnnnaeTTz5Z8+fP16RJk3TBBRdo586devTRR9WnTx+tWbOmxuv88MMPNX/+fHXp0kU9e/bUiBEjmuRvBQA0mQM8qz4AHNT2tWydQpZrCi5X9fe//73GOSQZt912W9i2TZs2GVOnTjXS0tIMt9ttdO3a1TjllFOMV155pca1v/nmm4hte+ihh4wePXoYXq/XOOqoo4xly5YZw4cPNyZNmhRx/8mTJxuSrLWZ68Pn8xl///vfjX79+hkej8dISUkxTjrpJGPFihXWPhUVFcYdd9xh9OzZ03C73UZ6eroxe/bssKW4DMNcjivS0lVjx46NuKTWxo0brff5s88+i9i+7Oxs4/e//72Rnp5uuN1uIy0tzTjhhBOMJ5980tonuGzdyy+/HPEc//73v41+/foZXq/XGDhwoPHmm28aZ555ptGvX78a+z755JPG8OHDjZiYGKNdu3bGoEGDjOuvv97Yvn17o15nTk6OMXPmTKNr166Gx+MxunXrZlx88cVhy2uVl5cbf/vb34zDDjvM8Hq9Rvv27Y3hw4cbd9xxh5Gfnx/xNQVFWrYu6JFHHjH69etnuN1uIzU11bjqqquMPXv21GjzYYcdts9rVFef3+3S0lLjuuuuMzp37mzExMQYxxxzjPHFF19EfI+Ki4uNv/zlL9bvV1pamnHWWWcZmzZtMgyj4f/2IqnP55CdnW1Mnz7d6Nixo+HxeIxBgwbVWK6ttrbU9jsY6d948Pfn/fffNwYPHmx4vV6jX79+EX9/V6xYYYwYMcLweDxG9+7djfnz50dcti4rK8s4+eSTjXbt2tVY2nLv3r3G7NmzjT59+hgej8fo2LGjMWrUKOPee+81ysvLw96j3/72t0ZCQoKRmJho/Pa3vzVWrlxZr2Xr7rrrLuOoo44ykpKSjJiYGKNfv37G3XffHXZ+n89n/OEPfzBSUlIMh8MRtoTdv/71L6Nv377We/HMM89EXLZv/fr1xpgxY4yYmBhDUtgSdvX5WwEAB4LDMFpgdhcAQKsXCASUkpKi3/zmNxG7aJ9xxhlau3ZtxDHjCDd06FClpKRo8eLFLd0UHGQyMjI0cOBAvfXWWy3dFABAM2AMPQBApaWlNcYQL1iwQLm5uRo3blyN/Xfs2KG3335bv/3tbw9QC9uGioqKsHkIJOnjjz/W6tWrI76PAAAA+4Mx9AAAffnll7r22mt19tlnq0OHDvr222/1r3/9SwMHDgxbXz4zM1PLli3TU089JbfbrSuuuKIFW936bNu2TePHj9dFF12kLl26aP369Xr88ceVlpamK6+8sqWbBwAAbIZADwBQRkaG0tPT9dBDD1nLyk2dOlX33HOPPB6Ptd/SpUs1ffp0de/eXc8995w1QzZM7du31/Dhw/XUU09p165diouL08knn6x77rlHHTp0aOnmAQAAm2EMPQAAAAAAbRBj6AEAAAAAaIMI9AAAAAAAtEFtagz9J598or///e9asWKFduzYoddee02nn376Po/5+OOPNWvWLH3//fdKT0/XzTffrGnTptX7moFAQNu3b1e7du3kcDj27wUAAAAAAFAHwzC0d+9edenSRU5n7XX4NhXoi4qKNGTIEF1yySX6zW9+U+f+mZmZOvnkk3XllVdq4cKFWrJkiS677DJ17txZEydOrNc1t2/frvT09P1tOgAAAAAADfLLL7+oW7dutT7fZifFczgcdVbob7jhBr399tv67rvvrG3nnXee8vLy9N5779XrOvn5+UpKStIvv/yihISE/W02AAAAAAD7VFBQoPT0dOXl5SkxMbHW/dpUhb6hvvjiC40fPz5s28SJE3XNNdfUekxZWZnKysqsx3v37pUkJSQkEOgBAAAAAAdMXcO+bT0pXlZWllJTU8O2paamqqCgQCUlJRGPmTt3rhITE60futsDAAAAAFojWwf6xpg9e7by8/Otn19++aWlmwQAAAAAQA227nKflpam7OzssG3Z2dlKSEhQTExMxGO8Xq+8Xu+BaB4AAAAAAI1m60A/cuRIvfPOO2HbFi9erJEjR7ZQiwAAAACgZRmGIZ/PJ7/f39JNOWi5XC5FRUXt99LobSrQFxYW6qeffrIeZ2ZmatWqVUpOTlb37t01e/Zsbdu2TQsWLJAkXXnllXrkkUd0/fXX65JLLtH//vc/vfTSS3r77bdb6iUAAAAAQIspLy/Xjh07VFxc3NJNOejFxsaqc+fO8ng8jT5Hmwr0y5cv13HHHWc9njVrliTp4osv1rPPPqsdO3Zo69at1vM9e/bU22+/rWuvvVYPPvigunXrpqeeeqrea9ADAAAAgF0EAgFlZmbK5XKpS5cu8ng8+10hRsMZhqHy8nLt2rVLmZmZ6tu3r5zOxk1v12bXoT9QCgoKlJiYqPz8fJatAwAAANBmlZaWKjMzUz169FBsbGxLN+egV1xcrC1btqhnz56Kjo4Oe66+OZRZ7gEAAADgINLYajCaVlN8DnySAAAAAAC0QQR6AAAAAADaIAI9AAAAAABtEIEeAAAAANBq7dq1S1dddZW6d+8ur9ertLQ0TZw4UcuWLbP2cTgcev311xt87oyMDD3wwANN0s6PP/5Yhx9+uLxer/r06aNnn322Sc67L21q2ToAAAAAwMHlzDPPVHl5uZ577jn16tVL2dnZWrJkiXJyclq6aZbMzEydfPLJuvLKK7Vw4UItWbJEl112mTp37tysy6azbF0dWLYOAAAAgB0El60LLpNmGIZKKvwt0pYYt0sOh6PO/fLy8tS+fXt9/PHHGjt2bMR9MjIytGXLFutxjx49tHnzZm3atEmzZs3Sl19+qaKiIvXv319z587V+PHjJUnjxo3T0qVLw84VjMefffaZZs+ereXLl6tjx44644wzNHfuXMXFxUVsww033KC3335b3333nbXtvPPOU15ent57772Ix1T/PELVN4dSoQcAAACAg1BJhV8Dbn2/Ra79w5yJivXUHUfj4+MVHx+v119/XUcffbS8Xm+Nfb755ht16tRJzzzzjCZNmiSXyyVJKiws1OTJk3X33XfL6/VqwYIFOvXUU7VhwwZ1795dixYt0pAhQ3T55ZdrxowZ1vk2bdqkSZMm6a677tLTTz+tXbt2aebMmZo5c6aeeeaZiO384osvrC8KgiZOnKhrrrmmAe9KwzGGHgAAAADQKkVFRenZZ5/Vc889p6SkJB1zzDG66aabtGbNGmuflJQUSVJSUpLS0tKsx0OGDNEVV1yhgQMHqm/fvrrzzjvVu3dvvfnmm5Kk5ORkuVwutWvXTmlpaUpLS5MkzZ07VxdeeKGuueYa9e3bV6NGjdJDDz2kBQsWqLS0NGI7s7KylJqaGrYtNTVVBQUFKikpafL3JYgKPQAAAAAchGLcLv0wp/nGd9d17fo688wzdfLJJ+vTTz/Vl19+qXfffVfz5s3TU089pWnTptV6XGFhoW6//Xa9/fbb2rFjh3w+n0pKSrR169Z9Xm/16tVas2aNFi5caG0zDEOBQECZmZnq379/vdve3Aj0AAAAAHAQcjgc9er23hpER0drwoQJmjBhgm655RZddtlluu222/YZ6P/0pz9p8eLFuvfee9WnTx/FxMTorLPOUnl5+T6vVVhYqCuuuEJXX311jee6d+8e8Zi0tDRlZ2eHbcvOzlZCQoJiYmLqfoGN1DY+PQAAAAAAKg0YMCBsmTq32y2/P3yCv2XLlmnatGk644wzJJlBffPmzWH7eDyeGscdfvjh+uGHH9SnT596t2fkyJF65513wrYtXrxYI0eOrPc5GoMx9AAAAACAViknJ0fHH3+8XnjhBa1Zs0aZmZl6+eWXNW/ePE2ZMsXaLyMjQ0uWLFFWVpb27NkjSerbt68WLVqkVatWafXq1brgggsUCATCzp+RkaFPPvlE27Zt0+7duyWZM9Z//vnnmjlzplatWqWNGzfqjTfe0MyZM2tt55VXXqmff/5Z119/vdavX6/HHntML730kq699tpmeFeqEOgBAAAAAK1SfHy8RowYofvvv19jxozRwIEDdcstt2jGjBl65JFHrP3uu+8+LV68WOnp6Ro2bJgkaf78+Wrfvr1GjRqlU089VRMnTtThhx8edv45c+Zo8+bN6t27tzWZ3uDBg7V06VL9+OOPGj16tIYNG6Zbb71VXbp0qbWdPXv21Ntvv63FixdryJAhuu+++/TUU0816xr0EuvQ14l16AEAAADYwb7WPceB1xTr0FOhBwAAAACgDSLQ25RhGPo+53sVlhe2dFMAAAAAAM2AQG9T3+d8r/PeOk+3fn5rSzcFAAAAANAMCPQ2tb1wuyQpuyi7jj0BAAAAAG0Rgd6m/Ia5lqLP8LVwSwAAAAAAzYFAb1O+gBnkA0agjj0BAAAAAG0Rgd6mgoE+WKkHAAAAANgLgd6mgl3tAwEq9AAAAABgRwR6m6JCDwAAAAD2RqC3KX/ADPIEegAAAACwJwK9TTEpHgAAAAA72LVrl6666ip1795dXq9XaWlpmjhxopYtW2bt43A49Prrrzf43BkZGXrggQf2u407duzQBRdcoEMOOUROp1PXXHPNfp+zPqIOyFVwwAXH0FOhBwAAANCWnXnmmSovL9dzzz2nXr16KTs7W0uWLFFOTk5LN81SVlamlJQU3Xzzzbr//vsP2HWp0NuUVaFnUjwAAAAAkRiGVF7UMj+GUa8m5uXl6dNPP9Xf/vY3HXfccerRo4eOOuoozZ49W6eddpoks8ouSWeccYYcDof1eNOmTZoyZYpSU1MVHx+vI488Uh9++KF17nHjxmnLli269tpr5XA45HA4rOc+++wzjR49WjExMUpPT9fVV1+toqKiWtuZkZGhBx98UFOnTlViYmIDP4jGo0JvU8FAH6zUAwAAAECYimLpr11a5to3bZc8cXXuFh8fr/j4eL3++us6+uij5fV6a+zzzTffqFOnTnrmmWc0adIkuVwuSVJhYaEmT56su+++W16vVwsWLNCpp56qDRs2qHv37lq0aJGGDBmiyy+/XDNmzLDOt2nTJk2aNEl33XWXnn76ae3atUszZ87UzJkz9cwzzzTde9AEqNDbFGPoAQAAALR1UVFRevbZZ/Xcc88pKSlJxxxzjG666SatWbPG2iclJUWSlJSUpLS0NOvxkCFDdMUVV2jgwIHq27ev7rzzTvXu3VtvvvmmJCk5OVkul0vt2rVTWlqa0tLSJElz587VhRdeqGuuuUZ9+/bVqFGj9NBDD2nBggUqLS09wO/AvlGht6ng2HnG0AMAAACIyB1rVspb6tr1dOaZZ+rkk0/Wp59+qi+//FLvvvuu5s2bp6eeekrTpk2r9bjCwkLdfvvtevvtt7Vjxw75fD6VlJRo69at+7ze6tWrtWbNGi1cuNDaZhiGAoGAMjMz1b9//3q3vbkR6G2KCj0AAACAfXI46tXtvTWIjo7WhAkTNGHCBN1yyy267LLLdNttt+0z0P/pT3/S4sWLde+996pPnz6KiYnRWWedpfLy8n1eq7CwUFdccYWuvvrqGs917959f19KkyLQ21RFoEISgR4AAACA/QwYMCBsmTq32y2/P7x38rJlyzRt2jSdccYZksygvnnz5rB9PB5PjeMOP/xw/fDDD+rTp0+ztL0pMYbepoJd7YOVegAAAABoa3JycnT88cfrhRde0Jo1a5SZmamXX35Z8+bN05QpU6z9MjIytGTJEmVlZWnPnj2SpL59+2rRokVatWqVVq9erQsuuKDGKmAZGRn65JNPtG3bNu3evVuSdMMNN+jzzz/XzJkztWrVKm3cuFFvvPGGZs6cuc+2rlq1SqtWrVJhYaF27dqlVatW6YcffmjidyQcFXqboss9AAAAgLYuPj5eI0aM0P33369NmzapoqJC6enpmjFjhm666SZrv/vuu0+zZs3SP//5T3Xt2lWbN2/W/Pnzdckll2jUqFHq2LGjbrjhBhUUFISdf86cObriiivUu3dvlZWVyTAMDR48WEuXLtVf/vIXjR49WoZhqHfv3jr33HP32dZhw4ZZ91esWKEXX3xRPXr0qNEroCk5DKOeCwAepAoKCpSYmKj8/HwlJCS0dHPqbfans/XWz29JktZevLaFWwMAAACgpZWWliozM1M9e/ZUdHR0SzfnoLevz6O+OZQu9zblD1SNA6FKDwAAAAD2Q6C3KZ9RNXY+NNwDAAAAAOyBQG9TwVnuJdaiBwAAAAA7ItDbFF3uAQAAAMDeCPQ2FbpcHRV6AAAAALAfAr1NhY6hp0IPAAAAAPZDoLep0C73odV6AAAAAIA9EOhtKjTEU6EHAAAAAPsh0NsUs9wDAAAAgL0R6G0qNMRToQcAAAAA+yHQ21TYLPcBKvQAAAAA2qZdu3bpqquuUvfu3eX1epWWlqaJEydq2bJl1j4Oh0Ovv/56g8+dkZGhBx54YL/buGjRIk2YMEEpKSlKSEjQyJEj9f777+/3eetCoLcplq0DAAAAYAdnnnmmVq5cqeeee04//vij3nzzTY0bN045OTkt3TTLJ598ogkTJuidd97RihUrdNxxx+nUU0/VypUrm/W6DsMwjGa9QhtXUFCgxMRE5efnKyEhoaWbU2+TXp2kbYXbJElvTHlDvZJ6tXCLAAAAALSk0tJSZWZmqmfPnoqOjpZhGCrxlbRIW2KiYuRwOOrcLy8vT+3bt9fHH3+ssWPHRtwnIyNDW7ZssR736NFDmzdv1qZNmzRr1ix9+eWXKioqUv/+/TV37lyNHz9ekjRu3DgtXbo07FzBePzZZ59p9uzZWr58uTp27KgzzjhDc+fOVVxcXL1f42GHHaZzzz1Xt956a8Tnq38eoeqbQ6Pq3Rq0KUyKBwAAAGBfSnwlGvHiiBa59lcXfKVYd2yd+8XHxys+Pl6vv/66jj76aHm93hr7fPPNN+rUqZOeeeYZTZo0SS6XS5JUWFioyZMn6+6775bX69WCBQt06qmnasOGDerevbsWLVqkIUOG6PLLL9eMGTOs823atEmTJk3SXXfdpaefflq7du3SzJkzNXPmTD3zzDP1en2BQEB79+5VcnJyPd+RxqHLvU2FjptnUjwAAAAAbVFUVJSeffZZPffcc0pKStIxxxyjm266SWvWrLH2SUlJkSQlJSUpLS3NejxkyBBdccUVGjhwoPr27as777xTvXv31ptvvilJSk5OlsvlUrt27ZSWlqa0tDRJ0ty5c3XhhRfqmmuuUd++fTVq1Cg99NBDWrBggUpLS+vV7nvvvVeFhYU655xzmvLtqIEKvU35DF/E+wAAAAAgmd3ev7rgqxa7dn2deeaZOvnkk/Xpp5/qyy+/1Lvvvqt58+bpqaee0rRp02o9rrCwULfffrvefvtt7dixQz6fTyUlJdq6des+r7d69WqtWbNGCxcutLYZhqFAIKDMzEz1799/n8e/+OKLuuOOO/TGG2+oU6dO9X6djUGgt6nQSfECASr0AAAAAMI5HI56dXtvDaKjozVhwgRNmDBBt9xyiy677DLddttt+wz0f/rTn7R48WLde++96tOnj2JiYnTWWWepvLx8n9cqLCzUFVdcoauvvrrGc927d9/nsf/+97912WWX6eWXX7bG6jcnAr1NhXa5Zww9AAAAADsZMGBA2DJ1brdbfn947lm2bJmmTZumM844Q5IZ1Ddv3hy2j8fjqXHc4Ycfrh9++EF9+vRpUJv+7//+T5dccon+/e9/6+STT27QsY3FGHqbCqvQM4YeAAAAQBuUk5Oj448/Xi+88ILWrFmjzMxMvfzyy5o3b56mTJli7ZeRkaElS5YoKytLe/bskST17dtXixYt0qpVq7R69WpdcMEFNXovZ2Rk6JNPPtG2bdu0e/duSdINN9ygzz//XDNnztSqVau0ceNGvfHGG5o5c2at7XzxxRc1depU3XfffRoxYoSysrKUlZWl/Pz8ZnhXqhDobcgwjLBx81ToAQAAALRF8fHxGjFihO6//36NGTNGAwcO1C233KIZM2bokUcesfa77777tHjxYqWnp2vYsGGSpPnz56t9+/YaNWqUTj31VE2cOFGHH3542PnnzJmjzZs3q3fv3tZkeoMHD9bSpUv1448/avTo0Ro2bJhuvfVWdenSpdZ2Pvnkk/L5fPr973+vzp07Wz9//OMfm+FdqcI69HVoi+vQ+wI+DXt+mPX4nyf+U0d3ProFWwQAAACgpe1r3XMceE2xDj0VehsK7W4vMSkeAAAAANgRgd6Gqgd6utwDAAAAgP0Q6G2oeoBnUjwAAAAAsB8CvQ1VBCrCHodOkAcAAAAAsAcCvQ3VGENPhR4AAABAJeZFbx2a4nMg0NtQ9S73jKEHAAAA4Ha7JUnFxcUt3BJIVZ9D8HNpjKimagxaD2a5BwAAAFCdy+VSUlKSdu7cKUmKjY2Vw+Fo4VYdfAzDUHFxsXbu3KmkpCS5XK5Gn4tAb0PMcg8AAAAgkrS0NEmyQj1aTlJSkvV5NBaB3oYI9AAAAAAicTgc6ty5szp16qSKioq6D0CzcLvd+1WZDyLQ21D1We2ZFA8AAABAKJfL1SSBEi2LSfFsiAo9AAAAANgfgd6G/IHwAM+keAAAAABgPwR6G6peoa/eBR8AAAAA0PYR6G2oxrJ1jKEHAAAAANsh0NsQk+IBAAAAgP0R6G2ISfEAAAAAwP4I9DZEl3sAAAAAsD8CvQ1Vr8hXD/gAAAAAgLaPQG9DVOgBAAAAwP4I9DbEGHoAAAAAsD8CvQ0xyz0AAAAA2B+B3oZqVOgDVOgBAAAAwG4I9DZUPcDT5R4AAAAA7IdAb0NMigcAAAAA9kegt6HqY+ip0AMAAACA/RDobYgKPQAAAADYH4HehqoH+uqPAQAAAABtH4HehqjQAwAAAID9EehtqPqYecbQAwAAAID9EOhtKFih9zg9kqjQAwAAAIAdEehtqCJQIUnyurySaq5LDwAAAABo+wj0NhTsYu9xecIeAwAAAADsg0BvQ8Eu98EKPV3uAQAAAMB+CPQ2ZI2hp0IPAAAAALbV5gL9o48+qoyMDEVHR2vEiBH6+uuva9332WeflcPhCPuJjo4+gK1tGcEx88FAT4UeAAAAAOynTQX6//znP5o1a5Zuu+02ffvttxoyZIgmTpyonTt31npMQkKCduzYYf1s2bLlALa4ZfiM8C73wccAAAAAAPtoU4F+/vz5mjFjhqZPn64BAwbo8ccfV2xsrJ5++ulaj3E4HEpLS7N+UlNTD2CLW0ZwlnurQh+gQg8AAAAAdtNmAn15eblWrFih8ePHW9ucTqfGjx+vL774otbjCgsL1aNHD6Wnp2vKlCn6/vvv93mdsrIyFRQUhP20NcEu90yKBwAAAAD21WYC/e7du+X3+2tU2FNTU5WVlRXxmEMPPVRPP/203njjDb3wwgsKBAIaNWqUfv3111qvM3fuXCUmJlo/6enpTfo6DgRrUjwnk+IBAAAAgF21mUDfGCNHjtTUqVM1dOhQjR07VosWLVJKSoqeeOKJWo+ZPXu28vPzrZ9ffvnlALa4aQTHzDMpHgAAAADYV1RLN6C+OnbsKJfLpezs7LDt2dnZSktLq9c53G63hg0bpp9++qnWfbxer7xe7361taUFu9xHR5kz+jMpHgAAAADYT5up0Hs8Hg0fPlxLliyxtgUCAS1ZskQjR46s1zn8fr/Wrl2rzp07N1czW4Vgl3u30y2JSfEAAAAAwI7aTIVekmbNmqWLL75YRxxxhI466ig98MADKioq0vTp0yVJU6dOVdeuXTV37lxJ0pw5c3T00UerT58+ysvL09///ndt2bJFl112WUu+jGYXnOU+OCkeY+gBAAAAwH7aVKA/99xztWvXLt16663KysrS0KFD9d5771kT5W3dulVOZ1Wngz179mjGjBnKyspS+/btNXz4cH3++ecaMGBAS72EAyIY4JnlHgAAAADsy2EYhtHSjWjNCgoKlJiYqPz8fCUkJLR0c+plyutT9HP+z7pi8BV6Ys0T6pPUR69Nea2lmwUAAAAAqIf65tA2M4Ye9RccQ0+XewAAAACwLwK9DQUDPMvWAQAAAIB9EehtKDgpXjDQB5exAwAAAADYB4Hehqp3uadCDwAAAAD2Q6C3oepd7n2GryWbAwAAAABoBgR6G6JCDwAAAAD2R6C3oeCYeQI9AAAAANgXgd6GghV6a1I8lq0DAAAAANsh0NuMYRjWmHlrHXpmuQcAAAAA2yHQ20xoNZ4KPQAAAADYF4HeZoLd7SXJ62QMPQAAAADYFYHeZkIDPRV6AAAAALAvAr3NROpyT4UeAAAAAOyHQG8zFYEK677b6ZZkBnrDMFqqSQAAAACAZkCgt5lgl/soZ5SinFHWdrrdAwAAAIC9EOhtJhjcoxxRcjqqPl663QMAAACAvRDobSa0Qu9yuKztVOgBAAAAwF4I9DZjBXqHU65/HGNt9wcI9AAAAABgJwR6mwkGelcgIGfuz9b2SBX6gBHQfcvv07uZ7x6w9gEAAAAAmkZU3bugLfEZwQq9Q66Q7ZHG0G/cs1HPfv+sOsd11kk9TzpALQQAAAAANAUq9DZjdbmXI+zDjVShL/WXSpIKKwoPRNMAAAAAAE2IQG8zwbHyUXJIklyVy89HqtBX+M0160t9pQemcQAAAACAJkOgt5nQCr0kq9t9pEnxgt3zKwIVTJoHAAAAAG0Mgd5mrEnxKh9bgT5Cl/vgvpJU5i9r5pYBAAAAAJoSgd5mrEnxKh8HP+B9dbmXqsbTAwAAAADaBgK9zVhd7ivHzjsrbyNW6I2qCj3j6AEAAACgbSHQ20zVGHozye9zDH1Il3sq9AAAAADQthDobSZYiY8ygoHeCNseqiIQ0uWeCj0AAAAAtCkEepup6nJfGej3sWwdk+IBAAAAQNtFoLcZa5b7ykC/r0nxQgN9ia+k2dsGAAAAAGg6BHqbsWa5rwzwdLkHAAAAAHsi0NuM1eU+UBnojdoDPV3uAQAAAKDtItDbTNUYejPAW8vWRZjlngo9AAAAALRdBHqbCQZ3q0Jf2eU+0hj6sEDPsnUAAAAA0KYQ6G3GGkMfqFahr6PLPRV6AAAAAGhbCPQ2Y81yXxno91WhDwv0VOgBAAAAoE0h0NtM1aR44cvXMcs9AAAAANgLgd5mrEDvrxboI0yKxyz3AAAAANB2EehtJliJt8bQV26vs8s9FXoAAAAAaFMI9DZjVegrx847Vc8u94yhBwAAAIA2hUBvM8GQHlU5u72LWe4BAAAAwJYI9DaTXZQtSUqqNst9nYGeCj0AAAAAtCkEeptZv2e9JKlfmVmpD1boI42hZ5Z7AAAAAGi7CPQ2kleap6yiLEnSoeXlkqo+4Dpnufcxyz0AAAAAtCUEehtZl7tOkpQe00nxlcvVBZetq3OWe7rcAwAAAECbQqC3kQ25GyRJ/eK6Wdtclbd1zXJf4itp1rYBAAAAAJoWgd5GghX6frFp1jary30dk+KV+elyDwAAAABtCYHeRqwKfUwna1u9u9wzKR4AAAAAtCkEepso8ZUosyBTktTfk2xt39ekeGGz3DOGHgAAAADaFAK9TWzcs1EBI6Dk6GR1lNvaHly2rq4x9L6AL6xiDwAAAABo3Qj0NrE+11x/vn9yfzlCqu0umYm+rjH0EuPoAQAAAKAtIdDbRDDQH5p8qFQRGuhNkcbQh1boJWa6BwAAAIC2hEBvE8EJ8fon95dCJrhzGlToAQAAAMCOCPQ2EDAC1oR4/ZL7hQf6kH2qqx7omekeAAAAANqOqJZuAPaf0+HU0nOXKjM/U+nt0sMCvTUpXh2z3EvMdA8AAAAAbQmB3ibcTrcOaX+I+aCiYZPiuRwu+Q0/FXoAAAAAaEPocm8X/7lI+scxUs4mKWRyu2CFfl9d7uM98ZKkMh9j6AEAAACgrSDQ20X2D1L2d1JhthQSzJ37qNAHu9zHu81AX+JnlnsAAAAAaCsI9HYR19G8LdotVYRU6Ctvq4+h9wf8MirDfjtPO0lU6AEAAACgLSHQ20VsB/O2OCfypHjVKvQ+o2qG+2CFnknxAAAAAKDtINDbhRXod0fscl99DH2Fv2qGe6vLvY8u9wAAAADQVhDo7cLqcp8T3uW+lknxQtegtybF89PlHgAAAADaCgK9XYRV6Ku6zgc/YL/h16qdqzR/xXyV+kqtLvdOh1OxUbGSxLJ1AAAAANCGsA69XcRWVuirj6EPznIf8OvhlQ/r66yvNSRliAYkD5AkRTmi5I3ySmIMPQAAAAC0JVTo7SJslvvKYO7yhE2Kl1OSI0kqLC+0uty7XW5Fu6IlUaEHAAAAgLaEQG8XscnmbXGOFJzczh1rVegDRkD55fmSzLHyFYY5KV6UM0oxUTHWdgAAAABA20Cgt4vQLvfBCr0nXs6QCn1BWYEksxIfnOU+yhElr8vscs8s9wAAAADQdhDo7SLY5d5XKlUUmfc9sXJVPl3sK1Z5oFySWYkPTorndrkVHWV2uS/zUaEHAAAAgLaCQG8Xnjipsuu8xR1rrUO/p3SPtbnUX2qNoY9yRFmBnknxAAAAAKDtINDbSXDpuiBPvDUpXl5pnrW5zFdW1eXeGcWkeAAAAADQBhHo7SSuWqB3x1hd7veUVavQR+hyT4UeAAAAANoOAr2dBCfGkySXV3JGyWmYJfrQCe/K/GXhXe5djKEHAAAAgLaGQG8noV3u3dGS02VV6EOFdrl3O93yRpmz3FOhBwAAAIC2g0BvJ3EhFfqoGMnhlKuyQh8qtMt99TH0b//8tia8MkEbcjcckCYDAAAAABqHQG8noRX6KG/tFfqQLvdup1sxlbPjl/hK9OiqR5VVlKVl25cdgAYDAAAAABorqqUbgCYU1uU+RnK4In5jU+orVUWgcpZ7V5S8LrPLfbGvWMV7iyVJ5f7y5m4tAAAAAGA/UKG3k7Au95Vj6CN0uQ+r0DuqZrkPRaAHAAAAgNaNQG8nsdUCfS0V+rBZ7p1REQN9sIIPAAAAAGidCPR2Elqhd0dLzlomxQvpcu92uuVxeuSQI2wfKvQAAAAA0LoR6O0kbFI8s0Jf16R4Uc4oORwOq0rvcphHlAcI9AAAAADQmhHo7SQ6SaoM5MEx9BEnxfOHTIrnNOdFTI5OliSN6TZGEhV6AAAAAGjtmOXeTpxOKTZZKtplzXIfcVI8X1lYl3tJumf0PcoqztLu4t366JePVOFnDD0AAAAAtGZU6O0m2O2+ch36SB9weaDcCuzBCv3QTkM1KWOSPC6PtQ8AAAAAoPWiQm83wZnuo2Ikh1NRNQv0ksw156WqQB8UrNjT5R4AAAAAWjcq9HYTV1mhr5zl3qmqRN/e2966X1heaO5WGeCD3K7KQE+FHgAAAABaNQK93SR1N29jO5rr0IdU6NtHt7dmsS+qKJJUs0LvcZpd7hlDDwAAAACtG4Hebo65Vjr1QenwqZIzfNm6RG+ivC6vJGlvxV5JEQJ9cAw9Xe4BAAAAoFUj0NtNXAdp+DQpOqFyHfqqEn2CJ8Fab76o3KzQV+9yH6zQ0+UeAAAAAFo3Ar2dOV1yhXS5D63QF1aYY+hrTIpXOYY+uKwdAAAAAKB1ItDbmcMVNilegiehzkBPl3sAAAAAaBsI9HbmdIZV6MO63Ffsu8s9k+IBAAAAQOvW5gL9o48+qoyMDEVHR2vEiBH6+uuv97n/yy+/rH79+ik6OlqDBg3SO++8c4Ba2go4XGEfcIK3qkJf4iuRFCHQuxhDDwAAAABtQZsK9P/5z380a9Ys3Xbbbfr22281ZMgQTZw4UTt37oy4/+eff67zzz9fl156qVauXKnTTz9dp59+ur777rsD3PIW4nTJZVSbFM8VHbZLbcvW0eUeAAAAAFq3NhXo58+frxkzZmj69OkaMGCAHn/8ccXGxurpp5+OuP+DDz6oSZMm6c9//rP69++vO++8U4cffrgeeeSRA9zyFuKIsGxdlDdsl+oV+uCkeFToAQAAAKB1azOBvry8XCtWrND48eOtbU6nU+PHj9cXX3wR8ZgvvvgibH9JmjhxYq37S1JZWZkKCgrCftosZ+2T4gXVNimeL+BTwAg0fxsBAAAAAI3SZgL97t275ff7lZqaGrY9NTVVWVlZEY/Jyspq0P6SNHfuXCUmJlo/6enp+9/4luKoNimet/5d7iWWrgMAAACA1qzNBPoDZfbs2crPz7d+fvnll5ZuUuM5q02K50mos8t9sEIvVY2jf2rtU3px3YvN1kwAAAAAQMNF1b1L69CxY0e5XC5lZ2eHbc/OzlZaWlrEY9LS0hq0vyR5vV55vd5an29THC7FGIaOcMTK1/EQJUcn19nlPjTgl/vLlVeapwe/fVAuh0vnHHpOjf0BAAAAAC2jzVToPR6Phg8friVLlljbAoGAlixZopEjR0Y8ZuTIkWH7S9LixYtr3d92nC45JD3tTNeCkxbI6XDWGegdDocV6isCFSrymevV+w2/in3FB6TZAAAAAIC6taly66xZs3TxxRfriCOO0FFHHaUHHnhARUVFmj59uiRp6tSp6tq1q+bOnStJ+uMf/6ixY8fqvvvu08knn6x///vfWr58uZ588smWfBkHjsP8vsZhBCSHQ5JqjKGv3uVeMrvdVwQqVO4vDxtHX1xRrARPQjM2GAAAAABQX20q0J977rnatWuXbr31VmVlZWno0KF67733rInvtm7dKqezqtPBqFGj9OKLL+rmm2/WTTfdpL59++r111/XwIEDW+olHFiOykXrDL+1qfoY+khd6D1Oj4pUpHJ/ucr8ZdZ2KvQAAAAA0Hq0qUAvSTNnztTMmTMjPvfxxx/X2Hb22Wfr7LPPbuZWtVLOykAfCAn0dXS5l8LXoi/1l1rbSypKmqGRAAAAAIDGaDNj6NEIlV3uFbKefL263FcuXVfuL1epryrQF1UUNUMjAQAAAACNQaC3s0gV+vp0ua9cuq4iUBFWoafLPQAAAAC0HgR6O4swhr4+FfrgtuoV+uIKAj0AAAAAtBYEejtr5Bj6sAp9aJd7H13uAQAAAKC1INDbWaQKfVQDK/R+KvQAAAAA0BoR6O0suIRfoGpSvIZU6MsD1brcM4YeAAAAAFoNAr2dRVqHvlqgjzjLfbDLvb+CCj0AAAAAtFIEejuLMIa+epf7iBX6kGXrynxl1nYCPQAAAAC0HgR6O6ujQu90OOV01PwVcLsqx9AHylXiK7G20+UeAAAAAFoPAr2dRarQhyxbF6m7vVStQu+nQg8AAAAArRGB3s4iVeijqir0kbrbS7VPiseydQAAAADQehDo7ayOWe7rCvQV/gqV+Ku63JdUlETcHwAAAABw4BHo7SxChd7pcFpd7evV5T50UjzG0AMAAABAq0Ggt7MIY+ilqnH0tVXoQyfFC122rqiCLvcAAAAA0FoQ6O0sQoVeqhpHH+Wopct9SIU+dAw9FXoAAAAAaD0I9HZWS4U+OI4+WImvzhpDH6gIq9Azyz0AAAAAtB4EejuzKvSBsM11dbm3ZrmvVqGvCFSowl/RDA0FAAAAADQUgd7OrFnuG9blPjhZXvVAL9HtHgAAAABaCwK9ndVRoa+ry331SfEkut0DAAAAQGtBoLczZy2T4rnqNylehb+CCj0AAAAAtFIEejtz1DIpXmWX+1rXoa+s0BdVFMmQIUlq52lnbQMAAAAAtDwCvZ3VUqG3JsVz7XtSvILyAmtbh+gOkqjQAwAAAEBrQaC3s2CFXpICVePorWXrHJEr9MHK/d7yvZIkl8OlBG+CJMbQAwAAAEBrQaC3M2fIxxtSpY+O2veydcFAH6zQR0dFKzYqVhJd7gEAAACgtSDQ21lYhb4q0FsV+jrG0PsrvwSIdkUrzh0nSSrxlTRHSwEAAAAADUSgtzNnSKA3agb62ir0wUAfFFqhp8s9AAAAALQOBHo7q6VCH5yxPtYdG/Gw4LJ1QdGuaGtfJsUDAAAAgNYhcokW9lBLhf7U3qdqV8kunXXIWREPc7vCu+J7o7yMoQcAAACAVoZAb2eOkA4YIbPcd4zpqOuPvL7Ww6jQAwAAAEDrR5d7O3NEnuW+LtXH0MdExTCGHgAAAABaGQK9nTkcVaE+0PhA73V5qyr0BHoAAAAAaBUI9HYXnBivIRX66l3uo6qWraPLPQAAAAC0DgR6uwtOjNeACn315ewa0uV+S8EWPf3d0yr1lTasnQAAAACABmFSPLtrRIXe4XDI4/SoPFAuKbzLfZFv37PcP/TtQ/pgyweKjYrVef3Oa1ybAQAAAAB1okJvd1aFPrDv/aoJHUcfHRVd7zH0vxb+KklauXNljecy8zO1ZOuSBrUDAAAAABAZgd7ugpPiNaBCL1UL9K7oqi73IWPoA0ZAT619St9kfWNt21m8U5K0ZteaGue88dMbdc1H1+jHPT82qC0AAAAAgJoI9HbXiDH0kuR2uq370VFVgb6kokSGYUgyq/APfvug7vzyTklSRaBCOSU5ksxKffC+JBmGocz8TEnS7uLdjXstAAAAAAALgd7uGjGGXqq9y73P8Flj67cVbpMk/br3VwWMgHJKcmTIsI5bu3utdb+gvEAlvhJJUom/pOGvAwAAAAAQhkBvd42s0IcuXRfa5V6qGkefVZQlyazM7y7Zrezi7LBzhHa7D+4ryQr2AAAAAIDGI9DbXRNV6F1Ol6Jd0ZKqxtFnF1UF+O2F263x80GhgT407LOkHQAAAADsPwK93TkrP+IGznLvdoWMoa8M8tbSdRXm0nVZxVVV99BA3zOxpySzy72/smcAgR4AAAAAmhaB3u4aW6EP6XLvjfJKUtVM9xURKvRF263QPrLzSMW541TsK9ZPeT9Joss9AAAAADQ1Ar3dNXYMfUiX+5ioGEk1K/ShVfcdhTusCn1aXJoGdhwoSVqz2+x2Hxr+CfQAAAAAsP8I9HbXFBV6l1mhT4tLk2TOal/iK1FeWZ61z/aiqi73nWI7aXDHwZKqxtGHds8n0AMAAADA/iPQ211j16F3ha9DL0m9EntJkn7O/7nGBHihY+g7xXayKvTrc9dLCq/Ql/oZQw8AAAAA+yuqpRuAZtbICr3bWRXoY1xml/vQQB8cE+91eVXmL9OOoh3W/qmxqeoa31WS9FPeT6rwVzApHgAAAAA0MSr0dtfIWe5Dx9AHJ8ULzl7/c97PVkA/rMNhksxu9MGu9J1iO6lzXGe187STL+DTql2rwrrZ0+UeAAAAAPYfgd7ummAMfXDZul5JZoV+Z8lOa/b67gnd1TGmo7VvgidB0VHRcjgcOrT9oZKkpb8sDTs3FXoAAAAA2H8Eertrglnug2PoEzwJSolJkSR9uf1LSWb3+i5xXax9O8V2su4fmlwZ6H8ND/RU6AEAAABg/xHo7a6xY+grJ8XzOD1yOqp+TYLj6NflrpNkznzfJb4q0KfGplr3gxX6zQWbzXNWjssn0AMAAADA/iPQ211jK/SVXe6D1fmg4Dj6oNTYVHWO72w9Dq3Q90vuF7Zvj4Qekgj0AAAAANAUCPR2F6yuG42bFC84fj6od1LvsMdpcWm1drnvndRbUY6qhRQyEjIksWwdAAAAADQFAr3dNXGFPtjlPig1LjWsy31ooPe4POqZVFXRD1bomRQPAAAAAPYfgd7u9nMMfY1An1QV6GOiYtTO3S6sQh86hl6S+rWv6nafkZghiS73AAAAANAUCPR2t5+z3Ffvct8huoPaedpJMrvbOxyOWiv0UtVM91JVl/syf5kCDRwCAAAAAAAIR6C3O6tC38Ax9JVd7r1R3vDTORzqnWiOow9W42PdsTqsw2FKjk62utUHRQr0Et3uAQAAAGB/RdW9C9o0Z+O63B+RdoQyEjI0KWNSjed6JfXSql2rwrrXPz/5eVX4KxTrjg3bd2CHgUqOTlbnuM5K9CZa20t8JTX2BQAAAADUH4He7oKz3Dewy33X+K767xn/jfjcxIyJ+uzXz3RC9xOsbW6n21pnPlS8J17v/uZduZ1uORwOxUTFqMRXwjh6AAAAANhPBHq7czauy/2+jOoySkvOWVLv/UMr8cFAT5d7AAAAANg/jKG3u0ZW6JtLcJI91qIHAAAAgP1DoLe7Ri5b11yCy+DR5R4AAAAA9g+B3u4auWxdc4mJipFEoAcAAACA/UWgtzsq9AAAAABgSwR6u3MGx9A33aR4+yNYoWdSPAAAAADYPwR6u2tlFXq63AMAAABA0yDQ210rG0NvzXJPhR4AAAAA9guB3u5aa4XeT4UeAAAAAPYHgd7uWluFnknxAAAAAKBJEOjtzlH5EbeyCj1d7gEAAABg/xDo7c6q0LeOWe4bU6HfVbxLRRVFzdUkAAAAAGiTCPR210rH0Ne3Qp9TkqPJiybr7P+erYLyguZsGgAAAAC0KQR6u2tlY+gbGug35m1Uqb9Uv+z9RXd9eZcMw2jO5gEAAABAm0Ggt7tWVqEPLltX3y73WUVZ1v13M9/VWz+/1SztAgAAAIC2plGBvqiI8cxtRiut0Nd32brsomxJUrw7XpJ091d3a3fJ7uZpHAAAAAC0IY0K9Kmpqbrkkkv02WefNXV70NRa2Sz3DZ0UL6vYrNCf3+98HdbhMBVVFOnFdS82W/sAAAAAoK1oVKB/4YUXlJubq+OPP16HHHKI7rnnHm3fvr2p24am0MpmuW/oGPpgl/uu8V112aDLJEkv/fiSiiuKm6eBAAAAANBGNCrQn3766Xr99de1bds2XXnllXrxxRfVo0cPnXLKKVq0aJF8Pl9TtxON1crG0Ftd7utZoc8uNrvcp8Wl6bj045TeLl35Zfl6c9ObMgxD63LWNWgJPAAAAACwi/2aFC8lJUWzZs3SmjVrNH/+fH344Yc666yz1KVLF916660qLqaK2uJa6Rj6hlboU2NT5XK6dFH/iyRJz37/rC55/xKd89Y5uu3z25qnsQAAAADQiu1XoM/Ozta8efM0YMAA3XjjjTrrrLO0ZMkS3XfffVq0aJFOP/30JmomGq2VVeiDY+jrE+iLK4q1t3yvJLNCL0mn9zldCZ4EbSvcpuXZyyVJG/dsbKbWAgAAAEDrFdWYgxYtWqRnnnlG77//vgYMGKDf/e53uuiii5SUlGTtM2rUKPXv37+p2onGamUV+mCg9xk+Vfgr5Ha5a903OCFevDte8R5zlvtYd6yuGHyF/r787zq689H6cseX1kz4AAAAAHAwaVSgnz59us477zwtW7ZMRx55ZMR9unTpor/85S/71Tg0AWuW+9Y1KZ5kLl23z0Af0t0+1NTDpur8/uerwl+hES+O0N6KvSqqKFKcO655Gg0AAAAArVCjAv2OHTsUGxu7z31iYmJ0222MbW5xraxC73a6FeWIks/wqaSiRAmehFr3DVbeg93tq5/H7XSrnaed9pbvVXZxtnol9mq2dgMAAABAa9OoQO/z+VRQUFBju8PhkNfrlcfj2e+GoYm0sjH0klml31uxV6X+fY+jD3a5T41LrXWf1NhUM9AXEegBAAAAHFwaNSleUlKS2rdvX+MnKSlJMTEx6tGjh2677TYFWsna5we1Vlahl6rG0YcuN7d211qtyF4Rtp9VoY+tWaEPCob94PJ2AAAAAHCwaFSF/tlnn9Vf/vIXTZs2TUcddZQk6euvv9Zzzz2nm2++Wbt27dK9994rr9erm266qUkbjAZqhRX66jPdF5YX6tIPLlWpr1QLTlqgoZ2GSqoaQx+py31QMOwzMR4AAACAg02jAv1zzz2n++67T+ecc4617dRTT9WgQYP0xBNPaMmSJerevbvuvvtuAn1La4UV+uDEeMEK/Rc7vrDu3/757Xr51Jfldrmtqnv1SfFCdYrtJIkKPQAAAICDT6O63H/++ecaNmxYje3Dhg3TF198IUk69thjtXXr1v1rHfZfK5vlXqrZ5f6TXz+xntuUv0lPffeUpPpV6INhn0APAAAA4GDTqECfnp6uf/3rXzW2/+tf/1J6erokKScnR+3bt9+/1mH/teIKfamvVAEjoE9//VSSdGbfMyVJT655Uqt2rlJhRaGkOibFC46hp8s9AAAAgINMo7rc33vvvTr77LP17rvvWuvQL1++XOvXr9crr7wiSfrmm2907rnnNl1L0TitcAx9jKuqy/26nHXKKc1RbFSsbhpxk3aX7NbSX5fqjx/9UZLUzt1un+vLU6EHAAAAcLBqVIX+tNNO04YNGzR58mTl5uYqNzdXJ510ktavX69TTjlFknTVVVdp/vz5TdpYNEKwy31rrND7S/XJNrO7/cguI+VxeXTHqDvUKaaTcktzJe27Oh/6fF5ZnjXJXm3uW36f/rDkD/IFfPv7EgAAAACgxTW4Ql9RUaFJkybp8ccf19y5c5ujTWhKztZXoQ+Ood9dsltf7fhKkjSm2xhJUoeYDvrbmL/p0g8uVcAI1Bno27nbKSYqRiW+Eu0s3qnuCd0j7ldcUaznvn9OhgxtytukQ5MPbcJXBAAAAAAHXoMr9G63W2vWrGmOtqA5WF3uW8+keAmeBEnSU2uf0trdayVJx3Y91nr+iLQj9MfDzS73Q1KG7PNcDoejXt3u1+WukyGjzv0AAAAAoK1oVJf7iy66KOKkeM0pNzdXF154oRISEpSUlKRLL71UhYWF+zxm3LhxcjgcYT9XXnnlAWpxK+EMdrlvPYH+ogEXaWLGRHmcHknS4JTB1vJzQZcMvESLz1qsKwZfUef5glX84Kz4kXy/+3vr/r72AwAAAIC2olGT4vl8Pj399NP68MMPNXz4cMXFhU9a1hxj5y+88ELt2LFDixcvVkVFhaZPn67LL79cL7744j6PmzFjhubMmWM9jo2NbfK2tWqtcFK8tLg03Tv2XhWUF+ibHd/osI6H1bpffdSnQv9dznfWfQI9AAAAADtoVKD/7rvvdPjhh0uSfvzxx7DnHA7H/reqmnXr1um9997TN998oyOOOEKS9PDDD2vy5Mm699571aVLl1qPjY2NVVpa/YKhLbXCZeuCEjwJOqHHCft9HivQhyxdV1heqC93fKnR3UbL6/Lqh5wfrOfocg8AAADADhoV6D/66KOmbsc+ffHFF0pKSrLCvCSNHz9eTqdTX331lc4444xaj124cKFeeOEFpaWl6dRTT9Utt9yyzyp9WVmZysrKrMcFBQVN8yJaSius0De1YCU/GNQ35W3SNR9do80Fm3Vm3zM164hZ2lKwxdqfCj0AAAAAO2hUoA/66aeftGnTJo0ZM0YxMTEyDKNZKvRZWVnq1Cl8jHVUVJSSk5OVlVV7OLvgggvUo0cPdenSRWvWrNENN9ygDRs2aNGiRbUeM3fuXN1xxx1N1vYW14or9E0lWKHfUbRDr218Tfd8fY+KfcWSpHcy39HorqPD9qdCDwAAAMAOGjUpXk5Ojk444QQdcsghmjx5snbs2CFJuvTSS3XdddfV+zw33nhjjUnrqv+sX7++MU2UJF1++eWaOHGiBg0apAsvvFALFizQa6+9pk2bNtV6zOzZs5Wfn2/9/PLLL42+fqvQCme5b2rBSfHW567XrZ/fqmJfsY5MO1IZCRkq8ZXogW8fkCQN6DBAklmhNwyjpZoLAAAAAE2iUYH+2muvldvt1tatW8O6r5977rl677336n2e6667TuvWrdvnT69evZSWlqadO3eGHevz+ZSbm9ug8fEjRoyQZPYsqI3X61VCQkLYT5tmzXJv3wp957jO1v0ET4KuHX6tnpzwpM499FxJ0uaCzZKk49KPkySV+cuUV5Z3oJsJAAAAAE2qUV3uP/jgA73//vvq1q1b2Pa+fftqy5YttRxVU0pKilJSUurcb+TIkcrLy9OKFSs0fPhwSdL//vc/BQIBK6TXx6pVqyRJnTt33veOdlJ9DH1FqeSObrn2NINEb6JuOPIGFVUU6fz+51vr3J/a+1Tdv+J+lQfKJUnDOg1TcnSycktzlV2crfbR7Vuy2QAAAACwXxpVoS8qKoo4sVxubq68Xu9+N6q6/v37a9KkSZoxY4a+/vprLVu2TDNnztR5551nzXC/bds29evXT19//bUkadOmTbrzzju1YsUKbd68WW+++aamTp2qMWPGaPDgwU3exlYrdAz9e7Olv/WQdq5r2TY1g4sGXKQrhlxhhXnJDPrje4y3Hvfv0N+aQI+J8QAAAAC0dY0K9KNHj9aCBQusxw6HQ4FAQPPmzdNxxx3XZI0LtXDhQvXr108nnHCCJk+erGOPPVZPPvmk9XxFRYU2bNig4mJzMjSPx6MPP/xQJ554ovr166frrrtOZ555pv773/82S/tardAK/Q9vSr5S6ddvWrZNB1Cw233/5P5K8CREXOIOAAAAANqiRnW5nzdvnk444QQtX75c5eXluv766/X9998rNzdXy5Yta+o2SpKSk5P14osv1vp8RkZG2ERn6enpWrp0abO0pU0JVuhLC6SSPeb9woMnzB6eerieP+l5K8hbFfpiKvQAAAAA2rZGVegHDhyoH3/8Uccee6ymTJmioqIi/eY3v9HKlSvVu3fvpm4j9oej8iMOXYe+cFfLtKWFDO00VJ3jzXkT6HIPAAAAwC4avQ59YmKi/vKXvzRlW9AcghX6UAdRhb46q8s9a9EDAAAAaOMaHejz8vL09ddfa+fOnQoEwtc4nzp16n43DE3EESHQFx1cFfpQVOgBAAAA2EWjAv1///tfXXjhhSosLFRCQoIcDof1nMPhINC3JhEr9DsPfDtaidBJ8QzDCPvdBQAAAIC2pFFj6K+77jpdcsklKiwsVF5envbs2WP95ObmNnUbsT8iVegP8kDvkEPlgXLtKdvT0s0BAAAAgEZrVKDftm2brr766ohr0aOVCa3Qx7Q3b8vypYrSlmlPC3O73OoQ00ES3e4BAAAAtG2NCvQTJ07U8uXLm7otaA6OkI+4xzGSy2PeLzq4q/QSa9EDAAAAaNsaNYb+5JNP1p///Gf98MMPGjRokNxud9jzp512WpM0Dk0gtELfZai0fZVU8Ku5dF1S95ZqVYvqHNdZ3+d8ry0FW1q6KQAAAADQaI0K9DNmzJAkzZkzp8ZzDodDfr+/xna0kNAx9J2HSvGdzEB/EFfoh3Yaqg+3fqivsr7StIHTWro5AAAAANAojepyHwgEav0hzLcyLo/kjJLkkDoPMQO9dFCvRX9056MlSSuyV6jcX17v45ZtW6b3Nr/XXM0CAAAAgAZpUKCfPHmy8vPzrcf33HOP8vLyrMc5OTkaMGBAkzUOTSDKI532sDTlUTPMW4H+4F2L/pD2h6hDdAeV+Eq0aueqeh1TVFGkq/93tf689M/6bNtnzdtAAAAAAKiHBgX6999/X2VlZdbjv/71r2HL1Pl8Pm3YsKHpWoemMfQCadiF5v04KvQOh0Mju4yUJH2x4wtJ0p7SPdpbvtfaZ3fJbj2++nHllpq/3yuyV6g8YFbz7/ryLpX4Sg5wqwEAAAAgXIMCvWEY+3yMNiBYoT+Ix9BL0qguoyRJn2//XD/n/6zJiybrN2/+RrmlufIH/Lrmo2v06KpH9fDKhyVJX+740jp2W+E2PbH6iRZpNwAAAAAENWoMPdowq8v9wR3og+Po1+Ws07UfXavCikJlFWXpL5/9RQvXLdTqXaslSYu3LFZFoEJf7fhKkjS552RJ0nPfP6fM/MyWaTwAAAAAqIGB3uFwyOFw1NiGNiSOQC9JKbEp6tu+rwwZ+jn/ZyV5k+R1efXZts907/J7JUlOh1P5Zfl6L/M9/bjnR0nSDUfdoBFpI+QzfIylBwAAANCiGrRsnWEYmjZtmrxerySptLRUV155peLi4iQpbHw9Wimry/3BOyle0KjOo7Rxz0ZJ0l+P/at2FO3QnV/eKUOGjkw7Uj0TeuqlH1/S/BXzJZmT6SVHJ2twymB9lfWVNudvbsHWAwAAADjYNSjQX3zxxWGPL7roohr7TJ06df9ahOYVDPRlBVJFieSOadn2tKDT+5yudzLf0Xn9ztPobqNlGIbW5a7TN1nf6I5RdyirKEsv/fiSdpfsliQdlXaUJCkjMUOStLlgcwu1HAAAAAAaGOifeeaZ5moHDhRvguTySv4ys9t9+x4t3aIW06d9H/3vnP9Zjx0Oh24beZv1uEtcF6XEpGhXidmbITjuvmdCT0liDD0AAACAFsWkeAcbh0OKTzXvH+Tj6Ovicro0occE877DpeGpwyVVVeh3lexSYXlhSzUPAAAAwEGOQH8wik8xbw/ypevq4/Q+pyvKGaXRXUcr3hMvSWrnaaeOMR0l0e0eAAAAQMtpUJd72AQz3ddb/w799e5v3lWCJyFse0ZChnaX7FZmfqYGdhzYQq0DAAAAcDCjQn8wYi36BkmLS1OsOzZsW7DbPePoAQAAALQUAv3BKDiGPnOp5GOpwcYIToy3ry73pb7SA9QaAAAAAAcjAv3BaMBpUlS0tGWZ9H/nm8vXoUHqqtC/8MMLOnLhkfrk108OYKsAAAAAHEwI9AejtEHSBS9J7lhp0xJp0eUt3aI2p2eiWaHfWrBV/oA/7Lkyf5meXPOkJOnLHV8e8LYBAAAAODgQ6A9WvcZKF70qySGte1PK29rSLWpTusR1kcfpUXmgXNuLtoc99/7m97WnbI8kKbsouyWaBwAAAOAgQKA/mPUYJWUca95f+3LLtqWNcTld6p7QXZK0OX9z2HP/t+7/rPs7i5l4EAAAAEDzINAf7Aafa96ueUkyjJZtSxsT7HYfOo5+7a61+i7nO+txdjEVegAAAADNg0B/sBtwmuTySrvWS1lrW7o1bUpGQoYkacOeDda2F9e/KEk6Ku0oSdKu4l0KGIED3jYAAAAA9kegP9hFJ0qHTDTvr32pZdvSxozsMlKS9E7mO/pl7y/6IecHvZP5jiTp6sOvltPhlM/wKbc0tyWbCQAAAMCmCPSo6na/9hWp2oztqN2RaUdqVJdR8gV8evDbB3X3V3crYAR0UsZJGpIyRB2jO0piYjwAAAAAzYNAD6nvBMnTTtq7Q9q1oe79Ybl2+LVyyKH3N7+vNbvWKDYqVtcdcZ0kKTUuVRLj6AEAAAA0DwI9pCivlJRu3i/Matm2tDH9kvvp1N6nWo+vGnKVFeQ7xXaSRKAHAAAA0DwI9DDFm+FThSyz1lB/GPYHtfe212EdDtOFAy60tqfGmsGepesAAAAANIeolm4AWok4An1jpcWl6YOzPpDL6ZLb6ba2WxV6xtADAAAAaAZU6GGyKvQRwucHN0tL5x3Y9rQx0VHRYWFeYgw9AAAAgOZFhR6mYKAv2hW+vShH+vxhSQ5p9HWS03XAm9ZW0eUeAAAAQHOiQg9TvBk+a1ToK4or7xiSr+yANqmtCwb67OJsGYbRwq0BAAAAYDcEepjiUszbwmoV+tAQ7ys9cO2xgeAY+hJfifZW7G3h1gAAAACwGwI9TLVV6P0hgd5ffuDaYwPRUdFK9CZKYmI8AAAAAE2PQA9TMNAX50h+X9V2KvT7JbTbPQAAAAA0JQI9TLHJksMpyZCKd1dtDwv0VOgbKtjtnonxAAAAADQ1Aj1MTlfIOPqQarKfCv3+CFboN+7ZqNs/v133fH0PE+QBAAAAaBIsW4cqcZ3MMB86MV5oVZ5Z7hssGOhfWPeCte3ozkdrXPq4FmoRAAAAALugQo8qwbXoQyv0oVV5P4G+oVLjUq37UQ7z+7MnVj9BlR4AAADAfiPQo0ow0BeFjPcOndmeLvcNNrTTUEW7onVU2lF6+dSXFe2K1nc53+nz7Z+3dNMAAAAAtHEEelSxKvQhgT40xDMpXoP1Suylz87/TP+a+C/1ad9HZx1yliTpiTVU6QEAAADsHwI9qsRFCvRMire/vC6vdX/6wOlyO91auXOlPvrlo1qP+WrHV5q/Yr7ySvMOQAsBAAAAtEUEelQJrkUfNst9eeT7aJROsZ10Yf8LJUm3LLtF2wu3hz1fXFGsu7+8W5d9cJme+e4Z3bv83pZoJgAAAIA2gECPKvGVy9YVhc5yXxr5PhrtD8P+oIEdBqqgvEB/XvpnVfgrJEmGYeiKxVfo3xv+be3735//qy0FW1qqqQAAAABaMQI9qkSq0IctW0eFvil4XB79fezf1c7TTmt2r9E/Vv9DkvTJr59o1a5Vio2K1RMTntDorqMVMAJ6YvUTLdxiAAAAAK0RgR5VgoG+ZE9VePczhr45dGvXTbePvF2S9Oz3z2prwVb967t/SZLOPfRcjeoySr8f+ntJ0tuZb+vn/J9bqqkAAAAAWikCPapEJ0lOc610q9t96KR4rEPfpCb0mKBjuhyjikCF/vC/P2jlzpVyO926aMBFkqTDOh6mcenjFDACmvvVXFUEKlq4xQAAAABaEwI9qjidVTPdB9eiD5vlnkDflBwOh64/6npFOaKsCvyUPlPUKbaTtc/Vw65WtCtaX+74Urctu00BI2A99+GWD3XCyyfo418+PsAtBwAAANAaEOgRLjgxXnDpOj+Bvjn1SuxlVeSdDqemHzY97Pm+7fvqvnH3yeVw6b8//1f3Lr9XhmFoW+E23bzsZu0s3qmHVz7MmvYAAADAQSiqpRuAVsaaGI8K/YFyxeArtK1wmw7rcJi6J3Sv8fyYbmN0+6jbdcuyW/T8D89rV/Eu7SzeqaKKIknSj3t+1OpdqzW009AD3HIAAAAALYlAj3CxHczb4hzzljH0zS7eE6/54+bvc5/T+5wuwzA054s5em/ze5KkOHechqYM1bLty/TvDf8m0AMAAAAHGbrcI5w7xrwNzmhPhb7VOKPvGXryxCeV5E2SJM0+arb+MOwPkqQPNn+gX/f+que+f073r7hfK3euDBtvDwAAAMB+qNAjnDvWvK0oNm9Ztq5VOTLtSL1x+hvaXrhdAzsOlCQN7DBQ3+V8p1NfO1U+wydJevq7p9U1vqseO+Ex9Urq1ZJNBgAAANBMqNAjXLBCX1Fi3gbXo69+Hy0mOTrZCvOSdM6h50iSfIZP3dt110k9T1K8O17bCrfpji/uYMI8AAAAwKao0COcFegrK/ShVXkq9K3Sqb1PVU5pjjpEd9ApvU+R2+lWVlGWTnv9NH2781u9nfm2Tul1Sks3EwAAAEATo0KPcFaX+8rwHtrl3k+FvjWKckbpskGX6Yy+Z8jtdEuS0uLSdNmgyyRJ85fPt2bEBwAAAGAfBHqE22eXeyr0bcnFh12sbvHdtKtkl2Z/Olv5Zfkt3SQAAAAATYhAj3DVJ8UL63LPLPdtidfl1S1H3yKXw6WPfvlIv3nzN/p6x9ct3SwAAAAATYRAj3BR0eZtsEIf2s2eQN/mjOo6SgtOWqAeCT20s3inrvjwCn209aOWbhYAAACAJkCgR7h9Vej9BPq2aHDKYL10ykua0GOCfAGfZi2dVWeo/2L7F7rn63uUXZR9gFoJAAAAoKEI9Ai3zzH0BPq2KtYdq3lj5mlixkQz1H88Sw+vfFjlESY6/Hz75/rdkt9p4bqFOvetc/Vt9rf1ukbACOidn9/R0l+WNnXzAQAAAETAsnUIVz3Qh1blCfRtWpQzSveMvkdel1dvbnpTT655Uou3LNaJPU5U/+T+ah/dXnvK9mj2p7PlC/gUExWjnNIcXfr+pbpyyJWaPnC6PC6PNuVtUlFFkQZ2HCinw/xOcHvhdt2y7BZ9nWWO0b9n9D06udfJNdqwp3SPbvv8NuWW5uruY+9Wj4QeB/Q9AAAAAOzEYRiG0dKNaM0KCgqUmJio/Px8JSQktHRzmt/O9dJjI6SYZOnPP0lzkquec8dJf9necm1Dk1m8ZbHu/vJu5ZTmRHz+6M5H696x9+quL+/Se5vfkyR1b9ddce44rctdJ0nKSMjQiRkn6sc9P+qrHV+pxFcip8OpgBGQ2+nWvDHz9OveX/VN9jc6tP2hGthxoOZ9M0/bCrdJkhK9iXpg3AM6Iu2IZn2t5f5yeVyeJj/v7pLd+nXvrxqSMkQOh6PJzw8AAICDV31zKIG+DgddoN+zRXpwsDmW/s+bpL92rnrOGSXdGjkAou3JL8vX2z+/rXW56/Tjnh9VVFGkCn+FBqUM0pxRcxTrjpVhGHon8x3dt/w+7SrZJcms9HucHhX7isPONzRlqO485k49tPIhLd6yuNbrdovvpkRvor7P+V5Rjigdnnq4RnQeoR4JPdQhuoNiK+dx8Lq86hjTUSW+Ei1ct1Bv/fyW0mLTdEH/CzQxY6IV0vNK87Rl7xbtLd+r4opiJUcna0CHAcrMz9SD3z6oL3d8qQk9Juj3w36vXom96v3++AN+rctdpy0FWzS442ClJ6Rbz72X+Z7mfDFHeyv26sQeJ+rWkbcq0ZtY73OH2l2yW5n5meqb1FdJ0UkKGAFtLtgsSeqZ0DPsywJ/wK9N+ZsU745Xl/gujbqeJBmGoV8Lf1WFv0IZiRlWT4vaFJQX6Oe8n9UnqY/iPfEyDEOZBZkKBALqldQr4vGb8zfriTVPKLs4W9MPm65jux5rvZaAEdDPeT/L6XCqZ2LPiF+IGIahrXu3qtRXqj5JfeRyuqznAkZAm/I2yePyqHu77nI4HNpbvlc/5/+s3om9rTZuLtgsX8Cn3km95XQ4VeIr0cY9G5XeLl3to9vX+R5l5mfKkKFeib340gYAABxQBPomctAF+sJd0r19zPvXZ0rzeoY/f2uuFPIf1jg4FJYX6o1NbyjKEaWJGRPldrn15qY39W32t+qX3E9Hdz5aAzoMkMPhUKmvVJcvvlwrd67U4JTBOj79eH2f872WbVumISlD9Lcxf1N0VLRuWXaL3t/8fqPb1M7TTk6HU/ll+TWeC/YUqL4tOTpZASMgv+FXIFB5awQUMALyuDyKjoqW1+VVtCtaO4t3am/FXuv4rvFdlRaXJn/Ar1W7VoWdu1NMJx2SfEjYNkOGzP8zFPwza1T+T5V/dbOKs7SlYIt1TM/EnsopyVFBeYEkKcmbpH7J/eR1eVXmL9N3u79TYUWhJKlLXBf1bd/XCtMOVQXO0PAZ3B7c5g/49UPuD8oqypIktfe216CUQfK6vBHf5x2FO/RD7g8KGAG5HC71T+6v7OJs6wue5OhkDe44WG6X2zqm1Feqz7d/Lr/ht7YN7DBQneM7q9xfrrW71yq3NFeS1DGmowZ2HCi3s+r46m1M8CRoaKeh8rq8KveXa82uNdpTtsd872M7KSUmRety14W1cWfxTu0s2Wm9xvSEdK3LWaeKQIUccqhfcj91a9ct7H0LqghUaO3utdpdsluS1CG6gwalDJLHaX6JNKLzCJ1z6DkR3y8AAICmQKBvIgddoC8rlOZ2Ne9fvUp6aGj48zftkDyxB7pVaGMqAhXKL8tXx5iO1rbgn5rQsPlz/s/6asdX+jb7W2UXZyunJEelfnNlhVJfqRVsj0g9Qhf1v0g/5/+sf2/4t3YW7wy7XmpsqtpHt1dMVIy2F25XdnG2HHLolF6n6JTep+j/1v+fPv7l4wa/jnbuduqe0F0bcjfIZ/is7U6HUzMGzdCxXY/VXz77i7bu3drgcwc55FCn2E7KLq5aUSDaZS4fGXwvQsVGxarMXxYWlhsjyhmlKEdUxGtEkhydbIVwyexBEax612Zst7FKb5eul398WWXVVsmIiYqRYRj7vL7b6ZbH5VFRRVGN52KiYuQP+FUeqJrYMcmbpLyyPOuxx+mRy+kKa2OiNzHil0CR1PY5nNn3TN0+6vZ6nQMAAKAxCPRN5KAL9AF/1bj5yz+WnhwnOd1SoMLcdn2mFJtc29FAkyr3l6vEVxLWnT1gBJRXlqf8snyV+8uV3i7d6qYfFKyshn6hsK1wmwrLC+V0OOVyuOR0OK0fh8OhCn+FyvxlKvWXqsxXpjhPnPq17yeX06WiiiKt3rVaBeUFKvOVqV9yPx2afKgkqbiiWJ9s+0RlESaNdDgcNSrkjuD/HA7Fu+M1OGWwEr2JyinJ0fc536tDdAez2m9I63LX6ef8n60vQw5NPlSHtj9UZf4yrdq5StuLzDktDFX9Ga/tT3ro9vSEdA1NGSq3063vcr7Txj0baz2unaedhqcOV2pcqrYXbtfKnSvVMaajhnYaKqecWrN7jXm8wo8f1HGQBnYcKEnKLsrWp9s+lS/gk9PhVJ+kPhrUcZAMGVq9a7V+zvu5xvHdE7prWKdhcjvd+j7ne23I3aCAEZBDDh2SfIgGdhwof8CvlTtXak/pHg3rNEyd4ztbbewQ00FDU4bK5XBp7e612la4TYNTBqt7u+7KKc3RN1nfhIX/sM9NDvVO6q0hKUMkSat3rdamvE1WG3sn9tZRnY+KeCwAAEBTINA3kYMu0EvSnSmSv1z67WvS82dI0UlSWYFkBKRZ66WEznWeAgAAAADQOPXNoaxDj5qCS9eV5Jm3UV4pyux6Kj9L1wEAAABAa0CgR03B7suleeZtlFcKLvvFWvQAAAAA0CoQ6FGTVaE3Z5GWK6RCT6AHAAAAgFaBQI+arAp95UzQUV4pigo9AAAAALQmUS3dALRCkcbQ+xlDDwAAAACtCRV61BSpy73La973hazHXLZXemq89Ol9B7Z9AAAAAAACPSKIqgz01qR4HrNKL0m+8qr9tn4p/fqN9O3zB7R5AAAAAAC63COS6hX6qGjJ7zPvh1bo92aZtxXFB65tAAAAAABJVOgRSXBSvJLKSfFcnqpJ8fwhFfrCykBfXnTg2gYAAAAAkESFHpG4q3e5j5YCkSr02eZteZFkGJLDccCaCAAAAAAHOyr0qCkY6MsKzNsoj1mll8LH0O/dUXnHkCpKDljzAAAAAAAEekQS7HIf5PKaVXopvEJfmF11n3H0AAAAAHBAEehRU7BCHxQVXTWG3heyDv3ekEBfXtj87QIAAAAAWBhDj5pqBHqPFKis0PsrA71hVE2KJ0nlVOgBAAAA4EAi0KOm6oHe5ZVcFeb9YJf7kj3hM94z0z0AAAAAHFAEetRUfQx9lDdklvvKEB86fl6iyz0AAAAAHGAEetRUo8u9Vwr4zfvBCr01w30lJsUDAAAAgAOqzUyKd/fdd2vUqFGKjY1VUlJSvY4xDEO33nqrOnfurJiYGI0fP14bN25s3obaQY0u956qSfGC3ez3Vq/Q0+UeAAAAAA6kNhPoy8vLdfbZZ+uqq66q9zHz5s3TQw89pMcff1xfffWV4uLiNHHiRJWWltZ98MGsRpf76JrL1oVOiCcR6AEAAADgAGszXe7vuOMOSdKzzz5br/0Nw9ADDzygm2++WVOmTJEkLViwQKmpqXr99dd13nnnNVdT276IXe6rjaGnQg8AAAAALarNVOgbKjMzU1lZWRo/fry1LTExUSNGjNAXX3xR63FlZWUqKCgI+znoRJoUr64KPWPoAQAAAOCAsm2gz8oyA2dqamrY9tTUVOu5SObOnavExETrJz09vVnb2SoFw3uQy1v7GPqEruYts9wDAAAAwAHVooH+xhtvlMPh2OfP+vXrD2ibZs+erfz8fOvnl19+OaDXbxVqVOg9tVfok3uZt+VU6AEAAADgQGrRMfTXXXedpk2bts99evXq1ahzp6WlSZKys7PVuXNna3t2draGDh1a63Fer1der7dR17SNGmPoo6VAwLzvK5MMQ9obEug3f8oYegAAAAA4wFo00KekpCglJaVZzt2zZ0+lpaVpyZIlVoAvKCjQV1991aCZ8g9KNZat80pRwXXoy6SyvVVj5q0KfWWX+0BA2rtdSux2YNoKAAAAAAepNjOGfuvWrVq1apW2bt0qv9+vVatWadWqVSosrBq73a9fP7322muSJIfDoWuuuUZ33XWX3nzzTa1du1ZTp05Vly5ddPrpp7fQq2gjnC4zxAdFecyJ8STJXyYVVo6f9yZI8Z3M+8GAv/gW6f7DpE0fNeyaxblS0e79azcAAAAAHETazLJ1t956q5577jnr8bBhwyRJH330kcaNGydJ2rBhg/Lz8619rr/+ehUVFenyyy9XXl6ejj32WL333nuKjq426RtqcseY4V0yu9wbIV3ug93t41OrxtsHu9xnrTFvf/lK6n1c/a4VCEhPjDHPMWud5ObzAQAAAIC6tJlA/+yzz9a5Br1hGGGPHQ6H5syZozlz5jRjy2zKHSuV5pn3XZ6QQF9aVaFvlyZ54s37wUBfvMe83bO5/tcqL5TyKycfzP9V6thnf1oOAAAAAAeFNtPlHgdY6Dj6qGgz1EuSrzy8Qu+pVqEvyTVvczPrf62ygqr7e3c0rr0AAAAAcJBpMxV6HGBhgb5ahT53k3k/savkiTPvB8fQF1cG+oZU6EtDA31Wo5oLAAAAAAcbKvSILDTQu7xVk+IZfmnrV+b9LodL7spAX14kVZRIvhLzcWFW1dr0Bdul3T+Zy91FQoUeAAAAABqMCj0iC6vQeyWFhPGd35u33Y6UHJXfCZUXVVXng/K2mrPgPzrCDO1xKdIhk6ST55tV/yAq9AAAAADQYFToEVlw9npnVM1l7CSpXZfKLveV+xn+mtX1PZulX76uqsAX7ZJWPi/9+nX4flToAQAAAKDBCPSILFihDwZ5V5TkcFU93+2Iyv3iqrYFZ6oP2rNZ2r7SvD/wLKlr5THBWfKDSquWGqRCDwAAAAD1Q6BHZMEKfVRIZT70frcjzVtXlDkLvmQuORdqT2ZVoE8fISV2M+8X7grfjwo9AAAAADQYgR6RBSv0tQb6I0L2rQz/1QN9bqa0/VvzftfDzTH0ktn1PlT1MfS1TZ4HAAAAALAQ6BFZsOruCpm8Ltj93uGSOg+t2u6JN2/zKrvcJ3Q1b3/92gzvzigp9bDaA31ohd5XEt4FHwAAAAAQEYEekVld7qOrtgUr9GkDqybDk6ruB8fQdxlm3pbsMW879Tcr/nEdzcdFu8OvFVqhl+h2DwAAAAD1QKBHZFaX+5AKfTDcB8fPB3kqJ8YLBvrOQ6qWs5PM9eolcwk7KUKFfm/448YE+ooSqaK04ccBAAAAQBtFoEdkkSr0wZDf9YjI+wYr8vGdqibAk6oq9vXpci81fKZ7f4X06FHS48dIgUDDjgUAAACANopAj8iqL1snSSNnSv1Pk/qfGr5vcAx9UEyy1D6j6nGNQF9Ll/v4NPO2oRX6gm1S3lYp5yepOKdhxwIAAABAG0WgR2RJ6eZtYteqbYPPls59XvJWC/Ch4+klKTYk0Lu8UqcB5v3gGPryvWYX+aCyyknwUg4xbxtaoS8I+QKg+hr3AAAAAGBTBHpE1nOcNO1t6aR5de8bHEMfFFqhTxtYNQ7fm1A1a35ot/tghb5jMNA3sEK/d3vVfQI9AAAAgIMEgR6ROZ1SxrFSTFLd+7qrBfrYZOmQSVJid+nwqVXbHY6a4+gNo2pSvI6Hmrf7VaHf2bBjAQAAAKCNimrpBsAGIlXo26VJ166tuW9cijnmPTiOvrxIMvzm/ZRGBvq9dLkHAAAAcPChQo/9FxroPfHhS91VV71CH5zh3uGSOvQ27+/Naths9Xup0AMAAAA4+BDosf9CA31M8r73rR7og+Pnve2k+FRJDilQIZXk1v/6TIoHAAAA4CBEoMf+Cw30se33vW9wpvtgl/tghT46QXK5qwJ/QybGY1I8AAAAAAchAj32nztk2bpGV+gTzdt2lWvRF9Qz0BsGFXoAAAAAByUCPfafJ2Rd+pg6KvTxnczb4Fj34Br00QnmbWI38zZvS+3nKNkjrXxB8pWb9/1lVc8R6AEAAAAcJJjlHvvPE1Khj62rQl+ty71Voa8M9MGJ8XJ+qv0c7/9FWrVQKsmTeh9nbnN5zWBfmi9VlEru6Aa9BAAAAABoa6jQY//tz6R4wTXogxX6Dn3N290bIx8f8Esb3jXvb/2iqrt9x75mqJekIma6BwAAAGB/BHrsP3fopHj1DPTFu82l6cqqVeg7Vgb6nFoC/faVVTPgb19ZNSFeu86Vs+SLpesAAAAAHBQI9Nh/DanQx1Z2uQ/4pNK8qi731Sv0eb9IFSU1j9+4uOp+wTZp+yrzfkLnkPH5jKMHAAAAYH8Eeuy/hoyhj/JI0ZUz2hftrlmhj+tY+bwh5f5c8/ifFoc/Dna/D6vQE+gBAAAA2B+BHvvP3YAKvSTFVVbSi3aFTIrXzrx1OGofR1+0W9r2rXm/1zjzNqzLfbUZ9AEAAADAxgj02H9RHikqxrwf16Hu/UMnxgtW6INVe6n2cfSb/ifJkFIHSoeeHP5cQhcq9AAAAAAOKixbh6Zx4p3mmPakHnXvay1dt8tcZk6q6nIvSR36mLe7K5eu27NFylorfbvAfNxnvNT18PBzhlbo9xLoAQAAANgfgR5N46gZ9d83GLzztoZU6EMCfbBCv/tHKWeT9NhIc435oL4nmlV6Z5Q5uZ7EGHoAAAAABx263OPASz/avN24OGQMfWiFPtjl/ifp6yfNMN+ui9T/VGn8HVKPUZI7Wuo0wNzP6ZZiO0jt0szHjKEHAAAAcBCgQo8Dr+8Es7q+a13VttAKfXIvSQ6zer/iWXPblEekPieEn6fLMClrjVmddzrDl60zDHOCPQAAAACwKSr0OPBikqSM0eHbQiv07mgpqbt531cqdTxE6n18zfMEx9EndjVvg7Pn+8uqxuYDAAAAgE0R6NEy+oXOUu+QPPHhzwfH0UvSUZdHrrYPPEs6fKo07kbzsTu6arZ8ut0DAAAAsDkCPVrGoZOr7nsTzC7zoYLj6L0J0pDzI5/DGy+d9nDVmvRS1cR4Wz5rsqYCAAAAQGtEoEfLSOwqdansMh86fj7okBPN22OuNoN7ffUcY96+da30zp+ldf+VvntVyvtl/9oLAAAAAK0Mk+Kh5fQ7Wdr+bfj4+aDex0uzf63ZFb8uE+dKUdHSF4+YM+R//aS5vV1n6crPpLiO+99uAAAAAGgFqNCj5Qy9UEobJA05L/Lz3nYNn6k+yiNNvFu64CVz4r30EWY3/L07pNeulAKB/W83AAAAALQCDsMwjJZuRGtWUFCgxMRE5efnKyEhQiW5Dfglt1iGIXXvENvSTWkZ2d9L/zzenDF/whzpmD+a23eul758TOozXhpwmhTwS58/LG1bbo7x73ey5I6VSguknd9L276VYtqbY/qjPC37mgAAAADYVn1zKIG+Dm090PsDho68+0P5A4a++ct4eaIO0k4Zy582x9VLZoDvPMQM7/5yc9vAs6SC7dLWz+s+V4c+5hcDKf3MWfW97aQob9XzhiFVFEu+Mik2uelfCwAAAABbq28OZQy9zRWV+5RbZIbWvaUV6hDvreMImxo+XcrZZFbkf/rQ/JGkLsOkHaul714xH3vaScMulDZ9JO3eUHV8YnepyxBp65dSzk/Svy8IP7/LY/7IYX5J4C8zt6f0kw6ZZF4nKV1K6CrFdpRcreifnt9nvqa4jg2fYyDgl354Q/p+kflaj/5dw7/E8JVLO3+QygvN9y6hm7lsYX2HW5QXSTvWSL4S83FSDym5V/2PL9sr7VxnflFTV9sDASn7O6l4t/nYm2B+OeRyV+1jGOb76S+XUvrXXMGhupI90u6NUqf+5pdDhiHt2iDJkDoeah5fVmi+R8E2GoaU+7OUt8U8h8srdRkqeeLq95oBAABgC60oVaA5lFb4q+77DuLx4w6HObb+yEulZQ+awfyYa8zx+9tWSG/PMsPZaQ+ZYdAwpKJdkjPKnJgv2MW+NF9aOs8MsSV5Uvlec7u/vKraH2rXevMnvDFmZd8TJ7ljJIfTvJ6vVCorMEOjJ05yR0v+CvO8Lo852Z8Ms/If8JnHujxmm0r2SE63uWKAO8a8hjPKvO+OlQIV5vnlMLdFec1jfWXS9pVmmJak5N5SUvfKa1RUflHhloyA2S6n02yH0222ZfePZniVzBUFvnhM6jnaDPpGwDzWGWU+DvjM/Zwu8zXLYbZ924qqMB4Unyp1HloVlK1wHrw1Kj+j3ebxgYrw4xO6mUE7GKZDOyI5HFXn2ZtlHm/4zW2dh5hfvNTgMN+TX7+RSnLDn3LHSelHmWE84DOHZhRmmc/FJEvdjgzvwREqb6v5hZIMyeEyr5//q1S003w+tqPUvoe5T8BntiNtkFScKxX8Gn4up1vqdoQUlxL5Wg0V5ZXOfKppzgUAAIBmQZf7OrT1Lve/5BZr9LyPJEn/u26seqU0cNZ47FvAb4bhsr1m8DYMM4TGtDcD2E9LzN4AOZvM8Fa00wy6rY071hwm0BjRidKw30qZn0hZaxp3jpj2ZhB1RpmVZ19pw45v18WsXAf85hcM1QN+XWI7SMU59dvXEy+1z5DkkPZuj3xcVLT5WoJflNR5/Y5VVX/J/Dyk8M+kehtdHrNi73CZX+hUD/j7yx0r/WVH054TAAAA9UKXe0iqVqGvaIVBsq1zusxAG50Y+flBZ5k/QQG/WV0tyTW7ileUSKr8Ti0qxqywO5xmEKwoNb8ccHnMLwusCntlWKwoNbdFJ1R9gVBaYG4zDDPUVpSYodDlMbtlyzC3BSvwkpQ22OzuXVYg/brcDI3BQBqoMHsJOJzmaw34zfP7K8xKtztOOmSi2QbDkH7+WNqz2byew1l1vDPK/JHMLzQMf+WXHx6zqtzxkKoqfLASnvNT5b61/d46zJ4M6SPMgB08vrxY2vqF2Q7zgua+DkdlpT7kO0x3nNRjlFkFL9gubflcKs1TjZ4Awap+6kCp6+FVPQcCgcoJE1eYr1MyhwukH22+X9u+NZ8PfQ3W+SRFJ0k9jpESOkt7tki/fG3e73akeb1ty82KfbcjpeSeZo+CLZ+b73f3kVVd7A1D2pNp9jwpL6rl/WogJ//vAQAAoLWjQl+Htl6hX/trvk595DNJ0qLfjdLh3du3cIsAAAAAAPtS3xx6kE55fvAo9YVW6P372BMAAAAA0JYQ6G2uLKSbfdnBPCkeAAAAANgMgd7mQqvyZVToAQAAAMA2CPQ2sXLrHm3I2ltje3iXeyr0AAAAAGAXTGNsA4GAodmL1mpD9l6dPrSrrh1/iLp3MJe9Cg3xjKEHAAAAAPugQm8DheU+9UqJk2FIr63cphPmf6xPN+6SVK3LPWPoAQAAAMA2CPQ2kBDt1mMXDtd/Zx6r/p0TVOE39NXPuZKqr0NPhR4AAAAA7IJAbyODuiVq7CEpkqTicjO8h1blGUMPAAAAAPZBoLeZWI9LklRS4ZNUrULvo0IPAAAAAHZBoLeZGHdloI9QoS+jQg8AAAAAtkGgt5mYygp9sMs9FXoAAAAAsCcCvc1UdbmPEOiZFA8AAAAAbINAbzPBLvdVFfqQLvcsWwcAAAAAtkGgt5lgl/uSCF3uy6jQAwAAAIBtEOhtJtYTJSmkyz3L1gEAAACALRHobSbWmhQvwrJ1VOgBAAAAwDYI9DYTXW0MfWg3+8aMoTcMQ1e9sEI3vrqmaRoIAAAAAGgSBHqbCVbog9X4srAu9w2v0O8qLNO732Xp39/8QoUfAAAAAFoRAr3NBAN9hd9QhT+w3+vQl4WMu88vqdj/BgIAAAAAmgSB3maCs9xLZrf70InwGjMpXugXAgR6AAAAAGg9CPQ243E55XSY90sr/GFV+cYsW1dKhR4AAAAAWiUCvc04HA5r6TqzQh/a5b7hFfqykC8E8osJ9AAAAADQWhDobSjY7b6ozBdWYS/3BRQIGA06V+jxeVToAQAAAKDVINDbUEzl0nUFEQJ4Q5euYww9AAAAALROBHobCs50n1tcXuO5sgbOdB86Bp9ADwAAAACtB4HehoJd7vdUjnl3OiRX5Ux5DZ3pPnT/SBV/AAAAAEDLINDbULBCn1dkVuij3S5FR5kfdWkDZ7ovo0IPAAAAAK0Sgd6GgmPog13uo90uRVduK21ol/vQSfEidOEHAAAAALSMqJZuAJpeTOWydXuCFfoopxwOs8t9WYO73FOhBwAAAIDWiEBvQ7Hu8DH0weq81Igu9wR6AAAAAGiVCPQ2VDUpnlmh94YG+gYuWxe6zF1+ia8JWgcAAAAAaAqMobehYKDPtSbFcyrabX7UZRV+bcsr0ayXVun77fl1niu0ol9QUiHDMJqhxQAAAACAhiLQ21Cwy31esMt9lEvRUcFJ8QJ67dtftejbbfrXp5l1nit0Urxyf0AlDeyyDwAAAABoHgR6GwpW6P+/vTuPj7q+9z3+/s2afU9IgLAEFFSWKion2kotHAl1QbSuuS0cvfpwO7eneHyIPlrQnrZavbePamv1tFqpvdalp6W2XLWlKLgUUdCIikRBMCwJSyB7ZjLL9/4xmWEmC8l4SGYmvJ6PxzxIfr/fTL7jN7/4eM/nu7R5Q0Pk3U6b3M6j29YdagtV7usOdwz4Wj1XxWcePQAAAAAkBwL9CBQO9GHRFXqvLxAZir/nSOeAr9VzVXwCPQAAAAAkBxbFG4EyegZ659HPbbz+YGSxvP2tHnn9AbkdsddH61Wh7yDQAwAAAEAyoEI/AqU7Yz+nSXPaI1vXeaIq9MZI+5o8x3ytntvcNVGhBwAAAICkQKAfgXpX6O1yO8Jz6IM60h3oJWnPkWPPo/cw5B4AAAAAkhKBfgTqOYfe7bTFVug7ogP9sefRhyv0BZkuSaGt6wAAAAAAiUegH4HSnb0XxXOHt7Lr9MVU3XcPsNJ9lz90bUm2WxIVegAAAABIFgT6EaivIffhhfHqm2Mr8oOt0JfkpEki0AMAAABAsmCV+xGo15B7h02m++v6HovgDTiHvrtCP6q7Qt/EKvcAAAAAkBQI9CNQRh+r3JvuSL+vu0Jvt1kKBI12D7JCX5pLhR4AAAAAkglD7kegnhX6NKdNaY7wonihivvJo7IlSQdbvb22povmDc+hZ8g9AAAAACQVAv0I5HLY5LBZke+j96EPqyjKVGZ38N/b1HeV3hcIKhAMVfbDi+Kxyj0AAAAAJAcC/QgVvdJ9mtMW2Yc+rCDTpfKCDEn9L4wXXbkfRYUeAAAAAJJKygT6H/7whzrnnHOUkZGhvLy8QT1nyZIlsiwr5lFVVTW0DU0S0cPu0xy9K/T5mS6NzU+X1P/WddHb24Ur9E2dPhlj+rweAAAAADB8UmZRvK6uLl1xxRWqrKzUE088MejnVVVV6cknn4x873a7h6J5SSd66zq3094rhBdkODU2/9gVeq8/VKF3O2zKy3BKkgJBo/augLLcKfOrAwAAAAAjUsqksnvvvVeStHLlyrie53a7VVpaOgQtSm5pPYbc9yyq52e65O+eH9/f1nXhCn2a0650p11OuyVfwKi500egBwAAAIAES5kh91/UunXrVFJSoilTpujmm29WY2PjMa/3er1qaWmJeaSimAq9w97nHPpwhX7HwfbI4nfRwnPo3Q6bLMtSbrpLktTMXvQAAAAAkHAjOtBXVVXpqaee0tq1a/XjH/9Y69ev14IFCxQI9L9N23333afc3NzIo7y8fBhbfPxkuI5W0NOctt5z6DNcmlKaLcuSPq5v0aJfvKkP9zbHXBMech9+bm566DWbOruGsukAAAAAgEFIaKBftmxZr0Xrej62bdv2hV//6quv1iWXXKLp06fr0ksv1erVq/XOO+9o3bp1/T7nrrvuUnNzc+Sxe/fuL/zzEylmUTynXW5n7wr9xKJM/fiyGcp2O7RlT7O+8dg/YobfHx1yH3puVlpoHn2Ht/8PRAAAAAAAwyOhE6Fvv/12LVmy5JjXVFRUHLefV1FRoaKiIm3fvl1z587t8xq32z0iFs6L3bbOrmCPSfT5GaHh81eeVa6vTinWdb95Rx/ubdEfNu/Vt+edJKl3hT6te9i+x0+gBwAAAIBES2igLy4uVnFx8bD9vD179qixsVFlZWXD9jMTJSNm2zqbAlGBPt1pj6ngl+Sk6bpzJ2rp8+/rj+/t0f+aO1mWZUUq9OH59+7uYB+9nR0AAAAAIDFSZg59XV2dampqVFdXp0AgoJqaGtXU1KitrS1yzdSpU7Vq1SpJUltbm+644w699dZb2rVrl9auXauFCxdq8uTJmj9/fqLexrAJB3aHzZLDbpPLbpNlhc4VZLp6XT//tFJluOz6vLFD79YdkXR0UbxeFXofFXoAAAAASLSUCfTLly/X6aefrhUrVqitrU2nn366Tj/9dG3atClyTW1trZqbQwu72e12bdmyRZdccolOPvlkXX/99Zo1a5Zef/31ETGkfiDhCn04jFuWpTRH6Ou+An2m26EF00IjF/7w7l5JiqrQx74WgR4AAAAAEi9lNhNfuXLlgHvQm+hh5enp+utf/zrErUpe4Tn0aVGL4aU5ber0BZTfR6CXpMvPGKM/vLtHq9/fp+UXnRo1h94W86/Xz5B7AAAAAEi0lKnQIz7p3dvWhavr0V8XZDj7fM4/VRRqdG6aWjx+vbrtQNQq97EVei8VegAAAABIOAL9CBUecu/uUaGX1G+F3mazNGdKaJHC2v2tkaH1kUXxIqvcU6EHAAAAgEQj0I9QkSH3jtjt6ySpIKPvQC9JxVmh9QUOtXkj29P1rNAzhx4AAAAAEi9l5tAjPsXZoWBemHU0vIcr7P1V6CWpqPt5jW1dcthi584T6AEAAAAgeRDoR6jKikI9+I0ZOnNCQeRYUXf1fUx+er/PK8w8WqHP655rH67yR4bcsw89AAAAACQcgX6EstksXXFmecyx5Refqvmnleq8k4r7fV5Rd0X/UFuXxuZ3b1vXo0IfXv0eAAAAAJA4zKE/gYwvzNSVZ5XLbrP6vSY85P5QmzcytL73HPpQ0G/z+rXwkTf1yKvbh7LZAAAAAIA+EOgRo6h7yH2rx68Wj09SX0PuQ0F/y+4mvb+7Sc9v2p2AlgIAAADAiY1Ajxg56Q657KFfi71HOiX1HnIf3rauvSsU7Du6GIIPAAAAAMONQI8YlmVFVsbf1+SRJLkd4SH3oV8Xry8c5P2SpE4CPQAAAAAMOwI9egmvht8VCFXi+9u2rrPraLA3xgx3MwEAAADghEagRy/Re9dLUYviOcKr3IeCfniofdAcPQYAAAAAGB4EevQSrtCHhQN9eC59pELvOzrUnmH3AAAAADC8CPTopWegD69uH67Qh7etC8+hl6QOH4EeAAAAAIYTgR69FPU35D5cofcHZIyJWd2+MyrcAwAAAACGHoEevfQech/6NXF3B3tjQgvmRQ+zZ+s6AAAAABheBHr00ivQ99i2TgotgtdBoAcAAACAhCHQo5eeq9yHF8Nz2W2yrNAxjy/QY8g9gR4AAAAAhhOBHr30V6G3LCuyQJ7XF1Sn7+i8+Xbm0AMAAADAsCLQo5eCTJds3ZV4l90mW/gbHV0gr2eFniH3AAAAADC8CPToxW6zVJAZGnbvdsb+ikRvXdfJkHsAAAAASBgCPfpUmBkadu/uDvBh0VvXUaEHAAAAgMQh0KNPRdmhCn1azwp995B7ry/IPvQAAAAAkEAEevQpvDBeOMCHuaPm0EeHeCr0AAAAADC8CPToU3jIfc8KfXiVe48/oA5f1JB7H4EeAAAAAIYTgR59Cg+57z2HPvR9c6dPxhw9Hr0ontdPuAcAAACAoUagR59GZadJkjLdjpjjad0V+iPtXTHHO7qH3z/y6nZNv+dveq/uyDC0EgAAAABOXAR69OmfTxulb8waq5vOq4g5Hq7QH273xRwPz6F/67NGdfmDereuaVjaCQAAAAAnKsfAl+BElJPm1P++Ymav4+E59U0dsRX68JD7po5Q0G/pjA38AAAAAIDjiwo94hKeU3+4o+eQ+1Cgb+4O8s0EegAAAAAYUgR6xCVcoe85h77TF67Qh463eAj0AAAAADCUCPSIS2QOfXdwd9gsSaFF8QJBoxZPaHG8lk5/3y8AAAAAADguCPSISzjQH+leFK8gM7S9XYc3EDNvnjn0AAAAADC0CPSIi7t727o2b6gCX5jlliR1+AJqig70DLkHAAAAgCFFoEdcwhX6sKKsUIU+EDQ62OqNHGdRPAAAAAAYWgR6xCVcoQ8LD7mXpPrmzsjXDLkHAAAAgKFFoEdcelboc9KcctpDC+PVN3six9u7AvIHgsPaNgAAAAA4kRDoEZeegT7DZVd697H6ps6Yc+EV7wEAAAAAxx+BHnEJ70Mflu6yK9PtkCTti6rQSwy7BwAAAIChRKBHXPqs0LtCxxp6BnpWugcAAACAIUOgR1x6LoqX7nIoozvQRy+KJ7HSPQAAAAAMJQI94tKrQu+0K8MZGnJ/qK0r5lxLJ3PoAQAAAGCoEOgRlzRH/0Puw6zQovcMuQcAAACAIUSgR1z6WhQvo0egL8tJk8SQewAAAAAYSgR6xMXda1E8R68KfXlBhiRWuQcAAACAoUSgR1x6Vugz+qjQjy8MBfqeFfqmji7VNrQObQMBAAAA4ARBoEdcXHZbZI68FB5y74i5pjy/u0LviV0U78anNqvqode042DbkLcTAAAAAEY6Aj3iYllWzNZ1GS670qOG4TvtlkpzQ3Poo4fc+wNB1exukjHSh3ubh6/BAAAAADBCEegRt+it6zKcjpgh97npLuWmOyXFDrnfc6RTXYGgJOnzxo5+X/udXYd1z58/UmdX4Hg3GwAAAABGFAI94ha9dV3PVe5z0x3K6Q700dvWbT9wdJj9rsb2fl/7/pe2aeU/dun5TbuPZ5MBAAAAYMQh0CNu4YXxHDZLLodN6VFz6PMyXMpJ6w70nUfn0G+Pmjdf10+F3hijbfUtkqS3Pms87u0GAAAAgJGEQI+4hYfch7eri67Q56U7lZsRDvQ+GWMkSTuiKvSfH+470O9t6lR791D7jTsPR54LAAAAAOiNQI+4hRfFCwf56H3oczOcykkLVey7AkF5/aF589EV+oOtXrV7Y1fAl6RP9h/d0u5we5c+PcBq+AAAAADQHwI94uZ2hivzoeCe4YyeQ+9UltshW/fWds3dVfrtPcJ5XR9V+tqG2Gs2MuweAAAAAPpFoEfcIkPuewR7ScpLd8myrKML43X6dLDNq1aPXzZLOqUsR5L0eR8L44Ur9OFV8t/aeXjo3gQAAAAApDgCPeKWdowh93nd8+cjC+N5fJHqfHlBhk4qyZIU2rrO6w/oRy9+rNc/PSjpaKC/8syxkkIVeubRAwAAAEDfCPSI2zEXxesO9NF70YcXxJtcnKUJhRmSpF2NHfrju3v1y9c+09Ln35fXH4jMmb/yzHK5HTYdauvSjoP9b3EHAAAAACcyAj3i1nNRvMyoIffhofY56aFjLZ3+SIV+ckmWxhVmSpLqDrfrxQ/qJYUWyXtmY526/EGlOW2aVJylM8blS2L7OgAAAADoD4EecUvrMXc+vce2ddLRCn2Lxxepsk8qydL47gr91n0t+seOo2H9Z69slySdPCpbNpulcyYVSpL+z99q9c4u5tIDAAAAQE8EesQtzRn6tQkHeZfDJqc9tKx9XoZL0tE59M0dR+fQTyo+GuiPdPgUCBrldw/Rb2zvkhQK9JL0rcoJmjE2V0c6fKr+1UY9/vpnauroGo63BwAAAAApgUCPuIVXqj+1+18pFMD/+dRRGl8QCuzhofcbPmtUQ4tHUmjIfXGWO2bO/f/8SoUmFmVGvp/SHehzM5x67sZKVZ1Wqq5AUD/4fx/rrB/+Xbf97l0daR9csOcDAAAAAAAjmWPgS4BYl50xVl85qVjF2e7Ise9ddGrMNeEh9+Fh9WdNyI8cG1eQoW0NoRXtL5xepkDQ6CdrPpEknVyaHXmNdJddv6g+Q/934+d69u3d2lrfotVb6vXRvhY9sfhMVRRnRa7d3+JRu9ev0Xnp+mR/qx54uVZvbD+keaeU6P7LZ6go62hbPb6Adh/u0LjCDLkdRz9cAAAAAIBUQqDHFxId5vtSlOWKfF09e5yWLZga+X58YSjQn1qWowlFmVp0+phIoJ8aFeglyWaz9K3KCfpW5QS9v7tJtzz9rnYeatfCR97UP1UUqiTbrffqmrS1vqXPdvz94wOq+unrunb2OOWlO1Xb0KoXP6xXq8cvp93SqWU5GluQoaJMl8YVZmrG2FydXJItt9Mmywqt0t/c4VNRllv5ma4+fwYAAAAAJIJl2Oj7mFpaWpSbm6vm5mbl5OQM/ARIklo9Pv3qtc907uQiza4ojDn36zd26vurt+o/Lp2mb/7TeEnSH9/doy5/UFefPe6Yr3uw1asbntqkmt1NMcctS0p32tXRFZBlSYu+NEaXfGm07ntxm2q797eP5rLb1BUIxvWeSnPSNLkkS6Ny0jQqx63S3LTur9NUmpOmvAyn3A6bLMuK63UBAAAAINpgcyiBfgAE+uMvEDT6vLFdE4syv1D47fIHteGzRn3e2K76Zo8mFWfp/CnFKsh0qbnTp6CRCrqr6R5fQL/d8Lk+O9SuVo9PuelOXTRjtM6eWKC9Rzr1wd5mHWj16GCrV5/sb9MHe5u0v8Ub+VmWJWW7HWrx+AfdvnSnXekue8y/WW6HstMcctpt8vqDChojl92mNKdNboddbqdNbodNaU67vP6gGpo9avH4VJjpVmmuW+lOu+w2m+w2hf61JLs9tATG4bYuNbZ75XbYVJjllstuU5vXL68/oEy3Q9lpTtmj/jsbDXzLW4rtl766qeehvq+xeh4YxOsM/Dsx0BWD+bUa6Jpebf+CP2fg1+ADoGRDjyQnbpXkM5i/kxh+3CvJiW5JLqNy0yLbZCcrAv1xQqA/8Xh8AfmDRkFjlOVyyGaz1OrxaVtDq+oaO7S/1aP9zR41tHi0v8Wr/S0eHWj1KhDkVgIAAACS3YJppXr0f8xKdDOOabA5lDn0QA9pzt4L5WWnOXXWhAKdNaGgz+cEg0YdvoA6uwLy+ALq7P66oyugTp9frZ7Qwx8Iyu20y25Z8voD8vqDoYcvIE/3vw67TaU5acpNd+pgm1cHWjzy+oMKBE3oYUzoA4fuDx0KMl0qzHTL6w/oUFuXfIGgstNCw//bvH61efwK9vjcrr9P73t+vNfzI4reH/+ZY57v/XwzwPm+23Ws5/Q6fxw+oxxcO4590aBeg8+Aks5gRrBg+HGvJB+6JEnRMUmJ/7ckn0lRi2unOgI9cBzYbJay3A5lubmlAAAAAAwP9qEHAAAAACAFEegBAAAAAEhBBHoAAAAAAFIQgR4AAAAAgBREoAcAAAAAIAUR6AEAAAAASEEEegAAAAAAUhCBHgAAAACAFESgBwAAAAAgBRHoAQAAAABIQQR6AAAAAABSEIEeAAAAAIAURKAHAAAAACAFEegBAAAAAEhBBHoAAAAAAFIQgR4AAAAAgBREoAcAAAAAIAUR6AEAAAAASEEEegAAAAAAUhCBHgAAAACAFESgBwAAAAAgBRHoAQAAAABIQQR6AAAAAABSEIEeAAAAAIAURKAHAAAAACAFORLdgGRnjJEktbS0JLglAAAAAIATQTh/hvNofwj0A2htbZUklZeXJ7glAAAAAIATSWtrq3Jzc/s9b5mBIv8JLhgMat++fcrOzpZlWYluTi8tLS0qLy/X7t27lZOTk+jm4AuiH0cG+nFkoB9HBvpxZKAfRwb6MfXRh8PPGKPW1laNHj1aNlv/M+Wp0A/AZrNp7NixiW7GgHJycri5RgD6cWSgH0cG+nFkoB9HBvpxZKAfUx99OLyOVZkPY1E8AAAAAABSEIEeAAAAAIAURKBPcW63WytWrJDb7U50U/DfQD+ODPTjyEA/jgz048hAP44M9GPqow+TF4viAQAAAACQgqjQAwAAAACQggj0AAAAAACkIAI9AAAAAAApiEAPAAAAAEAKItCnsEceeUQTJkxQWlqaZs+erbfffjvRTcIx3HPPPbIsK+YxderUyHmPx6Nbb71VhYWFysrK0uWXX679+/cnsMWQpNdee00XX3yxRo8eLcuy9Kc//SnmvDFGy5cvV1lZmdLT0zVv3jx9+umnMdccPnxY1dXVysnJUV5enq6//nq1tbUN47vAQP24ZMmSXvdnVVVVzDX0Y+Ldd999Ouuss5Sdna2SkhJdeumlqq2tjblmMH9L6+rqdOGFFyojI0MlJSW644475Pf7h/OtnLAG04df/epXe92PN910U8w19GFiPfroo5oxY4ZycnKUk5OjyspKvfTSS5Hz3IepYaB+5F5MDQT6FPXcc89p6dKlWrFihd59913NnDlT8+fP14EDBxLdNBzDaaedpvr6+sjjjTfeiJz7zne+o7/85S/6/e9/r/Xr12vfvn267LLLEthaSFJ7e7tmzpypRx55pM/zDzzwgB5++GE99thj2rhxozIzMzV//nx5PJ7INdXV1froo4+0Zs0arV69Wq+99ppuvPHG4XoL0MD9KElVVVUx9+czzzwTc55+TLz169fr1ltv1VtvvaU1a9bI5/PpggsuUHt7e+Sagf6WBgIBXXjhherq6tI//vEP/eY3v9HKlSu1fPnyRLylE85g+lCSbrjhhpj78YEHHoicow8Tb+zYsbr//vu1efNmbdq0SV/72te0cOFCffTRR5K4D1PFQP0ocS+mBIOUdPbZZ5tbb7018n0gEDCjR4829913XwJbhWNZsWKFmTlzZp/nmpqajNPpNL///e8jxz7++GMjyWzYsGGYWoiBSDKrVq2KfB8MBk1paal58MEHI8eampqM2+02zzzzjDHGmK1btxpJ5p133olc89JLLxnLsszevXuHre04qmc/GmPM4sWLzcKFC/t9Dv2YnA4cOGAkmfXr1xtjBve39MUXXzQ2m800NDRErnn00UdNTk6O8Xq9w/sG0KsPjTFmzpw55tvf/na/z6EPk1N+fr55/PHHuQ9TXLgfjeFeTBVU6FNQV1eXNm/erHnz5kWO2Ww2zZs3Txs2bEhgyzCQTz/9VKNHj1ZFRYWqq6tVV1cnSdq8ebN8Pl9Mn06dOlXjxo2jT5PYzp071dDQENNvubm5mj17dqTfNmzYoLy8PJ155pmRa+bNmyebzaaNGzcOe5vRv3Xr1qmkpERTpkzRzTffrMbGxsg5+jE5NTc3S5IKCgokDe5v6YYNGzR9+nSNGjUqcs38+fPV0tISU5XC8OjZh2FPP/20ioqKNG3aNN11113q6OiInKMPk0sgENCzzz6r9vZ2VVZWch+mqJ79GMa9mPwciW4A4nfo0CEFAoGYm0eSRo0apW3btiWoVRjI7NmztXLlSk2ZMkX19fW699579ZWvfEUffvihGhoa5HK5lJeXF/OcUaNGqaGhITENxoDCfdPXvRg+19DQoJKSkpjzDodDBQUF9G0Sqaqq0mWXXaaJEydqx44duvvuu7VgwQJt2LBBdrudfkxCwWBQ//Zv/6Zzzz1X06ZNk6RB/S1taGjo854Nn8Pw6asPJenaa6/V+PHjNXr0aG3ZskV33nmnamtr9cc//lESfZgsPvjgA1VWVsrj8SgrK0urVq3SqaeeqpqaGu7DFNJfP0rci6mCQA8MkwULFkS+njFjhmbPnq3x48fr+eefV3p6egJbBuDqq6+OfD19+nTNmDFDkyZN0rp16zR37twEtgz9ufXWW/Xhhx/GrEWC1NJfH0avTTF9+nSVlZVp7ty52rFjhyZNmjTczUQ/pkyZopqaGjU3N+u//uu/tHjxYq1fvz7RzUKc+uvHU089lXsxRTDkPgUVFRXJbrf3Wi10//79Ki0tTVCrEK+8vDydfPLJ2r59u0pLS9XV1aWmpqaYa+jT5Bbum2Pdi6Wlpb0Wq/T7/Tp8+DB9m8QqKipUVFSk7du3S6Ifk81tt92m1atX69VXX9XYsWMjxwfzt7S0tLTPezZ8DsOjvz7sy+zZsyUp5n6kDxPP5XJp8uTJmjVrlu677z7NnDlTDz30EPdhiumvH/vCvZicCPQpyOVyadasWVq7dm3kWDAY1Nq1a2PmvCC5tbW1aceOHSorK9OsWbPkdDpj+rS2tlZ1dXX0aRKbOHGiSktLY/qtpaVFGzdujPRbZWWlmpqatHnz5sg1r7zyioLBYOR/jEg+e/bsUWNjo8rKyiTRj8nCGKPbbrtNq1at0iuvvKKJEyfGnB/M39LKykp98MEHMR/QrFmzRjk5OZFhphg6A/VhX2pqaiQp5n6kD5NPMBiU1+vlPkxx4X7sC/dikkr0qnz4Yp599lnjdrvNypUrzdatW82NN95o8vLyYlaZRHK5/fbbzbp168zOnTvNm2++aebNm2eKiorMgQMHjDHG3HTTTWbcuHHmlVdeMZs2bTKVlZWmsrIywa1Ga2uree+998x7771nJJmf/OQn5r333jOff/65McaY+++/3+Tl5ZkXXnjBbNmyxSxcuNBMnDjRdHZ2Rl6jqqrKnH766Wbjxo3mjTfeMCeddJK55pprEvWWTkjH6sfW1lbz7//+72bDhg1m586d5u9//7s544wzzEknnWQ8Hk/kNejHxLv55ptNbm6uWbdunamvr488Ojo6ItcM9LfU7/ebadOmmQsuuMDU1NSYl19+2RQXF5u77rorEW/phDNQH27fvt18//vfN5s2bTI7d+40L7zwgqmoqDDnnXde5DXow8RbtmyZWb9+vdm5c6fZsmWLWbZsmbEsy/ztb38zxnAfpopj9SP3Yuog0Kewn/3sZ2bcuHHG5XKZs88+27z11luJbhKO4aqrrjJlZWXG5XKZMWPGmKuuusps3749cr6zs9PccsstJj8/32RkZJhFixaZ+vr6BLYYxhjz6quvGkm9HosXLzbGhLau+973vmdGjRpl3G63mTt3rqmtrY15jcbGRnPNNdeYrKwsk5OTY/7lX/7FtLa2JuDdnLiO1Y8dHR3mggsuMMXFxcbpdJrx48ebG264odcHpPRj4vXVh5LMk08+GblmMH9Ld+3aZRYsWGDS09NNUVGRuf32243P5xvmd3NiGqgP6+rqzHnnnWcKCgqM2+02kydPNnfccYdpbm6OeR36MLGuu+46M378eONyuUxxcbGZO3duJMwbw32YKo7Vj9yLqcMyxpjhGw8AAAAAAACOB+bQAwAAAACQggj0AAAAAACkIAI9AAAAAAApiEAPAAAAAEAKItADAAAAAJCCCPQAAAAAAKQgAj0AAAAAACmIQA8AAAAAQAoi0AMAgLjs2rVLlmWppqYm0U0BAOCERqAHAGAEWbJkiSzL6vWoqqpKdNOG3bp162RZlpqamhLdFAAAhoQj0Q0AAADHV1VVlZ588smYY263O0GtAQAAQ4UKPQAAI4zb7VZpaWnMIz8/X5J07bXX6qqrroq53ufzqaioSE899ZQk6eWXX9aXv/xl5eXlqbCwUBdddJF27NgRVxu8Xq/uvPNOlZeXy+12a/LkyXriiSci59evX6+zzz5bbrdbZWVlWrZsmfx+f+T8hAkT9NOf/jTmNb/0pS/pnnvuiXxvWZYef/xxLVq0SBkZGTrppJP05z//WVJoWsD5558vScrPz5dlWVqyZElc7wEAgGRHoAcA4ARSXV2tv/zlL2pra4sc++tf/6qOjg4tWrRIktTe3q6lS5dq06ZNWrt2rWw2mxYtWqRgMDjon/Otb31LzzzzjB5++GF9/PHH+s///E9lZWVJkvbu3auvf/3rOuuss/T+++/r0Ucf1RNPPKEf/OAHcb+fe++9V1deeaW2bNmir3/966qurtbhw4dVXl6uP/zhD5Kk2tpa1dfX66GHHor79QEASGYMuQcAYIRZvXp1JDyH3X333br77rs1f/58ZWZmatWqVfrmN78pSfrd736nSy65RNnZ2ZKkyy+/POa5v/71r1VcXKytW7dq2rRpA/78Tz75RM8//7zWrFmjefPmSZIqKioi53/xi1+ovLxcP//5z2VZlqZOnap9+/bpzjvv1PLly2WzDb7esGTJEl1zzTWSpB/96Ed6+OGH9fbbb6uqqkoFBQWSpJKSEuXl5Q36NQEASBVU6AEAGGHOP/981dTUxDxuuukmSZLD4dCVV16pp59+WlKoGv/CCy+ouro68vxPP/1U11xzjSoqKpSTk6MJEyZIkurq6gb182tqamS32zVnzpw+z3/88ceqrKyUZVmRY+eee67a2tq0Z8+euN7rjBkzIl9nZmYqJydHBw4ciOs1AABIVVToAQAYYTIzMzV58uR+z1dXV2vOnDk6cOCA1qxZo/T09JhV8C+++GKNHz9ev/rVrzR69GgFg0FNmzZNXV1dg/r56enp/+33YLPZZIyJOebz+Xpd53Q6Y763LCuuqQEAAKQyKvQAAJxgzjnnHJWXl+u5557T008/rSuuuCISjBsbG1VbW6vvfve7mjt3rk455RQdOXIkrtefPn26gsGg1q9f3+f5U045RRs2bIgJ7G+++aays7M1duxYSVJxcbHq6+sj51taWrRz58642uFyuSRJgUAgrucBAJAqCPQAAIwwXq9XDQ0NMY9Dhw7FXHPttdfqscce05o1a2KG2+fn56uwsFC//OUvtX37dr3yyitaunRpXD9/woQJWrx4sa677jr96U9/0s6dO7Vu3To9//zzkqRbbrlFu3fv1r/+679q27ZteuGFF7RixQotXbo0Mn/+a1/7mn7729/q9ddf1wcffKDFixfLbrfH1Y7x48fLsiytXr1aBw8ejFkIEACAkYBADwDACPPyyy+rrKws5vHlL3855prq6mpt3bpVY8aM0bnnnhs5brPZ9Oyzz2rz5s2aNm2avvOd7+jBBx+Muw2PPvqovvGNb+iWW27R1KlTdcMNN6i9vV2SNGbMGL344ot6++23NXPmTN100026/vrr9d3vfjfy/Lvuuktz5szRRRddpAsvvFCXXnqpJk2aFFcbxowZo3vvvVfLli3TqFGjdNttt8X9PgAASGaW6TlBDQAAAAAAJD0q9AAAAAAApCACPQAAAAAAKYhADwAAAABACiLQAwAAAACQggj0AAAAAACkIAI9AAAAAAApiEAPAAAAAEAKItADAAAAAJCCCPQAAAAAAKQgAj0AAAAAACmIQA8AAAAAQAr6/7IBio7tFB/xAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -289,7 +292,7 @@ "output_type": "stream", "text": [ "Reference values: [-1.85727503 -1.24458455 -0.88272215]\n", - "VQD values: [-1.85725689 -1.2445823 -0.88272936]\n" + "VQD values: [-1.85727501 -1.24519007 -0.8838798 ]\n" ] } ], @@ -313,7 +316,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:17:45 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 11:20:15 2025 CEST
" ], "text/plain": [ "" @@ -325,7 +328,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -360,7 +363,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.6" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/10_pvqd.ipynb b/docs/tutorials/10_pvqd.ipynb index 4146b69f..351c65f9 100644 --- a/docs/tutorials/10_pvqd.ipynb +++ b/docs/tutorials/10_pvqd.ipynb @@ -66,7 +66,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAACuCAYAAADAmD3qAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAZiUlEQVR4nO3de1xVdb7/8dfmJldT8oKKeUkZvAGpQ6Wp7cTmmLcsbSyG0tExNbOS1M50GvXR79honjS7HKGayjm/jN9PHfP60ya14TTl5ZhGymiQTG1hqwiakKi49+8PjCJA2bgvrLXfz8fDR+21vnvvj8jnzeK71/oui9PpdCIiIoYU4OsCRESk8RTiIiIGphAXETEwhbiIiIEpxEVEDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiBKcRFRAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgSnERUQMTCEuImJgCnEREQNTiIuIGJhCXETEwBTiIiIGphAXETEwhbiIiIEpxEVEDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiBKcRFRAwsyNcFSG1OJzgu+boK1wQEg8Xi6yrETIzWB77qAYV4E+S4BDtX+LoK11hnQWCIr6sQMzFaH/iqBzSdIiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiB6TxxEzmYv4unV1prbAsNiSC2dRwpfdO4d+DjBAbqn1zMyx97wFx/GwHAmvQgyfH34MRJ6Tk7H/7PKlZunM03J3N5alymr8sT8Th/6gGFuAl179CXlH6/qX48asAMJi+JZ+ueN5n0L/9Oi8jWPqxOxPP8qQc0J+4HwkIiiO90G06nk8LT+b4uR8TrzNwDCnE/UXTlG7d5eLSPKxHxDbP2gKZTTKji0vecLS/G6ayaD9z46Uryjn9OfMdkYlvH+bo8EY/zpx4wfYgXFxezZMkS1q1bh81mo3Xr1tx3330sWrSIWbNm8ac//YlXXnmFmTNn+rpUt1m1fT6rts+vse2O3vfx+NjXfFSROJ3wnR0ullctVxp6A0S28nVV5uVPPWDqED9w4ADDhw/HbrcTERFBz549KSwsZMWKFeTn51NSUgJAUlKSbwt1sxG3TmVwwngqHZc4VpRD1q7FFJ+1ERIcWj3mYuUFZizvi/WWh0gd+mz19iXvT+RM2QkWTdnqi9JNp/IiFOaA7SB8X1Jz3w3tIDYJ2vaAAE1supU/9YBpv3WKi4sZNWoUdrud9PR0ioqK2L9/P3a7ncWLF7N582b27t2LxWIhISHB1+W6VYdW3ekbl0Jy/HB+bZ3L85M2csS2l5fXTqseExLUjLkTVvH+R4vILzwIwCdfruez3I3MHv+Wr0o3lQtlsO99OLqzdoADnC2CQ1vhiw/gsoFufmAE/tQDpg3xWbNmYbPZmDlzJkuXLiUqKqp639y5c0lMTKSyspLOnTvTvHlzH1bqeb06DyClbxq7DmZxqODv1dvjYvsxbsjTLHn/YU6dsbF8zVQeH/sarW5o78NqzaHyIny+FspOXntscT58uRmcDs/X5a/M3AOmDPHc3FyysrJo1aoVL7zwQp1j+vXrB0BiYmKN7ceOHWP06NFERUXRsmVLHn74YU6fPu3xmj0tNeU5AgICeXfbH362/d8IDAhi+vJbSOxmxZo0wUcVmsu3+6HsVMPHn8qD4q89V4+YtwdMGeKrV6/G4XCQmppKZGRknWPCwsKAmiF+7tw5rFYrNpuN1atXk5mZSXZ2NiNHjsThMPZhUodW3bAmTuDzvI/I+Tq7entQYDA9Ow/gbHkxv+o/yYcVmofTAccPuv482wG3lyI/YdYeMGWI79ixAwCr1VrvGJvNBtQM8czMTI4fP8769esZOXIk48eP57333uOzzz5jw4YNni3aCx4c+iwBlgDe3f7jkUjO19ls3/cOYwbO5PUNT3Dh0nkfVmgOpd9CxTnXn3e6oGoeXTzHjD1gcTqdTl8X4W4dO3bEZrPx+eef13nmSWVlJe3ataO4uJj8/Hy6du0K/Bj6O3furDH+5ptv5s477+Sttxr3YUf//v2x2+0NHh8SFEbmzK8a9V6uOH+hjEdfSuT+wbMZdft00lcOIS62P9NHL3P5taa+2p2Llcb65veUO3qOZ8rdrn8NARauHsGxE404jDchb/RBU+qBmJgY9u3b5/LzTHmKYXl5OQDnz9f9Bc3KyqK4uJioqCi6dOlSvf3w4cOMHz++1vhevXpx+PDhRtdjt9s5fvx4g8eHBoc3+r1ckbExnZjoLoweMAOLxcKcB95h2vIkBvYeS0LXwS69VlFhIRWXvvdQpcZS2q600c89efKES98rZuaNPjBDD5gyxGNiYigtLWX//v3cfvvtNfYVFRUxZ84cABISErBYLNX7SktLadGiRa3Xi46O5siRI9dVjytCgsIa/V4NtecfW9l1MIvM2V9Ufw3at7qZycP/yNKsSWSkf0FYSESDX69d+/Y6Er/CEdi4RnY4HQSFOejQoYObKzImT/dBU+sBV3PiB6YM8ZSUFHJzc1m8eDHDhg0jLq7qMtu9e/eSlpZGcXEx4L2LfFz9FenyRdi5wkPFXJEcP5z1z5+ptX3MwMcYM/Axl1/vq6NfERjihsJMwOmAT96Eiu9ce17rrgEcOrrfM0UZkKf7wCw9YMoPNufOncuNN97It99+S69evejTpw/du3cnOTmZrl27ctdddwG1Ty9s2bIlZ86cqfV6JSUlREeba9Ec8RxLAMQmXnvcz8Umub0U8QOmDPHY2Fiys7MZMWIEoaGhFBQUEB0dTUZGBps3b+bo0aNA7RDv0aNHnXPfhw8fpkePHl6pXcwh9haIatvw8W26Q6uunqtHzMuU0ylQFcibNm2qtb2srIyCggICAgLo3bt3jX0jR47k97//PTabjdjYWAB2795Nfn4+L774olfqFnMICoGk++DgOvjuxNXHtu4Ove6pWhhLxFWmPBK/mkOHDuF0OunevTvh4TU//Z46dSrt2rVjzJgxbNq0iTVr1vDggw+SnJzMmDFjfFSxGFWzCOg3AeJTIOLG2vtbxELvkZAwCgKDvV+fmIPfhXhOTg5QeyoFoHnz5uzYsYN27doxYcIEpkyZwoABA9i0aRMBWmZOGiEwuGqu+7aJcOvDEHRlEb3gcOg/AWLiq+bQRRrLtNMp9blaiEPVhT11TcOIXA+LBaLaQGAQVKKlZ8V9/O5b6VohbjSrti/g4qUKoGod5HXZy+sdN25Ba557e3T1Ntupr3ji1QFMXBzHYy//kgL7oep9T6+0ct8fout9PZGm4np6YF7m3Uz9jwQefSmJp14fRN7xz6v3GaUH/C7Ed+zYgdPpZMSIEb4uxS3+/OFCLlZWNGjsXbek8vykH9eAeXnto9xz61TemXeUX1vn8WLWxOp9S6ft5Laeo+t4FZGm5Xp64Lm0/0Nm+hdkzD7A/YNmG7IH/G46xUyWX1ng/qnXBxFgCeTGG9rzzYlc5mQM5dSZb+kc05tnU98nOKj2FQilZSc5atvHH3+3HYBBfe7n1b/M5HhxHh1adfPq30Oksa6nBwAiw1pU/395xVnAeKcI+d2RuJk8ef9KAJbNyCZj9gFaRLQhv/AAz0/ayFtzcik9d4LsnLV1PvfUmW+Jbt6OwMCqn+MWi4U2LW/i5JlvvFa/yPW6nh74weLVD/PQ/+rIu9ue45kH/+yNst1KR+ImM7D3WEJDqk6djL8pmaLT+T6uSMS7XO2BeQ+uAmD7vnd5Y8s8Fk3e4vEa3UlH4ibz0xvBBlgCueyorHNc6xYdKfmuiMuXq/Y7nU5Oln5DmxY3eaVOEU9paA/83N39H+Fg3k6+KzfWnbwU4gYX3izqylyea1pGtqFbh778df9/AZCds5ZWLWI1Hy6G09geKDt/huKzhdWPP/lyPc0jbiQq3FjrJGk6xeDGDU5nXuYwmgWHc6OLN3d98v4MXsyayOodiwgPbc6cB972UJUintPYHiivOMvzfx7PhUvnCbAEcENEa56ftKnG8tRGoBA3uLS755N29/w69z06aulVn9uxzS9Y8finnihLxGsa2wNtW3bi1Vl7PFWW12g6xU+EhUTy2eGNNS50uJqnV1rJ+fpjQl1YFF+kKTNrD5jyHptG542bQribdRa6KUQDZK+suhlys0gYNM3X1TRtRusDX/WAjsRFRAxMIS4iYmD6YLMJCgiu+tXMSAK0Hra4mdH6wFc9oBBvgiwWzS+LqA8aRtMpIiIGphAXaaI2bNhAUlJSjT8dOnQgNDT0qvvqM378eD799MfrAhYsWEBFxY9LuFosFs6cOVPncy0WC3369GHLli1UVFRw7733EhcXR2JiIsOGDSMvL696rNVqJTo6muXLl1dvGzRoEMeOHWv8F0Pq5xQRr/nbfzqdH75Y9V9XlZaWOrt16+Z88803XdrndDqdu3fvdt511101tgHO0tLSeh/XN/b8+fPOzZs3Ox0Oh9PpdDpfeeUV55AhQ2qMf+SRR5zLli2rfvyXv/zFmZaWdvW/oDSKjsRFDMDhcJCamsrQoUOZPHlyg/f9ICMjg4ceeqj68bRpVSepDxo0iKSkJE6ePAnA66+/TnJyMl26dOHtt+tehiE0NJR77rmn+vL02267jYKCgqvWP2LECLZu3crZs66vcSJXpxAXMYD58+dTUlLCihW1r3652r4f7Nq1i1tvvbX68cqVVetwZ2dnc+DAAdq0aQNAs2bN2LNnD1u3bmXWrFlUVl57BcCXX36ZMWPGXHVMcHAwffr0ITs7+5qvJ67R2SkiTdwHH3zAW2+9xb59+wgJCWnwvp+y2Wy0bdv2mu+VmpoKQHx8PEFBQdjtdmJjY+sdv2jRIvLy8vjoo4+u+doxMTHYbLZrjhPXKMRFmrAjR44wefJk1q9fT/v27Ru87+fCw8NrfIhZn59+MBoYGHjVI/GlS5eybt06/vrXvxIeHn7N166oqCAsLOya48Q1mk4RaaLOnTvH2LFjWbhwIXfccUeD99UlISGBI0eO1NgWFRXV6Dnql156idWrV/Phhx/SokWLBj0nNzeXxMTERr2f1E9H4iJN1GuvvcaRI0d44403eOONN2rse+CBB+rdt2XLllpH5uPGjWPbtm2kpKRUb0tPT2fYsGGEh4ezffv2Btdls9lIT0+na9euWK1WoGoufffu3fU+p6CggMuXLyvEPUCrGIp4ka9WMSwrK2PAgAF8+umnRES4vrSqxWKhtLS0wUfdEydOJCkpiSeffBKAZ555hm7dujFlyhSX31uuTtMpIn4gMjKSZcuWNfqCm7Zt2zJkyBC2bLn2TYStVisff/xxjR8W7du357e//W2j3luuTkfiIl6k9cTF3XQkLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqaLfZogpxMcl3xdhWsCgqvuxCLiLkbrA1/1gEK8CXJcgp31L0jXJFln6VZa4l5G6wNf9YCmU0REDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiB6WIfEzmYv4unV1prbAsNiSC2dRwpfdO4d+DjBAbqn1zMyx97wFx/GwHAmvQgyfH34MRJ6Tk7H/7PKlZunM03J3N5alymr8sT8Th/6gGFuAl179CXlH6/qX48asAMJi+JZ+ueN5n0L/9Oi8jWPqxOxPP8qQc0J+4HwkIiiO90G06nk8LT+b4uR8TrzNwDCnE/UXTlG7d5eLSPKxHxDbP2gF+EeHFxMXPnzqVbt26EhobSsWNHnnjiCcrLy5k8eTIWi4VXX33V12W6TcWl7zlbXsyZslMcK8phxbrHyDv+OfEdk4ltHefr8kQ8zp96wPRz4gcOHGD48OHY7XYiIiLo2bMnhYWFrFixgvz8fEpKSgBISkrybaFutGr7fFZtn19j2x297+Pxsa/5qCL/dvF7KMyBotyqO93/sO34FxATryV8PcGfesDUIV5cXMyoUaOw2+2kp6czf/58oqKiAFiyZAnz5s0jKCgIi8VCQkKCj6t1nxG3TmVwwngqHZc4VpRD1q7FFJ+1ERIcWj3mYuUFZizvi/WWh0gd+mz19iXvT+RM2QkWTdnqi9JNxemEf+6B/L+D8/LP9jkgdzt89TH0uBva/sI3NZqVP/WAqadTZs2ahc1mY+bMmSxdurQ6wAHmzp1LYmIilZWVdO7cmebNm/uwUvfq0Ko7feNSSI4fzq+tc3l+0kaO2Pby8tpp1WNCgpoxd8Iq3v9oEfmFBwH45Mv1fJa7kdnj3/JV6aaSnw152bUD/KcqL0DORig65L26/IE/9YBpQzw3N5esrCxatWrFCy+8UOeYfv36AZCYmFi97YfQT05OplmzZlhMcM+xXp0HkNI3jV0HszhU8Pfq7XGx/Rg35GmWvP8wp87YWL5mKo+PfY1WN7T3YbXmcCofCvY0fPzhbVBe4rl6/J2Ze8C0Ib569WocDgepqalERkbWOSYsLAyoGeJ5eXmsXbuWmJgYfvnLX3qlVm9ITXmOgIBA3t32h59t/zcCA4KYvvwWErtZsSZN8FGF5vLtftfGOx1gO+iZWqSKWXvAtCG+Y8cOAKxWa71jbDYbUDPEBw8eTFFRERs2bCAlJcWzRXpRh1bdsCZO4PO8j8j5Ort6e1BgMD07D+BseTG/6j/JhxWaR3kJlPzT9ecVfQmXDXRjYKMxaw+Y9oPNf/6zqos6depU5/7Kyko++eQToGaIBwS4/+da//79sdvtDR4fEhRG5syv3F7Hg0OfZeeB1by7/Q8snbYTgJyvs9m+7x3GDJzJ6xueYOXNB2gWHObya3eP687FyvPuLtmQbv3FGKYPd/0siMoLMLB/CrbT//BAVcbjiT5oyj0QExPDvn37XH6eaUO8vLwcgPPn6/6iZmVlUVxcTFRUFF26dPFoLXa7nePHjzd4fGhweKPeJ/HmO/nwRWe9+zu17cG2JT9+ynb+QhkvZk1k8vA/Mur26aSvHMKftv6e6aOXufzeRYWFVFz6vlF1m835Dhca/dzvzpS59L1iZo3pA3/sAdOGeExMDKWlpezfv5/bb7+9xr6ioiLmzJkDQEJCgsc/vIyJiXFpfEiQ60cBjZGxMZ2Y6C6MHjADi8XCnAfeYdryJAb2HktC18EuvVa79u11JH5FSFhgo58b0bwZHTp0cGM1xuWNPmhKPeBqTvzAtCGekpJCbm4uixcvZtiwYcTFVV2ltXfvXtLS0iguLga8c5GPq78iXb4IO1d4qJgr9vxjK7sOZpE5+4vqH2LtW93M5OF/ZGnWJDLSvyAsJKLBr/fV0a900coVF8/Df68Ex1VOLaxL2A2w54uPMcEJUW7h6T4wSw9YnE5n/b97GJjNZiMpKYnTp08TFBREfHw8FRUV5OXlMXz4cBwOB9u2bSMzM5Pf/e53db7GggULWLhwId7+EnkjxN3NOktXHv7Uoa2un/vdfQh0Ms8JUdfNaH3gqx4w7dkpsbGxZGdnM2LECEJDQykoKCA6OpqMjAw2b97M0aNHgZofaoq4S6f+EODCrEpIBLTr7bl6xLxMO50C0KNHDzZt2lRre1lZGQUFBQQEBNC7tzpH3C+yNfQZBV9svPoVmwDBoXDL/RDinY9CxGRMHeL1OXToEE6nk7i4OMLDa38CvmbNGgAOHz5c43Hnzp3p37+/9woVQ2vdDfqOg6O74NyJusdEd4JfDIUIc62OKl7klyGek5MD1D+VMn78+DofP/LII7zzzjserU3MpWVHuDUNzhaB/coqhpaAqg8x2/eG8Ja+rlCMTiFeB5N+1is+dEO7qj8i7mbaDzav5lohbiSrti/g4qUKoGoJzXXZy+sdN25Ba557e3T1ttfWz+I3izozbI6FvOMHaox/eqWV+/4QXe/riTQV19MDP/h/e99m2BwLn3y5vnrbC++l8sDCGF7/4EkPVO0+fhniO3bswOl0MmLECF+Xct3+/OFCLlZWNGjsXbek8vykDdWPByWMY9mM/6Zty9pLEyydtpPbetb+Zhdpaq6nBwDsJQVs3f0GPW66rcb2f33ofzPy9mk0dX45nWIWy6+sjfzU64MIsARy4w3t+eZELnMyhnLqzLd0junNs6nvExxU98mrrl6RJtLUXG8POBwOXvq/U3js3lfI2JjuzdLdxi+PxM3iyftXArBsRjYZsw/QIqIN+YUHeH7SRt6ak0vpuRNk56z1cZUinnO9PbD2by/Rq/NA4mL7eatkt9ORuMkM7D2W0JCq0ybjb0quvsO3iL9oaA8cs39Jds5aXprxN2+W53YKcZP56T0EAyyBXHZU+rAaEe9raA98+XU2J0oLmLi4OwAl5+wsXzOVku+KGDVguldqdQeFuMGFN4uivOIskWEtfF2KiE80tgdGDZheI6zT//NO7hv0JAN73+veAj1MIW5w4wanMy9zGM2Cw7nRxfsCLl/zKLv/sZmSc3b+9c1fEd4sinefyfNQpSKecT09YAYKcYNLu3s+aXfPr3Pfo6OWXvW5T47L8ERJIl51PT3wU/8xfZebKvIunZ3iJ8JCIvns8MY6L3Soy9MrreR8/TGhLqynLNKUudoDL7yXykf7/4vw0OYeruz6mHY9cSMz2jrKoPXExf2M1gdaT1xERFymEBcRMTBNpzRBTic4Lvm6CtcEBKN7Q4pbGa0PfNUDCnEREQPTdIqIiIEpxEVEDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiBKcRFRAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgSnERUQMTCEuImJgCnEREQNTiIuIGJhCXETEwBTiIiIGphAXETEwhbiIiIH9f6E2FqbjrVTCAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAACuCAYAAADAmD3qAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAGYlJREFUeJzt3XtcVXW+//HX5iZXU/KCinlJGbwBqUOlqe3E5pi3LG0shtLRMTWzktTOdBr10e/YaJ40uxyhmso5v4zfTx3z+tMmteE05eWYRspokExtYasImpCouPfvD4wiQNm4L6y138/Hw0fttb5774/I583iu9f6LovT6XQiIiKGFODrAkREpPEU4iIiBqYQFxExMIW4iIiBKcRFRAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgSnERUQMTCEuImJgCnEREQNTiIuIGJhCXETEwBTiIiIGphAXETEwhbiIiIEpxEVEDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiBKcRFRAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgSnERUQMLMjXBUhtTic4Lvm6CtcEBIPF4usqxEyM1ge+6gGFeBPkuAQ7V/i6CtdYZ0FgiK+rEDMxWh/4qgc0nSIiYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgek8cRM5mL+Lp1daa2wLDYkgtnUcKX3TuHfg4wQG6p9czMsfe8BcfxsBwJr0IMnx9+DESek5Ox/+zypWbpzNNydzeWpcpq/LE/E4f+oBhbgJde/Ql5R+v6l+PGrADCYviWfrnjeZ9C//TovI1j6sTsTz/KkHNCfuB8JCIojvdBtOp5PC0/m+LkfE68zcAwpxP1F05Ru3eXi0jysR8Q2z9oCmU0yo4tL3nC0vxumsmg/c+OlK8o5/TnzHZGJbx/m6PBGP86ceMH2IFxcXs2TJEtatW4fNZqN169bcd999LFq0iFmzZvGnP/2JV155hZkzZ/q6VLdZtX0+q7bPr7Htjt738fjY13xUkTid8J0dLpZXLVcaegNEtvJ1VeblTz1g6hA/cOAAw4cPx263ExERQc+ePSksLGTFihXk5+dTUlICQFJSkm8LdbMRt05lcMJ4Kh2XOFaUQ9auxRSftRESHFo95mLlBWYs74v1lodIHfps9fYl70/kTNkJFk3Z6ovSTafyIhTmgO0gfF9Sc98N7SA2Cdr2gABNbLqVP/WAab91iouLGTVqFHa7nfT0dIqKiti/fz92u53FixezefNm9u7di8ViISEhwdflulWHVt3pG5dCcvxwfm2dy/OTNnLEtpeX106rHhMS1Iy5E1bx/keLyC88CMAnX67ns9yNzB7/lq9KN5ULZbDvfTi6s3aAA5wtgkNb4YsP4LKBbn5gBP7UA6YN8VmzZmGz2Zg5cyZLly4lKiqqet/cuXNJTEyksrKSzp0707x5cx9W6nm9Og8gpW8auw5mcajg79Xb42L7MW7I0yx5/2FOnbGxfM1UHh/7Gq1uaO/Das2h8iJ8vhbKTl57bHE+fLkZnA7P1+WvzNwDpgzx3NxcsrKyaNWqFS+88EKdY/r16wdAYmJije3Hjh1j9OjRREVF0bJlSx5++GFOnz7t8Zo9LTXlOQICAnl32x9+tv3fCAwIYvryW0jsZsWaNMFHFZrLt/uh7FTDx5/Kg+KvPVePmLcHTBniq1evxuFwkJqaSmRkZJ1jwsLCgJohfu7cOaxWKzabjdWrV5OZmUl2djYjR47E4TD2YVKHVt2wJk7g87yPyPk6u3p7UGAwPTsP4Gx5Mb/qP8mHFZqH0wHHD7r+PNsBt5ciP2HWHjBliO/YsQMAq9Va7xibzQbUDPHMzEyOHz/O+vXrGTlyJOPHj+e9997js88+Y8OGDZ4t2gseHPosAZYA3t3+45FIztfZbN/3DmMGzuT1DU9w4dJ5H1ZoDqXfQsU51593uqBqHl08x4w9YHE6nU5fF+FuHTt2xGaz8fnnn9d55kllZSXt2rWjuLiY/Px8unbtCvwY+jt37qwx/uabb+bOO+/krbca92FH//79sdvtDR4fEhRG5syvGvVerjh/oYxHX0rk/sGzGXX7dNJXDiEutj/TRy9z+bWmvtqdi5XG+ub3lDt6jmfK3a5/DQEWrh7BsRONOIw3IW/0QVPqgZiYGPbt2+fy80x5imF5eTkA58/X/QXNysqiuLiYqKgounTpUr398OHDjB8/vtb4Xr16cfjw4UbXY7fbOX78eIPHhwaHN/q9XJGxMZ2Y6C6MHjADi8XCnAfeYdryJAb2HktC18EuvVZRYSEVl773UKXGUtqutNHPPXnyhEvfK2bmjT4wQw+YMsRjYmIoLS1l//793H777TX2FRUVMWfOHAASEhKwWCzV+0pLS2nRokWt14uOjubIkSPXVY8rQoLCGv1eDbXnH1vZdTCLzNlfVH8N2re6mcnD/8jSrElkpH9BWEhEg1+vXfv2OhK/whHYuEZ2OB0EhTno0KGDmysyJk/3QVPrAVdz4gemDPGUlBRyc3NZvHgxw4YNIy6u6jLbvXv3kpaWRnFxMeC9i3xc/RXp8kXYucJDxVyRHD+c9c+fqbV9zMDHGDPwMZdf76ujXxEY4obCTMDpgE/ehIrvXHte664BHDq63zNFGZCn+8AsPWDKDzbnzp3LjTfeyLfffkuvXr3o06cP3bt3Jzk5ma5du3LXXXcBtU8vbNmyJWfOnKn1eiUlJURHm2vRHPEcSwDEJl573M/FJrm9FPEDpgzx2NhYsrOzGTFiBKGhoRQUFBAdHU1GRgabN2/m6NGjQO0Q79GjR51z34cPH6ZHjx5eqV3MIfYWiGrb8PFtukOrrp6rR8zLlNMpUBXImzZtqrW9rKyMgoICAgIC6N27d419I0eO5Pe//z02m43Y2FgAdu/eTX5+Pi+++KJX6hZzCAqBpPvg4Dr47sTVx7buDr3uqVoYS8RVpjwSv5pDhw7hdDrp3r074eE1P/2eOnUq7dq1Y8yYMWzatIk1a9bw4IMPkpyczJgxY3xUsRhVswjoNwHiUyDixtr7W8RC75GQMAoCg71fn5iD34V4Tk4OUHsqBaB58+bs2LGDdu3aMWHCBKZMmcKAAQPYtGkTAVpmThohMLhqrvu2iXDrwxB0ZRG94HDoPwFi4qvm0EUay7TTKfW5WohD1YU9dU3DiFwPiwWi2kBgEFSipWfFffzuW+laIW40q7Yv4OKlCqBqHeR12cvrHTduQWuee3t09Tbbqa944tUBTFwcx2Mv/5IC+6HqfU+vtHLfH6LrfT2RpuJ6emBe5t1M/Y8EHn0piadeH0Te8c+r9xmlB/wuxHfs2IHT6WTEiBG+LsUt/vzhQi5WVjRo7F23pPL8pB/XgHl57aPcc+tU3pl3lF9b5/Fi1sTqfUun7eS2nqPreBWRpuV6euC5tP9DZvoXZMw+wP2DZhuyB/xuOsVMll9Z4P6p1wcRYAnkxhva882JXOZkDOXUmW/pHNObZ1PfJzio9hUIpWUnOWrbxx9/tx2AQX3u59W/zOR4cR4dWnXz6t9DpLGupwcAIsNaVP9/ecVZwHinCPndkbiZPHn/SgCWzcgmY/YBWkS0Ib/wAM9P2shbc3IpPXeC7Jy1dT731JlviW7ejsDAqp/jFouFNi1v4uSZb7xWv8j1up4e+MHi1Q/z0P/qyLvbnuOZB//sjbLdSkfiJjOw91hCQ6pOnYy/KZmi0/k+rkjEu1ztgXkPrgJg+753eWPLPBZN3uLxGt1JR+Im89MbwQZYArnsqKxzXOsWHSn5rojLl6v2O51OTpZ+Q5sWN3mlThFPaWgP/Nzd/R/hYN5Ovis31p28FOIGF94s6spcnmtaRrahW4e+/HX/fwGQnbOWVi1iNR8uhtPYHig7f4bis4XVjz/5cj3NI24kKtxY6yRpOsXgxg1OZ17mMJoFh3Ojizd3ffL+DF7MmsjqHYsID23OnAfe9lCVIp7T2B4orzjL838ez4VL5wmwBHBDRGuen7SpxvLURqAQN7i0u+eTdvf8Ovc9OmrpVZ/bsc0vWPH4p54oS8RrGtsDbVt24tVZezxVltdoOsVPhIVE8tnhjTUudLiap1dayfn6Y0JdWBRfpCkzaw+Y8h6bRueNm0K4m3UWuilEA2SvrLoZcrNIGDTN19U0bUbrA1/1gI7ERUQMTCEuImJg+mCzCQoIrvrVzEgCtB62uJnR+sBXPaAQb4IsFs0vi6gPGkbTKSIiBqYQF2miNmzYQFJSUo0/HTp0IDQ09Kr76jN+/Hg+/fTH6wIWLFhARcWPS7haLBbOnDlT53MtFgt9+vRhy5YtVFRUcO+99xIXF0diYiLDhg0jLy+veqzVaiU6Oprly5dXbxs0aBDHjh1r/BdD6ucUEa/52386nR++WPVfV5WWljq7devmfPPNN13a53Q6nbt373beddddNbYBztLS0nof1zf2/Pnzzs2bNzsdDofT6XQ6X3nlFeeQIUNqjH/kkUecy5Ytq378l7/8xZmWlnb1v6A0io7ERQzA4XCQmprK0KFDmTx5coP3/SAjI4OHHnqo+vG0aVUnqQ8aNIikpCROnjwJwOuvv05ycjJdunTh7bfrXoYhNDSUe+65p/ry9Ntuu42CgoKr1j9ixAi2bt3K2bOur3EiV6cQFzGA+fPnU1JSwooVta9+udq+H+zatYtbb721+vHKlVXrcGdnZ3PgwAHatGkDQLNmzdizZw9bt25l1qxZVFZeewXAl19+mTFjxlx1THBwMH369CE7O/uaryeu0dkpIk3cBx98wFtvvcW+ffsICQlp8L6fstlstG3b9prvlZqaCkB8fDxBQUHY7XZiY2PrHb9o0SLy8vL46KOPrvnaMTEx2Gy2a44T1yjERZqwI0eOMHnyZNavX0/79u0bvO/nwsPDa3yIWZ+ffjAaGBh41SPxpUuXsm7dOv76178SHh5+zdeuqKggLCzsmuPENZpOEWmizp07x9ixY1m4cCF33HFHg/fVJSEhgSNHjtTYFhUV1eg56pdeeonVq1fz4Ycf0qJFiwY9Jzc3l8TExEa9n9RPR+IiTdRrr73GkSNHeOONN3jjjTdq7HvggQfq3bdly5ZaR+bjxo1j27ZtpKSkVG9LT09n2LBhhIeHs3379gbXZbPZSE9Pp2vXrlitVqBqLn337t31PqegoIDLly8rxD1AqxiKeJGvVjEsKytjwIABfPrpp0REuL60qsViobS0tMFH3RMnTiQpKYknn3wSgGeeeYZu3boxZcoUl99brk7TKSJ+IDIykmXLljX6gpu2bdsyZMgQtmy59k2ErVYrH3/8cY0fFu3bt+e3v/1to95brk5H4iJepPXExd10JC4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgami32aIKcTHJd8XYVrAoKr7sQi4i5G6wNf9YBCvAlyXIKd9S9I1yRZZ+lWWuJeRusDX/WAplNERAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgeliHxM5mL+Lp1daa2wLDYkgtnUcKX3TuHfg4wQG6p9czMsfe8BcfxsBwJr0IMnx9+DESek5Ox/+zypWbpzNNydzeWpcpq/LE/E4f+oBhbgJde/Ql5R+v6l+PGrADCYviWfrnjeZ9C//TovI1j6sTsTz/KkHNCfuB8JCIojvdBtOp5PC0/m+LkfE68zcAwpxP1F05Ru3eXi0jysR8Q2z9oBfhHhxcTFz586lW7duhIaG0rFjR5544gnKy8uZPHkyFouFV1991ddluk3Fpe85W17MmbJTHCvKYcW6x8g7/jnxHZOJbR3n6/JEPM6fesD0c+IHDhxg+PDh2O12IiIi6NmzJ4WFhaxYsYL8/HxKSkoASEpK8m2hbrRq+3xWbZ9fY9sdve/j8bGv+agi/3bxeyjMgaLcqjvd/7Dt+BcQE68lfD3Bn3rA1CFeXFzMqFGjsNvtpKenM3/+fKKiogBYsmQJ8+bNIygoCIvFQkJCgo+rdZ8Rt05lcMJ4Kh2XOFaUQ9auxRSftRESHFo95mLlBWYs74v1lodIHfps9fYl70/kTNkJFk3Z6ovSTcXphH/ugfy/g/Pyz/Y5IHc7fPUx9Lgb2v7CNzWalT/1gKmnU2bNmoXNZmPmzJksXbq0OsAB5s6dS2JiIpWVlXTu3JnmzZv7sFL36tCqO33jUkiOH86vrXN5ftJGjtj28vLaadVjQoKaMXfCKt7/aBH5hQcB+OTL9XyWu5HZ49/yVemmkp8Nedm1A/ynKi9AzkYoOuS9uvyBP/WAaUM8NzeXrKwsWrVqxQsvvFDnmH79+gGQmJhYve2H0E9OTqZZs2ZYTHDPsV6dB5DSN41dB7M4VPD36u1xsf0YN+Rplrz/MKfO2Fi+ZiqPj32NVje092G15nAqHwr2NHz84W1QXuK5evydmXvAtCG+evVqHA4HqampREZG1jkmLCwMqBnieXl5rF27lpiYGH75y196pVZvSE15joCAQN7d9oefbf83AgOCmL78FhK7WbEmTfBRheby7X7XxjsdYDvomVqkill7wLQhvmPHDgCsVmu9Y2w2G1AzxAcPHkxRUREbNmwgJSXFs0V6UYdW3bAmTuDzvI/I+Tq7entQYDA9Ow/gbHkxv+o/yYcVmkd5CZT80/XnFX0Jlw10Y2CjMWsPmPaDzX/+s6qLOnXqVOf+yspKPvnkE6BmiAcEuP/nWv/+/bHb7Q0eHxIURubMr9xex4NDn2XngdW8u/0PLJ22E4Ccr7PZvu8dxgycyesbnmDlzQdoFhzm8mt3j+vOxcrz7i7ZkG79xRimD3f9LIjKCzCwfwq20//wQFXG44k+aMo9EBMTw759+1x+nmlDvLy8HIDz5+v+omZlZVFcXExUVBRdunTxaC12u53jx483eHxocHij3ifx5jv58EVnvfs7te3BtiU/fsp2/kIZL2ZNZPLwPzLq9umkrxzCn7b+numjl7n83kWFhVRc+r5RdZvN+Q4XGv3c786UufS9YmaN6QN/7AHThnhMTAylpaXs37+f22+/vca+oqIi5syZA0BCQoLHP7yMiYlxaXxIkOtHAY2RsTGdmOgujB4wA4vFwpwH3mHa8iQG9h5LQtfBLr1Wu/btdSR+RUhYYKOfG9G8GR06dHBjNcbljT5oSj3gak78wLQhnpKSQm5uLosXL2bYsGHExVVdpbV3717S0tIoLi4GvHORj6u/Il2+CDtXeKiYK/b8Yyu7DmaROfuL6h9i7VvdzOThf2Rp1iQy0r8gLCSiwa/31dGvdNHKFRfPw3+vBMdVTi2sS9gNsOeLjzHBCVFu4ek+MEsPWJxOZ/2/exiYzWYjKSmJ06dPExQURHx8PBUVFeTl5TF8+HAcDgfbtm0jMzOT3/3ud3W+xoIFC1i4cCHe/hJ5I8TdzTpLVx7+1KGtrp/73X0IdDLPCVHXzWh94KseMO3ZKbGxsWRnZzNixAhCQ0MpKCggOjqajIwMNm/ezNGjR4GaH2qKuEun/hDgwqxKSAS06+25esS8TDudAtCjRw82bdpUa3tZWRkFBQUEBATQu7c6R9wvsjX0GQVfbLz6FZsAwaFwy/0Q4p2PQsRkTB3i9Tl06BBOp5O4uDjCw2t/Ar5mzRoADh8+XONx586d6d+/v/cKFUNr3Q36joOju+DcibrHRHeCXwyFCHOtjipe5JchnpOTA9Q/lTJ+/Pg6Hz/yyCO88847Hq1NzKVlR7g1Dc4Wgf3KKoaWgKoPMdv3hvCWvq5QjE4hXgeTftYrPnRDu6o/Iu5m2g82r+ZaIW4kq7Yv4OKlCqBqCc112cvrHTduQWuee3t09bbX1s/iN4s6M2yOhbzjB2qMf3qllfv+EF3v64k0FdfTAz/4f3vfZtgcC598ub562wvvpfLAwhhe/+BJD1TtPn4Z4jt27MDpdDJixAhfl3Ld/vzhQi5WVjRo7F23pPL8pA3VjwcljGPZjP+mbcvaSxMsnbaT23rW/mYXaWqupwcA7CUFbN39Bj1uuq3G9n996H8z8vZpNHV+OZ1iFsuvrI381OuDCLAEcuMN7fnmRC5zMoZy6sy3dI7pzbOp7xMcVPfJq65ekSbS1FxvDzgcDl76v1N47N5XyNiY7s3S3cYvj8TN4sn7VwKwbEY2GbMP0CKiDfmFB3h+0kbempNL6bkTZOes9XGVIp5zvT2w9m8v0avzQOJi+3mrZLfTkbjJDOw9ltCQqtMm429Krr7Dt4i/aGgPHLN/SXbOWl6a8Tdvlud2CnGT+ek9BAMsgVx2VPqwGhHva2gPfPl1NidKC5i4uDsAJefsLF8zlZLvihg1YLpXanUHhbjBhTeLorziLJFhLXxdiohPNLYHRg2YXiOs0//zTu4b9CQDe9/r3gI9TCFucOMGpzMvcxjNgsO50cX7Ai5f8yi7/7GZknN2/vXNXxHeLIp3n8nzUKUinnE9PWAGCnGDS7t7Pml3z69z36Ojll71uU+Oy/BESSJedT098FP/MX2XmyryLp2d4ifCQiL57PDGOi90qMvTK63kfP0xoS6spyzSlLnaAy+8l8pH+/+L8NDmHq7s+ph2PXEjM9o6yqD1xMX9jNYHWk9cRERcphAXETEwTac0QU4nOC75ugrXBASje0OKWxmtD3zVAwpxERED03SKiIiBKcRFRAxMIS4iYmAKcRERA1OIi4gYmEJcRMTAFOIiIgamEBcRMTCFuIiIgSnERUQMTCEuImJgCnEREQNTiIuIGJhCXETEwBTiIiIGphAXETEwhbiIiIEpxEVEDEwhLiJiYApxEREDU4iLiBiYQlxExMAU4iIiBqYQFxExMIW4iIiB/X+hNham461UwgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -88,8 +88,8 @@ "ansatz.rx(theta[4], 1)\n", "\n", "# you can try different circuits, like:\n", - "# from qiskit.circuit.library import EfficientSU2\n", - "# ansatz = EfficientSU2(2, reps=1)\n", + "# from qiskit.circuit.library import efficient_su2\n", + "# ansatz = efficient_su2(2, reps=1)\n", "\n", "ansatz.draw(\"mpl\", style=\"clifford\")" ] @@ -125,15 +125,15 @@ "metadata": {}, "outputs": [], "source": [ - "from qiskit.primitives import Sampler, Estimator\n", + "from qiskit.primitives import StatevectorSampler, StatevectorEstimator\n", "from qiskit_algorithms.state_fidelities import ComputeUncompute\n", "\n", "# the fidelity is used to evaluate the objective: the overlap of the variational form and the trotter step\n", - "sampler = Sampler()\n", + "sampler = StatevectorSampler(default_shots=10_000, seed=42)\n", "fidelity = ComputeUncompute(sampler)\n", "\n", "# the estimator is used to evaluate the observables\n", - "estimator = Estimator()" + "estimator = StatevectorEstimator(seed=43)" ] }, { @@ -198,7 +198,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "And then run the algorithm!" + "And then run the algorithm! Beware that for a large number of shots to compute the fidelity, running the algorithm might take a while." ] }, { @@ -210,312 +210,312 @@ "name": "stdout", "output_type": "stream", "text": [ - "{ 'aux_ops_evaluated': array([ 0.10073973, -0.82478082]),\n", - " 'estimated_error': 2.2479622929783005e-06,\n", - " 'evolved_state': ,\n", + "{ 'aux_ops_evaluated': array([ 0.35117495, -0.59832328]),\n", + " 'estimated_error': 0.0,\n", + " 'evolved_state': ,\n", " 'fidelities': [ 1.0,\n", - " 0.9999999980263742,\n", - " 0.9999999889765994,\n", - " 0.9999999725994934,\n", - " 0.9999999999504244,\n", - " 0.9999999987491348,\n", - " 0.9999999943574918,\n", - " 0.9999999997736883,\n", - " 0.9999999996001944,\n", - " 0.9999999992285448,\n", - " 0.9999999986662624,\n", - " 0.9999999979219804,\n", - " 0.9999999970053304,\n", - " 0.9999999959268082,\n", - " 0.9999999993099946,\n", - " 0.999999999120582,\n", - " 0.9999999988884068,\n", - " 0.9999999986060122,\n", - " 0.9999999982649594,\n", - " 0.9999999978557594,\n", - " 0.9999999975651538,\n", - " 0.9999999970055335,\n", - " 0.9999999963435264,\n", - " 0.9999999955648368,\n", - " 0.999999994653827,\n", - " 0.9999999935934853,\n", - " 0.9999999923653938,\n", - " 0.999999991424641,\n", - " 0.9999999901871712,\n", - " 0.999999989047165,\n", - " 0.9999999875772592,\n", - " 0.9999999861918528,\n", - " 0.999999984457688,\n", - " 0.9999999827846118,\n", - " 0.9999999807589705,\n", - " 0.9999999787650244,\n", - " 0.9999999764272754,\n", - " 0.999999974089888,\n", - " 0.9999999714262247,\n", - " 0.99999996854297,\n", - " 0.9999999657099968,\n", - " 0.9999999625242932,\n", - " 0.999999959589905,\n", - " 0.999999955900257,\n", - " 0.9999999521339322,\n", - " 0.999999948451119,\n", - " 0.9999999443673094,\n", - " 0.9999999404366195,\n", - " 0.9999999358489188,\n", - " 0.9999999312536106,\n", - " 0.9999999269830356,\n", - " 0.999999921901963,\n", - " 0.9999999168942046,\n", - " 0.9999999121894018,\n", - " 0.999999906638922,\n", - " 0.9999999017681294,\n", - " 0.9999998960004504,\n", - " 0.9999998911633218,\n", - " 0.9999998854006426,\n", - " 0.9999999999905684,\n", - " 0.9999999997911014,\n", - " 0.9999999991800308,\n", - " 0.9999999983253138,\n", - " 0.9999999971137374,\n", - " 0.9999999952819568,\n", - " 0.9999999929110854,\n", - " 0.9999999899996294,\n", - " 0.9999999863525126,\n", - " 0.9999999819674972,\n", - " 0.9999999769315784,\n", - " 0.9999999708629806,\n", - " 0.9999999638270776,\n", - " 0.9999999559356684,\n", - " 0.999999947013992,\n", - " 0.999999937178932,\n", - " 0.9999999999604992,\n", - " 0.9999999999046302,\n", - " 0.999999999683919,\n", - " 0.999999999279117,\n", - " 0.9999999986698463,\n", - " 0.9999999979969652,\n", - " 0.9999999969610752,\n", - " 0.9999999956464158,\n", - " 0.9999999940270617,\n", - " 0.9999999922526974,\n", - " 0.9999999899801933,\n", - " 0.9999999873104481,\n", - " 0.9999999842121954,\n", - " 0.9999999806532553,\n", - " 0.9999999770125312,\n", - " 0.9999999724630492,\n", - " 0.9999999673340192,\n", - " 0.9999999615885062,\n", - " 0.9999999551891688,\n", - " 0.9999999999054756,\n", - " 0.9999999998204224,\n", - " 0.9999999997136834,\n", - " 0.999999999282456,\n", - " 0.9999999988047408,\n", - " 0.9999999979733653,\n", - " 0.9999999969892738],\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0),\n", + " np.float64(1.0)],\n", " 'observables': [ array([0.1, 2. ]),\n", - " array([0.1000856 , 1.99960001]),\n", - " array([0.10034237, 1.99840026]),\n", - " array([0.1007702 , 1.99640136]),\n", - " array([0.10074456, 1.9936049 ]),\n", - " array([0.10060605, 1.99001153]),\n", - " array([0.10035524, 1.98562269]),\n", - " array([0.10030779, 1.98043313]),\n", - " array([0.10023309, 1.97445006]),\n", - " array([0.10013181, 1.96767593]),\n", - " array([0.10000473, 1.9601135 ]),\n", - " array([0.0998527 , 1.95176588]),\n", - " array([0.09967668, 1.94263648]),\n", - " array([0.09947771, 1.93272901]),\n", - " array([0.09943962, 1.9220653 ]),\n", - " array([0.09940584, 1.91063464]),\n", - " array([0.09937748, 1.89844176]),\n", - " array([0.0993557 , 1.88549171]),\n", - " array([0.09934171, 1.87178983]),\n", - " array([0.09933681, 1.85734179]),\n", - " array([0.09934127, 1.84213994]),\n", - " array([0.09935744, 1.82620291]),\n", - " array([0.09938676, 1.80953728]),\n", - " array([0.0994307 , 1.79214997]),\n", - " array([0.09949079, 1.77404816]),\n", - " array([0.09956859, 1.75523935]),\n", - " array([0.09966567, 1.73573133]),\n", - " array([0.09976231, 1.71551105]),\n", - " array([0.09986913, 1.69462599]),\n", - " array([0.09997445, 1.67304314]),\n", - " array([0.10009 , 1.65081444]),\n", - " array([0.10020376, 1.62790415]),\n", - " array([0.10032807, 1.6043675 ]),\n", - " array([0.10045114, 1.58016702]),\n", - " array([0.10058516, 1.55536037]),\n", - " array([0.10071929, 1.52990891]),\n", - " array([0.10086463, 1.50387242]),\n", - " array([0.10101204, 1.47721115]),\n", - " array([0.10117057, 1.44998699]),\n", - " array([0.10134686, 1.4221607 ]),\n", - " array([0.10151793, 1.39379938]),\n", - " array([0.10171109, 1.3648554 ]),\n", - " array([0.10187437, 1.33538636]),\n", - " array([0.10207014, 1.30538815]),\n", - " array([0.10228935, 1.2748454 ]),\n", - " array([0.10250054, 1.24382439]),\n", - " array([0.10273905, 1.21228197]),\n", - " array([0.10296241, 1.1802737 ]),\n", - " array([0.10322332, 1.14779862]),\n", - " array([0.10350442, 1.11483635]),\n", - " array([0.10376757, 1.08145861]),\n", - " array([0.10407097, 1.04765377]),\n", - " array([0.10439192, 1.01339755]),\n", - " array([0.10470288, 0.97877379]),\n", - " array([0.10505662, 0.94376419]),\n", - " array([0.10539468, 0.90834534]),\n", - " array([0.1057769 , 0.87256821]),\n", - " array([0.10611656, 0.8364584 ]),\n", - " array([0.10650081, 0.80001929]),\n", - " array([0.10652608, 0.76326583]),\n", - " array([0.10652828, 0.72620917]),\n", - " array([0.10650919, 0.68886741]),\n", - " array([0.10650852, 0.65125179]),\n", - " array([0.1064751 , 0.61337823]),\n", - " array([0.10641196, 0.57526917]),\n", - " array([0.10632419, 0.53692015]),\n", - " array([0.10621823, 0.49836578]),\n", - " array([0.10608125, 0.45962678]),\n", - " array([0.10591204, 0.42068822]),\n", - " array([0.10572249, 0.38159386]),\n", - " array([0.10549146, 0.34236342]),\n", - " array([0.10521965, 0.30297863]),\n", - " array([0.10492235, 0.2634791 ]),\n", - " array([0.10458489, 0.22388579]),\n", - " array([0.1042075 , 0.18420285]),\n", - " array([0.10425076, 0.14446185]),\n", - " array([0.10427357, 0.10466796]),\n", - " array([0.10427472, 0.06483716]),\n", - " array([0.10425297, 0.02498545]),\n", - " array([ 0.10420706, -0.01487116]),\n", - " array([ 0.10416037, -0.05471352]),\n", - " array([ 0.10408648, -0.09452863]),\n", - " array([ 0.10398398, -0.13430051]),\n", - " array([ 0.10385145, -0.17401319]),\n", - " array([ 0.10371086, -0.21365645]),\n", - " array([ 0.10353683, -0.25320847]),\n", - " array([ 0.10332786, -0.29265337]),\n", - " array([ 0.10308242, -0.33197531]),\n", - " array([ 0.102799 , -0.37115849]),\n", - " array([ 0.10250957, -0.41018414]),\n", - " array([ 0.10217813, -0.44903941]),\n", - " array([ 0.1018031 , -0.48770869]),\n", - " array([ 0.1013829 , -0.52617647]),\n", - " array([ 0.10091597, -0.56442729]),\n", - " array([ 0.10095907, -0.60243627]),\n", - " array([ 0.10098867, -0.6401959 ]),\n", - " array([ 0.10098989, -0.67769735]),\n", - " array([ 0.10097408, -0.7149192 ]),\n", - " array([ 0.10092162, -0.75185195]),\n", - " array([ 0.10084878, -0.78847541]),\n", - " array([ 0.10073973, -0.82478082])],\n", + " array([0.10011985, 1.99960634]),\n", + " array([0.10047927, 1.99842555]),\n", + " array([0.1010778 , 1.99645823]),\n", + " array([0.1019147 , 1.99370537]),\n", + " array([0.10298892, 1.99016835]),\n", + " array([0.10429914, 1.98584896]),\n", + " array([0.10584371, 1.98074935]),\n", + " array([0.10762072, 1.97487211]),\n", + " array([0.10962794, 1.96822017]),\n", + " array([0.11186287, 1.9607969 ]),\n", + " array([0.1143227 , 1.95260601]),\n", + " array([0.11700436, 1.94365162]),\n", + " array([0.11990447, 1.93393823]),\n", + " array([0.12301939, 1.92347072]),\n", + " array([0.1263452 , 1.91225435]),\n", + " array([0.12987768, 1.90029474]),\n", + " array([0.13361237, 1.8875979 ]),\n", + " array([0.13754453, 1.87417019]),\n", + " array([0.14166915, 1.86001836]),\n", + " array([0.14598097, 1.84514949]),\n", + " array([0.15047447, 1.82957104]),\n", + " array([0.15514387, 1.81329081]),\n", + " array([0.15998315, 1.79631696]),\n", + " array([0.16498607, 1.77865797]),\n", + " array([0.17014611, 1.76032268]),\n", + " array([0.17545656, 1.74132026]),\n", + " array([0.18091046, 1.72166021]),\n", + " array([0.18650064, 1.70135234]),\n", + " array([0.19221971, 1.68040681]),\n", + " array([0.19806009, 1.65883404]),\n", + " array([0.20401397, 1.63664481]),\n", + " array([0.21007338, 1.61385017]),\n", + " array([0.21623014, 1.59046147]),\n", + " array([0.22247589, 1.56649035]),\n", + " array([0.22880211, 1.54194873]),\n", + " array([0.23520011, 1.51684881]),\n", + " array([0.24166103, 1.49120304]),\n", + " array([0.24817587, 1.46502417]),\n", + " array([0.2547355 , 1.43832516]),\n", + " array([0.26133064, 1.41111924]),\n", + " array([0.26795188, 1.38341988]),\n", + " array([0.27458971, 1.35524078]),\n", + " array([0.28123451, 1.32659585]),\n", + " array([0.28787654, 1.29749923]),\n", + " array([0.29450598, 1.26796527]),\n", + " array([0.30111296, 1.23800853]),\n", + " array([0.30768748, 1.20764374]),\n", + " array([0.31421952, 1.17688582]),\n", + " array([0.320699 , 1.14574989]),\n", + " array([0.32711579, 1.1142512 ]),\n", + " array([0.33345972, 1.0824052 ]),\n", + " array([0.33972061, 1.05022746]),\n", + " array([0.34588826, 1.01773371]),\n", + " array([0.35195246, 0.9849398 ]),\n", + " array([0.35790302, 0.95186172]),\n", + " array([0.36372975, 0.91851558]),\n", + " array([0.36942251, 0.88491757]),\n", + " array([0.37497118, 0.85108401]),\n", + " array([0.38036569, 0.81703129]),\n", + " array([0.38559603, 0.78277588]),\n", + " array([0.39065226, 0.74833435]),\n", + " array([0.39552453, 0.7137233 ]),\n", + " array([0.40020305, 0.6789594 ]),\n", + " array([0.40467816, 0.64405936]),\n", + " array([0.4089403 , 0.60903993]),\n", + " array([0.41298003, 0.57391788]),\n", + " array([0.41678806, 0.53871 ]),\n", + " array([0.42035521, 0.5034331 ]),\n", + " array([0.42367249, 0.46810396]),\n", + " array([0.42673105, 0.43273939]),\n", + " array([0.42952222, 0.39735615]),\n", + " array([0.43203752, 0.36197099]),\n", + " array([0.43426866, 0.32660061]),\n", + " array([0.43620756, 0.29126167]),\n", + " array([0.43784635, 0.25597078]),\n", + " array([0.43917739, 0.22074448]),\n", + " array([0.44019328, 0.18559924]),\n", + " array([0.44088685, 0.15055145]),\n", + " array([0.44125121, 0.11561741]),\n", + " array([0.4412797 , 0.08081333]),\n", + " array([0.44096596, 0.04615529]),\n", + " array([0.44030391, 0.01165927]),\n", + " array([ 0.43928775, -0.02265887]),\n", + " array([ 0.43791199, -0.05678341]),\n", + " array([ 0.43617145, -0.09069877]),\n", + " array([ 0.43406126, -0.12438951]),\n", + " array([ 0.43157687, -0.15784036]),\n", + " array([ 0.42871409, -0.19103621]),\n", + " array([ 0.42546903, -0.22396212]),\n", + " array([ 0.42183818, -0.25660332]),\n", + " array([ 0.41781838, -0.28894525]),\n", + " array([ 0.41340682, -0.32097354]),\n", + " array([ 0.40860107, -0.352674 ]),\n", + " array([ 0.40339906, -0.38403268]),\n", + " array([ 0.39487036, -0.42029685]),\n", + " array([ 0.38626684, -0.45636087]),\n", + " array([ 0.37759207, -0.49221006]),\n", + " array([ 0.36884954, -0.52782985]),\n", + " array([ 0.3600427 , -0.56320573]),\n", + " array([ 0.35117495, -0.59832328])],\n", " 'parameters': [ array([0., 0., 0., 0., 0.]),\n", - " array([0.0099967 , 0.00942472, 0.00646738, 0.01000345, 0.01057543]),\n", - " array([0.0199934 , 0.01884943, 0.01293476, 0.02000691, 0.02115086]),\n", - " array([0.02999009, 0.02827415, 0.01940213, 0.03001036, 0.03172629]),\n", - " array([0.03869578, 0.03650871, 0.01840888, 0.04129823, 0.04348546]),\n", - " array([0.04740146, 0.04474327, 0.01741562, 0.05258611, 0.05524464]),\n", - " array([0.05610714, 0.05297783, 0.01642236, 0.06387398, 0.06700382]),\n", - " array([0.06497479, 0.06137902, 0.01789451, 0.07502649, 0.07862267]),\n", - " array([0.07384244, 0.0697802 , 0.01936665, 0.086179 , 0.09024152]),\n", - " array([0.0827101 , 0.07818139, 0.0208388 , 0.09733151, 0.10186038]),\n", - " array([0.09157775, 0.08658258, 0.02231094, 0.10848401, 0.11347923]),\n", - " array([0.10044541, 0.09498377, 0.02378309, 0.11963652, 0.12509808]),\n", - " array([0.10931306, 0.10338496, 0.02525523, 0.13078903, 0.13671693]),\n", - " array([0.11818071, 0.11178614, 0.02672738, 0.14194154, 0.14833579]),\n", - " array([0.12706985, 0.12022099, 0.02893314, 0.15304162, 0.1598906 ]),\n", - " array([0.13595898, 0.12865584, 0.0311389 , 0.16414171, 0.17144541]),\n", - " array([0.14484812, 0.13709069, 0.03334466, 0.17524179, 0.18300022]),\n", - " array([0.15373725, 0.14552554, 0.03555042, 0.18634188, 0.19455503]),\n", - " array([0.16262639, 0.15396039, 0.03775619, 0.19744197, 0.20610984]),\n", - " array([0.17151552, 0.16239524, 0.03996195, 0.20854205, 0.21766465]),\n", - " array([0.18041324, 0.17083899, 0.04216626, 0.21965109, 0.22922798]),\n", - " array([0.18931096, 0.17928274, 0.04437058, 0.23076013, 0.24079131]),\n", - " array([0.19820868, 0.18772648, 0.0465749 , 0.24186917, 0.25235465]),\n", - " array([0.20710639, 0.19617023, 0.04877921, 0.25297821, 0.26391798]),\n", - " array([0.21600411, 0.20461398, 0.05098353, 0.26408725, 0.27548132]),\n", - " array([0.22490183, 0.21305773, 0.05318785, 0.27519629, 0.28704465]),\n", - " array([0.23379954, 0.22150147, 0.05539216, 0.28630532, 0.29860799]),\n", - " array([0.24270428, 0.22995566, 0.05755155, 0.29742733, 0.31018131]),\n", - " array([0.25159825, 0.23840078, 0.0596863 , 0.30854176, 0.32174502]),\n", - " array([0.26049971, 0.24685719, 0.06177436, 0.31966941, 0.33331859]),\n", - " array([0.26939026, 0.25530466, 0.06383685, 0.33078921, 0.34488201]),\n", - " array([0.27828862, 0.26376413, 0.06585224, 0.34192204, 0.35645472]),\n", - " array([0.28717625, 0.27221509, 0.06784145, 0.35304686, 0.36801687]),\n", - " array([0.29607196, 0.28067867, 0.06978438, 0.36418416, 0.3795874 ]),\n", - " array([0.30495727, 0.28913442, 0.07170041, 0.37531336, 0.39114695]),\n", - " array([0.31385101, 0.29760342, 0.07357193, 0.38645428, 0.40271383]),\n", - " array([0.32273476, 0.30606541, 0.07541534, 0.39758694, 0.41426918]),\n", - " array([0.3316274 , 0.31454132, 0.07721659, 0.4087305 , 0.42583081]),\n", - " array([0.3405105 , 0.32301118, 0.07898778, 0.41986549, 0.43738012]),\n", - " array([0.34940276, 0.33149253, 0.08074073, 0.43101 , 0.44893699]),\n", - " array([0.35828362, 0.33996863, 0.0824352 , 0.44214417, 0.46047711]),\n", - " array([0.36717484, 0.34845704, 0.08411619, 0.45328839, 0.47202566]),\n", - " array([0.37606029, 0.35695064, 0.08570119, 0.46442544, 0.48355617]),\n", - " array([0.38494573, 0.36544424, 0.08728619, 0.47556249, 0.49508667]),\n", - " array([0.39384072, 0.37394975, 0.08885601, 0.48670758, 0.50662299]),\n", - " array([0.40272885, 0.38245663, 0.09036172, 0.49784076, 0.5181393 ]),\n", - " array([0.41162716, 0.39097574, 0.09185574, 0.50898201, 0.52966163]),\n", - " array([0.420525 , 0.39950471, 0.09327544, 0.520113 , 0.54116375]),\n", - " array([0.42942284, 0.40803367, 0.09469514, 0.531244 , 0.55266588]),\n", - " array([0.43833292, 0.41657832, 0.09608958, 0.54238252, 0.56417184]),\n", - " array([0.44724249, 0.42513395, 0.09740483, 0.553504 , 0.57564971]),\n", - " array([0.45615207, 0.43368958, 0.09872007, 0.56462549, 0.58712758]),\n", - " array([0.46507604, 0.44226377, 0.10000417, 0.57575384, 0.59860806]),\n", - " array([0.47399943, 0.45084747, 0.10121922, 0.58686174, 0.6100583 ]),\n", - " array([0.48292281, 0.45943117, 0.10243426, 0.59796964, 0.62150854]),\n", - " array([0.49186761, 0.46804655, 0.10357411, 0.60907493, 0.63294598]),\n", - " array([0.5008124 , 0.47666194, 0.10471396, 0.62018021, 0.64438343]),\n", - " array([0.50977431, 0.48531033, 0.10574441, 0.63125854, 0.65577826]),\n", - " array([0.51873622, 0.49395873, 0.10677487, 0.64233687, 0.6671731 ]),\n", - " array([0.53983919, 0.51477677, 0.10581562, 0.64121444, 0.66633832]),\n", - " array([0.56094326, 0.53560395, 0.10499276, 0.64008529, 0.66550355]),\n", - " array([0.58205944, 0.55642502, 0.10429694, 0.63896313, 0.66465593]),\n", - " array([0.60317778, 0.57725063, 0.10376163, 0.63784181, 0.66380801]),\n", - " array([0.62428873, 0.5980822 , 0.10332235, 0.63671741, 0.66296688]),\n", - " array([0.64539489, 0.61891384, 0.10297621, 0.63559166, 0.66212675]),\n", - " array([0.66650626, 0.6397444 , 0.10272373, 0.63447636, 0.66128814]),\n", - " array([0.68760867, 0.66057179, 0.10256712, 0.63336456, 0.66045478]),\n", - " array([0.70870166, 0.68139496, 0.10248955, 0.63225363, 0.65962457]),\n", - " array([0.72979741, 0.70221563, 0.10248776, 0.63115762, 0.65880108]),\n", - " array([0.75087234, 0.72302198, 0.10257173, 0.63007641, 0.65799201]),\n", - " array([0.77193346, 0.74381954, 0.1027185 , 0.62899992, 0.65718936]),\n", - " array([0.79299314, 0.76461159, 0.10292867, 0.6279423 , 0.65639828]),\n", - " array([0.81402927, 0.78538399, 0.10321699, 0.62690807, 0.65562783]),\n", - " array([0.83503412, 0.80613068, 0.10356867, 0.62590063, 0.65488235]),\n", - " array([0.85599677, 0.82683926, 0.10398418, 0.62493995, 0.65417743]),\n", - " array([0.87079881, 0.84202187, 0.10474813, 0.63015426, 0.65901659]),\n", - " array([0.88560086, 0.85720447, 0.10551209, 0.63536858, 0.66385576]),\n", - " array([0.9004029 , 0.87238708, 0.10627604, 0.6405829 , 0.66869492]),\n", - " array([0.91520495, 0.88756968, 0.10704 , 0.64579721, 0.67353408]),\n", - " array([0.93000699, 0.90275229, 0.10780395, 0.65101153, 0.67837324]),\n", - " array([0.94480755, 0.91793148, 0.10859354, 0.65622778, 0.68321499]),\n", - " array([0.95960811, 0.93311068, 0.10938313, 0.66144402, 0.68805674]),\n", - " array([0.97440866, 0.94828988, 0.11017271, 0.66666027, 0.69289849]),\n", - " array([0.98920922, 0.96346907, 0.1109623 , 0.67187651, 0.69774024]),\n", - " array([1.00400642, 0.97864401, 0.11177695, 0.67709978, 0.70259138]),\n", - " array([1.01880362, 0.99381895, 0.1125916 , 0.68232305, 0.70744253]),\n", - " array([1.03360083, 1.00899389, 0.11340625, 0.68754632, 0.71229368]),\n", - " array([1.04839803, 1.02416883, 0.1142209 , 0.69276958, 0.71714483]),\n", - " array([1.06319523, 1.03934377, 0.11503555, 0.69799285, 0.72199597]),\n", - " array([1.07797925, 1.05450129, 0.11588752, 0.70323194, 0.72686394]),\n", - " array([1.09276326, 1.06965882, 0.11673949, 0.70847103, 0.7317319 ]),\n", - " array([1.10754728, 1.08481635, 0.11759146, 0.71371011, 0.73659986]),\n", - " array([1.12233129, 1.09997388, 0.11844344, 0.7189492 , 0.74146783]),\n", - " array([1.1371153 , 1.1151314 , 0.11929541, 0.72418829, 0.74633579]),\n", - " array([1.14885921, 1.1268851 , 0.12021793, 0.73248524, 0.75460964]),\n", - " array([1.16060312, 1.1386388 , 0.12114046, 0.7407822 , 0.76288348]),\n", - " array([1.17234077, 1.15039905, 0.12204524, 0.7490753 , 0.77116479]),\n", - " array([1.18407842, 1.1621593 , 0.12295003, 0.75736839, 0.77944609]),\n", - " array([1.19581649, 1.17391492, 0.12382906, 0.76566781, 0.78772676]),\n", - " array([1.20755457, 1.18567054, 0.1247081 , 0.77396723, 0.79600742]),\n", - " array([1.21928568, 1.19742574, 0.12556522, 0.78226936, 0.80429537])],\n", + " array([0.01149662, 0.01372677, 0.00631299, 0.0082785 , 0.00618054]),\n", + " array([0.02299325, 0.02745355, 0.01262597, 0.01655699, 0.01236108]),\n", + " array([0.03448987, 0.04118032, 0.01893896, 0.02483549, 0.01854161]),\n", + " array([0.0459865 , 0.0549071 , 0.02525195, 0.03311398, 0.02472215]),\n", + " array([0.05748312, 0.06863387, 0.03156494, 0.04139248, 0.03090269]),\n", + " array([0.06897975, 0.08236065, 0.03787792, 0.04967098, 0.03708323]),\n", + " array([0.08047637, 0.09608742, 0.04419091, 0.05794947, 0.04326377]),\n", + " array([0.09197299, 0.1098142 , 0.0505039 , 0.06622797, 0.0494443 ]),\n", + " array([0.10346962, 0.12354097, 0.05681688, 0.07450646, 0.05562484]),\n", + " array([0.11496624, 0.13726775, 0.06312987, 0.08278496, 0.06180538]),\n", + " array([0.12646287, 0.15099452, 0.06944286, 0.09106346, 0.06798592]),\n", + " array([0.13795949, 0.1647213 , 0.07575585, 0.09934195, 0.07416646]),\n", + " array([0.14945612, 0.17844807, 0.08206883, 0.10762045, 0.08034699]),\n", + " array([0.16095274, 0.19217485, 0.08838182, 0.11589894, 0.08652753]),\n", + " array([0.17244936, 0.20590162, 0.09469481, 0.12417744, 0.09270807]),\n", + " array([0.18394599, 0.2196284 , 0.10100779, 0.13245594, 0.09888861]),\n", + " array([0.19544261, 0.23335517, 0.10732078, 0.14073443, 0.10506914]),\n", + " array([0.20693924, 0.24708195, 0.11363377, 0.14901293, 0.11124968]),\n", + " array([0.21843586, 0.26080872, 0.11994676, 0.15729142, 0.11743022]),\n", + " array([0.22993249, 0.2745355 , 0.12625974, 0.16556992, 0.12361076]),\n", + " array([0.24142911, 0.28826227, 0.13257273, 0.17384842, 0.1297913 ]),\n", + " array([0.25292573, 0.30198905, 0.13888572, 0.18212691, 0.13597183]),\n", + " array([0.26442236, 0.31571582, 0.1451987 , 0.19040541, 0.14215237]),\n", + " array([0.27591898, 0.3294426 , 0.15151169, 0.1986839 , 0.14833291]),\n", + " array([0.28741561, 0.34316937, 0.15782468, 0.2069624 , 0.15451345]),\n", + " array([0.29891223, 0.35689615, 0.16413767, 0.2152409 , 0.16069399]),\n", + " array([0.31040886, 0.37062292, 0.17045065, 0.22351939, 0.16687452]),\n", + " array([0.32190548, 0.3843497 , 0.17676364, 0.23179789, 0.17305506]),\n", + " array([0.3334021 , 0.39807647, 0.18307663, 0.24007638, 0.1792356 ]),\n", + " array([0.34489873, 0.41180325, 0.18938961, 0.24835488, 0.18541614]),\n", + " array([0.35639535, 0.42553002, 0.1957026 , 0.25663338, 0.19159668]),\n", + " array([0.36789198, 0.4392568 , 0.20201559, 0.26491187, 0.19777721]),\n", + " array([0.3793886 , 0.45298357, 0.20832858, 0.27319037, 0.20395775]),\n", + " array([0.39088522, 0.46671035, 0.21464156, 0.28146886, 0.21013829]),\n", + " array([0.40238185, 0.48043712, 0.22095455, 0.28974736, 0.21631883]),\n", + " array([0.41387847, 0.4941639 , 0.22726754, 0.29802586, 0.22249937]),\n", + " array([0.4253751 , 0.50789067, 0.23358052, 0.30630435, 0.2286799 ]),\n", + " array([0.43687172, 0.52161745, 0.23989351, 0.31458285, 0.23486044]),\n", + " array([0.44836835, 0.53534422, 0.2462065 , 0.32286134, 0.24104098]),\n", + " array([0.45986497, 0.549071 , 0.25251949, 0.33113984, 0.24722152]),\n", + " array([0.47136159, 0.56279777, 0.25883247, 0.33941834, 0.25340205]),\n", + " array([0.48285822, 0.57652455, 0.26514546, 0.34769683, 0.25958259]),\n", + " array([0.49435484, 0.59025132, 0.27145845, 0.35597533, 0.26576313]),\n", + " array([0.50585147, 0.6039781 , 0.27777143, 0.36425382, 0.27194367]),\n", + " array([0.51734809, 0.61770487, 0.28408442, 0.37253232, 0.27812421]),\n", + " array([0.52884472, 0.63143165, 0.29039741, 0.38081082, 0.28430474]),\n", + " array([0.54034134, 0.64515842, 0.2967104 , 0.38908931, 0.29048528]),\n", + " array([0.55183796, 0.6588852 , 0.30302338, 0.39736781, 0.29666582]),\n", + " array([0.56333459, 0.67261197, 0.30933637, 0.4056463 , 0.30284636]),\n", + " array([0.57483121, 0.68633875, 0.31564936, 0.4139248 , 0.3090269 ]),\n", + " array([0.58632784, 0.70006552, 0.32196234, 0.4222033 , 0.31520743]),\n", + " array([0.59782446, 0.7137923 , 0.32827533, 0.43048179, 0.32138797]),\n", + " array([0.60932109, 0.72751907, 0.33458832, 0.43876029, 0.32756851]),\n", + " array([0.62081771, 0.74124585, 0.34090131, 0.44703878, 0.33374905]),\n", + " array([0.63231433, 0.75497262, 0.34721429, 0.45531728, 0.33992959]),\n", + " array([0.64381096, 0.7686994 , 0.35352728, 0.46359578, 0.34611012]),\n", + " array([0.65530758, 0.78242617, 0.35984027, 0.47187427, 0.35229066]),\n", + " array([0.66680421, 0.79615295, 0.36615325, 0.48015277, 0.3584712 ]),\n", + " array([0.67830083, 0.80987972, 0.37246624, 0.48843126, 0.36465174]),\n", + " array([0.68979746, 0.8236065 , 0.37877923, 0.49670976, 0.37083228]),\n", + " array([0.70129408, 0.83733327, 0.38509221, 0.50498826, 0.37701281]),\n", + " array([0.7127907 , 0.85106005, 0.3914052 , 0.51326675, 0.38319335]),\n", + " array([0.72428733, 0.86478682, 0.39771819, 0.52154525, 0.38937389]),\n", + " array([0.73578395, 0.8785136 , 0.40403118, 0.52982374, 0.39555443]),\n", + " array([0.74728058, 0.89224037, 0.41034416, 0.53810224, 0.40173497]),\n", + " array([0.7587772 , 0.90596715, 0.41665715, 0.54638074, 0.4079155 ]),\n", + " array([0.77027383, 0.91969392, 0.42297014, 0.55465923, 0.41409604]),\n", + " array([0.78177045, 0.9334207 , 0.42928312, 0.56293773, 0.42027658]),\n", + " array([0.79326707, 0.94714747, 0.43559611, 0.57121622, 0.42645712]),\n", + " array([0.8047637 , 0.96087424, 0.4419091 , 0.57949472, 0.43263765]),\n", + " array([0.81626032, 0.97460102, 0.44822209, 0.58777322, 0.43881819]),\n", + " array([0.82775695, 0.98832779, 0.45453507, 0.59605171, 0.44499873]),\n", + " array([0.83925357, 1.00205457, 0.46084806, 0.60433021, 0.45117927]),\n", + " array([0.8507502 , 1.01578134, 0.46716105, 0.6126087 , 0.45735981]),\n", + " array([0.86224682, 1.02950812, 0.47347403, 0.6208872 , 0.46354034]),\n", + " array([0.87374344, 1.04323489, 0.47978702, 0.6291657 , 0.46972088]),\n", + " array([0.88524007, 1.05696167, 0.48610001, 0.63744419, 0.47590142]),\n", + " array([0.89673669, 1.07068844, 0.492413 , 0.64572269, 0.48208196]),\n", + " array([0.90823332, 1.08441522, 0.49872598, 0.65400118, 0.4882625 ]),\n", + " array([0.91972994, 1.09814199, 0.50503897, 0.66227968, 0.49444303]),\n", + " array([0.93122657, 1.11186877, 0.51135196, 0.67055818, 0.50062357]),\n", + " array([0.94272319, 1.12559554, 0.51766494, 0.67883667, 0.50680411]),\n", + " array([0.95421981, 1.13932232, 0.52397793, 0.68711517, 0.51298465]),\n", + " array([0.96571644, 1.15304909, 0.53029092, 0.69539366, 0.51916519]),\n", + " array([0.97721306, 1.16677587, 0.53660391, 0.70367216, 0.52534572]),\n", + " array([0.98870969, 1.18050264, 0.54291689, 0.71195066, 0.53152626]),\n", + " array([1.00020631, 1.19422942, 0.54922988, 0.72022915, 0.5377068 ]),\n", + " array([1.01170294, 1.20795619, 0.55554287, 0.72850765, 0.54388734]),\n", + " array([1.02319956, 1.22168297, 0.56185585, 0.73678614, 0.55006788]),\n", + " array([1.03469618, 1.23540974, 0.56816884, 0.74506464, 0.55624841]),\n", + " array([1.04619281, 1.24913652, 0.57448183, 0.75334314, 0.56242895]),\n", + " array([1.05768943, 1.26286329, 0.58079482, 0.76162163, 0.56860949]),\n", + " array([1.06918606, 1.27659007, 0.5871078 , 0.76990013, 0.57479003]),\n", + " array([1.08068268, 1.29031684, 0.59342079, 0.77817862, 0.58097057]),\n", + " array([1.091028 , 1.30139561, 0.5919049 , 0.78875973, 0.58922345]),\n", + " array([1.10137332, 1.31247439, 0.59038901, 0.79934084, 0.59747634]),\n", + " array([1.11171864, 1.32355316, 0.58887311, 0.80992195, 0.60572923]),\n", + " array([1.12206395, 1.33463193, 0.58735722, 0.82050305, 0.61398212]),\n", + " array([1.13240927, 1.3457107 , 0.58584133, 0.83108416, 0.62223501]),\n", + " array([1.14275459, 1.35678947, 0.58432544, 0.84166527, 0.6304879 ])],\n", " 'times': [ 0.0,\n", " 0.01,\n", " 0.02,\n", @@ -643,7 +643,7 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "The energy should be constant in a real time evolution. However, we are projecting the time-evolved state onto a variational form, which might violate this rule. Ideally the energy is still more or less constant. In this evolution here we observe shifts of ~5% of the energy." + "The energy should be constant in a real time evolution. However, we are projecting the time-evolved state onto a variational form, which might violate this rule." ] }, { @@ -663,7 +663,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHICAYAAABeca7pAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpm0lEQVR4nO3de1xUZf4H8M+ZYS5chzsoooj3OwaClxRL8paVZWlXzS23rNyUn+1qVrZrG265xW65WW5mFy3T7mtaSWpe8BJIKireRbkjch2YgTnn98fIJAkEw8ycGfi8X695veRw5pnvHHX48DzPeR5BkiQJRERERNQohdwFEBERETkzhiUiIiKiZjAsERERETWDYYmIiIioGQxLRERERM1gWCIiIiJqBsMSERERUTMYloiIiIiawbBERERE1AyGJSKiduD8+fMQBAFr166VuxSidodhiYgAAGvXroUgCE0+9u3bJ3eJBGD9+vVITk6WuwyiDsVN7gKIyLn87W9/Q/fu3a873rNnTxmqod9av349jh49ivnz5zc43q1bN1RXV0OlUslTGFE7xrBERA1MmjQJMTExcpeBqqoqeHp6yl2Gw0mShJqaGri7u7fqeYIgQKvV2qkqoo6Nw3BE1Cr1c2NWrFiBd955Bz169IBGo8GwYcNw8ODB684/ceIE7r77bvj7+0Or1SImJgZff/11g3PqhwB37tyJJ554AsHBwejSpYvl+ytXrkRkZCTc3d0RGxuLXbt2YezYsRg7diwAoLKyEp6ennj66aeve/1Lly5BqVQiKSmp2fdVVVWF//u//0N4eDg0Gg369OmDFStWQJIkyzkDBw7ETTfddN1zRVFEWFgY7r777gbHkpOTMWDAAGi1WoSEhOCxxx7DlStXGjw3IiICU6ZMwXfffYeYmBi4u7vj7bffbrTGsWPHYvPmzbhw4YJleDQiIgJA43OWHn74YXh5eSE7OxtTpkyBl5cXwsLCsHLlSgDAkSNHcPPNN8PT0xPdunXD+vXrr3vN0tJSzJ8/33JdevbsiX/84x8QRbHZ60nUnrBniYgaKCsrQ3FxcYNjgiAgICCgwbH169ejoqICjz32GARBwCuvvIK77roLZ8+etQwFZWZmYtSoUQgLC8OiRYvg6emJTz/9FFOnTsVnn32GO++8s0GbTzzxBIKCgvDCCy+gqqoKAPDWW2/hqaeewujRo7FgwQKcP38eU6dOhZ+fnyVQeXl54c4778SGDRvw2muvQalUWtr8+OOPIUkSHnjggSbfsyRJuP3227F9+3Y88sgjiIqKwnfffYdnnnkGOTk5eP311wEAM2bMwIsvvoj8/HyEhoZanr97927k5ubi3nvvtRx77LHHsHbtWsyePRt/+tOfcO7cObz55ps4dOgQ9uzZ02C4LCsrC/fddx8ee+wxzJkzB3369Gm0ziVLlqCsrAyXLl2y1OTl5dXk+wIAk8mESZMmYcyYMXjllVewbt06PPXUU/D09MSSJUvwwAMP4K677sKqVaswc+ZMjBgxwjIMq9frER8fj5ycHDz22GPo2rUr9u7di8WLFyMvL49zp6jjkIiIJEl67733JACNPjQajeW8c+fOSQCkgIAAqaSkxHL8q6++kgBI33zzjeXYuHHjpEGDBkk1NTWWY6IoSiNHjpR69ep13WvfeOONUl1dneW4wWCQAgICpGHDhkm1tbWW42vXrpUASPHx8ZZj3333nQRA2rJlS4P3NXjw4AbnNebLL7+UAEgvvfRSg+N33323JAiCdPr0aUmSJCkrK0sCIL3xxhsNznviiSckLy8vSa/XS5IkSbt27ZIASOvWrWtw3tatW6873q1bNwmAtHXr1mZrrHfrrbdK3bp1u+54/d/Le++9Zzk2a9YsCYD08ssvW45duXJFcnd3lwRBkD755BPL8RMnTkgApKVLl1qOLVu2TPL09JROnjzZ4LUWLVokKZVKKTs7u0U1E7k6DsMRUQMrV67EDz/80OCxZcuW686bMWMG/Pz8LF+PHj0aAHD27FkAQElJCX788UdMnz4dFRUVKC4uRnFxMS5fvowJEybg1KlTyMnJadDmnDlzGvQK/fzzz7h8+TLmzJkDN7dfO8IfeOCBBq8NAAkJCejcuTPWrVtnOXb06FEcPnwYDz74YLPv+dtvv4VSqcSf/vSnBsf/7//+D5IkWd5/7969ERUVhQ0bNljOMZlM2LRpE2677TbLPKONGzdCp9Phlltusbzv4uJiREdHw8vLC9u3b2/wOt27d8eECROarbEtHn30UcuffX190adPH3h6emL69OmW43369IGvr6/l76/+fYwePRp+fn4N3kdCQgJMJhN++uknu9VM5Ew4DEdEDcTGxrZognfXrl0bfF0fXurn5Jw+fRqSJOH555/H888/32gbhYWFCAsLs3z927vwLly4AOD6O/Hc3Nwsc3XqKRQKPPDAA3jrrbeg1+vh4eGBdevWQavV4p577mn2vVy4cAGdO3eGt7d3g+P9+vVrUAdgDonPPvsscnJyEBYWhh07dqCwsBAzZsywnHPq1CmUlZUhODi4yfd9rcbuPrQVrVaLoKCgBsd0Oh26dOkCQRCuO37tnKpTp07h8OHD1z2/3m/fB1F7xbBERFa5tgfoWtLVCdH1E4AXLlzYZK/Jb0NQa+8A+62ZM2fi1VdfxZdffon77rsP69evx5QpU6DT6drU7rVmzJiBxYsXY+PGjZg/fz4+/fRT6HQ6TJw40XKOKIoIDg5u0Mt1rd+Gj7a+7+Y09ff0e39/gPl93HLLLfjzn//c6Lm9e/due4FELoBhiYjsIjIyEgCgUqmQkJBgVRvdunUDYO6luvYutLq6Opw/fx6DBw9ucP7AgQMxdOhQrFu3Dl26dEF2djbeeOONFr3Otm3bUFFR0aB36cSJEw3qAMy9QLGxsdiwYQOeeuopfP7555g6dSo0Go3lnB49emDbtm0YNWqUzYPQb3uD7KlHjx6orKy0+u+PqL3gnCUisovg4GCMHTsWb7/9NvLy8q77flFR0e+2ERMTg4CAAKxevRp1dXWW4+vWrbvuFvx6Dz30EL7//nskJycjICAAkyZN+t3XmTx5MkwmE958880Gx19//XUIgnBdGzNmzMC+ffuwZs0aFBcXNxiCA4Dp06fDZDJh2bJl171WXV0dSktLf7empnh6eqKsrMzq57fG9OnTkZqaiu++++6675WWljb4OyFqz9izREQNbNmyxdKjcq2RI0daeotaauXKlbjxxhsxaNAgzJkzB5GRkSgoKEBqaiouXbqEX375pdnnq9VqvPjii5g3bx5uvvlmTJ8+HefPn8fatWvRo0ePRntZ7r//fvz5z3/GF198gblz57ZoRevbbrsNN910E5YsWYLz589jyJAh+P777/HVV19h/vz56NGjR4Pzp0+fjoULF2LhwoXw9/e/ruclPj4ejz32GJKSkpCRkYHx48dDpVLh1KlT2LhxI/71r381WJOpNaKjo7FhwwYkJiZi2LBh8PLywm233WZVW7/nmWeewddff40pU6bg4YcfRnR0NKqqqnDkyBFs2rQJ58+fR2BgoF1em8ipyHszHhE5i+aWDsA1t6TX36L+6quvXtcGfnPruSRJ0pkzZ6SZM2dKoaGhkkqlksLCwqQpU6ZImzZtuu61Dx482Ght//73v6Vu3bpJGo1Gio2Nlfbs2SNFR0dLEydObPT8yZMnSwCkvXv3tvj9V1RUSAsWLJA6d+4sqVQqqVevXtKrr74qiaLY6PmjRo2SAEiPPvpok22+8847UnR0tOTu7i55e3tLgwYNkv785z9Lubm5lnO6desm3XrrrS2us7KyUrr//vslX19fCYBlGYGmlg7w9PS8ro34+HhpwIAB1x1vrJaKigpp8eLFUs+ePSW1Wi0FBgZKI0eOlFasWCEZjcYW103kygRJumY2HxGRCxBFEUFBQbjrrruwevXq675/55134siRIzh9+rQM1RFRe8M5S0Tk1GpqavDb3+k++OADlJSUWLY7uVZeXh42b96Mhx56yEEVElF7x54lInJqO3bswIIFC3DPPfcgICAA6enpePfdd9GvXz+kpaVBrVYDAM6dO4c9e/bgv//9Lw4ePIgzZ8402JKEiMhanOBNRE4tIiIC4eHh+Pe//42SkhL4+/tj5syZWL58uSUoAcDOnTsxe/ZsdO3aFe+//z6DEhHZDHuWiIiIiJrBOUtEREREzWBYIiIiImoG5yzZgCiKyM3Nhbe3t0O3IiAiIiLrSZKEiooKdO7cGQpF0/1HDEs2kJubi/DwcLnLICIiIitcvHgRXbp0afL7DEs2UL/x5sWLF+Hj4yNzNURERNQS5eXlCA8Pb7CBdmMYlmygfujNx8eHYYmIiMjF/N4UGk7wJiIiImoGwxIRERFRMxiWiIiIiJrBsERERETUDIYlIiIiomYwLBERERE1g2GJiIiIqBkMS0RERETNYFgiIiIiagbDEhEREVEzGJaIiIiImsGwRERERNQMbqRLROTiTCYJxjoJdSagtk5CXZ0ELw8FPLT8fZjIFhiWiIhcTI1RxJHTBhzKqkF6lgGnLhohSQ3PEQQgLMgNvbuq0burGj26qKFVC1AI5u8JAhDk5wZ/H6U8b4LIhTAsERG5CEmSkPT+ZexM16O2runz3JRAnQm4VFiHS4V1+PFnfaPnCQIwpKcGNw/zxOgod+i8GJyIGsOwRETkIs7l1mLbAXPwCfZTYmgfLW7oo8WQXhr4eCngphSgVACCIOBKhQmnso04mW3EqYtGXMirRZ0ISKIEUQJMIlBcakLGKQMyThnwr0+AmH5azLxVh34RGpnfKZFzYVgiInIRGScNAIDovlq8Mi8IgiA0ea6ftxKxA9wRO8C9yXPyL9dhe5oe23+uwulLtdifWYODx2pw9zhvPDxFB62ac56IAN4NR0TkMn45VQMAGNpb02xQaqnQADfcN94H7zzbCWtf6ISEWA+IEvDptgrM+Xu+5fWIOjqGJSIiFyCKEn45Ze5ZGtJba/P2u4aq8OzDgXh5bhACfZXIKarDgtcL8canJTCZpN9vgKgdY1giInIB53JrUV4lQqsR0Keb2m6vM3yQO9Y83wm3jvIEAHyxoxLPv12EGqNot9ckcnYMS0RELqC+V2lQDw3clG0fgmuOl7sC//dAAJY9Fgi1SsC+ozX48xtFKK8y2fV1iZwVwxIRkQvIOGmePzSkl+PuVBs1xAOvzguCl7uAo2cMmP9aIYquNLNmAVE7xbBEROTkRFHC4dPmnqWhdpiv1JxBPbX41/+FIECnxPm8Wsz7ZwEuFtQ6tAYiuTEsERE5ufr5Su4aAb262m++UlO6d1bjjYUhCA9xQ2GJCc+8wR4m6lgYloiInFz9EJwj5is1JTTADf9KDEGXYHNg+subnMNEHQfDEhGRk6tfjDLKwUNwv+XrrcQr84ItQ3JL3uJdctQxMCwRETmxa+crDekt/zYkoQFueOXqpO/Ms0b87b/FqOM6TNTOMSwRETmxszm1qNCL8NAK6B3u+PlKjeneWY2Xnwi2LCvwz3UlkCQGJmq/GJaIiJxYxqlf5yspZZqv1JiBPTRY+mggFArgu31V2LK3Su6SiOyGYYmIyInVz1eyxxYnbTVikDsevd0XAPDmpivIKeSSAtQ+MSwRETkpkyjh8NWepSgHLkbZGvckeCOqlwY1Bgkvr73M+UvULjEsERE5qbM5taisluChFdDLSeYr/ZZSIeAvswLg6S7g+HkjPtpSJndJRDbHsERE5KTq11ca3NO55iv9Voi/G+bf6w8A+GhLOTLPGmSuiMi2GJaIiJxU2vGrQ3BOOF/pt8YN80TCMA+IEvDy2svQ13D9JWo/nCosrVy5EhEREdBqtYiLi8OBAweaPDczMxPTpk1DREQEBEFAcnKy1W2mpqbi5ptvhqenJ3x8fDBmzBhUV1fb6m0REbWawSgi45S5h2ZYf+cPSwDwpxn+CPZXIq+4Dqu/KpW7HCKbcZqwtGHDBiQmJmLp0qVIT0/HkCFDMGHCBBQWFjZ6vl6vR2RkJJYvX47Q0FCr20xNTcXEiRMxfvx4HDhwAAcPHsRTTz0FhcJpLg0RdUAZpwww1koI9lMiopNK7nJaxMtDgT8/GAAA+GZXJc7lGmWuiMg2BMlJVhKLi4vDsGHD8OabbwIARFFEeHg45s2bh0WLFjX73IiICMyfPx/z589vdZvDhw/HLbfcgmXLlllde3l5OXQ6HcrKyuDj42N1O0RE9d74tARf7KjElBu9kHi/v9zltMoLbxdh9y/ViOmnxT+eCoIgOO98K+rYWvrz2ym6T4xGI9LS0pCQkGA5plAokJCQgNTUVLu1WVhYiP379yM4OBgjR45ESEgI4uPjsXv37ra9ISKiNjp4zDxfyVWG4K712F2+cFMCPx+vwf7MGrnLIWozpwhLxcXFMJlMCAkJaXA8JCQE+fn5dmvz7NmzAIAXX3wRc+bMwdatW3HDDTdg3LhxOHXqVJNtGwwGlJeXN3gQEdlKTlEtLhXWQakAbujjemEpLEiFaTd5AwDe+uwK114il+cUYUkuomi+W+Oxxx7D7NmzMXToULz++uvo06cP1qxZ0+TzkpKSoNPpLI/w8HBHlUxEHcCBzF+3OPF0d82P6Qcm6eDrpcDFgjp8/VOl3OUQtYlT/C8MDAyEUqlEQUFBg+MFBQVNTt62RZudOnUCAPTv37/BOf369UN2dnaTbS9evBhlZWWWx8WLF62qkYioMQcyzXfjxg5wl7kS63m5K/CHq1uhvL+5DGWVJnkLImoDpwhLarUa0dHRSElJsRwTRREpKSkYMWKE3dqMiIhA586dkZWV1eC5J0+eRLdu3ZpsW6PRwMfHp8GDiMgWjLWSZT84V5yvdK1JIz0RGaZChV7E+5u5sje5LqcISwCQmJiI1atX4/3338fx48cxd+5cVFVVYfbs2QCAmTNnYvHixZbzjUYjMjIykJGRAaPRiJycHGRkZOD06dMtblMQBDzzzDP497//jU2bNuH06dN4/vnnceLECTzyyCOOvQBERAB+OVUDQ62EQF8lIsNcY8mApigVAp642w8A8PWuSlziRrvkotzkLqDejBkzUFRUhBdeeAH5+fmIiorC1q1bLRO0s7OzG6x9lJubi6FDh1q+XrFiBVasWIH4+Hjs2LGjRW0CwPz581FTU4MFCxagpKQEQ4YMwQ8//IAePXo45o0TEV3jwNW74GL7a9vFLfc39NEiboAW+zNr8MG3ZXj24UC5SyJqNadZZ8mVcZ0lIrKVWX/NxcWCOix9NBDxN3jIXY5NnMw24vHl+VAIwLvPdUI3F1lkk9o/l1pniYiIgLziOlwsqINCAUT3de35Stfq3VWNUYPdIUrAB1s4d4lcD8MSEZGTqL8LbkCkBl4e7evj+eEpOgDAjjQ9t0Ehl9O+/jcSEbmwa+crtTc9uqgxZqg7JAm8M45cDsMSEZETMNZKOHTyalhy4fWVmjPrVh0EAfjpUDVOX2TvErkOhiUiIidw/LwBNQYJft4K9HDxJQOa0r2zGmOjzZPW17J3iVwIwxIRkRP45ZR5IcohvbRQKFx/yYCmzJqsg0IA9h6uRtYFg9zlELUIwxIRkRPIyDIPwUX11shciX11DVVh3DBz79L677gJObkGhiUiIpkZayVknjP3skT1bn+Tu3/r3vHm9Wz2HK5G0ZU6mash+n0MS0REMjt2zoDaOsDfR4HwEKfZWMFuundWY0gvDUQR+GZ3pdzlEP0uhiUiIpllnKwfgmsfW5y0xB3x3gCAzXsqUVvHjSTIuTEsERHJLONkxxmCq3fjEHcE6JS4Ui7ip0N6ucshahbDEhGRjAxGEcfP14el9j25+1puSgFTbvQCAHz1E4fiyLkxLBERySjzrBG1dUCgrxJhQe1/vtK1ptzoBaUCOHrGgDOXuEglOS+GJSIiGWWcujpfqZemw8xXqhegU2J0lHkZgS93VshcDVHTGJaIiGTUEecrXeuOePNQXMpBPSr1oszVEDWOYYmISCbVBhEn6ucr9emYYWlwTw26d1ahxihh6z7OXSLnxLBERCSTzLMG1JmAYD8lOgUo5S5HFoIg4I4x5t6lr3+qhChyGQFyPgxLREQyuXYIrqPNV7rWLbGe8NAKuFRYh6NnuV8cOR+GJSIimfy6GGXHWTKgMe5ahWWid8oBrrlEzodhiYhIBtU1IrIumG+X76iTu6+VEOsJANh5SM8VvcnpMCwREcngyBkDTCIQGqBEaEDHWl+pMVG9NQjQKVFeJeLAsWq5yyFqgGGJiEgG1+4HR4BSIeCmaA7FkXNiWCIiksHB4+awdEMHXTKgMfVDcXuPVENfwzWXyHkwLBEROVhRaR3OXKqFIADD+jMs1esVrkKXYDcYayXszmDvEjkPhiUiIgc7mGnuVerTTQ2dV8dcX6kxgiBYepe2HWRYIufBsERE5GD1E5hj2at0nXEx5nlL6SdqUFJmkrkaIjOGJSIiB6ozSUi7Ol8pboC7zNU4n7BgFfpFqCFKwPa0KrnLIQLAsERE5FCZZw2oqpGg81Kgdze13OU4pXHDzENxKT9zKI6cA8MSEZEDHbg6X2lYPy2Uio67xUlzxkZ7QKEATpw34lJhrdzlEDEsERE5kmW+EofgmuTvo0R0X/N8rhRO9CYnwLBEROQgxVwyoMXqJ3rvTGdYIvkxLBEROcjBY1wyoKVGDvaAmxI4n1eL7AIOxZG8GJaIiBxkfyaXDGgpLw+FZXXzXYfYu0TyYlgiInIAk0lC2gkuGdAao4eah+J+YlgimTEsERE5QOY5A6qqJfh4csmAlho12B0KATh1sRZ5xXVyl0MdGMMSEZEDWJYM6M8lA1rK11uJwb00ANi7RPJyurC0cuVKREREQKvVIi4uDgcOHGjy3MzMTEybNg0REREQBAHJyclWtTl27FgIgtDg8fjjj9vybRFRB3fAMl+JQ3CtMebqUNwubqxLMnKqsLRhwwYkJiZi6dKlSE9Px5AhQzBhwgQUFhY2er5er0dkZCSWL1+O0NDQNrU5Z84c5OXlWR6vvPKKzd8fEXVMJWUmnOaSAVa5cYg5XB47Z0TRFQ7FkTycKiy99tprmDNnDmbPno3+/ftj1apV8PDwwJo1axo9f9iwYXj11Vdx7733QqPRtKlNDw8PhIaGWh4+Pj42f39E1DH9fHVid+9wNXy9uWRAawT6umFApHmO166MapmroY7KacKS0WhEWloaEhISLMcUCgUSEhKQmppq9zbXrVuHwMBADBw4EIsXL4Ze33SXr8FgQHl5eYMHEVFTfj5u/iEf04+9StbgUBzJzWnCUnFxMUwmE0JCQhocDwkJQX5+vl3bvP/++/HRRx9h+/btWLx4MT788EM8+OCDTbablJQEnU5neYSHh1tVHxG1f6L465IBDEvWGR1lDktHThtwpcIkczXUEbnJXYAz+OMf/2j586BBg9CpUyeMGzcOZ86cQY8ePa47f/HixUhMTLR8XV5ezsBERI06l1uLK+UitBoB/SMbny5AzQsNcEOfrmpkZRux55dqTLnRS+6SqINxmp6lwMBAKJVKFBQUNDheUFDQ5ORte7UZFxcHADh9+nSj39doNPDx8WnwICJqzMHj5l6lqF4aqNy4ZIC1Rg81T/TmEgIkB6cJS2q1GtHR0UhJSbEcE0URKSkpGDFihEPbzMjIAAB06tTJqtclIqqXdrx+CI5LBrRF/bylQ1k1qNCLMldDHY1TDcMlJiZi1qxZiImJQWxsLJKTk1FVVYXZs2cDAGbOnImwsDAkJSUBME/gPnbsmOXPOTk5yMjIgJeXF3r27NmiNs+cOYP169dj8uTJCAgIwOHDh7FgwQKMGTMGgwcPluEqEFF7YTCKOHya85VsoUuwChGdVDifV4ufj1XjphhPuUuiDsSpwtKMGTNQVFSEF154Afn5+YiKisLWrVstE7Szs7OhUPzaGZabm4uhQ4davl6xYgVWrFiB+Ph47Nixo0VtqtVqbNu2zRKiwsPDMW3aNDz33HOOe+NE1C4dPm1AbR0Q7KdEeIhTfdy6pNgBWpzPq8WBYzUMS+RQgiRJktxFuLry8nLodDqUlZVx/hIRWbz12RVsTKnA5JGeWPhggNzluLz0rBos/Fch/LwV2JgUBgW3jaE2aunPb6eZs0RE1N78Ol+JQ3C2MKiHBu4aAVcqRJy+VCt3OdSBMCwREdnB5TITzuaatzgZ2odhyRZUbgJu6Gu+lvszuZo3OQ7DEhGRHaRdXbW7d7gaOi9ucWIrcQPMdxUeYFgiB2JYIiKyg585BGcXsVc3Ij5+zojyKq7mTY7BsEREZGPc4sR+gv3dENFJBVH6NZAS2RvDEhGRjZ3LrcWVCm5xYi9xA8wB9EAmwxI5BsMSEZGNcYsT+4q9Om/p4LFqiCJXvyH7Y1giIrKxfUfMk4+5xYl9DOQSAuRgDEtERDZUVmnC0TMGAMDIwQxL9tBgCYGjvCuO7I9hiYjIhlKPVEOUgJ5dVAgN4BYn9lK/hADXWyJHYFgiIrKhPYfNP7zZq2Rf9UsInDjPJQTI/hiWiIhspMYo4udj5sndNw7xkLma9i3Y3w3dO3MJAXIMhiUiIhtJO1EDQ62EEH8lenRRyV1Ou1ffu8QlBMjeGJaIiGxkzy/mIbhRg90hCFwywN5i+puHOg9l1UCSuIQA2Q/DEhGRDZhEybJkwEgOwTnEgEg13JRAUakJuUV1cpdD7RjDEhGRDRw7a0BppQhvDwUG9+Sq3Y6gVSvQr7v5Wh86aZC5GmrPGJaIiGxg99UhuLiBWrgpOQTnKEN714clzlsi+2FYIiJqI0mSLEsGjBrMIThHGtrbPMk74yTnLZH9MCwREbXR+bxa5BbVQeUGDLt6hxY5Rr/uGqhVAq6Ui7iQz3lLZB8MS0REbbT3aq/SDX208NDyY9WR1CoBAyPVAMy9S0T2wP/VRERtVD9faRTvgpPF0D7m3rxDWQxLZB8MS0REbVBcWoesC0YIAjByELc4kUPU1XlLv5wyQBQ5b4lsj2GJiKgN9h0192b07aaGv04pczUdU59uarhrBJRXiTibUyt3OdQOMSwREbXB3sN6AMAI9irJxk0pYFBPLiFA9sOwRERkpRqjiPQs82KIDEvyql9CgPOWyB4YloiIrJR+ogbGWgnB/kpEhnHjXDnVT/I+ctoAk4nzlsi23OQugIjIVaVe3QtuxCBunCu3Hl1U8HIXUFkt4eRFI/pFNNxyxiRKOJ9biyNnDDhyxoD84jqIImCSJIgiAAnoEuKGAZEaDIzUoGe4Gio3/p2SGcMSEZEVRFGyTO7mXXDyUyoEDOmlxZ7D1cg4aUC/CA1EUULq0Wps3l2JI2cMqKpuvsfpbG4tfjpkDsBqlYBBPTS4e5w3YvtrGYY7OIYlIiIrnLpoxOUyE9w15h/SJL+hfcxh6WBmNTy0Aj77sQKXCn9d1dtdI2BApAaDemgQ0VkFlVKAQgEoFIBJBM5cNOLoWQOOnTOivEpE2okapJ2oQc8uKtw/wQejh3pAqWBo6ogYloiIrFA/BBfTTwu1ij9AnUHU1U11M04ZkHHKPPHey13AlBu9MDbaEz3CVFA2s8lx3ABzD6EkSbhYWIdv91Ti612VOH2pFn979zK6BJfhvvE+SIj15BBdB8OwRERkhb3XzFci5xDRSYXQACXyL5vQKUCJaTf7YNIIT7i3cgsaQRDQNUSFx+/yw/0TfPDFjkp8vt3cS/XqRyV4/9sy3HeLDyaN9GJQ7iAEids0t1l5eTl0Oh3Kysrg4+MjdzlEZGdFV+owY0kuBAHYtDwMft5cjNJZ5BTVoqDEhCG9NDYdMquuEfH1rkp8mlKOK+UiAMDfR4H7xvtg6lhvDs+5qJb+/ObSAURErVQ/BNcvQs2g5GTCglS4oY/W5uHFXavAjFt8sP5vnfGnGX4I9lOipFzEyk2l+MsbhbhSYbLp65FzYVgiImql+rDEu+A6Ho1aganx3vjwr50x/14/aNUC0rMM+OPL+Th6xiB3eWQnDEtERK1QbRCRfnWV6BGDGZY6KpWbgNvHeOM/fwlF1xA3XC4zYf7rBdiYUg7Obml/GJaIiFoh/UQNauuA0AAlIjpx1e6OLqKTCm/9JRQ3xXhAFIG3PivFKx+WQBQZmNoTpwtLK1euREREBLRaLeLi4nDgwIEmz83MzMS0adMQEREBQRCQnJzcpjYlScKkSZMgCAK+/PJLG7wbImpvuGo3/Za7VoHnZgfgTzP8oFAA3+2rwhsbr7CHqR1xqrC0YcMGJCYmYunSpUhPT8eQIUMwYcIEFBYWNnq+Xq9HZGQkli9fjtDQ0Da3mZyczA8/ImqSSZSw57A5LI0a7CFzNeRMBEHA1HhvLJoZAEEAvtpZiTVfl8ldFtmIU4Wl1157DXPmzMHs2bPRv39/rFq1Ch4eHlizZk2j5w8bNgyvvvoq7r33Xmg0mkbPaWmbGRkZ+Oc//9nkaxERHT1tQFmlCB9PBYb0avwzhzq2hFhPPD3DDwCw7rtyfPx9ucwVkS04TVgyGo1IS0tDQkKC5ZhCoUBCQgJSU1Pt2qZer8f999+PlStXNtlDdS2DwYDy8vIGDyJq/3b98usQXHMrQVPHdvsYb8yZ6gsAWP1lKb76qULegqjNnCYsFRcXw2QyISQkpMHxkJAQ5Ofn27XNBQsWYOTIkbjjjjta1G5SUhJ0Op3lER4eblV9ROQ6JEnC7l/0AIAbo3gXHDXvvvE+uH+CeZHDf2+4goPHqmWuiNrCacKSXL7++mv8+OOPTU4Ob8zixYtRVlZmeVy8eNF+BRKRUzh1sRaFJSZoNQJi+nLjXPp9j9yuw+SRnpAkYPkHl1FSzoUrXZXThKXAwEAolUoUFBQ0OF5QUNCioTFr2/zxxx9x5swZ+Pr6ws3NDW5u5u3ypk2bhrFjxzbarkajgY+PT4MHEbVvuzLMvUqx/bXQqJ3mo5OcmCAImDfdD907q3ClXMQ/PrjMJQVclNP8j1er1YiOjkZKSorlmCiKSElJwYgRI+zW5qJFi3D48GFkZGRYHgDw+uuv47333rP+DRFRu7L7algaHcW74KjlNGoFnvtDANQqAQeP1WDTj5y/5Irc5C7gWomJiZg1axZiYmIQGxuL5ORkVFVVYfbs2QCAmTNnIiwsDElJSQDME7iPHTtm+XNOTg4yMjLg5eWFnj17tqjN0NDQRnuuunbtiu7duzvibRORk8vOr8WF/Dq4KYG4gZyvRK3TvbMaT97ti9c/voL/flWKIb006NONd1O6EqcKSzNmzEBRURFeeOEF5OfnIyoqClu3brVM0M7OzoZC8WtnWG5uLoYOHWr5esWKFVixYgXi4+OxY8eOFrVJRPR76nuVbuijhZe703TIkwuZcqMX0k7U4KdD1Vi25jLeWRwKDy3/LbkKQeISo21WXl4OnU6HsrIyzl8iaofm/iMfWReMSLzfH1Nu9JK7HHJRFXoRc17OQ2GJCePjPLFoVoDcJXV4Lf35zVhLRNSMwpI6ZF0wQhCAkdw4l9rA20OB52YHQiEA3++vwk+H9HKXRC3EsERE1IzdVxeiHNhDA38fpczVkKsb2EODGbeYezBe/7iEywm4CIYlIqJm1M9XunEIe5XINmbdqkNkmApllSJeX1/CDXddAMMSEVETSitMOHzaAIBLBpDtqFUCFs8KgJsS2HO4Gt/tq5K7JPodDEtERE348Wc9RAno01WN0ACnunmYXFyPLmrMvs0XAPDmxivIv1wnb0HULIYlIqIm/LDf/Bv/LXGeMldC7dH0BG8MiFRDXyPhlQ+5urczY1giImrE+bxaZGUboVQAN8dwCI5sT6kQsGhmALRqARknDfjhAIfjnBXDEhFRI+p7leIGusPXm3fBkX2EBaswc7IOALDm6zLUGEWZK6LGMCwREf2GSZSw7epv+eM5BEd2dtdN3gjxV6Ko1ITPuHecU2JYIiL6jV9OGlBUaoKXu4Dh3AuO7EytEvDoHb4AgPXflXPtJSfEsERE9Bv1c0duivaEWiXIXA11BDdFe6BPNzWqDRI+2Fwmdzn0GwxLRETXqDaI2Hl1GwreBUeOolAIePwuXwDA//ZU4kJerbwFUQMMS0RE19idUY0ag4TOQW4YEKmWuxzqQIb00mLUEHeIIvDOl6Vyl0PXaFVYevjhh6HXc+M/Imq/vt//68RuQeAQHDnWH6f6QqkAUo9U41BWjdzl0FWtCksffvghKisrLV/PnTsXpaWlDc6pq+MqpETkmopK65B+9QdUQiyH4MjxwkNUuG20FwDgv1+Vct84J9GqsPTbv7R169ahpKTE8nVBQQF8fHxsUxkRkYOlHNBDkoBBPTXoHMjtTUgeD07SQeUGHD9vtOxNSPJq05ylxhJvTQ27DYnINaX8fHV7E/YqkYz8fZSYOMLcu7Thh3KZqyHADhO8OcZPRK7oQl4tzlyqhVIBjBnKtZVIXtPHeUMQgH1Ha3Au1yh3OR1eq8PS+vXrkZ6ejtpa3tZIRO3H9jRzr9Kw/lr4eHJ7E5JXWLAKo6PMoX3DD1zVW26tCkujR4/G0qVLERMTAy8vL+j1eixduhSrVq3Cvn37Gkz+JiJyFZIkYXua+U7fsdEcgiPncO8t5jnAKQerUFjCm6fk1KoZjDt37gQAnDp1CmlpaUhPT0d6ejqeffZZlJaWcgiOiFzSmUu1uFhQB5UbMGowh+DIOfSN0CCqtwYZJw34bHsF5k7zk7ukDsuq2z169eqFXr164d5777UcO3fuHH7++WccOnTIZsURETnCj1d7lYYPdIenO9fqJedx7y0+yDhZhP/trsSDk3Tw9uC/TznY7N7Y7t27o3v37rjnnnts1SQRkd1JkoQdV+cr3RTDIThyLsP6axHZWYWzubX45qcK3D9RJ3dJHRIjKhF1aCfOG5F/2QStRsDwgVq5yyFqQBAEzLg6d+mzHRUw1nKRSjkwLBFRh1Y/BDdqsDu0an4kkvO5KcYDwf5KXCkXLb2g5Fj8ZCCiDsskSthxNSzdFO0hczVEjXNTCpgyyrxI5eY9DEtyYFgiog7r6GkDLpeZ4OkuIKYf74Ij5zVxhCcUCuDIGQOy87nOoaNZFZZmzZqFn376yda1EBE5VP0Q3OgoD6hVXPqEnFegrxuGDzQH+s17uKaho1kVlsrKypCQkIBevXrh5ZdfRk5Ojq3rIiKyK5NJwk+HOARHrmPySPPdmt/vr+JEbwezKix9+eWXyMnJwdy5c7FhwwZERERg0qRJ2LRpE7dBISKXcPB4DcoqRei8FLihD++CI+cXN8AdATolyipF7D1SLXc5HYrVc5aCgoKQmJiIX375Bfv370fPnj3x0EMPoXPnzliwYAFOnTplyzqJiGzq+33mibLjYjygVHIIjpyfUilg0tXepc27ORTnSG2e4J2Xl4cffvgBP/zwA5RKJSZPnowjR46gf//+eP31121RIxGRTVXoRew5bB6CGz/cS+ZqiFpu0gjzv9e0EzXIK+Z+cY5iVViqra3FZ599hilTpqBbt27YuHEj5s+fj9zcXLz//vvYtm0bPv30U/ztb3+zdb1ERG22M12P2jqge2cVeoWr5C6HqMU6Bbohuq952HhLKnuXHMWq7U46deoEURRx33334cCBA4iKirrunJtuugm+vr5tLI+IyPa+22f+IXNLnCc3ACeXc+uNXkg7UYMte6swa7KOw8gOYFVYev3113HPPfdAq216UqSvry/OnTtndWFERPaQU1iLzLNGKATglljuBUeuZ+Qgd+i8FLhcZsL+zGqMHMy7Oe3NqmG4hx56qNmg1BYrV65EREQEtFot4uLicODAgSbPzczMxLRp0xAREQFBEJCcnGxVm4899hh69OgBd3d3BAUF4Y477sCJEyds+baIyEl8v988sTumnxYBOqXM1RC1nlolYHycOeh/u5crejuCVT1LiYmJjR4XBAFarRY9e/bEHXfcAX9//1a1u2HDBiQmJmLVqlWIi4tDcnIyJkyYgKysLAQHB193vl6vR2RkJO655x4sWLDA6jajo6PxwAMPoGvXrigpKcGLL76I8ePH49y5c1Aq+WFK1F6IomQJS7fEsVeJXNfEEZ7YmFKBA5nVqNCL8Pbghhz2JEiS1OqVrW666Sakp6fDZDKhT58+AICTJ09CqVSib9++yMrKgiAI2L17N/r379/iduPi4jBs2DC8+eabAABRFBEeHo558+Zh0aJFzT43IiIC8+fPx/z589vc5uHDhzFkyBCcPn0aPXr0+N26y8vLodPpUFZWBh8fnxa8UyKSwy8na7AguRCeWgGblodBw41zyYU98lIezuXW4pmH/C13yVHrtPTnt1WfFHfccQcSEhKQm5uLtLQ0pKWl4dKlS7jllltw3333IScnB2PGjGmyt6cxRqMRaWlpSEhI+LU4hQIJCQlITU21pkyr2qyqqsJ7772H7t27Izw83KrXJSLn9N3VXqX4aA8GJXJ5Y6+uPF+/GTTZj1WfFq+++iqWLVvWIIXpdDq8+OKLeOWVV+Dh4YEXXngBaWlpLW6zuLgYJpMJISEhDY6HhIQgPz/fmjJb1eZ//vMfeHl5wcvLC1u2bMEPP/wAtVrdaLsGgwHl5eUNHkTk3KoNInamm3+oTOAQHLUD9dv0pJ2oQVmlSeZq2jer94YrLCy87nhRUZElOPj6+sJoNLatOgd64IEHcOjQIezcuRO9e/fG9OnTUVNT0+i5SUlJ0Ol0lgd7oIic355fqlFtkNAp0A0De2jkLoeozboEq9AzXAVRBHZlcPsTe7J6GO4Pf/gDvvjiC1y6dAmXLl3CF198gUceeQRTp04FABw4cAC9e/ducZuBgYFQKpUoKChocLygoAChoaHWlNmqNnU6HXr16oUxY8Zg06ZNOHHiBL744otG2128eDHKysosj4sXL1pVHxE5Tv1O7eO5thK1IzdFm3tJt6fxrjh7siosvf322xg3bhzuvfdedOvWDd26dcO9996LcePGYdWqVQCAvn374r///W+L21Sr1YiOjkZKSorlmCiKSElJwYgRI6wp0+o2JUmCJEkwGAyNfl+j0cDHx6fBg4ic15lLRvxyygCF4ted24nag7E3mIfifjlpQEkZh+LsxaqlA7y8vLB69Wq8/vrrOHv2LAAgMjISXl6/zsZvbFXv35OYmIhZs2YhJiYGsbGxSE5ORlVVFWbPng0AmDlzJsLCwpCUlATAPIH72LFjlj/n5OQgIyMDXl5e6NmzZ4vaPHv2LDZs2IDx48cjKCgIly5dwvLly+Hu7o7Jkydbc3mIyMl8vr0CABA/1ANBflZ97BE5pU6BbugXocbx80bsPKTHnWO95S6pXWr1p0ZtbS0mTpyIVatWoVevXhg8eLDNipkxYwaKiorwwgsvID8/H1FRUdi6datlgnZ2djYUil87w3JzczF06FDL1ytWrMCKFSsQHx+PHTt2tKhNrVaLXbt2ITk5GVeuXEFISAjGjBmDvXv3Nrq2ExG5lrJKE7YdNA9R8AcJtUdjoz1w/LwRO9IYluzFqnWWgoKCsHfvXvTq1cseNbkcrrNE5LzWbS3Du1+XoU9XNf7zlxDOV6J2p+hKHWYsyQUAbPh7Z/aetoJd11l68MEH8e6771pdHBGRI9SZJHz1k3li9103eTMoUbsU5OeGQVfv8NyRzjWX7MGq+FlXV4c1a9Zg27ZtiI6OhqdnwwmTr732mk2KIyJqi12H9CguNcHPR4H4G7jZKLVfY6M9cOSMATvS9LhnHEc4bM2qsHT06FHccMMNAMzbnFyLv7kRkbP47OrE7ttHe0Ot4mcTtV/xQz2wcuMVHD9vRF5xHToFcijOlqy6mtu3b7d1HURENnXivAHHzhnhpgRuu5H7ZlH75q9TYnAvDTJOGrDzkB733sLeJVuyenOkXbt24cEHH8TIkSORk5MDAPjwww+xe/dumxVHRGStz3eYe5VuivaAv04pczVE9le/5tJO7hVnc1aFpc8++wwTJkyAu7s70tPTLYs3lpWV4eWXX7ZpgURErVVSZrJsLjrtZv6GTR3D6KEeUAhAVrZ5KI5sx6qw9NJLL2HVqlVYvXo1VCqV5fioUaOQnp5us+KIiKyxJbUSdSagf3c1endtfENsovbGz1uJIb3Nd8XtPMTeJVuyKixlZWVhzJgx1x3X6XQoLS1ta01ERFYziRL+t9u8XMDtozlXiTqW+KEcirMHq8JSaGgoTp8+fd3x3bt3IzIyss1FERFZ6+fjNSgoMcHbg8sFUMfDoTj7sCoszZkzB08//TT2798PQRCQm5uLdevWYeHChZg7d66tayQiarFvdpl7lcYP94RGbfU9LEQuiUNx9mHV0gGLFi2CKIoYN24c9Ho9xowZA41Gg4ULF2LevHm2rpGIqEWKrtRh35FqAFwugDqu+KEeOJRlwM40LiFgK1b92iUIApYsWYKSkhIcPXoU+/btQ1FREZYtW2br+oiIWmzznkqIEhDVS4OuoarffwJRO8ShONtrUx+1Wq1G//79ERsbCy8v/hZHRPIxmSRs3lMFAJjCid3UgXEozvasXg89JSUFKSkpKCwshCiKDb63Zs2aNhdGRNQa+45W43KZCb5eCtw4hBO7qWPjUJxtWdWz9Ne//hXjx49HSkoKiouLceXKlQYPIiJHq5/YPXGEJ/eBow6PQ3G2ZVXP0qpVq7B27Vo89NBDtq6HiKjV8orrcPB4DQDgVk7sJrIMxR3K4l5xtmBVz5LRaMTIkSNtXQsRkVX+t7sSkgTE9NMiLIgTu4mAXxeo/InzltrMqrD06KOPYv369bauhYio1aprRMuK3bdxYjeRxcjB7gCArAtGXKkwyVyNa7NqGK6mpgbvvPMOtm3bhsGDBzfYHw4AXnvtNZsUR0T0e7akVqFCLyIsyM3yw4GIgEBfN/QMV+H0xVoczKzG+OH8ZcJaVoWlw4cPIyoqCgBw9OjRBt8TBE6sJCLHMJkkbPqxHABwzzhvKBX8/CG61vCB7jh9sRb7jtYwLLWBVWFp+/bttq6DiKjVdh7SI/+yebmACcM95S6HyOnEDXDHR1vKcfB4NUwmCUolf6GwhtWLUu7atQsPPvggRo4ciZycHADAhx9+iN27d9usOCKipkiShA0/mHuVpo715j5wRI3oG6GGzkuBqmoJR88a5C7HZVn16fLZZ59hwoQJcHd3R3p6OgwG819AWVkZXn75ZZsWSETUmEMnDTh1sRYalYA7xnB4gagxSoWAYf21AID9mTUyV+O6rApLL730ElatWoXVq1c3mNw9atQopKen26w4IqKmfHq1V2niSE/ovJQyV0PkvOIGmG982H+0WuZKXJdVYSkrKwtjxoy57rhOp0NpaWlbayIiatbZHCMOHKuBQgDuGcfF9oiaM6y/FgoBOJdbi4ISruZtDavCUmhoKE6fPn3d8d27dyMyMrLNRRERNefTbRUAzFs6dA60eotLog7Bx1OJ/pHmjXXZu2Qdq8LSnDlz8PTTT2P//v0QBAG5ublYt24dFi5ciLlz59q6RiIii6LSOqQcrAIAzEjwlrkaItcwfIB53tI+hiWrWPUr2aJFiyCKIsaNGwe9Xo8xY8ZAo9Fg4cKFmDdvnq1rJCKy+GpnJUwiMLinBn0jNHKXQ+QS4ga6479fl+FQlgHGWombTbeSVWFJEAQsWbIEzzzzDE6fPo3Kykr0798fXl68I4WI7KfG+OvWJnffzF4lopaKDFMhyFeJolITMk7WIHYAV7tvjTYtTKJWq9G/f3/ExsYyKBGR3X2/rwrlVSI6BbphBLc2IWoxQRAQN/DqXXGZHIprLa7iRkQuQRQlfL7dPLH7rrFe3NqEqJXiLPOWaiBJkszVuBaGJSJyCQeP1yC7oA6eWgGTRrInm6i1buijhcoNyCuuw8UCLiHQGgxLROQSNqWYe5Umj/KCh5YfXUSt5a5VYHBPc+9S2gmu5t0a/MQhIqd3LteItBPmRSjvHMuJ3UTWGtrHfAfpoSyGpdZgWCIip/fZ1blKN0a5IzSAi1ASWWtoH3PP0i+nDDCJnLfUUgxLROTUSitM+GG/eRHKaTexV4moLXqHq+GpFVChF3HmUq3c5bgMpwtLK1euREREBLRaLeLi4nDgwIEmz83MzMS0adMQEREBQRCQnJzc6jZLSkowb9489OnTB+7u7ujatSv+9Kc/oayszNZvjYis8M2uStTWAX26qjGwBxehJGoLpVLAoJ4cimstpwpLGzZsQGJiIpYuXYr09HQMGTIEEyZMQGFhYaPn6/V6REZGYvny5QgNDbWqzdzcXOTm5mLFihU4evQo1q5di61bt+KRRx6x2/skopaprhEtQ3B3j/OGIHC5AKK2qh+KO3SSYamlBMmJFluIi4vDsGHD8OabbwIARFFEeHg45s2bh0WLFjX73IiICMyfPx/z589vc5sbN27Egw8+iKqqKri5/f78iPLycuh0OpSVlcHHhzugE9nKJz+U450vShEW5Ia1L3SCUsmwRNRWZy4ZMeflfGg1Ar5e0QVuHfj/VUt/fjtNz5LRaERaWhoSEhIsxxQKBRISEpCamurQNusvWlNByWAwoLy8vMGDiGyrxiji0x/M/7cemOjDoERkI907q+DjqUCNQcKJ80a5y3EJThOWiouLYTKZEBIS0uB4SEgI8vPzHdZmcXExli1bhj/+8Y9NtpuUlASdTmd5hIeHW1UfETXtm12VKK0U0SlAiYRYT7nLIWo3FAoBUb2vzlviUFyLOE1Ycgbl5eW49dZb0b9/f7z44otNnrd48WKUlZVZHhcvXnRckUQdgMEoYoOlV0nXoYcJiOzBMm+Jk7xbxGkWLAkMDIRSqURBQUGD4wUFBU1O3rZlmxUVFZg4cSK8vb3xxRdfQKVSNdmuRqOBRsO7cojsZfOeKpSUiwjxV+KWOPYqEdlafVjKPGuAwShCo2bfSXOc5uqo1WpER0cjJSXFckwURaSkpGDEiBF2bbO8vBzjx4+HWq3G119/Da1Wa/0bIaI2MdZK+Ph7c6/S/RN8oHJjrxKRrYUHuyFAp0RtHZB5jvOWfo/T9CwBQGJiImbNmoWYmBjExsYiOTkZVVVVmD17NgBg5syZCAsLQ1JSEgDzBO5jx45Z/pyTk4OMjAx4eXmhZ8+eLWqzPijp9Xp89NFHDSZsBwUFQalUOvoyEHVoW/ZW4nKZCUG+SkwYzg1ziexBEAQM7a3BtoN6HMqqwQ192EnQHKcKSzNmzEBRURFeeOEF5OfnIyoqClu3brVM0M7OzoZC8WtnWG5uLoYOHWr5esWKFVixYgXi4+OxY8eOFrWZnp6O/fv3A4AlYNU7d+4cIiIi7PiOiehav+1VUqvYq0RkL0P7aLHtoB4ZnOT9u5xqnSVXxXWWiGzj4+/LsfrLUgTolFj3t84MS0R2lH+5Dvc/nwulAvhqRRd4aJ1mZo7DuNw6S0TUsRWV1uHDLeZthubcoWNQIrKz0AA3dApQwiQCR84Y5C7HqTEsEZFTeOeLUtQYJPTvrua6SkQOwiUEWoZhiYhk98upGqQc1EMQgD/N8IdCwV4lIkdgWGoZhiUikpXJJOGNT68AAKaM8kLvrmqZKyLqOAb1MK8ZeCanFtU1oszVOC+GJSKS1Te7K3E2pxbeHgr84Xad3OUQdSjB/m4I9lNCFIHj3CeuSQxLRCSb0goT1nxdCgD4w2066Ly4rhmRow242ruUeZaTvJvCsEREsnnvf2WorJbQs4sKU0ZzAUoiOQyMNIelowxLTWJYIiJZ5F+uw7d7KgEAT97tByUndRPJYsDVsHTsrAEmkUsvNoZhiYhksf67cphEILqvFkN6c6sFIrn0CFNBqxFQVSPhfG6t3OU4JYYlInK4/Mt12LLX3Ks0czJXvSeSk1IpoH+E+S5UzltqHMMSETnctb1Kg3qyV4lIbgN7cN5ScxiWiMih2KtE5Hzq5y1lctuTRjEsEZFDsVeJyPn0666BIAB5l024XGaSuxynw7BERA7DXiUi5+TlrkD3zioAnLfUGIYlInIY9ioROS/LekscirsOwxIROUReMXuViJwZJ3k3jWGJiBxi9Zel7FUicmL1YelUthE1Rm6qey2GJSKyu6NnDNiRrocgAI/f5St3OUTUiBB/JQJ0SphEIOsCN9W9FsMSEdmVKEr4z2dXAACTRnqiRxe1zBURUWMEQcCAyKuLU3LeUgMMS0RkV9vT9Dhx3gh3jYA/TPGVuxwiagbnLTWOYYmI7KbGKGL1l6UAgPsn+MBfp5S3ICJqVv0dcZlnjRC5qa4FwxIR2c2mlAoUXjEh2F+Ju2/2lrscIvodPcPV0KgEVOhFZBfUyV2O02BYIiK7uFxmwvrvywEAc+7whUbNjxsiZ+emFND36qa6x89xKK4eP72IyC7e+6YUNQYJ/SLUuDnGQ+5yiKiF+nQzh6UTvCPOgmGJiGzuXK4RW1OrAABzp/lBEASZKyKilup7NSxx+YBfMSwRkc2t/rIUogSMjnK33F1DRK6hTzfz/9mzOUYYaznJG2BYIiIbO5RVg31Ha6BUAI/e4St3OUTUSqEBSvh4KlBnAs7ksHcJYFgiIhsSRQlvf1EKAJgy2gvhISp5CyKiVhMEgUNxv8GwREQ2sz1Nj5PZ5gUoZ07WyV0OEVmpD8NSAwxLRGQTxloJ735dCgC4d7wP/Ly5ACWRq+IdcQ0xLBGRTXz1UwXyL5sQoFPinnFcgJLIlfW9Osk7O78W1TWizNXIj2GJiNqsQi/ioy3mBShnT9FBywUoiVyav06JIF8lJAk4eZG9S/xEI6I2e/erUlToRUR0UmHCcE+5yyEiG+C8pV8xLBFRm5w4b8A3uysBAH+a4QelkgtQErUHvCPuVwxLRGQ1kyjhX59cgSQBCbEeiOqtlbskIrKRPhHmeUuc5M2wRERt8L/dlcjKNsLTXcDjd/rJXQ4R2VDvruaepbziOpRVmmSuRl5OFZZWrlyJiIgIaLVaxMXF4cCBA02em5mZiWnTpiEiIgKCICA5OdmqNt955x2MHTsWPj4+EAQBpaWlNnxHRO1XSbkJ//2qFADwyO2+8NdxqQCi9sTbQ4GwIDcAwMnsjt275DRhacOGDUhMTMTSpUuRnp6OIUOGYMKECSgsLGz0fL1ej8jISCxfvhyhoaFWt6nX6zFx4kQ8++yzdnlfRO3VO1+UoqpaQq9wFW4b7SV3OURkB1xvycxpwtJrr72GOXPmYPbs2ejfvz9WrVoFDw8PrFmzptHzhw0bhldffRX33nsvNJrGN+psSZvz58/HokWLMHz4cLu8L6L26JdTNfh+fxUEAZh/rz+UCk7qJmqPeEecmZvcBQCA0WhEWloaFi9ebDmmUCiQkJCA1NRUp2mznsFggMFgsHxdXl7epvaIXImxVkLyxyUAgCmjvNCve+O/rBCR62vpHXEmk4Tj540oqzTBJJr3iTSJgJtSQHiIG7oEq6BWue4vVU4RloqLi2EymRASEtLgeEhICE6cOOE0bdZLSkrCX//61za1QeSqPvy2DBfy6+Dno8Ajd3D/N6L2rGe4GgoBuFxmQlFpHYJ8f40NVdUiDh6vwd7Deuw/WoMKfdMrfSsEoHOQG7p1UmHEQHdMGO7pUsuMOEVYcjWLFy9GYmKi5evy8nKEh4fLWBGRY5y6aMTHP5h7Uuff6w8fT07qJmrP3DUKRHRS4WxuLbLOGxEU5Ybj5w3YlFKB3b/oUVv367k+ngp0CXaDQiFAIQBKJWAwSriQX4uqagmXCutwqbAOe36pxqfbyvHoHb4YNcQdguD8ockpwlJgYCCUSiUKCgoaHC8oKGhy8rYcbdbTaDRNzpMiaq/qTBJe+fAyRBGIv8EDo6M85C6JiBygTzc1zubWYvOeSnyaUoGjZ36dhtIl2A0jB7tj1GB39I/UNDp/UZIklJSLuJBXi2PnDNj0YwWyC+rwwjvFGNhDgz9O9cXAHs79M9UpJnir1WpER0cjJSXFckwURaSkpGDEiBFO0yZRR/bx9+U4c6kWPp4KzJvONZWIOor6Sd77M2tw9IwBbkpgwnBPvLM4FB+82BmP3+WHQT21Td7oIQgCAnRK3NBXiwcn6fDR3zrjgQk+0KgEHD1jwJ/+WYC3PruCOpPkyLfVKk7RswQAiYmJmDVrFmJiYhAbG4vk5GRUVVVh9uzZAICZM2ciLCwMSUlJAMwTuI8dO2b5c05ODjIyMuDl5YWePXu2qE0AyM/PR35+Pk6fPg0AOHLkCLy9vdG1a1f4+/s78hIQOa1zuUZ8tKUMAPDUPX7w9+HwG1FHMay/O7TqUqjcBNw+2gtTx3ojoA3rqnm5K/DIHb64Pd4La78pw5bUKmxMqUDmWQOefyQQIf5OE01+JTmRN954Q+rataukVqul2NhYad++fZbvxcfHS7NmzbJ8fe7cOQnAdY/4+PgWtylJkrR06dJG23nvvfdaXHdZWZkEQCorK7PmbRM5tTqTKD3xjzzpprkXpMUrCyRRFOUuiYgcrFJvkgxG+/zf351RJd2WmC3dNPeCdMfCi1LqYb1dXqcxLf35LUiS5Lz9Xi6ivLwcOp0OZWVl8PHxkbscIpv6dFs5Vn1eCk+tgDUvdGpwNwwRkS3kFdfhb+8WW5YomHWrDrNutf/dti39+e0Uc5aIyDllF9RizTfm4bfHp/kxKBGRXXQKdMO/EkNw11jzbgDvby7DZz86zxqGDEtE1CiTKOHVDy/DWCshpp8Wk0d6yl0SEbVjapWAp6b7Y85UXwDAfz4rxc50vbxFXcWw1A5JkgSTE99VQK7h8+0VyDxrhIdWwP894O8Sa6EQkeu79xZv3BHvBUkCXl5bjMOna+QuyXnuhiPbqK2T8MekfOQX12FQTw1u6KtFdF8teoSpoOD+XdRClwpr8e7XV4ff7vJzzrtTiKhdEgQBT93jh+JSE/b8Uo3nVxXj3/8Xgm6dVLLVxJ6ldubURSMu5NXCUCvh5+M1eOeLUjyWlI97ns1B+gn50zk5P5Mo4ZUPS2CslRDdV4tbR3H4jYgcS6kQ8NzsAPTvrkaFXsRfVhaiuLTu959oJwxL7UzmWfPKqoN7avDk3b4YPlALd42AK+UiXlpTjCsVJpkrJGf3xQ7zCr3uGg6/EZF8NGoF/j43CF2C3VBYYsLH38s34ZthqZ2pD0uxA7SYdrMPXn4iGJ//IwyRnVUorRSx4qMScLUIasrZHCNWf1kKAHjsTl+EBnD4jYjko/NSYvlTwbhrrBcev0u+nQMYltoRSZKQeda8RsWAyF/32dGoFVj8cABUbkDqkWp8u7dKrhLJiRmMIl5acxm1dUDcAC1uG+0ld0lEROgc6IanpvtD5SZfLzfDUjtSUGLC5TITlIpf9/Kp16OLGn+4zRcAsHLTFeQU1spQITmzVZ+X4nxeLfx8FPjzzAAOvxERXcWw1I4cO2cegusZroZWff1f7d3jvDGklwY1BglJ71/m8gJkseewHl/9VAkAWDQzAH7e3PuNiKgew1I7Uj9faUB3daPfVyoE/GVmADy1Ao6dM8o6WY6cR3FpHV79sAQAcM84bwzr7y5zRUREzoVhqR1pbL7Sb4UGuGHeDH8AwAfflvHuuA5OFCUsf/8yyqtE9AxX4ZHbfeUuiYjI6TAstRPVBhGnL/1+WAKAW2I90KebGnUmYNsBTvbuyD7dVoH0LAO0agHP/SEQahXnKRER/RbDUjuRdcEIUQSCfJUI/p3VlgVBsOzz9e3eKi4l0EFlXTDg3a9LAQBP3uOHriHyrY5LROTMGJbaiWNX5yv1/51epXo3xXhCoxJwIa8WJ84b7VkaOaHqGvMyASYRGDPUnZvkEhE1g2GpnThaP7k7svHJ3b/l5a7AmKHmibzf7q20W13knP796RXkFNUh2E+J/3uAywQQETWHYakdkCQJx861bL7StSaNNC86uD1Nj2qDaJfayPn8+HMVvttXBYUALH44AN4e/BggImoOPyXbgYuFdSivEqFWCejZpWU9SwAwpJcGnYPcoK+R8NMhvR0rJGeRf7kOr39sXibggYk+GNJLK3NFRETOj2GpHahfX6lPV3WrloMXBAETh5vnqmzhFijtXm2dhJfWFKOqWkL/7mrMnKyTuyQiIpfAsNQOHGvlfKVrTRjhCYUAHD5twCVugdKu/WfTFRw7Z4SXu4AlswOhVHKeEhFRSzAstQMtWYyyKUG+bhjW3zwUszWVvUvt1ff7Ki3bmTz7cCA6BTa/vAQREf2KYcnFVepFnM8z9wi1dNmA36qf6P3dviruF9cOnb5oxGsfXwEAzJzsg+GDuJ0JEVFrMCy5uPrNczsHuVm9+emIQe7QeSlwucyEL3dWQBQZmNqL8ioTlr5TBGOthLgBWs5TIiKyAsOSiztypvnNc1tC5SZYepdWbirFI3/PR8rBKpgYmlyaKEp4ee1l5F02oVOgG56dHQiFgvOUiIhai2HJhUmShO1p5lv+o/u27Rbwh2/VYeZkH3i5m1f1/vt7lzH7b3nY/jPnMbmqD7eU40BmDdQqAX+dE8j1lIiIrMRPTxd29IwBuUV1cNcIGD3Uo01tqVUCHp7ii/UvheEPt+ng46nApcI6LFtzGa9+eBkGIxetdCUHMqvxwbdlAIDE+/zQM9z6nkcioo6OYcmF1d+9Fn+DB9w1tvmr9HJX4MFJOqxf1hkPTfKBQgC2pFZh3j8LkFtcZ5PXIPvKv1yHv793GZIE3DbaC+OHe8ldEhGRS2NYclHVBhE70s1DcBOG234TVA+tArNv88U/5gVD56XA6Yu1eDwpD6lHqm3+WmQ7xloJL64uRoVeRN8INZ6820/ukoiIXB7DkovalVGNaoOEToFuGNzTuiUDWiK6rxZvLwpF/+5qVFZLWPJWET77sdxur0dt88anJTiZbYSPpwJLHw2EWsUJ3UREbcWw5KK+22deYHDicE+77xgf7O+G1xeE4I74X++Y+9/uSru+JrXeltRKbN5TBUEAlswOQIg/F54kIrIFhiUXlH+5DoeyzEsG3BJn+yG4xqjcBPxpuh/uvcUbAPD6xyXYdoB3yjmLI6drkHx1g9yHp+gwrD8XniQishWGJRf0w35zSBnaR4PQAMf1HgiCgDlTfXHHGC9IErD8g8vYlaF32OtT43KKavH828WorQPGDHXHAxN85C6JiKhdYVhyMaIoYes+c1iaIMNdToIgYN50P0wY7glRBJa9W4wDmZz0LZcKvYhn/1OE8ioRfbqpsWhWABeeJCKyMYYlF3PkjAF5xXXw0AoYHSXPUItCIWDhA/6Iv8EDdSbgxdXFOJdrlKWWjqzOJOHF1UW4WFCHYD8lXno8CFo1/0sTEdkaP1ldzHdXe5XG2nBtJWsolQKefTgA0X21qDFK+OvqYlTXcOFKR5EkCf/6pASHsgxw1wj4+9wgBOis2xuQiIiax7DkQo6fN2BHmv3WVmotlZuAJbMDEOirRHZBHV77uASSxP3kHGHTjxXYvKcKCgF47g+B6NGFK3QTEdmL04WllStXIiIiAlqtFnFxcThw4ECT52ZmZmLatGmIiIiAIAhITk62qs2amho8+eSTCAgIgJeXF6ZNm4aCggJbvq02Sz1Sjf9LLkSNUcLAHhoM7GG/tZVaw9dbief/EACFAkg5qOeSAg6w70g13v68FADw2F2+GDGId74REdmTU4WlDRs2IDExEUuXLkV6ejqGDBmCCRMmoLCwsNHz9Xo9IiMjsXz5coSGhlrd5oIFC/DNN99g48aN2LlzJ3Jzc3HXXXfZ5T1a43+7K/H8qiLUGCXE9tfiH08G2X1tpdYY1FOLOXf4AgDe3HgFJ7M5f8lezuUa8dJ7xRAl4NZRnrj7Zm+5SyIiavcEyYnGTeLi4jBs2DC8+eabAABRFBEeHo558+Zh0aJFzT43IiIC8+fPx/z581vVZllZGYKCgrB+/XrcfffdAIATJ06gX79+SE1NxfDhw3+37vLycuh0OpSVlcHHx3a3bUuShLX/K8OHW8wrZk8c4YnE+/3hpnSeoFRPkiQ8t6oYqUeq0SnQDW8vCoUXd7m3qdIKE554JR/5l02I6qXBP+YFQ+XmfP8WiIhcRUt/fjvNTzOj0Yi0tDQkJCRYjikUCiQkJCA1NdVubaalpaG2trbBOX379kXXrl2bfF2DwYDy8vIGD1uTJAkrPiqxBKWZk33wzIPOGZQA85ICi2YFIDRAibziOrzxaYncJbUrxloJS98pRv5lEzoHuWHpnEAGJSIiB3GasFRcXAyTyYSQkJAGx0NCQpCfn2+3NvPz86FWq+Hr69vi101KSoJOp7M8wsPDraqvOYIgoFsnFRQCkHi/Px6e4utUQ2+N8fZQ4Lk/BEIQgB8O6HHwGNdfsgVRlPDPdZdx5IwBnu4CXp4bBJ0X73wjInIUpwlLrmTx4sUoKyuzPC5evGiX17lnnDdWLwnFlBsdv/iktfp31+DOq3vIJX9cghojlxNoq3e+LMUPB/RQKIAXHglE11CV3CUREXUoThOWAgMDoVQqr7sLraCgoMnJ27ZoMzQ0FEajEaWlpS1+XY1GAx8fnwYPexAEAd07u94t4X+43RfBfkrkXTbh/f+VyV2OS/vkh3J8uq0CAPDMg/7c842ISAZOE5bUajWio6ORkpJiOSaKIlJSUjBixAi7tRkdHQ2VStXgnKysLGRnZ1v9uh2dh1aB+ff6AwA2/liBUxd5d5w1tqRW4p0vSgEAj93pK8v2NkREBDhuF9YWSExMxKxZsxATE4PY2FgkJyejqqoKs2fPBgDMnDkTYWFhSEpKAmCewH3s2DHLn3NycpCRkQEvLy/07NmzRW3qdDo88sgjSExMhL+/P3x8fDBv3jyMGDGiRXfCUeOGD3LH2Bs8sCNdj3+uK8HKZ0KgdNLJ6c5oz2E9/vmReZL8vbd4Y8Yt3ByXiEguThWWZsyYgaKiIrzwwgvIz89HVFQUtm7dapmgnZ2dDYXi186w3NxcDB061PL1ihUrsGLFCsTHx2PHjh0tahMAXn/9dSgUCkybNg0GgwETJkzAf/7zH8e86XbsqXv88PPxapzMNuLzHRW4Zxx/4LfE4dM1WPbuZYiSebmIOVN95S6JiKhDc6p1llyVvdZZag8276nEP9eVQKsW8P6LnRDk61T53OmczTHi6dcKUFUtYeRgd/x1TiB75IiI7MTl1lmi9mnySE8MiFSjxihxsvfvyL9ch7+8WYSqagmDemjw/B8CGJSIiJwAwxLZlSAIePwuPwDA1tQqnMvlZO/GlFWa8Jc3C3G5zISITiq8NDcIGjX/exIROQN+GpPdDYjUYMxQd4gSsPrLUrnLcTrVBhHP/qcIFwvqEOynxD+eCoI3t4ohInIa/EQmh3j0Dl8oFcC+ozU4lFUjdzlOw1gr4cXVxTh+3ggfTwX+8VQwgvw4r4uIyJkwLJFDdAlW4bbR5nWC3v6iFKLI+wqMtRJeeKcIB4/VQKsW8Pe5QejWiatzExE5G4YlcpiZk3Xw0Ao4mW3E9jS93OXIqj4oHcisgUYl4OUngjAgUiN3WURE1AiGJXIYX28l7htvvjXzv1+VwljbMXuXfhuUkp4MQlRvrdxlERFRExiWyKGm3eyNQF8lCkpM+OqnCrnLcTgGJSIi18OwRA6lVSvw8K06AOZNYg1GUeaKHMdYK2Hpb4beGJSIiJwfwxI53Pjhngj2V+JKuYhv91bJXY5DmO96K8L+q0Hp708EYWgfBiUiIlfAsEQO56YULHOXPvm+HLV17XvuUn1Q2ne0BmqV+a63GxiUiIhcBsMSyWLSCC8E6JQoKjXh+/3tt3eptk7CX/9b3DAo9WVQIiJyJQxLJAu1SsD0BG8AwPrvymEytb/epcpqEc+/XYTUI9VQqwS89HggohmUiIhcDsMSyWbKjV7w9VIgr7gOKT+3r3WXsgtq8eQr+TiQae5RWvZYIGL6uctdFhERWYFhiWTjrlHg7nFXe5e2lsHUTlb1Tj1SjSf/kY+LBXUI8lXiX4nBGNafQYmIyFUxLJGs7hjjDS93AdkFddiVUS13OW0iihI+2lKG51YVoapGwqAeGry1KBR9unFlbiIiV8awRLLydFfgrpvMvUtrvynFsXMGSJLr9TCdzTHi6dcKsOabMkgScPtoL6x4Ohj+Pkq5SyMiojbi9uYku7tu8sbn2yuQXVCHp14tQPfOKtw6ygu3xHnC28O583yNUcQH35Zj47ZymETAXSPgibv9cOsoL7lLIyIiGxEkV/w13smUl5dDp9OhrKwMPj4+cpfjks7lGvHJ9+XYeajasmecWiVg5CB3jBvmgWH93aFWCTJX+StRlLD7l2qs+vwK8i+bAAA3DnHHvOl+CPLj7yBERK6gpT+/GZZsgGHJdir0IlIOVmHznkqcuVRrOe7lLmDMUA+MjfbAkF5aqNzkCU4Go4jv91dhY0oFLhXWAQCC/ZX403Q/jBzsIUtNRERkHYYlB2JYsj1JknDqYi1+/LkKP/6sR3GpyfI9d42A6L5aDB/ojriB7gjQ2X9eUHZBLbb/rMdXOytQWmnez87LXcAd8d64f7wP3LXOPVxIRETXY1hyIIYl+xJFCUfOGPDjQT32HNajpLzh5rvhIW4YEKmxPLqGuEGhaFvPU51JQuZZA/YerkbqkWpLLxIAhPgrcffN3pg80oshiYjIhTEsORDDkuOIooTTl2qx72g19h2txonzxuvO0WoEhAW5ISzIDV2CVQgLcoOPpwLuWgU8NAI8tAooFUC1QUK1QUS1QUJVtYiLhXU4n1uL83m1uFRYi7pfO7PgpgSiemsxcYQn4od6QKl0nvlTRERkHYYlB2JYkk9ZpQnHzxmRedaAzLMGnLhgRI3RNv+kfTwViBugxcjBHojpp4WnO3uRiIjak5b+/OZtO+TSdF5KDB/kjuGDzCtk15kk5BbXIaewDpcKa5FbVIfc4jpU6kXoDRKqa0Toa0SIknkFcXeNAK1GgLtGgc6BbujWSYWIq48QfyUEgT1IREQdHcMStStuSgFdQ1ToGqICwC1GiIio7TiuQERERNQMhiUiIiKiZjAsERERETWDYYmIiIioGQxLRERERM1gWCIiIiJqBsMSERERUTMYloiIiIiawbBERERE1AynCksrV65EREQEtFot4uLicODAgWbP37hxI/r27QutVotBgwbh22+/bfD9goICPPzww+jcuTM8PDwwceJEnDp1qsE5Z86cwZ133omgoCD4+Phg+vTpKCgosPl7IyIiItfkNGFpw4YNSExMxNKlS5Geno4hQ4ZgwoQJKCwsbPT8vXv34r777sMjjzyCQ4cOYerUqZg6dSqOHj0KAJAkCVOnTsXZs2fx1Vdf4dChQ+jWrRsSEhJQVVUFAKiqqsL48eMhCAJ+/PFH7NmzB0ajEbfddhtEUXTYeyciIiLnJUiSZJst2tsoLi4Ow4YNw5tvvgkAEEUR4eHhmDdvHhYtWnTd+TNmzEBVVRX+97//WY4NHz4cUVFRWLVqFU6ePIk+ffrg6NGjGDBggKXN0NBQvPzyy3j00Ufx/fffY9KkSbhy5Yplt+GysjL4+fnh+++/R0JCQotqb+muxUREROQ8Wvrz2yl6loxGI9LS0hqEE4VCgYSEBKSmpjb6nNTU1OvCzIQJEyznGwwGAIBWq23Qpkajwe7duy3nCIIAjUZjOUer1UKhUFjOISIioo7NKcJScXExTCYTQkJCGhwPCQlBfn5+o8/Jz89v9vy+ffuia9euWLx4Ma5cuQKj0Yh//OMfuHTpEvLy8gCYe6I8PT3xl7/8BXq9HlVVVVi4cCFMJpPlnMYYDAaUl5c3eBAREVH75CZ3AfaiUqnw+eef45FHHoG/vz+USiUSEhIwadIk1I88BgUFYePGjZg7dy7+/e9/Q6FQ4L777sMNN9wAhaLpHJmUlIS//vWv1x1naCIiInId9T+3f29GklOEpcDAQCiVyuvuQisoKEBoaGijzwkNDf3d86Ojo5GRkYGysjIYjUYEBQUhLi4OMTExlnPGjx+PM2fOoLi4GG5ubvD19UVoaCgiIyObrHfx4sVITEy0fJ2Tk4P+/fsjPDy8Ve+biIiI5FdRUQGdTtfk950iLKnVakRHRyMlJQVTp04FYJ6MnZKSgqeeeqrR54wYMQIpKSmYP3++5dgPP/yAESNGXHdu/QU4deoUfv75Zyxbtuy6cwIDAwEAP/74IwoLC3H77bc3Wa9Go2kwz8nLywsXL16Et7c3BEH43ffbUuXl5QgPD8fFixc5cdzOeK0dg9fZMXidHYPX2THseZ0lSUJFRQU6d+7c7HlOEZYAIDExEbNmzUJMTAxiY2ORnJyMqqoqzJ49GwAwc+ZMhIWFISkpCQDw9NNPIz4+Hv/85z9x66234pNPPsHPP/+Md955x9Lmxo0bERQUhK5du+LIkSN4+umnMXXqVIwfP95yznvvvYd+/fohKCgIqampePrpp7FgwQL06dOnxbUrFAp06dLFRlfiej4+PvyP6CC81o7B6+wYvM6OwevsGPa6zs31KNVzmrA0Y8YMFBUV4YUXXkB+fj6ioqKwdetWyyTu7OzsBvOIRo4cifXr1+O5557Ds88+i169euHLL7/EwIEDLefk5eUhMTERBQUF6NSpE2bOnInnn3++wetmZWVh8eLFKCkpQUREBJYsWYIFCxY45k0TERGR03OadZboely/yXF4rR2D19kxeJ0dg9fZMZzhOjvF0gHUOI1Gg6VLlzaYH0X2wWvtGLzOjsHr7Bi8zo7hDNeZPUtEREREzWDPEhEREVEzGJaIiIiImsGwRERERNQMhiUiIiKiZjAsyWzlypWIiIiAVqtFXFwcDhw40Oz5GzduRN++faHVajFo0CB8++23DqrU9bXmWq9evRqjR4+Gn58f/Pz8kJCQ8Lt/N2TW2n/T9T755BMIgmBZxZ+a19rrXFpaiieffBKdOnWCRqNB7969+fnRAq29zsnJyejTpw/c3d0RHh6OBQsWoKamxkHVuqaffvoJt912Gzp37gxBEPDll1/+7nN27NiBG264ARqNBj179sTatWvtW6REsvnkk08ktVotrVmzRsrMzJTmzJkj+fr6SgUFBY2ev2fPHkmpVEqvvPKKdOzYMem5556TVCqVdOTIEQdX7npae63vv/9+aeXKldKhQ4ek48ePSw8//LCk0+mkS5cuObhy19La61zv3LlzUlhYmDR69GjpjjvucEyxLqy119lgMEgxMTHS5MmTpd27d0vnzp2TduzYIWVkZDi4ctfS2uu8bt06SaPRSOvWrZPOnTsnfffdd1KnTp2kBQsWOLhy1/Ltt99KS5YskT7//HMJgPTFF180e/7Zs2clDw8PKTExUTp27Jj0xhtvSEqlUtq6davdamRYklFsbKz05JNPWr42mUxS586dpaSkpEbPnz59unTrrbc2OBYXFyc99thjdq2zPWjttf6turo6ydvbW3r//fftVWK7YM11rqurk0aOHCn997//lWbNmsWw1AKtvc5vvfWWFBkZKRmNRkeV2C609jo/+eST0s0339zgWGJiojRq1Ci71tmetCQs/fnPf5YGDBjQ4NiMGTOkCRMm2K0uDsPJxGg0Ii0tDQkJCZZjCoUCCQkJSE1NbfQ5qampDc4HgAkTJjR5PplZc61/S6/Xo7a2Fv7+/vYq0+VZe53/9re/ITg4GI888ogjynR51lznr7/+GiNGjMCTTz6JkJAQDBw4EC+//DJMJpOjynY51lznkSNHIi0tzTJUd/bsWXz77beYPHmyQ2ruKOT4Weg0e8N1NMXFxTCZTJa97+qFhITgxIkTjT4nPz+/0fPz8/PtVmd7YM21/q2//OUv6Ny583X/QelX1lzn3bt3491330VGRoYDKmwfrLnOZ8+exY8//ogHHngA3377LU6fPo0nnngCtbW1WLp0qSPKdjnWXOf7778fxcXFuPHGGyFJEurq6vD444/j2WefdUTJHUZTPwvLy8tRXV0Nd3d3m78me5aIfsfy5cvxySef4IsvvoBWq5W7nHajoqICDz30EFavXo3AwEC5y2nXRFFEcHAw3nnnHURHR2PGjBlYsmQJVq1aJXdp7cqOHTvw8ssv4z//+Q/S09Px+eefY/PmzVi2bJncpVEbsWdJJoGBgVAqlSgoKGhwvKCgAKGhoY0+JzQ0tFXnk5k117reihUrsHz5cmzbtg2DBw+2Z5kur7XX+cyZMzh//jxuu+02yzFRFAEAbm5uyMrKQo8ePexbtAuy5t9zp06doFKpoFQqLcf69euH/Px8GI1GqNVqu9bsiqy5zs8//zweeughPProowCAQYMGoaqqCn/84x+xZMkSKBTsn7CFpn4W+vj42KVXCWDPkmzUajWio6ORkpJiOSaKIlJSUjBixIhGnzNixIgG5wPADz/80OT5ZGbNtQaAV155BcuWLcPWrVsRExPjiFJdWmuvc9++fXHkyBFkZGRYHrfffjtuuukmZGRkIDw83JHluwxr/j2PGjUKp0+ftoRRADh58iQ6derEoNQEa66zXq+/LhDVB1SJ27DajCw/C+02dZx+1yeffCJpNBpp7dq10rFjx6Q//vGPkq+vr5Sfny9JkiQ99NBD0qJFiyzn79mzR3Jzc5NWrFghHT9+XFq6dCmXDmih1l7r5cuXS2q1Wtq0aZOUl5dneVRUVMj1FlxCa6/zb/FuuJZp7XXOzs6WvL29paeeekrKysqS/ve//0nBwcHSSy+9JNdbcAmtvc5Lly6VvL29pY8//lg6e/as9P3330s9evSQpk+fLtdbcAkVFRXSoUOHpEOHDkkApNdee006dOiQdOHCBUmSJGnRokXSQw89ZDm/fumAZ555Rjp+/Li0cuVKLh3Q3r3xxhtS165dJbVaLcXGxkr79u2zfC8+Pl6aNWtWg/M//fRTqXfv3pJarZYGDBggbd682cEVu67WXOtu3bpJAK57LF261PGFu5jW/pu+FsNSy7X2Ou/du1eKi4uTNBqNFBkZKf3973+X6urqHFy162nNda6trZVefPFFqUePHpJWq5XCw8OlJ554Qrpy5YrjC3ch27dvb/Tztv7azpo1S4qPj7/uOVFRUZJarZYiIyOl9957z641CpLEvkEiIiKipnDOEhEREVEzGJaIiIiImsGwRERERNQMhiUiIiKiZjAsERERETWDYYmIiIioGQxLRERERM1gWCIiIiJqBsMSEXUIY8eOxfz58+Uug4hcEFfwJqJ2Z+zYsYiKikJycrLlWElJCVQqFby9vR1ez4IFC3DhwgV8/vnnDn9tImo79iwRUYfg7+8vS1ACgAMHDiAmJkaW1yaitmNYIqJ25eGHH8bOnTvxr3/9C4IgQBAEnD9//rphuLFjx2LevHmYP38+/Pz8EBISgtWrV6OqqgqzZ8+Gt7c3evbsiS1btlieI4oikpKS0L17d7i7u2PIkCHYtGlTk7UYjUaoVCrs3bsXS5YsgSAIGD58uD3fPhHZAcMSEbUr//rXvzBixAjMmTMHeXl5yMvLQ3h4eKPnvv/++wgMDMSBAwcwb948zJ07F/fccw9GjhyJ9PR0jB8/Hg899BD0ej0AICkpCR988AFWrVqFzMxMLFiwAA8++CB27tzZaPtubm7Ys2cPACAjIwN5eXnYunWrfd44EdkN5ywRUbvT2Jyl3x4bO3YsTCYTdu3aBQAwmUzQ6XS466678MEHHwAA8vPz0alTJ6SmpmLo0KHw9/fHtm3bMGLECEu7jz76KPR6PdavX99oLV9++SUeffRRFBcX2+fNEpHducldABGRXAYPHmz5s1KpREBAAAYNGmQ5FhISAgAoLCzE6dOnodfrccsttzRow2g0YujQoU2+xqFDhzBkyBAbV05EjsSwREQdlkqlavC1IAgNjgmCAMA8V6myshIAsHnzZoSFhTV4nkajafI1MjIyGJaIXBzDEhG1O2q1GiaTyaZt9u/fHxqNBtnZ2YiPj2/x844cOYJp06bZtBYiciyGJSJqdyIiIrB//36cP38eXl5e8Pf3b3Ob3t7eWLhwIRYsWABRFHHjjTeirKwMe/bsgY+PD2bNmtXo80RRRFZWFnJzc+Hp6QmdTtfmWojIsXg3HBG1OwsXLoRSqUT//v0RFBSE7Oxsm7S7bNkyPP/880hKSkK/fv0wceJEbN68Gd27d2/yOS+99BLWrl2LsLAwvPTSSzapg4gci3fDERERETWDPUtEREREzWBYIiIiImoGwxIRERFRMxiWiIiIiJrBsERERETUDIYlIiIiomYwLBERERE1g2GJiIiIqBkMS0RERETNYFgiIiIiagbDEhEREVEzGJaIiIiImvH/LK7bF/I99cAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHICAYAAABNpu4dAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAXx9JREFUeJzt3XlcVFX/B/DPzDAL+75LIrhlqZQoqbmkJFpZViqauZCaj5alZKaZmmli5s+sNC3LNU3Lsk3FkkcsfVBLJM0t13Bjhxn2Yeae3x/kFAkqCMz2eb9e8yoO99753qswH8899xyZEEKAiIiIyE7JzV0AERERkTkxDBEREZFdYxgiIiIiu8YwRERERHaNYYiIiIjsGsMQERER2TWGISIiIrJrDENERERk1xiGiIiIyK4xDBERWbgLFy5AJpNhzZo15i6FyCYxDBHZgTVr1kAmk9X42r9/v7lLJAAbN27EkiVLzF0Gkd1xMHcBRNR43njjDTRr1uy69ubNm5uhGvq3jRs34vfff8ekSZOqtDdt2hSlpaVQKpXmKYzIxjEMEdmRfv36ITIy0txloLi4GM7OzuYuo9EJIVBWVgZHR8da7SeTyaDRaBqoKiLibTIiMrk2NmXRokX46KOPEB4eDrVajY4dO+KXX365bvuTJ09i4MCB8PLygkajQWRkJL799tsq21y7Rbdnzx5MmDABfn5+aNKkien7y5YtQ1hYGBwdHdGpUyf8/PPP6NmzJ3r27AkAKCoqgrOzM1588cXr3v/SpUtQKBRISEi44XkVFxfjpZdeQkhICNRqNVq1aoVFixZBCGHa5u6778YDDzxw3b6SJCE4OBgDBw6s0rZkyRLcdddd0Gg08Pf3x7hx45Cfn19l39DQUDzyyCPYuXMnIiMj4ejoiA8//LDaGnv27Ilt27bhzz//NN2+DA0NBVD9mKFRo0bBxcUF6enpeOSRR+Di4oLg4GAsW7YMAHD06FH06tULzs7OaNq0KTZu3HjdexYUFGDSpEmm69K8eXO89dZbkCTphteTyNawZ4jIjmi1WuTk5FRpk8lk8Pb2rtK2ceNGFBYWYty4cZDJZFi4cCGeeOIJnDt3znSr5tixY+jatSuCg4Mxbdo0ODs74/PPP8eAAQPw5Zdf4vHHH69yzAkTJsDX1xezZs1CcXExAGD58uV4/vnn0a1bN0yePBkXLlzAgAED4OnpaQpMLi4uePzxx7F582YsXrwYCoXCdMzPPvsMQggMGzasxnMWQuDRRx/F7t27MXr0aERERGDnzp14+eWXcfnyZbzzzjsAgNjYWLz++uvIyMhAQECAaf+9e/fiypUrGDJkiKlt3LhxWLNmDeLi4vDCCy/g/PnzWLp0KQ4fPox9+/ZVuZ116tQpDB06FOPGjcPYsWPRqlWrauucMWMGtFotLl26ZKrJxcWlxvMCAKPRiH79+qF79+5YuHAhNmzYgOeffx7Ozs6YMWMGhg0bhieeeAIrVqzAiBEj0LlzZ9Nt0pKSEvTo0QOXL1/GuHHjcMcdd+B///sfpk+fjqtXr3LsEtkXQUQ2b/Xq1QJAtS+1Wm3a7vz58wKA8Pb2Fnl5eab2b775RgAQ3333namtd+/eom3btqKsrMzUJkmS6NKli2jRosV1733//fcLg8Fgai8vLxfe3t6iY8eOoqKiwtS+Zs0aAUD06NHD1LZz504BQOzYsaPKebVr167KdtX5+uuvBQAxb968Ku0DBw4UMplMnDlzRgghxKlTpwQA8f7771fZbsKECcLFxUWUlJQIIYT4+eefBQCxYcOGKtslJiZe1960aVMBQCQmJt6wxmsefvhh0bRp0+var/25rF692tQ2cuRIAUDMnz/f1Jafny8cHR2FTCYTmzZtMrWfPHlSABCzZ882tc2dO1c4OzuLP/74o8p7TZs2TSgUCpGenn5LNRPZAt4mI7Ijy5Ytw48//ljltWPHjuu2i42Nhaenp+nrbt26AQDOnTsHAMjLy8N///tfDB48GIWFhcjJyUFOTg5yc3MRExOD06dP4/Lly1WOOXbs2Cq9Or/++ityc3MxduxYODj83Uk9bNiwKu8NANHR0QgKCsKGDRtMbb///juOHDmCp59++obnvH37digUCrzwwgtV2l966SUIIUzn37JlS0RERGDz5s2mbYxGI7Zs2YL+/fubxvl88cUXcHd3x4MPPmg675ycHHTo0AEuLi7YvXt3lfdp1qwZYmJibljj7RgzZozp/z08PNCqVSs4Oztj8ODBpvZWrVrBw8PD9Od37Ty6desGT0/PKucRHR0No9GIn376qcFqJrI0vE1GZEc6dep0SwOo77jjjipfXwsn18bEnDlzBkIIzJw5EzNnzqz2GFlZWQgODjZ9/e+n2P78808A1z/J5uDgYBorc41cLsewYcOwfPlylJSUwMnJCRs2bIBGo8GgQYNueC5//vkngoKC4OrqWqX9zjvvrFIHUBkCX331VVy+fBnBwcFITk5GVlYWYmNjTducPn0aWq0Wfn5+NZ73P1X39F590Wg08PX1rdLm7u6OJk2aQCaTXdf+zzFNp0+fxpEjR67b/5p/nweRLWMYIqLr/LMH55/EXwOOrw2wnTJlSo29Hv8OObV9gurfRowYgbfffhtff/01hg4dio0bN+KRRx6Bu7v7bR33n2JjYzF9+nR88cUXmDRpEj7//HO4u7ujb9++pm0kSYKfn1+VXqp/+ne4uN3zvpGa/pxu9ucHVJ7Hgw8+iKlTp1a7bcuWLW+/QCIrwTBERLUWFhYGAFAqlYiOjq7TMZo2bQqgspfpn09xGQwGXLhwAe3atauy/d1334177rkHGzZsQJMmTZCeno7333//lt5n165dKCwsrNI7dPLkySp1AJW9OJ06dcLmzZvx/PPP46uvvsKAAQOgVqtN24SHh2PXrl3o2rVrvQedf/fmNKTw8HAUFRXV+c+PyJZwzBAR1Zqfnx969uyJDz/8EFevXr3u+9nZ2Tc9RmRkJLy9vbFy5UoYDAZT+4YNG657RP2a4cOH44cffsCSJUvg7e2Nfv363fR9HnroIRiNRixdurRK+zvvvAOZTHbdMWJjY7F//36sWrUKOTk5VW6RAcDgwYNhNBoxd+7c697LYDCgoKDgpjXVxNnZGVqtts7718bgwYORkpKCnTt3Xve9goKCKn8mRLaOPUNEdmTHjh2mHpF/6tKli6m351YtW7YM999/P9q2bYuxY8ciLCwMmZmZSElJwaVLl/Dbb7/dcH+VSoXXX38dEydORK9evTB48GBcuHABa9asQXh4eLW9JE899RSmTp2KrVu3Yvz48bc0I3P//v3xwAMPYMaMGbhw4QLat2+PH374Ad988w0mTZqE8PDwKtsPHjwYU6ZMwZQpU+Dl5XVdz0mPHj0wbtw4JCQkIC0tDX369IFSqcTp06fxxRdf4N13360yJ1FtdOjQAZs3b0Z8fDw6duwIFxcX9O/fv07HupmXX34Z3377LR555BGMGjUKHTp0QHFxMY4ePYotW7bgwoUL8PHxaZD3JrI45n2YjYgaw40ercc/Htm+9gj322+/fd0x8K9Hs4UQ4uzZs2LEiBEiICBAKJVKERwcLB555BGxZcuW6977l19+qba29957TzRt2lSo1WrRqVMnsW/fPtGhQwfRt2/fard/6KGHBADxv//975bPv7CwUEyePFkEBQUJpVIpWrRoId5++20hSVK123ft2lUAEGPGjKnxmB999JHo0KGDcHR0FK6urqJt27Zi6tSp4sqVK6ZtmjZtKh5++OFbrrOoqEg89dRTwsPDQwAwPWZf06P1zs7O1x2jR48e4q677rquvbpaCgsLxfTp00Xz5s2FSqUSPj4+okuXLmLRokVCr9ffct1E1k4mxD9G1BERmZkkSfD19cUTTzyBlStXXvf9xx9/HEePHsWZM2fMUB0R2SKOGSIisykrK8O//z22bt065OXlmZbj+KerV69i27ZtGD58eCNVSET2gD1DRGQ2ycnJmDx5MgYNGgRvb2+kpqbik08+wZ133olDhw5BpVIBAM6fP499+/bh448/xi+//IKzZ89WWTKDiOh2cAA1EZlNaGgoQkJC8N577yEvLw9eXl4YMWIEFixYYApCALBnzx7ExcXhjjvuwNq1axmEiKhesWeIiIiI7BrHDBEREZFdYxgiIiIiu8YxQzchSRKuXLkCV1fXRp0qn4iIiOpOCIHCwkIEBQVBLr9x3w/D0E1cuXIFISEh5i6DiIiI6uDixYto0qTJDbdhGLqJaws7Xrx4EW5ubmauhoiIiG6FTqdDSEhIlQWaa8IwdBPXbo25ubkxDBEREVmZWxniwgHUREREZNcsLgwtW7YMoaGh0Gg0iIqKwsGDB29pv02bNkEmk2HAgAFV2keNGgWZTFbl1bdv3waonIiIiKyRRYWhzZs3Iz4+HrNnz0Zqairat2+PmJgYZGVl3XC/CxcuYMqUKejWrVu13+/bty+uXr1qen322WcNUT4RERFZIYsKQ4sXL8bYsWMRFxeHNm3aYMWKFXBycsKqVatq3MdoNGLYsGGYM2cOwsLCqt1GrVYjICDA9PL09GyoUyAiIiIrYzFhSK/X49ChQ4iOjja1yeVyREdHIyUlpcb93njjDfj5+WH06NE1bpOcnAw/Pz+0atUK48ePR25ubo3blpeXQ6fTVXkRERGR7bKYMJSTkwOj0Qh/f/8q7f7+/sjIyKh2n7179+KTTz7BypUrazxu3759sW7dOiQlJeGtt97Cnj170K9fPxiNxmq3T0hIgLu7u+nFOYaIiIhsm9U+Wl9YWIjhw4dj5cqV8PHxqXG7IUOGmP6/bdu2aNeuHcLDw5GcnIzevXtft/306dMRHx9v+vraPAVERERkmywmDPn4+EChUCAzM7NKe2ZmJgICAq7b/uzZs7hw4QL69+9vapMkCQDg4OCAU6dOITw8/Lr9wsLC4OPjgzNnzlQbhtRqNdRq9e2eDhEREVkJi7lNplKp0KFDByQlJZnaJElCUlISOnfufN32rVu3xtGjR5GWlmZ6Pfroo3jggQeQlpZWY2/OpUuXkJubi8DAwAY7FyIiIrIeFtMzBADx8fEYOXIkIiMj0alTJyxZsgTFxcWIi4sDAIwYMQLBwcFISEiARqPB3XffXWV/Dw8PADC1FxUVYc6cOXjyyScREBCAs2fPYurUqWjevDliYmIa9dyIiIjIMllUGIqNjUV2djZmzZqFjIwMREREIDEx0TSoOj09/aYrz/6TQqHAkSNHsHbtWhQUFCAoKAh9+vTB3LlzeSuMiIiIAAAyIYQwdxGWTKfTwd3dHVqtlmuTERERWYnafH5bVM8QERFRY5MkgaJSCRUGQBICEIAkALkMcHGSQ6OS3dJin2S9GIaIiMim6SsELmVV4FKWARczK3Ax04CMXAO0RUZoiyToiiVIN7hHonSoDEVuTnL4ejog2M8BTXwdEOynxB0BSgR6KxiWrBzDEBER2QwhBK7mGnH8XDmOny/H8fN6nL2kh1G6+b5yGSD7x8soAZIEVBiAfJ2EfJ2EPzMM+PVE1f3cnOVo00yFNs3UaBOmRptmKmhUFvOwNt0ChiEiIrJqZXoJaafKsf/3Uhw4VorMvOtXGHBxlCHEX4kmfg4I8VciyNcBnq4KuLvI4e6igJuzHEqHqr07QgiUlQvoSiQUFlf2IGXkGnAp24DLWRW4nGXAxawK6Iol7P+9DPt/LwMAqJQy3NtKjfvudkTnto7w9eRHraXjAOqb4ABqIiLLU1omYd+RUvz312KkniqHvuLvjzIHBdAiRIU7m6lxV7PK//p7NcytrAqDwJlL+sqeqAt6HDtbjqz8qmGsRYgSD0Y5I7qjMzxcFfVeA1WvNp/fDEM3wTBERGQZjEaBX0+WIelgMfb+Vooy/d8fX35eCtx3lyOi7nbEPa3UZrtNJYTAhasVSDlSiv8dLcWJC3pc+5R1UACd2zqib2cXdGqjgULBcUYNiWGoHjEMERGZV36hEdv2FuG7n4uQXfB3r0uwrwOiOzmj+z2OCA1UWuQg5vxCI/akliAxpRh/pOtN7X5eCgzq5YqHurjAUcPxRQ2BYageMQwREZnHyQvl2JpciOTUElQYKtvcXeToFemE6E7OaN1UZZEBqCbnLuuRmFKMHw8WQ1tUOaLb1UmOx3q44PGervDkLbR6xTBUjxiGiIgajxACv50ux/odWhw+VW5qbx2qwuM9XNHjXieolNYTgKpTrpfww4FifL6rEJezK1OeSinD4z1c8FRfd7g6saeoPjAM1SOGISKihieEwK8nyvDpDh2Onq0MQQo50CvSCQN6uuLOUNtbQskoCez7rRSbftTh5IXKW2iuTnI8FeOGx3u6Wn3oMzeGoXrEMERE1LCOnSvHh1sL8PtfIUjpAPTr7IIhfdwQ4G37j6ULIXDg9zJ89HUBLlytAAD4eSow5jEP9O7oZFW3Ai0Jw1A9YhgiImoYl7Iq8PE3BfjpcCkAQK2U4ZFuLoiNdoWPh+2HoH8zSgI/HCjGmu+0poHi97ZSY9JQLzTxU5q5OuvDMFSPGIaIiOqXrtiItdu0+PanIhilypmf+3ZxxqiH3e0yBP1buV7CF0mF+DRRB32FgNIBGN7PHbEPul03MSTVjGGoHjEMERHVDyEEdu4vxodbC0xPU0XdpcGzj3ugWZDKzNVZnsvZFVjyWT4Onayc2bppoBKvDPdCaxscP9UQGIbqEcMQEdHtO3dZj3c35ZsGRzcNVGLiIE/c21pj5sosmxAC//21BB9syUd+oQSFHBj1iDuG9HGDQs5eohthGKpHDENERHWnrxBY830BPk8qhCQBGpUMIx52x8BernDgDMy3TFdsxJLP8pGcWgIAaNtcjekjve1igHldMQzVI4YhIqK6OXG+HG+ty0V6ZuVcOt0iHDFhoCf8vfgBXhdCCPx4oBjvbs5HabmAs6MMk4d6oVeks7lLs0i1+fzm30giIqpXpt6gXYWQBODlJsfkoV7o2t7J3KVZNZlMhj73ueDu5hrMX52D4+f1mLcqF8fP6/GfJzzY03Yb2DN0E+wZIiK6dacv6jF/dQ7+zKjsDYru6ITnB3vCzZlLTdQno1FgzTYtNiTqAADtW6gxc7QPvNx4na/hbbJ6xDBERHRzQgh8ubsQK78uQIUB8HSTI569QQ1ub1oJFqzLRUmZgI+HAnOe9bHJ2brrojaf31wAhYiIbkt+oRHTP8jGB1sqg1DXdo5Y9Vogg1AjuD/CCR9MDUCIvwNyCoyYtDgTuw4Wm7ssq8MwREREdXboZBnGvHkVB4+VQaWU4cVYT7wxzgfuLrxd01juCFDig6kB6NreERUGYP6aXGxM1II3fm4dwxAREdWaJAms36HF1PezkK+TEBqoxPJX/PFYD1eupWUGzo5yzBnrg0G9XQEAH3+rxZLP8mE0MhDdCj5NRkREtVJYIiFhTQ72/145M/LDXZ3x/CBPqFX897U5yeUyjH+ycuqCZVvy8d3eImQXGDDzGR84avhncyO8OkREdMvOXNTjPwsysP/3MigdgJeHe+GlYd4MQhbkiQdc8fpYH6iUMuz/vQzx72ZBV2w0d1kWjX97iYjoliT9UoznF2Xiao4BAd4KvD8lAP06u5i7LKpGtwgnLJ7kBzdnOU79qUf8kizkFzIQ1YRhiIiIbkiSBFZ9V4A3V+dCXyHQqY0GK6YFoOUdXFzVkrVppsY7k/3g5SbHucsVmLw4EzkFBnOXZZEYhoiIqEal5RLe+CQHn+6onNxvcLQr3pzgy0kUrUSzIBWWxPvDz1OB9EwDJr2ThYxcBqJ/YxgiIqJqZeUZ8OLiTPx0uBRKB2DqcC/85wlPrpZuZZr4KbEk3h+B3gpcyTZg0juZuJLDQPRPDENERHSdMxf1eO7tTJy5WAEPFzn+70V/9OX4IKsV4O2AJS/5I8TfAVl5Rkx5NxPZ+QxE1zAMERFRFb8cL8WLizORqzUiNFCJD14JwN3hXOLB2vl6OOCdSf4I9nVARq4RL72bhTwdB1UDDENERPQPiSlFePWDbJSWC0S0VOO9l/wR4M0p6WyFl7sCi170g5+XApeyDJj6Ph+7BxiGiIgIlQutrt+uxcL1eTBKQO+OTljwnB9cnPgxYWv8vRyw6IW/nzKbtiwbxaWSucsyK/4tJyKyc5Ik8N7mfKz+XgsAGNrHDdNHekOl5EBpW9XET4m3X6ich+jkBT1eW5ENfYX9Lt3BMEREZMcMRoGEtbn45qciyGTAC7GeGDvAA3I+MWbzmgWpsHCiH5w1Mvx2uhwL1uZCkuwzEDEMERHZqTK9hFkfZiPplxIo5MCro7wxoIerucuiRtTyDhXmjPOFgwJITi3BR18XmLsks2AYIiKyQ0WlEl5Zmo39v5dBpZRh7n980bujs7nLIjO4t5UGLz/tDQD4fFchvtpdaOaKGh/DEBGRndEVGzHl3SwcPVMOZ40MCyf64r67Hc1dFpnRg1HOGP2oOwBg2ZZ8/JxWYuaKGpfFhaFly5YhNDQUGo0GUVFROHjw4C3tt2nTJshkMgwYMKBKuxACs2bNQmBgIBwdHREdHY3Tp083QOVERJavoLByfpk/0vXwcJFj8WR/tGuuMXdZZAGeinFD//tdIATw5upc/JGuN3dJjcaiwtDmzZsRHx+P2bNnIzU1Fe3bt0dMTAyysrJuuN+FCxcwZcoUdOvW7brvLVy4EO+99x5WrFiBAwcOwNnZGTExMSgrK2uo0yAiskh5WiPil2Th7KUKeLpVBqEWIVxslSrJZDK8EOuJqLs00FcILPsiH0LYx4BqiwpDixcvxtixYxEXF4c2bdpgxYoVcHJywqpVq2rcx2g0YtiwYZgzZw7CwsKqfE8IgSVLluC1117DY489hnbt2mHdunW4cuUKvv766wY+GyIiy5FTYMDkJZm4cLUC3u4KvDPZH6GBSnOXRRZGoZAhfpgXVEoZjp4tx/7f7aPjwGLCkF6vx6FDhxAdHW1qk8vliI6ORkpKSo37vfHGG/Dz88Po0aOv+9758+eRkZFR5Zju7u6Iioq64TGJiGxJdr4Bk9/JwsVMA/w8FVgy2Q93+DMIUfV8PRzwxAOVTxWu/LoARjt43N5iwlBOTg6MRiP8/f2rtPv7+yMjI6Paffbu3YtPPvkEK1eurPb71/arzTHLy8uh0+mqvIiIrFVOgQEvvZuFy9kGBHhX9ggF+zEI0Y0N7eMGF0cZLlytwK6DxeYup8FZTBiqrcLCQgwfPhwrV66Ej49PvR03ISEB7u7upldISEi9HZuIqDHl6SqfGruUZYC/lwKLJ/kj0IfrjNHNuTrJ8VTfyqfLVn+ntfnZqS0mDPn4+EChUCAzM7NKe2ZmJgICAq7b/uzZs7hw4QL69+8PBwcHODg4YN26dfj222/h4OCAs2fPmva71WMCwPTp06HVak2vixcv1tMZEhE1noLCyiCU/tetscWTuOAq1c7jPVzg66FAVr4R3/xk23MPWUwYUqlU6NChA5KSkkxtkiQhKSkJnTt3vm771q1b4+jRo0hLSzO9Hn30UTzwwANIS0tDSEgImjVrhoCAgCrH1Ol0OHDgQLXHBAC1Wg03N7cqLyIia6ItMmLKe1mmwdL/96Ife4So1tQqOUY9Utk7tCFRhyIbXszVon464uPjMXLkSERGRqJTp05YsmQJiouLERcXBwAYMWIEgoODkZCQAI1Gg7vvvrvK/h4eHgBQpX3SpEmYN28eWrRogWbNmmHmzJkICgq6bj4iIiJbUPzXzNLnLlfAy02O/5vkxzFCVGd9opzx+S4d/swwYPMPOox+zMPcJTUIiwpDsbGxyM7OxqxZs5CRkYGIiAgkJiaaBkCnp6dDLq9dZ9bUqVNRXFyMZ599FgUFBbj//vuRmJgIjYaTjBGRbSnTS3h1ebZpQsVFL/rzqTG6LQqFDGMe88DMD3Ow5b+FGNDTFd7uCnOXVe9kwl5mVKojnU4Hd3d3aLVa3jIjIotVYRCYuSIbB4+XwdlRhsWTOKEi1Q8hBCYuysTx83r07+aCyUO9zF3SLanN57fFjBkiIqK6MUoC89fk4uDxMmhUMiRM8GMQonojk8kwdoAHAGDbviJcyqowb0ENgGGIiMiKCSGweEMe9qSWwEEBzHnWB3eHq81dFtmY9i00iLpLA0kCVn+vNXc59Y5hiIjIin20tQA7UoohlwGvPeODjm24+jw1jDF/DZ7e/WsJTl+0rUVcGYaIiKzU57t02Lyrcv6Xl572Qvd7nMxcEdmy8CYq9O5Y+Xfs428KzFtMPWMYIiKyQj8eKMaKrwoAAM8O8EC/zi7mLYjsQlx/DyjkwC/Hy3D4lO0s4sowRERkZQ4eK8XC9bkAgCd7uSL2QVczV0T2IsjHAY90qwzeH39TAFt5IJ1hiIjIipw4X47XV+bAKAG9Ip0w/gkPyGQyc5dFdmR4X3doVDKcuKDH3t9KzV1OvWAYIiKyEpezKvDq8myU6QU6tNbglRHekMsZhKhxebkrMLB3ZW/kqu+0MErW3zvEMEREZAW0RUZMW5YNbZGEFiFKzHnWB0oHBiEyj8HRbnBzluPPqxXYdbDY3OXcNoYhIiILV66XMGN5Ni5nG+DvpUDCBD84afjrm8zHxVGOIX0qZ3Ve870W+grr7h3iTxMRkQW7Nrv08fN6uDjKsOA5P3jZ4NpQZH0e7+ECb3cFMvOM+H5vkbnLuS0MQ0REFuzDrwrwc1oplA7A3P/4omkgF14ly6BWyTHiocreoU93aFFaJpm5orpjGCIislBf7S7Elv9WTqr4yghvtG+hMXNFRFX16+KCYF8HFBRJ2LK70Nzl1BnDEBGRBdr/eyk+2JIPABg7wAO9Ip3NXBHR9RwUMox6xB0A8PmPOmiLjGauqG4YhoiILMzZS3rM/SQHkgD6dXbGEE6qSBbsgQ5OCG+iRHGZwKYfdOYup04YhoiILEie1ogZy7NRWi4Q0VKNSUO9OKkiWTS5XIbR/T0AAFv3FCG7wGDeguqAYYiIyEKU6SXMWJGNrHwjmvg5YM6zvpxLiKxC1N0a3B2uhr5C4NMd1tc7xDBERGQBJEngrXV5OPWnHm7OciRM8IWrE39Fk3WQyWQY/Wjl2KHt+4pwObvCzBXVDn/SiIgswLrtWuxJLYGDApjzrA+C/fgIPVmX9i006NhGA6MErN2mNXc5tcIwRERkZsmpJVi3vfLWwuShXnyEnqzW6Ec9AABJv5Tg/BW9eYupBYYhIiIzOn1Rj7fW5gIABvZyRb8uLmauiKjuWt6hQvd7HCFE5SKu1oJhiIjITPK0RsxckY3yCoGObTQY97iHuUsium2jHvGAXAbs+60UJy6Um7ucW8IwRERkBvoKgVkfVT45FuLvgJnP+ECh4JNjZP1CA5V4MKpyktBV31pH7xDDEBFRIxNC4N1NeabFV98c7wsXPjlGNmTkw+5wUACHTpYh9VSZucu5Kf70ERE1sm9+KsKOlGLIZcDM0T5owifHyMYEeDvg4fsrx7+t+rYAQggzV3RjDENERI3otz/KsOyLv9cc69jG0cwVETWMp/u6Q62U4fh5Pfb/btm9QwxDRESNJDPPgDkf58AoAb0inTA4mmuOke3ydlfg8Z5/9Q59VwBJstzeIYYhIqJGUK6XMOvDbBQUSWjeRIkpT3PNMbJ9sQ+6wVkjw9lLFfjpcIm5y6kRwxARUQMTQuD/Nubh9MUKuLvI8cY4X2hU/PVLts/dRYGBvd0AVM47ZDRaZu8QfxqJiBrY1uQi7DpYArkcmDXaBwHeDuYuiajRDOzlCjdnOS5lGfDDwWJzl1MthiEiogZ09EwZln9ZOWB63OMeuKcVl9og++LsKMeQPpW9Q+u2aaGvsLzeIYYhIqIGkqs1mgZMP9DBCQN7ccA02acBPVzg5SZHZp4R2/9XZO5yrsMwRETUACoMAnM+zkGeTkJooBJThnHANNkvjUqO4f3cAQCf7tCiTC+ZuaKqGIaIiBrAiq/y8fvZcjhrZHhjnA8cNfx1S/btoa4u8PdSIE8n4Zs9ltU7xJ9OIqJ6lvRLMbYmV/6ynz7KmzNMEwFQOsgw4uHK3qHPftChpMxyeocYhoiI6tH5K3r834Y8AMDT/dzQpZ2TmSsishx9OjmjiZ8DdMUSvvxvobnLMWEYIiKqJyVlEl5fmYMyvUCH1hqM/OtfwURUSaGQYdQjlT8Xn+/SQVdsNHNFlRiGiIjqgRACb3+ah4uZBvh6KDAjzhsKOQdME/1bz3ud0CxIieIygS92WUbvEMMQEVE9+Gp3IfaklkAhB2aN8YGHq8LcJRFZJLlchri/eoe+TC5EfqH5e4csLgwtW7YMoaGh0Gg0iIqKwsGDB2vc9quvvkJkZCQ8PDzg7OyMiIgIrF+/vso2o0aNgkwmq/Lq27dvQ58GEdmR38+WY8VXBQCA8U964q4wtXkLIrJwXds7otUdKpSVC2z6QWfuciwrDG3evBnx8fGYPXs2UlNT0b59e8TExCArK6va7b28vDBjxgykpKTgyJEjiIuLQ1xcHHbu3Fllu759++Lq1aum12effdYYp0NEdqCg0Ig3PqmcWLHnvU6mVbqJqGYymQzPPFrZO/TNT0XILjCYtR6LCkOLFy/G2LFjERcXhzZt2mDFihVwcnLCqlWrqt2+Z8+eePzxx3HnnXciPDwcL774Itq1a4e9e/dW2U6tViMgIMD08vT0bIzTISIbJ0kCCWtzkVNgRIi/A1eiJ6qFyDs1aBuuhr5CYMMO8/YOWUwY0uv1OHToEKKjo01tcrkc0dHRSElJuen+QggkJSXh1KlT6N69e5XvJScnw8/PD61atcL48eORm5tb43HKy8uh0+mqvIiIqvPZDzr8crwMaqUMs8f4wIkTKxLdsmu9Q63uUKFre0ez1mIxSyfn5OTAaDTC39+/Sru/vz9OnjxZ435arRbBwcEoLy+HQqHABx98gAcffND0/b59++KJJ55As2bNcPbsWbz66qvo168fUlJSoFBcP8AxISEBc+bMqb8TIyKblPZHGVZ/pwUAvDDEE2HBKjNXRGR92rfQ4INX/M3eo2oxYaiuXF1dkZaWhqKiIiQlJSE+Ph5hYWHo2bMnAGDIkCGmbdu2bYt27dohPDwcycnJ6N2793XHmz59OuLj401f63Q6hISENPh5EJH1yNMZMW9VDiQBxNznjH6dOU6IqK7MHYQACwpDPj4+UCgUyMzMrNKemZmJgICAGveTy+Vo3rw5ACAiIgInTpxAQkKCKQz9W1hYGHx8fHDmzJlqw5BarYZazSdBiKh6Rklg/urKBVibBirxQizHIBJZO4u5wa1SqdChQwckJSWZ2iRJQlJSEjp37nzLx5EkCeXl5TV+/9KlS8jNzUVgYOBt1UtE9mlDog6pp8qhUVWOE3JUW8yvUSKqI4vpGQKA+Ph4jBw5EpGRkejUqROWLFmC4uJixMXFAQBGjBiB4OBgJCQkAKgc3xMZGYnw8HCUl5dj+/btWL9+PZYvXw4AKCoqwpw5c/Dkk08iICAAZ8+exdSpU9G8eXPExMSY7TyJyDql/VGGddsqxwlNGuqF0EAuwEpkCywqDMXGxiI7OxuzZs1CRkYGIiIikJiYaBpUnZ6eDrn873+FFRcXY8KECbh06RIcHR3RunVrfPrpp4iNjQUAKBQKHDlyBGvXrkVBQQGCgoLQp08fzJ07l7fCiKhWCgqNeHN1LiQB9O3sjD5RzuYuiYjqiUwIIcxdhCXT6XRwd3eHVquFm5ubucshIjOQJIFXP8jGweNlaBqoxAdT/Xl7jMjC1ebzmz/NREQ3sXlXIQ7+NZ/QrNHeDEJENoY/0UREN/D72XJ88m0BAGDiYE80C+J8QkS2hmGIiKgGumIj5q3OgSQBvTs6oV8XjhMiskUMQ0RE1RBCYNGnecjKMyLY1wGTh3LdMSJbxTBERFSNb38uwt7fSuGgAGaO5rpjRLaMP91ERP9y9pIeH2zJBwCMHeCBlndwnBCRLWMYIiL6h9JyCfNW5aDCAETdpcHAXq7mLomIGhjDEBHRPyzbko8/MwzwdlfglRHeHCdEZAcYhoiI/pJ8qBjb9xVDJgNeHeUND1eFuUsiokbAMEREBCAj14D/25gHAHgqxg33tNKYuSIiaiwMQ0Rk94xGgTdX56C4VKBNMxVGPuxu7pKIqBExDBGR3Vu/Q4tj5/Rw1sgwI84HDgqOEyKyJwxDRGTXjpwpw6c7dACASUO9EOjjYOaKiKixMQwRkd0qLJEwf3UuJAHE3OeM3h253AaRPWIYIiK7JITA/23IRVZ+5XIbEwd7mrskIjIThiEisks7/leMnw6XQiEHZsR5c7kNIjvGn34isjsXMyuw9IvK5TaeedQDrUPVZq6IiMyJYYiI7EqFQeDN1bko0wtEtFQjNprLbRDZO4YhIrIra77X4o90PVyd5Jg+0htyOR+jJ7J3DENEZDfS/ijDph8rH6N/aZgXfD35GD0RMQwRkZ3QFRuRsCYXQgAPdXFG93uczF0SEVkIhiEisnlCCLzzWT6yC4xo4ueA5wbyMXoi+hvDEBHZvB8OFGNPagkU8srV6B35GD0R/QN/IxCRTbuSY8B7mysfox/1iDsfoyei6zAMEZHNMhoF5q/OQWm5QNtwNYb0cTN3SURkgRiGiMhmbdipw/HzlavRTx/lDQUfoyeiajAMEZFNOn6+HOu2awEAL8R6IcCbj9ETUfUYhojI5pSWSZi/JheSBDwQ6YToTnyMnohqxjBERDZn2Zf5uJJtgJ+nApOGeEEm4+0xIqoZwxAR2ZR9v5Vg+75iyGTAKyO84erEX3NEdGP8LUFENiNPa8SiDXkAgEG9XXFPK42ZKyIia8AwREQ2QQiBtz/NhbZIQliwEs/09zB3SURkJRiGiMgmfPdzEQ4cK4PSAZgR5w2VkuOEiOjWMAwRkdVLz6zA8i8LAABjB3igWZDKvAURkVVhGCIiq2YwCiSsyUV5hUCH1ho80dPV3CURkZVhGCIiq/bpDi1O/amHi6MMU4d7Qc5ZpomolhiGiMhqHT9fjk8TdQCAyUO94OvJWaaJqPYYhojIKpWWSUj4a5bp3h2d8ECks7lLIiIrZXFhaNmyZQgNDYVGo0FUVBQOHjxY47ZfffUVIiMj4eHhAWdnZ0RERGD9+vVVthFCYNasWQgMDISjoyOio6Nx+vTphj4NImpgK74qwOVsA3w9FHgx1svc5RCRFbOoMLR582bEx8dj9uzZSE1NRfv27RETE4OsrKxqt/fy8sKMGTOQkpKCI0eOIC4uDnFxcdi5c6dpm4ULF+K9997DihUrcODAATg7OyMmJgZlZWWNdVpEVM9Sjpbiu71FAIBXRnrDhbNME9FtkAkhhLmLuCYqKgodO3bE0qVLAQCSJCEkJAQTJ07EtGnTbukY9957Lx5++GHMnTsXQggEBQXhpZdewpQpUwAAWq0W/v7+WLNmDYYMGXLT4+l0Ori7u0Or1cLNza3uJ0dE9aKg0IjRb15Fvk7CwF6umDDQ09wlEZEFqs3nd63+OTVq1CiUlJTcVnE10ev1OHToEKKjo01tcrkc0dHRSElJuen+QggkJSXh1KlT6N69OwDg/PnzyMjIqHJMd3d3REVF1XjM8vJy6HS6Ki8isgxCCPzfxjzk6ySEBiox5jEPc5dERDagVmFo/fr1KCoqMn09fvx4FBQUVNnGYDDUqZCcnBwYjUb4+/tXaff390dGRkaN+2m1Wri4uEClUuHhhx/G+++/jwcffBAATPvV5pgJCQlwd3c3vUJCQup0PkRU/3buL8a+30rhoACmj+Is00RUP2oVhv59R23Dhg3Iy8szfZ2Zmdnot5JcXV2RlpaGX375BW+++Sbi4+ORnJxc5+NNnz4dWq3W9Lp48WL9FUtEdZaRa8DSL/IBAKMedkeLEM4yTUT147Ym5ahuuFFdByb7+PhAoVAgMzOzSntmZiYCAgJq3E8ul6N58+YAgIiICJw4cQIJCQno2bOnab/MzEwEBgZWOWZERES1x1Or1VCr1XU6ByJqGEZJYMHaXJSUCdwVpkJsH47fI6L6U++PYMhkdeu2VqlU6NChA5KSkkxtkiQhKSkJnTt3vuXjSJKE8vJyAECzZs0QEBBQ5Zg6nQ4HDhyo1TGJyLy2JBXiyJlyaNQyTBvpDQVnmSaielTrnqGNGzeie/fuaNu2bb0XEx8fj5EjRyIyMhKdOnXCkiVLUFxcjLi4OADAiBEjEBwcjISEBACV43siIyMRHh6O8vJybN++HevXr8fy5csBVAazSZMmYd68eWjRogWaNWuGmTNnIigoCAMGDKj3+omo/p27rMeq7woAAM8N9ESwr9K8BRGRzalVGOrWrRtmz56NwsJCKJVKGAwGzJ49G127dkVERAR8fX1vq5jY2FhkZ2dj1qxZyMjIQEREBBITE00DoNPT0yGX/92ZVVxcjAkTJuDSpUtwdHRE69at8emnnyI2Nta0zdSpU1FcXIxnn30WBQUFuP/++5GYmAiNRnNbtRJRw9NXCMxfk4sKA9C5rSMe6sJZpomo/tVpnqHTp0/j0KFDSE1NNb0KCgpMt8iMRmO9F2ounGeIyHw++roAm37Qwd1Fjk9eC4SXm8LcJRGRlajN53edBlC3aNECLVq0qDJp4fnz5/Hrr7/i8OHDdTkkEVEVR8+UYfOPlfN8xT/lxSBERA2m3pZ4btasGZo1a4ZBgwbV1yGJyE6VlElYsDYXQgAx9zmjW4STuUsiIhvGBX2IyOIs/zIfV3ON8PNS4LlBXG6DiBoWwxARWZSUo6XYtq8YMhkwbYQ3XBz5a4qIGhZ/yxCRxdAWGbFoQy4AYGAvV0S05FOfRNTwGIaIyCIIIbD4r0VYmwYqMfpRD3OXRER2ok5haOTIkfjpp5/quxYismM/HizBz2mlUMiBV7kIKxE1ojqFIa1Wi+joaLRo0QLz58/H5cuX67suIrIjmXkGvL+5ctHnkVyElYgaWZ3C0Ndff43Lly9j/Pjx2Lx5M0JDQ9GvXz9s2bIFFRUV9V0jEdkwSRJYuD4XxWUCbZqpMJSLsBJRI6vzmCFfX1/Ex8fjt99+w4EDB9C8eXMMHz4cQUFBmDx5Mk6fPl2fdRKRjdqaXIjDp8qhUf21CKuCt8eIqHHd9gDqq1ev4scff8SPP/4IhUKBhx56CEePHkWbNm3wzjvv1EeNRGSj/rxagZXfaAEA457wQBM/LsJKRI2vTmGooqICX375JR555BE0bdoUX3zxBSZNmoQrV65g7dq12LVrFz7//HO88cYb9V0vEdkIg1EgYW0u9BUCHdto8Gg3F3OXRER2qk7LcQQGBkKSJAwdOhQHDx5ERETEdds88MAD8PDwuM3yiMhWfbpDiz/S9XB1kmPK016mhZ6JiBpbncLQO++8g0GDBkGjqXlCNA8PD5w/f77OhRGR7TpxoRyfJlYuwvriEE/4etTbMolERLVWp99Aw4cPr+86iMhOlOkrF2GVJOCBSCf0inQ2d0lEZOfqFIbi4+OrbZfJZNBoNGjevDkee+wxeHl53VZxRGR7Pv66ABczDfB2V+DFWC7CSkTmV6cwdPjwYaSmpsJoNKJVq1YAgD/++AMKhQKtW7fGBx98gJdeegl79+5FmzZt6rVgIrJeh06W4avkIgDA1OFecHNWmLkiIqI6Pk322GOPITo6GleuXMGhQ4dw6NAhXLp0CQ8++CCGDh2Ky5cvo3v37pg8eXJ910tEVqqoRMLCdZWLsD7azQUd2ziauSIiokoyIYSo7U7BwcH48ccfr+v1OXbsGPr06YPLly8jNTUVffr0QU5OTr0Vaw46nQ7u7u7QarVwc+PMuER1NX9NDnYdLEGwrwM+ejUAjmquE01EDac2n991XpssKyvruvbs7GzodJVPiHh4eECv19fl8ERkY/aklmDXwRLIZcC0kd4MQkRkUep8m+yZZ57B1q1bcenSJVy6dAlbt27F6NGjMWDAAADAwYMH0bJly/qslYisUK7WiHc+q1yEdWgfN9wVpjZzRUREVdVpAPWHH36IyZMnY8iQITAYDJUHcnDAyJEjTUtwtG7dGh9//HH9VUpEVkcIgf/bkAtdsYTmTZQY8bC7uUsiIrpOncYMXVNUVIRz584BAMLCwuDiYnvT6XPMEFHdfb+3CIs35kHpAKyYFoBmQSpzl0REdqJBxwxVVFSgd+/eOH36NFxcXNCuXTu0a9fOJoMQEdXdlRwDPvgyHwAw+lEPBiEisli1DkNKpRJHjhxpiFqIyEYYJYEFa3NRVi7QvoUaA3u5mrskIqIa1WkA9dNPP41PPvmkvmshIhux+Ucdfj9bDieNDK+M8IZczkVYichy1WkAtcFgwKpVq7Br1y506NABzs5V1xZavHhxvRRHRNbnzEU91nyvBQA8N8gTAd5chJWILFudfkv9/vvvuPfeewFULsPxTzIZ/wVIZK/0FQIJa3NhMAJd2zui731chJWILF+dwtDu3bvruw4isgGrvivA+SsV8HSV46WnvPiPIyKyCnWeBvbnn3/G008/jS5duuDy5csAgPXr12Pv3r31VhwRWY/f/ijDF0mFAICXhnnBw5WLsBKRdahTGPryyy8RExMDR0dHpKamory8HEDlMh3z58+v1wKJyPIVl0pYsC4XQgAPdXFGl3ZO5i6JiOiW1SkMzZs3DytWrMDKlSuhVCpN7V27dkVqamq9FUdE1mHpF/nIzDMi0FuBCQM9zV0OEVGt1CkMnTp1Ct27d7+u3d3dHQUFBbdbExFZkZ/TSrBzfzFkfy3C6qThIqxEZF3q9FsrICAAZ86cua597969CAsLu+2iiMg65GmNWLyxchHWIQ+6oW1zjZkrIiKqvTqFobFjx+LFF1/EgQMHIJPJcOXKFWzYsAFTpkzB+PHj67tGIrJAQggs2pALbZGE8CZKjHqEi7ASkXWq06P106ZNgyRJ6N27N0pKStC9e3eo1WpMmTIFEydOrO8aicgCbdtXjP2/l0HpALw6yhtKBz5GT0TW6bZWrdfr9Thz5gyKiorQpk0bm1yslavWE13vclYFxs7PQJleYPyTHhjUmz8bRGRZavP5fVvz5KtUKrRp0+Z2DkFEVsZorJxlukwvENFSjScf4CKsRGTd6vzYR1JSEl599VWMGTMGzzzzTJXX7Vi2bBlCQ0Oh0WgQFRWFgwcP1rjtypUr0a1bN3h6esLT0xPR0dHXbT9q1CjIZLIqr759+95WjUT2bONOHY6f18PZkYuwEpFtqFMYmjNnDvr06YOkpCTk5OQgPz+/yquuNm/ejPj4eMyePRupqalo3749YmJikJWVVe32ycnJGDp0KHbv3o2UlBSEhISgT58+phmxr+nbty+uXr1qen322Wd1rpHInp28UI612ysXYX0x1gv+XlyElYisX53GDAUGBmLhwoUYPnx4vRYTFRWFjh07YunSpQAASZIQEhKCiRMnYtq0aTfd32g0wtPTE0uXLsWIESMAVPYMFRQU4Ouvv65TTRwzRFSpTC9hXEIGLmYa0PNeJ8wc7c21x4jIYtXm87tOPUN6vR5dunSpU3E3OuahQ4cQHR1tapPL5YiOjkZKSsotHaOkpAQVFRXw8vKq0p6cnAw/Pz+0atUK48ePR25ubo3HKC8vh06nq/IiIuDDrwpwMdMAHw8FJg31ZBAiIptRpzA0ZswYbNy4sV4LycnJgdFohL+/f5V2f39/ZGRk3NIxXnnlFQQFBVUJVH379sW6deuQlJSEt956C3v27EG/fv1gNBqrPUZCQgLc3d1Nr5CQkLqfFJGNOHCsFN/8VAQAmDrcC27OXISViGxHnW74l5WV4aOPPsKuXbvQrl27KuuTAcDixYvrpbjaWLBgATZt2oTk5GRoNH/PgjtkyBDT/7dt2xbt2rVDeHg4kpOT0bt37+uOM336dMTHx5u+1ul0DERk17RFRry9vrI39YmeLoi809HMFRER1a86haEjR44gIiICAPD7779X+V5du859fHygUCiQmZlZpT0zMxMBAQE33HfRokVYsGCBKZzdSFhYGHx8fHDmzJlqw5BarYZara79CRDZoMpZpvOQp5PQNMABYwd4mLskIqJ6V6cwtHv37vquAyqVCh06dEBSUhIGDBgAoHIAdVJSEp5//vka91u4cCHefPNN7Ny5E5GRkTd9n0uXLiE3NxeBgYH1VTqRzUpMKca+30rhoABejfOBWsVFWInI9tT5N9vPP/+Mp59+Gl26dDE9yr5+/Xrs3bu3zsXEx8dj5cqVWLt2LU6cOIHx48ejuLgYcXFxAIARI0Zg+vTppu3feustzJw5E6tWrUJoaCgyMjKQkZGBoqLKsQ1FRUV4+eWXsX//fly4cAFJSUl47LHH0Lx5c8TExNS5TiJ7cDm7Au9/UTlVxjP9PdAiRGXmioiIGkadwtCXX36JmJgYODo6IjU1FeXl5QAArVaL+fPn17mY2NhYLFq0CLNmzUJERATS0tKQmJhoGlSdnp6Oq1evmrZfvnw59Ho9Bg4ciMDAQNNr0aJFAACFQoEjR47g0UcfRcuWLTF69Gh06NABP//8M2+FEd2A0SiQsCYXZeUC7VuoMSias0wTke2q0zxD99xzDyZPnowRI0bA1dUVv/32G8LCwnD48GH069fvlp/+sgacZ4js0brtWqz5XgtnRxk+nhHIyRWJyOo0+DxDp06dQvfu3a9rd3d3R0FBQV0OSUQW4sT5cqz7a5bpSUM4yzQR2b46haGAgACcOXPmuva9e/ciLCzstosiIvMoLZPw5ppcSBLQK9IJvTs6m7skIqIGV6cwNHbsWLz44os4cOAAZDIZrly5gg0bNmDKlCkYP358fddIRI1k6Rf5uJJtgJ+nAi8O8br5DkRENqBO/d/Tpk2DJEno3bs3SkpK0L17d6jVakyZMgUTJ06s7xqJqBH8dLgEO1KKIZMB00d6w9WJj9ETkX2o0wDqa/R6Pc6cOYOioiK0adMGLi4u9VmbReAAarIH2QUGjJmXgcISCUP7uHFyRSKyerX5/L6tkZEqlQpt2rS5nUMQkZlJksBba3NRWCKh5R0qjHrE3dwlERE1KvaDE9m5Lf8tROqpcmhUMrwa5w2lA1ejJyL7wjBEZMfOXNTjk28LAAATBnriDn/ljXcgIrJBDENEdqpML2HeqhxUGIAu7RzxcFc+Rk9E9olhiMhOLf+yAOmZBni7K/Dy016QyXh7jIjsE8MQkR3am1aC736uXNB42khvuLsozFwREZH5MAwR2ZmcAgMWbcgDAAyOdkWH1hozV0REZF4MQ0R2RJIEFqzNha5YQvMQJUY/6mHukoiIzI5hiMiOfJFU+Ri9WinDa3E+fIyeiAgMQ0R249Sf5fj4mwIAwHODPHFHAB+jJyICGIaI7EJJmYR5q3JhlIBuEXyMnojonxiGiOzA+5/n4/Jfq9G/NIyP0RMR/RPDEJGNS/qlGDv3F0MuA16N84abMx+jJyL6J4YhIht2JceAdz6rfIz+6X5uaNecj9ETEf0bwxCRjTIYBd5clYOSMoG24WoM78fV6ImIqsMwRGSjVn2nxYkLerg4Vq5Gr1BwnBARUXUYhohs0C/HS7HpBx0AYMrT3vD3cjBzRURElothiMjG5GmNWLA2FwDwaDcXdL/HycwVERFZNoYhIhsiSQIJa3ORXyghLEiJ8U96mLskIiKLxzBEZEM+31WIQyfLKpfbGO0DtYo/4kREN8PflEQ24sT5cnzybQEA4PnBnggN5HIbRES3gmGIyAYUlkh445McGCXggQ5OeKgLl9sgIrpVDENEVk4IgbfX5yIzz4hAHwdMforLbRAR1QbDEJGV+3pPEfb+VgoHBTBrtDdcHPljTURUG/ytSWTF/kjXY8VX+QCAcY97oFVTtZkrIiKyPgxDRFaquLRynFCFAejazhFPPOBq7pKIiKwSwxCRFRJCYPFnebiSbYCflwIvD+c4ISKiumIYIrJC3/1chN2/lkAhB2aN9oGbs8LcJRERWS2GISIr80e6Hsu2VI4TGvOYB9o04zghIqLbwTBEZEWKSiXM+bhynFDnto4YHM1xQkREt4thiMhKCCGw6NNcXM0xwN9LgWkjvTlOiIioHjAMEVmJrclF+OnwX/MJjfGBqxN/fImI6gN/mxJZgRMXyk3zCf3nCU/cGcpxQkRE9cXiwtCyZcsQGhoKjUaDqKgoHDx4sMZtV65ciW7dusHT0xOenp6Ijo6+bnshBGbNmoXAwEA4OjoiOjoap0+fbujTIKo32iIj5nycA4MR6H6PIx7v6WLukoiIbIpFhaHNmzcjPj4es2fPRmpqKtq3b4+YmBhkZWVVu31ycjKGDh2K3bt3IyUlBSEhIejTpw8uX75s2mbhwoV47733sGLFChw4cADOzs6IiYlBWVlZY50WUZ1JkkDC2lxk5RkR7OuAKU9znBARUX2TCSGEuYu4JioqCh07dsTSpUsBAJIkISQkBBMnTsS0adNuur/RaISnpyeWLl2KESNGQAiBoKAgvPTSS5gyZQoAQKvVwt/fH2vWrMGQIUNuekydTgd3d3dotVq4ubnd3gkS1dL67Vqs/l4LlVKGZS/7I7yJytwlERFZhdp8fltMz5Ber8ehQ4cQHR1tapPL5YiOjkZKSsotHaOkpAQVFRXw8vICAJw/fx4ZGRlVjunu7o6oqKgaj1leXg6dTlflRWQOv54oxZptWgDApCGeDEJERA3EYsJQTk4OjEYj/P39q7T7+/sjIyPjlo7xyiuvICgoyBR+ru1Xm2MmJCTA3d3d9AoJCantqRDdtqw8A95cnQshgIe6OqNvZ44TIiJqKBYThm7XggULsGnTJmzduhUajabOx5k+fTq0Wq3pdfHixXqskujmKgwCb3ySA22RhOYhSrww2MvcJRER2TQHcxdwjY+PDxQKBTIzM6u0Z2ZmIiAg4Ib7Llq0CAsWLMCuXbvQrl07U/u1/TIzMxEYGFjlmBEREdUeS61WQ63mY8tkPh98mY/j5/VwcZTh9bG+UCk5YJqIqCFZTM+QSqVChw4dkJSUZGqTJAlJSUno3LlzjfstXLgQc+fORWJiIiIjI6t8r1mzZggICKhyTJ1OhwMHDtzwmETm8sOBYnyzpwgAMH2UD4J8LObfK0RENsuiftPGx8dj5MiRiIyMRKdOnbBkyRIUFxcjLi4OADBixAgEBwcjISEBAPDWW29h1qxZ2LhxI0JDQ03jgFxcXODi4gKZTIZJkyZh3rx5aNGiBZo1a4aZM2ciKCgIAwYMMNdpElXrzEU9Fm/MAwAM7+eGzm0dzVwREZF9sKgwFBsbi+zsbMyaNQsZGRmIiIhAYmKiaQB0eno65PK/O7OWL18OvV6PgQMHVjnO7Nmz8frrrwMApk6diuLiYjz77LMoKCjA/fffj8TExNsaV0RU3wpLJMxemQN9hUCnNhqMeNjd3CUREdkNi5pnyBJxniFqaJIkMGN5Ng4cK0OgtwLLpwXAzVlh7rKIiKyaVc4zRGSv1m3X4sCxMqiUMrz+rC+DEBFRI2MYIjKjfb+VYN32yok9Jw/1RIsQTqxIRNTYGIaIzCQ9owIJa3MBAAN6uCDmPk6sSERkDgxDRGZQVCph5ofZKCkTaNdcjQkDPc1dEhGR3WIYImpkkiSQsCYXFzMN8PVQYPZYHzgoOLEiEZG5MAwRNbJ127VIOVoKpQPwxjgfeLpywDQRkTkxDBE1or1pfw+YfukpL7RqyqVfiIjMjWGIqJGcu6zH/L8GTD/R0wV9OGCaiMgiMAwRNQJtkRGvrchGWblAh9YajH+SA6aJiCwFwxBRAzMYBV5fmYOMXCOCfB0wc7Q3FBwwTURkMRiGiBrY0s/z8dvpcjhpZJg7zoczTBMRWRiGIaIG9M1Phfj25yLIZMCro7zRLIgzTBMRWRqGIaIGcuhkGd7/PB8AMLq/O7q0czJzRUREVB2GIaIGkJ5ZgTkrsyFJQHQnJwyNufGKyUREZD4MQ0T1TFtkxIwPslFUKnBXmApThnlDJuOAaSIiS8UwRFSPKgwCc1bm4HK2Af5eCrwxzhcqJYMQEZElYxgiqidCCLy7OQ9pp8vhqJbhzfG+XGqDiMgKMAwR1ZPNuwqxfV8x5DJg5jM+CAvmk2NERNaAYYioHuxJLcFHWwsAAP950gP3tXU0b0FERHTLGIaIbtPx8+VI+GvNsQE9XPDkA65mroiIiGqDYYjoNlzJMeC15dnQVwjcd7cGzw3y5JNjRERWhmGIqI4KSyS8uiwLBUUSmocoMfMZHyjkDEJERNaGYYioDvQVArM+zEZ6pgG+HgrMH+8LRw1/nIiIrBF/exPVkiQJLFiba1p8df4EX/h4OJi7LCIiqiOGIaJa+nBrAZJTS+CgAN541hfhTfgIPRGRNWMYIqqFLf/V4YukQgDA1OHeuLe1xswVERHR7WIYIrpFyaklWP5lAQBg7AAPRHdyNm9BRERULxiGiG5B2h9lSFiTAyGAx3q4YMiDnEuIiMhWMAwR3cQf6Xq8tiIbFQbg/vaOeJ5zCRER2RSGIaIbuJRVgWlLs1BSJtC+hRqvcS4hIiKbwzBEVIOcAgOmvv/XpIpNlJj7H1+olAxCRES2hmGIqBqFJRKmLc1GRq4RQb4OWPC8H1wc+eNCRGSL+Nud6F9KyyW8+kEWzl2pgJebHAsn+sHLTWHusoiIqIEwDBH9Q+UyGzk4dk4PF0cZ3nreD0E+nF2aiMiWMQwR/cVgFJj7SQ4OnSyDRi3Dguf9OLs0EZEdYBgiQuV6YwvX5WLfkVIoHYB5//FFm2Zqc5dFRESNgGGI7J4QAu9uzseuX0qgkAOzx/jg3lZcZoOIyF4wDJFdE0Lggy8L8N3PRZDJgOmjvNGlnZO5yyIiokZkUWFo2bJlCA0NhUajQVRUFA4ePFjjtseOHcOTTz6J0NBQyGQyLFmy5LptXn/9dchksiqv1q1bN+AZkDURQuCjrQX48r+VC6++9JQXekVyvTEiIntjMWFo8+bNiI+Px+zZs5Gamor27dsjJiYGWVlZ1W5fUlKCsLAwLFiwAAEBATUe96677sLVq1dNr7179zbUKZAVEULgk2+12LyrMghNHuqJh7q6mLkqIiIyB4sJQ4sXL8bYsWMRFxeHNm3aYMWKFXBycsKqVauq3b5jx454++23MWTIEKjVNQ90dXBwQEBAgOnl4+PTUKdAVmTtNi027tQBAF6I9UT/blx4lYjIXllEGNLr9Th06BCio6NNbXK5HNHR0UhJSbmtY58+fRpBQUEICwvDsGHDkJ6efrvlkpVbv12Lddsrg9CEgR4Y0INBiIjInllEGMrJyYHRaIS/v3+Vdn9/f2RkZNT5uFFRUVizZg0SExOxfPlynD9/Ht26dUNhYWGN+5SXl0On01V5kW0QQmDN9wVY/b0WAPDs4x4Y2MvNzFUREZG52fTUuv369TP9f7t27RAVFYWmTZvi888/x+jRo6vdJyEhAXPmzGmsEqmRXBsjdO3W2LjHPRD7IIMQERFZSM+Qj48PFAoFMjMzq7RnZmbecHB0bXl4eKBly5Y4c+ZMjdtMnz4dWq3W9Lp48WK9vT+ZhxACH24tMAWhCQMZhIiI6G8WEYZUKhU6dOiApKQkU5skSUhKSkLnzp3r7X2Kiopw9uxZBAYG1riNWq2Gm5tblRdZr2vzCH3+11NjL8R68tYYERFVYTG3yeLj4zFy5EhERkaiU6dOWLJkCYqLixEXFwcAGDFiBIKDg5GQkACgctD18ePHTf9/+fJlpKWlwcXFBc2bNwcATJkyBf3790fTpk1x5coVzJ49GwqFAkOHDjXPSVKjMkoC727Kx/d7iwAA8U954ZH7+fg8ERFVZTFhKDY2FtnZ2Zg1axYyMjIQERGBxMRE06Dq9PR0yOV/d2RduXIF99xzj+nrRYsWYdGiRejRoweSk5MBAJcuXcLQoUORm5sLX19f3H///di/fz98fX0b9dyo8RmMAglrc7H71xLIZcBLw7zQrwuDEBERXU8mhBDmLsKS6XQ6uLu7Q6vV8paZlSjXS5jzcQ72/14GBwXwapwPet7LJTaIiOxJbT6/LaZniKg+lJRJeG15NtJOl0OllGHOsz6IusvR3GUREZEFYxgim1FQaMT0D7Jx6k89nDQyvPkfX7RvydXniYjoxhiGyCZcyTHglfezcDnbADdnOd563hetmta8TAsREdE1DENk9U5f1GPasizk6yT4eynw1kQ/3OGvNHdZRERkJRiGyKqlnizDrI+yUVImEBasxILnfOHjwb/WRER06/ipQVbrxwPFePvTXBiMQEQLNd74jy9cHC1iHlEiIrIiDENkdYQQWLvt75Xne9zrhOkjvaFSysxcGRERWSOGIbIq+gqBRRtysetgCQBgyIOuGPOYB+RyBiEiIqobhiGyGtoiI2Z9lIOjZ8ohlwOThnB5DSIiun0MQ2QVLlytwMwV2bicbYCzRobZY30QeScnUyQiotvHMEQWb9+REsxfnYvScgF/LwXmT/BFsyCVucsiIiIbwTBEFksIgQ2JOqz+XgshKp8Ymz3WB+4uCnOXRkRENoRhiCxSabmEt9fnITm1cqD0Y91d8NwgTzgoOFCaiIjqF8MQWZz0jArMXpmDP69WQCEHXuRAaSIiakAMQ2RRklNL8Pb6yvFBXm5yzBrjg3bNudgqERE1HIYhsggGo8CHWwvw5X8LAQDtW6gx8xkfeLlzfBARETUshiEyu4xcA+atysHx83oAwJA+bhjd3x0Kjg8iIqJGwDBEZrX712Is3piH4jIBZ0cZpo3wRtf2TuYui4iI7AjDEJlFabmEpZ/nY0dKMQCgTTMVXnvGBwHe/CtJRESNi5881OhOXihHwtpcXMw0QCYDhvV1w8iHeFuMiIjMg2GIGk2FQeDTHVps2KmDJAE+Hgq8OsobES35tBgREZkPwxA1inOX9ViwNhdnLlUAAB6IdMILgz05mzQREZkdwxA1KINRYPOPOqzdpoXBCLg5yzFpqBd63stB0kREZBkYhqjBnDhfjv/bkIdzVyp7g7q0c0T8UC/OHURERBaFYYjqXUmZhE++LcDXe4ogBODuIseEJz0R3ckJMhkHSRMRkWVhGKJ6I4TAntQSLP+yANkFRgBAzH3O+M8THhwbREREFothiOrF2Ut6LP0iH7+dLgcABPk6IH6oF+5tzSfFiIjIsjEM0W3RFRux+nstvvupCJIA1EoZhsa4ITbaFWqV3NzlERER3RTDENVJmV7C1uQifLZTi6JSAQDoca8Txj3uwVmkiYjIqvBTi2rFaBTYkVKMtdu0yNVWjgsKC1LiuUGeuKcVb4kREZH1YRiiW2KUBJIPlWD9di3SMw0AAD8vBZ7p74HeHZ2gkPMpMSIisk4MQ3RDBqPAroPF2LhTh0tZlSHIzVmOYX3d8Fh3V6iUDEFERGTdGIaoWqXlEn7YX4zNu3TIyK28HebmLMeTvVzxeE9XuDhycDQREdkGhiGqIivPgK9/KsK2vUUoLJEAAJ6ucgyKdsOj3VzgpGEIIiIi28IwRJAkgbTT5di2twh7DpdAqsxACPJ1wBM9XfFQV2do+Jg8ERHZKIYhO5adb0Di/mIkphTjao7B1B7RUo0ne7nivrsdOTCaiIhsHsOQndEVG7Hvt1LsPlSC1JNlkCqnCIKzRoZekc54tLsLwpuozFskERFRI2IYsgMFhUYcOFaK5EMlOHSyDAbj399r11yNh7o4o/u9TrwVRkREdolhyAYZJYE//tTjwLFSHDhWhj/S9RDi7++HBSvR814n9OzghCZ+SvMVSkREZAEsqitg2bJlCA0NhUajQVRUFA4ePFjjtseOHcOTTz6J0NBQyGQyLFmy5LaPaa3K9RJ++6MMGxK1mLYsCwNevoTn3s7Euu06nPqzMgg1b6LEqEfcsXpmID6eEYin+7kzCBEREcGCeoY2b96M+Ph4rFixAlFRUViyZAliYmJw6tQp+Pn5Xbd9SUkJwsLCMGjQIEyePLlejmnpjJJAboERf2ZU4OzlCpy7pMfZyxVIz6iAUaq6rbOjDB1aaxB1lyM6ttHAx8Ni/qiJiIgsikyIf95AMZ+oqCh07NgRS5cuBQBIkoSQkBBMnDgR06ZNu+G+oaGhmDRpEiZNmlRvx7xGp9PB3d0dWq0Wbm5utT+xGpSUSdAVS6gwiH+8Kic71BZJ0BYZoS2WUFAoISPXYHr9c7zPP3m7K3B3uBptw9W4O1yN8GAlFAo+CUZERPapNp/fFtFdoNfrcejQIUyfPt3UJpfLER0djZSUlEY9Znl5OcrLy01f63S6Or3/zXy5uxCrv9PWej+FHAj0cUB4ExXCg5UIC1YivIkKfp4KyGQMP0RERLVlEWEoJycHRqMR/v7+Vdr9/f1x8uTJRj1mQkIC5syZU6f3rA21UgaVUgalAlA6yCpfShk0Khk8XORwd1HAzUUOd2c5/L0cEOjjgABvB/h6Kjj3DxERUT2yiDBkSaZPn474+HjT1zqdDiEhIfX+PoOj3TA4uv5uuxEREVHdWEQY8vHxgUKhQGZmZpX2zMxMBAQENOox1Wo11Gp1nd6TiIiIrI9FPFqvUqnQoUMHJCUlmdokSUJSUhI6d+5sMcckIiIi22MRPUMAEB8fj5EjRyIyMhKdOnXCkiVLUFxcjLi4OADAiBEjEBwcjISEBACVA6SPHz9u+v/Lly8jLS0NLi4uaN68+S0dk4iIiMhiwlBsbCyys7Mxa9YsZGRkICIiAomJiaYB0Onp6ZDL/+7IunLlCu655x7T14sWLcKiRYvQo0cPJCcn39IxiYiIiCxmniFL1VDzDBEREVHDqc3nt0WMGSIiIiIyF4YhIiIismsMQ0RERGTXGIaIiIjIrjEMERERkV1jGCIiIiK7xjBEREREdo1hiIiIiOwawxARERHZNYtZjsNSXZugW6fTmbkSIiIiulXXPrdvZaENhqGbKCwsBACEhISYuRIiIiKqrcLCQri7u99wG65NdhOSJOHKlStwdXWFTCar12PrdDqEhITg4sWLXPesAfE6Nw5e58bB69w4eJ0bR0NeZyEECgsLERQUVGWh9+qwZ+gm5HI5mjRp0qDv4ebmxh+2RsDr3Dh4nRsHr3Pj4HVuHA11nW/WI3QNB1ATERGRXWMYIiIiIrvGMGRGarUas2fPhlqtNncpNo3XuXHwOjcOXufGwevcOCzlOnMANREREdk19gwRERGRXWMYIiIiIrvGMERERER2jWGIiIiI7BrDUANbtmwZQkNDodFoEBUVhYMHD95w+y+++AKtW7eGRqNB27ZtsX379kaq1LrV5jqvXLkS3bp1g6enJzw9PREdHX3TPxeqVNu/z9ds2rQJMpkMAwYMaNgCbURtr3NBQQGee+45BAYGQq1Wo2XLlvzdcQtqe52XLFmCVq1awdHRESEhIZg8eTLKysoaqVrr9NNPP6F///4ICgqCTCbD119/fdN9kpOTce+990KtVqN58+ZYs2ZNg9cJQQ1m06ZNQqVSiVWrVoljx46JsWPHCg8PD5GZmVnt9vv27RMKhUIsXLhQHD9+XLz22mtCqVSKo0ePNnLl1qW21/mpp54Sy5YtE4cPHxYnTpwQo0aNEu7u7uLSpUuNXLl1qe11vub8+fMiODhYdOvWTTz22GONU6wVq+11Li8vF5GRkeKhhx4Se/fuFefPnxfJyckiLS2tkSu3LrW9zhs2bBBqtVps2LBBnD9/XuzcuVMEBgaKyZMnN3Ll1mX79u1ixowZ4quvvhIAxNatW2+4/blz54STk5OIj48Xx48fF++//75QKBQiMTGxQetkGGpAnTp1Es8995zpa6PRKIKCgkRCQkK12w8ePFg8/PDDVdqioqLEuHHjGrROa1fb6/xvBoNBuLq6irVr1zZUiTahLtfZYDCILl26iI8//liMHDmSYegW1PY6L1++XISFhQm9Xt9YJdqE2l7n5557TvTq1atKW3x8vOjatWuD1mlLbiUMTZ06Vdx1111V2mJjY0VMTEwDViYEb5M1EL1ej0OHDiE6OtrUJpfLER0djZSUlGr3SUlJqbI9AMTExNS4PdXtOv9bSUkJKioq4OXl1VBlWr26Xuc33ngDfn5+GD16dGOUafXqcp2//fZbdO7cGc899xz8/f1x9913Y/78+TAajY1VttWpy3Xu0qULDh06ZLqVdu7cOWzfvh0PPfRQo9RsL8z1OciFWhtITk4OjEYj/P39q7T7+/vj5MmT1e6TkZFR7fYZGRkNVqe1q8t1/rdXXnkFQUFB1/0A0t/qcp337t2LTz75BGlpaY1QoW2oy3U+d+4c/vvf/2LYsGHYvn07zpw5gwkTJqCiogKzZ89ujLKtTl2u81NPPYWcnBzcf//9EELAYDDgP//5D1599dXGKNlu1PQ5qNPpUFpaCkdHxwZ5X/YMkV1bsGABNm3ahK1bt0Kj0Zi7HJtRWFiI4cOHY+XKlfDx8TF3OTZNkiT4+fnho48+QocOHRAbG4sZM2ZgxYoV5i7NpiQnJ2P+/Pn44IMPkJqaiq+++grbtm3D3LlzzV0a1QP2DDUQHx8fKBQKZGZmVmnPzMxEQEBAtfsEBATUanuq23W+ZtGiRViwYAF27dqFdu3aNWSZVq+21/ns2bO4cOEC+vfvb2qTJAkA4ODggFOnTiE8PLxhi7ZCdfn7HBgYCKVSCYVCYWq78847kZGRAb1eD5VK1aA1W6O6XOeZM2di+PDhGDNmDACgbdu2KC4uxrPPPosZM2ZALmffQn2o6XPQzc2twXqFAPYMNRiVSoUOHTogKSnJ1CZJEpKSktC5c+dq9+ncuXOV7QHgxx9/rHF7qtt1BoCFCxdi7ty5SExMRGRkZGOUatVqe51bt26No0ePIi0tzfR69NFH8cADDyAtLQ0hISGNWb7VqMvf565du+LMmTOmsAkAf/zxBwIDAxmEalCX61xSUnJd4LkWQAWX+Kw3ZvscbNDh2XZu06ZNQq1WizVr1ojjx4+LZ599Vnh4eIiMjAwhhBDDhw8X06ZNM22/b98+4eDgIBYtWiROnDghZs+ezUfrb0Ftr/OCBQuESqUSW7ZsEVevXjW9CgsLzXUKVqG21/nf+DTZrantdU5PTxeurq7i+eefF6dOnRLff/+98PPzE/PmzTPXKViF2l7n2bNnC1dXV/HZZ5+Jc+fOiR9++EGEh4eLwYMHm+sUrEJhYaE4fPiwOHz4sAAgFi9eLA4fPiz+/PNPIYQQ06ZNE8OHDzdtf+3R+pdfflmcOHFCLFu2jI/W24L3339f3HHHHUKlUolOnTqJ/fv3m77Xo0cPMXLkyCrbf/7556Jly5ZCpVKJu+66S2zbtq2RK7ZOtbnOTZs2FQCue82ePbvxC7cytf37/E8MQ7euttf5f//7n4iKihJqtVqEhYWJN998UxgMhkau2vrU5jpXVFSI119/XYSHhwuNRiNCQkLEhAkTRH5+fuMXbkV2795d7e/ba9d25MiRokePHtftExERIVQqlQgLCxOrV69u8DplQrB/j4iIiOwXxwwRERGRXWMYIiIiIrvGMERERER2jWGIiIiI7BrDEBEREdk1hiEiIiKyawxDREREZNcYhoiIiMiuMQwRkdXr2bMnJk2aZO4yiMhKcQZqIrIqPXv2REREBJYsWWJqy8vLg1KphKura6PXM3nyZPz555/46quvGv29iah+sGeIiKyel5eXWYIQABw8eBCRkZFmeW8iqh8MQ0RkNUaNGoU9e/bg3XffhUwmg0wmw4ULF667TdazZ09MnDgRkyZNgqenJ/z9/bFy5UoUFxcjLi4Orq6uaN68OXbs2GHaR5IkJCQkoFmzZnB0dET79u2xZcuWGmvR6/VQKpX43//+hxkzZkAmk+G+++5ryNMnogbCMEREVuPdd99F586dMXbsWFy9ehVXr15FSEhItduuXbsWPj4+OHjwICZOnIjx48dj0KBB6NKlC1JTU9GnTx8MHz4cJSUlAICEhASsW7cOK1aswLFjxzB58mQ8/fTT2LNnT7XHd3BwwL59+wAAaWlpuHr1KhITExvmxImoQXHMEBFZlerGDP27rWfPnjAajfj5558BAEajEe7u7njiiSewbt06AEBGRgYCAwORkpKCe+65B15eXti1axc6d+5sOu6YMWNQUlKCjRs3VlvL119/jTFjxiAnJ6dhTpaIGoWDuQsgImoI7dq1M/2/QqGAt7c32rZta2rz9/cHAGRlZeHMmTMoKSnBgw8+WOUYer0e99xzT43vcfjwYbRv376eKyeixsYwREQ2SalUVvlaJpNVaZPJZAAqxwoVFRUBALZt24bg4OAq+6nV6hrfIy0tjWGIyAYwDBGRVVGpVDAajfV6zDZt2kCtViM9PR09evS45f2OHj2KJ598sl5rIaLGxzBERFYlNDQUBw4cwIULF+Di4gIvL6/bPqarqyumTJmCyZMnQ5Ik3H///dBqtdi3bx/c3NwwcuTIaveTJAmnTp3ClStX4OzsDHd399uuhYgaH58mIyKrMmXKFCgUCrRp0wa+vr5IT0+vl+POnTsXM2fOREJCAu6880707dsX27ZtQ7NmzWrcZ968eVizZg2Cg4Mxb968eqmDiBofnyYjIiIiu8aeISIiIrJrDENERERk1xiGiIiIyK4xDBEREZFdYxgiIiIiu8YwRERERHaNYYiIiIjsGsMQERER2TWGISIiIrJrDENERERk1xiGiIiIyK4xDBEREZFd+3/LC7jtSlJOYwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -742,17 +742,7 @@ "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 12, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHICAYAAACrjyVZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpqElEQVR4nO3dd1gU58IF8DO7sEvv0hQRexdjQexi19i7xl4TO5aosTeMSSwxJsaKvZcYe+8tFuxiUBQLRUDpfef7I7pf9gIGloVh4fyeZ58rs1POjlz3ZOadGUEURRFEREREBJnUAYiIiIjyCxYjIiIioo9YjIiIiIg+YjEiIiIi+ojFiIiIiOgjFiMiIiKij1iMiIiIiD5iMSIiIiL6iMWIiIiI6CMWIyLKcy9evIAgCPD19S0U2y0oGjdujMaNG0sdgyhXsRgRScjX1xeCIEAQBFy6dCnd+6IowsXFBYIg4Msvv5QgYc5s27YNy5YtKzTbLQgePXqE2bNn48WLF1JHIZKEgdQBiAgwMjLCtm3bUL9+fY3p58+fx+vXr6FUKiVKljPbtm3DgwcPMG7cOI3prq6uSEhIgKGhYYHabkHw6NEjzJkzB40bN0aJEiU03jtx4oQ0oYjyEI8YEeUDbdq0we7du5Gamqoxfdu2bahRowYcHR0lSpY7BEGAkZER5HJ5odhufhMXF6fVcgqFAgqFQsdpiPIXFiOifKBXr16IiIjAyZMn1dOSk5OxZ88e9O7dO8NlfvzxR9StWxe2trYwNjZGjRo1sGfPnnTzJSQkYMyYMbCzs4O5uTnat2+PN2/eQBAEzJ49Wz3f7NmzIQgCAgICMGDAAFhZWcHS0hIDBw5EfHx8uvVu2bIFNWrUgLGxMWxsbNCzZ0+8evVK/X7jxo1x+PBhvHz5Un268NMRiP8d63Pu3Dn1PP/7+vdRiz/++ANt27aFs7MzlEolSpUqhXnz5iEtLU2r7X5y5swZNGjQAKamprCyskKHDh3w+PFjjXmyu38ysnv3bvU+s7Ozw1dffYU3b96o3//xxx8hCAJevnyZbtmpU6dCoVDg/fv36mnXr19Hq1atYGlpCRMTEzRq1AiXL1/OMPejR4/Qu3dvWFtbpzsy+Ymvry+6desGAGjSpIl6/507d069b/89xujT39uuXbswZ84cFC1aFObm5ujatSuioqKQlJSEcePGwd7eHmZmZhg4cCCSkpLSbfe/fpeI8hJPpRHlAyVKlICnpye2b9+O1q1bAwCOHj2KqKgo9OzZEz///HO6ZZYvX4727dujT58+SE5Oxo4dO9CtWzccOnQIbdu2Vc83YMAA7Nq1C3379kWdOnVw/vx5jff/V/fu3eHm5gYfHx/cvn0ba9euhb29Pb7//nv1PAsWLMCMGTPQvXt3DBkyBO/evcOKFSvQsGFD3LlzB1ZWVvjuu+8QFRWF169fY+nSpQAAMzOzDLdZoUIFbN68WWPahw8f4O3tDXt7e/U0X19fmJmZwdvbG2ZmZjhz5gxmzpyJ6Oho/PDDDwCQre0CwKlTp9C6dWuULFkSs2fPRkJCAlasWIF69erh9u3b6U4nZWX/ZMTX1xcDBw5ErVq14OPjg9DQUCxfvhyXL19W77Pu3btj8uTJ2LVrFyZNmqSx/K5du9CiRQtYW1sD+KfMtW7dGjVq1MCsWbMgk8mwYcMGeHl54eLFi6hdu7bG8t26dUOZMmWwcOFCiKKYYcaGDRtizJgx+PnnnzFt2jRUqFABANT/mxkfHx8YGxtjypQpCAgIwIoVK2BoaAiZTIb3799j9uzZuHbtGnx9feHm5oaZM2eql83K7xJRnhKJSDIbNmwQAYh//fWX+Msvv4jm5uZifHy8KIqi2K1bN7FJkyaiKIqiq6ur2LZtW41lP833SXJysli5cmXRy8tLPe3WrVsiAHHcuHEa8w4YMEAEIM6aNUs9bdasWSIAcdCgQRrzdurUSbS1tVX//OLFC1Eul4sLFizQmO/+/fuigYGBxvS2bduKrq6u6T53YGCgCEDcsGFDhvtFpVKJX375pWhmZiY+fPgw088siqI4fPhw0cTERExMTNRqu+7u7qK9vb0YERGhnnb37l1RJpOJ/fr1U0/L6v7JSHJysmhvby9WrlxZTEhIUE8/dOiQCECcOXOmepqnp6dYo0YNjeVv3LghAhA3bdokiuI/+6dMmTJiy5YtRZVKpZ4vPj5edHNzE5s3b54ud69evT6b8ZPdu3eLAMSzZ8+me69Ro0Zio0aN1D+fPXtWBCBWrlxZTE5OVk/v1auXKAiC2Lp1a43lPT09Nf5esvO7RJRXeCqNKJ/o3r07EhIScOjQIcTExODQoUOZnkYDAGNjY/Wf379/j6ioKDRo0AC3b99WTz927BgA4JtvvtFYdvTo0Zmud8SIERo/N2jQABEREYiOjgYA7Nu3DyqVCt27d0d4eLj65ejoiDJlyuDs2bNZ/9CZmDdvHg4dOgRfX19UrFhRPf3fnzkmJgbh4eFo0KAB4uPj8eTJk2xvJzg4GH5+fhgwYABsbGzU06tWrYrmzZvjyJEj6Zb5r/2TkZs3byIsLAzffPMNjIyM1NPbtm2L8uXL4/Dhw+ppPXr0wK1bt/Ds2TP1tJ07d0KpVKJDhw4AAD8/P/z999/o3bs3IiIi1H8HcXFxaNq0KS5cuACVSvXZ3LrUr18/jQHtHh4eEEURgwYN0pjPw8MDr169Uo+ly4vfJaLs4qk0onyiSJEiaNasGbZt24b4+HikpaWha9eumc5/6NAhzJ8/H35+fhrjNgRBUP/55cuXkMlkcHNz01i2dOnSma63ePHiGj9/OnXz/v17WFhY4O+//4YoiihTpkyGy+f0iq9jx45hzpw5mDp1Krp06aLx3sOHDzF9+nScOXMmXRGJiorK9rY+jeUpV65cuvcqVKiA48ePIy4uDqampurp/7V/srud8uXLa9yqoVu3bvD29sbOnTsxbdo0iKKI3bt3o3Xr1ur1//333wCA/v37Z/rZoqKi1NkApPsd0KX/3SeWlpYAABcXl3TTVSoVoqKiYGtrm+u/S0TaYDEiykd69+6NoUOHIiQkBK1bt850fMXFixfRvn17NGzYEL/++iucnJxgaGiIDRs2YNu2bTnKkNkVW+LHcSkqlQqCIODo0aMZzvu58Tz/JTAwEH369EHz5s0xf/58jfc+fPiARo0awcLCAnPnzkWpUqVgZGSE27dv49tvv013hCS3/Nf+ySlnZ2c0aNAAu3btwrRp03Dt2jUEBQVpjGH69Fl/+OEHuLu7Z7ie//17+PfRNl3LbJ9I+btEpC0WI6J8pFOnThg+fDiuXbuGnTt3Zjrf3r17YWRkhOPHj2vc42jDhg0a87m6ukKlUiEwMFDjv8oDAgK0zliqVCmIogg3NzeULVv2s/P+++jVf0lISEDnzp1hZWWF7du3QybTPNN/7tw5REREYN++fWjYsKF6emBgoNbbdXV1BQD4+/une+/Jkyews7PTOFqkrX9vx8vLS+M9f39/9fuf9OjRA9988w38/f2xc+dOmJiYoF27dur3S5UqBQCwsLBAs2bNcpzv37Lzd5ZT2fldIsorHGNElI+YmZnht99+w+zZszW+CP+XXC6HIAgal6m/ePECBw4c0JivZcuWAIBff/1VY/qKFSu0zti5c2fI5XLMmTMn3VESURQRERGh/tnU1DTLp7hGjBiBp0+fYv/+/RqngD75dETh39tMTk5O99mys10nJye4u7tj48aN+PDhg3r6gwcPcOLECbRp0yZL2f9LzZo1YW9vj1WrVmmc9jx69CgeP36c7irBLl26QC6XY/v27di9eze+/PJLjYJWo0YNlCpVCj/++CNiY2PTbe/du3daZ/20nX/vj9ySnd8lorzCI0ZE+cznxo180rZtWyxZsgStWrVC7969ERYWhpUrV6J06dK4d++eer4aNWqgS5cuWLZsGSIiItSX6z99+hSAdkcHSpUqhfnz52Pq1Kl48eIFOnbsCHNzcwQGBmL//v0YNmwYJk6cqN7+zp074e3tjVq1asHMzCzDwnf48GFs2rQJXbp0wb179zQ+g5mZGTp27Ii6devC2toa/fv3x5gxYyAIAjZv3pzhKaysbhf453RU69at4enpicGDB6sv17e0tNS4z1NOGBoa4vvvv8fAgQPRqFEj9OrVS325fokSJTB+/HiN+e3t7dGkSRMsWbIEMTEx6NGjh8b7MpkMa9euRevWrVGpUiUMHDgQRYsWxZs3b3D27FlYWFjgzz//1Cqru7s75HI5vv/+e0RFRUGpVMLLy0vjtgm6kp3fJaI8I8GVcET00b8v1/+cjC7XX7dunVimTBlRqVSK5cuXFzds2KC+NPvf4uLixJEjR4o2NjaimZmZ2LFjR9Hf318EIC5atEg936dl3717l2HGwMBAjel79+4V69evL5qamoqmpqZi+fLlxZEjR4r+/v7qeWJjY8XevXuLVlZWIgD1pdr/e9n8p21k9Pr35d2XL18W69SpIxobG4vOzs7i5MmTxePHj6e7vDyr2/3k1KlTYr169URjY2PRwsJCbNeunfjo0SONebK7fzKyc+dOsXr16qJSqRRtbGzEPn36iK9fv85w3jVr1ogARHNzc41L/P/tzp07YufOnUVbW1tRqVSKrq6uYvfu3cXTp0//Z+7PWbNmjViyZElRLpdr7NvMLtffvXu3xvKZ/V5nliUrv0tEeUUQRR2NGCQiveHn54fq1atjy5Yt6NOnj9RxiIjyDY4xIirgEhIS0k1btmwZZDKZxiBmIiLiGCOiAm/x4sW4desWmjRpAgMDAxw9ehRHjx7FsGHD0t1nhoiosOOpNKIC7uTJk5gzZw4ePXqE2NhYFC9eHH379sV3330HAwP+txER0b+xGBERERF9xDFGRERERB+xGBERERF9xAEG2aRSqfD27VuYm5vn6a3ziYiISHuiKCImJgbOzs7pHjn0byxG2fT27VteyUNERKSnXr16hWLFimX6PotRNpmbmwP4Z8daWFhInIaIiIiyIjo6Gi4uLurv8cywGGXTp9NnFhYWLEZERER65r+GwXDwNREREdFHLEZEREREH7EYEREREX3EMUZERER5KC0tDSkpKVLHKHAMDQ0hl8tzvB4WIyIiojwgiiJCQkLw4cMHqaMUWFZWVnB0dMzRfQZZjIiIiPLAp1Jkb28PExMT3iRYh0RRRHx8PMLCwgAATk5OWq+LxYiIiCiXpaWlqUuRra2t1HEKJGNjYwBAWFgY7O3ttT6txsHXREREuezTmCITExOJkxRsn/ZvTsZwsRgRERHlEZ4+y1262L8sRkREREQf6W0x8vHxQa1atWBubg57e3t07NgR/v7+/7nc7t27Ub58eRgZGaFKlSo4cuRIHqQlIiIifaC3xej8+fMYOXIkrl27hpMnTyIlJQUtWrRAXFxcpstcuXIFvXr1wuDBg3Hnzh107NgRHTt2xIMHD/IwORERkf4YMGAABEGAIAhQKBQoXbo05s6di507d0Iul+PNmzcZLlemTBl4e3urf3748CG6d++OIkWKQKlUomzZspg5cybi4+M1litRooR6e8bGxihRogS6d++OM2fO5Orn/ERvi9GxY8cwYMAAVKpUCdWqVYOvry+CgoJw69atTJdZvnw5WrVqhUmTJqFChQqYN28evvjiC/zyyy95mDxjqaEReOv3AIF/3UHU85dIDYtEWsQHpEbHIjk+ASqVSuqIRERUSLVq1QrBwcH4+++/MWHCBMyePRtPnz6Fra0tNm7cmG7+CxcuICAgAIMHDwYAXLt2DR4eHkhOTsbhw4fx9OlTLFiwAL6+vmjevDmSk5M1lp87dy6Cg4Ph7++PTZs2wcrKCs2aNcOCBQty/bMWmMv1o6KiAAA2NjaZznP16lWN9goALVu2xIEDBzJdJikpCUlJSeqfo6OjcxY0E2GjF2LQHxtxPDkCc0xLoY/xP/dgeJGWgGbvb8FCMMCdYo0gGCkhMzfFzxFPcTE6FAPK1UCXqrUgs7ZAsrkxtt7/C7aO9ujesROUTkUgd7CDzNKMA/6IiEhrSqUSjo6OAICvv/4a+/fvx5EjR9C3b1/4+vpi2rRpGvOvX78eHh4eqFSpEkRRxODBg1GhQgXs27cPMtk/x2RcXV1RtmxZVK9eHUuXLsW3336rXt7c3Fy9veLFi6Nhw4ZwcnLCzJkz0bVrV5QrVy7XPmuBKEYqlQrjxo1DvXr1ULly5UznCwkJgYODg8Y0BwcHhISEZLqMj48P5syZo7OsmREU/9zK3BAC5LL/P5CXJP5zpMgQAsSEJIgJSVC9j8aT6Df4Kzkcre4/RmzAP6XwVVoivn1/E0rI0GjLRXUZWpDwAqdS3mNkuZoYUL8pDJztIRQtgssRb1G2dg2U8awJmaFhrn9GIiL6f6IoQoxPlGTbgolRjv6D2djYGBERERg8eDCWLFmCCxcuoGHDhgCA2NhY7NmzB0uXLgUA+Pn54dGjR9i2bZu6FH1SrVo1NGvWDNu3b9coRhkZO3Ys5s2bhz/++AOTJ0/WOvt/KRDFaOTIkXjw4AEuXbqk83VPnTpV4yhTdHQ0XFxcdL4dpy2LcBiLNKaJKhWKJyQiPDwCSTFxKGJhCTEhEarYeHx3+w56Bwaiop0jbI3NkfY+BtEvX6DdiTgIKalQuJZAWlgkVB9i8DYlAa+S45D0/DVig08AAF6nJaL9+5swhIAHDg2gdHGCopQLziIG70zk8GrVEhWbNoTc1krnn5WIiAAxPhGBJVpIsm23FycgmBpnezlRFHH69GkcP34co0ePRsWKFVGnTh2sX79eXYx27doFURTRs2dPAMDTp08BABUqVMhwnRUqVMjS97eNjQ3s7e3x4sWLbOfODr0vRqNGjcKhQ4dw4cIFFCtW7LPzOjo6IjQ0VGNaaGio+nBdRpRKJZRKpU6yZpcgk8HQ1AS2pulvCFa3RiXU/Z9ptgAOQvP8qyoxCb/ff4yA234oJjeCTUIaUl+HIeX+PZQ69xSKVBXkaSqkvniD1BdvsCH6EU4lR2LmrmPoZ+wMub0NYks547d3T+Feowb6fT0MinIlIBjo/a8OERFl0aFDh2BmZoaUlBSoVCr07t0bs2fPBgAMGjQI48ePx4oVK2Bubo7169ejW7duMDc311iHKIqZrl+hUGQphyiKuT40RG+/3URRxOjRo7F//36cO3cObm5u/7mMp6cnTp8+jXHjxqmnnTx5Ep6enrmYVFoyIyVca7nDtZa7xvRmAAKwAaq0NKhCI5AS+AbJAUHw3LgOaY/vo5p5ceB9KtLCInHn9XP8Gv0ArjeuwGvnVQhGCigqlcZ+WTRkxezR9qtecK1fG4JMb8fyExHlOcHECG4vTki27exo0qQJfvvtNygUCjg7O8PgX/9x3LNnT4wfPx67du1Cw4YNcfnyZfj4+KjfL1OmDADg8ePHqF69erp1P378GGXLlv3PDBEREXj37l2Wvu9zQm+L0ciRI7Ft2zb88ccfMDc3V48TsrS0VD8vpV+/fihatKj6L2js2LFo1KgRfvrpJ7Rt2xY7duzAzZs3sXr1ask+h9RkcjlkzvYwcLaHcb3qmNu/g/o9VWw8kv0DUfr4aQzeuxvmsYmQpZhCFROHpFuPsPz9LTxLS4DhjpNoXsQVyi8qILKMMwIsDdG4bw9YOWd+JI6IqLATBEGr01lSMDU1RenSpTN8z9zcHN26dcP69evx7NkzlC1bFg0aNFC/X716dZQvXx5Lly5Fz549NcYZ3b17F6dOncrS1eHLly+HTCZDx44dc/x5PkvUUwAyfG3YsEE9T6NGjcT+/ftrLLdr1y6xbNmyokKhECtVqiQePnw4W9uNiooSAYhRUVE6+BT6R5WWJiYFvBSj9pwQR9dtLtaxdRZvODcQA+zqiwF29cV5pqVEAKKnwkp81WyI+G76z2Ls4fNi9JsQqaMTEUkmISFBfPTokZiQkCB1lGzr37+/2KFDh8/Oc/HiRRGAaG1tLS5atCjd+5cuXRJNTEzEjh07itevXxdfvnwp7tq1S3RxcRFbtWolpqamqud1dXUV586dKwYHB4tBQUHi+fPnxaFDh4qCIGS47n/73H7O6ve3IIqfOelH6URHR8PS0hJRUVGwsLCQOk6+IKakIvnxcyTefIi1m3yx/OppdJDbYJypKwAgVRRRO/I6XM2ssH34BLi18YKRR1XIsnkol4hIXyUmJiIwMBBubm4wMtKvf/sGDBiADx8+fPbWNgBQvnx5BAQE4NWrV3Byckr3/v379zFnzhycPXsWkZGRAP4ZJ7x06VKNU3MlSpTAy5cvAfwz9sjR0RF16tTBiBEj0KRJk89m+Nx+zur3N4tRNrEYZU3iyzdIufkIidfu4q8TZ9D23lFYCga4YeMBuSBAUCpwpKgCUS5F0O2bYSjTpB7vtUREBZY+F6PcoFKpMHjwYBw/fhznz59Xj0PKKRYjCbAYaeeV3wM8OHAENcJTEH/xNtLehqHrh7vwS43BQrPS6F26Gkya14WhV20oPavC2JL7logKDhaj9FQqlfpKtkGDBulknbooRno7+Jr0i4t7Zbi4/3PzTVEUkfL3S/SaMQdW58+iAeyR+joU0Rv248SqNZgY+zd6lauOpbPnwaRFXcitWZKIiAoamUyGsWPHSh0jHRYjynOCIEBRtgQm79yAyQBU8YlIuHQb8Seu4Ibvb4gX05D24i3CRi0ADOQwrv8FDlmr0HrUULhUrSR1fCIiKsB4Ki2beCotd6lUKtzYdQCGt/1hf/0Jkh89x7PUeLT8cBsKCLjXZigcu7aCWbvGkNtZSx2XiChLeCotb/BUGhU4MpkMdXp2Bv65kzySn73Cs5XrUX39a1jFp8DgxiOE33iE8KnLsbZIKop51sBXs6fCkvdMIiIiHeCtiilfU5RyQYsls3D7Qyj+fOwHm1lfQ1mtHOJSk7HswVWMWvMzzlZvh9ChsxB34grElFSpIxMRkR5jMSK9YVqqOKxH9UaxU2vhdGoNJrTqiObWxVA5TYnYA2cQ0udbzCxWDcNrN8b9wyeljktERHqIp9JILxVxr4T5R/dCFEUk33uKmF3HEbPvJDY9vYmgsEco2zMY1h4NYN67Lcw6N4Pcyvy/V0pERIUejxiRXhMEAcpq5WC3YAyK392LJbPnoVPJSmhp5oCku/4I/3YJ1pauh27lquPC+q2ffbozERERixEVGHKFAl1mTMS+Zw9Q4cFB2M4fA0WlUtgUHYQ9T/2wc9RUvGrYHx9W70FaVIzUcYmIKB9iMaICSW5rBavh3VDs7Ab4rPkNPSvUQA8rF6Q8CUTEd8txonwL9K/miVsHjkgdlYgoXxswYAAEQUj3atWqVZ5sf/bs2XB3d8+TbQEcY0QFnCAIaNi/Fxr274W0qBjE7jmJKN8D2HzzJLaHhCCsRz+sbdkTloO7wLRtAwgG/L8EEdH/atWqFTZs2KAxTalUSpQmd/GIERUacktzWA7uDJcLGzH4pwVoV6IC+pkWQ+LVuwgdMhMPvuiC+Z2/QsTLV1JHJSLKV5RKJRwdHTVe1tbWOHfuHBQKBS5evKied/HixbC3t0doaCgA4NixY6hfvz6srKxga2uLL7/8Es+ePdNY/+vXr9GrVy/Y2NjA1NQUNWvWxPXr1+Hr64s5c+bg7t276iNVvr6+ufpZWYyo0BEEAU2/GYSDgY/Q7cEJWHv3h8zOCtue3cOM/VvRrGwVhE9dhpTAN1JHJaJCIC4uDnFxcRoXhyQnJyMuLg5JSUkZzqtSqdTTUlJSEBcXh8TExCzNq0uNGzfGuHHj0LdvX0RFReHOnTuYMWMG1q5dCwcHB3UOb29v3Lx5E6dPn4ZMJkOnTp3UuWJjY9GoUSO8efMGBw8exN27dzF58mSoVCr06NEDEyZMQKVKlRAcHIzg4GD06NFDp58hHZGyJSoqSgQgRkVFSR2FdCgtIVHcNGaKWNbESlxgVloMsKsvBtg3FN8MnC5e3bZH6nhEpOcSEhLER48eiQkJCeneAyACEMPCwtTT5s+fLwIQhwwZojGviYmJCEAMDAxUT1u6dKkIQOzdu7fGvHZ2diIA8cGDB+ppq1evznb2/v37i3K5XDQ1NdV4LViwQBRFUUxKShLd3d3F7t27ixUrVhSHDh362fW9e/dOBCDev39fFEVR/P3330Vzc3MxIiIiw/lnzZolVqtWLUtZP7efs/r9zSNGRABkRkr0Xe6DxzERGP3HFhh7eQAqFQ7v3QfP3l3RyqkkYk9e5eX+RFQoNWnSBH5+fhqvESNGAAAUCgW2bt2KvXv3IjExEUuXLtVY9u+//0avXr1QsmRJWFhYoESJEgCAoKAgAICfnx+qV68OGxubPP1MmeFIU6J/kclkMPfygLmXB5IePUPQkJEwuPoYxaOSEdp7MhSVy8B6XF+YtG0AGQdqE5EOxMbGAgBMTEzU0yZNmoRx48bB4H/+nQkLCwMAGBsbq6eNHDkSQ4cOhVwu15j3xYsX6eYdMGCAVhlNTU1RunTpTN+/cuUKACAyMhKRkZEwNTVVv9euXTu4urpizZo1cHZ2hkqlQuXKlZGcnJwuX37AI0ZEmVBWLIV5V47h7xu34P31SAgmxkh+8DeuD5yE8hZ2+G3EeKiSdXu+nogKH1NTU5iamkIQBPU0hUIBU1PTdFd+fZpXJvv/r29DQ0OYmpqme5p8ZvPq2rNnzzB+/HisWbMGHh4e6N+/v3r8UEREBPz9/TF9+nQ0bdoUFSpUwPv37zWWr1q1Kvz8/BAZGZnh+hUKBdLS0nSeOzMsRkT/oUSt6ij/01S43tkN60kD4at6h78TorB7/Ua88uyD6M0HIbIgEVEBlpSUhJCQEI1XeHg40tLS8NVXX6Fly5YYOHAgNmzYgHv37uGnn34CAFhbW8PW1harV69GQEAAzpw5A29vb4119+rVC46OjujYsSMuX76M58+fY+/evbh69SoAoESJEggMDISfnx/Cw8PTDUjXNRYjoiyS21jCZvIg/PL4BuZ07IXxRasgNSgY77x/wJOa3bBi0CgkxcZJHZOISOeOHTsGJycnjVf9+vWxYMECvHz5Er///jsAwMnJCatXr8b06dNx9+5dyGQy7NixA7du3ULlypUxfvx4/PDDDxrrVigUOHHiBOzt7dGmTRtUqVIFixYtUp8a7NKlC1q1aoUmTZqgSJEi2L59e65+VkHkaNJsiY6OhqWlJaKiomBhYSF1HJKQKj4R0ZsO4sOKrfj9xT0sin8BD1M7nPhtPcx7toZgyDFIRPSPxMREBAYGws3NLd0pL9Kdz+3nrH5/84gRkZZkJkawGtEdxW/uQrGubWBvYITOgjXeeS9GUN2vEL3zKFI/Di4kIiL9wGJElEMyYyVGblyJ56HBGLRoDuRFrJH64g32DpuEClZFsOO7+bzMn4hIT7AYEemIqY0V7Eb2QvG/dsJmxghsSAlFQEI0ji/5DW9aDkf8xVtSRyQiov/AYkSkYzJTY1iP6YMD/n6Y3LQdvrEtg6Q7jxHceRxufTkM13bskzoiERFlgsWIKJfYuBTF96cOovrtfbAc0gUwNMCiUwfh2asLpns0R0pQsNQRiSiP8bR67tLF/mUxIsplBvY2sPMZh2KXNgOujhAAuPuHIcizD8Jnr0TahxipIxJRLvt0Y8X4+HiJkxRsn/ZvTm5kycv1s4mX61NOPT58Cpbr/kTCxdsAgAPyaKQ1rolx63+BwiR/3RqfiHQnODgYHz58gL29PUxMTDTudE05I4oi4uPjERYWBisrKzg5OaWbJ6vf3yxG2cRiRLogiiLiT13DyxnL0eDGPkSKKVhc0gPf/LYEJs09+Q8mUQEkiiJCQkLw4cMHqaMUWFZWVnB0dMzw31AWo1zCYkS6lJKYiF+Gj8f23buwyaQ8DAUZjBvXgvXsb2BcKfMHNhKR/kpLS0NKCh8jpGuGhobpHqT7byxGuYTFiHJDalQMopZtxoffd0NMTkHf6IeoWq0qFu7ZAltXF6njERHpPd75mkiPGFiaw3bWNyh+eQse1iqJaykfsOnmJTz26v/PQ2rz8MnSRESFGY8YZROPGFFe+POnlXj022Z0jfrnygpF1bJInfgV3Fo3kTgZEZF+4hEjIj3WbsJITH58Cbbzx0BmYYand+6iQptm6FOpFuLfhEgdj4iowGIxIsqnBEMDWA3vBpdr23CtihOSoELQ3wEIaTQQURv/4Ok1IqJcwFNp2cRTaSSVM6s3wmDtQRQNDAMACNXKInJ4B9Ts1l7iZERE+R9PpREVMF7D+qPBlZ2wXTAWMnNT/Hr1NDy6d8DURm2hiuXddImIdIHFiEiPCAYGsBrWFS5XtuBNMWuoANjeDkBQvb6IPXyBz2EiIsohFiMiPWTgaIft/ndw5uc16FquGtLehiF0wHe40GEYXt6+J3U8IiK9xWJEpMeajB6C4hc3w2p8P6QYyDD8yDZUrlkDByfNgahSSR2PiEjvsBgR6TmZsRK204bCaOf3MDEzgyEAp/VH8bbdKCT7B0odj4hIr7AYERUQJRrWwY2wVzgx9yfYmlsg8cZ9vGoyCPuHT0ZyfILU8YiI9AKLEVEBYqBQoOb0MSh+eTNMWtTFnfhIdFn9A75wKIaIq7eljkdElO+xGBEVQAZFHeC4ZRFUX3eFpcwQZVMM8KGTNyLm/w5VYpLU8YiI8i3e4DGbeINH0jdvHvojZtE6GB67CgBIKVUU78d0g2fvLhInIyLKO7zBIxEBAIpWKofymxfDwXcB5EVssPDuBTTo0xUL2naHmJQsdTwionyFxYiokDBr2xBFL/gitpgd0gAUvfQIr5sPRdJdf6mjERHlG3pdjC5cuIB27drB2dkZgiDgwIEDn53/3LlzEAQh3SskhE8rp8LB0M4a+/6+hwtLf0cjZzckP36O162G49aU73nlGhER9LwYxcXFoVq1ali5cmW2lvP390dwcLD6ZW9vn0sJifKnBuOGofjFTTBt3wQxyUlo/8Ms1HZyxbMLV6WORkQkKQOpA+RE69at0bp162wvZ29vDysrK90HItIjcjtrOKydgwelbBE74yYMYmMQ32sKPswcBcuhXSDI9Pq/m4iItFIo/+Vzd3eHk5MTmjdvjsuXL3923qSkJERHR2u8iAoKQRDQbNpY3L1xE2u8usAkWYWI6T8juOt4RDz+W+p4RER5rlAVIycnJ6xatQp79+7F3r174eLigsaNG+P27cxvfOfj4wNLS0v1y8XFJQ8TE+WNEjWqofmJzbBb7A3BxAiHTp1E6cqVsGXyLKmjERHlqQJzHyNBELB//3507NgxW8s1atQIxYsXx+bNmzN8PykpCUlJ/39DvOjoaLi4uPA+RlRgJT8LQus69XEm/BUGGxfFgoEjYOczDnILM6mjERFpjfcxyqLatWsjICAg0/eVSiUsLCw0XkQFmaJUcRx96Y8FbXvA28wNsbuO43XjgYi/dlfqaEREua7QFyM/Pz84OTlJHYMoX1GYGGPaoR1w+3MlDFydkBIUjF6NW2Bqi05ISUyUOh4RUa7R62IUGxsLPz8/+Pn5AQACAwPh5+eHoKAgAMDUqVPRr18/9fzLli3DH3/8gYCAADx48ADjxo3DmTNnMHLkSCniE+V7xh5V4XJ2A+7XL4eDSWH48eQfONe8H1KCgqWORkSUK/T6cv2bN2+iSZMm6p+9vb0BAP3794evry+Cg4PVJQkAkpOTMWHCBLx58wYmJiaoWrUqTp06pbEOItIkMzdFpwPrsHqMHYK2/IGST4LxuvFAFPlpEsw6NZU6HhGRThWYwdd5hQ+RpcIs5eVbhH49D0l/PcA7VTI2lVBi8fEDMLOzkToaEdFncfA1Eemcoaszih5cAavx/TAp5il+u30RvSt8gaRHz6SORkSkEyxGRJQtgoEBbKcNxbffL4CroQlGptriTcthiNr4B3gAmoj0HYsREWnly/Hf4MnLF6ja0gtiYjLCJ/6Ig+0G4cMbDswmIv3FYkREWjNyKgLHbd/DdvY3eIEk9DmyGdVLlUXAifNSRyMi0gqLERHliCCTwWpkLxj9NAGWBgrYp8mQNmAWotbt46k1ItI7LEZEpBP1+vXAncePsLp9XxikpCF8ylKEDJ6J2NB3UkcjIsoyFiMi0hn7UiVQdc8K2M4bBRjIsXLXVriXKIU7B49KHY2IKEtYjIhIpwRBgNWIHrDd/RM2JofiWWIM/uw/HtE7WI6IKP9jMSKiXGFVvwb+un8X31VpgN5yO7wbvRBh4xZBlZAkdTQiokyxGBFRrnEsVxrz/M7BZuoQQBAQueVPDCjtjr8vXZc6GhFRhliMiChXCTIZbCYMgNPuJfhFDMPmt0/QtEkTfDh6UepoRETpsBgRUZ4waVQT3kd3wN2iCKYZl0BEv2mI/H4dxLQ0qaMREamxGBFRnilZuwZuhgShy4ghAID3P/riavvhCA98KXEyIqJ/sBgRUZ6SGxuhyGJv2K/8DrFKOfoe34aaFSrj3sHjUkcjIoKB1AGIqHAy794KMiMByd06IzUlGYlfL0BMigzmXZpLHY2ICjEeMSIiyVRp3xK3Hj3E1mY9YZssImzEXIRP/xmq5BSpoxFRIcViRESSsi9VAk2OrIfVuL4AgBO/rIWXS2mE/f1c4mREVBixGBGR5AS5HLbfDYPN2jmYEheA82FBmFavFZLu/y11NCIqZFiMiCjfsO7ghT/27kMbaxeMU9nhTduvEbP/lNSxiKgQYTEionylevtWOPj8IWya1oWYkISwYXOws+8opKVw3BER5T4WIyLKd+RW5nDa9j2sxvTB/sRQ9NyyEq1LVEDy+yipoxFRAcdiRET5kiCXw3bGCNgM6QoFZCj7PhkhbUci+VmQ1NGIqABjMSKifG3Q0oX4a/8heJeuiZS/X+JNy+GIO8OH0BJR7mAxIqJ8r2rH1ih+cg2UtSoj9UMMurX5Eot7DoJKpZI6GhEVMCxGRKQXDBxsUXT/clyq7YqjSeGYvtMXNwdPgcibQRKRDrEYEZHeEJQK9D+0GXM69sYC8zKwPXQVb7t5Iy3ig9TRiKiAYDEiIr0ik8kwc/9WfLNnAwQzEyRe8cMtr364d5T3OyKinGMxIiK9ZNqiLoodXYUUlyIY8ugs6n/ZGieWrZI6FhHpORYjItJbivJusNn5I4zMzWEgAgbzNyBq/X6pYxGRHmMxIiK9Zl+mJC688MeBHl/DVVAg/NslCJ+6DGJqqtTRiEgP6aQYRUZG8rJZIpKMkYU5GmxbDpvpwwEAV1dtRIeSlRD1NkTiZESkb7QuRo8ePcKiRYtQt25dFClSBPb29ujXrx/27t2LuLg4XWYkIvpPgiDAeuxXsF07G2Njn+LPV08xpmZjpLwOlToaEemRbBUjf39/TJgwAWXKlEGdOnXw119/YcSIEQgNDcWRI0fg6uqKuXPnws7ODq1bt8Zvv/2WW7mJiDJk1aEpNm3whaeJHcYmWeNNy2FI9HsidSwi0hOCKIpiVmfesGEDrl+/jg4dOqBp06ZQKBQZzvfixQv88ccf+PPPP3HqVMG6hDY6OhqWlpaIioqChYWF1HGIKBMpr0MR0mcykh89h2CsROKcYag4sLvUsYhIIln9/s5WMSIWIyJ9ooqJQ8iQWTh09AhGxjzBvK598e0uXwiCIHU0IspjWf3+1sng64SEBLx58ybd9IcPH+pi9UREWpGZm8Jp6yLcLlsEqRBx58/jeDd5Ca9YI6JM5bgY7dmzB2XKlEHbtm1RtWpVXL/+/0+97tu3b05XT0SUI4KBAX69cRbrBo3BHPPSiPE9gJD+30EVlyB1NCLKh3JcjObPn49bt27Bz88PGzZswODBg7Ft2zYAAM/SEVF+IJPJMGjdchRbPx+CkQJxxy9jdvXGePPgsdTRiCifMcjpClJSUuDg4AAAqFGjBi5cuIBOnTohICCA5/GJKF8xa9cYBo52WPRlD8z7+xE21qiFu9dvwMq9otTRiCifyPERI3t7e9y7d0/9s42NDU6ePInHjx9rTCciyg+MalVG9+2r4Ko0w1eG9njfdQISrvhJHYuI8okcX5X2+vVrGBgYwNHRMd17ly9fRr169XKy+nyHV6URFQxRQW8QO2I+Ev96ACgMUeTnqbDo0lzqWESUS3LtqrRevXrhwYMH6p+LFSuWYSkCUOBKEREVHJbFi8Jp7zKYtm2ElKQktOvVAwu79OXYSKJCLtvFaOfOnWjatKlGOfo3URQRGxub42BERLlNZqyEw7o5OF+vFC6kvMf8fdtwd+RsiGlpUkcjIoloNcbI3d0dXl5eGZajsLAwWFlZ5TQXEVGeEORyDN3vi7md+uBni/Iw330GoUNmQZWYJHU0IpJAtouRIAjw9fWFl5cXvLy8cP/+/XTzqFQqnYQjIsoLMpkMM/ZtQU/fnwGFIeIOncetL4ch4uUrqaMRUR7LdjESRRFyuRzbtm1D06ZNMyxHvEyfiPSRWaemcN75I6JNDNHr3G7Ur1gVL/7ykzoWEeUhrS/Xl8lk2Lp1K5o1awYvLy9emk9EBYJx/S8grJiMGEHEh8R4BPedgqRHz6SORUR5RKtTaeqFP5aj5s2bo2nTpixHRFQguLdvhUsXLmBztRawj4jD23ajkHD1rtSxiCgPaHUqTWMFMhm2bNmiLkd+fn66ykZEJJkynrXQ5PRWGNWuAlV0LA63H4zds3ykjkVEuSzbxejw4cOwtLTUXMnHctSiRQt06dJFZ+H+y4ULF9CuXTs4OztDEAQcOHDgP5c5d+4cvvjiCyiVSpQuXRq+vr65npOI9JPc2gJOe5YivH5lDI24i55zp2HvhFlSxyKiXJTtYtS6dWsolcr0K5LJsHnzZnTo0EEnwbIiLi4O1apVw8qVK7M0f2BgINq2bYsmTZrAz88P48aNw5AhQ3D8+PFcTkpE+kpmrMQX25eiVYVqqGJgjrIbTyLyxw28ESRRAZXjR4L8L1EU8ddff6F27dq4fv06PDw8dLn6TAmCgP3796Njx46ZzvPtt9/i8OHDGvdf6tmzJz58+IBjx45laTt8JAhR4aRSqfBq7q9IXbkTAGAxqDNsF46BTC6XOBkRZUWuPRLkvwiCgNq1awMAunXrpuvV58jVq1fRrFkzjWktW7bE1atXM10mKSkJ0dHRGi8iKnxkMhlcZ4+Cnc84QBCw6ddV6FbOHUmxcVJHIyIdMsjpCrp3757hdFEUERkZmdPV61RISAgcHBw0pjk4OCA6OhoJCQkwNjZOt4yPjw/mzJmTVxGJKJ+zHNIFEXIVZgzuiYRnKixr1AGTzh+EzMxE6mhEpAM5LkanTp3C5s2bYWZmpjFdFEVcuHAhp6uX3NSpU+Ht7a3+OTo6Gi4uLhImIiKplRzYDdvfBWPHvMXo/DIRbzuPg9P2xZDbWkkdjYhyKMfFqHHjxjA3N0fDhg3TvVe1atWcrl6nHB0dERoaqjEtNDQUFhYWGR4tAgClUpnhYHMiKtw6TB6Dls2bI7jXJCTdeYzXX46E0ZrpcKhcQepoRJQDOR5jtG/fvgxLEQCcPHkyp6vXKU9PT5w+fVpj2smTJ+Hp6SlRIiLSZ0bVK6DooV9hUNQeC+9eQI0vauDBibNSxyKiHMh2MerVq5fGVV1Sio2NhZ+fn/qmkoGBgfDz80NQUBCAf06D9evXTz3/iBEj8Pz5c0yePBlPnjzBr7/+il27dmH8+PFSxCeiAkBRujjMd3yPU2IU3qQk4Fj/8Uj0eyJ1LCLSUraL0c6dO9G0adNMy5EoioiNjc1xsKy4efMmqlevjurVqwMAvL29Ub16dcycORMAEBwcrC5JAODm5obDhw/j5MmTqFatGn766SesXbsWLVu2zJO8RFQw2ZQvjUt3bmFJpUbolGqOtx3HIP7iLaljEZEWsn0fI5lMhubNm+POnTs4c+YMKleurPF+aGgoihYtitTUVJ0GzS94HyMiyowqNh4h/ach4cItJCvkCBrbBS0nj5Y6FhEhF+9jJAgCfH194eXlBS8vL9y/fz/dPCqVKrurJSLSezIzEzhtWwxF63oYFX4fbb8dg/Vjp0gdi4iyQauHyMrlcmzbtg1NmzbNsBwJgqCzgERE+kRQKuC4ejZs3YrDADIYbzyCqDV7pI5FRFmk9VVpMpkMW7duRbNmzeDl5YV79+7pMhcRkd4yNDLC9gd/4cSQSahtaInwacsR+ZMvn69GpAe0OpWmXvhjOWrevDmaNm3KckRE9JHcwAANVvvAevIgAID/wt8wq1lHDjUgyue0OpWmsQKZDFu2bFGXo0+XzhMRFXaCIMBm0kCYz/4GA6IeYN6Zg5hctwXEtDSpoxFRJrJdjA4fPgxLS0vNlXwsRy1atECXLl10Fo6IqCCwH9kLowYOhqNMgbZPoxA2Yi7ElIJ55S6Rvsv25fqfo1Kp0LdvX2zfvr3AHi7m5fpEpK3QnUcQO/4HICUVJs094bBuHmTGfOQQUV7Ilcv1Q0JCkJSUlPnKPh45unbtGgDg+fPn2Vk9EVGB5tCjDRw3+UAwUuDG0ZNoW6oiokPCpI5FRP+SrWK0Z88e2NjYoFOnTtiwYQPevXuXbp4bN27gwIEDqFSpEqpVq6azoEREBYFpszqw27oIY2L9cSz4OcbXaYq0DzFSxyKij7JVjEaNGoW7d++iQYMG8PX1RbFixVC/fn0sXLgQQ4cOhZOTEzp27IiwsDAsWrQow+JERFTYWTSshS3rN6ChiR1Gx5jhbaexSAt/L3UsIkIOxxhFRETg0KFDOHLkCEqUKIEOHTrA09OzQN/gkWOMiEhXkh49Q3DX8Uh79x6GZVxht/17mLgWlToWUYGU1e9vnQ6+LgxYjIhIl5KfBeFt5/E4GPgQy5Lf4Pjp0yhTr7bUsYgKnFx7VhoREemOolRx2O9biuUpbxGYFIulnfoi+dkrqWMRFVosRkREEjMpVRxnrlzGyKKVME5VBG/bj0Lyk0CpYxEVSixGRET5gGv1Klh25yKMK5dBWlgkXrcfhecnL0odi6jQYTEiIsonDIpYw3n/ciirV8DS1/dRvZUXLvhulzoWUaHCYkRElI/IrS1gt/17XDdKQbQqFWcnzEXC1btSxyIqNAxysvDp06dx+vRphIWFpXsEyPr163MUjIiosDKytcbpJ/ex5cu+aBEYi+CeE+G42QcmDWtKHY2owNP6iNGcOXPQokULnD59GuHh4Xj//r3Gi4iItGdub4fh5w/A2MsDYnwignpNwrkV66SORVTgaX0fIycnJyxevBh9+/bVdaZ8jfcxIqK8JCYl49Wg6Ri6Zz3OJkdiy8wF6D5nqtSxiPROrt/HKDk5GXXr1tV2cSIiygJBqYDjmjlQOttDAJCwYjti/zgrdSyiAkvrYjRkyBBs27ZNl1mIiCgDChNj7H18G392HY76ckuEDpuNmL0npY5FVCBpPfg6MTERq1evxqlTp1C1alUYGhpqvL9kyZIchyMion8YGhmh+Y5f8G78YsRsP4LHI2bi7ysX0OeneVJHIypQtC5G9+7dg7u7OwDgwYMHGu8V5IfIEhFJRZDLUWTZt4hVpaL/qkXwX3IN8fHxGPrbT1JHIyowtC5GZ8/yHDcRUV4TZDK4Lp+GulePI+LODZTYcQ5RtffDcmAnqaMRFQi8wSMRkZ6Ry+VY89cFnBkzEyUNTBA+eQmi1uyROhZRgZCjGzx++PAB69atw+PHjwEAFStWxODBg2FpaamTcERElDGZTIZKS79DpI0tPqzYhsuTF+LxmWOYsH2t1NGI9JrWR4xu3ryJUqVKYenSpYiMjERkZCSWLl2KUqVK4fbt27rMSEREGRAEATYzRiB5SAf0jXqAiTvWYVX/kVLHItJrWt/gsUGDBihdujTWrFkDA4N/DjylpqZiyJAheP78OS5cuKDToPkFb/BIRPmNSqXCt8074Oj5s9hkWQVus0bBekwfqWMR5StZ/f7WuhgZGxvjzp07KF++vMb0R48eoWbNmoiPj9dmtfkeixER5VdvfH5H4pItAACbaUNhPb6fxImI8o9cv/O1hYUFgoKC0k1/9eoVzM3NtV0tERFpqejU4bCZOhQAsHPWIsxo01XiRET6R+ti1KNHDwwePBg7d+7Eq1ev8OrVK+zYsQNDhgxBr169dJmRiIiyyNq7H6KGd8CYmCeYf3QvNvYfJXUkIr2i9VVpP/74IwRBQL9+/ZCamgoAMDQ0xNdff41FixbpLCAREWXPF/MnYtq9m7h1/DTqHPZD5OL1sJk8SOpYRHpB6zFGn8THx+PZs2cAgFKlSsHExEQnwfIrjjEiIn0RuWIr3s9dBQCwntAf1t8O5pMJqNDK9cHXhRWLERHpkw+/7kDErJX4Nf4VBI/KWHzqIGQy3tuXCp+sfn9n61Sat7c35s2bB1NTU3h7e392Xj5ElohIelbf9MTtoOdY8v13wNmXaDTiW3z5+2IeOSLKRLaK0Z07d5CSkqL+c2b4fzgiovzDa9E0LHj2BBFHLqDi/mt4X3IdT6sRZULrU2lBQUEoVqxYukOyoiji1atXKF68uE4C5jc8lUZE+urDqp2ImPELAMBifF/YThnC02pUaOT6fYzc3NwQHh6ebnpkZCTc3Ny0XS0REeUSqxE9YDtvFFJFEYPmfIdJTdtBpVJJHYsoX9G6GGV2oCk2NhZGRkZaByIiotxjNaIH7vZsgEPJ4Vhx7iiuT1ogdSSifCXb9zH6NOhaEATMnDlT4/L8tLQ0XL9+He7u7joLSEREutX9Fx88D3sLq2N/wX7TCUQ6FOV9jog+ynYx+jToWhRF3L9/HwqFQv2eQqFAtWrVMHHiRN0lJCIinZuya6P6Uv73P2xAYmoqnKcNkzoWkeS0Hnw9cOBALF++vNANQObgayIqSD6s3I7nM39G/+gHaOvVFIuOH5A6ElGuyPXB1xs2bGAxICLSc1Yje+FGG3c8SI3F6pOH8XTOL1JHIpKU1s9K++TRo0cICgpCcnKyxvT27dvndNVERJQHRmz+DdEJ8ahy+j7kv+zEeysrWI/9SupYRJLQ+lTa8+fP0alTJ9y/fx+CIKivUvt0w7C0tDTdpcxHeCqNiAqq90s2IdJnDQBAPqkfSkweKnEiIt3J9VNpY8eOhZubG8LCwmBiYoKHDx/iwoULqFmzJs6dO6ftaomISCLW3v1g/e0gPEuNh8fUUZjXmUeNqPDRuhhdvXoVc+fOhZ2dHWQyGWQyGerXrw8fHx+MGTNGlxmJiCiP2EwciL/qlUaYKhlbDu5H8IqtUkciylNaF6O0tDSYm5sDAOzs7PD27VsAgKurK/z9/XWTLgtWrlyJEiVKwMjICB4eHrhx40am8/r6+kIQBI0Xb0ZJRKRp2p878EP7PthiWQXxc1chat0+qSMR5Rmti1HlypVx9+5dAICHhwcWL16My5cvY+7cuShZsqTOAn7Ozp074e3tjVmzZuH27duoVq0aWrZsibCwsEyXsbCwQHBwsPr18uXLPMlKRKQvBEHAhAObUXLcAABA+JSleLJsg7ShiPKI1sVo+vTp6mfszJ07F4GBgWjQoAGOHDmC5cuX6yzg5yxZsgRDhw7FwIEDUbFiRaxatQomJiZYv359pssIggBHR0f1y8HBIU+yEhHpE0EQYDN9OCxH9sT55PeoPn4Ilg8aJXUsolyndTFq2bIlOnfuDAAoXbo0njx5gvDwcISFhaFp06Y6C5iZ5ORk3Lp1C82aNVNPk8lkaNasGa5evZrpcrGxsXB1dYWLiws6dOiAhw8ffnY7SUlJiI6O1ngRERUGgiDAdtY3uFvZCYlQ4fDWHYjadljqWES5Suti5OXlhTlz5mhMs7GxwYcPH+Dl5ZXjYP8lPDwcaWlp6Y74ODg4ICQkJMNlypUrh/Xr1+OPP/7Ali1boFKpULduXbx+/TrT7fj4+MDS0lL9cnFx0ennICLKzwRBwNKLx/Fzm55Ybl4O4eO+R8yeE1LHIso1Whejc+fO4ZdffkHHjh0RFxennp6cnIzz58/rJJyueXp6ol+/fnB3d0ejRo2wb98+FClSBL///numy0ydOhVRUVHq16tXr/IwMRGR9GQyGUYd2ga7gZ0AUUTYyAW4++smqWMR5QqtixEAnDp1CiEhIahTpw5evHiho0hZY2dnB7lcjtDQUI3poaGhcHR0zNI6DA0NUb16dQQEBGQ6j1KphIWFhcaLiKiwEQQBdt97w7xPW6yLe4UaI/tj85Q5/70gkZ7JUTFycnLC+fPnUaVKFdSqVStPb+yoUChQo0YNnD59Wj1NpVLh9OnT8PT0zNI60tLScP/+fTg5OeVWTCKiAkOQyWD30yQEulgjDcCNX9Yj7tglqWMR6ZTWxejToz+USiW2bduGsWPHolWrVvj11191Fu6/eHt7Y82aNdi4cSMeP36Mr7/+GnFxcRg4cCAAoF+/fpg6dap6/rlz5+LEiRN4/vw5bt++ja+++govX77EkCFD8iwzEZE+k8nl2Hz3Kta36ImxRi4IGTQDcaeuSR2LSGe0fojs/z5ibfr06ahQoQL69++f41BZ1aNHD7x79w4zZ85ESEgI3N3dcezYMfWA7KCgIMhk/9/93r9/j6FDhyIkJATW1taoUaMGrly5gooVK+ZZZiIifWegUGDA4c0IHT4XcQfPIrj/NETOH4baA3tKHY0ox7R+iOzLly/h4uKiUTwA4MGDB7h161aeFqS8xIfIEhH9Q0xJxdtB0zFm9wYcTg7HvqUr0WbsCKljEWUo1x8i6+rqmq4UAf/cEbugliIiIvp/gqEBivw2AzG25kgVVQiY9ysSrt+TOhZRjmTriJG3tzfmzZsHU1NTeHt7f3beJUuW5DhcfsQjRkREmhKionGkwxC4PwyGYGYC571LYfQFhyhQ/pLV7+9sjTG6c+cOUlJS1H/OzKeB2UREVPAZW1qg05FNCO49GYmX7+DvrmOR/MMY1OjSTupoRNmm9RijoKAgFCtWLN3pNFEU8erVKxQvXlwnAfMbHjEiIsqYKjYe/p1Ho8/Z3XiuSsTJPftRq1NbqWMRAciDMUZubm4IDw9PNz0yMhJubm7arpaIiPSUzMwEzr4LIDM1BkQRb72/R/LfL6WORZQtWhejzA40xcbGwsjISOtARESkvyydHXHi7i3sqfElKseKeNtpLFKeZ/48SqL8Jtv3Mfo06FoQBMycORMmJibq99LS0nD9+nW4u7vrLCAREekXG9diaHJsA950HIOUJ4G4/uUQFFk9G+Xq15E6GtF/ynYx+jToWhRF3L9/HwqFQv2eQqFAtWrVMHHiRN0lJCIivSO3tYLz3mW40nIAet47AVnTprhw6RJK1qoudTSiz8p2MTp79iwAYODAgVi+fDkHIBMRUYYM7G1Q0nchjDzOQpaahojhc1D86DoYONhKHY0oU1pflVZY8ao0IqLsCbxxGxGDZsI6NAqG5d1Q9MDPkNtaSR2LCplcvyoNAC5evIivvvoKnp6eePPmDQBg8+bNuHSJT1smIqJ/uNX+AtX+/B1yRzukPAnEoRZfIez5C6ljEWVI62K0d+9etGzZEsbGxrhz5w6SkpIAAFFRUVi4cKHOAhIRkf4zdCsK533LcMMkDb1uH0Uz91qIfPVG6lhE6WhdjObPn49Vq1ZhzZo1MDQ0VE+vV68ebt++rZNwRERUcCjKuKLCipkwkRvAOjENkcPnQRWXIHUsIg1aFyN/f380bNgw3XRLS0t8+PAhJ5mIiKiAcm/fCuf3HcTvxWpB+OshQvpPgyoxSepYRGpaFyNHR0cEBASkm37p0iWULFkyR6GIiKjgqtS+JUrs/AmCiTESzt/EtlZ9kBgTK3UsIgA5KEZDhw7F2LFjcf36dQiCgLdv32Lr1q2YOHEivv76a11mJCKiAsaoVmU4bfse21Pfoe/5vehY6QukJCZKHYso+/cx+mTKlClQqVRo2rQp4uPj0bBhQyiVSkycOBGjR4/WZUYiIiqAjOtVR/XvRkExaSyKvotDxLjv4bByOgS5XOpoVIjl+D5GycnJCAgIQGxsLCpWrAgzMzNdZcuXeB8jIiLdurN2G8yn/w4hTQXzr75EkSWTIQiC1LGogMnq9zdv8JhNLEZERLoXu/80QkfMhZiWhvMNymDg3nWQyXJ0qz0iDVn9/tb6VBoAnD59GqdPn0ZYWBhUKpXGe+vXr8/JqomIqBAx69QUqqRkfD1wELYduIxbDV5h5aWTPHJEeU7rOj5nzhy0aNECp0+fRnh4ON6/f6/xIiIiyg6Lnq3h2asL5ADc7gXh/ZKNUkeiQkjrI0arVq2Cr68v+vbtq8s8RERUiI1a/wvqlSgDixV78H7ROshMjGD1dU+pY1EhovURo+TkZNStW1eXWYiIiFB95lhYTxkMAHg942dsGT1F4kRUmGhdjIYMGYJt27bpMgsREREAwNq7P4y/7o5BUQ/R95fvsXL4eKkjUSGh9am0xMRErF69GqdOnULVqlU1npcGAEuWLMlxOCIiKpwEQYDj7JGofXw/Hv91Afa7zyK2zVmYdWgidTQq4LQuRvfu3YO7uzsA4MGDB7rKQ0REBACQyWT4+cpJDBgyDdaHriB0xBwIxgqYtqgndTQqwHgfo2zifYyIiPKWmJaGsG/mI3bfKYQYqPBhch+0Hf+N1LFIz+T6fYy8vb0znC4IAoyMjFC6dGl06NABNjY22m6CiIgIglwO+1++w5uId+i5fy3eTbiGP42N0XzEQKmjUQGk9RGjJk2a4Pbt20hLS0O5cuUAAE+fPoVcLkf58uXh7+8PQRBw6dIlVKxYUaehpcQjRkRE0kiOjcOXZaviaehbbClaG7X+XA1ltXJSxyI9kdXvb62vSuvQoQOaNWuGt2/f4tatW7h16xZev36N5s2bo1evXnjz5g0aNmyI8eN5JQEREeWcwswUBx7cwoFmveCUoMLbbt5Ievxc6lhUwGh9xKho0aI4efJkuqNBDx8+RIsWLfDmzRvcvn0bLVq0QHh4uE7C5gc8YkREJC1VbDzedhmHpNuPcc9MgNuvM+HeupnUsSify/UjRlFRUQgLC0s3/d27d4iOjgYAWFlZITk5WdtNEBERpSMzM4HTzp/w0MUSfV9eQYv2X+Lp5RtSx6ICIken0gYNGoT9+/fj9evXeP36Nfbv34/BgwejY8eOAIAbN26gbNmyuspKREQEAJBbmaPOjp/hYmyOsoIx0kYvRmpIwTk7QdLR+lRabGwsxo8fj02bNiE1NRUAYGBggP79+2Pp0qUwNTWFn58fAKjvd1QQ8FQaEVH+EfzgMaL7TYfBqzAYliuBon+sgNzWSupYlA9l9fs7x/cxio2NxfPn/wx+K1myJMzMzHKyunyPxYiIKH9JefkWb9qNQlrwO5x1VKDdH+vgULKE1LEon8mzYlTYsBgREeU/yQFBWNGwAyYF+6GyhR0u+T+EhaO91LEoH8n1Gzx+8ujRIwQFBaUbZN2+ffucrpqIiChLFKWLo/nvi2DTqT2qJRsi+uv5MNv+A2RGSqmjkZ7R+ojR8+fP0alTJ9y/fx+CIODTagRBAACkpaXpLmU+wiNGRET517NjZ4HhC4H4RJg094Sj7wIICsP/XpAKvFy/XH/s2LFwc3NDWFgYTExM8PDhQ1y4cAE1a9bEuXPntF0tERGR1kq1agLnbYshGCkQd+IKVjTriuTERKljkR7RuhhdvXoVc+fOhZ2dHWQyGWQyGerXrw8fHx+MGTNGlxmJiIiyzLhedTj6LoRP4kuMvXgQ3avUhqqAnsUg3dO6GKWlpcHc3BwAYGdnh7dv3wIAXF1d4e/vr5t0REREWjBp6oEvJ4+BEjLUCklAxLSfwWuNKCu0HnxduXJl3L17F25ubvDw8MDixYuhUCiwevVqlCxZUpcZiYiIsq3TzEm46+AMgxm/I3r9PshMjWEzY7h6LCxRRrQ+YjR9+nSoVCoAwNy5cxEYGIgGDRrgyJEj+Pnnn3UWkIiISFvlhveB3Q8TAAChP2/Gqj7DeeSIPkvrI0YtW7ZU/7l06dJ48uQJIiMjYW1tzTZORET5hmX/DkiNjUP78d/gyvYrCEmIxZz926SORflUju5jlJiYiHv37iEsLEx99OgT3seIiIjyC9uRvdHq2B+4e3gvyp19gOjNf8KibzupY1E+pHUxOnbsGPr27YuIiIh07wmCUGDvY0RERPpp+sEd6DRxIYw3HcO7CT9AMDWGeedmUseifEbrMUajR49G9+7dERwcDJVKpfFiKSIiovxGEARU+nEaLAZ0AEQRD4bPwO7Zi6SORfmM1keMQkND4e3tDQcHB13mISIiyjWCIMDue2+ERUSg58ZleDPnOuRKJTpPHS91NMontD5i1LVrV97hmoiI9I4gk6H8qjmoXaIMnGUK2K7Yg4Rr96SORfmE1s9Ki4+PR7du3VCkSBFUqVIFhoaaz6LJq7tfr1y5Ej/88ANCQkJQrVo1rFixArVr1850/t27d2PGjBl48eIFypQpg++//x5t2rTJ8vb4rDQiooIhJT4Bj3tPgOnl+xDMTOC8fzmM3MtLHYtySVa/v7UuRuvWrcOIESNgZGQEW1tbjUv0BUHA8+fPtVlttuzcuRP9+vXDqlWr4OHhgWXLlmH37t3w9/eHvb19uvmvXLmChg0bwsfHB19++SW2bduG77//Hrdv30blypWztE0WIyKigkOVkITgnhOReMUPD41F2P00EXW7dZQ6FuWCXC9Gjo6OGDNmDKZMmQKZTOszcjni4eGBWrVq4ZdffgEAqFQquLi4YPTo0ZgyZUq6+Xv06IG4uDgcOnRIPa1OnTpwd3fHqlWrsrRNFiMiooJFFRuP482/QvfrB2Egk+Hc4WOo1tJL6likY1n9/ta60SQnJ6NHjx6SlaLk5GTcunULzZr9/6WWMpkMzZo1w9WrVzNc5urVqxrzA//cqDKz+QEgKSkJ0dHRGi8iIio4ZGYm8Ny5AmXMrFFWMIbBxGVIeR0qdSySiNatpn///ti5c6cus2RLeHg40tLS0l0V5+DggJCQkAyXCQkJydb8AODj4wNLS0v1y8XFJefhiYgoX7EqXhTHb17HJveWMAp5j+DO45AaEi51LJKA1pfrp6WlYfHixTh+/DiqVq2abvD1kiVLchwuP5g6dSq8vb3VP0dHR7McEREVQEXKloT1gRV4024UUgJfw9erG1rtWYViFctJHY3ykNbF6P79+6hevToA4MGDBxrv5cWz0uzs7CCXyxEaqnm4MzQ0FI6Ojhku4+jomK35AUCpVEKpVOY8MBER5XsGRR3gvHcZfm/YEWMf30Tp2nVw5dF92BYvJnU0yiNaF6OzZ8/qMke2KRQK1KhRA6dPn0bHjh0B/DP4+vTp0xg1alSGy3h6euL06dMYN26cetrJkyfh6emZB4mJiEgfGLoVRbMNP6JI65b4Is0I8V8vhPWunyAzNZY6GuUBaUZO64i3tzfWrFmDjRs34vHjx/j6668RFxeHgQMHAgD69euHqVOnqucfO3Ysjh07hp9++glPnjzB7NmzcfPmzUyLFBERFU7lmzXCtWOnsMCpGpJv3EfIgO8gJiVLHYvygF4Xox49euDHH3/EzJkz4e7uDj8/Pxw7dkw9wDooKAjBwcHq+evWrYtt27Zh9erVqFatGvbs2YMDBw5k+R5GRERUeJRoWh/OO3+EYGKM+LM3sNyrExJiYqWORblM6/sYFVa8jxERUeESf/EWJrbpgt9iX6JF8bI4EvAA8v+54Ijyv1y/jxEREVFhYNKgBtrNnAgjyOAZkYqIyUvAYwoFl9aDr4mIiAqL1pNG4b6dI4QpKxCz5RBkpsawnTc6T67CprzFI0ZERERZUHpgVxRZ/s/jpsJW7cQv3QbyyFEBxCNGREREWWTRszXSYuLQaeQwnN97BUGto/DDsf1SxyId4hEjIiKibLAe2hXtO3WECWSoejUAUev2SR2JdIhHjIiIiLLJe+d6tCpVEco1fyB8ylIIJkaw6NVG6likAzxiREREpIUKCybAckR3AMDjMfOwZfIsiRORLvCIERERkRYEQYDt3FF4HxmJ3r9/j8AfrkFUGKDv/BlSR6Mc4BEjIiIiLQmCgFLLv0P9cpXgKFPCee0RxJ+/KXUsygEWIyIiohyQGRhg/Z3LON51OEqkGSCk31QkXL8ndSzSEosRERFRDskVClTe9AOMm9SGGJ+Is51H4NT6LVLHIi2wGBEREemAoFTA0XcBXlQqhl7BN9BxyABc23tQ6liUTSxGREREOiIzMYLnnpWoYu2AcnITmExbheRnQVLHomxgMSIiItIhEzsbHL57E1vrtIdpZAyCu4xHyqsQqWNRFrEYERER6ZhlMSeU3rcChmVckfomDBu9usL/2l9Sx6IsYDEiIiLKBQZFrOG8dynOWIoYEXAZzRo3wdtH/lLHov/AYkRERJRLDJyKoNWOlXBRmMEDpkj+xgdpH2KkjkWfwWJERESUi1xqVsPlSxex2M0DaQ+fIbjnRKhi46WORZlgMSIiIsplzrXcUXTfMsisLZB48yF+rP8lIt9yQHZ+xGJERESUB5QVSsJ59xKsUoXh27tn0aLKF0iOjZM6Fv0PFiMiIqI8oqxWDt1+XgArmSFaJhkh4pv5EFNSpY5F/8JiRERElIc8vuqGu/uPYLCVG+KPXkLYyPkQ09KkjkUfsRgRERHlseLtm8Fhw3zA0ACR+05iXuP2SE5KkjoWgcWIiIhIEqbNPeHw+yx4xz7FrEtH0K9GfYiiKHWsQo/FiIiISCJm7Rpj4LjRMBPkaPkqARGzf2U5khiLERERkYS6L5qJB79uRkOFNaJ+3YH3i9dLHalQYzEiIiKSmOuIXrBbOBYA8GzxGvh07ssjRxIxkDoAERERAZZDuyIhJhZtJo/E0/3XkdhFhTn7tkodq9DhESMiIqJ8wtF7AAZ92REOMgXqnX2C6E0HpY5U6LAYERER5SOT92/B1ckLUcrABO8m/oiYXcekjlSosBgRERHlI4IgoMRCb1gO6QKIIi59PR2/jZ4sdaxCg2OMiIiI8hlBEGC7YAzehIehz7of8P6XW7C0tEDv+dOljlbg8YgRERFRPiTIZKjy21x0rVwTVQ3MUH7dccSfvi51rAKPxYiIiCifkhkYYNWtC9jf8xtYpgIhA6Yh/uItqWMVaCxGRERE+ZjM0BBu6+bDpGU9iInJ2NJ5MPb88LPUsQosFiMiIqJ8TlAYwnHdXDysWgwjw++hz+RxuLJ1t9SxCiQWIyIiIj0gKBVotX8NWjiVRCulHYrMXIuku/5SxypwWIyIiIj0hMLCDHsf3MSKJp0gi47H227eSHr0TOpYBQqLERERkR4xsrFC0Z0/QVm9AlTvozG3cTtc2r1f6lgFBosRERGRnpFbmMFp10/4ww5Y+O4x2vTsjpdXb0odq0BgMSIiItJDcitzDD62HbUs7DHCqBjEET5IeflW6lh6j8WIiIhIT1m6FsP5x/cxqlo9pL0Nw9vO45DyOlTqWHqNxYiIiEiPGTvbw3nfMhi6FUPiy7cYWqM+Hl68KnUsvcViREREpOcMHO3gvH8ZlhtGYGNYAFo1b464IJ5W0waLERERUQFgUNQB04/sRhVjK8xUuiKi97dIC38vdSy9w2JERERUQDhXr4y/7t9Dc9dySPF/gbddxyMtMkrqWHqFxYiIiKgAUZZygfP+ZZDb2yDs/hN0rOCOoEe8Q3ZWsRgREREVMIpSxeG8bxm+S36JQ2Ev0LVeI6RGxUgdSy/obTGKjIxEnz59YGFhASsrKwwePBixsbGfXaZx48YQBEHjNWLEiDxKTERElHcU5dzw8/5dcDeywhw4I6TnJKhi4qSOle/pbTHq06cPHj58iJMnT+LQoUO4cOEChg0b9p/LDR06FMHBwerX4sWL8yAtERFR3ivbrAGuXr+O8naOSLr5EME9J0EVGy91rHxNL4vR48ePcezYMaxduxYeHh6oX78+VqxYgR07duDt289fnmhiYgJHR0f1y8LCIo9SExER5T2jqmXhvGcpZBZmeHjlOrxKVkDYy1dSx8q39LIYXb16FVZWVqhZs6Z6WrNmzSCTyXD9+vXPLrt161bY2dmhcuXKmDp1KuLjP9+ck5KSEB0drfEiIiLSJ8pq5eC460d4x/+N8++CMKJ+c6jiE6WOlS/pZTEKCQmBvb29xjQDAwPY2NggJCQk0+V69+6NLVu24OzZs5g6dSo2b96Mr7766rPb8vHxgaWlpfrl4uKik89ARESUl4xrVMLWLVvQ0MgWU+OtENJvKlQJSVLHynfyVTGaMmVKusHR//t68uSJ1usfNmwYWrZsiSpVqqBPnz7YtGkT9u/fj2fPnmW6zNSpUxEVFaV+vXrFw49ERKSfqnVrj2Nnz8DWzAIJ528ipP80pCXwyNG/GUgd4N8mTJiAAQMGfHaekiVLwtHREWFhYRrTU1NTERkZCUdHxyxvz8PDAwAQEBCAUqVKZTiPUqmEUqnM8jqJiIjyM+M6VeG0fTGCe03CsePHsNZ1F448uA0r+yJSR8sX8lUxKlKkCIoU+e+/GE9PT3z48AG3bt1CjRo1AABnzpyBSqVSl52s8PPzAwA4OTlplZeIiEgfGdd1h9WGuZjWoglCo5Mwx6sDltw6B0GpkDqa5PLVqbSsqlChAlq1aoWhQ4fixo0buHz5MkaNGoWePXvC2dkZAPDmzRuUL18eN27cAAA8e/YM8+bNw61bt/DixQscPHgQ/fr1Q8OGDVG1alUpPw4REVGes/HyxP7f16G7iROGhwgIGTILYnKK1LEkp5fFCPjn6rLy5cujadOmaNOmDerXr4/Vq1er309JSYG/v7/6qjOFQoFTp06hRYsWKF++PCZMmIAuXbrgzz//lOojEBERScpzcB9sOPwHFEZGiD92CaFDZyGlkI85EkRRFKUOoU+io6NhaWmJqKgo3gOJiIgKhPgz1xHSbxrWvH+OM2ZpOPXkHsytraSOpVNZ/f7W2yNGREREpBsmXh6QLZuIXxNe40bYK6xt9xXElFSpY0mCxYiIiIhQomtr/PnzKkwwL4l2Tz4gdPicQlmOWIyIiIgIANBw1GDM2bMZglKBuD/P4e2w2YiLKlxPfGAxIiIiIjXTFnXhuGE+0gwNMGb7GjQrXwUx7z9IHSvPsBgRERGRBtMWdZGwYDhOJEfgr5AgHO01CmJq4TitxmJERERE6VQb2BN/LvsVy60qocatlwgdPrdQjDliMSIiIqIMNR4zDAN2/g4YGiDu4FkEDJxW4E+rsRgRERFRpkxb1IOj73zEGAjovnMVmpWviujI91LHyjUsRkRERPRZpi3qIXHmYDxLS4D/u2DcGTSlwJ5WYzEiIiKi/1Tn6/449PMqbLJzR7HLjxA6tGA+W43FiIiIiLKk4ajBaLr1Z0BhiLjDF3Cjxxh8eBcudSydYjEiIiKiLDNt7gmnTT4Ikqei48H18KpQFe9Dw6SOpTMsRkRERJQtJk09YDx/JBKhQvSHD3g1Yg5UiUlSx9IJFiMiIiLKtjpDvsLxtZux1aEGTC/dQ+iA6QWiHLEYERERkVZqD+yJKjuWQTBWIv70NRxs3Q9hr95IHStHWIyIiIhIayYNasBp+w+4IUtAr3N70KhyNYQFvZY6ltZYjIiIiChHjOtVR4XlM2AhN4Bjggqx3yyEKjZe6lhaYTEiIiKiHHPv2QEX9h7Eb841IF6/j+Cek/SyHLEYERERkU6U69ASJfYth8zSDInX72F53bZ48fCx1LGyhcWIiIiIdMboi4pw3rsMB+XR8L5/Do1qeeDd8xdSx8oyFiMiIiLSKWW1cmi35Re4GpqgBSyQMGgO0iI+SB0rS1iMiIiISOdKN2uA6xcvY5rrF0h5GIA3HccgNSxS6lj/icWIiIiIcoWDhzuKHlwBuYMtkh4/xyj3+vA7e0HqWJ/FYkRERES5RlHGFUUP/oL1iij8HvwYzVu0ROTjAKljZYrFiIiIiHKVYcliGH98F6qb2mCKUXHE9J6ClMD8eYdsFiMiIiLKdfZVKuDq4wfoVvELpL4OxZv2o5D09IXUsdJhMSIiIqI8oXRxgvMfK2BYrgRigkPR4ova+GvfIaljaWAxIiIiojxj4GiHogd+xjqzeBinqGD17Uok3fWXOpYaixERERHlKbmdNRZeP4VfG3aA7EMs3nYai4Tr96SOBYDFiIiIiCRg4mCHEvt+hlGdalDFxCG4+wTEX7wldSwWIyIiIpKGzNwUTjt/hHHjWhDjExHSazLiTl6VNpOkWyciIqJCTWZiBKcti2DSqj7EpGSE9J+GuCPS3QSSxYiIiIgkJSgVcFw/D2YdvSAzMYJBMUfJshhItmUiIiKijwRDA9ivmomUF2+gKFVcshw8YkRERET5giCXS1qKABYjIiIiIjUWIyIiIqKPWIyIiIiIPmIxIiIiIvqIxYiIiIjoIxYjIiIioo9YjIiIiIg+YjEiIiIi+ojFiIiIiOgjFiMiIiKij1iMiIiIiD5iMSIiIiL6iMWIiIiI6CMDqQPoG1EUAQDR0dESJyEiIqKs+vS9/el7PDMsRtkUExMDAHBxcZE4CREREWVXTEwMLC0tM31fEP+rOpEGlUqFt2/fwtzcHIIg6Gy90dHRcHFxwatXr2BhYaGz9VJ63Nd5g/s5b3A/5w3u57yRm/tZFEXExMTA2dkZMlnmI4l4xCibZDIZihUrlmvrt7Cw4P/p8gj3dd7gfs4b3M95g/s5b+TWfv7ckaJPOPiaiIiI6CMWIyIiIqKPWIzyCaVSiVmzZkGpVEodpcDjvs4b3M95g/s5b3A/5438sJ85+JqIiIjoIx4xIiIiIvqIxYiIiIjoIxYjIiIioo9YjIiIiIg+YjHKQytXrkSJEiVgZGQEDw8P3Lhx47Pz7969G+XLl4eRkRGqVKmCI0eO5FFS/Zad/bxmzRo0aNAA1tbWsLa2RrNmzf7z74X+X3Z/pz/ZsWMHBEFAx44dczdgAZHd/fzhwweMHDkSTk5OUCqVKFu2LP/9yILs7udly5ahXLlyMDY2houLC8aPH4/ExMQ8SqufLly4gHbt2sHZ2RmCIODAgQP/ucy5c+fwxRdfQKlUonTp0vD19c3dkCLliR07dogKhUJcv369+PDhQ3Ho0KGilZWVGBoamuH8ly9fFuVyubh48WLx0aNH4vTp00VDQ0Px/v37eZxcv2R3P/fu3VtcuXKleOfOHfHx48figAEDREtLS/H169d5nFz/ZHdffxIYGCgWLVpUbNCggdihQ4e8CavHsrufk5KSxJo1a4pt2rQRL126JAYGBornzp0T/fz88ji5fsnuft66dauoVCrFrVu3ioGBgeLx48dFJycncfz48XmcXL8cOXJE/O6778R9+/aJAMT9+/d/dv7nz5+LJiYmore3t/jo0SNxxYoVolwuF48dO5ZrGVmM8kjt2rXFkSNHqn9OS0sTnZ2dRR8fnwzn7969u9i2bVuNaR4eHuLw4cNzNae+y+5+/l+pqamiubm5uHHjxtyKWGBos69TU1PFunXrimvXrhX79+/PYpQF2d3Pv/32m1iyZEkxOTk5ryIWCNndzyNHjhS9vLw0pnl7e4v16tXL1ZwFSVaK0eTJk8VKlSppTOvRo4fYsmXLXMvFU2l5IDk5Gbdu3UKzZs3U02QyGZo1a4arV69muMzVq1c15geAli1bZjo/abef/1d8fDxSUlJgY2OTWzELBG339dy5c2Fvb4/BgwfnRUy9p81+PnjwIDw9PTFy5Eg4ODigcuXKWLhwIdLS0vIqtt7RZj/XrVsXt27dUp9ue/78OY4cOYI2bdrkSebCQorvQj5ENg+Eh4cjLS0NDg4OGtMdHBzw5MmTDJcJCQnJcP6QkJBcy6nvtNnP/+vbb7+Fs7Nzuv8jkiZt9vWlS5ewbt06+Pn55UHCgkGb/fz8+XOcOXMGffr0wZEjRxAQEIBvvvkGKSkpmDVrVl7E1jva7OfevXsjPDwc9evXhyiKSE1NxYgRIzBt2rS8iFxoZPZdGB0djYSEBBgbG+t8mzxiRPTRokWLsGPHDuzfvx9GRkZSxylQYmJi0LdvX6xZswZ2dnZSxynQVCoV7O3tsXr1atSoUQM9evTAd999h1WrVkkdrUA5d+4cFi5ciF9//RW3b9/Gvn37cPjwYcybN0/qaJRDPGKUB+zs7CCXyxEaGqoxPTQ0FI6Ojhku4+jomK35Sbv9/MmPP/6IRYsW4dSpU6hatWpuxiwQsruvnz17hhcvXqBdu3bqaSqVCgBgYGAAf39/lCpVKndD6yFtfqednJxgaGgIuVyunlahQgWEhIQgOTkZCoUiVzPrI23284wZM9C3b18MGTIEAFClShXExcVh2LBh+O677yCT8biDLmT2XWhhYZErR4sAHjHKEwqFAjVq1MDp06fV01QqFU6fPg1PT88Ml/H09NSYHwBOnjyZ6fyk3X4GgMWLF2PevHk4duwYatasmRdR9V5293X58uVx//59+Pn5qV/t27dHkyZN4OfnBxcXl7yMrze0+Z2uV68eAgIC1MUTAJ4+fQonJyeWokxos5/j4+PTlZ9PZVTkI0h1RpLvwlwb1k0aduzYISqVStHX11d89OiROGzYMNHKykoMCQkRRVEU+/btK06ZMkU9/+XLl0UDAwPxxx9/FB8/fizOmjWLl+tnQXb386JFi0SFQiHu2bNHDA4OVr9iYmKk+gh6I7v7+n/xqrSsye5+DgoKEs3NzcVRo0aJ/v7+4qFDh0R7e3tx/vz5Un0EvZDd/Txr1izR3Nxc3L59u/j8+XPxxIkTYqlSpcTu3btL9RH0QkxMjHjnzh3xzp07IgBxyZIl4p07d8SXL1+KoiiKU6ZMEfv27aue/9Pl+pMmTRIfP34srly5kpfrFyQrVqwQixcvLioUCrF27dritWvX1O81atRI7N+/v8b8u3btEsuWLSsqFAqxUqVK4uHDh/M4sX7Kzn52dXUVAaR7zZo1K++D66Hs/k7/G4tR1mV3P1+5ckX08PAQlUqlWLJkSXHBggViampqHqfWP9nZzykpKeLs2bPFUqVKiUZGRqKLi4v4zTffiO/fv8/74Hrk7NmzGf6b+2nf9u/fX2zUqFG6Zdzd3UWFQiGWLFlS3LBhQ65mFESRx/yIiIiIAI4xIiIiIlJjMSIiIiL6iMWIiIiI6CMWIyIiIqKPWIyIiIiIPmIxIiIiIvqIxYiIiIjoIxYjIiIioo9YjIiowGncuDHGjRsndQwi0kO88zUR6bXGjRvD3d0dy5YtU0+LjIyEoaEhzM3N8zzP+PHj8fLlS+zbty/Pt01EOccjRkRU4NjY2EhSigDgxo0bqFmzpiTbJqKcYzEiIr01YMAAnD9/HsuXL4cgCBAEAS9evEh3Kq1x48YYPXo0xo0bB2trazg4OGDNmjWIi4vDwIEDYW5ujtKlS+Po0aPqZVQqFXx8fODm5gZjY2NUq1YNe/bsyTRLcnIyDA0NceXKFXz33XcQBAF16tTJzY9PRLmAxYiI9Nby5cvh6emJoUOHIjg4GMHBwXBxcclw3o0bN8LOzg43btzA6NGj8fXXX6Nbt26oW7cubt++jRYtWqBv376Ij48HAPj4+GDTpk1YtWoVHj58iPHjx+Orr77C+fPnM1y/gYEBLl++DADw8/NDcHAwjh07ljsfnIhyDccYEZFey2iM0f9Oa9y4MdLS0nDx4kUAQFpaGiwtLdG5c2ds2rQJABASEgInJydcvXoV1atXh42NDU6dOgVPT0/1eocMGYL4+Hhs27YtwywHDhzAkCFDEB4enjsflohynYHUAYiI8kLVqlXVf5bL5bC1tUWVKlXU0xwcHAAAYWFhCAgIQHx8PJo3b66xjuTkZFSvXj3Tbdy5cwfVqlXTcXIiykssRkRUKBgaGmr8LAiCxjRBEAD8M7YoNjYWAHD48GEULVpUYzmlUpnpNvz8/FiMiPQcixER6TWFQoG0tDSdrrNixYpQKpUICgpCo0aNsrzc/fv30aVLF51mIaK8xWJERHqtRIkSuH79Ol68eAEzMzPY2NjkeJ3m5uaYOHEixo8fD5VKhfr16yMqKgqXL1+GhYUF+vfvn+FyKpUK/v7+ePv2LUxNTWFpaZnjLESUt3hVGhHptYkTJ0Iul6NixYooUqQIgoKCdLLeefPmYcaMGfDx8UGFChXQqlUrHD58GG5ubpkuM3/+fPj6+qJo0aKYP3++TnIQUd7iVWlEREREH/GIEREREdFHLEZEREREH7EYEREREX3EYkRERET0EYsRERER0UcsRkREREQfsRgRERERfcRiRERERPQRixERERHRRyxGRERERB+xGBERERF9xGJERERE9NH/Abme0vH6p4e/AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAHICAYAAACrjyVZAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAdolJREFUeJzt3XV0FNffBvBndpONe4hBcCguhTa4uwV3lxaXIMWKtwFaJFgp7sWlBYoFK14kuKUEiRP3bLI77x/AvuwvCURWsuH5nLOn3Zk7d54dQvbLnTszgiiKIoiIiIgIEn0HICIiIsovWBgRERERvcfCiIiIiOg9FkZERERE77EwIiIiInqPhRERERHReyyMiIiIiN5jYURERET0HgsjIiIiovdYGBGRzr18+RKCIGDLli1fxH4LikaNGqFRo0b6jkGkVSyMiPRoy5YtEAQBgiDg0qVLGdaLogh3d3cIgoB27drpIWHe7Nq1C8uXL/9i9lsQPHr0CHPmzMHLly/1HYVIL4z0HYCIAFNTU+zatQv16tVTW37hwgUEBgbCxMRET8nyZteuXXjw4AHGjx+vtrxYsWJITk6GsbFxgdpvQfDo0SPMnTsXjRo1QvHixdXWnTp1Sj+hiHSII0ZE+UCbNm2wb98+pKenqy3ftWsXatSoARcXFz0l0w5BEGBqagqpVPpF7De/SUxMzNV2MpkMMplMw2mI8hcWRkT5QK9evRAZGYnTp0+rlsnlcuzfvx+9e/fOdJtff/0VderUgYODA8zMzFCjRg3s378/Q7vk5GSMHTsWjo6OsLKyQocOHRAUFARBEDBnzhxVuzlz5kAQBPj7+2PgwIGwtbWFjY0NBg0ahKSkpAz97tixAzVq1ICZmRns7e3Rs2dPvHnzRrW+UaNGOHbsGF69eqU6XfhhBOJ/5/qcP39e1eZ/Xx+PWhw5cgRt27aFm5sbTExMUKpUKcyfPx8KhSJX+/3g7NmzqF+/PiwsLGBrawtPT088fvxYrU1Oj09m9u3bpzpmjo6O6Nu3L4KCglTrf/31VwiCgFevXmXYdtq0aZDJZIiOjlYtu379Olq1agUbGxuYm5ujYcOGuHz5cqa5Hz16hN69e8POzi7DyOQHW7ZsQbdu3QAAjRs3Vh2/8+fPq47tx3OMPvy57d27F3PnzkXhwoVhZWWFrl27IjY2FqmpqRg/fjycnJxgaWmJQYMGITU1NcN+P/ezRKRLPJVGlA8UL14ctWvXxh9//IHWrVsDAP7++2/ExsaiZ8+eWLFiRYZtfHx80KFDB/Tp0wdyuRy7d+9Gt27dcPToUbRt21bVbuDAgdi7dy/69euHWrVq4cKFC2rr/1f37t1RokQJeHt74/bt29iwYQOcnJywaNEiVZuffvoJP/74I7p3746hQ4fi7du3WLlyJRo0aIA7d+7A1tYWM2bMQGxsLAIDA7Fs2TIAgKWlZab7LF++PLZv3662LCYmBl5eXnByclIt27JlCywtLeHl5QVLS0ucPXsWs2bNQlxcHH755RcAyNF+AeDMmTNo3bo1SpYsiTlz5iA5ORkrV65E3bp1cfv27Qynk7JzfDKzZcsWDBo0CN988w28vb0RFhYGHx8fXL58WXXMunfvjilTpmDv3r2YPHmy2vZ79+5FixYtYGdnB+BdMde6dWvUqFEDs2fPhkQiwebNm9GkSRP8888/+Pbbb9W279atG8qUKYOff/4ZoihmmrFBgwYYO3YsVqxYgenTp6N8+fIAoPpvVry9vWFmZoapU6fC398fK1euhLGxMSQSCaKjozFnzhxcu3YNW7ZsQYkSJTBr1izVttn5WSLSKZGI9Gbz5s0iAPHff/8VV61aJVpZWYlJSUmiKIpit27dxMaNG4uiKIrFihUT27Ztq7bth3YfyOVysVKlSmKTJk1Uy27duiUCEMePH6/WduDAgSIAcfbs2apls2fPFgGIgwcPVmvbqVMn0cHBQfX+5cuXolQqFX/66Se1dvfv3xeNjIzUlrdt21YsVqxYhs8dEBAgAhA3b96c6XFRKpViu3btREtLS/Hhw4dZfmZRFMXvv/9eNDc3F1NSUnK132rVqolOTk5iZGSkatndu3dFiUQi9u/fX7Usu8cnM3K5XHRychIrVaokJicnq5YfPXpUBCDOmjVLtax27dpijRo11La/ceOGCEDctm2bKIrvjk+ZMmXEli1bikqlUtUuKSlJLFGihNi8efMMuXv16vXJjB/s27dPBCCeO3cuw7qGDRuKDRs2VL0/d+6cCECsVKmSKJfLVct79eolCoIgtm7dWm372rVrq/255ORniUhXeCqNKJ/o3r07kpOTcfToUcTHx+Po0aNZnkYDADMzM9X/R0dHIzY2FvXr18ft27dVy0+cOAEAGDlypNq2Y8aMybLf4cOHq72vX78+IiMjERcXBwA4ePAglEolunfvjoiICNXLxcUFZcqUwblz57L/obMwf/58HD16FFu2bEGFChVUyz/+zPHx8YiIiED9+vWRlJSEJ0+e5Hg/ISEh8PPzw8CBA2Fvb69aXqVKFTRv3hzHjx/PsM3njk9mbt68ifDwcIwcORKmpqaq5W3btkW5cuVw7Ngx1bIePXrg1q1b+O+//1TL9uzZAxMTE3h6egIA/Pz88Pz5c/Tu3RuRkZGqP4PExEQ0bdoUFy9ehFKp/GRuTerfv7/ahHYPDw+IoojBgwertfPw8MCbN29Uc+l08bNElFM8lUaUTxQqVAjNmjXDrl27kJSUBIVCga5du2bZ/ujRo1iwYAH8/PzU5m0IgqD6/1evXkEikaBEiRJq25YuXTrLfosWLar2/sOpm+joaFhbW+P58+cQRRFlypTJdPu8XvF14sQJzJ07F9OmTUOXLl3U1j18+BAzZ87E2bNnMxQisbGxOd7Xh7k8X331VYZ15cuXx8mTJ5GYmAgLCwvV8s8dn5zup1y5cmq3aujWrRu8vLywZ88eTJ8+HaIoYt++fWjdurWq/+fPnwMABgwYkOVni42NVWUDkOFnQJP+95jY2NgAANzd3TMsVyqViI2NhYODg9Z/lohyg4URUT7Su3dvDBs2DKGhoWjdunWW8yv++ecfdOjQAQ0aNMCaNWvg6uoKY2NjbN68Gbt27cpThqyu2BLfz0tRKpUQBAF///13pm0/NZ/ncwICAtCnTx80b94cCxYsUFsXExODhg0bwtraGvPmzUOpUqVgamqK27dv44cffsgwQqItnzs+eeXm5ob69etj7969mD59Oq5du4bXr1+rzWH68Fl/+eUXVKtWLdN+/vfP4ePRNk3L6pjo82eJKLdYGBHlI506dcL333+Pa9euYc+ePVm2O3DgAExNTXHy5Em1exxt3rxZrV2xYsWgVCoREBCg9q9yf3//XGcsVaoURFFEiRIlULZs2U+2/Xj06nOSk5PRuXNn2Nra4o8//oBEon6m//z584iMjMTBgwfRoEED1fKAgIBc77dYsWIAgKdPn2ZY9+TJEzg6OqqNFuXWx/tp0qSJ2rqnT5+q1n/Qo0cPjBw5Ek+fPsWePXtgbm6O9u3bq9aXKlUKAGBtbY1mzZrlOd/HcvJnllc5+Vki0hXOMSLKRywtLfHbb79hzpw5al+E/0sqlUIQBLXL1F++fInDhw+rtWvZsiUAYM2aNWrLV65cmeuMnTt3hlQqxdy5czOMkoiiiMjISNV7CwuLbJ/iGj58OJ49e4ZDhw6pnQL64MOIwsf7lMvlGT5bTvbr6uqKatWqYevWrYiJiVEtf/DgAU6dOoU2bdpkK/vn1KxZE05OTli7dq3aac+///4bjx8/znCVYJcuXSCVSvHHH39g3759aNeunVqBVqNGDZQqVQq//vorEhISMuzv7du3uc76YT8fHw9tycnPEpGucMSIKJ/51LyRD9q2bYulS5eiVatW6N27N8LDw7F69WqULl0a9+7dU7WrUaMGunTpguXLlyMyMlJ1uf6zZ88A5G50oFSpUliwYAGmTZuGly9fomPHjrCyskJAQAAOHTqE7777DpMmTVLtf8+ePfDy8sI333wDS0vLTAu+Y8eOYdu2bejSpQvu3bun9hksLS3RsWNH1KlTB3Z2dhgwYADGjh0LQRCwffv2TE9hZXe/wLvTUa1bt0bt2rUxZMgQ1eX6NjY2avd5ygtjY2MsWrQIgwYNQsOGDdGrVy/V5frFixfHhAkT1No7OTmhcePGWLp0KeLj49GjRw+19RKJBBs2bEDr1q1RsWJFDBo0CIULF0ZQUBDOnTsHa2tr/PXXX7nKWq1aNUilUixatAixsbEwMTFBkyZN1G6boCk5+Vki0hk9XAlHRO99fLn+p2R2uf7GjRvFMmXKiCYmJmK5cuXEzZs3qy7N/lhiYqI4atQo0d7eXrS0tBQ7duwoPn36VAQgLly4UNXuw7Zv377NNGNAQIDa8gMHDoj16tUTLSwsRAsLC7FcuXLiqFGjxKdPn6raJCQkiL179xZtbW1FAKpLtf/3svkP+8js9fHl3ZcvXxZr1aolmpmZiW5ubuKUKVPEkydPZri8PLv7/eDMmTNi3bp1RTMzM9Ha2lps3769+OjRI7U2OT0+mdmzZ49YvXp10cTERLS3txf79OkjBgYGZtp2/fr1IgDRyspK7RL/j925c0fs3Lmz6ODgIJqYmIjFihUTu3fvLvr6+n4296esX79eLFmypCiVStWObVaX6+/bt09t+6x+rrPKkp2fJSJdEURRQzMGichg+Pn5oXr16tixYwf69Omj7zhERPkG5xgRFXDJyckZli1fvhwSiURtEjMREXGOEVGBt3jxYty6dQuNGzeGkZER/v77b/z999/47rvvMtxnhojoS8dTaUQF3OnTpzF37lw8evQICQkJKFq0KPr164cZM2bAyIj/NiIi+hgLIyIiIqL3OMeIiIiI6D0WRkRERETvcYJBDimVSgQHB8PKykqnt84nIiKi3BNFEfHx8XBzc8vwyKGPsTDKoeDgYF7JQ0REZKDevHmDIkWKZLmehVEOWVlZAXh3YK2trfWchoiIiLIjLi4O7u7uqu/xrLAwyqEPp8+sra1ZGBERERmYz02D4eRrIiIiovdYGBERERG9x8KIiIiI6D3OMSIiItIhhUKBtLQ0fccocIyNjSGVSvPcDwsjIiIiHRBFEaGhoYiJidF3lALL1tYWLi4uebrPIAsjIiIiHfhQFDk5OcHc3Jw3CdYgURSRlJSE8PBwAICrq2uu+2JhREREpGUKhUJVFDk4OOg7ToFkZmYGAAgPD4eTk1OuT6tx8jUREZGWfZhTZG5uruckBduH45uXOVwsjIiIiHSEp8+0SxPHl4URERER0XsGWxh5e3vjm2++gZWVFZycnNCxY0c8ffr0s9vt27cP5cqVg6mpKSpXrozjx4/rIC0REREZAoMtjC5cuIBRo0bh2rVrOH36NNLS0tCiRQskJiZmuc2VK1fQq1cvDBkyBHfu3EHHjh3RsWNHPHjwQIfJiYiIDMfAgQMhCAIEQYBMJkPp0qUxb9487NmzB1KpFEFBQZluV6ZMGXh5eaneP3z4EN27d0ehQoVgYmKCsmXLYtasWUhKSlLbrnjx4qr9mZmZoXjx4ujevTvOnj2r1c/5gcEWRidOnMDAgQNRsWJFVK1aFVu2bMHr169x69atLLfx8fFBq1atMHnyZJQvXx7z58/H119/jVWrVukweebSwyIR7PcAAf/eQeyLV0gPj4IiMgbpcQmQJyVDqVTqOyIREX2hWrVqhZCQEDx//hwTJ07EnDlz8OzZMzg4OGDr1q0Z2l+8eBH+/v4YMmQIAODatWvw8PCAXC7HsWPH8OzZM/z000/YsmULmjdvDrlcrrb9vHnzEBISgqdPn2Lbtm2wtbVFs2bN8NNPP2n9sxaYy/VjY2MBAPb29lm2uXr1qlr1CgAtW7bE4cOHs9wmNTUVqampqvdxcXF5C5qF8DE/Y/CRrTgpj8Rci1LoY/buHgwvFcloFn0L1oIR7hRpCMHUBBJLc6yM8sc/caEY+FUNdK5cExI7G8itTLHr4S0UcnVGlw6eMHEtBKmTAyS2VpzwR0REuWZiYgIXFxcAwIgRI3Do0CEcP34c/fr1w5YtWzB9+nS19ps2bYKHhwcqVqwIURQxZMgQlC9fHgcPHoRE8m5MplixYihbtiyqV6+OZcuW4YcfflBtb2Vlpdpf0aJF0aBBA7i6umLWrFno2rUrvvrqK6191gJRGCmVSowfPx5169ZFpUqVsmwXGhoKZ2dntWXOzs4IDQ3Nchtvb2/MnTtXY1mzIsje3crcGAKkkv8fyEsV340UGUOAmJwKMTkVyug4PIkLxA15BFref4wE/3dF4RtFCqZE34QJJKi37YKqGPJOfoWz6dEYXrYmBtRtDCM3JwiFC+FmXAS+qlUT7l9XgURmrPXPSERE/08URYhJKXrZt2Bumqd/MJuZmSEyMhJDhgzB0qVLcfHiRTRo0AAAkJCQgP3792PZsmUAAD8/Pzx69Ai7du1SFUUfVK1aFc2aNcMff/yhVhhlZty4cZg/fz6OHDmCKVOm5Dr75xSIwmjUqFF48OABLl26pPG+p02bpjbKFBcXB3d3d43vx3XHQhzDQrVlolKJoskpiIiIRGp8IgpZ20BMToEyIQnTbt1Gr4AAVCjkAgdzGyii4hD78iXank6EJC0dsuIloAiLhDImHm/SkhAgT0DyizdICDkNAAhSpKBl9E0YQ8ADp/owcXeGcUl3XJYmI9raBA2aN0PphnVgVMhO45+ViIgAMSkFAcVb6GXfJV6egmBhluPtRFGEr68vTp48iTFjxqBChQqoVasWNm3apCqM9u7dC1EU0bNnTwDAs2fPAADly5fPtM/y5ctn6/vb3t4eTk5OePnyZY5z54TBF0ajR4/G0aNHcfHiRRQpUuSTbV1cXBAWFqa2LCwsTDVclxkTExOYmJhoJGtOCRIJjC3M4WCR8YZgdWtURN3/WeYA4CjUz7+KqXL85ncfz2/5oZixOexTRaQHhuG/e/dQ9NwTmKSLkCqVSH8VgvRXIfg97hF85VGYtfNP9Ddzg7SQHRJLuWFr7CtUq1kDXQb2h6xcCQgcYSIi+mIcPXoUlpaWSEtLg1KpRO/evTFnzhwAwODBgzFhwgSsXLkSVlZW2LRpE7p16wYrKyu1PkRRzLJ/mUyWrRyiKGp9aojBFkaiKGLMmDE4dOgQzp8/jxIlSnx2m9q1a8PX1xfjx49XLTt9+jRq166txaT6JZjIUNKjBkp61FBb3gLAK2yGIj0d4ttopAUEIe2/16ixYS0SH99HJbuiQLQCirfRuB0UgF/iHqDo5fPw2H4BkBnDpHxJnDJLhaxEETTt0QUutapD0MBTjYmIvhSCuSlKvDylt33nROPGjfHbb79BJpPBzc0NRkb/Xz707NkTEyZMwN69e9GgQQNcvnwZ3t7eqvVlypQBADx+/BjVq1fP0Pfjx49RtmzZz2aIjIzE27dvs/V9nxcGWxiNGjUKu3btwpEjR2BlZaWaJ2RjY6N6Xkr//v1RuHBh1R/QuHHj0LBhQyxZsgRt27bF7t27cfPmTaxbt05vn0PfpEZGgGshGLkWglmdaljUr4NqnTIxGfJnL1Hs2Cn03LcLtknpkIiWUMYmIPXuUyyMvo3niiSs3XIEze2KwOTr8oj/qggiitjjm56dYeLI03BERFkRBCFXp7P0wcLCAqVLl850nZWVFbp164ZNmzbhv//+Q9myZVG/fn3V+urVq6NcuXJYtmwZevbsqTbP6O7duzhz5ky2rg738fGBRCJBx44d8/x5Pkk0UAAyfW3evFnVpmHDhuKAAQPUttu7d69YtmxZUSaTiRUrVhSPHTuWo/3GxsaKAMTY2FgNfArDo1QqRXlAkBh32FccULO+WN7GUbzu3lD0d6wn+jvWExdYlhYBiPWNbcXXDfqL4ZOXiHEHT4vy0Ah9Ryci0pvk5GTx0aNHYnJysr6j5NiAAQNET0/PT7b5559/RACinZ2duHDhwgzrL126JJqbm4sdO3YUr1+/Lr569Urcu3ev6O7uLrZq1UpMT09XtS1WrJg4b948MSQkRHz9+rV44cIFcdiwYaIgCJn2/bFPHefsfn8LoviJk36UQVxcHGxsbBAbGwtra2t9x8kXRIUC8mevkHrzIZav/x1LrpxCf5kLxlsUAwAoRBGNom+igo0jVvUfAfeWDWBatzqk1pZ6Tk5EpBspKSkICAhAiRIlYGqas9NY+jZw4EDExMR88tY2AFCuXDn4+/vjzZs3cHV1zbD+/v37mDt3Ls6dO4eoqCgA7+YJL1u2TO3UXPHixfHq1SsA7+Yeubi4oFatWhg+fDgaN278yQyfOs7Z/f5mYZRDLIw+T6FQIOF1MKQP/kPKtXu4+vcpdLhzDFaCFDfta0EqCIBUikvuFlBWKIHWQ/vDuW5NCBKDvd8oEdEnGXJhpA1KpRJDhgzByZMnceHCBdU8pLxiYaQHLIxyTqlU4vaFS3h26jyaKyyQfPEW0v57g+4xd3E7PR7zLUqhj3t5mDepBfMWtWHRxAMSKwt9xyYi0hgWRhkplUrVlWyDBw/WSJ8sjPSAhZFmyF8FY/KIUTh+5R9stqoA15R3P4a+qZFYmPQSfcrXwKSx42DRtgGM3Jz0nJaIKG9YGOmGJgojg70qjQybrJgbfI4fgg8AMS0dKTfuI/HkZZxfuwwB8cl45f8fIqb7IGK6D0xqVMCjCm6o931/mH+l3cs0iYjoy8YRoxziiJF2xcXF4djWnXAPiUOJu6+Q8u8DvExPQrPoWygkGONyvZ5w7Nwclh2bwri4m77jEhFlC0eMdIMjRlTgWFtbo9eYEar36WGRuL1oOWxXP0RZmEHyOABRP61D1E/rcNzFCFXatkCdcUNh7FpIj6mJiKig4GVAlK8ZOTug29L5CE+Iw+47V1Fo6RSYNayJZEHEtIf/oNGi6firQgsEd52AuN1/QxmfqO/IRERkwFgYkUEwNjZGkQpfwbpfe7jtXwZr33VoUdMDX1nao4rUAskXbuLtmJ+xqkQtrGnaFZGnLkFUKvUdm4iIDAxPpZFBKlq5Ag7euAyFQgHlmzAkHDiNuH0nseLmLfx39gFib9xF79JVYdWjFax6tuF8JCIiyhaOGJFBk0qlMC7uBruJA+ByYTN6DhmErxyc0c6xONIDwxC9ZCsOVGuFxTWaIXT3cYjyNH1HJiKifIyFERUYJiYmWPD7ajx+G4KKj47Cad1smDX6BuuSg/DDbV/MHvwdXlbtjMh5vyEtIEjfcYmIKB9iYUQFjiAIkJiZwKpTM7juXYK2P4xFKUdn9CxcDsqIGMSs3IXLNTvh9zrtEXP8IkSFQt+RiYjyrYEDB0IQhAyvVq1a6WT/c+bMQbVq1XSyL4CFERVwgiBg4rzZeB4egkaPT8Bl288wa+KBrUlBGH71KAZ17orXHr0QvWoXFNFx+o5LRJQvtWrVCiEhIWqvP/74Q9+xtIKFEX0RBEGAYGQEi9b14bbnV3w1bhAKWVjB074Y0l+FIGrub3hSpSMuDZoM+bOX+o5LRJSvmJiYwMXFRe1lZ2eH8+fPQyaT4Z9//lG1Xbx4MZycnBAWFgYAOHHiBOrVqwdbW1s4ODigXbt2+O+//9T6DwwMRK9evWBvbw8LCwvUrFkT169fx5YtWzB37lzcvXtXNVK1ZcsWrX5WFkb0RZq6cAHeRL5F32cXUGjZD5BVLIUD0a9Rf8uvGFi1NoK7T0TSuRvgjeGJSNsSExORmJio9vtGLpcjMTERqampmbZVfnQ7krS0NCQmJiIlJSVbbTWpUaNGGD9+PPr164fY2FjcuXMHP/74IzZs2ABnZ2dVDi8vL9y8eRO+vr6QSCTo1KmTKldCQgIaNmyIoKAg/Pnnn7h79y6mTJkCpVKJHj16YOLEiahYsaJqpKpHjx4a/QwZiJQjsbGxIgAxNjZW31FIg5RKpTi2R19RAMRZliVFf8d6or9jPfFVg/5i1K6jojJVru+IRGTAkpOTxUePHonJyckZ1gEQAYjh4eGqZQsWLBABiEOHDlVra25uLgIQAwICVMuWLVsmAhB79+6t1tbR0VEEID548EC1bN26dTnOPmDAAFEqlYoWFhZqr59++kkURVFMTU0Vq1WrJnbv3l2sUKGCOGzYsE/29/btWxGAeP/+fVEURfH3338XraysxMjIyEzbz549W6xatWq2sn7qOGf3+5sjRkR4d6rNZ/d2PPf3x/hrJ2AzrCsEczNc9LuNKn27YFFJD8Ss/gPKhCR9RyUi0rnGjRvDz89P7TV8+HAAgEwmw86dO3HgwAGkpKRg2bJlats+f/4cvXr1QsmSJWFtbY3ixYsDAF6/fg0A8PPzQ/Xq1WFvb6/Tz5QV3uCR6COlSpV69z8/j4PdlMGY2Lg5Av1S8SAyFJFz1iB62TbYDOkCm2FdIHW0029YIioQEhISAADm5uaqZZMnT8b48eNhZKT+NR0eHg4AMDMzUy0bNWoUhg0bBqlUqtb25cuXGdoOHDgwVxktLCxQunTpLNdfuXIFABAVFYWoqChYWFio1rVv3x7FihXD+vXr4ebmBqVSiUqVKkEul2fIlx9wxIgoC1JbK+y8fBarfHww+ef5MC5dFMrYBDz6ZR28StXA8/E/IS0wTN8xicjAWVhYwMLCAoIgqJbJZDJYWFjAxMQk07YSyf9/fRsbG8PCwiLD0+Szaqtp//33HyZMmID169fDw8MDAwYMUM0fioyMxNOnTzFz5kw0bdoU5cuXR3R0tNr2VapUgZ+fH6KiojLtXyaTQaHD26qwMCL6BHNzc4waOxZVJwyB+6VtcN68AFssk7AiLgDD1izB62974u3EX5D2KljfUYmItCY1NRWhoaFqr4iICCgUCvTt2xctW7bEoEGDsHnzZty7dw9LliwBANjZ2cHBwQHr1q2Dv78/zp49Cy8vL7W+e/XqBRcXF3Ts2BGXL1/GixcvcODAAVy9ehUAULx4cQQEBMDPzw8REREZJqRrGgsjomwSpFJYtmuItj7zUblUGXxfswGQlo64bX/C/9ueePrdj0h7EajvmEREGnfixAm4urqqverVq4effvoJr169wu+//w4AcHV1xbp16zBz5kzcvXsXEokEu3fvxq1bt1CpUiVMmDABv/zyi1rfMpkMp06dgpOTE9q0aYPKlStj4cKFqlODXbp0QatWrdC4cWMUKlRI6/dPEkSR1yPnRFxcHGxsbBAbGwtra2t9xyE9+fDXJuX6fUQv2YLNJ/6Cd2IAxloUw/hBQ2HnNYAPriUilZSUFAQEBKBEiRIZTnmR5nzqOGf3+5sjRkS58OFGY2a1qsBt31Jc+9odiaICElFE/B/H8bp2b4R7LUbam1B9RyUiohxgYUSkAUfOncHhw4cx6dR+mDX+FkhX4MqmXVhQqT4CvRYjPTRC3xGJiCgbeLk+kQZIJBJ4enoCAGzrfI3k6/cwqEM7/BP+Bq9/88GP+0/BZlhX2I7pA6mtlZ7TEhFRVjhiRKQFpt9WRp95M1DctTC++7YRxORUxKzYiRdfd0X0sm1QJqV8vhMiItI5FkZEWiAIAr7//nv4v3mFWud3wGW7N2TlS2Jx6EO0+2EsTlVpg7jtf0JMT9d3VCLSIV7vpF2aOL4sjIi0SCqVQhAEWLSqB5s/fbAX0biSFovAt2F46/UL3jQciMS//+EvS6IC7sONFZOS+FghbfpwfPNyI0vOMSLSEWtbW/g9fICd27aji9NXiFm2DWnPXuFi73EoXesbuHtPgGm1cvqOSURaIJVKYWtrq3qkh7m5udqdrilvRFFEUlISwsPDYWtrm+HxKDnB+xjlEO9jRJqiiI1H2LKtqLVgMuSiEuusK8CjV2c4zPgORoWd9R2PiDRMFEWEhoYiJiZG31EKLFtbW7i4uGRadGb3+5sjRkR6IrWxQnyv5pBuKgRExqC41AwJ+04h8a/zsBnRE3Zj+0Biaf7ZfojIMAiCAFdXVzg5OSEtLU3fcQocY2PjPI0UfcARoxziiBFpWkpKCp4/f44yCmNEzlqFlKt3sSM5BG2KlEG5eeNg2bUFBAmnAxIR5UV2v79ZGOUQCyPSJlEUcWLhCrSZPh42ghHO2dVEoZqV4fjTOJjWrKjveEREBouPBCEyQIIgwKVVA9SsUQNd6zaCjZUVUm8/RlDr4Qgb9RPSwyL1HZGIqEDjiFEOccSIdEGpVCIlJQWyuCRE/bweL3cewZLEl5hQqBzKzRgBmyFdIBhziiARUXZxxIjIgEkkEpibm8PIxRFOK6ZhdV1X7E0Nw9jQO4j8cRXeNB6E5Eu39R2TiKjAYWFEZADGzp4JDw8PeE+fCYm9DdKevkRwp3EIGz6PD6glItIgnkrLIZ5KI30RRRGCIEARHYco7w3Y/vs6+MnjMMm5AorNGA7rQR0hGPH0GhFRZngqjaiA+XDDMqmdNcxnf4+F0rfYnhKCPREvEDHdB4EtvkPK7Ud6TklEZNhYGBEZIAsLC+zauwcdPT0xwecXSGytIL//HEGthuPtD8ugiEvQd0QiIoPEU2k5xFNplB8pIqLxdtZqDN7og9rGNuhTrCKcvMfDon0jPo+JiAg8lUb0RZE62uFGqyr4Wx6Bn5IC8CYkGGFDZiG0zw9ICwzTdzwiIoPBEaMc4ogR5VcKhQKrV6+GIlWOAUo7RPvsANLSIViYwWHGd7Ae3AmCBp4jRERkiPhIEC1hYUSGQv7sJW59PxMTLh/FbIuSqFzrWzgt+wGyciX0HY2ISOd4Ko3oCycrWxyLbRJwPS0WP6e8RurNh3jTZDCiFm+CKOeTvYmIMsPCiKgAW7V6Nbp27YoNvsdh3rIukJaO6F82I7D5UKT4PdF3PCKifIen0nKIp9LIUImiiMTDZ7Fk+DgkJiRiqIU7HEb3ht2UQZCYmug7HhGRVvFUGhGpEQQBUTXKYGHcf/gl6SVOprxFzMqdCGw8GCk3H+o7HhFRvsDCiOgL4u7ujt9++w3dunXDoD/WQupkjzT/1whqOxKR836DMiVV3xGJiPTKoAujixcvon379nBzc4MgCDh8+PAn258/fx6CIGR4hYaG6iYwkZ4JgoCBAwdi7969sGzbEO6Xd8C0azP8HOePJ8s3I7DpEKTceazvmEREemPQhVFiYiKqVq2K1atX52i7p0+fIiQkRPVycnLSUkKi/E1qa4UtRYywKSUYvRIeIvnpSwS1Go7In9bxyjUi+iIZ9KO4W7dujdatW+d4OycnJ9ja2mo+EJEB6tq1Kw4fPoyxQ7+D7Z0QJBw4jZjl25F0+iqc1syESYVS+o5IRKQzBl0Y5Va1atWQmpqKSpUqYc6cOahbt26WbVNTU5Ga+v/zLuLi4nQRkUhnvvrqK1y9ehVSqRSCIMCibQNcGjMb0X638G3zYbD/YQhsR/XkXbOJ6Itg0KfScsrV1RVr167FgQMHcODAAbi7u6NRo0a4fft2ltt4e3vDxsZG9XJ3d9dhYiLdMDIyUj1sVtrMA5PM3qJv3AMciQtC1Py1CO4wBmkvg/WckohI+wrMfYwEQcChQ4fQsWPHHG3XsGFDFC1aFNu3b890fWYjRu7u7ryPERVYiYmJGDNmDI4dO4Yrs5dC+GUbxIQkCBZmcPxpHKx6t1EVUUREhoL3Mcqmb7/9Fv7+/lmuNzExgbW1tdqLqCCzsLDApk2bcO/ePZQa2QfuF7bAtFZVPImNQPg4b4QNmglFZIy+YxIRacUXXxj5+fnB1dVV3zGI8h1nZ2cAgHFRVwRM7o72sX6YmPgcMUfP4039AUjyva7nhEREmmfQk68TEhLURnsCAgLg5+cHe3t7FC1aFNOmTUNQUBC2bdsGAFi+fDlKlCiBihUrIiUlBRs2bMDZs2dx6tQpfX0EIoNw78EDCBIJLJrWgnm0FdKevUJIz0mwGdYV9rOG85EiRFRgGHRhdPPmTTRu3Fj13svLCwAwYMAAbNmyBSEhIXj9+rVqvVwux8SJExEUFARzc3NUqVIFZ86cUeuDiDIaOXIkqlevjooVK8LS2ASRc9cgcsN+RK/bh+TLt+G0djZMypfUd0wiojwrMJOvdYUPkSV6Z1TnHnhy+jwWykrAwdwCDrNHwnpIZ07MJqJ8iZOviUhr3rx5g01//4mzCeF4VqkwxBQ5IqYtR2i/aZyYTUQGjYUREeWYu7s7rl27hiVLlqD3+f1w+GkcIDNG0snLeNNoEJIvZX1vMCKi/Iyn0nKIp9KIMhd+9Q4mdOyO8ekOsJfKYDu+H+wnD4JgbNBTGYmogOCpNCLSqYlrlmJXuD9Gm4ZCVCoRs2wbgjzHIC0wTN/RiIiyjYUREWnElClTULlyZaw4uAcuG+ZBYmWB1H8fILDxICT+/Y++4xERZQtPpeUQT6URZU2pVEIieffvrbSXwfDtORouz0NgJTGCzXfd4DBrOAQTmZ5TEtGXiKfSiEjnPhRFABBuLKL/i0vojP/wWpGC2HX7ENhmBNICgvSYkIjo01gYEZFWREZGwszMDNbubqi8dTEk9jaQ33uGwKZDkPDXeX3HIyLKFE+l5RBPpRFlX2RkJBISElCsWDGkB4cjbNgcJF6/B6kgwGZYVzjMHsFTa0SkEzyVRkR65+DggGLFigEAjNyccLabB3qbBSFEkYrY9fsR1H400l4F6zklEdH/Y2FERDqRkpKCaTNn4FbgS5zxrA6JnTVS7zxGYNMhSDx5Wd/xiIgAsDAiIh0xNTXFxYsXMX78ePy4YQ2KnN0EkxoVoIxNQGjfqYicvxZierq+YxLRF45zjHKIc4yINEeRkoqF7XvB804ozAQpTOtUg/O6OTBydtB3NCIqYDjHiIjyvYVLfsXMM4cwyCEGSnNTpFzxQ2CTwUi+4qfvaET0hWJhRER6U79+fTg5OWH4lIko5rsRsvIloQiPQnDn8YhZsxsc0CYiXeOptBziqTQizYqOjoadnR0AQJmYjICxCyAeuQBBEGDRvhGcVkyDxNJczymJyNDxVBoRGYQPRREAyKUCej84g5lljZBqJCDxr/MIbPEd5E8D9BeQiL4oLIyIKN+4dOkSbt26hVNP7kHy23RIXQsh7fkrBLb8nnfLJiKd4Km0HOKpNCLt8vX1hSAIaNKkCdLfRiPsuzlIuXQbAGA7pg/sZwyDIJXqOSURGRqeSiMig9S0aVM0adIEAGBUyA4RPw7AyXolAQAxK3cipMckKCJj9JiQiAoyFkZElG9FR0ejY5cuGHV4G05094BgborkCzcR2HwYUu8903c8IiqAWBgRUb5lY2ODPn36oEyZMug1fzoKn/gdxiWKIP1NKILajUT8gdP6jkhEBQznGOUQ5xgR6V5CQgIsLS0BAIrYeLwcOhM4/27ekc3w7nCYPQKCkZE+IxJRPsc5RkRUYHwoigDg1JVLqPvPHjzpVBsAELt2L0K6T+S8IyLSCBZGRGQwRFHEL7/8grCwMPwliYPz5gUQzM2Q/M/td/OOHvjrOyIRGTgWRkRkMARBwNGjRzF37lysWLEClu0aosjJ32FUvPC7eUdtRyDhyDl9xyQiA8bCiIgMirm5OWbNmgWZTAYAkJUrgdP96wP1qkFMSkHY0FmI/Hk9RKVSz0mJyBCxMCIig7Z69WoMGzsavQKvwfz7bgCAmGXbENpvGpTxiXpOR0SGhoURERm0qlWrwsHBAV26doXrgrFwWjMTgokMSaeuILDV90h7EajviERkQDRyuX5UVBRsbW0hkRT8OouX6xPlP2FhYXBycoIgCACA5NuPEDZgBhShEZDYWsF503yY16+h55REpE9av1z/0aNHWLhwIerUqYNChQrByckJ/fv3x4EDB5CYyOFrItIdZ2dnVVGUnp6O7rN/wNG+dWDydXkoY+IR0m0iYjceBG/bRkSfk6PC6OnTp5g4cSLKlCmDWrVq4d9//8Xw4cMRFhaG48ePo1ixYpg3bx4cHR3RunVr/Pbbb9rKTUSUqd27d+Po0aOYMnc2FKumwLJrc0ChQMTUZYiYvARiWrq+IxJRPpajU2mbN2/G9evX4enpiaZNm6quCvlfL1++xJEjR/DXX3/hzJkzGgubH/BUGlH+Jooifv75Z1SsWBEdO3aEKIqIWbULUfN/B0QRpnWrw2XTfEjtbfQdlYh0KLvf33wkSA6xMCIyPG/evIHiyl0of1gBMTEZRsULw3XnQsjKFtd3NCLSEZ0+EiQ5ORlBQUEZlj98+FAT3RMR5VpMTAxat26NZjPGI/m3H2BU1BXpL4MQ1Go4knyv6zseEeUzeS6M9u/fjzJlyqBt27aoUqUKrl///180/fr1y2v3RER5EhkZiaSkJCQnJ8OqYhkUOfk7TGtVhTI+ESG9pyBm3X5OyiYilTwXRgsWLMCtW7fg5+eHzZs3Y8iQIdi1axcA8JcNEeldqVKlcO3aNZw8eRJFixaF1NEObgeWwap3W0CpROQMH0RM4aRsInrHKK8dpKWlwdnZGQBQo0YNXLx4EZ06dYK/v7/q8lkiIn1ycnKCk5OT6v2/fndwrZQ5+s8Zici5vyFuyxGkvQyG84a5kNpY6TEpEelbnkeMnJyccO/ePdV7e3t7nD59Go8fP1ZbTkSUH4SHh6Ndu3YYN24cDpolw2XrTxDMTZF8/l8EtR6BtICM8yWJ6MuR58Jo+/btav8SAwCZTIY//vgDFy5cyGv3REQaVahQIXh5eaFmzZro3r07LFrXR+G/VkPq5oS0568Q2Op7JF+9q++YRKQnOb5cv1evXpgxYwYqVaqkrUz5Gi/XJyoY5HK52r3YUgJDETHoR6T6PQFkxnBa/gOsurXUY0Ii0iStXa6/Z88eNG3aFA8ePMh0vSiKSEhIyGm3REQ69XFRtHv3btRq1wrib1Nh0bYhIE9D+MgFiFq4gReREH1hcnUqrVq1amjSpEmmxVF4eDhsbW3zmouISCdSU1MxdepU3L17F5t27oDzpnmwHdMHABC9ZCvCv58LZUqqnlMSka7kuDASBAFbtmxBkyZN0KRJE9y/fz9DG6VSqZFwRETaZmJigvPnz2Py5Mn48ccfIUgkcJg1HIWWTwWMpEg45IuQzuOhiIjWd1Qi0oEcF0aiKEIqlWLXrl1o2rRppsURL9MnIkNSvHhxLF68GBLJu1+JoijiRcXCcN27BBIbS6T8+wCBrUdA7v9az0mJSNtyfVWaRCLBzp070axZMzRp0oSX5hNRgTF79mzUrFkTu5/fReHjv8Go2PvHiLQejuQrfvqOR0RalKtTaaqN3xdHzZs3R9OmTVkcEZHBE0Xx3UNnFQqkp6dDVrY4Cv/9O0xqVoQyJh7BXScgft9JfcckIi3J1ak0tQ4kEuzYsUNVHPn5+WkqGxGRzgmCgE2bNuHMmTP47rvvAABGhezgdtAHFu0bAWnp765YW7KFV6wRFUA5LoyOHTsGGxsb9U7eF0ctWrRAly5dNBaOiEgfBEFA06ZNVe9TUlKw2GcZ7NbMgO2Y3gCA6IUb8Xb8Ij5jjaiAyXFh1Lp1a5iYmGTsSCLB9u3b4enpqZFg2XHx4kW0b98ebm5uEAQBhw8f/uw258+fx9dffw0TExOULl0aW7Zs0XpOIjJsgwYNwrRp09B/wAA4zBoBx18mAhIJ4ncdQ0ivyVDE8d5tRAVFnh8JotbZ+5Gjq1evAgCuX7+uye4zSExMRNWqVbF69epstQ8ICEDbtm3RuHFj+Pn5Yfz48Rg6dChOnuR8ASLK2oABA2BnZ4fhw4cDAGwGdoTLjoUQzM2QfOEmgtuNQnpQmJ5TEpEm5PiRIDlRtGhRvH6tm8tbBUHAoUOH0LFjxyzb/PDDDzh27JjajSl79uyJmJgYnDhxIlv74SNBiL5McXFxGf7Op957hpDeU6AIi4TUxRGuf/wCk0ql9ZSQiD4lu9/fRnndUffu3TNdLooioqKi8tq9Rl29ehXNmjVTW9ayZUuMHz8+y21SU1ORmvr/d72Ni4vTVjwiysc+/kUaFhaGvn37Ys2aNSh+4neE9JqMtCcBCGo/Ci6b5sO88bd6TEpEeZHnwujMmTPYvn07LC0t1ZaLooiLFy/mtXuNCg0NhbOzs9oyZ2dnxMXFITk5GWZmZhm28fb2xty5c3UVkYgMwOjRo3HmzBn0798fV65cQeGjqxE6cCZSLt1GSK8pKLRkMqz7tNV3TCLKhTwXRo0aNYKVlRUaNGiQYV2VKlXy2r3eTZs2DV5eXqr3cXFxcHd312MiItK31atXIzExEStWrIAgCJDaWMFtz68IH+eNhP2n8Xb8QqQHhsJuymA+CYDIwOS5MDp48GCW606fPp3X7jXKxcUFYWHqEyTDwsJgbW2d6WgR8O45SpldhUdEXy4nJyccP35cbVlCagqc1vwIoyIuiFm+HdG/bkF6UDgKLZkMwTjPv2qJSEdyfFVar1691CYvG5LatWvD19dXbdnp06dRu3ZtPSUiooLAz88PJUuWxO7du+Ew4zs4/jrp3eX8fxxHSJ8foExI0ndEIsqmHBdGe/bsQdOmTbMsjkRRREKCbu7pkZCQAD8/P9XdtgMCAuDn56e6Em7atGno37+/qv3w4cPx4sULTJkyBU+ePMGaNWuwd+9eTJgwQSd5iahg2rRpEyIiIvD7779DqVTCZoAnXLb/DMHcFMnnbiDIcwzSwyL1HZOIsiFX9zGqVq0amjRpkmlxFB4eDltb27zmypabN2+ievXqqF69OgDAy8sL1atXx6xZswAAISEharcLKFGiBI4dO4bTp0+jatWqWLJkCTZs2ICWLVvqJC8RFUzLly/HokWLcOTIEUgk736tWrSoC7dDPpA42kJ+7xmC2oyA3F83ty8hotzL8X2MpFIpAgMDMWHCBJw9exa+vr6oXLmyan1YWBhcXV2hVCo1HjY/4H2MiCg7bt26ha+//hrpAUEI6TkZaQGBkNhZw3XnIph+U0nf8Yi+ONn9/s7VQ2SlUil27dqFpk2bokmTJrh//75aG16FQURfsgMHDuDbb7/F6NGjIS3uhsLH18Dk6/JQRschuPM4JJ64pO+IRJSFXD8SRCKRYOfOnWjWrBmaNGmCe/fuaTIXEZHBioqKgiiKSElJAQBIHe3gdtAH5s1rQ0yRI3TADMRuPaLnlESUmRwXRh+PBn0ojpo3b46mTZuyOCIiAjBs2DCcP38e69atU805kliYwWXbz7Dq0xZQKhEx6VdEeW+AFp/KRES5kKtTaWodvH9w7Ifi6MMVYkREX7IGDRpAKpUCePd7c+PGjUiWy1Fo2Q+wmzwIABC9dCvejl8EMT1dn1GJ6CM5LoyOHTsGGxsb9U7eF0ctWrRAly5dNBaOiKgg8Pb2xtChQ9GmTRsoFArYTxmMQksnv7vX0a5jCB0wA8qkFH3HJCLkojBq3bp1pneClkgk2L59Ozw9PTk0TET0kYYNG8La2hqdOnWCkdG7u2Bb9+sAl60/QTCVIenUFQR3GQ9FZIx+gxJRzi7XDw0NhZ2d3ScfkSGKIv799198++23ePHiBUqWLKmRoPkFL9cnotwICwvL8BBrAEi5cf/d3bFj4mFcuihc9y6BsbuLHhISFWxauVx///79sLe3R6dOnbB582a8ffs2Q5sbN27g8OHDqFixIqpWrZrz5EREBdDHRZFcLsfYsWMRFBQE028ro/CxNTAq7IQ0/9cIajMCqY/+02NSoi9bjm/w6O/vjz///BNHjhzBtWvX8M0336BNmzYICAjA0aNHAQBt27aFp6cnmjdvDlNTU60E1xeOGBFRXo0ZMwarVq1CxYoVcffuXUilUqSHvEVIj0mQP34BibUlXLZ7w6xONX1HJSowsvv9nePC6GORkZE4evQojh8/juLFi8PT0xO1a9cu0Dd4ZGFERHn16tUrtGnTBsuWLUOLFi1UyxUx8QjtOxUp1+9BMJHB6ffZsGzbQI9JiQoOnRRGXyIWRkSkCenp6aqJ2B9TJqci7Ps5SPr7EiCRwHGxF2wGeOohIVHBorVHghARUd59XBS9ffsWjRs3xt27dyExM4HLpvmw6tf+/28EuWQLr/Yl0hEWRkREejZ58mScP38e/fr1g1KphGBkhEJLJsNu4gAAQPTCjYiYuhyiQqHnpEQFX8ZxXCIi0qnly5cjNjYWCxcuVD1CRBAE2E8dCqmjHSKm+yBu00EoImPgvHoGBBOZnhMTFVycY5RDnGNERLogl8shk70rgBIO+SJs1AIgLR1mDWrAZevPkFia6zkhkWHhHCMiIgN17949lClTBufOnQMAWHZqCtddiyGYmyH54i0EdxwLRUS0nlMSFUx5GjHy9fWFr68vwsPDoVQq1dZt2rQpz+HyI44YEZG29evXDzt27ECjRo1w9uxZ1S1QUvyeIKTnJCgjY2Fcyh2u+5byLtlE2aT1EaO5c+eiRYsW8PX1RUREBKKjo9VeRESUO+vXr8fkyZNx6NAhtfvCmVYrh8JH18CoiDPS/nuDoDYjIH8SoMekRAVPrkeMXF1dsXjxYvTr10/TmfI1jhgRkT6Eh4fDyckJAJAe8hbB3byQ9vQlJLZWcN25CKbfVtZzQqL8TesjRnK5HHXq1Mnt5kRElE1HjhxBiRIlcOjQIQCAkWshFP5rNUy+qQRlTDyCu05A4plrek5JVDDkujAaOnQodu3apcksRESUiUOHDiEpKQlHjhxRLZPaWcNt31KYNfGAmJyK0H5TEX/wjB5TEhUMub6PUUpKCtatW4czZ86gSpUqMDY2Vlu/dOnSPIcjIiJg48aNqFWrFoYOHaq2XGJhBtft3ggf8zMSDp5B+PB5UEbFwmZoFz0lJTJ8uZ5j1Lhx46w7FQScPXs216HyM84xIqL84MGDB6hUqRIAQFQq390EcuNBAIDd5EGwmzyoQD/Qmyinsvv9nesRow/31yAiIt1asGABZs+eja1bt6Jv374QJBI4eo+H1NEW0Ys2IfqXzVBExsLRexwECW9XR5QT/BtDRGRARFHEmzdvoFQqERwcrFouCALsJw2C48IJgCAgbtNBhI9cADEtXY9piQxPnm7wGBMTg40bN+Lx48cAgAoVKmDIkCGwsbHRWMD8hqfSiEjflEolTp06hVatWmW6Pv7gGYSPWgCkK2DerBacN86HxNxUxymJ8hetX65/8+ZNlCpVCsuWLUNUVBSioqKwbNkylCpVCrdv385tt0RE9BkSiUStKEpPT4evr6/qvVXnZnDZvhCCmQmSzlxDSPeJUMTG6yMqkcHJdWE0YcIEdOjQAS9fvsTBgwdx8OBBBAQEoF27dhg/frwGIxIRUVbS09PRp08fNG/eXO1RTBbNasF131JIrC2Rcv0egj3HIj08So9JiQxDnkaMfvjhBxgZ/f/8bSMjI0yZMgU3b97USDgiIvo0qVQKJycnGBkZoVChQmrrzDyqwO3PlZAWsof8oT+C241C2usQPSUlMgy5Loysra3x+vXrDMvfvHkDKyurPIUiIqLsEQQBK1aswM2bN9G+ffsM600qlkbho6thVNQVaQGBCGo3CvKnfL4aUVZyXRj16NEDQ4YMwZ49e/DmzRu8efMGu3fvxtChQ9GrVy9NZiQiok8QBAFVqlRRvY+OjlY9PgQAjEsWQeGjq2FcrgQUIW8R1H40Um4/0kdUonwv11elyeVyTJ48GWvXrkV6+rvLQY2NjTFixAgsXLgQJiYmGg2aX/CqNCLKzxISEtCwYUPcuXMH27ZtQ9++fVXrFFGxCOk1Gam3H0MwN4PLDm+Y16+hx7REuqP1q9JkMhl8fHwQHR0NPz8/+Pn5qa5MK6hFERFRfmdhYYE6derA0dER1apVU1sntbeB24HlMGtYE2JSMkJ6Tkbi8Yv6CUqUT+XpPkZfIo4YEVF+J4oigoODUbhw4czXp8oR9v08JB67AEilcPKZCqsemd8TiaigyO73d44KIy8vL8yfPx8WFhbw8vL6ZNuC+hBZFkZEZGiePHkCPz8/9OzZU7VMTE/H2wmLEb/7bwCAw0/jYPtdV31FJNI6rTwr7c6dO0hLS1P9f1b44EIiovwhODgYjRs3RlhYGMzMzODp6QkAEIyMUMhnKiQ2loj9fR8iZ/hAGRsPu0kD+Tucvmg5Kow+fnDs1q1bUaRIEUj+5wGFH57jQ0RE+ufi4gJPT09cu3YNdevWVVsnSCRwmD8GEjtrRC/ciOjFm6CMjYfDvNF8+Cx9sXI9x0gqlSIkJAROTk5qyyMjI+Hk5ASFQqGRgPkNT6URkaFRKpVISEj45O+s2PX7ETHdBwBg1bM1Ci2bAsEoR/92JsrXtH5VWlb1VEJCAkxN+bBCIqL8QiKRqH0RnDhxAvv371drYzOsK5xWzQCkUsTv/hthQ+dATJXrOiqR3uX4nwMfJl0LgoBZs2bB3NxctU6hUOD69esZLhElIqL84c6dO/D09IRCocD58+dRr1491TqrHq0gsTJH6LA5SDx2ASF9p8Jly0+QWJjpMTGRbuW4MPow6VoURdy/fx8ymUy1TiaToWrVqpg0aZLmEhIRkcZUqVIF3bt3R1JSEr799tsM6y3aNIDrH4sR2m86ks//i5BuXnD5YzGkNnzUE30Zcj3HaNCgQfDx8fni5tlwjhERGTqFQgGlUgljY+Ms26TceoiQnpOhjImHrGJpuO5dAiMnex2mJNIsrc8x2rx5MwsDIiIDJJVK1YoiHx8fnDx5Uq2NaY2KcDu8AtJC9pA/9Edw+1FICwzTdVQincvzna8fPXqE169fQy5Xn6TXoUOHPAXLrzhiREQFyeHDh9GpUyeYmpri/v37KF26tNr6tBeBCO46AelvQmFU2AmuB5ZBVqqontIS5Z5WbvD4sRcvXqBTp064f/8+BEFQXaX24cZgBfVyfSKigqRNmzZo3749vv76a5QqVSrDeuOSRVD4r1UI7uqFNP/XCG4/Gq57l8KkUulMeiMyfLk+lTZu3DiUKFEC4eHhMDc3x8OHD3Hx4kXUrFkT58+f12BEIiLSFplMhoMHD2LOnDlZ3vHaqLAzCv+1CrLKZaB4G43gjmOQ8u8DHScl0o1cF0ZXr17FvHnz4OjoCIlEAolEgnr16sHb2xtjx47VZEYiItIio49u5KhQKDBmzBhcv35drY3U0Q5uh3xg+m1lKGMTENzVC0kXbuo6KpHW5bowUigUsLJ6d/mmo6MjgoODAQDFihXD06dPNZOOiIh0asmSJVi1ahXatm2LuLg4tXVSGyu47l0Cs0bfQExKRkjvKUj8+x89JSXSjlwXRpUqVcLdu3cBAB4eHli8eDEuX76MefPmoWTJkhoLSEREujNy5Eg0btwYa9euzXSCqsTCDK47FsKibUNAnobQQT8ift/JTHoiMky5LoxmzpwJpVIJAJg3bx4CAgJQv359HD9+HD4+PhoL+DmrV69G8eLFYWpqCg8PD9y4cSPLtlu2bIEgCGovPr6EiOj/WVpawtfXF127ds2yjWAig/OGObDq0QpQKBA+cgFiNx/SYUoi7cl1YdSyZUt07twZAFC6dGk8efIEERERCA8PR9OmTTUW8FP27NkDLy8vzJ49G7dv30bVqlXRsmVLhIeHZ7mNtbU1QkJCVK9Xr17pJCsRkaH4eBJ2bGwsunTpgmfPnqm3MTJCoRXTYDO0CwAgYspSRPvs0GlOIm3IdWHUpEkTzJ07V22Zvb09YmJi0KRJkzwHy46lS5di2LBhGDRoECpUqIC1a9fC3NwcmzZtynIbQRDg4uKiejk7O+skKxGRIRo/fjwOHjyIrl27qs4SfCBIJHD4eRxsJ/QHAEQt+B2RC37P8iHjRIYg14XR+fPnsWrVKnTs2BGJiYmq5XK5HBcuXNBIuE+Ry+W4desWmjVrplomkUjQrFkzXL16NcvtEhISUKxYMbi7u8PT0xMPHz7UelYiIkO1aNEiNGjQAFu3boVEkvErQxAEOEwfBvtZwwEAMT47EDF1OcT/KaKIDEWuCyMAOHPmDEJDQ1GrVi28fPlSQ5GyJyIiAgqFIsOIj7OzM0JDQzPd5quvvsKmTZtw5MgR7NixA0qlEnXq1EFgYGCW+0lNTUVcXJzai4joS+Hk5ITz58+jevXqn2xnN6YPHH+ZCAgC4jYdRPgYb4jp6TpKSaQ5eSqMXF1dceHCBVSuXBnffPNNvr+xY+3atdG/f39Uq1YNDRs2xMGDB1GoUCH8/vvvWW7j7e0NGxsb1cvd3V2HiYmI9O/jOUf+/v5o1apVpnM5bQZ2hNOamYBUioS9JxA2dA7EVHmGdkT5Wa4Low9/UUxMTLBr1y6MGzcOrVq1wpo1azQW7lMcHR0hlUoRFqb+UMOwsDC4uLhkqw9jY2NUr14d/v7+WbaZNm0aYmNjVa83b97kKTcRkaESRRH9+vXDyZMnMXLkyEzbWHVtAZfN8wGZMRKPXUBIv2lQJqXoOClR7uW6MPrfyXUzZ87Ezp07sWTJkjyHyg6ZTIYaNWrA19dXtUypVMLX1xe1a9fOVh8KhQL379+Hq6trlm1MTExgbW2t9iIi+hIJgoBt27ahefPmWLVqVZbtLFrXh+uuxRDMTZF87gZCuk+EIi5Bh0mJci/XhVFAQAAcHR3VlnXp0gXXrl375FVhmuTl5YX169dj69atePz4MUaMGIHExEQMGjQIANC/f39MmzZN1X7evHk4deoUXrx4gdu3b6Nv37549eoVhg4dqpO8RESGrkyZMjh16tRnR+bNG9aE276lkFhbIuX6PQR3GgdFZIxuQhLlQa4Lo2LFimV6hUKlSpUwYMCAPIXKrh49euDXX3/FrFmzUK1aNfj5+eHEiROqCdmvX79GSEiIqn10dDSGDRuG8uXLo02bNoiLi8OVK1dQoUIFneQlIipozp49i7Zt2yIpKSnDOtNvK8PtkA8kjraQ33uGIM8xSA+N0ENKouwTxBzccMLLywvz58+HhYUFvLy8Ptl26dKleQ6XH8XFxcHGxgaxsbE8rUZEX7SkpCSULFkSYWFhmDVrVoZ7230gf/4KwV0mQBHyFkbF3eC2fxmMi7npOC196bL7/W2U5ZpM3LlzB2lpaar/z8rHVzAQEVHBZG5ujgMHDmD16tWYPn16lu1kZYqh8NHVCO4yHukvgxHUbhTcDiyDrGxx3YUlyqYcjRh97PXr1yhSpEiG02miKOLNmzcoWrSoRgLmNxwxIiL6NFEUM/0HcnpoBIK7TkDa05eQONjAbc8SmFT9Sg8J6UuU3e/vXM8xKlGiBCIiMp4rjoqKQokSJXLbLRERGbDffvsNgwcPzvD4EAAwcnFE4SMrYVL1KygjYxHcaRySr9/TQ0qirGnscv0PEhIS+MR6IqIv0IsXLzB27Fhs2bIFBw4cyLSN1MEWrgeXw9SjCpTxiQjpPhFJ5//VcVKirOVojhEA1aRrQRAwa9YsmJubq9YpFApcv34d1apV01hAIiIyDCVLlsS2bdvw8OFDdO3aNct2UmtLuO5dgtCBM97d56jPD3DZMBcWrevrMC1R5nI8x6hx48YAgAsXLqB27dqQyWSqdTKZDMWLF8ekSZNQpkwZzSbNJzjHiIgo+7KabwQAYqocYcPnIfHoBUAqhdOq6bDq2kLHCelLkd3v71xPvh40aBB8fHy+uOKAhRERUfYolUqMGjUKJUqUwJQpUzJtI6an4+34RYjfcwIQBDj+MhE2Azx1nJS+BFovjL5ULIyIiLLn6NGjaN++PSQSCR48eIDy5ctn2k5UKhExzQdxmw4CAOxnj4Dd6N66jEpfAK1flQYA//zzD/r27YvatWsjKCgIALB9+3ZcunQpL90SEVEB0K5dO8yePRs7duzIsigCAEEigePC8bAd2wcAEDX3N0R5b8jyIh8ibcp1YXTgwAG0bNkSZmZmuHPnDlJTUwEAsbGx+PnnnzUWkIiIDNecOXPQq1cv1fusih1BEODw43DYz/gOABC9dCsiZ66EmMll/0TalOvCaMGCBVi7di3Wr18PY2Nj1fK6devi9u3bGglHREQFR3x8PFq2bIk///wzyzZ24/vBceEEAEDsun14O2ExRIVCVxGJcn65/gdPnz5FgwYNMiy3sbFBTExMXjIREVEB5OPjg9OnT8PPzw8vXryApaVlpu1shnSGYGGGt+MWIn7XMSgTkuD8248QZMaZtifSpFyPGLm4uMDf3z/D8kuXLqFkyZJ5CkVERAXP1KlTMXjwYBw7dizLougD656t4bxhLmBshMQ/zyF0wHQok1N1lJS+ZLkujIYNG4Zx48bh+vXrEAQBwcHB2LlzJyZNmoQRI0ZoMiMRERUARkZG2LhxI7755hvVsk9NsLZs3wiu2xdCMDNB0plrCOk5CcqEJF1EpS9YrgujqVOnonfv3mjatCkSEhLQoEEDDB06FN9//z3GjBmjyYxERFQAvXz5ErVq1cLDhw+zbGPe1AOue5ZAsDRHyhU/BHcZD0V0nA5T0pcmz/cxksvl8Pf3R0JCAipUqPDZ4VFDx/sYERFpRpcuXXDw4EHUrVsX//zzT5Z3yAaAFL8nCOkxCcqoWMgqlITr3qUwcnbQYVoydLzBo5awMCIi0oyoqCiMGDECS5cuReHChT/bXv4kAMFdJ0ARFgnjkkXgemA5jIs46yApFQQ6KYx8fX3h6+uL8PBwKP/nXhObNm3Kbbf5GgsjIiLt+dSz1QAgLSAIwV0nIP11CIwKO8H1wDLIShXVYUIyVFq/8/XcuXPRokUL+Pr6IiIiAtHR0WovIiKinPjnn3/QoEEDREVFZdnGuERhFP5rFYzLFEN6UDiC249G6oOMV0gT5VauR4xcXV2xePFi9OvXT9OZ8jWOGBERaV5aWhrKly+P//77D2PHjoWPj88n26e/jUZI94mQP3gOiY0lXHf/CtOaFXWUlgyR1keM5HI56tSpk9vNiYiIVIyNjXHkyBH07dsXCxcu/Gx7o0J2cDvsA9NvKkEZm4DgLhOQ9M8tHSSlgi7XhdHQoUOxa9cuTWYhIqIvWMWKFbF9+3aYmZmpln3qpIbUxgqu+5bCrGFNiEnJCO01BYknL+siKhVguX4kSEpKCtatW4czZ86gSpUqas9LA4ClS5fmORwREX25Nm7ciNOnT2PHjh0wMsr860piYQaXHQsR/v1cJB7/B6EDZ8Bp9UxYdW6m47RUUOR6jlHjxo0/uf7cuXO5CpTfcY4REZH2vXnzBmXKlEFqaiq2bdv22fmsYno6wsd6I2HfKUAQUOjXSbDu30FHackQZPf7O9cjRgW18CEiIv1zd3fHH3/8gWvXrqFv376fbS8YGcFp1QxILM0Rt/kw3k78BYq4BNiN7q2DtFSQ5HrEyMvLK/MOBQGmpqYoXbo0PD09YW9vn6eA+Q1HjIiI9ONz9zj60CZqwe+IWbETAGDnNQB2U4d8djsq+LR+g8fGjRvj9u3bUCgU+OqrrwAAz549g1QqRbly5fD06VMIgoBLly6hQoUKufsU+RALIyIi3VMqlZgwYQIKFy6MKVOmfLZ9tM8ORC34HQBgM7QLHH4aC0GS6+uNqADQ+uX6np6eaNasGYKDg3Hr1i3cunULgYGBaN68OXr16oWgoCA0aNAAEyZMyO0uiIiIAAAnTpzAihUrMHXq1E8+dPYDu3F94bjo3ZmN2A0H8HasN8T0dG3HpAIg1yNGhQsXxunTpzOMBj18+BAtWrRAUFAQbt++jRYtWiAiIkIjYfMDjhgREenHzJkzUaZMGQwYMCDb28TvO4nwMd6AQgGLtg3h/PssCCYyLaak/ErrI0axsbEIDw/PsPzt27eIi4sDANja2kIul+d2F0RERCoLFizIUVEEAFbdWsJl0zxAZozEYxcQ0ncqlInJWkpIBUGeTqUNHjwYhw4dQmBgIAIDA3Ho0CEMGTIEHTt2BADcuHEDZcuW1VRWIiIiAEBiYiI8PT3h6+v72bYWbRrA9Y/FEMzNkHz+X4R084IiNl4HKckQ5fpUWkJCAiZMmIBt27Yh/f15WyMjIwwYMADLli2DhYUF/Pz8AADVqlXTVF6946k0IiL9mz17NubNmwcnJycEBATA3Nz8s9uk/PsAIb0mQxmbAFnF0nDduwRGTgXrymnKmtavSvsgISEBL168AACULFkSlpaWeeku32NhRESkf6mpqejfvz/Gjx+P2rVrZ3+7h/4I6TYRirdRMC5ZBK4HlsO4iLMWk1J+obPC6EvDwoiIyLDJ/3uDkK4TkB4YBqPCTnDdvwyy0kX1HYu0TGeF0aNHj/D69esMk6w7dCiYt2JnYURElP+8efMGgwcPxsaNG1G06OeLnPSgMAR39UKa/2tIHG3htncpTCqX0UFS0hetF0YvXrxAp06dcP/+fQiCoHoC8oe7iyoUitx0m++xMCIiyn9atWqFkydPolmzZjh9+nS2tlFERCO4xyTI7z2DxNoSLrsWwcyjipaTkr5o/XL9cePGoUSJEggPD4e5uTkePnyIixcvombNmjh//nxuuyUiIsqxDRs2oGXLlti4cWO2t5E62sHtkA9Ma1WFMi4BId28kOR7XYspyRDkesTI0dERZ8+eRZUqVWBjY4MbN27gq6++wtmzZzFx4kTcuXNH01nzBY4YEREVLMqkFIQN/hFJvtcAYyM4/zYLlp6N9R2LNEzrI0YKhQJWVlYA3hVJwcHBAIBixYrh6dOnue2WiIgoz65du4Zu3bohJSXls20l5qZw2fYzLDs2AdLSEfbdHMRt/0sHKSk/MsrthpUqVcLdu3dRokQJeHh4YPHixZDJZFi3bh1KliypyYxERETZlpycjE6dOiE0NBTlypXD/PnzP7uNIDOG09pZkFhbIm7bn3jrtRiK2HjYje6tg8SUn+R6xGjmzJlQKpUAgHnz5iEgIAD169fH8ePHsWLFCo0FJCIiygkzMzPs2rULHTp0wNSpU7O9nSCVwvHXSbAd0wcAEDX3N0TOXwve1ebLotH7GEVFRcHOzk51ZVpBxDlGREQFX/SKnYiavxYAYD3AE46LJkCQSvWcivIiu9/fuT6VBgApKSm4d+8ewsPDVaNHHxTU+xgREZHh2b59O549e5at02oAYDe2D6R2Vng78VfEbT0CZWw8nFbPhCAz1nJS0rdcF0YnTpxAv379EBkZmWGdIAgF9j5GRERkWB4/fowBAwZAFEV4eHigXbt22drOul8HSKwsETZyPhIOn4UiLhEumxdAYm6q5cSkT7meYzRmzBh0794dISEhUCqVai8WRURElF+UL18eixYtwtixY9GmTZscbWvZsQlcty+EYGaC5LPXEdJ1AhQx8VpKSvlBrucYWVtb486dOyhVqpSmM+VrnGNERGSYRFHM9RzYlBv3EdJ7CpSxCZBVLAXXPUtg5Oyg4YSkTVq/j1HXrl15h2siIjIYH4oiURQxbdo0/Pnnn9ne1vTbynA7shLSQvaQP/wPQe1GIe1VsLaikh7lesQoKSkJ3bp1Q6FChVC5cmUYG6tPSBs7dqxGAuY3HDEiIjJsW7duxcCBA2Fqagp/f38ULlw429umBQQhuNsEpL8KgdTZAa77lsKkPO/dZwi0/hDZjRs3Yvjw4TA1NYWDg4Pa8KQgCHjx4kVuus33WBgRERm29PR09OzZE61bt8aQIUNyvn1oBEK6T4T88QtIbK3gumsxTL+ppIWkpElaL4xcXFwwduxYTJ06FRJJrs/IGRwWRkREhi8v840AQBEdh5A+PyD13wcQzE3hsmkBzJt6aDAhaZrW5xjJ5XL06NFD70XR6tWrUbx4cZiamsLDwwM3btz4ZPt9+/ahXLlyMDU1ReXKlXH8+HEdJSUiovzi46IoOTkZQ4YMgb+/f7a3l9pZw23fUpg18YCYlIKQvj8g/tAZbUQlHct1VTNgwADs2bNHk1lybM+ePfDy8sLs2bNx+/ZtVK1aFS1btkR4eHim7a9cuYJevXphyJAhuHPnDjp27IiOHTviwYMHOk5ORET5xcSJE7Fp0yZ06NAhR7ebkViYwXW7Nyw7NQXSFQj/fh5iNx3SYlLShVyfShs7diy2bduGqlWrokqVKhkmXy9dulQjAT/Fw8MD33zzDVatWgUAUCqVcHd3x5gxYzJ9Pk6PHj2QmJiIo0ePqpbVqlUL1apVw9q1a7O1T55KIyIqWMLCwtCuXTssXboU9evXz/H2olKJiKnLEbf5XVFkN2Uw7CYNLNCPxzJEWn8kyP3791G9enUAyDDioosfBrlcjlu3bmHatGmqZRKJBM2aNcPVq1cz3ebq1avw8vJSW9ayZUscPnw4y/2kpqYiNTVV9T4uLi5vwYmIKF9xdnbGjRs3cv3dJUgkcFw0AVJHW0T/shnRizdBERkDx5/HQfiC5uAWFLkujM6dO6fJHDkWEREBhUIBZ2dnteXOzs548uRJptuEhoZm2j40NDTL/Xh7e2Pu3Ll5D0xERPnWx0VRcHAwZs+eDR8fH5ibm2d7e/spgyG1t0HEdB/EbTwIZVQsnFbN4PPVDAxL2c+YNm0aYmNjVa83b97oOxIREWmJKIpo3749NmzYgFGjRuV4e5uhXeC0dhZgJEXCIV+E9J0KZUKSFpKSthhsYeTo6AipVIqwsDC15WFhYXBxccl0GxcXlxy1BwATExNYW1urvYiIqGASBAErV65E5cqVMWvWrFz1YdW5GVx3LoJgborkczcQ3HUCFFGxGk5K2mKwhZFMJkONGjXg6+urWqZUKuHr64vatWtnuk3t2rXV2gPA6dOns2xPRERfnjp16sDPzw8lSpTIdR/mTTzgdnA5JHbWSL316N0jRALDPr8h6Z3BFkYA4OXlhfXr12Pr1q14/PgxRowYgcTERAwaNAgA0L9/f7XJ2ePGjcOJEyewZMkSPHnyBHPmzMHNmzcxevRofX0EIiLKhz6+R9/NmzcxZ84c5PQibtMaFVH46GpI3ZyQ9vwVgtqOhPxpgKajkoblevJ1ftCjRw+8ffsWs2bNQmhoKKpVq4YTJ06oJli/fv1a7Ye7Tp062LVrF2bOnInp06ejTJkyOHz4MCpV4q3ciYgoo7dv36Jp06aIi4tDkSJFMHTo0BxtLytbHEWOr0Fw94lIe/YKQe1G8REi+Vyu72P0peJ9jIiIviwrVqzAoUOH8Oeff8LKyipXfSiiYhHSewpSbz2CYGYC543zYdGc0zh0SevPSvtSsTAiIvrypKenw8gobydZlInJCB38I5LPXgekUjj5TIVVj1YaSkifo/VnpREREX0pPi6K9uzZg/379+e4D4mFGVx3LIRltxaAQoHw0T8hetUuTcYkDTDoOUZERES6dPHiRfTq1QtGRkYoVaqU6gkQ2SUYG8Fp1QxIC9kjds1uRM39DYq30XCYPYJ3yc4nWBgRERFlU926ddG9e3fY2dmhatWquepDkEjgOHcUjJzsETlnDWLX7IYiPBJOPtN4l+x8gHOMcohzjIiIvmzp6emQSqUaeS5o/N4TCB+3EEhXwKzRN3DZvAASy+w9hoRyhnOMiIiItMDIyEhVFImiCG9vbzx+/DhXfVl1bwWX7Qvf3SX7/L8I7jQO6W+jNRmXcoiFERERUS4tX74c06dPR/PmzREXF5erPiya1YLbIR9IHGyQ6vcEwW1HIu1lsIaTUnaxMCIiIsql/v37o1KlSpgxY0aepleYfl0BhY+tgVFRV6QFBCKozQik3n2qwaSUXZxjlEOcY0RERB+Ty+WQyWQa6Ss9NAIhvaZA/uA5BAszuGz5CeaNvtFI3186zjEiIiLSgY+LotTUVEyfPj3Xp9WMXBxR+M+VMGtQA2JiMkJ6TUb8vpOaikrZwMKIiIhIQwYNGgRvb29069Ytxw+d/UBiZQHXP36BZedmQLoC4SMXIHrlzlz3RznDwoiIiEhDJk2aBDc3N0yZMiVPl/MLMmM4/fYjbEb2BABEzVuLyOk+EBUKTUWlLHCOUQ5xjhEREX1KSkoKTE1NNdZfzNo9iPxxFQDAol1DOK35ERIzE431/6XgHCMiIiI9+LgoCgsLw/z586FUKnPdn+3wHnBeNweQGSPx6AWEdPOCIjp3c5jo81gYERERaYFcLkfjxo0xa9YszJs3L099WXZqCre9SyCxtkTK9XsIajcSaW9CNZSUPsbCiIiISAtkMhl++OEHFC9eHH379s1zf2Z1q8Pt6GpIXQsh7dkrBLUejtT7zzWQlD7GOUY5xDlGRESUE8nJyTAzM9NYf+nB4QjpORnyxy/e3eto8wKYN/5WY/0XVJxjRERElA98XBT5+flh69ateerPyM0Jbn+tgmm9r9/d66j3FMT9cTyvMek9FkZEREQ68PLlSzRq1AiDBg3C0aNH89SX1MYKbnt+hWXX5kC6Am/HeiPql82815EGsDAiIiLSgWLFiqF3796oW7cu6tevn+f+BJkxnNb8CNtx7+YvRS/ehLfjFkJMS89z318yzjHKIc4xIiKi3FIqlUhNTdXonCMAiN1yGBE/LAOUSpg1+gYum+ZDYmWh0X0YOs4xIiIiymckEolaUXTo0CFcuXIlz/3aDOwIl+3eEMzNkHz+XwS1H4X04PA89/slYmFERESkBydPnkTXrl3Rpk0b+Pv757k/ixZ1UPjPlZA62UP+8D8EthqO1Id57/dLw8KIiIhID+rXr486deqgS5cuKFGihEb6NKn6FQqf+B3GZYtBEfIWQe1GIencDY30/aXgHKMc4hwjIiLSlMTERJiZmUEi0ew4hSImHqEDZyDl8h1AKkWhX7xg3a+DRvdhaDjHiIiIKJ+zsLBQFUWiKMLHxwdBQUF57ldqawW3vUtg2b0loFDgrdcviJy/FmIentn2pWBhRERElA/8+uuvGD9+PJo1a4bk5OQ89yfIjOG0agbspgwGAMSs2Inw7+dCmZKa574LMhZGRERE+UD37t1RtGhRDB8+XGOX8wuCAPvJg+C0agZgbISEw2cR0nk8FBHRGum/IOIcoxziHCMiItKWhIQEWFpaaqXv5Mt3EDpgOpSxCTAq7gbXXYshK1NMK/vKjzjHiIiIyMB8XBTJ5XIsWLBAI6fVAMCsbnUU/nstjIq7If1lMIJaD0fypdsa6bsgYWFERESUDw0YMAA//vgj+vbtq7E+ZWWKocjfa2H6TSUoYxMQ3M2LD6D9HyyMiIiI8qERI0bAwcEB3333nUb7lTrawfXgclh2bKJ6AG3kgt95xdp7nGOUQ5xjREREuqLNOUeiUonoRZsQvXQrAMCiXUM4rZ4JibmpVvanb5xjREREZOA+Lorevn2LxYsXQ1PjGYJEAvtpQ+G0egYgM0bi0QsI9hyD9NAIjfRvqFgYERER5XNyuRxNmjTBDz/8gPnz52u0b6vureC2fxkk9jZI9XuCwJbfI/X+c43uw5CwMCIiIsrnZDIZxo0bB3d3d/To0UPj/ZvVrooiJ36HcZliUASHI6jdKCSeuKTx/RgCzjHKIc4xIiIifdHmnCPg3TPWwobOQvKFm4AgwP7H72E7ujcEQdDaPnWFc4yIiIgKmI+Lovv372Pjxo0a7V9qawXXP36B9aCOgCgiat5avB3rDTFVrtH95GdG+g5AREREORMYGIhGjRohKioKdnZ26Ny5s8b6FoyN4LjIC7KyxRExYwXid/+NtJfBcNnhDamNlcb2k19xxIiIiMjAFC5cGP3794eHhwcaN26s8f4FQYDN0C5w/WMxJFYWSLl2F8Gdx0MRFavxfeU3nGOUQ5xjRERE+YEoikhOToa5ublW95P60B/BXSdAGREDWYWScN2/HEaF7LS6T23gHCMiIqICTBAEtaLozz//xMmTJzW+H5OKpVH4yEpInR0gf/SiwN/riIURERGRgfvnn3/QuXNndOzYEXfv3tV4/7KyxeF2ZCWkbk5Ie/4KwR3GID0oTOP7yQ9YGBERERk4Dw8PtG7dGl27dkXFihW1sg9ZKXcU/nMljIq6Ii0gEEEdxiDtZbBW9qVPnGOUQ5xjRERE+VFqaiqMjIwglUq1up/0oDAEdx6PtBeBkLoWgtvB5ZCVLqrVfWoC5xgRERF9QUxMTNSKomXLluHevXsa349RYWe4HVkJ46+KQxHyFsEdxiD18QuN70dfWBgREREVMOvXr4eXlxeaNWuGiAjNT5Q2cnFE4cMrIKtYGoq3UQjuOBapd59qfD/6wMKIiIiogOnWrRuqV6+OSZMmwdHRUSv7kDrawe3wCphULw9lVCyCO49Hyr8PtLIvXeIcoxziHCMiIjIEqampMDEx0fp+lPGJCOk1BSnX70EwN4PrrkUwq1td6/vNqQI/xygqKgp9+vSBtbU1bG1tMWTIECQkJHxym0aNGkEQBLXX8OHDdZSYiIhIdz4uitLS0jBx4kQEBgZqfD8SKwu47vkVZg1qQExKRkjPSUjyva7x/eiKwRZGffr0wcOHD3H69GkcPXoUFy9exHfffffZ7YYNG4aQkBDVa/HixTpIS0REpD+TJ0/G0qVL0bp1a6Snp2u8f4mFGVx2LoJ589oQU+QI6TcViccvanw/umCQhdHjx49x4sQJbNiwAR4eHqhXrx5WrlyJ3bt3Izj40/dUMDc3h4uLi+rF02FERFTQeXl54auvvsLChQthZKSd58dLTE3gsuUnWLRvBKSlI3TwLMQfPKOVfWmTQRZGV69eha2tLWrWrKla1qxZM0gkEly//unhu507d8LR0RGVKlXCtGnTkJSU9Mn2qampiIuLU3sREREZkqJFi+LBgwdo27atVvcjyIzhvG42LLu3BBQKhA+fh7gdR7W6T00zyMIoNDQUTk5OasuMjIxgb2+P0NDQLLfr3bs3duzYgXPnzmHatGnYvn07+vbt+8l9eXt7w8bGRvVyd3fXyGcgIiLSpY9HiqKiojBkyBDExMRofD+CkRGcVk6H9UBPQBTxdsIixPy+T+P70RbtjKfl0tSpU7Fo0aJPtnn8+HGu+/94DlLlypXh6uqKpk2b4r///kOpUqUy3WbatGnw8vJSvY+Li2NxREREBq1nz544ffo0wsPD8ddff2m8f0EigePiiRDMzRC7ZjciZ66AmJQMuwn9Nb4vTctXhdHEiRMxcODAT7YpWbIkXFxcEB4errY8PT0dUVFRcHFxyfb+PDw8AAD+/v5ZFkYmJiY6udyRiIhIV3799Vf07t0bCxcu1No+BEGAw5yRkFiaI3rxJkT9vB7KxGTYz/gOgiBobb95la8Ko0KFCqFQoUKfbVe7dm3ExMTg1q1bqFGjBgDg7NmzUCqVqmInO/z8/AAArq6uucpLRERkiKpUqYJ79+5BItHujBpBEGA/eRAkFmaInL0aMT47oExIguPP4yBoed+5lT9TfUb58uXRqlUrDBs2DDdu3MDly5cxevRo9OzZE25ubgCAoKAglCtXDjdu3AAA/Pfff5g/fz5u3bqFly9f4s8//0T//v3RoEEDVKlSRZ8fh4iISOc+LooeP36Mvn37Ijk5WSv7sh3ZE46/TgIEAXEbD+LtWG+IWrhtgCbkqxGjnNi5cydGjx6Npk2bQiKRoEuXLlixYoVqfVpaGp4+faq66kwmk+HMmTNYvnw5EhMT4e7uji5dumDmzJn6+ghERER6l5aWhnbt2uHFixdwdHTE8uXLtbIfmwGekFiYIXz0z4jfcwLKxGQ4r50FwUSmlf3lFh8JkkN8JAgRERU0Fy9exMyZM3Ho0CE4ODhodV+Jxy8idNgcQJ4GsyYecNm8ABJzU63uE8j+9zcLoxxiYURERAWRKIo6mxSddP5fhA6YDjEpBaa1qsJl50JIrS21us8C/6w0IiIi0pyPi6Ljx4+jb9++SEtL08q+zBt9A9e9SyCxskDKtbsI7jQOisgYrewrp1gYERERkUpUVBR69uyJnTt3Ys2aNVrbj5lHFbgdXgGJoy3k954hqMNopIe81dr+souFEREREanY29tj165d6NOnD0aOHKnVfZlUKYvCf62G1M0Jac9eIajdKKQFBGl1n5/DOUY5xDlGRET0JdLmHKS0N6EI6TIBaQGBkDrZw3X/MpiUL6nRfXCOEREREWnEL7/8gsGDB0OpVGqlf2N3F7j9tQqyiqWgiIhBmv9rrewnOzhilEMcMSIioi/Js2fPUKFCBSgUChw+fBienp5a25ciJh4pV/1g0bq+xvvO7ve3wd7gkYiIiLSvbNmy2LVrF54+farVoggApLZWWimKcoKFEREREX1S9+7d1d4rFAoIgqD1Z63pQ8H7RERERKQ1CoUCAwcOxMiRI7U250ifWBgRERFRtl25cgU7d+7Ehg0bcOfOHX3H0TieSiMiIqJsq1+/PrZu3Qpzc3PUqFFD33E0joURERER5Ui/fv3U3icmJsLMzKxAzDky/E9AREREehMbG4umTZti9OjRBWLOEQsjIiIiyrWLFy/ixo0b2LNnDwIDA/UdJ894Ko2IiIhyrX379tixYwcqVKiAokWL6jtOnrEwIiIiojzp3bu32vuQkBA4Ozsb5Jwjw0tMRERE+dbz589Rs2ZNfP/99wY554iFEREREWmMn58fQkNDceXKFcTGxuo7To7xVBoRERFpTLdu3SCTyVCrVi3Y2dnpO06OccSIiIiINMrT0xPOzs6q93fv3oVCodBjouxjYURERERac/bsWdSqVQv9+/dHenq6vuN8FgsjIiIi0prY2Fikp6cjLi7OICZjc44RERERaU2nTp1w7tw5fPPNN5DJZPqO81kcMSIiIiKtqlevHkxMTFTv//zzT6SmpuoxUdZYGBEREZHOrF27Fp6enujcuTPS0tL0HScDFkZERESkM6VLl4aZmRkqV64MI6P8N6Mn/yUiIiKiAqtZs2a4d+8eSpUqBUEQ9B0nAxZGREREpFOlS5fWd4Qs8VQaERER0XssjIiIiIjeY2FERERE9B4LIyIiIqL3WBgRERERvcfCiIiIiOg9FkZERERE77EwIiIiInqPhRERERHReyyMiIiIiN5jYURERET0HgsjIiIiovdYGBERERG9x8KIiIiI6D0WRkRERETvGek7gKERRREAEBcXp+ckRERElF0fvrc/fI9nhYVRDsXHxwMA3N3d9ZyEiIiIcio+Ph42NjZZrhfEz5VOpEapVCI4OBhWVlYQBEFj/cbFxcHd3R1v3ryBtbW1xvqljHisdYPHWTd4nHWDx1k3tHmcRVFEfHw83NzcIJFkPZOII0Y5JJFIUKRIEa31b21tzb90OsJjrRs8zrrB46wbPM66oa3j/KmRog84+ZqIiIjoPRZGRERERO+xMMonTExMMHv2bJiYmOg7SoHHY60bPM66weOsGzzOupEfjjMnXxMRERG9xxEjIiIiovdYGBERERG9x8KIiIiI6D0WRkRERETvsTDSodWrV6N48eIwNTWFh4cHbty48cn2+/btQ7ly5WBqaorKlSvj+PHjOkpq2HJynNevX4/69evDzs4OdnZ2aNas2Wf/XOj/5fRn+oPdu3dDEAR07NhRuwELiJwe55iYGIwaNQqurq4wMTFB2bJl+fsjG3J6nJcvX46vvvoKZmZmcHd3x4QJE5CSkqKjtIbp4sWLaN++Pdzc3CAIAg4fPvzZbc6fP4+vv/4aJiYmKF26NLZs2aLdkCLpxO7du0WZTCZu2rRJfPjwoThs2DDR1tZWDAsLy7T95cuXRalUKi5evFh89OiROHPmTNHY2Fi8f/++jpMblpwe5969e4urV68W79y5Iz5+/FgcOHCgaGNjIwYGBuo4ueHJ6bH+ICAgQCxcuLBYv3590dPTUzdhDVhOj3NqaqpYs2ZNsU2bNuKlS5fEgIAA8fz586Kfn5+OkxuWnB7nnTt3iiYmJuLOnTvFgIAA8eTJk6Krq6s4YcIEHSc3LMePHxdnzJghHjx4UAQgHjp06JPtX7x4IZqbm4teXl7io0ePxJUrV4pSqVQ8ceKE1jKyMNKRb7/9Vhw1apTqvUKhEN3c3ERvb+9M23fv3l1s27at2jIPDw/x+++/12pOQ5fT4/y/0tPTRSsrK3Hr1q3ailhg5OZYp6eni3Xq1BE3bNggDhgwgIVRNuT0OP/2229iyZIlRblcrquIBUJOj/OoUaPEJk2aqC3z8vIS69atq9WcBUl2CqMpU6aIFStWVFvWo0cPsWXLllrLxVNpOiCXy3Hr1i00a9ZMtUwikaBZs2a4evVqpttcvXpVrT0AtGzZMsv2lLvj/L+SkpKQlpYGe3t7bcUsEHJ7rOfNmwcnJycMGTJEFzENXm6O859//onatWtj1KhRcHZ2RqVKlfDzzz9DoVDoKrbByc1xrlOnDm7duqU63fbixQscP34cbdq00UnmL4U+vgv5EFkdiIiIgEKhgLOzs9pyZ2dnPHnyJNNtQkNDM20fGhqqtZyGLjfH+X/98MMPcHNzy/AXkdTl5lhfunQJGzduhJ+fnw4SFgy5Oc4vXrzA2bNn0adPHxw/fhz+/v4YOXIk0tLSMHv2bF3ENji5Oc69e/dGREQE6tWrB1EUkZ6ejuHDh2P69Om6iPzFyOq7MC4uDsnJyTAzM9P4PjliRPTewoULsXv3bhw6dAimpqb6jlOgxMfHo1+/fli/fj0cHR31HadAUyqVcHJywrp161CjRg306NEDM2bMwNq1a/UdrUA5f/48fv75Z6xZswa3b9/GwYMHcezYMcyfP1/f0SiPOGKkA46OjpBKpQgLC1NbHhYWBhcXl0y3cXFxyVF7yt1x/uDXX3/FwoULcebMGVSpUkWbMQuEnB7r//77Dy9fvkT79u1Vy5RKJQDAyMgIT58+RalSpbQb2gDl5mfa1dUVxsbGkEqlqmXly5dHaGgo5HI5ZDKZVjMbotwc5x9//BH9+vXD0KFDAQCVK1dGYmIivvvuO8yYMQMSCccdNCGr70Jra2utjBYBHDHSCZlMhho1asDX11e1TKlUwtfXF7Vr1850m9q1a6u1B4DTp09n2Z5yd5wBYPHixZg/fz5OnDiBmjVr6iKqwcvpsS5Xrhzu378PPz8/1atDhw5o3Lgx/Pz84O7ursv4BiM3P9N169aFv7+/qvAEgGfPnsHV1ZVFURZyc5yTkpIyFD8filGRjyDVGL18F2ptWjep2b17t2hiYiJu2bJFfPTokfjdd9+Jtra2YmhoqCiKotivXz9x6tSpqvaXL18WjYyMxF9//VV8/PixOHv2bF6unw05Pc4LFy4UZTKZuH//fjEkJET1io+P19dHMBg5Pdb/i1elZU9Oj/Pr169FKysrcfTo0eLTp0/Fo0ePik5OTuKCBQv09REMQk6P8+zZs0UrKyvxjz/+EF+8eCGeOnVKLFWqlNi9e3d9fQSDEB8fL965c0e8c+eOCEBcunSpeOfOHfHVq1eiKIri1KlTxX79+qnaf7hcf/LkyeLjx4/F1atX83L9gmTlypVi0aJFRZlMJn777bfitWvXVOsaNmwoDhgwQK393r17xbJly4oymUysWLGieOzYMR0nNkw5Oc7FihUTAWR4zZ49W/fBDVBOf6Y/xsIo+3J6nK9cuSJ6eHiIJiYmYsmSJcWffvpJTE9P13Fqw5OT45yWlibOmTNHLFWqlGhqaiq6u7uLI0eOFKOjo3Uf3ICcO3cu09+5H47tgAEDxIYNG2bYplq1aqJMJhNLliwpbt68WasZBVHkmB8RERERwDlGRERERCosjIiIiIjeY2FERERE9B4LIyIiIqL3WBgRERERvcfCiIiIiOg9FkZERERE77EwIiIiInqPhRERFTiNGjXC+PHj9R2DiAwQ73xNRAatUaNGqFatGpYvX65aFhUVBWNjY1hZWek8z4QJE/Dq1SscPHhQ5/smorzjiBERFTj29vZ6KYoA4MaNG6hZs6Ze9k1EecfCiIgM1sCBA3HhwgX4+PhAEAQIgoCXL19mOJXWqFEjjBkzBuPHj4ednR2cnZ2xfv16JCYmYtCgQbCyskLp0qXx999/q7ZRKpXw9vZGiRIlYGZmhqpVq2L//v1ZZpHL5TA2NsaVK1cwY8YMCIKAWrVqafPjE5EWsDAiIoPl4+OD2rVrY9iwYQgJCUFISAjc3d0zbbt161Y4Ojrixo0bGDNmDEaMGIFu3bqhTp06uH37Nlq0aIF+/fohKSkJAODt7Y1t27Zh7dq1ePjwISZMmIC+ffviwoULmfZvZGSEy5cvAwD8/PwQEhKCEydOaOeDE5HWcI4RERm0zOYY/e+yRo0aQaFQ4J9//gEAKBQK2NjYoHPnzti2bRsAIDQ0FK6urrh69SqqV68Oe3t7nDlzBrVr11b1O3ToUCQlJWHXrl2ZZjl8+DCGDh2KiIgI7XxYItI6I30HICLShSpVqqj+XyqVwsHBAZUrV1Ytc3Z2BgCEh4fD398fSUlJaN68uVofcrkc1atXz3Ifd+7cQdWqVTWcnIh0iYUREX0RjI2N1d4LgqC2TBAEAO/mFiUkJAAAjh07hsKFC6ttZ2JikuU+/Pz8WBgRGTgWRkRk0GQyGRQKhUb7rFChAkxMTPD69Ws0bNgw29vdv38fXbp00WgWItItFkZEZNCKFy+O69ev4+XLl7C0tIS9vX2e+7SyssKkSZMwYcIEKJVK1KtXD7Gxsbh8+TKsra0xYMCATLdTKpV4+vQpgoODYWFhARsbmzxnISLd4lVpRGTQJk2aBKlUigoVKqBQoUJ4/fq1RvqdP38+fvzxR3h7e6N8+fJo1aoVjh07hhIlSmS5zYIFC7BlyxYULlwYCxYs0EgOItItXpVGRERE9B5HjIiIiIjeY2FERERE9B4LIyIiIqL3WBgRERERvcfCiIiIiOg9FkZERERE77EwIiIiInqPhRERERHReyyMiIiIiN5jYURERET0HgsjIiIiovdYGBERERG993+D5Dg8N/0BXwAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -769,7 +759,8 @@ "plt.xlabel(\"time $t$\")\n", "plt.ylabel(r\"magnetization $\\langle Z_1 Z_2 \\rangle$\")\n", "plt.title(\"Magnetization over time\")\n", - "plt.legend(loc=\"best\")" + "plt.legend(loc=\"best\")\n", + "plt.show()" ] }, { @@ -867,7 +858,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlQAAAHICAYAAACI1HSMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACFb0lEQVR4nOzdd3xTVf8H8M9NmtE2HXS3QFuG7CnQCoqAVIasCgoi+0FElgxx8CjipCgiKKAICPxUeBiCgCIIVFT2LLJLWWV1UErTmdHk/P4IBEJb6E5aPu/XKy/Iybk333uTJt+cc+45khBCgIiIiIiKTWbvAIiIiIgqOiZURERERCXEhIqIiIiohJhQEREREZUQEyoiIiKiEmJCRURERFRCTKiIiIiISogJFREREVEJMaEiIiIiKiEmVEREj4hLly5BkiQsW7bM3qEQVTpMqIio0JYtWwZJkgq87du3z94hEoAVK1Zgzpw59g6D6JHiZO8AiKji+eijj1CjRo085bVr17ZDNHS/FStW4MSJE5gwYYJNeUhICHJycqBQKOwTGFElxoSKiIqsa9euaNmypb3DQFZWFlxdXe0dRrkTQkCn08HZ2blI20mSBLVaXUZRET3a2OVHRKXuzlidL774AgsXLkStWrWgUqnQqlUrHDx4ME/9M2fO4IUXXoCXlxfUajVatmyJjRs32tS50934999/Y/To0fDz80O1atWsj8+fPx81a9aEs7MzwsLCsHPnTrRv3x7t27cHAGRmZsLV1RXjx4/P8/xXr16FXC5HVFTUA48rKysLb7zxBqpXrw6VSoW6deviiy++gBDCWqdRo0bo0KFDnm3NZjOqVq2KF154waZszpw5aNiwIdRqNfz9/TFy5EjcunXLZtvQ0FB0794df/zxB1q2bAlnZ2d89913+cbYvn17bNq0CfHx8dau2NDQUAD5j6EaOnQoNBoNLl++jO7du0Oj0aBq1aqYP38+AOD48eN45pln4OrqipCQEKxYsSLPc6alpWHChAnW81K7dm189tlnMJvNDzyfRJUJW6iIqMi0Wi1SUlJsyiRJgre3t03ZihUrkJGRgZEjR0KSJHz++efo3bs3Lly4YO12OnnyJJ588klUrVoV77zzDlxdXbF69WpERkZi7dq1eP755232OXr0aPj6+uL9999HVlYWAODbb7/F2LFj0bZtW0ycOBGXLl1CZGQkqlSpYk26NBoNnn/+eaxatQpffvkl5HK5dZ//+9//IITAgAEDCjxmIQR69uyJHTt2YPjw4WjWrBn++OMPvPnmm7h27Rpmz54NAOjXrx8++OADJCYmIiAgwLr9rl27cP36dbz00kvWspEjR2LZsmUYNmwYXn/9dVy8eBHz5s1DTEwMdu/ebdM1Fxsbi/79+2PkyJEYMWIE6tatm2+c7777LrRaLa5evWqNSaPRFHhcAGAymdC1a1c8/fTT+Pzzz7F8+XKMHTsWrq6uePfddzFgwAD07t0bCxYswODBg9G6dWtrl292djbatWuHa9euYeTIkQgODsaePXswZcoUJCQkcCwXPToEEVEhLV26VADI96ZSqaz1Ll68KAAIb29vkZqaai3fsGGDACB+/fVXa1nHjh1F48aNhU6ns5aZzWbRpk0b8dhjj+V57qeeekrk5uZay/V6vfD29hatWrUSRqPRWr5s2TIBQLRr185a9scffwgAYvPmzTbH1aRJE5t6+Vm/fr0AID755BOb8hdeeEFIkiTOnTsnhBAiNjZWABBz5861qTd69Gih0WhEdna2EEKInTt3CgBi+fLlNvW2bNmSpzwkJEQAEFu2bHlgjHd069ZNhISE5Cm/87osXbrUWjZkyBABQEyfPt1aduvWLeHs7CwkSRIrV660lp85c0YAENOmTbOWffzxx8LV1VWcPXvW5rneeecdIZfLxeXLlwsVM1FFxy4/Iiqy+fPnY9u2bTa3zZs356nXr18/VKlSxXq/bdu2AIALFy4AAFJTU/Hnn3+ib9++yMjIQEpKClJSUnDz5k107twZcXFxuHbtms0+R4wYYdO6dOjQIdy8eRMjRoyAk9PdRvcBAwbYPDcAREREICgoCMuXL7eWnThxAseOHcPAgQMfeMy///475HI5Xn/9dZvyN954A0II6/HXqVMHzZo1w6pVq6x1TCYTfv75Z/To0cM67mnNmjXw8PDAs88+az3ulJQUtGjRAhqNBjt27LB5nho1aqBz584PjLEkXnnlFev/PT09UbduXbi6uqJv377W8rp168LT09P6+t05jrZt26JKlSo2xxEREQGTyYR//vmnzGImciTs8iOiIgsLCyvUoPTg4GCb+3cSnDtjhM6dOwchBKZOnYqpU6fmu4/k5GRUrVrVev/+qwvj4+MB5L3C0MnJyTp26A6ZTIYBAwbg22+/RXZ2NlxcXLB8+XKo1Wq8+OKLDzyW+Ph4BAUFwc3Nzaa8fv36NnEAlkTyv//9L65du4aqVavir7/+QnJyMvr162etExcXB61WCz8/vwKP+175XVVZWtRqNXx9fW3KPDw8UK1aNUiSlKf83jFecXFxOHbsWJ7t77j/OIgqKyZURFRm7m1Jupe4PYj7zqDlyZMnF9j6cn+iVNQr2+43ePBgzJw5E+vXr0f//v2xYsUKdO/eHR4eHiXa77369euHKVOmYM2aNZgwYQJWr14NDw8PdOnSxVrHbDbDz8/PprXsXvcnKCU97gcp6HV62OsHWI7j2WefxVtvvZVv3Tp16pQ8QKIKgAkVEdlNzZo1AQAKhQIRERHF2kdISAgAS2vXvVfX5ebm4tKlS2jSpIlN/UaNGqF58+ZYvnw5qlWrhsuXL2Pu3LmFep7t27cjIyPDppXqzJkzNnEAltaksLAwrFq1CmPHjsW6desQGRkJlUplrVOrVi1s374dTz75ZKknS/e3KpWlWrVqITMzs9ivH1FlwTFURGQ3fn5+aN++Pb777jskJCTkefzGjRsP3UfLli3h7e2NRYsWITc311q+fPnyPNMP3DFo0CBs3boVc+bMgbe3N7p27frQ53nuuedgMpkwb948m/LZs2dDkqQ8++jXrx/27duHJUuWICUlxaa7DwD69u0Lk8mEjz/+OM9z5ebmIi0t7aExFcTV1RVarbbY2xdF3759sXfvXvzxxx95HktLS7N5TYgqM7ZQEVGRbd682doyc682bdpYW50Ka/78+XjqqafQuHFjjBgxAjVr1kRSUhL27t2Lq1ev4t9//33g9kqlEh988AHGjRuHZ555Bn379sWlS5ewbNky1KpVK9/WmpdffhlvvfUWfvnlF4waNapQM4f36NEDHTp0wLvvvotLly6hadOm2Lp1KzZs2IAJEyagVq1aNvX79u2LyZMnY/LkyfDy8srTgtOuXTuMHDkSUVFROHr0KDp16gSFQoG4uDisWbMGX331lc2cVUXRokULrFq1CpMmTUKrVq2g0WjQo0ePYu3rYd58801s3LgR3bt3x9ChQ9GiRQtkZWXh+PHj+Pnnn3Hp0iX4+PiUyXMTORT7XmRIRBXJg6ZNwD2X49+5PH/mzJl59oH7LrsXQojz58+LwYMHi4CAAKFQKETVqlVF9+7dxc8//5znuQ8ePJhvbF9//bUICQkRKpVKhIWFid27d4sWLVqILl265Fv/ueeeEwDEnj17Cn38GRkZYuLEiSIoKEgoFArx2GOPiZkzZwqz2Zxv/SeffFIAEK+88kqB+1y4cKFo0aKFcHZ2Fm5ubqJx48birbfeEtevX7fWCQkJEd26dSt0nJmZmeLll18Wnp6eAoB1CoWCpk1wdXXNs4927dqJhg0b5inPL5aMjAwxZcoUUbt2baFUKoWPj49o06aN+OKLL4TBYCh03EQVmSTEPaMLiYgqCbPZDF9fX/Tu3RuLFi3K8/jzzz+P48eP49y5c3aIjogqG46hIqIKT6fT4f7fhj/88ANSU1OtS8/cKyEhAZs2bcKgQYPKKUIiquzYQkVEFd5ff/2FiRMn4sUXX4S3tzeOHDmC77//HvXr18fhw4ehVCoBABcvXsTu3buxePFiHDx4EOfPn7dZHoaIqLg4KJ2IKrzQ0FBUr14dX3/9NVJTU+Hl5YXBgwdjxowZ1mQKAP7++28MGzYMwcHB+L//+z8mU0RUathCRURERFRCHENFREREVEJMqIiIiIhKiGOoyonZbMb169fh5uZWrstCEBERUfEJIZCRkYGgoCDIZAW3QzGhKifXr19H9erV7R0GERERFcOVK1dQrVq1Ah9nQlVO7iymeuXKFbi7u9s5GiIiIiqM9PR0VK9e3WZR9PwwoSond7r53N3dmVARERFVMA8brsNB6UREREQlxISKiIiIqISYUBERERGVEBMqIiIiohJiQkVERERUQkyoiIiIiEqICRURERFRCTGhIiIiIiohJlREREREJcSEioiIiKiEmFARERERlRATKiIiIqIS4uLIRJVYepYJkiTBRSVBLn/wwp5ERFR8TKiIKiGTSeDrVbfw665Ma5laKcFZLcFVLYOLWgYX6/+l2/dlcFVLcHG+5//3PO6qlsHFWYJKIT101XUiokcNEyqiSkZnMOOTJTex51jOfeUCOoPArXRzifYvkwGuatk9ydk9SZqzBBfV7bI8idk9yZmzjK1mRFSpMKEiqkTSs0x499sbOHnBAKVCwnvDvBHeyBnZOjNy9AJZOWZk68zI0glk68zItv57uyzHjCybcnH7Mcv/hQDMZiAj24yMbAAwlSje/FrNNM4yNKipwhONnBES4MTWMCKqECQhhLB3EI+C9PR0eHh4QKvVwt3d3d7hUCWUnJqLt+ffQHyCERpnCZ+O8kXj2upS278QAjq9yJNwZd1JyHLuJmd3EzHbhCzndpnBWLiPnQBvOcIbOeOJRs5o9pgKKiWvoyGi8lXY728mVOWECRWVpYvXDXhn3g3cSDPBx1OOz8b6okaQ0t5hFciYm38LWLbOjJtaEw6d1uHoWR2MuXe3USkkNK+rsiZY/l5sYCeisseEysEwoaKycuK8Hv/9JhmZOQIhAU6YMdavUiQbOXozjsTqsP+EDvtP5OBGmm33Yo0gBcIbqhHeyBmNaqo4HouIygQTKgfDhIrKwu5j2fj4+5swGAUa1FBi+mhfuLvK7R1WqRNC4MI1I/afyMG+kzqcuqCH+Z5PLo2zhFYNnBHeyBlhDdTwdKt854CI7IMJlYNhQkWlbdPuTMxekQqzAJ5opMb7r/hA/YiMMdJmWroF95/IwYFTOqRn3b1yUZKAeiFKPNHIkmA9Vl3Bge1EVGxMqBwMEyoqLUII/LQ5HUt/0wIAurZ2xaSXvR7ZLi+TWeD0RQP2n8jB/pM5OHfVaPO4t4cc4Q3VCGvojJb11XBRPxpJJxGVDiZUDoYJFZUGk1lg3upb2PCPZcLOAV3c8Z8eHmyBuceNtFzruKvDsTro9Hc/4pzkQJPadwe2V/dX2DFSIqoImFA5GCZUVFIGo8D0ZSn4JyYHkgSMfbEKnm/vZu+wHJrBKHDsnA77bidY127k2jxe1dfJOrC96WNqKBVMTInIFhMqB8OEikoiM9uMqd/dwL9xeiicgClDfdD+cRd7h1XhXEkyYt+JHBw4qcO/cTrk3nPhoFoloUVdS3IV3kgNX8+Kf6UkEZUcEyoHw4SKiislLRfvzLuBC9eNcFVL+GikL5rXLb0JOx9V2TozDp/R3R57pcNNre20DLWqKfBEQ8vA9vo1lJDL2HpF9ChiQuVgmFBRcVxOMuLtuclISjXBy12GGWP8ULu6407YWVEJIXDuqqX1av+JHJy+ZMC9n4zurjK0aqDGE42c0aqBulJOTUFE+WNC5WCYUFFRnb6ox5RvbiA9y4xqfk74bKwfAn3YDVUe0jJMOHBKh/0nc3DwZA4yc+5+TMokoEFNFcIbWhKsmlU5LQNRZcaEysEwoaKi2H8yBx8uSoHOIFA3RImo0b6crNJOTCaBkxf12HdChwMncnDhuu20DL6elvUGuz3pirohKjtFSURlhQmVg2FCRYX1x75MzPwpFWYz0KqBGh+84gNnzp3kMJJScy0ztp/IQUysHvp7Fnp+urkz/tPDE8EBnI6BqLJgQuVgmFDRwwghsHJbBhatTwMAPBvmgjcHecPpEZ2wsyLQG8z4N06P7QeyEH0oG0JYugS7tHbF4Oc84FcJ1lQketQxoXIwTKjoQcxmgW/WpmHdjgwAQL8IN4yI9ISMV5ZVGBevG/D9Ri32HMsBACicgMh2bni5szs8NOyuJaqomFA5GCZUVBCDUeCzH29ix6FsAMCoPp54sSPfIxXVyQt6LN6Qhn/j9AAAF7WEFzu648WOblz2hqgCYkLlYJhQUX6ycsyYtvAGjsTq4SQH3h7sjY6tXO0dFpWQEAKHTuuwaEMazl2xDGL30MgwoIs7erZ144zsRBUIEyoHw4SK7peabsI785Nx7ooRapWED0f4oFUDZ3uHRaXIbBb4JyYbS37V4mqyZdkbPy85hnTzQKcw10d2QWuiiqSw398O1/48f/58hIaGQq1WIzw8HAcOHCiw7smTJ9GnTx+EhoZCkiTMmTOnWPvU6XQYM2YMvL29odFo0KdPHyQlJdnUkSQpz23lypUlPl56NF1LNmLcF0k4d8UIT40Msyf4MZmqhGQyCe1buGLJ1EBMetkLPp5yJKeaMPPHVAz/JAH/xGSDv2mJKgeHSqhWrVqFSZMmYdq0aThy5AiaNm2Kzp07Izk5Od/62dnZqFmzJmbMmIGAgIBi73PixIn49ddfsWbNGvz999+4fv06evfunWdfS5cuRUJCgvUWGRlZKsdNj5azlw14fVYSElJyEejjhLmT/Tl/USXnJJfQ/SkNfvwgECOf94S7qwyXk3LxwaIUjP48CUfO6OwdIhGVkEN1+YWHh6NVq1aYN28eAMBsNqN69eoYN24c3nnnnQduGxoaigkTJmDChAlF2qdWq4Wvry9WrFiBF154AQBw5swZ1K9fH3v37sUTTzwBwNJC9csvvxQ7iWKXHwHAodM5mLYwBTl6gdrVFJgxxg9eHrwC7FGTmWPGmu3pWPNnBnR6y0fw43VVeKWXJ+qFMrkmciQVrsvPYDDg8OHDiIiIsJbJZDJERERg7969ZbbPw4cPw2g02tSpV68egoOD8zzvmDFj4OPjg7CwMCxZsoRN9VQk0Qez8N9vbiBHL9C8rgqzJ/ozmXpEaZxlGNbDEz99GITe7TVwkgNHYvUY/XkSpi28gfgE48N3QkQOxWFmnUtJSYHJZIK/v79Nub+/P86cOVNm+0xMTIRSqYSnp2eeOomJidb7H330EZ555hm4uLhg69atGD16NDIzM/H666/n+9x6vR56vd56Pz09vVjHQJXDmuh0fLs2DQDQoYUL3h7szSu9CF7ucozt64UXOrpj2W9abDuQhZ1Hc7D73xx0esIVQ7p5wJ+TgxJVCPxLLaSpU6da/9+8eXNkZWVh5syZBSZUUVFR+PDDD8srPHJQQggsWp+GldssE3b2bq/B6BeqcMJOshHg7YR3hnij37NuWPKrFrv/zcGWvVmIPpiFnk+7YUBnd67lSOTgHKbLz8fHB3K5PM/VdUlJSQUOOC+NfQYEBMBgMCAtLa1IzxseHo6rV6/atELda8qUKdBqtdbblStXinUMVHHlmgQ++yHVmky90ssDY15kMkUFqxGkxMcjfTHvTX80e0wFYy6w9s8MDHj/Opb9loasHLO9QySiAjhMQqVUKtGiRQtER0dby8xmM6Kjo9G6desy22eLFi2gUChs6sTGxuLy5csPfN6jR4+iSpUqUKnyH0CqUqng7u5uc6NHR47OjPe+vYGt+7MgkwFvDfLCy509IElMpujhGtRQYdYEP3w21hd1gpXI0Qv88Hs6Brx/HWui02EwcvwmkaNxqC6/SZMmYciQIWjZsiXCwsIwZ84cZGVlYdiwYQCAwYMHo2rVqoiKigJgGXR+6tQp6/+vXbuGo0ePQqPRoHbt2oXap4eHB4YPH45JkybBy8sL7u7uGDduHFq3bm29wu/XX39FUlISnnjiCajVamzbtg3Tp0/H5MmTy/sUUQWgzTRhyjc3cOaSASqFhGmv+OCJxpxjiopGkiS0auCMlvXV+CcmB99vTMPV5Fx8uzYNa//MsEwOGs7JQYkchnAwc+fOFcHBwUKpVIqwsDCxb98+62Pt2rUTQ4YMsd6/ePGiAJDn1q5du0LvUwghcnJyxOjRo0WVKlWEi4uLeP7550VCQoL18c2bN4tmzZoJjUYjXF1dRdOmTcWCBQuEyWQq9HFptVoBQGi12qKdEKpQElKMYtC0a6LDqHjRa/IVcfKCzt4hUSWRm2sWm3ZliL5TrooOo+JFh1HxYsgH18TfR7KE2Wy2d3hElVZhv78dah6qyozzUFV+568a8Pa8ZKSmm+HnJcfnY/0QHKCwd1hUyRiMAhv+ycDyLelIz7KMqaobrMQrkZ5oUU9t5+iIKh+u5edgmFBVbkfP6jB1wQ1k6QRqBCkwY6wvfD0dqkedKpmsHDPWRKdjdfTdyUGb354ctD4nByUqNUyoHAwTqsrr7yPZmL4sBcZcoEltFT55zRcaF4e53oMquVsZJizfko5fd2bAaFl/GU81dcZ/enoiNJAtpEQlxYTKwTChqpw2/J2Br1ffghBA22bOeHeYDyfsJLtIvJmL/9ukxbb9WTALQCYBz4ZbJgcN8GZrKVFxMaFyMEyoKhchBJb+psVPmy0z4Pdoq8Hr/apAzjmmyM4uJRixZGMadv2bAwBQOAE92rphQBd3VOHkoERFxoTKwTChqjxMJoHZK1Px++4sAMDQ7h4Y1NWdc0yRQzl9UY/FG9MQE2uZfNhZJeHFjm54saM7XJ3ZJU1UWEyoHAwTqspBZzDjkyU3sedYDmQSMKG/F7o/pbF3WEQFOnxGh8Xr0xB72QAAcHeV4eXO7ohs58buaaJCYELlYJhQVXzpWSa8++0NnLxggFIh4b1h3niqmYu9wyJ6KCEEdh61TA56Jckyct3XU442TZzh5SGHj4cc3vfc3F1lXCKJ6DYmVA6GCVXFdj0lF+9+k4z4xFxonCV8OsoXjWtzzh+qWEwmga37s7DsNy1upJkKrOckB7zcLclVfgkXEy96lDChcjBMqCombaYJP21Jx8Z/LJek+3jK8dlYX9QIUto7NKJiMxgF/jqchSvJuUjVmnBTa0KK1oRUrQlpmYVfgPnexMvm5imHtzsTL6ocCvv9zWtpifKhM5ix7s8M/G9rOrJ0lt8cj9dV4c1B3vD34p8NVWxKhYROT+Q/9s+YK3Ar3TbJuvPv/YlXrglIvmVC8q2CW7uA24mXxz1J1p2E657Ey8fTknjx4g6qqPjNQHQPk0lgyz5Ll8hNreVLonY1BUZEeqJlfTU/7KnSUzhJ8PNygt9DfjgYcwVS020TrpTbSVdqfolXqgnJqYVLvHw85JaWr3sSrztlgT5OcFHzKkVyPEyoiGAZtLvneA4Wr09DfKJl0K6/lxz/6eGJjq1c2F1BdB+FkwR/L6eHttiWReLl4ylHsL8TggMUlpu/AsEBTvD2kPNHD9kNEyp65J04r8ei9Wk4ft4yX4+7qwwDurij19O8rJyopIqbeN2853anLCXNhPQsM1LSLP8/cnuOrTtc1BKq+ysQEqBAsL8TqgdY/h/k6wQnOf+WqWwxoaJH1uVEIxZtSMPu2zNKqxQS+jzjhpc6uUPDiQ+JylVhE6+MbDOuJBkRn2jElUQjLifl4nKiEddv5CJbJxAbb0BsvMFmG7kMCPJ1srZmhQRYkq3q/gr+rVOp4VV+5YRX+TmOm1oT/m+TFr/vyYTZbFnzrEtrVwzp7gFfT/7GIKqIDEaB6ymW5OpyohGXk4y4nJiLy0lG6PQFf815e8gRHOB0u9vwTheiE3w82X1IFrzKj+g+WTlmrNyWjrV/ZkBnsHzAtmnijFd6eSI0UGHn6IioJJQKCaGBijx/y0IIpKSZEJ9oSbCsrVtJuTbdijH3dR86qyQE+ytQPcAJIbdbs4IDFKjq6wSFExMtyosJFVV6xlyBX3dm4sfNWmhvz7HToIYSI5/35OScRJWcJEnwreIE3ypOaFnf9rHMHPPtbkMj4hNzrf+/diMXOXqB2MsG65I9d8hkQJCPk01r1p2uRI0Luw8fZezyKyfs8it/ZrPAjsPZWLIxDQk3LVcNVfd3wiu9PPFUU2c25xNRvoy5Atdv5N7uNrzThWjpTsx5QPehl7vsdquW4narliXZ8qvC7sOKjF1+9Eg7fEaHhb/cQtwVIwDLB93Q7p7o2toVcl7tQ0QPoHCSEBKoQEh+3YdaE64k5lq6EK0Jl6X7MDXdjNR0PY7G2XYfapwl1AtVoX6o0vqvp5u8PA+JygFbqMoJW6jKx7krBixcn4ZDp3UALJdRv/SsO/o84wZnFZvjiahsZOWYcTnp7pWHd65CvHYjF6Z8VvMJ9JajXqgK9UKVqB+qwmPVFVAp+RnliLiWn4NhQlW2Em/mYsnGNGw/mA3AMuNyz7YaDOzqwV+CRGQ3xlyBi9eNOH1JjzOXDDh9UY/LSbl56sllQM2qCtS/J8mq7u/ESYUdABMqB8OEqmxoM01YviUdG24vXgwAz7R0wX96eiLIhz3aROR4MrPNiL1sSa5OXzLgzCU9bmXkbcZydZZQL0SFeiFK1KthSbK83PkDsbwxoXIwTKhKV36LF7eop8aISE/UCVbaOToiosITQiAp1YQzl+4kWAacvWyA3pj369nPS4761vFYStQJVkLNrsIyxYTKwTChKh0PWry4VQNnO0dHRFQ6ck0Cl253Fd5JsuITjbj/G1smA2oGKe4Z9K5EcIACcnYVlhomVA6GCVXJWBcv3qBFfILlyr0Ab8vixc+05OLFRFT5ZeVYugrPXNTjdLwlybrzw/JeLmoJdYKVNi1ZPlwFotiYUDkYJlTFx8WLiYjyEkLgxi0TzsTfHY919rLBuhLEvXw95ahfQ4l6IZYkq06wEs5qdhUWBhMqB8OEquguJxqxeEMadnHxYiKiQjGZBC4lGC3dhPF6nLlowKUEI8z3dxVKQGigwjrYvV6IEqFB7CrMDxMqB8OEqvDyXby4jSuGdOPixURERZWjM+PsZQNOXzJYp2+4kZa3q1CtklA3WIn6oUo0rKlC0zpq/ngFEyqHw4Tq4bh4MRFR+UhJy72dYFmmbYiNN+RZVkcmA+qFKNGyvhqP11OjQQ0VnB7BlSaYUDkYJlQF4+LFRET2ZTILXE404swlA05d1OPfOD2uJttOQOqsktD0MRVa1FOjRX1nhAQ4PRJrFDKhcjBMqPIqaPHiEb088SQXLyYisqvEm7k4ckaHw2d0OBKrs/7gvcPbQ25JrupZWrC8PSrnpKNMqBwMEypbXLyYiKjiMJsFzl8z4vBpS4J1/LwehvsmHq0RpMDjtxOsprVVleYqQiZUDuZRTahMJoFrN3Jx/qoBF64Zcf6a5d/kW5YWKS5eTERU8egNZpy4YMDhMzocPp2Dc1dtJx11kgMNaqjQor4aLeupUSdYWWF/LDOhcjCPQkKlzTThwjUjLlwz4Pw1Iy5cM+JSgjHPrxiAixcTEVUm2kwTYmJ1OHRGh8OndUhKtb2K0NVZQvM66tvjr9So6ltxxl8xoXIwlSmhyjUJXEky3m5xMuLCVUsCld+MvYDlUtyaQQrUrKpEzaoK1KyqQK2qSrjyclwiokpHCIHrN3Jx6IwOR87oEBOrQ2aObarh73V3/FXzumqH/mHNhMrBVNSEKjXdhAu3u+nudNldTjTCmJt//UAfJ9S6nTTVrKpEraoKBPo4cWkYIqJHlMkscPaywTr+6uQFPXLv+/1du7oCLW8Pbm9cSwWVAy34zITKwTh6QmUwWi6Zvbe77sJ1A26lm/Ot76KWLC1OQQrUqmZJnmoEKeBSSQYhEhFR2cjRm3HsnB6HT1tasC5cN9o8rnACmtRWWwe4166msOuP8gqbUM2fPx8zZ85EYmIimjZtirlz5yIsLCzfuidPnsT777+Pw4cPIz4+HrNnz8aECROKvE+dToc33ngDK1euhF6vR+fOnfHNN9/A39/fWufy5csYNWoUduzYAY1GgyFDhiAqKgpOToWbudtREiohBG5qTXe76263Pl1ONMKUT+4kSUBVXydrN13NqgrUqqaEv5e8wvR/ExGR40rVmnAk1tJ6dei0Ls/wEXdXGR6vaxl71aKeGgHe5btiRmG/vx1qHY9Vq1Zh0qRJWLBgAcLDwzFnzhx07twZsbGx8PPzy1M/OzsbNWvWxIsvvoiJEycWe58TJ07Epk2bsGbNGnh4eGDs2LHo3bs3du/eDQAwmUzo1q0bAgICsGfPHiQkJGDw4MFQKBSYPn162Z2QEtIbzIhPzMX5awacv3o3eUrPyr/VSeMsoVY1pbW7rmZVBUIDFbz6joiIyoyXhxwRYa6ICHOFEAKXE3NvJ1c5+DdOj/QsM/46ko2/jmQDsPzIvzP31eN11dC4OMZ3lEO1UIWHh6NVq1aYN28eAMBsNqN69eoYN24c3nnnnQduGxoaigkTJuRpoXrYPrVaLXx9fbFixQq88MILAIAzZ86gfv362Lt3L5544gls3rwZ3bt3x/Xr162tVgsWLMDbb7+NGzduQKlUPvTYyrKFKjMzE8m3TEi8pcDF60acv2pEXHwmribpICQ5ZHKVta7JmA2ZBIQEaVCruhq1qioQ7Cehqq9AgI8Szs7O1rpZWVkAAGdnZ8hkljes0WiEwWCAXC6HWn13FvPs7GwIIaBWqyGXWwYX5ubmQq/XQyaT2ey3KHVzcnJgNpuhUqmsrYEmkwk6na5IdSVJgouLi7WuTqeDyWSCUqmEQqEocl2z2YycHMuiza6urta6er0eubm5UCgU1vdFUeoKIZCdbfnQcHFxsbYCGgwGGI3GItV1cnKCSnX3tc/v9SxK3aK89qXxPrnzepb0fXL/61nS90lBr2dJ3yf3vp4lfZ8U9HoW931S0OvJz4iC6/IzonQ+I3JNAsfjsnDghBZH4wyIuyaH+XabgClXBxnMqFvTDa0auKJlPTUa1FRB4VS6vSeF/v4WDkKv1wu5XC5++eUXm/LBgweLnj17PnT7kJAQMXv27CLvMzo6WgAQt27dsqkTHBwsvvzySyGEEFOnThVNmza1efzChQsCgDhy5Ei+8eh0OqHVaq23K1euCABCq9U+9FgKy2w2ize/ThIABADx5NAjosOoeNFhVLyoETZZABBVG7wkJs1JFPPWpIrNezKESuUiAIhFq46LP/ZmiB2Hs8T4Nz8XAES3nv1s9u/t4yMAiKP/HreWLVy4UAAQvXr1sqkbEhIiAIgDBw5Yy3766ScBQERERNjUbdCggQAgduzYYS375ZdfBADRpk0bm7otW7YUAMRvv/1mLdu6dasAkOc1adeunQAgVq9ebS3btWuXACBq165tU/e5554TAMTSpUutZTExMQKACAoKsqn7wgsvCABi3rx51rKzZ88KAMLDw8Om7pAhQwQA8fnnn1vLrl69KgAIJycnm7qjR48WAMS0adOsZbdu3bK+ngaDwVo+ebLl9Zw8ebK1zGAwWOve+/6dNm2aACBGjx5t83xOTk4CgLh69aq17PPPLa/9kCFDbOp6eHgIAOLs2bPWsnnz5gkA4oUXXrCpGxQUJACImJgYa9nSpUsFAPHcc8/Z1K1du7YAIHbt2mUtW716tQAg2rVrZ1O3adOmAoDYunWrtey3334TAETLli1t6rZp00YAsPlb37FjhwAgGjRoYFM3IiJCABA//fSTtezAgQMCgAgJCbGp26tXLwFALFy40Fp24sQJAUD4+PjY1H355ZcFAJvPoYsXLwoAwsXFxabuK6+8IgCITz75xFqWnJxsfT3vNX78eAFA/Pe//7WWZWZmWutmZmZay//73/8KAGL8+PE2+7hTNzk52Vr2ySefCADilVdesanr4mL5jLh48aK1bPbs2QKAePnll23q+tz+jDhx4oS1jJ8RFvyMuKs0PyMysk1i19Es8dXKm6KKv+V90rT7T9bvvqOxOaK0abXaQn1/O0yXX0pKCkwmk824JQDw9/fHmTNnymyfiYmJUCqV8PT0zFMnMTHRWie/fdx5LD9RUVH48MMPixV3YUmShLTM/KcquEOpkDBr/N3YTWZLg+T3G7Vwdk8FAFz5NxMAEBOrt9k2W2ep++r0RLj5uEOlkHD91C0AwJEzOgghrL94snIsPxmW/pqGf87ehEohIeaQ5RdM4s1cmEzCOqnbnXmpbmpNMJkF5LwCkIiICkHjLMOTTV3wZFMXLIlS4FYS8GKEG4SbC05f1KN+DdXDd1JGHKbL7/r166hatSr27NmD1q1bW8vfeust/P3339i/f/8Dt8+vy68w+1yxYgWGDRsGvd42mQgLC0OHDh3w2Wef4dVXX0V8fDz++OMP6+PZ2dlwdXXF77//jq5du+aJR6/X2+wzPT0d1atXL/UuvxPn9Yi/poWLSgaF2hm5uYDeKJCZpUd2jgHOKgVeeNbHWn/h2uu4kmyEEGoYTBL0RoEcnQE6nQEqpRyL3gu11h0TdQEnLhggc1JDkixNumaTEcJshEopx9b5j1nrTp59CQdP6SCTqyDJLE26ZnMuhMkASDL8ueAxa+I09ZvL+CcmGzK5CgqFHIE+Tgj0AvyrmFHVT4le7X2sl8yyOb9yN+cD7PJjlx+7/PgZUTqfEff+yC9NFW5Quo+PD+RyOZKSkmzKk5KSEBAQUGb7DAgIgMFgQFpamk0r1f11Dhw4kGcfdx7Lj0qlsnnzlZVGtVRoVCvvgH1Ak2/9V/sEFXrfc9+uAWOugN5ouRkMAoZcAb1B5JlD5MVO/njq8VzoDQIGo+02RpNtK1T1QDfUuOGEhJu5MOYCV5JyceX2SySTdHj+mbt1V2zV4/w1A6r6GVDN1wlV/ZxQ1VcBPy+XPC1b9/6h3SGXy20+oO649w+4OHVlMlm+dfN73YtSV5KkfOsqlco8Y/WKUhdAiesqFArrl8W97v1iKU5dJyenfK+Wze/1LErdgl7Pkr5PCno9S/o+Kej1LOn7BCi7176k75OCXs+Svk/K6rXnZ8SD69r7M8LeV547TEKlVCrRokULREdHIzIyEoAla4+OjsbYsWPLbJ8tWrSAQqFAdHQ0+vTpAwCIjY3F5cuXra1arVu3xqeffork5GTrlYHbtm2Du7s7GjRoUIKjdmwymQSVUoLq4WPuEd4w7wdVQV59vgpefb4KTGaBG7dMuHYjF9eSjbh2IxdZOrPNgMKYszqcumgAoLPZh8IJCPJVYPG7AdbE6lKCEWqlBN8qcnYjEhFRuXKYhAoAJk2ahCFDhqBly5YICwvDnDlzkJWVhWHDhgEABg8ejKpVqyIqKgqApSny1KlT1v9fu3YNR48ehUajQe3atQu1Tw8PDwwfPhyTJk2Cl5cX3N3dMW7cOLRu3RpPPPEEAKBTp05o0KABBg0ahM8//xyJiYl47733MGbMmHJphaqs5DIJAd5OCPC2XAKbn5HPe+LidUuydTU5F9dvGHE9xdKypdObbRKn2StScfy8HgonINDbCVX9FKh6u1Wrup9lFXQiIqKy4FAJVb9+/XDjxg28//77SExMRLNmzbBlyxbrAPDLly9b+2oByxip5s2bW+9/8cUX+OKLL9CuXTv89ddfhdonAMyePRsymQx9+vSxmdjzDrlcjt9++w2jRo1C69at4erqiiFDhuCjjz4q4zNCjWur0bi2bSJ0p2Xr/vm0JMnScmXMBS4n5eJy0t31cfyqyLHy06rW+99vSIMhVyDI1wnVbidebNkiIqLicphB6ZWdo8yUXtndSbau3u5CvJaci2s3cuGhkeGtQd7Wen3/ew0pabYDwRROQJCPExrWVGHywLt10zJMcHeVcT1CIqJHUIUblE5UGu7tRmxZP/86QggM6OKOa8m51sQr4XY3YnxiLjw0tquevzYjEbcyTKjmp0DTx1RoWV+NZnXUXLeQiIismFDRI0eSJPR62s2mzGQWSE61tGzdmS8LAIy5ArcyTDDmAhevG3HxuhHr/86EXAY0qKlCx5Yu6HnfvoiI6NHDhIoIlpatQB8nBPrY/kkonCT8Prs6km+ZEHfFgMNnLAt4Xr+Ri+Pn9AgJuHvZr8kksGVfll0W7yQiIvvipz7RQ8jld5Otp5tb5ki5dsOIw6d1qFXt7pwSZ+INmLXcMvt8VV8ntLy9MnqzumponNk9SERUmTGhIiqGqr4KVPW1nZQuN1egcS0VTl7UWwbE38jEhn8yIZMB9UOVeKWnJ5rW4dQNRESVERMqolLStI4aX72hRlaOGUfjdDh0WofDp3W4mpyLkxcMUCjujs06eUGPc1cNaFlfnScxIyKiiocJFVEpc3WW4ckmLniyiaV7MPFmLg6f0aFu8N3uwT/2ZeG3XZZFqQO95WhZ3xkt6qvRvK4abi7sHiQiqmg4D1U54TxUdK9fd2Yg+mA2Tl7Qw3TP/KQyCagbosQXr/vBmdMyEBHZHeehInJgPdq6oUdbN2TrzPg3To/Dp3Nw6LQOl5NykZFttkmmftqshauzDC3rq1HNz8nuC4ASEVFeTKiI7MhFLUPrxs5o3diyuHRyai5u3DODuzFX4H9b05GjtzQk+3vJ0aK+Gi3rO+Pxuiq4u8rz3S8REZUvdvmVE3b5UXHk6Mz45e8MHDqtw8kLehjvLk8ISQJ6PKXBhP5e9guQiKiSY5cfUSXgrJbh5c4eeLmzB3L0Zhw7p8fh05YrCC8lGOFb5W4LVVqGCZ//eNMywL2eGsEB7B4kIiovTKiIKghnlQzhDZ0R3tDSPXgjLReKe5bJORKrw74TlhsA+HrK0bK+GhFhrmhWR8XkioioDLHLr5ywy4/KWkJKLv6Oycbh0zocO6ez6R6s5ueEd4Z4o0ENlf0CJCKqgNjlR/SICfRxwkvPuuOlZ92hN1i6B3cezUH0wSxcT8mF3z3dgxnZZmicJbZaERGVEiZURJWQSilDqwbOaNXAGa/19sTJC3r4eN79c/9ocQpu3MpFt6c06PyEK68WJCIqIXb5lRN2+ZGjSM8y4eWp15Gts/zpK5yAdo+7oMdTGjSqxbFWRET3Kuz3NxOqcsKEihxJVo4Z0Qcty9+cu2q0locEKjC0mwfaPe5ix+iIiBwHx1ARUYFcnWXo+bQberTVIDbegN92ZeLPQ9mITzAiR393LRyTSUAmA1utiIgeggkV0SNMkiTUC1WhXqgKr/WpguiDWWjf4m7r1C9/Z2Dznix0e1KDTuGu0HDhZiKifLHLr5ywy48qotdmJOLsZQMAQKWQ0L6FC3q01aB+qJKtVkT0SOAYKgfDhIoqosxsM7YdsIy1unj97lirmlUViGznhu5PaewYHRFR2Svs9zfb74moQBoXGZ5v74bF7wbg6zf80SncFUqFhAvXjDh0Osfe4REROQyOoSKih5IkCY1qqdColgqjX/DEtv1ZqBd6d9b1K0lGfLwkBd2f1CAizBUuav5WI6JHC7v8ygm7/KgyW7DuFlZvzwAAqFUSOrZ0QY+2bqgTrLRzZEREJcNpE4io3PTv5A5vDzl+25WJK0m52LQ7C5t2Z6FOsBLdn9JYuwqJiCortlCVE7ZQ0aNACIFjcXr8uisTO49mw5gLuLnIsHp6EFRKdgMSUcXDFioiKneSJKFpHTWa1lFDm2nCH/uyIASsyZQQAh9/fxMt6qvxTEsXOKuYZBFR5cAWqnLCFioiICZWhze+SgYAuKglRLRyRY+2GtSqxrFWROSYOA+Vg2FCRQRoM03YvCcLv+3OxPUbudby+qFKdG+rQYcWLlCza5CIHAi7/IjI4Xho5Hipkzv6Rrjh6FnLWKtdR7Nx+pIBpy+lIsDLCc3rqu0dJhFRkTGhIqJyJ5NJeLyeGo/XUyM13YQtezPxb5wezercndvqyBkdQgMV8PKQ2zFSIqLCYZdfOWGXH1HhZWabMeD96zDmCvTp4IZ+z7pzYWYisgsuPUNEFVZapgnV/JygMwgs/yMdA96/jpVb06EzmO0dGhFRvthCVU7YQkVUNEII7P43B9//qkV8gmVhZm8POYZ080CX1q5wknOiUCIqe2yhIqIKTZIkPNXMBYvfDcDbg73g7yXHTa0Jc/6XanOFIBGRI3CohGr+/PkIDQ2FWq1GeHg4Dhw48MD6a9asQb169aBWq9G4cWP8/vvvNo8nJSVh6NChCAoKgouLC7p06YK4uDibOufPn8fzzz8PX19fuLu7o2/fvkhKSrKpExoaCkmSbG4zZswonYMmogeSyyR0fkKD/5sWhLEvVsELHd0QHKCwPn7xugFsaCcie3OYhGrVqlWYNGkSpk2bhiNHjqBp06bo3LkzkpOT862/Z88e9O/fH8OHD0dMTAwiIyMRGRmJEydOALB0F0RGRuLChQvYsGEDYmJiEBISgoiICGRlZQEAsrKy0KlTJ0iShD///BO7d++GwWBAjx49YDbbjtX46KOPkJCQYL2NGzeubE8IEdlQKiT07uCG13pXsZZdTjRixKeJmDg7GSfO6+0YHRE96hxmDFV4eDhatWqFefPmAQDMZjOqV6+OcePG4Z133slTv1+/fsjKysJvv/1mLXviiSfQrFkzLFiwAGfPnkXdunVx4sQJNGzY0LrPgIAATJ8+Ha+88gq2bt2Krl274tatW9Z+Ua1WiypVqmDr1q2IiIgAYGmhmjBhAiZMmFDs4+MYKqLSt21/Fr5YfhPG2z2AbZo4Y3hPD9QI4szrRFQ6KtQYKoPBgMOHD1sTGACQyWSIiIjA3r17891m7969NvUBoHPnztb6er3l16pafXeSQJlMBpVKhV27dlnrSJIEleru3DdqtRoymcxa544ZM2bA29sbzZs3x8yZM5GbyzEcRPb2bLgrfvwgCM896QqZBOw5loNXPk1E1LIUJKTwb5SIyo9DJFQpKSkwmUzw9/e3Kff390diYmK+2yQmJj6wfr169RAcHIwpU6bg1q1bMBgM+Oyzz3D16lUkJCQAsLRoubq64u2330Z2djaysrIwefJkmEwmax0AeP3117Fy5Urs2LEDI0eOxPTp0/HWW2898Jj0ej3S09NtbkRU+vy8nDB5gDeWTA3E082dIQSw7UA2xs5MhDHXIRrgiegR4BAJVVlQKBRYt24dzp49Cy8vL7i4uGDHjh3o2rUrZDLLYfv6+mLNmjX49ddfodFo4OHhgbS0NDz++OPWOgAwadIktG/fHk2aNMFrr72GWbNmYe7cudZWsPxERUXBw8PDeqtevXqZHzPRoyw4QIEPRvji27f90aKeGn2ecYPCyTK1ghAC2TrOYUVEZcchEiofHx/I5fI8V9clJSUhICAg320CAgIeWr9FixY4evQo0tLSkJCQgC1btuDmzZuoWbOmtU6nTp1w/vx5JCcnIyUlBT/++COuXbtmU+d+4eHhyM3NxaVLlwqsM2XKFGi1WuvtypUrDzoFRFRK6oaoMPN1P7z07N2xDvtP6PDy1OtYtS0dek4OSkRlwCESKqVSiRYtWiA6OtpaZjabER0djdatW+e7TevWrW3qA8C2bdvyre/h4QFfX1/ExcXh0KFD6NWrV546Pj4+8PT0xJ9//onk5GT07NmzwHiPHj0KmUwGPz+/AuuoVCq4u7vb3Iio/Mhkdyf+3Lo/C+lZZnz3SxoGfZCA33ZlwmRidyARlR6HWRx50qRJGDJkCFq2bImwsDDMmTMHWVlZGDZsGABg8ODBqFq1KqKiogAA48ePR7t27TBr1ix069YNK1euxKFDh7Bw4ULrPtesWQNfX18EBwfj+PHjGD9+PCIjI9GpUydrnaVLl6J+/frw9fXF3r17MX78eEycOBF169YFYBn8vn//fnTo0AFubm7Yu3cvJk6ciIEDB6JKlSogIsf37n+8EdZQjWWbtEhONeHLFalYvT0d/+nhgaebu9gkX0RExSIcyNy5c0VwcLBQKpUiLCxM7Nu3z/pYu3btxJAhQ2zqr169WtSpU0colUrRsGFDsWnTJpvHv/rqK1GtWjWhUChEcHCweO+994Rer7ep8/bbbwt/f3+hUCjEY489JmbNmiXMZrP18cOHD4vw8HDh4eEh1Gq1qF+/vpg+fbrQ6XRFOjatVisACK1WW6TtiKj06A1m8XO0VkS+eUV0GBUvOoyKFx9/f8PeYRGRAyvs97fDzENV2XEeKiLHka0z4+c/M7B6ezreHuyNts1cAFgGr0sSW6uI6K7Cfn87TJcfEVF5cVHLMPg5D/R6WgN317tDSX/+MwPH4vT4DycHJaIiYkJFRI8sD43c+n9jrsDKbem4lW7GnuM5eDbMFUO7eyDAmx+TRPRwDnGVHxGRvSmcJMye4G+dHHTr/iwM/uA65q5ORWq6yd7hEZGD4xiqcsIxVEQVx5lLeny/UYvDZ3QAALVKwhsve6FjK1c7R0ZE5a1CreVHRORI6oVaJgf94nU/1A1RQm8QqFlVYe+wiMiBcXAAEVEBHq+nxjd1/REbb7AZpL701zT4eTmhyxOukMt5VSARMaEiInogSZJQL1RlvX812Yjlf6TDbAZWbUvHf3p64ulmzpwclOgRxy4/IqIi8KvihFG9PeGhkeFqci4+WpyCUZ8l4tg5nb1DIyI74qD0csJB6USVS7bOjDXRlslBc/SWj9FeT2swItITLmr+ViWqLDgonYioDLmoZRjSzQPLPwrCc09arv7bfjAL2TqznSMjInvgGCoiohLwdJNj8gBvdGjhioxsM3w8736s6gxmqJX83Ur0KCjSX/rQoUORnZ1dVrEQEVVYLeqp0f5xF+v9fSdyMGhaAnYf42cm0aOgSAnVjz/+iMzMTOv9UaNGIS0tzaZObm5uqQRGRFSR/RydjptaE6YuSMEnS1KQlsHZ1okqsyIlVPePX1++fDlSU1Ot95OSkjjgmogIwKejfPFSJ3fIJODPQ9kY9nECdhzKyvM5SkSVQ4k69/P7YNDpeOkwEZFKKcOrkZ6Y/5Y/agYpoM004+MlN/H+dym4qWVrFVFlU+qjJSWJk9sREd1RN0SFb98JwJBuHnCSA7uP5eDMJb29wyKiUlbkq/xWrFiBp59+Go0bNy6LeIiIKh2Fk4Qh3TzQtpkz/onJxpNN7w5ezzUJOHH5GqIKr0gTe7Zr1w5Hjx5FRkYGFAoFcnNz8fLLL+PJJ59Es2bN4Ovrizp16sBkYnP2/TixJxHdL1VrwpiZiXipkzt6PKXh8jVEDqiw39/Fmik9Li4Ohw8fxpEjR6y3tLQ0a3cfE6q8mFAR0f2W/pqGHzenAwCa1FbhzYFeqOqnsHNURHSvMk2o8nPx4kUcOnQIMTExmD59emnsslJhQkVE9zObBTb8k4lFG9Kg0wuoFBKG9fBAn2fcIGdrFZFDKPeEih6MCRURFSQhJRezlt/EkVjLYPX6oUpMHuiFGkFKO0dGRFzLj4ioggj0ccLM1/0weYAXXNUSTl8y4LddmQ/fkIgcBtfyIyJyAJIk4bknNWjVUI3/26TF8J6e1sdMZsEuQCIHxxYqIiIH4uvphMkDvOGitnw8m80C78y7gcUb0mAwcoQGkaNiQkVE5MAOn9Hh8BkdVvyRjlenJ+DkBU4KSuSIipVQDRkyBP/8809px0JERPdp1cAZH4zwQRV3GS4n5eL1WUmY//Mt5OjN9g6NiO5RrIRKq9UiIiICjz32GKZPn45r166VdlxERHTb081dsHRqIDqFu0IIYO2fGXjl00TExHLtVCJHUayEav369bh27RpGjRqFVatWITQ0FF27dsXPP/8Mo9FY2jESET3y3F3leGeIN6LG+MLXU46ElFzMX3MLJjPHVRE5glKZh+rIkSNYunQpFi9eDI1Gg4EDB2L06NF47LHHSiPGSoHzUBFRacnKMWPh+jR0be2KeqEqAIAQgovTE5WBcpuHKiEhAdu2bcO2bdsgl8vx3HPP4fjx42jQoAFmz55d0t0TEdF9XJ1lmNjfy5pMAcCKP9Lx2Q83kZ7Fpb+I7KFY81AZjUZs3LgRS5cuxdatW9GkSRNMmDABL7/8sjV7++WXX/Cf//wHEydOLNWAiYjIljbThJ82p0NvFDhwKgcTXvJC22Yu9g6L6JFSrIQqMDAQZrMZ/fv3x4EDB9CsWbM8dTp06ABPT88ShkdERA/joZHji/F++OKnm4hPzMW0hSlo97gLXu9XBVXc5PYOj+iRUKwxVD/++CNefPFFqNXqsoipUuIYKiIqawajwI+/a/G/bekwmwF3VxnG9a2CZ1q6cHwVUTFxcWQHw4SKiMpL3BUDPv/xJs5fNULhBPzwQRD8vbjSGFFxFPb7u1h/YZMmTcq3XJIkqNVq1K5dG7169YKXl1dxdk9ERCXwWHUlvn07ACu3pkOllJhMEZWDYrVQdejQAUeOHIHJZELdunUBAGfPnoVcLke9evUQGxsLSZKwa9cuNGjQoNSDrojYQkVE9nbqoh7LftNiYn8vBPowySIqjDKdNqFXr16IiIjA9evXcfjwYRw+fBhXr17Fs88+i/79++PatWt4+umneYUfEZGDEELg61W3cOi0DsM/TcC6HRkwc1JQolJTrIRq5syZ+Pjjj20yNQ8PD3zwwQf4/PPP4eLigvfffx+HDx8u0n7nz5+P0NBQqNVqhIeH48CBAw+sv2bNGtSrVw9qtRqNGzfG77//bvN4UlIShg4diqCgILi4uKBLly6Ii4uzqXP+/Hk8//zz8PX1hbu7O/r27YukpCSbOqmpqRgwYADc3d3h6emJ4cOHIzMzs0jHRkRkT5IkYep/vNH0MRV0eoF5a27hzbnJuJXBeauISkOx1/JLTk7OU37jxg2kp6cDADw9PWEwGAq9z1WrVmHSpEmYNm0ajhw5gqZNm6Jz5875Pg8A7NmzB/3798fw4cMRExODyMhIREZG4sSJEwAsv8YiIyNx4cIFbNiwATExMQgJCUFERASysrIAAFlZWejUqRMkScKff/6J3bt3w2AwoEePHjCb7y48OmDAAJw8eRLbtm3Db7/9hn/++QevvvpqoY+NiMgRVPVTYNZ4P4x/qQrUKgkxsXqMjErEyQt6e4dGVPGJYnj55ZdFjRo1xLp168SVK1fElStXxLp160TNmjXFwIEDhRBC/O9//xMtWrQo9D7DwsLEmDFjrPdNJpMICgoSUVFR+dbv27ev6Natm01ZeHi4GDlypBBCiNjYWAFAnDhxwmafvr6+YtGiRUIIIf744w8hk8mEVqu11klLSxOSJIlt27YJIYQ4deqUACAOHjxorbN582YhSZK4du1aoY9Pq9UKADbPRURkLxevG8SQD66JDqPiRcSYeHH6os7eIRE5pMJ+fxerheq7775Dx44d8dJLLyEkJAQhISF46aWX0LFjRyxYsAAAUK9ePSxevLhQ+zMYDDh8+DAiIiKsZTKZDBEREdi7d2++2+zdu9emPgB07tzZWl+vt/ziuneuLJlMBpVKhV27dlnrSJIEleru8g1qtRoymcxaZ+/evfD09ETLli2tdSIiIiCTybB///4Cj0mv1yM9Pd3mRkTkKEIDFfjm7QC0e9wFYQ2dUSdYae+QiCq0YiVUGo0GixYtws2bNxETE4OYmBjcvHkTCxcuhKurKwCgWbNm+c6gnp+UlBSYTCb4+/vblPv7+yMxMTHfbRITEx9Yv169eggODsaUKVNw69YtGAwGfPbZZ7h69SoSEhIAAE888QRcXV3x9ttvIzs7G1lZWZg8eTJMJpO1TmJiIvz8/Gyex8nJCV5eXgXGBgBRUVHw8PCw3qpXr16oc0FEVF5c1DK8P9wb7w/3hkxmmfhTZzDjarLRzpERVTxFTqiMRiM6duyIuLg4aDQaNGnSBE2aNIFGoymL+IpNoVBg3bp1OHv2LLy8vODi4oIdO3aga9eukMksh+3r64s1a9bg119/hUajgYeHB9LS0vD4449b6xTXlClToNVqrbcrV66UxmEREZUqSZKgUlo+74QQ+HJFKl6bkYh/YrLtHBlRxVLkiUgUCgWOHTtWqkH4+PhALpfnubouKSkJAQEB+W4TEBDw0PotWrTA0aNHodVqYTAY4Ovri/DwcJvuu06dOuH8+fNISUmBk5MTPD09ERAQgJo1a1qf5/6B8bm5uUhNTS0wNgBQqVQ2XYlERI5ObxRITjUhWyfwwaIU9I1ww4henpDLuWwN0cMUqxlm4MCB+P7770stCKVSiRYtWiA6OtpaZjabER0djdatW+e7TevWrW3qA8C2bdvyre/h4QFfX1/ExcXh0KFD6NWrV546Pj4+8PT0xJ9//onk5GT07NnT+jxpaWk2U0D8+eefMJvNCA8PL9bxEhE5IrVShi/G+6FvhBsAYPX2DEz+OhmpWk6tQPQwxZoqNzc3F0uWLMH27dvRokUL67ipO7788ssi73PSpEkYMmQIWrZsibCwMMyZMwdZWVkYNmwYAGDw4MGoWrUqoqKiAADjx49Hu3btMGvWLHTr1g0rV67EoUOHsHDhQus+16xZA19fXwQHB+P48eMYP348IiMj0alTJ2udpUuXon79+vD19cXevXsxfvx4TJw40ToDfP369dGlSxeMGDECCxYsgNFoxNixY/HSSy8hKCioyMdJROTInOQSXutdBfVDVfj8x5v4N06PkTMSMe0VHzSqxVZ3ooIUK6E6ceIEHn/8cQCWJWfuVdwVzfv164cbN27g/fffR2JiIpo1a4YtW7ZYB55fvnzZZlxTmzZtsGLFCrz33nv473//i8ceewzr169Ho0aNrHUSEhIwadIkJCUlITAwEIMHD8bUqVNtnjc2NhZTpkxBamoqQkND8e677+aZ4X358uUYO3YsOnbsCJlMhj59+uDrr78u1nESEVUE7R53QY0gBaYtvIH4xFx8uDgFyz8KglLB7j+i/BRrLT8qOq7lR0QVUY7OjC//l4qubTR4vK764RsQVTJlupYfAOzcuRMDBw5EmzZtcO3aNQDAjz/+aJ2/iYiIKj5ntQzvDvOxSaYOnsrB5UROrUB0r2IlVGvXrkXnzp3h7OyMI0eOWCfR1Gq1mD59eqkGSEREjuNKkhEfLk7BqM8S8fcRTq1AdEexEqpPPvkECxYswKJFi6BQKKzlTz75JI4cOVJqwRERkWNxdZahTnUlcvQCHy5OwbdrbyHXxJEjRMVKqGJjY/H000/nKb8zMSYREVVOXu5yzHzdDy89a5laYU10Bt74Khk3ObUCPeKKlVAFBATg3Llzecp37dplnRCTiIgqJ7lcwqvPV8GHr/rARS3h+Dk9RkYl4Ng5nb1DI7KbYiVUI0aMwPjx47F//35IkoTr169j+fLlmDx5MkaNGlXaMRIRkQNq28wF374dgBpBCqSmm7HzaI69QyKym2LNQ/XOO+/AbDajY8eOyM7OxtNPPw2VSoXJkydj3LhxpR0jERE5qOr+Csx70x8//5mBl57llDD06CrRPFQGgwHnzp1DZmYmGjRo4HALJDsSzkNFRI+KXJPA7BWpeKGjG2oEKe0dDlGJFPb7u1gtVHcolUo0aNCgJLsgIqJKZsUf6di8Nws7jmRj8gAvPNPS9eEbEVVwxU6ooqOjER0djeTkZJjNZpvHlixZUuLAiIioYurZVoNjcTocidXjkyU3ceqCHiN7V4HCicvWUOVVrEHpH374ITp16oTo6GikpKTg1q1bNjciInp0ebrJ8dk4PwzobOkeWfdXJibNScKNtFw7R0ZUdoo1hiowMBCff/45Bg0aVBYxVUocQ0VEj6Ldx7Ix4/9uIitHoIqbDB++6otGtVT2Douo0Mp0LT+DwYA2bdoUOzgiIno0PNnEBQveDkDNqgrkGATcXIq9hCyRQyvWO/uVV17BihUrSjsWIiKqhKr6WaZWmDnODyGBd5crM5m5ZA1VHsUalK7T6bBw4UJs374dTZo0sVnPDwC+/PLLUgmOiIgqB7VShoY173b1/Runw5yVt/D+cG9OrUCVQrESqmPHjqFZs2YAgBMnTtg8Jkm8ioOIiAomhMB3v6QhPsGIMZ8nYdLLXogI49QKVLGVaGJPKjwOSiciukubacInS27i8BnL+n+R7TQY1YdTK5DjKdNB6QCwc+dODBw4EG3atMG1a9cAAD/++CN27dpV3F0SEdEjwkMjx4yxvhjY1fIFtf7vTEycnYQbtzi1AlVMxUqo1q5di86dO8PZ2RlHjhyBXq8HAGi1WkyfPr1UAyQiospJLpPwnx6emD7KFxpnCacuGjAyKhHJqUyqqOIpVkL1ySefYMGCBVi0aJHNgPQnn3wSR44cKbXgiIio8nuisTMWTAlE7WoKPF5PDd8qcnuHRFRkxRqUHhsbi6effjpPuYeHB9LS0koaExERPWKCfJwwd7I/zOLuxU1ZOWYIAWg4dxVVAMV6lwYEBODcuXN5ynft2oWaNWuWOCgiInr0qJQyOKssX0tCCHz2w0289lkizl812DkyoocrVkI1YsQIjB8/Hvv374ckSbh+/TqWL1+OyZMnY9SoUaUdIxERPWJuak2Iu2LA9Ru5GDszCVv3Zdo7JKIHKta0CUIITJ8+HVFRUcjOzgYAqFQqTJ48GR9//HGpB1kZcNoEIqKi0WaaMH3ZTRw8ZZlaoUdbDca8UAVKBadWoPJT2O/vEs1DZTAYcO7cOWRmZqJBgwbQaDTF3VWlx4SKiKjoTGaBH3/X4sfN6RACaFBDiU9H+cJDw4HrVD7KJaGiwmNCRURUfPtP5uDTJSnIzBFoXEuFOZP8uDIHlYsyn9iTiIiovIQ3dMbXkwMQ7O+E13p7Mpkih1OsaROIiIjKW2igAt9PDYRcdjeZysoxw9WZbQNkf3wXEhFRhXFvMnX2sgED3r+O6INZdoyIyIIJFRERVUib92QiPcuMT5fexOrt6fYOhx5xTKiIiKhCGte3Cnp3cAMALFiXhm/X3oLZzOusyD6YUBERUYUkk0kY84InXn3eEwCwJjoDny67CYORSRWVPyZURERUYUmShJeedcd/h3pDLgN2HMrGO/OTka0z2zs0esQwoSIiogovIswVUWN84aySoFJInE2dyh2nTSAiokqhZX1nzHvTHwHeTnCSM6Gi8sUWKiIiqjRqBCnhrLJ8tQkh8N26WzhxXm/nqOhRwISKiIgqpd/3ZGHV9gxM/joZu49l2zscquQcKqGaP38+QkNDoVarER4ejgMHDjyw/po1a1CvXj2o1Wo0btwYv//+u83jSUlJGDp0KIKCguDi4oIuXbogLi7Opk5iYiIGDRqEgIAAuLq64vHHH8fatWtt6oSGhkKSJJvbjBkzSuegiYioTDzT0gVPNFLDYBSY9l0Kft2ZYe+QqBJzmIRq1apVmDRpEqZNm4YjR46gadOm6Ny5M5KTk/Otv2fPHvTv3x/Dhw9HTEwMIiMjERkZiRMnTgCwNPVGRkbiwoUL2LBhA2JiYhASEoKIiAhkZd2dVXfw4MGIjY3Fxo0bcfz4cfTu3Rt9+/ZFTEyMzfN99NFHSEhIsN7GjRtXdieDiIhKzFklw8cjfdG1tSvMApj9v1tY+msahOC0ClQGhIMICwsTY8aMsd43mUwiKChIREVF5Vu/b9++olu3bjZl4eHhYuTIkUIIIWJjYwUAceLECZt9+vr6ikWLFlnLXF1dxQ8//GCzHy8vL5s6ISEhYvbs2cU+NiGE0Gq1AoDQarUl2g8RERWN2WwWSzbeEh1GxYsOo+LFzB9TRG6u2d5hUQVR2O9vh2ihMhgMOHz4MCIiIqxlMpkMERER2Lt3b77b7N2716Y+AHTu3NlaX6+3DEJUq9U2+1SpVNi1a5e1rE2bNli1ahVSU1NhNpuxcuVK6HQ6tG/f3mbfM2bMgLe3N5o3b46ZM2ciNzf3gcek1+uRnp5ucyMiovInSRKG9fDExP5VIJOALfuycCbeYO+wqJJxiGkTUlJSYDKZ4O/vb1Pu7++PM2fO5LtNYmJivvUTExMBAPXq1UNwcDCmTJmC7777Dq6urpg9ezauXr2KhIQE6zarV69Gv3794O3tDScnJ7i4uOCXX35B7dq1rXVef/11PP744/Dy8sKePXswZcoUJCQk4MsvvyzwmKKiovDhhx8W+VwQEVHZ6NHWDV7ucqRnm9Gwpsre4VAl4xAJVVlQKBRYt24dhg8fDi8vL8jlckRERKBr1642/edTp05FWloatm/fDh8fH6xfvx59+/bFzp070bhxYwDApEmTrPWbNGkCpVKJkSNHIioqCipV/n+UU6ZMsdkuPT0d1atXL6OjJSKiwniyqYvN/espuZAABPpU2q9DKicO8Q7y8fGBXC5HUlKSTXlSUhICAgLy3SYgIOCh9Vu0aIGjR49Cq9XCYDDA19cX4eHhaNmyJQDg/PnzmDdvHk6cOIGGDRsCAJo2bYqdO3di/vz5WLBgQb7PHR4ejtzcXFy6dAl169bNt45KpSow2SIiIvu7lWHC23OTka03Y8YYPzxWXWnvkKgCc4gxVEqlEi1atEB0dLS1zGw2Izo6Gq1bt853m9atW9vUB4Bt27blW9/DwwO+vr6Ii4vDoUOH0KtXLwBAdrZlXhKZzPY0yOVymM0FrwN19OhRyGQy+Pn5Fe4AiYjI4ZjNgFol4Va6GRO+TMKh0zn2DokqMIdIqABLt9qiRYvwf//3fzh9+jRGjRqFrKwsDBs2DIBleoMpU6ZY648fPx5btmzBrFmzcObMGXzwwQc4dOgQxo4da62zZs0a/PXXX9apE5599llERkaiU6dOACzjrGrXro2RI0fiwIEDOH/+PGbNmoVt27YhMjISgGXw+5w5c/Dvv//iwoULWL58OSZOnIiBAweiSpUq5XeCiIioVHl7yDF7oj+a1VEhRy8wZf4NbNuf9fANifJTPhcdFs7cuXNFcHCwUCqVIiwsTOzbt8/6WLt27cSQIUNs6q9evVrUqVNHKJVK0bBhQ7Fp0yabx7/66itRrVo1oVAoRHBwsHjvvfeEXq+3qXP27FnRu3dv4efnJ1xcXESTJk1splE4fPiwCA8PFx4eHkKtVov69euL6dOnC51OV6Rj47QJRESOSW8wi4++v2GdVuF/W7XCbOa0CmRR2O9vSQjOcFYe0tPT4eHhAa1WC3d3d3uHQ0RE9zCbBb77JQ1roi2zqY95wRN9nuFnNRX++9shBqUTERHZk0wmYVSfKvD2kOO3XZno2MrV3iFRBcOEioiI6La+Ee7o9bQGKuXdIcbGXAGFk2THqKgicJhB6URERI7g3mTq992ZGDUjETfSHrw6BhETKiIionzoDGb88LsWF64bMW5mEi4lGO0dEjkwJlRERET5UCtlmDPJH9X9nZB8y4Txs5Jw/JzO3mGRg2JCRUREVIAAbyd8/YY/GtRQIiPbjDfn3sDOo9n2DoscEBMqIiKiB/DQyPHFeD+0aeIMg1Hgw0Up2PBPhr3DIgfDhIqIiOgh1EoZPhzhg+5PaWAWQHpmwcuT0aOJ0yYQEREVglwuYWL/KmjT2BnhjdT2DoccDFuoiIiICkmSJDzR2BmSZJmXKkdnxoJ1t5CjZ4vVo44JFRERUTF99uNNrN6egUlzknErw2TvcMiOmFAREREVU98Id7i7yhAbb8DrXyTh2g3OVfWoYkJFRERUTA1qqPD1ZH8EeMtx7UYuXv8iCbHxenuHRXbAhIqIiKgEgv0VmDs5ALWrKXArw4yJc5Jx8FSOvcOicsaEioiIqIS8PeSYPdEfLeqpodMLzPwpFQajsHdYVI44bQIREVEpcHWWYfpoX3y9KhU92rpBqZDsHRKVIyZUREREpUThJOGNAd42ZVeTjajq62SdaoEqJ3b5ERERlZFj53R4NSoRX6++BSHYBViZMaEiIiIqI4kpudAbBDb8nYm5TKoqNSZUREREZaTTExpMHugFSQLW/52J+WuYVFVWTKiIiIjKUNfWGrzxshcAYN1fmZj/cxqTqkqICRUREVEZe+5JDSbdSap2ZODbtUyqKhsmVEREROWg+1N3k6prN3Jh4nrKlQqnTSAiIion3Z/SwLeKHI/XVcNJzmkUKhO2UBEREZWj8IbOUDhZkikhBHYfy2b3XyXAhIqIiMhO5q+5hakLUrBog5ZJVQXHhIqIiMhOqvkrAAArt6bj+41MqioyJlRERER2EtnODWNfrAIAWPFHOpb8yqSqomJCRUREZEe9O7hhzAueAIDlW9Kx9DcmVRUREyoiIiI76/OMO0b18QQA/LQ5HT/8nm7fgKjIOG0CERGRA3ixozsA4Ltf0lDdn1/PFQ1fMSIiIgfxYkd3hDdyRvDtwepUcbDLj4iIyIHcm0zdSMvFhn8y7BgNFRZbqIiIiBxQjs6MN+Yk42pyLrKyzXi5i4e9Q6IHYAsVERGRA3JWy9DlCVcAwOKNWqz4Q2vniOhBmFARERE5qJe7eOA/PSwtU4s3aLFyK6/+c1QOlVDNnz8foaGhUKvVCA8Px4EDBx5Yf82aNahXrx7UajUaN26M33//3ebxpKQkDB06FEFBQXBxcUGXLl0QFxdnUycxMRGDBg1CQEAAXF1d8fjjj2Pt2rU2dVJTUzFgwAC4u7vD09MTw4cPR2ZmZukcNBER0QMM7OqBYd0tSdXC9WlYtY1JlSNymIRq1apVmDRpEqZNm4YjR46gadOm6Ny5M5KTk/Otv2fPHvTv3x/Dhw9HTEwMIiMjERkZiRMnTgCwLDgZGRmJCxcuYMOGDYiJiUFISAgiIiKQlZVl3c/gwYMRGxuLjRs34vjx4+jduzf69u2LmJgYa50BAwbg5MmT2LZtG3777Tf8888/ePXVV8v2hBAREd026DkPDL2dVH33Sxo27eaPeocjHERYWJgYM2aM9b7JZBJBQUEiKioq3/p9+/YV3bp1sykLDw8XI0eOFEIIERsbKwCIEydO2OzT19dXLFq0yFrm6uoqfvjhB5v9eHl5WeucOnVKABAHDx60Pr5582YhSZK4du1aoY9Pq9UKAEKr1RZ6GyIionst/fWWGDTtmrhxy2jvUB4Zhf3+dogWKoPBgMOHDyMiIsJaJpPJEBERgb179+a7zd69e23qA0Dnzp2t9fV6PQBArVbb7FOlUmHXrl3WsjZt2mDVqlVITU2F2WzGypUrodPp0L59e+vzeHp6omXLltZtIiIiIJPJsH///gKPSa/XIz093eZGRERUEkO6eWDBOwHw8eRF+o7GIRKqlJQUmEwm+Pv725T7+/sjMTEx320SExMfWL9evXoIDg7GlClTcOvWLRgMBnz22We4evUqEhISrNusXr0aRqMR3t7eUKlUGDlyJH755RfUrl3b+jx+fn42z+Pk5AQvL68CYwOAqKgoeHh4WG/Vq1cv/AkhIiLKhyRJcFHf/erefiAL63ZwnipH4BAJVVlQKBRYt24dzp49Cy8vL7i4uGDHjh3o2rUrZLK7hz116lSkpaVh+/btOHToECZNmoS+ffvi+PHjJXr+KVOmQKvVWm9Xrlwp6SERERFZxV0xYMb/3cS8Nbfwy19MquzNIdoMfXx8IJfLkZSUZFOelJSEgICAfLcJCAh4aP0WLVrg6NGj0Gq1MBgM8PX1RXh4uLX77vz585g3bx5OnDiBhg0bAgCaNm2KnTt3Yv78+ViwYAECAgLyDIzPzc1FampqgbEBgEqlgkqlKvxJICIiKoLa1RTo96w7/rc1HXNX34IkAZHt3Owd1iPLIVqolEolWrRogejoaGuZ2WxGdHQ0Wrdune82rVu3tqkPANu2bcu3voeHB3x9fREXF4dDhw6hV69eAIDs7GwAsGmxAgC5XA6z2Wx9nrS0NBw+fNj6+J9//gmz2Yzw8PBiHC0REVHJSZKEV3p54KVnLUnU16tucZkaO3KIFioAmDRpEoYMGYKWLVsiLCwMc+bMQVZWFoYNGwbAMr1B1apVERUVBQAYP3482rVrh1mzZqFbt25YuXIlDh06hIULF1r3uWbNGvj6+iI4OBjHjx/H+PHjERkZiU6dOgGwjLOqXbs2Ro4ciS+++ALe3t5Yv369dXoEAKhfvz66dOmCESNGYMGCBTAajRg7dixeeuklBAUFlfNZIiIiukuSJIyI9IQQwKrtGfhq5S3IJKBHW7ZUlbtyuuqwUObOnSuCg4OFUqkUYWFhYt++fdbH2rVrJ4YMGWJTf/Xq1aJOnTpCqVSKhg0bik2bNtk8/tVXX4lq1aoJhUIhgoODxXvvvSf0er1NnbNnz4revXsLPz8/4eLiIpo0aZJnGoWbN2+K/v37C41GI9zd3cWwYcNERkZGkY6N0yYQEVFZMZvN4pufU0WHUfGiw6h4cfyczt4hVRqF/f6WhBDC3kndoyA9PR0eHh7QarVwd3e3dzhERFTJCCHw7do0CACj+3hCkiR7h1QpFPb722G6/IiIiKj4JEnCqD6e1v8DliSLiVX5cIhB6URERFRykiRZEyiDUeC9BSnYvJfL1JQHtlARERFVQlv3Z2Hv8RzsO5EDCUCX1hp7h1SpsYWKiIioEur2pCt6Pa2BEMDMn1KxdR9bqsoSEyoiIqJKSJIkvN6vCnq2tSRVn/2Yim37s+wdVqXFhIqIiKiSupNU9XjqdlL1w01sP8CkqiwwoSIiIqrEZDIJ41+qgu5PaWAWwFerUpGRbbZ3WJUOB6UTERFVcjKZhAkvVYFSIaH94y5wc2F7SmljQuVAzGYzDAaDvcMgykOpVOZZ85KIKhaZTMLYF6vYlOXozHBW82+7NDChchAGgwEXL160LspM5EhkMhlq1KgBpVJp71CIqJScu2LA2/OTMa6vF9o/7mLvcCo8JlQOQAiBhIQEyOVyVK9enS0B5FDMZjOuX7+OhIQEBAcHc9Zlokpiy95M3Eo345MlKZBJPni6OZOqkmBC5QByc3ORnZ2NoKAguLjwDU2Ox9fXF9evX0dubi4UCoW9wyGiUjDqhSrIyDZj24FsfPx9CqYOZ1JVEmwKcQAmkwkA2J1CDuvOe/POe5WIKj65TMJbg70REeYCkxn4+PsU7Dyabe+wKiwmVA6EXSnkqPjeJKqc5DIJbw/2RsdWlqTqo8Up2P0vk6riYEJFRET0CJPLJLwz2BvPtLQkVev/zoQQwt5hVTgcQ0VERPSIk8slTBnijZpBCjzfwY2t0sXAFioqtqFDh0KSJOvN29sbXbp0wbFjx6x17n38zu2pp56y2c+OHTvQvXt3+Pr6Qq1Wo1atWujXrx/++ecfm3qLFi1C06ZNodFo4OnpiebNmyMqKqpcjpWIqLKTyyW83MUDzqq7qUF6FsdNFhYTKiqRLl26ICEhAQkJCYiOjoaTkxO6d+9uU2fp0qXWOgkJCdi4caP1sW+++QYdO3aEt7c3Vq1ahdjYWPzyyy9o06YNJk6caK23ZMkSTJgwAa+//jqOHj2K3bt346233kJmJldPJyIqbUIILPk1Df/5OAGJN3PtHU6FwC4/BySEgM5gn/5rtVIqUlOvSqVCQEAAACAgIADvvPMO2rZtixs3bsDX1xcA4Onpaa1zr8uXL2PChAmYMGECvvzyS5vHmjRpgtdff916f+PGjejbty+GDx9uLWvYsGGRjo2IiApHpxfY/W8OUtPNeGtuMuZO9oeHRm7vsBwaEyoHpDMIdJt41S7PvWl2NTiritd3npmZiZ9++gm1a9eGt7f3Q+uvXbsWRqMRb731Vr6P35vYBQQE4O+//0Z8fDxCQkKKFR8RERWOs1qGGWN9MW5mEq4m5+K/39zAF+P9bLoDyRbPDJXIb7/9Bo1GA41GAzc3N2zcuBGrVq2yme29f//+1joajQbr168HAJw9exbu7u42rVdr1661qXv8+HEAwLRp0+Dp6YnQ0FDUrVsXQ4cOxerVq7lUDxFRGfH1dMJnY/3g5iLD6UsGfPx9CkwmXv1XELZQOSC1UsKm2dXs9txF0aFDB3z77bcAgFu3buGbb75B165dceDAAWtL0uzZsxEREWHdJjAw0Pr/+7sXO3fujKNHj+LatWto3769dSLJwMBA7N27FydOnMA///yDPXv2YMiQIVi8eDG2bNnC5XqIiMpASKACn47yxeSvk7HvhA5frkjF5IFevAowH0yoHJAkScXuditvrq6uqF27tvX+4sWL4eHhgUWLFuGTTz4BYOmuu7fOHY899hi0Wi0SExOtrVQajQa1a9eGk1P+b81GjRqhUaNGGD16NF577TW0bdsWf//9Nzp06FAGR0dERI1qqTB1uDemfZeCzXuz0OkJVzR9TG3vsBwOf9ZTqZIkCTKZDDk5OQ+t+8ILL0ChUOCzzz4r1nM1aNAAAJCVlVWs7YmIqHCebOKCiS974e3BXkymCsAWKioRvV6PxMREAJYuv3nz5iEzMxM9evR46LbBwcGYNWsWxo8fj9TUVAwdOhQ1atRAamoqfvrpJwCAXG65qmTUqFEICgrCM888g2rVqiEhIQGffPIJfH190bp167I7QCIiAgB0e1Jjc18Iwa6/e7CFikpky5YtCAwMRGBgIMLDw3Hw4EGsWbMG7du3L9T248aNw9atW3Hjxg288MILeOyxx/Dcc8/h4sWL2LJlCxo3bgwAiIiIwL59+/Diiy+iTp066NOnD9RqNaKjowt1RSEREZWe1HQTXp+VhGPndPYOxWFIggv2lIv09HR4eHhAq9XC3d3d5jGdToeLFy+iRo0aUKvZlEqOh+9RIrrXV6tSseHvTGicJXz1hj9qBCntHVKZedD3973YQkVERERF8trznmhYU4nMHIG3591AcipnU2dCRUREREWiUsrw6ShfhAQ4ISXNhLfnJT/y6/4xoSIiIqIic3eVY8ZYP/h4yhGfmIv3FqRAb3h0J1tmQkVERETF4u/lhM/G+sLVWcKJ83rMW3PL3iHZDRMqIiIiKrYaQUp88povaldTYEAXD3uHYzech4qIiIhKpOljaix4JwAy2aM7LxVbqIiIiKjE7k2mdh3NxuY9mXaMpvyxhYqIiIhKzZlLenywKAUA4K6R4ckmLnaOqHywhYoqnKFDhyIyMtJ6v3379pgwYYLd4rmfo8VDRFSe6oYo0fkJV5gF8PH3N3HivN7eIZULJlRUIomJiRg/fjxq164NtVoNf39/PPnkk/j222+RnZ1dLjGsW7cOH3/8canu8/6krTJbtmwZPD097R0GEVUSkiRh0steeKKRGgajwHsLbiA+wWjvsMqcwyVU8+fPR2hoKNRqNcLDw3HgwIEH1l+zZg3q1asHtVqNxo0b4/fff7d5PCkpCUOHDkVQUBBcXFzQpUsXxMXFWR+/dOkSJEnK97ZmzRprvfweX7lyZekefAVz4cIFNG/eHFu3bsX06dMRExODvXv34q233sJvv/2G7du3F7it0Vh6f1xeXl5wc3Mrtf0REVHJyOUS3n/FBw1qKJGeZcbb85NxI61yz6buUAnVqlWrMGnSJEybNg1HjhxB06ZN0blzZyQnJ+dbf8+ePejfvz+GDx+OmJgYREZGIjIyEidOnABgWQk7MjISFy5cwIYNGxATE4OQkBBEREQgKysLAFC9enUkJCTY3D788ENoNBp07drV5vmWLl1qU+9RacEoyOjRo+Hk5IRDhw6hb9++qF+/PmrWrIlevXph06ZN6NGjh7WuJEn49ttv0bNnT7i6uuLTTz+FyWTC8OHDUaNGDTg7O6Nu3br46quvbJ7DZDJh0qRJ8PT0hLe3N9566y3cv/zk/V1ser0ekydPRtWqVeHq6orw8HD89ddf1sfvtMj88ccfqF+/PjQaDbp06YKEhAQAwAcffID/+7//w4YNG6zJ873b3ysrKwuDBw+GRqNBYGAgZs2alafOw+KJj49Hjx49UKVKFbi6uqJhw4Y2PwxOnjyJ7t27w93dHW5ubmjbti3Onz9vfXzx4sWoX78+1Go16tWrh2+++cb62J0fDOvWrUOHDh3g4uKCpk2bYu/evQCAv/76C8OGDYNWq7Ue6wcffJDvsRIRFYX69mzq1fyckJxqwpR5N5CVU4kn/hQOJCwsTIwZM8Z632QyiaCgIBEVFZVv/b59+4pu3brZlIWHh4uRI0cKIYSIjY0VAMSJEyds9unr6ysWLVpUYBzNmjUT//nPf2zKAIhffvmlqIdkpdVqBQCh1WrzPJaTkyNOnTolcnJybMqzdaYCb3qDudB1dXpToeoWRUpKipAkqcDX5n4AhJ+fn1iyZIk4f/68iI+PFwaDQbz//vvi4MGD4sKFC+Knn34SLi4uYtWqVdbtPvvsM1GlShWxdu1acerUKTF8+HDh5uYmevXqZa3Trl07MX78eOv9V155RbRp00b8888/4ty5c2LmzJlCpVKJs2fPCiGEWLp0qVAoFCIiIkIcPHhQHD58WNSvX1+8/PLLQgghMjIyRN++fUWXLl1EQkKCSEhIEHq9Pt/jGjVqlAgODhbbt28Xx44dE927dxdubm5Fiqdbt27i2WefFceOHRPnz58Xv/76q/j777+FEEJcvXpVeHl5id69e4uDBw+K2NhYsWTJEnHmzBkhhBA//fSTCAwMFGvXrhUXLlwQa9euFV5eXmLZsmVCCCEuXrwoAIh69eqJ3377TcTGxooXXnhBhISECKPRKPR6vZgzZ45wd3e3HmtGRkae4yzoPUpE9DAJKUbR5+0r4quVN0WuyfzwDRzMg76/7+UwCZVerxdyuTxP0jJ48GDRs2fPfLepXr26mD17tk3Z+++/L5o0aSKEEOLYsWMCgDh37pxNnWrVqokhQ4bku89Dhw4JAGL37t025QBEUFCQ8Pb2Fq1atRLff/+9MJsLfmPodDqh1WqttytXrhQ5oeowKr7A2zvzkmzqdh1/ucC6E75MtKkb+eaVfOsVxb59+wQAsW7dOptyb29v4erqKlxdXcVbb71lLQcgJkyY8ND9jhkzRvTp08d6PzAwUHz++efW+0ajUVSrVq3AhCo+Pl7I5XJx7do1m/127NhRTJkyRQhhSajuf1/Mnz9f+Pv7W+8PGTLE5jnyk5GRIZRKpVi9erW17ObNm8LZ2blI8TRu3Fh88MEH+T7HlClTRI0aNYTBYMj38Vq1aokVK1bYlH388ceidevWQoi7CdXixYutj588eVIAEKdPnxZCWM6Hh4fHA4+VCRURlcRNbe4DvzMdWWETKoeZNiElJQUmkwn+/v425f7+/jhz5ky+2yQmJuZbPzExEQBQr149BAcHY8qUKfjuu+/g6uqK2bNn4+rVq9bunft9//33qF+/Ptq0aWNT/tFHH+GZZ56Bi4sLtm7ditGjRyMzMxOvv/56vvuJiorChx9+WKhjr0wOHDgAs9mMAQMGQK+3vbKjZcuWeerPnz8fS5YsweXLl5GTkwODwYBmzZoBALRaLRISEhAeHm6t7+TkhJYtW+bp9rvj+PHjMJlMqFOnjk25Xq+Ht7e39b6Liwtq1aplvR8YGFhg13JBzp8/D4PBYBOfl5cX6tatW6R4Xn/9dYwaNQpbt25FREQE+vTpgyZNmgAAjh49irZt20KhUOR5/qysLJw/fx7Dhw/HiBEjrOW5ubnw8LCdrfjO/u4cKwAkJyejXr16RTpmIqLi8HKXW/9vzBXYcTgbz4a5QJIqz0SgDpNQlQWFQoF169Zh+PDh8PLyglwuR0REBLp27ZrvF3JOTg5WrFiBqVOn5nns3rLmzZsjKysLM2fOLDChmjJlCiZNmmS9n56ejurVqxcp/k2zqxX4mPy+2WjXfla1wLr3T1y74uOgIsWRn9q1a0OSJMTGxtqU16xZEwDg7OycZxtXV1eb+ytXrsTkyZMxa9YstG7dGm5ubpg5cyb2799f7LgyMzMhl8tx+PBhyOVym8c0Go31//cnKJIkFZiklURh4nnllVfQuXNnbNq0CVu3bkVUVBRmzZqFcePG5Xse7903ACxatMgmqQOQ57nuPd47H2BmcyUey0BEDslstlz1d/CUDim3cvFyJVqqxmEGpfv4+EAulyMpKcmmPCkpCQEBAfluExAQ8ND6LVq0wNGjR5GWloaEhARs2bIFN2/etH7x3+vnn39GdnY2Bg8e/NB4w8PDcfXq1TytMHeoVCq4u7vb3IrKWSUr8KZUSIWuq1LKClW3KLy9vfHss89i3rx51gH+RbV79260adMGo0ePRvPmzVG7dm2bwdYeHh4IDAy0SbByc3Nx+PDhAvfZvHlzmEwmJCcno3bt2ja3gt5H+VEqlTCZTA+sU6tWLSgUCpv4bt26hbNnzxY5nurVq+O1117DunXr8MYbb2DRokUALC1LO3fuzPeqSH9/fwQFBeHChQt59l2jRo1SPVYiotIgk0kIb2j5obh4oxZb9lae2dQdJqFSKpVo0aIFoqOjrWVmsxnR0dFo3bp1vtu0bt3apj4AbNu2Ld/6Hh4e8PX1RVxcHA4dOoRevXrlqfP999+jZ8+e8PX1fWi8R48eRZUqVaBSqR5at7L65ptvkJubi5YtW2LVqlU4ffo0YmNj8dNPP+HMmTN5Wknu99hjj+HQoUP4448/cPbsWUydOhUHDx60qTN+/HjMmDED69evx5kzZzB69GikpaUVuM86depgwIABGDx4MNatW4eLFy/iwIEDiIqKwqZNmwp9bKGhoTh27BhiY2ORkpKSb0Kj0WgwfPhwvPnmm/jzzz9x4sQJDB06FDLZ3T+rwsQzYcIE/PHHH7h48SKOHDmCHTt2oH79+gCAsWPHIj09HS+99BIOHTqEuLg4/Pjjj9aWwQ8//BBRUVH4+uuvcfbsWRw/fhxLly7Fl19+WaRjzczMRHR0NFJSUspt/jAiejT17uCGlzpZGhm+WJ6KfSdy7BxRKSmPAV2FtXLlSqFSqcSyZcvEqVOnxKuvvio8PT1FYqJlUPWgQYPEO++8Y62/e/du4eTkJL744gtx+vRpMW3aNKFQKMTx48etdVavXi127Nghzp8/L9avXy9CQkJE79698zx3XFyckCRJbN68Oc9jGzduFIsWLRLHjx8XcXFx4ptvvhEuLi7i/fffL/SxFecqv4rg+vXrYuzYsaJGjRpCoVAIjUYjwsLCxMyZM0VWVpa1HvK5SlKn04mhQ4cKDw8P4enpKUaNGiXeeecd0bRpU2sdo9Eoxo8fL9zd3YWnp6eYNGmSGDx48AOv8rtz9WBoaKhQKBQiMDBQPP/88+LYsWNCiPwHYf/yyy/i3j+H5ORk8eyzzwqNRiMAiB07duR7/BkZGWLgwIHCxcVF+Pv7i88//7zI8YwdO1bUqlVLqFQq4evrKwYNGiRSUlKs2//777+iU6dOwsXFRbi5uYm2bduK8+fPWx9fvny5aNasmVAqlaJKlSri6aeftl4scGdQekxMjLX+rVu38hzTa6+9Jry9vQUAMW3atDzHWZHfo0TkeMxms4haliI6jIoXXcdfFqcu6OwdUoEq3FV+d8ydO1cEBwcLpVIpwsLCxL59+6yPtWvXLs/VeatXrxZ16tQRSqVSNGzYUGzatMnm8a+++kpUq1ZNKBQKERwcLN577718L4GfMmWKqF69ujCZ8k4fsHnzZtGsWTOh0WiEq6uraNq0qViwYEG+dQtSWRMqejTwPUpEpc2YaxZvzU0SHUbFi16Tr4jLiflfzWxvhU2oJCHKYCQu5ZGeng4PDw9otdo846l0Oh0uXryIGjVqQK1W2ylCooLxPUpEZSFHZ8akOcm4kmzEp6/5omkdx/t8edD3970q9VV+RERE5Lic1TJMH+OLVK0Jtaop7R1OiTjMoHQiIiJ69FRxk9skU9duGGEwVrzOMyZURERE5BBOnNdj9GdJ+OzHmzCbK1ZSxYSKiIiIHILOYEa2zowdh7Lx7bq0MplwuawwoSIiIiKH0LK+M94ebFmWa+2fGVi9PcPOERUeEyoiIiJyGBFhrnittycA4Ltf0rBtf/FW4yhvTKiIiIjIofSNcMeLHd0AAJ//eBMHTzn+bOpMqIiIiMjhjHzeE8+0dIHJDPzyl+N3/XEeKiIiInI4MpmEtwd7IzRQgb4RBU+o6SjYQkXFNnToUEiSlOfWpUuXcnn+Dz74AM2aNSuX5yIiovKncJIwsKsHlArJWqY3mO0YUcHYQkUl0qVLFyxdutSmTKVS2SkaIiKqrMxmgcUb0nAkVo/ZE/zgrHasNiHHioYqHJVKhYCAAJtblSpV8Ndff0GpVGLnzp3Wup9//jn8/PyQlJQEANiyZQueeuopeHp6wtvbG927d8f58+dt9n/16lX0798fXl5ecHV1RcuWLbF//34sW7YMH374If79919ry9iyZcvK89CJiKgcpaabsHlvFs5eNmDaohQYcx1rjiomVA4sKysLWVlZNhObGQwGZGVlQa/X51vXbL7bFGo0GpGVlQWdTleouqWpffv2mDBhAgYNGgStVouYmBhMnToVixcvhr+/vzWOSZMm4dChQ4iOjoZMJsPzzz9vjSszMxPt2rXDtWvXsHHjRvz777946623YDab0a9fP7zxxhto2LAhEhISkJCQgH79+pXqMRARkePw8XTC9NG+UCslHDqtw8yfHGs2dSZUDkyj0UCj0SAlJcVaNnPmTGg0GowdO9amrp+fHzQaDS5fvmwtmz9/PjQaDYYPH25TNzQ0FBqNBqdPn7aWFbd157fffrPGeec2ffp0AMAnn3yCKlWq4NVXX8XAgQMxZMgQ9OzZ07ptnz590Lt3b9SuXRvNmjXDkiVLcPz4cZw6dQoAsGLFCty4cQPr16/HU089hdq1a6Nv375o3bo1nJ2dodFo4OTkZG0Zc3Z2LtYxEBFRxVA/VIVpI3wgkwHbD2Rj8YY0e4dkxTFUVCIdOnTAt99+a1Pm5eUFAFAqlVi+fDmaNGmCkJAQzJ4926ZeXFwc3n//fezfvx8pKSnWlqnLly+jUaNGOHr0KJo3b27dHxERUXhDZ7w50Auf/ZCKldsy4OUhxwvP2P8qQCZUDiwzMxMA4OLiYi178803MWHCBDg52b50ycnJAGDTSjNmzBiMGDECcrncpu6lS5fy1B06dGixYnR1dUXt2rULfHzPnj0AgNTUVKSmpsLV1dX6WI8ePRASEoJFixYhKCgIZrMZjRo1gsFgyBMfERHRHZ2f0OBmmgmLN2qxYG0anmjkjGp+CrvGxITKgd2bfNyhVCqhVCoLVVehUEChyPsGK6huaTt//jwmTpyIRYsWYdWqVRgyZAi2b98OmUyGmzdvIjY2FosWLULbtm0BALt27bLZvkmTJli8eDFSU1PzbaVSKpUwmUylHjcRETm+/p3doc0yo06w0u7JFMAxVFRCer0eiYmJNreUlBSYTCYMHDgQnTt3xrBhw7B06VIcO3YMs2bNAgBUqVIF3t7eWLhwIc6dO4c///wTkyZNstl3//79ERAQgMjISOzevRsXLlzA2rVrsXfvXgCWsWAXL17E0aNHkZKSkmegPhERVV6SJGFUnyro2CpvI4E9MKGiEtmyZQsCAwNtbk899RQ+/fRTxMfH47vvvgMABAYGYuHChXjvvffw77//QiaTYeXKlTh8+DAaNWqEiRMnYubMmTb7ViqV2Lp1K/z8/PDcc8+hcePGmDFjhrULs0+fPujSpQs6dOgAX19f/O9//yv34yciIgIASdx7TT6VmfT0dHh4eECr1cLd3XbwnE6nw8WLF1GjRg2o1Wo7RUhUML5HiehR9aDv73uxhYqIiIiohJhQEREREZUQEyoiIiKiEmJCRURERFRCTKiIiIiISogJlQPhBZfkqPjeJCJ6MCZUDuDOvEp3llwhcjR33pv3L2NEREQWXHrGATg5OcHFxQU3btyAQqGATMY8lxyH2WzGjRs34OLikmcNSSIisuCnowOQJAmBgYG4ePEi4uPj7R0OUR4ymQzBwcGQJMneoRAROSQmVA5CqVTiscceY7cfOSSlUsmWUyKiB2BC5UBkMhmX9SAiIqqA+JOTiIiIqISYUBERERGVEBMqIiIiohLiGKpycmdixPT0dDtHQkRERIV153v7YRMcM6EqJxkZGQCA6tWr2zkSIiIiKqqMjAx4eHgU+LgkuKZEuTCbzbh+/Trc3NxKdS6f9PR0VK9eHVeuXIG7u3up7Zds8TyXH57r8sHzXD54nstHWZ5nIQQyMjIQFBT0wOlj2EJVTmQyGapVq1Zm+3d3d+cfazngeS4/PNflg+e5fPA8l4+yOs8Papm6g4PSiYiIiEqICRURERFRCTGhquBUKhWmTZsGlUpl71AqNZ7n8sNzXT54nssHz3P5cITzzEHpRERERCXEFioiIiKiEmJCRURERFRCTKiIiIiISogJFREREVEJMaFyQPPnz0doaCjUajXCw8Nx4MCBB9Zfs2YN6tWrB7VajcaNG+P333+3eVwIgffffx+BgYFwdnZGREQE4uLiyvIQKoTSPM9GoxFvv/02GjduDFdXVwQFBWHw4MG4fv16WR+Gwyvt9/O9XnvtNUiShDlz5pRy1BVPWZzn06dPo2fPnvDw8ICrqytatWqFy5cvl9UhVAilfZ4zMzMxduxYVKtWDc7OzmjQoAEWLFhQlodQYRTlXJ88eRJ9+vRBaGjoAz8Tivr6FYkgh7Jy5UqhVCrFkiVLxMmTJ8WIESOEp6enSEpKyrf+7t27hVwuF59//rk4deqUeO+994RCoRDHjx+31pkxY4bw8PAQ69evF//++6/o2bOnqFGjhsjJySmvw3I4pX2e09LSREREhFi1apU4c+aM2Lt3rwgLCxMtWrQoz8NyOGXxfr5j3bp1omnTpiIoKEjMnj27jI/EsZXFeT537pzw8vISb775pjhy5Ig4d+6c2LBhQ4H7fBSUxXkeMWKEqFWrltixY4e4ePGi+O6774RcLhcbNmwor8NySEU91wcOHBCTJ08W//vf/0RAQEC+nwlF3WdRMaFyMGFhYWLMmDHW+yaTSQQFBYmoqKh86/ft21d069bNpiw8PFyMHDlSCCGE2WwWAQEBYubMmdbH09LShEqlEv/73//K4AgqhtI+z/k5cOCAACDi4+NLJ+gKqKzO89WrV0XVqlXFiRMnREhIyCOfUJXFee7Xr58YOHBg2QRcQZXFeW7YsKH46KOPbOo8/vjj4t133y3FyCueop7rexX0mVCSfRYGu/wciMFgwOHDhxEREWEtk8lkiIiIwN69e/PdZu/evTb1AaBz587W+hcvXkRiYqJNHQ8PD4SHhxe4z8quLM5zfrRaLSRJgqenZ6nEXdGU1Xk2m80YNGgQ3nzzTTRs2LBsgq9AyuI8m81mbNq0CXXq1EHnzp3h5+eH8PBwrF+/vsyOw9GV1fu5TZs22LhxI65duwYhBHbs2IGzZ8+iU6dOZXMgFUBxzrU99nk/JlQOJCUlBSaTCf7+/jbl/v7+SExMzHebxMTEB9a/829R9lnZlcV5vp9Op8Pbb7+N/v37P7ILopbVef7ss8/g5OSE119/vfSDroDK4jwnJycjMzMTM2bMQJcuXbB161Y8//zz6N27N/7++++yORAHV1bv57lz56JBgwaoVq0alEolunTpgvnz5+Ppp58u/YOoIIpzru2xz/s5lcpeiMjKaDSib9++EELg22+/tXc4lcrhw4fx1Vdf4ciRI5Akyd7hVFpmsxkA0KtXL0ycOBEA0KxZM+zZswcLFixAu3bt7BlepTJ37lzs27cPGzduREhICP755x+MGTMGQUFBeVq3yLGxhcqB+Pj4QC6XIykpyaY8KSkJAQEB+W4TEBDwwPp3/i3KPiu7sjjPd9xJpuLj47Ft27ZHtnUKKJvzvHPnTiQnJyM4OBhOTk5wcnJCfHw83njjDYSGhpbJcTi6sjjPPj4+cHJyQoMGDWzq1K9f/5G9yq8sznNOTg7++9//4ssvv0SPHj3QpEkTjB07Fv369cMXX3xRNgdSARTnXNtjn/djQuVAlEolWrRogejoaGuZ2WxGdHQ0Wrdune82rVu3tqkPANu2bbPWr1GjBgICAmzqpKenY//+/QXus7Iri/MM3E2m4uLisH37dnh7e5fNAVQQZXGeBw0ahGPHjuHo0aPWW1BQEN5880388ccfZXcwDqwszrNSqUSrVq0QGxtrU+fs2bMICQkp5SOoGMriPBuNRhiNRshktl/Fcrnc2kr4KCrOubbHPvMolaHtVGpWrlwpVCqVWLZsmTh16pR49dVXhaenp0hMTBRCCDFo0CDxzjvvWOvv3r1bODk5iS+++EKcPn1aTJs2Ld9pEzw9PcWGDRvEsWPHRK9evThtQimfZ4PBIHr27CmqVasmjh49KhISEqw3vV5vl2N0BGXxfr4fr/Irm/O8bt06oVAoxMKFC0VcXJyYO3eukMvlYufOneV+fI6iLM5zu3btRMOGDcWOHTvEhQsXxNKlS4VarRbffPNNuR+fIynqudbr9SImJkbExMSIwMBAMXnyZBETEyPi4uIKvc+SYkLlgObOnSuCg4OFUqkUYWFhYt++fdbH2rVrJ4YMGWJTf/Xq1aJOnTpCqVSKhg0bik2bNtk8bjabxdSpU4W/v79QqVSiY8eOIjY2tjwOxaGV5nm+ePGiAJDvbceOHeV0RI6ptN/P92NCZVEW5/n7778XtWvXFmq1WjRt2lSsX7++rA/D4ZX2eU5ISBBDhw4VQUFBQq1Wi7p164pZs2YJs9lcHofj0Ipyrgv6DG7Xrl2h91lSkhBClE5bFxEREdGjiWOoiIiIiEqICRURERFRCTGhIiIiIiohJlREREREJcSEioiIiKiEmFARERERlRATKiIiIqISYkJFREREVEJMqIiIbmvfvj0mTJhg7zCIqALiTOlE9Ehq3749mjVrhjlz5ljLUlNToVAo4ObmVu7xTJw4EfHx8Vi3bl25PzcRlRxbqIiIbvPy8rJLMgUABw4cQMuWLe3y3ERUckyoiOiRM3ToUPz999/46quvIEkSJEnCpUuX8nT5tW/fHuPGjcOECRNQpUoV+Pv7Y9GiRcjKysKwYcPg5uaG2rVrY/PmzdZtzGYzoqKiUKNGDTg7O6Np06b4+eefC4zFYDBAoVBgz549ePfddyFJEp544omyPHwiKgNMqIjokfPVV1+hdevWGDFiBBISEpCQkIDq1avnW/f//u//4OPjgwMHDmDcuHEYNWoUXnzxRbRp0wZHjhxBp06dMGjQIGRnZwMAoqKi8MMPP2DBggU4efIkJk6ciIEDB+Lvv//Od/9OTk7YvXs3AODo0aNISEjAli1byubAiajMcAwVET2S8htDdX9Z+/btYTKZsHPnTgCAyWSCh4cHevfujR9++AEAkJiYiMDAQOzduxfNmzeHl5cXtm/fjtatW1v3+8orryA7OxsrVqzIN5b169fjlVdeQUpKStkcLBGVOSd7B0BE5MiaNGli/b9cLoe3tzcaN25sLfP39wcAJCcn49y5c8jOzsazzz5rsw+DwYDmzZsX+BwxMTFo2rRpKUdOROWJCRUR0QMoFAqb+5Ik2ZRJkgTAMnYqMzMTALBp0yZUrVrVZjuVSlXgcxw9epQJFVEFx4SKiB5JSqUSJpOpVPfZoEEDqFQqXL58Ge3atSv0dsePH0efPn1KNRYiKl9MqIjokRQaGor9+/fj0qVL0Gg08PLyKvE+3dzcMHnyZEycOBFmsxlPPfUUtFotdu/eDXd3dwwZMiTf7cxmM2JjY3H9+nW4urrCw8OjxLEQUfniVX5E9EiaPHky5HI5GjRoAF9fX1y+fLlU9vvxxx9j6tSpiIqKQv369dGlSxds2rQJNWrUKHCbTz75BMuWLUPVqlXxySeflEocRFS+eJUfERERUQmxhYqIiIiohJhQEREREZUQEyoiIiKiEmJCRURERFRCTKiIiIiISogJFREREVEJMaGi/2+3jgUAAAAABvlbD2JvUQQATEIFADAJFQDAJFQAAJNQAQBMQgUAMAVmQRFfWZSBDgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAksAAAHICAYAAABeca7pAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAf6NJREFUeJzt3Xd4VMXbxvHv7iabXkghoYcuIE2aYEEUBXtBwUZTEVFRQFSwgB0VFBRQBAUsqNhQXguiiIqIoECUIghIh5BGetlkd94/8mNlTRFCeu7Pde0FmTM75zlnN7tP5syZsRhjDCIiIiJSJGtlByAiIiJSlSlZEhERESmBkiURERGREihZEhERESmBkiURERGREihZEhERESmBkiURERGREihZEhERESmBkiURERGREihZEhGpAfbs2YPFYmHhwoWVHYpIjaNkSUQAWLhwIRaLpdjHL7/8UtkhCvDuu+8yY8aMyg5DpFbxquwARKRqeeKJJ2jatGmh8hYtWlRCNPJv7777Lps3b2bMmDEe5U2aNCE7Oxtvb+/KCUykBlOyJCIeLr74Yrp27VrZYZCZmUlAQEBlh1HhjDHk5OTg5+d3Us+zWCz4+vqWU1QitZsuw4nISTk2NmbatGnMnTuX5s2b4+PjQ7du3fj1118L1d+2bRvXXnstYWFh+Pr60rVrV5YuXepR59glwB9++IE777yTunXr0rBhQ/f22bNn06xZM/z8/OjevTurVq3ivPPO47zzzgMgIyODgIAA7r333kL7P3DgADabjSlTppR4XJmZmdx33300atQIHx8fWrduzbRp0zDGuOucfvrp9OnTp9BzXS4XDRo04Nprr/UomzFjBu3atcPX15eoqChGjhzJ0aNHPZ4bExPDZZddxtdff03Xrl3x8/PjtddeKzLG8847jy+++IK9e/e6L4/GxMQARY9ZGjZsGIGBgezbt4/LLruMwMBAGjRowOzZswHYtGkT559/PgEBATRp0oR333230D5TUlIYM2aM+7y0aNGC5557DpfLVeL5FKlJ1LMkIh5SU1NJTEz0KLNYLISHh3uUvfvuu6SnpzNy5EgsFgvPP/8811xzDX///bf7UtCWLVs466yzaNCgARMmTCAgIIAPPviAq666io8//pirr77ao80777yTyMhIJk2aRGZmJgCvvvoqd999N+eccw5jx45lz549XHXVVdSpU8edUAUGBnL11VezePFiXnzxRWw2m7vN9957D2MMN910U7HHbIzhiiuuYOXKldx666106tSJr7/+mvvvv5+DBw8yffp0AAYNGsRjjz1GXFwc0dHR7uf/9NNPHDp0iOuvv95dNnLkSBYuXMjw4cO555572L17N7NmzWLjxo2sXr3a43LZ9u3bueGGGxg5ciQjRoygdevWRcb58MMPk5qayoEDB9wxBQYGFntcAE6nk4svvphzzz2X559/nkWLFnH33XcTEBDAww8/zE033cQ111zDnDlzGDJkCD179nRfhs3KyqJ3794cPHiQkSNH0rhxY37++WcmTpzI4cOHNXZKag8jImKMWbBggQGKfPj4+Ljr7d692wAmPDzcJCcnu8s/++wzA5j/+7//c5ddcMEFpn379iYnJ8dd5nK5TK9evUzLli0L7fvss882+fn57vLc3FwTHh5uunXrZvLy8tzlCxcuNIDp3bu3u+zrr782gPnqq688jqtDhw4e9Yry6aefGsA89dRTHuXXXnutsVgsZufOncYYY7Zv324AM3PmTI96d955pwkMDDRZWVnGGGNWrVplALNo0SKPesuWLStU3qRJEwOYZcuWlRjjMZdeeqlp0qRJofJjr8uCBQvcZUOHDjWAeeaZZ9xlR48eNX5+fsZisZj333/fXb5t2zYDmMmTJ7vLnnzySRMQEGD++usvj31NmDDB2Gw2s2/fvhOKWaS602U4EfEwe/ZsvvnmG4/HV199VajeoEGDqFOnjvvnc845B4C///4bgOTkZL777jsGDhxIeno6iYmJJCYmkpSURL9+/dixYwcHDx70aHPEiBEevUK//fYbSUlJjBgxAi+vfzrCb7rpJo99A/Tt25f69euzaNEid9nmzZv5448/uPnmm0s85i+//BKbzcY999zjUX7fffdhjHEff6tWrejUqROLFy9213E6nXz00Udcfvnl7nFGH374ISEhIVx44YXu405MTKRLly4EBgaycuVKj/00bdqUfv36lRjjqbjtttvc/w8NDaV169YEBAQwcOBAd3nr1q0JDQ11v37HjuOcc86hTp06HsfRt29fnE4nP/74Y7nFLFKV6DKciHjo3r37CQ3wbty4scfPx5KXY2Nydu7ciTGGRx99lEcffbTINuLj42nQoIH753/fhbd3716g8J14Xl5e7rE6x1itVm666SZeffVVsrKy8Pf3Z9GiRfj6+nLdddeVeCx79+6lfv36BAUFeZS3adPGIw4oSBIfeughDh48SIMGDfj++++Jj49n0KBB7jo7duwgNTWVunXrFnvcxyvq7sOy4uvrS2RkpEdZSEgIDRs2xGKxFCo/fkzVjh07+OOPPwo9/5h/H4dITaVkSURK5fgeoOOZ/w2IPjYAePz48cX2mvw7CTrZO8D+bciQIUydOpVPP/2UG264gXfffZfLLruMkJCQU2r3eIMGDWLixIl8+OGHjBkzhg8++ICQkBD69+/vruNyuahbt65HL9fx/p18nOpxl6S41+m/Xj8oOI4LL7yQBx54oMi6rVq1OvUARaoBJUsiUi6aNWsGgLe3N3379i1VG02aNAEKeqmOvwstPz+fPXv20KFDB4/6p59+Op07d2bRokU0bNiQffv2MXPmzBPaz7fffkt6erpH79K2bds84oCCXqDu3buzePFi7r77bj755BOuuuoqfHx83HWaN2/Ot99+y1lnnVXmidC/e4PKU/PmzcnIyCj16ydSU2jMkoiUi7p163Leeefx2muvcfjw4ULbExIS/rONrl27Eh4ezrx588jPz3eXL1q0qNAt+McMHjyY5cuXM2PGDMLDw7n44ov/cz+XXHIJTqeTWbNmeZRPnz4di8VSqI1Bgwbxyy+/MH/+fBITEz0uwQEMHDgQp9PJk08+WWhf+fn5pKSk/GdMxQkICCA1NbXUzz8ZAwcOZM2aNXz99deFtqWkpHi8JiI1mXqWRMTDV1995e5ROV6vXr3cvUUnavbs2Zx99tm0b9+eESNG0KxZM44cOcKaNWs4cOAAv//+e4nPt9vtPPbYY4wePZrzzz+fgQMHsmfPHhYuXEjz5s2L7GW58cYbeeCBB1iyZAmjRo06oRmtL7/8cvr06cPDDz/Mnj176NixI8uXL+ezzz5jzJgxNG/e3KP+wIEDGT9+POPHjycsLKxQz0vv3r0ZOXIkU6ZMITY2losuughvb2927NjBhx9+yEsvveQxJ9PJ6NKlC4sXL2bcuHF069aNwMBALr/88lK19V/uv/9+li5dymWXXcawYcPo0qULmZmZbNq0iY8++og9e/YQERFRLvsWqVIq92Y8EakqSpo6gONuST92i/rUqVMLtcG/bj03xphdu3aZIUOGmOjoaOPt7W0aNGhgLrvsMvPRRx8V2vevv/5aZGwvv/yyadKkifHx8THdu3c3q1evNl26dDH9+/cvsv4ll1xiAPPzzz+f8PGnp6ebsWPHmvr16xtvb2/TsmVLM3XqVONyuYqsf9ZZZxnA3HbbbcW2OXfuXNOlSxfj5+dngoKCTPv27c0DDzxgDh065K7TpEkTc+mll55wnBkZGebGG280oaGhBnBPI1Dc1AEBAQGF2ujdu7dp165dofKiYklPTzcTJ040LVq0MHa73URERJhevXqZadOmGYfDccJxi1RnFmOOG80nIlINuFwuIiMjueaaa5g3b16h7VdffTWbNm1i586dlRCdiNQ0GrMkIlVaTk4O//6b7q233iI5Odm93MnxDh8+zBdffMHgwYMrKEIRqenUsyQiVdr333/P2LFjue666wgPD2fDhg288cYbtGnThvXr12O32wHYvXs3q1ev5vXXX+fXX39l165dHkuSiIiUlgZ4i0iVFhMTQ6NGjXj55ZdJTk4mLCyMIUOG8Oyzz7oTJYAffviB4cOH07hxY958800lSiJSZtSzJCIiIlICjVkSERERKYGSJREREZESaMxSGXC5XBw6dIigoKAKXYpARERESs8YQ3p6OvXr18dqLb7/SMlSGTh06BCNGjWq7DBERESkFPbv30/Dhg2L3a5kqQwcW3hz//79BAcHV3I0IiIiciLS0tJo1KiRxwLaRVGyVAaOXXoLDg5WsiQiIlLN/NcQGg3wFhERESmBkiURERGREihZEhERESmBxixVIKfTSV5eXmWHIeLB29sbm81W2WGIiFRZSpYqgDGGuLg4UlJSKjsUkSKFhoYSHR2tecJERIqgZKkCHEuU6tati7+/v76QpMowxpCVlUV8fDwA9erVq+SIRESqHiVL5czpdLoTpfDw8MoOR6QQPz8/AOLj46lbt64uyYmI/IsGeJezY2OU/P39KzkSkeIde39qTJ2ISGFKliqILr1JVab3p4hI8ZQsiYiIiJRAyZKIiIhICZQsSbGGDRuGxWJxP8LDw+nfvz9//PGHu87x2489zj77bI92Vq5cyWWXXUZkZCS+vr40b96cQYMG8eOPP3rUmzdvHh07diQwMJDQ0FA6d+7MlClTKuRYRUREiqNkSUrUv39/Dh8+zOHDh1mxYgVeXl5cdtllHnUWLFjgrnP48GGWLl3q3vbKK69wwQUXEB4ezuLFi9m+fTtLliyhV69ejB071l1v/vz5jBkzhnvuuYfY2FhWr17NAw88QEZGRoUdq4iISFE0dYCUyMfHh+joaACio6OZMGEC55xzDgkJCURGRgL/TGj4b/v27WPMmDGMGTOGF1980WNbhw4duOeee9w/L126lIEDB3Lrrbe6y9q1a1cehyQiInJSlCxVMGMMOQ5TKfv2tVtO6a6njIwM3nnnHVq0aHFCc0Z9/PHH5OXl8cADDxS5/fhYoqOj+eGHH9i7dy9NmjQpdYwiIlJzJKU6CQ+p/LnflCxVsByH4dKxBypl319Mb4ifz8klS59//jmBgYEAZGZmUq9ePT7//HOs1n+u4N5www0eExm+8847XHXVVfz1118EBwd79Dp9/PHHDB061P3zmjVraN++PZMnT+aaa64hJiaGVq1a0bNnTy655BKuvfZaj32JiEjtcCA+j5FT4uh3ZgCjBtTB26vypjjRt5CUqE+fPsTGxhIbG8u6devo168fF198MXv37nXXmT59urtObGwsF154oXvbv3uy+vXrR2xsLF988QWZmZk4nU6gYJmNNWvWsGnTJu69917y8/MZOnQo/fv3x+VyVczBiohIleDIMzz5RiLZuYbdh/Ko7L+Z1bNUwXztFr6Y3rDS9n2yAgICaNGihfvn119/nZCQEObNm8dTTz0FFFxCO77OMS1btiQ1NZW4uDh371JgYCAtWrTAy6vot97pp5/O6aefzp133skdd9zBOeecww8//ECfPn1OOnYREame5n2Wwo79eQQHWHloeDg2a+VOnKuepQpmsVjw87FWyqMsZmm2WCxYrVays7P/s+61116Lt7c3zz33XKn21bZtW6Dg8p+IiNQOazZl8/F36QA8OCScyNDK79epUsnS7NmziYmJwdfXlx49erBu3bpi627ZsoUBAwYQExODxWJhxowZher8+OOPXH755dSvXx+LxcKnn37qsT0vL48HH3yQ9u3bExAQQP369RkyZAiHDh0q4yOrvnJzc4mLiyMuLo4///yT0aNHk5GRweWXX/6fz23cuDEvvPACL730EkOHDmXlypXs2bOHDRs28PLLLwO4xzqNGjWKJ598ktWrV7N3715++eUXhgwZQmRkJD179izXYxQRkaohISWf595KAuCaPkH0bO9XyREVqDLJ0uLFixk3bhyTJ09mw4YNdOzYkX79+hEfH19k/aysLJo1a8azzz5b5G3rUNAj0bFjR2bPnl1sGxs2bODRRx9lw4YNfPLJJ2zfvp0rrriizI6rulu2bBn16tWjXr169OjRg19//ZUPP/yQ884774SeP3r0aJYvX05CQgLXXnstLVu25JJLLmH37t0sW7aM9u3bA9C3b19++eUXrrvuOlq1asWAAQPw9fVlxYoVJ3TnnYiIVG/GGKYsSCIt00WLRt7cflVoZYfkZjHGVM597P/So0cPunXrxqxZswBwuVw0atSI0aNHM2HChBKfGxMT457PpzgWi4UlS5Zw1VVXldjWr7/+Svfu3dm7dy+NGzc+odjT0tIICQkhNTWV4OBgj205OTns3r2bpk2b4uvre0LtiVQ0vU9FpCr4cWMWsz88yrR769Ioyrvc91fS9/fxKv9CIOBwOFi/fj0TJ050l1mtVvr27cuaNWsqNJbU1FQsFguhoaHF1snNzSU3N9f9c1paWgVEJiIiUrOd29mfnu39KnWagKJUictwiYmJOJ1OoqKiPMqjoqKIi4ursDhycnJ48MEHueGGG0rMMKdMmUJISIj70ahRowqLUUREpCZJz3KRlOp0/1zVEiWoIslSVZCXl8fAgQMxxvDqq6+WWHfixImkpqa6H/v376+gKEVERGoOYwxT305ixNOH2bA9p7LDKVaVuAwXERGBzWbjyJEjHuVHjhwpdvB2WTqWKO3du5fvvvuuxF4lKFgvzcfHp9zjEhERqcmW/pjBT79n42WDQL+i+2/Ss1zE/pXDOZ38Kzi6f1SJniW73U6XLl1YsWKFu8zlcrFixYpyv238WKK0Y8cOvv32W915JSIiUgF2HXDwysdHAbj96lBaNbYXqnOs52ny3ETe+jK1okN0qxI9SwDjxo1j6NChdO3ale7duzNjxgwyMzMZPnw4AEOGDKFBgwZMmTIFKBgUvnXrVvf/Dx48SGxsrHuGaChY+HXnzp3ufezevZvY2FjCwsJo3LgxeXl5XHvttWzYsIHPP/8cp9PpHiMVFhaG3V74hRMREZFTk53r4sk3EsnLhzNP92VAn6Ai6312XM/TmadX3pxLVSZZGjRoEAkJCUyaNIm4uDg6derEsmXL3IO+9+3b57Gg6qFDh+jcubP752nTpjFt2jR69+7N999/D8Bvv/3msUzGuHHjABg6dCgLFy7k4MGDLF26FIBOnTp5xLNy5coTnktIRERETtzsD4+y70g+4SE2HhwSXuQKEzv2O3j1fz1Pd1xTp8iep4pSZeZZqs40z5JUd3qfikhF+Sk2i0lzE7FY4IV769KpVeHPnKwcFyOnxHEwIZ+zOvjxxMiIMlmy69+q1TxLIiIiUjt0aePLxT0DiAi1FZkoGWOY/l4yBxPyqVvHxv2Dw8olUToZVWKAt8gxw4YN85hl/bzzzitxZvaKVtXiERGpbvx8rNw/OJxhl4UUuX3ZmkxW/JqF1QqP3BJBcICtgiMsTMmSFCsuLo57772XFi1a4OvrS1RUFGeddRavvvoqWVlZFRLDJ598wpNPPlmmbf47IavJFi5cWOJs9CIiFeX3v3Jwuf4Z+VNUb9HuQw5eXlwwTumWy0M4vXnVmKZHl+GkSH///TdnnXUWoaGhPPPMM7Rv3x4fHx82bdrE3LlzadCgQbELDufl5eHtXTZr+oSFhZVJOyIiUnnWbslm4uwEurf15alRkXjZCidKOQ4XT76RRG6eoWsbX66/sOQ5DyuSepakSHfeeSdeXl789ttvDBw4kDZt2tCsWTOuvPJKvvjiCy6//HJ3XYvFwquvvsoVV1xBQEAATz/9NE6nk1tvvZWmTZvi5+dH69ateemllzz24XQ6GTduHKGhoYSHh/PAAw/w7/sN/n3ZKzc3l/Hjx9OgQQMCAgLo0aOH++5H+Kcn5euvv6ZNmzYEBgbSv39/Dh8+DMBjjz3Gm2++yWeffYbFYsFisXg8/3iZmZkMGTKEwMBA6tWrxwsvvFCozn/Fs3fvXi6//HLq1KlDQEAA7dq148svv3Rv37JlC5dddhnBwcEEBQVxzjnnsGvXLvf2119/nTZt2uDr68tpp53GK6+84t62Z88eLBYLn3zyCX369MHf35+OHTu611P8/vvvGT58uHu9Q4vFwmOPPVbksYqIlJekVCfPvZkEQL1IryITJYBZHx5lz+E8woKtTBwWjtVadZY9Uc9SJcnOdRW7zWa1YPe2nFBdqwV87Nb/rOvnc+J5cVJSEsuXL+eZZ54hICCgyDr/7j597LHHePbZZ5kxYwZeXl64XC4aNmzIhx9+SHh4OD///DO333479erVY+DAgQC88MILLFy4kPnz59OmTRteeOEFlixZwvnnn19sbHfffTdbt27l/fffp379+ixZsoT+/fuzadMmWrZsCUBWVhbTpk3j7bffxmq1cvPNNzN+/HgWLVrE+PHj+fPPP0lLS2PBggVA8b1X999/Pz/88AOfffYZdevW5aGHHmLDhg0e00z8Vzx33XUXDoeDH3/8kYCAALZu3UpgYCAABw8e5Nxzz+W8885zzxy/evVq8vPzAVi0aBGTJk1i1qxZdO7cmY0bNzJixAgCAgIYOnSoO4aHH36YadOm0bJlSx5++GFuuOEGdu7cSa9evZgxYwaTJk1i+/btAO59i4hUBKfL8MzCRFIyXDRr4M2oa+oUWW/Fr5l8uToTiwUeGh5BnaDKH6d0PCVLleTSsQeK3dajnS9T7qrr/nnAgwfJcRQ9w0PHlj5MH/vPAsQ3PnqI1IzCCdN3rzQ+4dh27tyJMYbWrVt7lEdERJCTU7B2z1133cVzzz33z35vvNE9gegxjz/+uPv/TZs2Zc2aNXzwwQfuZGnGjBlMnDiRa665BoA5c+bw9ddfFxvXvn37WLBgAfv27aN+/foAjB8/nmXLlrFgwQKeeeYZoOAy4Jw5c2jevDlQkNA88cQTQEGy4OfnR25ubolL6WRkZPDGG2/wzjvvcMEFFwDw5ptv0rBhw5OKZ9++fQwYMID27dsD0KxZM/fzZ8+eTUhICO+//777smWrVq3c2ydPnswLL7zgPj9NmzZl69atvPbaax7J0vjx47n00kvd57xdu3bs3LmT0047jZCQECwWS4UsGyQi8m/vL09j4/ZcfO0WJt0a4dERcMyB+DxefDcZgMEXB3NG66o3fYmSJTlh69atw+VycdNNN5Gbm+uxrWvXroXqz549m/nz57Nv3z6ys7NxOBzuXpnU1FQOHz5Mjx493PW9vLzo2rVroUtxx2zatAmn0+mRUEDBpbDjl6nx9/d3J0oA9erVIz4+/qSOddeuXTgcDo/4wsLCPBLIE4nnnnvuYdSoUSxfvpy+ffsyYMAAOnToAEBsbCznnHNOkeO7MjMz2bVrF7feeisjRoxwl+fn5xMS4nkHybH2jh0rQHx8PKeddtpJHbOISFnavCuXBZ8XLFEyelAdGkcX/qxz5BmefCOR7FxDx5Y+DL6k6DvkKpuSpUryxfSGxW6z/es67cfPNSi27r8v6b77ZP1TigugRYsWWCwW96WbY471ivj5FZ5y/t+X695//33Gjx/PCy+8QM+ePQkKCmLq1KmsXbu21HFlZGRgs9lYv349NptnF+3xl5f+nXxYLJZiE7BTcSLx3HbbbfTr148vvviC5cuXM2XKFF544QVGjx5d5Hk8vm2AefPmeSRsQKF9HX+8xy6PulzFX7oVESlvTqfh+beTcLng/K7+9D+z6CEdc5ccZcf+PEICrTw0PLzQ919VoQHelcTPx1rs49/dlCXVPX68Ukl1T0Z4eDgXXnghs2bNIjMzs1THt3r1anr16sWdd95J586dadGihcfA5ZCQEOrVq+eRPOXn57N+/fpi2+zcuTNOp5P4+HhatGjh8TiZy0x2ux2n01linebNm+Pt7e0R39GjR/nrr79OOp5GjRpxxx138Mknn3Dfffcxb948oKBHaNWqVeTl5RXaf1RUFPXr1+fvv/8u1HbTpk3L9FhFRMqazWbhkVsi6NbWl7E3FD2p5E+xWXzyfcEfhg8OCScytOr23yhZkiK98sor5Ofn07VrVxYvXsyff/7J9u3beeedd9i2bVuh3o1/a9myJb/99htff/01f/31F48++ii//vqrR517772XZ599lk8//ZRt27Zx5513kpKSUmybrVq14qabbmLIkCF88skn7N69m3Xr1jFlyhS++OKLEz62mJgY/vjjD7Zv305iYmKRyUpgYCC33nor999/P9999x2bN29m2LBhHusTnkg8Y8aM4euvv2b37t1s2LCBlStX0qZNG6BgLFVaWhrXX389v/32Gzt27ODtt9929+g9/vjjTJkyhZdffpm//vqLTZs2sWDBAl588cWTOtaMjAxWrFhBYmJihc2PJSLSqrGd5+6uS4Bf4VQjLimf598uuENuUN+gSl0k90QoWZIiNW/enI0bN9K3b18mTpxIx44d6dq1KzNnzmT8+PH/OVHkyJEjueaaaxg0aBA9evQgKSmJO++806POfffdx+DBgxk6dKj7Ut3VV19dYrsLFixgyJAh3HfffbRu3ZqrrrqKX3/9lcaNT3wA+4gRI2jdujVdu3YlMjKS1atXF1lv6tSpnHPOOVx++eX07duXs88+my5dupxUPE6nk7vuuos2bdrQv39/WrVq5b79Pzw8nO+++46MjAx69+5Nly5dmDdvnvuy2m233cbrr7/OggULaN++Pb1792bhwoUn1bPUq1cv7rjjDgYNGkRkZCTPP//8CT9XRORk7T7kYMd+R4l18p2Gp+YnkpFtaBNj59YrQysmuFOghXTLgBbSlepO71MROVU5DhejnjvCoYQ8Jt0WwVkd/IusN/fTFN5fnkaAn4V5D9UjOrzyLr+d6EK66lkSERGRU/bKRynsPZxHkL+Vtk2LXqZk3ZZs3l+eBsD9N4dXaqJ0MpQsiYiIyCn5fkMWn/+UgcUCE4cVPalkYko+z/5vJu8rewdybueie56qIiVLIiIiUmqHE/N5YVFBEnTDRcF0Oa3wpXyny/DMgiRSMly0aFj8TN5VlZIlERERKZVjg7Uzsw1tm9oZdlnRk0q+81UasTty8fWx8GgxM3lXZUqWREREpFSWrcnkzz0OAvwK5lUqapHc2L9yePvLgpm8x90QRqOowjN5V3XVY2SViIiIVDmX9AogPctFg0ivIgdrp6Q7eXpBEi4DF/cMoG/3omfyruqULImIiEipWK0Wbrio6FvuXS7Ds28mkZTqpEm0F3cPrF7jlI6ny3AiIiJywlwuw8ffpZHjKHkNyg9WpLNuaw52bwuTbos46aW3qpLqG7mIiIhUuA9WpDP7oxTGvhiPy1X0vNZb/s7ljc9SABg9sA5N69srMMKyp2RJRERETsifu/9Jgi47JxCrtfCA7vQsF0/OT8Tpgj5d/bmkV/Ucp3Q8JUtSrGHDhmGxWAo9+vfvXyH7f+yxx+jUqVOF7EtEREqWke3iqf8lQeedUXQSZIxh6ttJxCc7qR/pxbgbwrBYqtc0AUXRAG8pUf/+/VmwYIFHmY9P0dPYi4hIzWSMYfq7yRxOchIdbmPcTUUnQZ/+kMFPv2fj7QWTbo0gwK9m9MnUjKOQcuPj40N0dLTHo06dOnz//ffY7XZWrVrlrvv8889Tt25djhw5AsCyZcs4++yzCQ0NJTw8nMsuu4xdu3Z5tH/gwAFuuOEGwsLCCAgIoGvXrqxdu5aFCxfy+OOP8/vvv7t7tBYuXFiRhy4iIv/z1c+ZrFyfhc0Kj94SQWARSdBf+xzM+eQoACOvrkOrxtV7nNLx1LNUSTIzMwHw9/d3Z+cOh4O8vDy8vLw8em+O1fXz88NqLXiD5uXl4XA4sNlsHqvEF1fX27tsJwE777zzGDNmDIMHD+b333/n77//5tFHH+XDDz8kKirKHcu4cePo0KEDGRkZTJo0iauvvprY2FisVisZGRn07t2bBg0asHTpUqKjo9mwYQMul4tBgwaxefNmli1bxrfffgtASEjRM8OKiEj5ceQZ3vqqYFLJW68IpU0Ri+Rm5bh48o1E8vLhrA5+XH1eYEWHWb6MnLLU1FQDmNTU1ELbsrOzzdatW012drZHOWAAEx8f7y576qmnDGBuu+02j7r+/v4GMLt373aXTZ8+3QDmxhtv9KgbERFhALN582Z32dy5c0t1XEOHDjU2m80EBAR4PJ5++mljjDG5ubmmU6dOZuDAgaZt27ZmxIgRJbaXkJBgALNp0yZjjDGvvfaaCQoKMklJSUXWnzx5sunYsWOpYpeTU9z7VETEGGPij+aZeZ8eNU6nq9A2l8tlnnwjwfQZtdcMeviASc3Ir4QIS6ek7+/jqWdJStSnTx9effVVj7KwsDAA7HY7ixYtokOHDjRp0oTp06d71NuxYweTJk1i7dq1JCYm4nIVzMmxb98+Tj/9dGJjY+ncubO7PRERqZoiQ7247crQIrd99XMm3/2WhdUKjwyPIDjAVrHBVQAlS5UkIyMDKLgMd8z999/PmDFj8PLyfFni4+OBgktrx9x1112MGDECm83zTblnz55CdYcNG1bqOAMCAmjRokWx23/++WcAkpOTSU5OJiDgn7sjLr/8cpo0acK8efOoX78+LpeL008/HYfDUShGERGpWn7+IwuXC87u5F9snd2HHMz8oGCc0q1XhHJ685p5A5AGeFeSgIAAAgICPO4msNvtBAQEFLrb7FjdY2OQALy9vQkICPAYr1RS3fKwa9cuxo4dy7x58+jRowdDhw519x4lJSWxfft2HnnkES644ALatGnD0aNHPZ7foUMHYmNjSU5OLrJ9u92O0+ksl9hFRKR4cUn5PPtmEpPmJrL696wi6+Q4XDzxRhK5eYZubX0Z1DeogqOsOEqWpES5ubnExcV5PBITE3E6ndx8883069eP4cOHs2DBAv744w9eeOEFAOrUqUN4eDhz585l586dfPfdd4wbN86j7RtuuIHo6GiuuuoqVq9ezd9//83HH3/MmjVrAIiJiWH37t3ExsaSmJhIbm5uhR+/iEht43QanlmYREa2oU2MnR6nF30VYNYHR9l7OI/wEBsThoYXOUFlTaFkSUq0bNky6tWr5/E4++yzefrpp9m7dy+vvfYaAPXq1WPu3Lk88sgj/P7771itVt5//33Wr1/P6aefztixY5k6dapH23a7neXLl1O3bl0uueQS2rdvz7PPPuu+tDhgwAD69+9Pnz59iIyM5L333qvw4xcRqW3e/DKVzbtyCfC18MgtEXjZCidBK37N5MufM7FY4KFh4dQJqnnjlI5nMcYUvbCLnLC0tDRCQkJITU0lONhz9eWcnBx2795N06ZNC10yE6kq9D4VEYAN23O4/+V4jIFHbwmnT9fCs3QfiM9j5JQ4snMNQy4JZthloRUfaBkp6fv7eOpZEhEREVLSnUxZmIQxcMlZAUUmSo48wxNvJJKda+jY0ofBl9SO+e+ULImIiAirYrNISnXSJNqLu6+rU2Sd15YcZef+PEICrTw0PBxbDR6ndDxNHSAiIiJcfk4QIYE2Gtb1wtdeuC9lVWwWS74vmPZmwtBwIkNrTwpRe45URERESnRu56LnVIpLymfq20kADOobRI92tWuePF2GqyAaRy9Vmd6fIrVTZraL595KIjElv9g6+U7DU/MTycg2tG1q59ZiZvKuyZQslbNjE0JmZRU9qZdIVXDs/VleE5iKSNVjjOGl95P5+pdMHpmTWOwfTfOXprB1t4NAv+KnEqjpdBmunNlsNkJDQ91Llvj7+3vM2i1SmYwxZGVlER8fT2hoaKHlc0Sk5lq+NpNvfy1Y0+3u6+oU+d20dks273+TDsD4m8OJDq+daUPtPOoKFh0dDfyzxptIVRMaGup+n4pIzbfvSB4vvV+wBNXwy0KKXNMtMaVgyROAq3oHFjueqTZQslQBLBYL9erVo27duuTl5VV2OCIevL291aMkUos48gxPvZFIjsPQubUP119UeDJGp8vwzIIkUjNctGjkzR3XFD2VQG1RpZKl2bNnM3XqVOLi4ujYsSMzZ86ke/fuRdbdsmULkyZNYv369ezdu5fp06czZswYjzo//vgjU6dOZf369Rw+fJglS5Zw1VVXedQxxjB58mTmzZtHSkoKZ511Fq+++iotW7Ys8+Oz2Wz6UhIRkUr12pKj7DyQR2iglYlDi54r6Z2v0ojdkYufj4VJt0Zg967dw0eqzADvxYsXM27cOCZPnsyGDRvo2LEj/fr1K/bSVVZWFs2aNePZZ58t9vJBZmYmHTt2ZPbs2cXu9/nnn+fll19mzpw5rF27loCAAPr160dOTk6ZHJeIiEhVkZ3rYsO2gu+3B4eGE1HEXEkbt+fw1pepAIy7MYyGdXXjR5VZG65Hjx5069aNWbNmAeByuWjUqBGjR49mwoQJJT43JiaGMWPGFOpZOp7FYinUs2SMoX79+tx3332MHz8egNTUVKKioli4cCHXX3/9CcV+omvLiIiIVLbsXBdrt+Rw3hmFxyAdTXdy+zNxJKU6ubhnAPcPDq+ECCtOtVobzuFwsH79evr27esus1qt9O3blzVr1pTbfnfv3k1cXJzHfkNCQujRo0e57ldERKQiHd8v4udjLTJRcrkMz72ZVLDkST1v7h5Yu8cpHa9KJEuJiYk4nU6ioqI8yqOiooiLiyu3/R5r+2T3m5ubS1pamsdDRESkKjLG8NT8JN5bnlbiBLQffJvOuq05+HhbmHRrOH4+VSJFqBJ0JkphypQphISEuB+NGjWq7JBERESK9P436axcn8WC/0thX1zRM3Vv+TuX15emAHD3wDo0rW+vwAirviqRLEVERGCz2Thy5IhH+ZEjR8p17pdjbZ/sfidOnEhqaqr7sX///nKLUUREpLR+3ZrN65+lADB6YB2a1Cs8WDs9y8WT8xNxueD8rv5c0iuggqOs+qpEsmS32+nSpQsrVqxwl7lcLlasWEHPnj3Lbb9NmzYlOjraY79paWmsXbu2xP36+PgQHBzs8RAREalKDiXm89T8JIyBS84K4LKzAwvVMcbw/NtJxCc7aRDpxdgbwrTKRBGqzDxL48aNY+jQoXTt2pXu3bszY8YMMjMzGT58OABDhgyhQYMGTJkyBSgYFL5161b3/w8ePEhsbCyBgYG0aNECgIyMDHbu3Onex+7du4mNjSUsLIzGjRtjsVgYM2YMTz31FC1btqRp06Y8+uij1K9fv9B8TCIiItVFdq6LSa8lkJ7lok2MnXsGFp0ELfk+g9W/Z+PtBY/eGkGAX5XoQ6lyqkyyNGjQIBISEpg0aRJxcXF06tSJZcuWuQdf79u3D6v1nxfx0KFDdO7c2f3ztGnTmDZtGr179+b7778H4LfffqNPnz7uOuPGjQNg6NChLFy4EIAHHniAzMxMbr/9dlJSUjj77LNZtmwZvr6+5XzEIiIiZc8Yw7RFyfx9MI86QVYeG1H0pJJ/7XPw2pKCJU9GXl2HVo01Tqk4VWaepepM8yyJiEhVYYxh6aoMXvskhSl3RdKxZeE//jOzXdzxbBwHE/I5q6MfT9weUSsvv53o93eV6VkSERGRU2exWLjy3CB6d/YnNKjwElvGGKa/l8zBhHzqhtl4YHB4rUyUToYuToqIiNQACUfzSc9yuX8uKlEC+OrnTL77LQurFR69JYIgf6UC/0VnSEREpJrLdbh4eE4Co56LY8/hvGLr7T7kYOYHBeOUbrsilHbNfCoqxGpNyZKIiEg1ZozhhXeT2bk/j8xsF34+RV9Sy8hyMXluIrl5hm5tfRnYN6iCI62+lCyJiIhUY0u+z+DbdQWX1SbdGkFUWOHhyE6n4cn5iRyIz6duHRsThoZjtWqc0olSsiQiIlJN/f5XDq98XHBZ7Y5rQuncuuhpb15bksKvW3PwtVt46o5I6hQznkmKpmRJRESkGopPzufx1wuWKenbzZ8BfYq+rPbVzxl89F06ABOGhtOikeZTOllKlkRERKqhVz4+SkqGixYNvRl3U9EzdG/amcP095IBGHppCOd29q/oMGsEzbMkIiJSDRWs43aU268KxddeuO8jLimfyXMTyXfCuZ39GHyxJk0uLSVLIiIi1VBIoI3Jt0UUuS07x8WjryW4e54eHKIB3adCl+FERESqiU07c/hydUaJdVwuw7NvJbHrQB51gq08eUckfj76uj8V6lkSERGpBhJS8nns9USOprmwWOHinoFF1nvry1RWxWbj7QVP3B5Z5FQCcnKUaoqIiFRxjjzD4/MKEqVm9b0574yiB2p/vz6Tt75MA2DcjWGaobuMKFkSERGp4mZ9eJStux0E+ll4fGREkZfV/trn4Lm3Cu58u+6CIPqdWXTPk5w8JUsiIiJV2Oc/ZfD5TxlYLPDILRE0iPQuVCc51cmjcxLIzTN0b+fL7VeHVnygNZiSJRERkSpqy9+5vLy4oLfo1stD6N7Or1AdR55h0twEElKcNI7y4pFbIrDpzrcypWRJRESkitq+14HTBed08uOGfoXnSTLG8OK7yWzd7SDI38pToyIJ9NNXe1nTEHkREZEq6po+QTSO9qJtU58iZ+he/G06y9dmYrXC5NsiaFi38CU6OXVKlkRERKqYfKfBy1aQHHVtU/jSG8Avm7KZ92kKAHddW4czTit6EV05deqrExERqUK+WpPBnc/FEZeUX2ydPYfzeGpBIsbAZWcHclVv3flWnpQsiYiIVBHb9uQy471kdh7I47vfMousk5rh5JE5CWTlGDq08GH0wDpFXqKTsqNkSUREpAo4mu5k8txE8vKhVwc/rr+w8IDufKfhiTcSOZSQT3S4jcdvj8DbS4lSeVOyJCIiUsnynYYnXk8kIcVJoygvJgwteuHb2R8dZeP2XPx8LDx1RyQhgbZKiLb2UbIkIiJSyeZ8ksLvO3Lx97Xw5Miib/9f+mM6n/1QMDnlQ8PDadbAXgmR1k5KlkRERCrRil8z+WRlOgAThoTTOLrw7f+xf+Uw84OjQMHklGd1KHptOCkfmjpARESkEp3e3IdWje10b+fL2Z0KJ0GHEvN5bF4iThdc0M2/yMkppXwpWRIREalEUWFevHxfFLYihh9lZrt45NUE0jJdtG5iZ/xNYbrzrRLoMpyIiEgFczoNv/+V4/7Z7m0ptJ6b02V4ZmESew7nER5i44mREfjY9bVdGXTWRUREKti8z1IYOyOed5elFltn/tJU1mzKxtsLnhgZQWSoLgZVFiVLIiIiFei73zL54NuCAd0NilnL7Zu1mby3PA2ABwaH0ybGp8Lik8KULImIiFSQXQccTH07GYAbLgqm9xmFB3T/uTuXaYuSALixXzAXdAuo0BilMCVLIiIiFSAt08mk1xLIzTN0bePLLVeEFKqTkJLPpONm8b7l8sJ1pOIpWRIRESlnTpfhqflJHE5yUi/cxiO3hBca0J3rcDFpTiJJqU6a1vfmoWFFz+ItFU/JkoiISDn7ZXM2v/2Zg6/dwhMjIwkO8JwnwBjD8+8ks32fg+AAK0/dEYm/r76iqwoNrRcRESlnZ3XwZ8KQMLy9LDRvWHiZkkXL0lj5WxY2Kzw+IoJ6Efp6rkr0aoiIiFSAi84MLLL8p9gs5v9fwRQC9wyqQ8dWvhUZlpwA9fGJiIiUg/QsF8+9lcTRdGexdXYdcPDMmwV3vl3ZO5DLzwmqqPDkJChZEhERKWMul+GZBYl8/Usmj81LxBhTqE5KupNH5iSQk2s4o7UPd11bpxIilROhZElERKSMvflFKmu35GD3tnDXtXUKreeWl2+YPC+RI8lOGkR6Mem2CLxsuvOtqlKyJCIiUoZ+is3i7a8KZt8ed2MYrRp7Dug2xvDS4mQ27cwlwNfCU3cUvjtOqhYlSyIiImVk7+E8nn2rYAzSNX2CuKhH4dm3l3yfwZerM7FY4OFbImhSr+glT6TqULIkIiJSBjKyXUyam0BWjqFjSx/uuCa0UJ3f/szmlY+OAnD7VaGcebpfBUcppaFkSUREpAykZjgxBiJDbUWOQdp/JI8nXk/EZeCiHgEM7Ks736oLzbMkIiJSBhpEevPKg9EkpjipE+Q5Bikjy8UjcxLIyDa0bWpn3I1hhQZ9S9VVpXqWZs+eTUxMDL6+vvTo0YN169YVW3fLli0MGDCAmJgYLBYLM2bMKFWbcXFxDB48mOjoaAICAjjjjDP4+OOPy/KwRESkBsvMdrn/H+hnJeZfY5CcTsOT8xPZfySfyFAbT9weid1biVJ1UmWSpcWLFzNu3DgmT57Mhg0b6NixI/369SM+Pr7I+llZWTRr1oxnn32W6OjoUrc5ZMgQtm/fztKlS9m0aRPXXHMNAwcOZOPGjeVynCIiUnPsP5LHzZMP8cnK9CLnUgJ4bUkKv27NwcfbwlOjIgkL0Z1v1U2VSZZefPFFRowYwfDhw2nbti1z5szB39+f+fPnF1m/W7duTJ06leuvvx4fH59St/nzzz8zevRounfvTrNmzXjkkUcIDQ1l/fr15XKcIiJSM2TluJg0N5HUDBffb8jC5Spc56ufM/jou3QAHhwaTstGhdeFk6qvSiRLDoeD9evX07dvX3eZ1Wqlb9++rFmzplzb7NWrF4sXLyY5ORmXy8X7779PTk4O5513XrFt5+bmkpaW5vEQEZHaw+kyTHkzib2H8wgPsfHYbRHY/jWge/OuXKa/lwzAkEuCOe8M/8oIVcpAlUiWEhMTcTqdREVFeZRHRUURFxdXrm1+8MEH5OXlER4ejo+PDyNHjmTJkiW0aNGi2LanTJlCSEiI+9GoUaNSxSgiItWPMYZZHx5l9e/ZeHvBYyMiCl1aO5Kcz+S5CeQ74dzOfgy5JKSSopWyUCWSpcr06KOPkpKSwrfffstvv/3GuHHjGDhwIJs2bSr2ORMnTiQ1NdX92L9/fwVGLCIilem9r9P47IcMLBaYODScds08h4Jk5xbc+XY03UXzht48OCQcq1UDuquzKjF1QEREBDabjSNHjniUHzlypNjB22XR5q5du5g1axabN2+mXbt2AHTs2JFVq1Yxe/Zs5syZU2TbPj4+xY6TEhGRmuvP3bm8vjQVgDsHhHJeF88Zul0uw3NvJbHrQB6hgVaeHBmJn0+t75eo9qrEK2i32+nSpQsrVqxwl7lcLlasWEHPnj3Lrc2srCygYCzT8Ww2G66iRuqJiEitdlqMnduvDuX6C4MYcH5woe1vfZnKjxuz8bLBEyMjiQ6vEn0ScoqqzKs4btw4hg4dSteuXenevTszZswgMzOT4cOHAwW3+Ddo0IApU6YABQO4t27d6v7/wYMHiY2NJTAw0D3e6L/aPO2002jRogUjR45k2rRphIeH8+mnn/LNN9/w+eefV8JZEBGRqsxisXD9hYWTJIDvN2Tx1pcFN/yMvTGM05vrCkRNUWWSpUGDBpGQkMCkSZOIi4ujU6dOLFu2zD1Ae9++fR49QIcOHaJz587un6dNm8a0adPo3bs333///Qm16e3tzZdffsmECRO4/PLLycjIoEWLFrz55ptccsklFXfwIiJSZR2Mz2P+56mMuyGMAL+iL8j8tc/Bc28WLKB77flBXNwzsCJDlHJmMcXNoiUnLC0tjZCQEFJTUwkOLvovDhERqX6S05yMnnaEw4n59DszgAeHhBeuk+pk1HNxJKQ46dbWl2dGRRaaRkCqphP9/q4SY5ZERESqmuwcFw+9ksDhxHzqhdsYcWVooTqOPMOkuQkkpDhpFOXFo7cUnm9Jqj8lSyIiIv+Sl2+YPC+Rv/Y5CAm08tzouoXmUjLG8OK7yWzd7SDQz8JTd0QS6K+v1ZpIr6qIiMhxjDFMeyeJ3/7Mwddu4Zk7I2lY17tQvcXfprN8bSZWK0y6LYJGUYXrSM2gZElEROQ4b36RyjfrstxJUJuYwne1ff1LBnOXpABw54A6dG3jV8FRSkVSsiQiInKcczr5ExFq476bwjjz9MJJ0E+xWUx9p2DNt2v6BHH1ebrzraarMlMHiIiIVAXNG9pZOKke/r6F+xM2bM/hyfmJuFzQ78wA7hwQisWiAd01nXqWRESk1vt9Rw5/7Mxx/1xUovTnnlwemZNAXj6c1dGP8TeFac23WkLJkoiI1Gp/H3TwyJwE7n85ns27couss/uQg4mzE8jJNXRu7aMpAmoZJUsiIlJrxSfnM2F2ApnZhtZNfGjZqPAdbYcT83lgZgJpmS5Oi7Hz5MhI7N5KlGoTJUsiIlIrpWU6eXB2AokpTppEe/HUHRH42D2/FpNSndw/M56kVCcx9byZcmdkkZfopGbTKy4iIrVOrsPFo3MS2Xs4j4hQG8/eXZfgAM9JJ9OzXDw4M55DCflEh9t4fnQkIYG2YlqUmkzJkoiI1CpOl+HpBUls2pVLgJ+FZ++KJCrM8+bw7FwXE2fH8/ehPMKCrUy9py4RobqBvLZSsiQiIrWK0wleNgveXvDkyEiaNbB7bHfkGSa9lsjW3Q6C/K08P7ouDSI1O3dtdlLJ0rBhw8jKyiqvWERERMqd3dvCI7eEM3N8NJ1a+Xpsc7oMzyxMZP22gqVOptxVOJmS2uekkqW3336bjIwM98+jRo0iJSXFo05+fn6ZBCYiIlKWtu3JxeUyAFitFlo19kyCjDFMfzeZHzdm4+0FT4yMoG3TwkudSO1zUsmSMcbj50WLFpGcnOz++ciRIwQHB5dNZCIiImVk7ZZs7p52hClvJpHvNIW2G2N4bUkKX/6cidUCDw+P0Hpv4nZKY5b+nTwB5OTkFFFTRESkcmzbk8vj8wqWKLFawFbEN997X6fxwbfpANx3Uxjndvav4CilKivzAd5aI0dERKqKg/F5PPRKAjkOQ9c2vtw/OLzQ99RnP6bz+tJUAEYNCOXiXloYVzyddLL07rvvsmHDBvLy8sojHhERkTKRnObkgVkJpGS4aNXYzmMjIvD61xIlK37N5OXFRwG4qX8w112goSRS2ElNGnHOOecwefJk0tPT8fb2Jj8/n8mTJ3PWWWfRqVMnIiMjyytOERGRE5ad4+KhVxI4nJhPvQgvnili5u1fNmXz7JtJGANXnhvILZeHVFK0UtWdVLL0ww8/ALBjxw7Wr1/Phg0b2LBhAw899BApKSm6BCciIlXCtr0Odh9yEBJo5bm7IwkL9px5+/cdOTz2eiJOF1zQzZ/RA+voO0yKVarpSFu2bEnLli25/vrr3WW7d+/mt99+Y+PGjWUWnIiISGl0bu3Lc3fXxcduoWFdzwkl/9rn4JFXE3DkGc483ZcHh4RjtSpRkuJZTFG3tMlJSUtLIyQkhNTUVE2dICJSiTKzXQT4FT8cd9+RPMa8cISUDBcdWvjw3N2RhRbPldrjRL+/9Q4REZEaYcn36dz61GF2H3IUuf1Icj4PvBxPSoaLlo28eWqUEiU5MXqXiIhItffDhixmfXiU+KNO1m4pPN/f0XQn978cT/xRJ42ivHju7roEltADJXI8vVNERKRa+31HDs8sTHTf1Taob5DH9oxsFw/OiudAfD51w2xMHV2X0CBbMa2JFKZkSUREqq3dhxw8MieBvHw4u6Mfd//rrrYch4uHX01g5/48QgOtTB1dl7phpbq3SWqxUiVLQ4cO5ccffyzrWERERE5YfHI+D85KIDPb0L65Dw8PD8d23F1t+U7D4/MS2bQzlwBfC8+NrkujKO8SWhQpWqmSpdTUVPr27UvLli155plnOHjwYFnHJSIiUqI5n6SQmOKkSb3Cg7WdLsOzbyaxdksOPt4WnrkzkpaN7JUYrVRnpUqWPv30Uw4ePMioUaNYvHgxMTExXHzxxXz00UdaBkVERCrEuBvDuKCbP8/dFUmQ/z9fZ8YYZi4+yne/ZWGzwuQREbRv4VuJkUp1VybzLG3YsIEFCxbw+uuvExgYyM0338ydd95Jy5YtyyLGKk/zLImIVB1vfJbCoq/TsFjg4eHhnN81oLJDkiqqwuZZOnz4MN988w3ffPMNNpuNSy65hE2bNtG2bVumT59+qs2LiIgABT1GLy9O5sMVacXWWfxNGou+Ltg+5vo6SpSkTJTqloC8vDyWLl3KggULWL58OR06dGDMmDHceOON7sxsyZIl3HLLLYwdO7ZMAxYRkdrp3a/T+PSHDCwWOKO1L80beo5B+nJ1Bq8tSQHgtitDuPycoCJaETl5pUqW6tWrh8vl4oYbbmDdunV06tSpUJ0+ffoQGhp6iuGJiIjAsjUZvLE0FYC7rq1TKFH6YUMWL76bDMCgvkHccJGGREjZKVWyNH36dK677jp8fYsfMBcaGsru3btLHZiIiAjA2i3ZTFtUkAhdf1Ew1/Tx7DH6dWs2Ty9IxGXgkrMCuP3qUI+5lkROVamSpcGDB5d1HCIiIoVs25PL4/MScbngwu7+jLgyxGP7lr9zmTw3kXwn9D7Dn7E3hClRkjJXqmRp3LhxRZZbLBZ8fX1p0aIFV155JWFhYacUnIiI1F6pGU4eeiWBHIehaxtf7h8c7pEI7TrgYOLsePf2h4Z5TkopUlZKNXVAnz592LBhA06nk9atWwPw119/YbPZOO2009i+fTsWi4WffvqJtm3blnnQVY2mDhARKR8ff5fGt79m8cK9dfH3/ecG7oPxedzz4hGOprlo18zO86Pr4uejFbzk5JTr1AFXXnklffv25dChQ6xfv57169dz4MABLrzwQm644QYOHjzIueeeqzvhRETklAw4P5iZ46M8EqWElHzunxnP0TQXzRp488ydSpSkfJWqZ6lBgwZ88803hXqNtmzZwkUXXcTBgwfZsGEDF110EYmJiWUWbFWlniURkbKRl29484tUrr8wmED/wglQaoaTMdPj2Xs4jwaRXrx0XxRhwbZKiFRqgnLtWUpNTSU+Pr5QeUJCAmlpBZOBhYaG4nA4StO8iIjUQsYYpr2TxLtfpzFhdjz//ls+K8fFhNkJ7D2cR0Sojan31FWiJBWi1JfhbrnlFpYsWcKBAwc4cOAAS5Ys4dZbb+Wqq64CYN26dbRq1aosYxURkRps3mepfLMuC6sVBl8S4jGY25FnePS1BLbvdRAcYOX50XWJDi/VPUoiJ61U77TXXnuNsWPHcv3115Ofn1/QkJcXQ4cOdS9xctppp/H666+XXaQiIlJjfbIynfeXF1yZGH9TGD3a+bm3OZ2GJ+cnsnF7Ln4+Fp69K5KYet6VFarUQqXqWQoMDGTevHkkJSWxceNGNm7cSFJSEnPnziUgoGAdnk6dOhU5s3dJZs+eTUxMDL6+vvTo0YN169YVW3fLli0MGDCAmJgYLBYLM2bMKHWba9as4fzzzycgIIDg4GDOPfdcsrOzTyp2EREpnU9WpjPrw6MA3HJ5CP17Brq3uVyGqe8ks/r3bLy94Kk7IjktxqeyQpVa6qSTpby8PC644AJ27NhBYGAgHTp0oEOHDgQGBv73k0uwePFixo0bx+TJk9mwYQMdO3akX79+RY6NAsjKyqJZs2Y8++yzREdHl7rNNWvW0L9/fy666CLWrVvHr7/+yt13343VqjsrRETK2/+t+idRGtg3iJv6/zPI1hjDKx8dZfnaTKxWmHRbBJ1bF79yhEh5KdXdcJGRkfz888+0bNmyzALp0aMH3bp1Y9asWQC4XC4aNWrE6NGjmTBhQonPjYmJYcyYMYwZM+ak2zzzzDO58MILefLJJ0sdu+6GExEpnYMJeYx5MZ7+PQO45XLPcUpvfpHKm18UrAc3YWg4F/UIqKwwpYYq17vhbr75Zt54441SB/dvDoeD9evX07dv338Cs1rp27cva9asKbc24+PjWbt2LXXr1qVXr15ERUXRu3dvfvrpp1M7IBEROSENIr15/eFobr3Ccz23T1amuxOlu6+ro0RJKlWpBnjn5+czf/58vv32W7p06eIep3TMiy++eFLtJSYm4nQ6iYqK8iiPiopi27ZtpQnxhNr8+++/AXjssceYNm0anTp14q233uKCCy5g8+bNxfac5ebmkpub6/752HQJIiJSMmMM85em0q6ZD2e2LxjEHRLoefv/8l8y3Jfmhl0WUmjhXJGKVqpkafPmzZxxxhlAwTInx6tOCxi6XC4ARo4cyfDhwwHo3LkzK1asYP78+UyZMqXI502ZMoXHH3+8wuIUEakJjDHM/iiFT1am4+0Fbz9Wn7phnl9Dq3/P4vl3kgG4pk8Qgy/W0AapfKVKllauXFmmQURERGCz2Thy5IhH+ZEjR4odvF0WbdarVw+g0Ezkbdq0Yd++fcW2PXHiRI/FhNPS0mjUqFGp4hQRqQ1cLsPLi4+ydFUGAHdeW6dQorRxew5PvJGIywX9zgzgzgGh1eoPcKm5Sn3L16pVq7j55pvp1asXBw8eBODtt98u1Xgfu91Oly5dWLFihbvM5XKxYsUKevbsWar4TqTNmJgY6tevz/bt2z2e+9dff9GkSZNi2/bx8SE4ONjjISIiRXO6DC8sSmbpqgwsFrj/5jCuPNfz0tq2Pbk8MieBvHw4q6Mf428Kw2pVoiRVQ6mSpY8//ph+/frh5+fHhg0b3ON3UlNTeeaZZ0oVyLhx45g3bx5vvvkmf/75J6NGjSIzM9N9eWzIkCFMnDjRXd/hcBAbG0tsbCwOh4ODBw8SGxvLzp07T7hNi8XC/fffz8svv8xHH33Ezp07efTRR9m2bRu33nprqY5DRET+4XQannsria/WZGK1wIQh4Vzcy3OqmS1/5/LAzHiycw2dW/vw6C0R2GxKlKQKMaXQqVMn8+abbxpjjAkMDDS7du0yxhizYcMGExUVVZomjTHGzJw50zRu3NjY7XbTvXt388svv7i39e7d2wwdOtT98+7duw1Q6NG7d+8TbvOYKVOmmIYNGxp/f3/Ts2dPs2rVqpOKOzU11QAmNTX1pJ4nIlLTLf0xzfQZtddccNdes/K3jELbf92aZS6+d5/pM2qvuev5wyYz21kJUUptdaLf36WaZ8nf35+tW7cSExNDUFAQv//+O82aNePvv/+mbdu25OTklGlCV9VpniURkaIduwTXq70fZ3fy99j248YsnpqfSL4Turbx5fHbI/Dz0YTAUnFO9Pu7VAO8o6Oj2blzJzExMR7lP/30E82aNStNkyIiUkM48gw2K9hsFmxWCw8MDi9U56s1GbzwTjIuA+d29uOhYRHYvXXpTaqmUqXwI0aM4N5772Xt2rVYLBYOHTrEokWLGD9+PKNGjSrrGEVEpJrIcbh4+NUEnnsrCaer6AsXH65IY+rbBYnSJb0CePRWJUpStZWqZ2nChAm4XC4uuOACsrKyOPfcc/Hx8WH8+PGMHj26rGMUEZFqIDunIFGK3ZGLr4+FG4/kE1PP273dGMOCz1N556uCiXwH9g1i5NWaHkCqvlKNWTrG4XCwc+dOMjIyaNu27SkvpltdacySiNR2mdkuJr6SwOZdufj7Wnj2rrqc3tzHvd3lMsz68Cif/lAwz9KtV4RwY79gJUpSqcp1zNIxdru90ISOIiJSu6RnuXhwVjzb9jgI9LPw3Oi6tIn5J1HKdxqefzuJb9dlYbHAPYPqFJpnSaQqK3WytGLFClasWEF8fLx72ZBj5s+ff8qBiYhI1Zea4eT+mfHs3J9HcICVqffUpWUju3t7rsPFE28ksWZTNlYrTBwazgXdtCiuVC+lSpYef/xxnnjiCbp27Uq9evXUjSoiUkvtOZTH3sN51AkqSJSaNfgnUcrMdvHInAR+35GL3dvC5Nsi6Pm/xXNFqpNSjVmqV68ezz//PIMHDy6PmKodjVkSkdps7ZZs6oV70Tj6n8HcqRlOJsxKYPs+B/6+Fp6+I5KOrXwrMUqRwsp1zJLD4aBXr16lDk5ERKqvhKP55DgMjaIKkqMe7fwKbX9gZjx74/IJCbTy3N11adXYXlRTItVCqeZZuu2223j33XfLOhYREani4pLyGfPiEe57KZ5DifmFth+Mz+OeF46wNy6fyFAbL42LUqIk1V6pepZycnKYO3cu3377LR06dMDb29tj+4svvlgmwYmISNVxMD6P+16KJ/6okwaRXnj968/tXQccPDArnqNpLhrW9eL50XWJDj+lm65FqoRSvYv/+OMPOnXqBMDmzZs9tmmwt4hIzbMvriBRSkp10jjKi2n31iUi9J+vkM27cnnolXgysg3NG3rz3N11CQu2VWLEImWnVMnSypUryzoOERGponYfcjD+pXiOprtoWt+bqfd4JkK/bs1m8txEchyG05v78MyoSAL9tSCu1BylfjevWrWKm2++mV69enHw4EEA3n77bX766acyC05ERCrX7kMOxk4vSJRaNPTmxTGeidIPG7J4+NUEchyG7m19ee5uJUpS85TqHf3xxx/Tr18//Pz82LBhA7m5uQCkpqbyzDPPlGmAIiJSeSJCvagbZqN1YzvT7q1LSOA/idKXqzN48o1E8p3Q+wx/nrwjEj8fJUpS85RqnqXOnTszduxYhgwZQlBQEL///jvNmjVj48aNXHzxxcTFxZVHrFWW5lkSkZosNcOJzWYh0O+fROiDb9OY80kKAJeeFcCYG8KwWTVmVaqXcp1nafv27Zx77rmFykNCQkhJSSlNkyIiUkX8/lcOew7ncWXvgvXbju9NMsYwf2kqi75OA+D6C4MYcVWobu6RGq1UyVJ0dDQ7d+4kJibGo/ynn36iWbNmZRGXiIhUgvXbcnjk1QRy8wwRoTbO6ujv3uZyGWZ+cJTPfswA4LYrQ7ixX0hlhSpSYUp1cXnEiBHce++9rF27FovFwqFDh1i0aBHjx49n1KhRZR2jiIhUgLVbsnnolXhy8wzd2/nSre0/M3PnOw1T3kzisx8zsFhgzPV1lChJrVGqnqUJEybgcrm44IILyMrK4txzz8XHx4fx48czevToso5RRETK2erfs3jijUTy8uGsDn48emsEdu+CS2u5DhePv57IL5tzsFlhwtBwLugWUMkRi1ScUg3wPsbhcLBz504yMjJo27YtgYGBZRlbtaEB3iJSnX2/IYun5yfidBXc1fbw8HC8bAWJUma2i4dfTeCPnbnYvS08dlsEZ7b3+48WRaqHch3gfYzdbqdt27an0oSIiFSivYfzeGp+Ii4X9O3mz4NDwrH9L1FKSXfy4Kx4duzPI8DXwtN3RtKhhW8lRyxS8bRoj4hILdaknjdDLgnhcGI+42/+5/b/+OR8HpgZz74j+YQGWnn27rpaEFdqLSVLIiK1kNNp3D1Igy8uuPxw7Pb/A/F5jH85nvhkJ3Xr2Hj+nro0jvIuti2Rmk5TrYqI1DKfrExn3Ix4snNcQEGSdCxR2rnfwb0vHCE+2UnDul68dF+UEiWp9ZQsiYjUIu9/k8asD4+yaVcuK37L8ti2eVcuY2ccca8D99J9UUSF6QKEiH4LRERqibe/SmXB/6UCcPPFwVx61j+3/6/bks3kuYnk5hnaN/fh6VFaEFfkGCVLIiI1nDGGhZ+n8vZXBUuUDL88hMEX/zOh5PfrM3lmYRL5TujezpfHRkTga1eiJHKMkiURkRrMGMO8T1N4/5t0AG6/OpTrL/xnPpnPf8pg+nvJGAN9uvgzYWg43l5a503keEqWRERqsKRUJ1+tyQTg7uvqcE2fIPe2979JY+6SFAAuPzuQe66v4546QET+oWRJRKQGiwj1Yto9ddm+18ElZxWssmCM4fXPUnlvecFluRsuCua2K0Pcd8SJiCclSyIiNYzTZdh/JJ+YegW3/DdvaKd5Q7t728uLj/J/qzIAGHFVKDdcpGWaREqiEXwiIjWII8/w3JtJ3Pl8HJt35Xpsy3canlmYxP+tysBigXE3hilREjkB6lkSEakhUtKdTJ6XyKadudiskJzmdG/Lcbh4fF4ia7fkYLPCQ8PC6dM1oITWROQYJUsiIjXA7kMOHnk1gcNJTgJ8LUy6LYJubf0AyMh28fCrCWzamYuPt4XHbo+gRzu/So5YpPpQsiQiUs2t3ZLNk28kkpVjqBfhxTOjImnyv/FKKelOHpgVz879eQT4Wnjmzkjat/Ct5IhFqhclSyIi1dgfO3N4+JUEXAY6tvThsRERhATaADiSnM8DM+PZfySf0EArz42uS8tG9kqOWKT6UbIkIlKNtWvmQ4/T/agTZOXe68PcE0ruP5LH/S/HE3/USd06NqbeU5dGWhBXpFSULImIVDNpmU587Vbs3hZsVguTb4vA2wv3PEk79jt4cGY8KRkuGkV5MXV0XepqQVyRUtPUASIi1ci+uDzufP4IL76bjDEGALu3xZ0orYrNYuz0I6RkuGjRyJsZ46KUKImcIv0GiYhUE79uzeaJNxLJzDa4XIaUDBd1ggrGJzldhoX/l8qirwtm5e7U0ocn7ogk0E9/E4ucKiVLIiLVwJLv05n90VFcLmjf3IfHb48g9H+JUlqmk6cXJPHr1hwABpwfxMirQ/GyafkSkbKgZElEpArLdxpmf3iUz34sWJ6k35kBjL0hDLt3QSK064CDSa8VzK/k421h/M1hXNBNk02KlCUlSyIiVdgzC5L4fkMWFguMuDKUQRcGuccnfbsukxcWJZObZ6gXbuOJkZHuNeBEpOxUuYvZs2fPJiYmBl9fX3r06MG6deuKrbtlyxYGDBhATEwMFouFGTNmnFKbxhguvvhiLBYLn376aRkcjYjIqbns7EAC/Sw8cXsE118UjMViId9pmPXhUZ5ZmERunqFbW19enRCtREmknFSpZGnx4sWMGzeOyZMns2HDBjp27Ei/fv2Ij48vsn5WVhbNmjXj2WefJTo6+pTbnDFjhvsvNhGRypKV43L//4zTfHn3qQac1dEfKFjvbfxL8XyyMh2Am/oH88ydkQQH2ColVpHaoEolSy+++CIjRoxg+PDhtG3bljlz5uDv78/8+fOLrN+tWzemTp3K9ddfj4+Pzym1GRsbywsvvFDsvkREKsLnP2Vw86RD7DuS5y47dkfb1t25jJwSxx87c/H3LehtuvWKUGxW/ZEnUp6qTLLkcDhYv349ffv2dZdZrVb69u3LmjVryrXNrKwsbrzxRmbPnl1sD9XxcnNzSUtL83iIiJwK5/8urb34bjIpGS6Wrcn02P75TxmMnX6EpFQnjaO8eOWBaM7u5F9J0YrULlUmWUpMTMTpdBIVFeVRHhUVRVxcXLm2OXbsWHr16sWVV155Qu1OmTKFkJAQ96NRo0alik9EBCAj28XDcxLcl9ZuuTyEEVeGAODIM0xblMSL7yaTlw/ndPLjlQejaRytpUtEKkqtvxtu6dKlfPfdd2zcuPGEnzNx4kTGjRvn/jktLU0Jk4iUyqHEfB5+NYG9h/Pw8bYwYWg4vc8o6DGKT87nsdcT2bbHgcUCt14ewg39gjW2UqSCVZlkKSIiApvNxpEjRzzKjxw5ckKXxkrb5nfffceuXbsIDQ31qDNgwADOOeccvv/++0Lt+vj4FDtGSkTkRO05nMeYF4+QlukiPMTG06MiadW44I622L9yeOL1RFIyXAT5W3nklnC6tfWr5IhFaqcqcxnObrfTpUsXVqxY4S5zuVysWLGCnj17llubEyZM4I8//iA2Ntb9AJg+fToLFiwo/QGJiPyH+hFeNKnnTevGdl59MIpWje0YY/hwRRrjXy5YCLdFQ2/mTIhWoiRSiapMzxLAuHHjGDp0KF27dqV79+7MmDGDzMxMhg8fDsCQIUNo0KABU6ZMAQoGcG/dutX9/4MHDxIbG0tgYCAtWrQ4oTajo6OL7Llq3LgxTZs2rYjDFpFaxOkqWPzWZrVg97bw5MgI7N4WfO1WsnNdvLAome9+ywKgb3d/xt0Yhq+9yvxdK1IrValkadCgQSQkJDBp0iTi4uLo1KkTy5Ytcw/Q3rdvH1brPx8ahw4donPnzu6fp02bxrRp0+jdu7f78tl/tSkiUlGyclw8vSCJRlFe3HFNHQD3/EgHE/KYPDeRvw/mYbPCqAF1uPq8QI1PEqkCLMYYU9lBVHdpaWmEhISQmppKcHBwZYcjIlVQXFI+j7yawN+H8rB7W1jwaD3qRRT8vbp2SzZPz08kI9tQJ8jKpNsi6NjSt5IjFqn5TvT7u0r1LImI1ESbd+UyeW4CR9NdhAVbeXJkJPUivHC5DIu+TmPh56kYA22b2pk8IoLIUH00i1Ql+o0UESlHy9dm8sKiJPLyoUVDb566I5K6YV5kZLt47s0kVv+RDcDlZwdy13V1sHvrsptIVaNkSUSknLz1ZSoLP08F4OyOfkwcFo6fj5U9h/OY9FoCB+Lz8faCeweFcclZgZUcrYgUR8mSiEg5aRLtjcUCN14UzPDLQ7BaLfy4MYvn3koiO9cQGWrj8dsjOC1G87aJVGVKlkREypAxxn0HW+8z/Hk9Opqm9e04XYZ5n6bw3vKCtSQ7tfTh0dsiqBNkq8xwReQEaPIOEZEy8ufuXO54No6Eo/nusqb17aRmOJkwK8GdKF13QRBT76mrREmkmlCyJCJSBlb8msmY6UfYsT+PeZ+luMt37Hcw6rk41m/Lwddu4ZFbwhk1oA42mwZyi1QXugwnInIKXC7DW1+m8taXBb1GPdv7Meb6MKDgTrgX303GkWeoF+HFE7dH0LyhvTLDFZFSULIkIlJKOQ4Xz76ZxI8bC27/H9Q3iNuuCsUYmPlBMku+zwCgeztfHh4eQZC/OvNFqiMlSyIipZCc6uShVxP4a58DLxuMvTGMi3sGkpzq5PHXE9m0KxeAwRcHM/TSgjvhRKR6UrIkIlIKfj4W8p2G4AArT4yMoEMLX7b8nctj8xJJSnUS4GthwrBwzurgX9mhisgpUrIkIlIKfr5Wnh4VidMF9cJtLP0xnVkfHiXfCU2ivXh8ZCSNo7wrO0wRKQNKlkREToAxhneWpeFls3DDRQULbkaFeeHIM0x7J5mv1mQCcG5nPx4YHI6/r8YnidQUSpZERP5DrsPF1HeS+e63LCwW6NHOl2YN7BxJzuexuYls3+fAaoFbrwzl+guD3JNSikjNoGRJRKQEyalOHn0tgT/3OLBZ4d7rw2jWwM7G7Tk88UYiqRkuggOsPHJLOF3b+FV2uCJSDpQsiYgUY8O2HJ59K4nEFCdB/lYeGxFBp1Y+fPBtGnOXpOAy0KKRN0/cHkl0uD5ORWoq/XaLiBThjaUpLFpWMNFkoygvnh4VSXiIjafmJ7FyfRYAF3b3Z9yNYfjYNT5JpCZTsiQiUoQGkQUfj1ecE8jIq0NJTnNy99Qj7D6Uh80Kd15bh6t6B2p8kkgtoGRJRATIdxoOJ+bT6H+3+/c7M4CYet6cFuPDL5uyeXphIpnZhrBgK5Nvi6B9C99KjlhEKoqSJRGp9fYezmPKm0kkpzl545F6BPlbsVgstGxk580vUnnry1SMgbZN7Tw2IoKIUH10itQm+o0XkVrL5TJ88n068z5NIS8fgvyt7D2cx+nNfdh1wMHzbyexY38eUHA57q7r6uDtpctuIrWNkiURqZXikvJ5/q0kYncUrOHWva0v428OIzjAxhtLU3h/eRpOFwT6Wbh7YBgX9Qio5IhFpLIoWRKRWsUYw/K1mcz64CiZOQZfu4U7rgnl8nMC2fK3g/EvxbPvSD4A53Ty495BYYSF2Co5ahGpTEqWRKRWsVgsrNuaQ2aOoW1TOxOHhhMWbGPWh0f59IcMjIE6wVbuHRTGuZ21CK6IKFkSkVoi32nwshWMN7p3UB1Oa2Lnmj5BbNiWw/iX4zmS7ASgf88A7rgmlOAA9SaJSAElSyJSo2Vku5j94VEys108fnsEFouF4AAb/c4MYNo7yXz9S8ECuFFhNsbdGEa3tlqyREQ8KVkSkRpr4/Ycnns7ifhkJxYL7NifR6vGdn7cmMVLi5M5mubCYoGrewdy6xWh+PlqJm4RKUzJkojUOLkOF28sTeWj79IBqBduY8LQcMJDbEyem8Cq2GwAGkd5Mf7mcE5v7lOZ4YpIFadkSURqlL/2OZiyMJG9cQV3tF12diAjrw7hx9hsHn41gYxsg80KN/QL5ub+Idi9NW+SiJRMyZKI1BhOl+Gp+YkciM8nLNjK+JvDaRLtzWPzkli/LQeAVo3t3H9zGM0b2is5WhGpLpQsiUiNYbNauO+mMJb+mMHd14Wycn02T7yeSI7DYPe2MOyyEK47PwibTb1JInLilCyJSLXlchk+/SEDX7uFS84KBKBjS19CAm08+loiW3c7AOjQwofxN4fRsK53ZYYrItWUkiURqZbik/N5/u0kNmzPxdduoUsbX8JDbLy3PI13vkolLx/8fS3cflUol50diNWq3iQRKR0lSyJSrRhj+GZdFjM/SCYz2+DjbWHk1aEcTcvn4VcT+PtgwcK3Z57uy5jrw6gbpo85ETk1+hQRkWojJd3J9PeS3bf+t4mxM+7GOny7LouZHxzFZSA4wMrogXU4v6s/Fot6k0Tk1ClZEpFqITvXxYhn4khKdWKzwtBLQ2jb1M5j85I4mFAwTcD5Xf25+7o6hAZpqRIRKTtKlkSkWvDzsXJxrwB+is1mzPV1WPFbFuNfTgAgItTGmOvr0KuDFr4VkbKnZElEqqzfd+QQEmgjpl7BXWxDLgmhZUM7Ty9IIiGlYOHby88OZMTVoQT6aakSESkfSpZEpMpx5BneWJrCR9+l07yhN7PvjyYz28Xsj46y4tcsAOpHejH+pjA6tfKt5GhFpKZTsiQiVcqO/Q6mLExiz+GCu9paNrLz7bpM5n6aQmqGC6sFrr0giGGXheBrV2+SiJQ/JUsiUiU4nYb3lqfx5hepOF1QJ8jKiCtD+TE2i6nvJAPQrL43428O47QYLXwrIhVHyZKIVLqUdCePzElwz7h9dkc/2jWzM+ujo2TlGLxsMPjiEK6/KBhvL00HICIVS8mSiFS6IP+Cy2kBfhYG9w9mzaZsXluSCkDbpnbuuymMpvW18K2IVI4qd8F/9uzZxMTE4OvrS48ePVi3bl2xdbds2cKAAQOIiYnBYrEwY8aMk24zOTmZ0aNH07p1a/z8/GjcuDH33HMPqampZX1oInKchJR8HHkGAJvNwoQh4Vx1bhDzP0/j950OfO0W7ro2lJfui1KiJCKVqkolS4sXL2bcuHFMnjyZDRs20LFjR/r160d8fHyR9bOysmjWrBnPPvss0dHRpWrz0KFDHDp0iGnTprF582YWLlzIsmXLuPXWW8vtOEVqM2MMK37N5NYnD/PG0hQAdh1w8PSCJBZ9nYYjz9DlNF/eeKQeA84PxqY13USkklmMMaaygzimR48edOvWjVmzZgHgcrlo1KgRo0ePZsKECSU+NyYmhjFjxjBmzJhTbvPDDz/k5ptvJjMzEy+v/75SmZaWRkhICKmpqQQHB5/AkYrUTqkZTma8f5QfNhTc/n9aEztnnObD4m/Scbog0M/CqGvr0P/MAC1VIiLl7kS/v6vMmCWHw8H69euZOHGiu8xqtdK3b1/WrFlToW0eO2nFJUq5ubnk5ua6f05LSytVfCK1Rb7T8NXPGSz8IpWjaS5sVuh3ZgCbd+Xw7tfpQMGg7nuvDyM8REuViEjVUmWSpcTERJxOJ1FRUR7lUVFRbNu2rcLaTExM5Mknn+T2228vtt0pU6bw+OOPlyomkdpmx34HT76RyIH4gvXbGkV50aKhna/WZGJMwRQB9wwK49zOfupNEpEqqUqNWapsaWlpXHrppbRt25bHHnus2HoTJ04kNTXV/di/f3/FBSlSzUSG2khOcxIaaOXKcwNx5LlYuT4LYwp6lxZMqkfvM/yVKIlIlVVlepYiIiKw2WwcOXLEo/zIkSPFDt4uyzbT09Pp378/QUFBLFmyBG9v72Lb9fHxwcdHk+KJFGXnfgc/bMzi1itCAQgNsnHblaH8uCGLz37MAKBumI37bgyjW1u/SoxUROTEVJlkyW6306VLF1asWMFVV10FFAzGXrFiBXfffXe5tpmWlka/fv3w8fFh6dKl+PpqrSmRk3UoMZ8F/5fiXrutUytf/H0sLPwilV+35gBgs8KV5wZyyxWh+PuqY1tEqocqkywBjBs3jqFDh9K1a1e6d+/OjBkzyMzMZPjw4QAMGTKEBg0aMGXKFKBgAPfWrVvd/z948CCxsbEEBgbSokWLE2ozLS2Niy66iKysLN555x3S0tLcA7YjIyOx2TTYVKQkR9OdvPNVKv+3KoN8Z0FZ1za+vPNVCr/vKJiR22qF/j0DuLl/CNHhVepjR0TkP1WpT61BgwaRkJDApEmTiIuLo1OnTixbtsw9QHvfvn1Yrf/8NXro0CE6d+7s/nnatGlMmzaN3r178/33359Qmxs2bGDt2rUA7gTrmN27dxMTE1OORyxSfTnyCtZy++DbNLJzC2YgadvUjs1m4bc/C3qSrFa4qEcAN18cQv2IKvVxIyJywqrUPEvVleZZktoo32kY/sRhDibk06SeF4F+Vrb8/b+eJAv07R7A4IuDaVC3+PF/IiKVqdrNsyQiVZvLZfjp92x6tvfD28uCl83CtecH8fXaTLbt+SdJOr+bP4MvDqFRlJIkEakZlCyJSImMMfz2Zw7zPkth5/487hlUh44tfXjryzT3TNwWC/Tp4s+QS0JoHK0kSURqFiVLIlKsbXtymfdZChu3F8xY72u38NWaDGZ+cJRjF/DPO8OfwZcEa7FbEamxlCyJSCEH4vN4Y2mqu+fIywb1I7zYfySfHfvyADi3sx9DLgmhWQMlSSJSsylZEpFCZn94lLVbcrAA0RFexCXms+9IwXIlZ3X0Y9ilITRvqCRJRGoHJUsiQka2C2MgyL9gao7Lzw3i74N5JKY6OZxYkCT1bO/H0EtDaNVYSZKI1C5KlkRqMUee4bMf01m0LI0Luvlz3QXBvPNVKl//konTVVDnzNN9GXppCK2baIkfEamdlCyJ1EJOl2HFukwWfJ7KkeSCabe/XZfFZz9k4PrfwO3ubQuSpDZNlSSJSO2mZEmkFjHGsHZzDq9/lsLfhwoGavvaLTjyDOlZBV1JXU7zZdhlIbRrpiRJRASULInUKh+vTOeVj1IA8PYCpwtyHAVdSZ1b+zDs0hDat9BC0iIix1OyJFLDOV0Gm9UCwBmtffHxtpCXb8grGLdNx5YFSVLHVkqSRESKomRJpIZKSMnnzS9SSUpxcv/gcN5fnsbSVRk48gp6kto392HYZSF0bq0kSUSkJEqWRGqY9CwX7y1P45OV6e7E6IZHDrp7kto1szPsslDOaO2DxWKpxEhFRKoHJUsiNUSuw8WSHzJ47+s092BtiwWMgbx8aBNjZ9hlIXRt46skSUTkJChZEqkB9h7O44GZ8SSkFEwDcCxJMgZaN7Yz9LIQerRTkiQiUhpKlkRqgKAAKzkOFxbAUJAktWjkzfDLQjnzdCVJIiKnQsmSSDWT43CxamM2v2zO5u7r6vDZj+l8vDKdzOyC8UnNG3oz7NIQenXwU5IkIlIGlCyJVAPGGLbtcfDVmkxW/pZJZk5BYvTzH1nkFswtSbP63gy5NISzO/phtSpJEhEpK0qWRKqwtEwny9Zk8tWaTPYeziu0PTcPmtTzZuilIZzbSUmSiEh5ULIkUoUdTXMy55OUIre1b+HDlecG0vsMf/ekkyIiUvaULIlUEXsP57FsTQbZuS769wzk23WZfPdblkedRlFeXNg9gL7dA4gO16+viEhF0KetSCXKzHaxcn0Wy9ZksHW3w12+dFWm+/91gqz06RrAhd39adXYrkHbIiIVTMmSSCXYtieXT3/I4PsNWe5Zto9n94KzO/nTt3sAXdv44mVTgiQiUlmULIlUMEeeYemqDJavzSy07YzWPlzYI4CzO/oT4GethOhEROTflCyJlCNHnmH171l8tSaT1k3spGW4+H5Dlns5EoCm9by48MxALujmT2SofiVFRKoafTKLlIMd+x189XMG36z9Z06k3/7McW8PD7FxQTd/LuweQPOG9soKU0REToCSJZEyYozh0x8y+L9VGewpYk4kHzucd0bBnWydWvnodn8RkWpCyZLIKTDGYLFYyHW4+PmPbN76IpXUzH8usVks0LWNDxf1CKRXBz/8fDQOSUSkulGyJFIKB+Lz+OrnDJatyaRjSx/Wbc0hK+efu9paNPCmX88A+nQNICzYVomRiojIqVKyJHKCsnNc/LAxiyXfp7Nj/z+X2b7fkA1AVJiNvt0D6NstgCb1vCsrTBERKWNKlkT+Q2JKPq9+ksKqjVnkOz23+dihTxd/+p0ZSPvmPlqbTUSkBlKyJFKEfKchL8+w6vdslv2cQeyOXPc2qwXOOM2Xy84O5MzT/bB7K0ESEanJlCyJ/E9efsGcSB98m86hxHwceYYcxz/jkGLqeXHFuYH06RJASKDGIYmI1BZKlqRWS0l3smlXLt+vz2T1HzmFlh5pEOlVMA6puz8NIjUOSUSkNlKyJLWG01WQCKVluvhzdy4ffpvO7ztzC9Wzexesy3bNeUG0idHCtSIitZ2SJamxMrJdbNqZy0+/Z7F5Zy6HEvMJCbSSnOYqVNdmhTZNfbj2gkB6nu6Pt5cSJBERKaBkSWoMYwzrt+Xw3tdp7DqYR1pm4aQoOc2FxQJNor1p1cibFo3tdG7lS0x9b82oLSIiRVKyJNVSjsNF7F+5rNqYhctlSM10sW2Pg5SMwgmSt1fB2KOOLX3p1cGPNk19CPTTTNoiInJilCxJlWeMIS4pnx82ZLFuaw5/F9NrBAWX00ICrbRqZKdHez+6tfWjXrhN445ERKTUlCxJlePIM+w9nEf80Xy27nawaVcOm3c5iqzra4emDeyc38WfNk19aNHQrnmPRESkTClZkkoXl5TPd79l8uvWHHYfKr7XyGqB8BAbrRrbObO9L2ee7kd4iN7CIiJSvvRNIxXKGMOhxHz+3O3g/W/S2H8kj7z8ouvG1POibTMf2sT4cFoTb2Lq2zUIW0REKpySJSlXcUn5fLsug/XbcjkQn0e+E1KLGIRttUJkqI3Wje307ODHWR38CPTXLNkiIlL5lCzJKcnJdZGe5SIj20Vapoud+x1s2+tg+14HR5LyyXMWfo63F7RsZCci1EaDul5c0DWApvW9NQhbRESqpCqXLM2ePZupU6cSFxdHx44dmTlzJt27dy+y7pYtW5g0aRLr169n7969TJ8+nTFjxpx0mzk5Odx33328//775Obm0q9fP1555RWioqLK6zCrnLw8F3HJTuKS8jmS7CQ4wEJWjiE9q2C26z2H88nKcZGT6yI3D/KcBlfRQ4sKsVmhbh0brWN8uPSsANo399UgbBERqTaqVLK0ePFixo0bx5w5c+jRowczZsygX79+bN++nbp16xaqn5WVRbNmzbjuuusYO3ZsqdscO3YsX3zxBR9++CEhISHcfffdXHPNNaxevbpcj7c85Oe7iE9xcjgxn4RkJ/EpTpJTnRxNd9KwrhdZuYb0//UAxR91kpdvcJ5g0lMcCxAcaCXI34oxhoxsQ4NIL85o7csF3fxpUs9eJscmIiJSGSzGGPPf1SpGjx496NatG7NmzQLA5XLRqFEjRo8ezYQJE0p8bkxMDGPGjCnUs/RfbaamphIZGcm7777LtddeC8C2bdto06YNa9as4cwzz/zPuNPS0ggJCSE1NZXg4OBSHHnRsnNc/Pl3Cgfi80jL9iE5zUVKupPklBxSMxxk51poWC+A7BxDWqaLw/Fp5OWD1csXi6Vg0kWXMw/jygOLFZuXr7ttZ14WUHRdm81KTINA6tbxIijASnpGBmnpLurU8Sc8xJuwYBt1Ag11Ap3Ui7AT0zAQb6+CNrKysjDG4Ovri81WMOYoPz+f3NxcrFYrfn5+/xxfdjYulwsfHx+8vArydqfTSU5OzknVtVgs+Pv7u+vm5OTgdDqx2+14e3ufdF2Xy0V2djYAAQEB7rq5ubnk5+fj7e2N3W4/6brGGLKyCs67v7+/+7Kjw+EgLy/vpOp6eXnh4+Pj3l9mZiYAfn5+WK3Wk66bl5eHw+HAZrPh6/vP+6So1/Nk6v7Xa3+q75N/v56n+j4p7vU81ffJ8a/nqb5Pins9S/s+Ke71PNX3SXGvpz4jiq+rz4iSPyPKwwl/f5sqIjc319hsNrNkyRKP8iFDhpgrrrjiP5/fpEkTM3369JNuc8WKFQYwR48e9ajTuHFj8+KLLxa5r5ycHJOamup+7N+/3wAmNTX1P+M8GVMWJhrAAOasYRtMn1F7TZ9Re03T7uMNYOq1ud5d1mfUXmP18jOAOfOmn0yfUXvNBXftNa3PmWQA07jtVeap+QnmjaVHzQffppqg4HADmJkL15qfN2WaPYdyzexX5hjAXHnllR5xNGnSxABm3bp17rJ33nnHAKZv374eddu2bWsAs3LlSnfZkiVLDGB69erlUbdr164GMJ9//rm7bPny5QYwHTt29Kjbu3dvA5gPPvjAXfbTTz8ZwLRo0cKj7iWXXGIAs2DBAnfZxo0bDWDq16/vUffaa681gJk1a5a77K+//jKACQkJ8ag7dOhQA5jnn3/eXXbgwAEDGC8vL4+6d955pwHM5MmT3WVHjx51v54Oh8NdPn58wes5fvx4d5nD4XDXPf69OXnyZAOYO++802N/Xl5eBjAHDhxwlz3//PMGMEOHDvWoGxISYgDz119/uctmzZplAHPttdd61K1fv74BzMaNG91lCxYsMIC55JJLPOq2aNHCAOann35yl33wwQcGML179/ao27FjRwOY5cuXu8s+//xzA5iuXbt61O3Vq5cBPH6PV65caQDTtm1bj7p9+/Y1gHnnnXfcZevWrTOAadKkiUfdK6+80gBm7ty57rLNmzcbwERERHjUvfHGGw3g8Rmze/duAxh/f3+PurfddpsBzFNPPeUui4+Pd7+ex7v33nsNYB566CF3WUZGhrtuRkaGu/yhhx4ygLn33ns92jhWNz4+3l321FNPGcDcdtttHnX9/f0NYHbv3u0umz59ugHMjTfe6FE3IiLCAGbz5s3usrlz5+ozwugz4ngV+RlRHlJTU0/o+7vKXIZLTEzE6XQWGicUFRXFtm3byq3NuLg47HY7oaGhherExcUV2e6UKVN4/PHHSxXTyQgO+GdJDrsXBPpZ8LVbSAksKK9bx8Zd14YSHV7QA3TmQgvZ+fDGI/Voe1pjAGbMqMPYVXB2J38eHh7hbu9Ou4V0oE/XANq1K/gr6ljvkIiIiPyjylyGO3ToEA0aNODnn3+mZ8+e7vIHHniAH374gbVr15b4/KIuw51Im++++y7Dhw8nNzfXo73u3bvTp08fnnvuuUL7ys3N9aiflpZGo0aNyvwynNNlyMk+tW5WdbGri726dLHrMpwuw+kzQp8R/349q8pluCrTsxQREYHNZuPIkSMe5UeOHCE6Orrc2oyOjsbhcJCSkuLRu1TSfn18fDzeWOXFZrV4/HIdY7fb3b8wxyuqrre3t/sXvLR1j//gOMbLy8v9gVTausf/Yhxjs9mKjO1k6h7/y1maulartci6Rb3uJ1PXYjnx1/Nk6kLRr2dZvE+Kej3L4n1S1OtZFd4nxb2ep/o+Ke71PNX3CZTfa6/PiOLr6jPiHxX5GVGZqsx1F7vdTpcuXVixYoW7zOVysWLFCo9eobJus0uXLnh7e3vU2b59O/v27Sv1fkVERKTmqDI9SwDjxo1j6NChdO3ale7duzNjxgwyMzMZPnw4AEOGDKFBgwZMmTIFKOhC3Lp1q/v/Bw8eJDY2lsDAQFq0aHFCbYaEhHDrrbcybtw4wsLCCA4OZvTo0fTs2fOE7oQTERGRmq1KJUuDBg0iISGBSZMmERcXR6dOnVi2bJl7gPa+ffvc10+hYExS586d3T9PmzaNadOm0bt3b77//vsTahNg+vTpWK1WBgwY4DEppYiIiEiVGeBdnZXXPEsiIiJSfk70+7vKjFkSERERqYqULImIiIiUQMmSiIiISAmULImIiIiUQMmSiIiISAmULImIiIiUQMmSiIiISAmULImIiIiUQMmSiIiISAmq1HIn1dWxSdDT0tIqORIRERE5Uce+t/9rMRMlS2UgPT0dgEaNGlVyJCIiInKy0tPTCQkJKXa71oYrAy6Xi0OHDhEUFITFYimzdtPS0mjUqBH79+/XmnPlTOe6Yug8Vwyd54qh81wxyvM8G2NIT0+nfv36WK3Fj0xSz1IZsFqtNGzYsNzaDw4O1i9iBdG5rhg6zxVD57li6DxXjPI6zyX1KB2jAd4iIiIiJVCyJCIiIlICJUtVmI+PD5MnT8bHx6eyQ6nxdK4rhs5zxdB5rhg6zxWjKpxnDfAWERERKYF6lkRERERKoGRJREREpARKlkRERERKoGRJREREpARKlirY7NmziYmJwdfXlx49erBu3boS63/44Yecdtpp+Pr60r59e7788kuP7cYYJk2aRL169fDz86Nv377s2LGjPA+hWijL85yXl8eDDz5I+/btCQgIoH79+gwZMoRDhw6V92FUeWX9fj7eHXfcgcViYcaMGWUcdfVTHuf5zz//5IorriAkJISAgAC6devGvn37yusQqo2yPtcZGRncfffdNGzYED8/P9q2bcucOXPK8xCqhZM5z1u2bGHAgAHExMSU+Jlwsq/dSTFSYd5//31jt9vN/PnzzZYtW8yIESNMaGioOXLkSJH1V69ebWw2m3n++efN1q1bzSOPPGK8vb3Npk2b3HWeffZZExISYj799FPz+++/myuuuMI0bdrUZGdnV9RhVTllfZ5TUlJM3759zeLFi822bdvMmjVrTPfu3U2XLl0q8rCqnPJ4Px/zySefmI4dO5r69eub6dOnl/ORVG3lcZ537txpwsLCzP333282bNhgdu7caT777LNi26wtyuNcjxgxwjRv3tysXLnS7N6927z22mvGZrOZzz77rKIOq8o52fO8bt06M378ePPee++Z6OjoIj8TTrbNk6VkqQJ1797d3HXXXe6fnU6nqV+/vpkyZUqR9QcOHGguvfRSj7IePXqYkSNHGmOMcblcJjo62kydOtW9PSUlxfj4+Jj33nuvHI6geijr81yUdevWGcDs3bu3bIKuhsrrPB84cMA0aNDAbN682TRp0qTWJ0vlcZ4HDRpkbr755vIJuBorj3Pdrl0788QTT3jUOeOMM8zDDz9chpFXLyd7no9X3GfCqbR5InQZroI4HA7Wr19P37593WVWq5W+ffuyZs2aIp+zZs0aj/oA/fr1c9ffvXs3cXFxHnVCQkLo0aNHsW3WdOVxnouSmpqKxWIhNDS0TOKubsrrPLtcLgYPHsz9999Pu3btyif4aqQ8zrPL5eKLL76gVatW9OvXj7p169KjRw8+/fTTcjuO6qC83tO9evVi6dKlHDx4EGMMK1eu5K+//uKiiy4qnwOp4kpzniujzX9TslRBEhMTcTqdREVFeZRHRUURFxdX5HPi4uJKrH/s35Nps6Yrj/P8bzk5OTz44IPccMMNtXbxzPI6z8899xxeXl7cc889ZR90NVQe5zk+Pp6MjAyeffZZ+vfvz/Lly7n66qu55ppr+OGHH8rnQKqB8npPz5w5k7Zt29KwYUPsdjv9+/dn9uzZnHvuuWV/ENVAac5zZbT5b15l0opILZGXl8fAgQMxxvDqq69Wdjg1yvr163nppZfYsGEDFoulssOpsVwuFwBXXnklY8eOBaBTp078/PPPzJkzh969e1dmeDXOzJkz+eWXX1i6dClNmjThxx9/5K677qJ+/fqFeqWk6lLPUgWJiIjAZrNx5MgRj/IjR44QHR1d5HOio6NLrH/s35Nps6Yrj/N8zLFEae/evXzzzTe1tlcJyuc8r1q1ivj4eBo3boyXlxdeXl7s3buX++67j5iYmHI5jqquPM5zREQEXl5etG3b1qNOmzZtavXdcOVxrrOzs3nooYd48cUXufzyy+nQoQN33303gwYNYtq0aeVzIFVcac5zZbT5b0qWKojdbqdLly6sWLHCXeZyuVixYgU9e/Ys8jk9e/b0qA/wzTffuOs3bdqU6OhojzppaWmsXbu22DZruvI4z/BPorRjxw6+/fZbwsPDy+cAqonyOM+DBw/mjz/+IDY21v2oX78+999/P19//XX5HUwVVh7n2W63061bN7Zv3+5R56+//qJJkyZlfATVR3mc67y8PPLy8rBaPb9qbTabu4evtinNea6MNgspk2HickLef/994+PjYxYuXGi2bt1qbr/9dhMaGmri4uKMMcYMHjzYTJgwwV1/9erVxsvLy0ybNs38+eefZvLkyUVOHRAaGmo+++wz88cff5grr7xSUweU8Xl2OBzmiiuuMA0bNjSxsbHm8OHD7kdubm6lHGNVUB7v53/T3XDlc54/+eQT4+3tbebOnWt27NhhZs6caWw2m1m1alWFH19VUh7nunfv3qZdu3Zm5cqV5u+//zYLFiwwvr6+5pVXXqnw46sqTvY85+bmmo0bN5qNGzeaevXqmfHjx5uNGzeaHTt2nHCbp0rJUgWbOXOmady4sbHb7aZ79+7ml19+cW/r3bu3GTp0qEf9Dz74wLRq1crY7XbTrl0788UXX3hsd7lc5tFHHzVRUVHGx8fHXHDBBWb79u0VcShVWlme5927dxugyMfKlSsr6IiqprJ+P/+bkqUC5XGe33jjDdOiRQvj6+trOnbsaD799NPyPoxqoazP9eHDh82wYcNM/fr1ja+vr2ndurV54YUXjMvlqojDqbJO5jwX9xncu3fvE27zVFmMMaZs+qhEREREah6NWRIREREpgZIlERERkRIoWRIREREpgZIlERERkRIoWRIREREpgZIlERERkRIoWRIREREpgZIlERERkRIoWRKRWuG8885jzJgxlR2GiFRDmsFbRGqc8847j06dOjFjxgx3WXJyMt7e3gQFBVV4PGPHjmXv3r188sknFb5vETl16lkSkVohLCysUhIlgHXr1tG1a9dK2beInDolSyJSowwbNowffviBl156CYvFgsViYc+ePYUuw5133nmMHj2aMWPGUKdOHaKiopg3bx6ZmZkMHz6coKAgWrRowVdffeV+jsvlYsqUKTRt2hQ/Pz86duzIRx99VGwsDocDb29vfv75Zx5++GEsFgtnnnlmeR6+iJQDJUsiUqO89NJL9OzZkxEjRnD48GEOHz5Mo0aNiqz75ptvEhERwbp16xg9ejSjRo3iuuuuo1evXmzYsIGLLrqIwYMHk5WVBcCUKVN46623mDNnDlu2bGHs2LHcfPPN/PDDD0W27+XlxerVqwGIjY3l8OHDLFu2rHwOXETKjcYsiUiNU9SYpX+XnXfeeTidTlatWgWA0+kkJCSEa665hrfeeguAuLg46tWrx5o1a+jcuTNhYWF8++239OzZ093ubbfdRlZWFu+++26RsXz66afcdtttJCYmls/Biki586rsAEREKkuHDh3c/7fZbISHh9O+fXt3WVRUFADx8fHs3LmTrKwsLrzwQo82HA4HnTt3LnYfGzdupGPHjmUcuYhUJCVLIlJreXt7e/xssVg8yiwWC1AwVikjIwOAL774ggYNGng8z8fHp9h9xMbGKlkSqeaULIlIjWO323E6nWXaZtu2bfHx8WHfvn307t37hJ+3adMmBgwYUKaxiEjFUrIkIjVOTEwMa9euZc+ePQQGBhIWFnbKbQYFBTF+/HjGjh2Ly+Xi7LPPJjU1ldWrVxMcHMzQoUOLfJ7L5WL79u0cOnSIgIAAQkJCTjkWEalYuhtORGqc8ePHY7PZaNu2LZGRkezbt69M2n3yySd59NFHmTJlCm3atKF///588cUXNG3atNjnPPXUUyxcuJAGDRrw1FNPlUkcIlKxdDeciIiISAnUsyQiIiJSAiVLIiIiIiVQsiQiIiJSAiVLIiIiIiVQsiQiIiJSAiVLIiIiIiVQsiQiIiJSAiVLIiIiIiVQsiQiIiJSAiVLIiIiIiVQsiQiIiJSAiVLIiIiIiX4f7Rfnbb+pWs6AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -916,7 +907,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHICAYAAABTb96uAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACf7UlEQVR4nOzdd1gTWRcH4N8kJCH03mwgNuyuBXtXxIauvWLvFcuKFfuqa187KvZe1rb2viqIioodBRGkSAsQIITkfn/4mTWLSECClPM+zzxrZu65cyZmzcnMnTscY4yBEEIIIYR8F+9nJ0AIIYQQUhhQ0UQIIYQQogEqmgghhBBCNEBFEyGEEEKIBqhoIoQQQgjRABVNhBBCCCEaoKKJEEIIIUQDVDQRQgghhGiAiiZCCCGEEA1Q0UQIKVBCQkLAcRx8fHyKxX6LiubNm6N58+Y/Ow1CtIqKJkIKKB8fH3AcB47jcPv27UzbGWMoVaoUOI5Dx44df0KGP2b//v1Ys2ZNsdlvUfD8+XN4eXkhJCTkZ6dCyE+h87MTIIR8n66uLvbv34/GjRurrb9x4wbCwsIgEol+UmY/Zv/+/QgMDMSkSZPU1pcpUwapqakQCARFar9FwfPnzzF//nw0b94c9vb2atsuXrz4c5IiJB/RmSZCCrj27dvjyJEjyMjIUFu/f/9+1K5dGzY2Nj8pM+3gOA66urrg8/nFYr8FjVQqzVWcUCiEUCjM42wIKVioaCKkgOvTpw9iY2Nx6dIl1br09HQcPXoUffv2/WbMH3/8gYYNG8Lc3BxisRi1a9fG0aNHM7VLTU3FhAkTYGFhAUNDQ3Tu3Bnh4eHgOA5eXl6qdl5eXuA4DkFBQRg0aBBMTExgbGyMwYMHIyUlJVO/e/fuRe3atSEWi2FmZobevXvjw4cPqu3NmzfH2bNn8f79e9UlyC9nLv47tuj69euqNv9dvj7b8ddff6FDhw6ws7ODSCSCo6MjFi5cCIVCkav9fnH16lU0adIE+vr6MDExgZubG168eKHWJqfvz7ccOXJE9Z5ZWFigf//+CA8PV23/448/wHEc3r9/nynW09MTQqEQ8fHxqnW+vr5o164djI2Noaenh2bNmuGff/75Zt7Pnz9H3759YWpqmumM5hc+Pj7o0aMHAKBFixaq9+/69euq9/brMU1f/t4OHz6M+fPno0SJEjA0NET37t0hkUggk8kwadIkWFlZwcDAAIMHD4ZMJsu03+w+S4TkJ7o8R0gBZ29vjwYNGuDAgQNwdXUFAPz999+QSCTo3bs31q1blylm7dq16Ny5M/r164f09HQcPHgQPXr0wJkzZ9ChQwdVu0GDBuHw4cMYMGAA6tevjxs3bqht/6+ePXvCwcEBS5cuxcOHD+Ht7Q0rKyssW7ZM1Wbx4sWYM2cOevbsiWHDhuHTp09Yv349mjZtikePHsHExASzZs2CRCJBWFgYVq9eDQAwMDD45j6dnJywZ88etXUJCQnw8PCAlZWVap2Pjw8MDAzg4eEBAwMDXL16FXPnzkViYiJWrFgBADnaLwBcvnwZrq6uKFu2LLy8vJCamor169ejUaNGePjwYaZLVJq8P9/i4+ODwYMHo27duli6dCmioqKwdu1a/PPPP6r3rGfPnpg+fToOHz6MadOmqcUfPnwYbdu2hampKYDPhZ6rqytq166NefPmgcfjYefOnWjZsiVu3bqFevXqqcX36NED5cuXx5IlS8AY+2aOTZs2xYQJE7Bu3TrMnDkTTk5OAKD6b1aWLl0KsViMGTNmICgoCOvXr4dAIACPx0N8fDy8vLxw7949+Pj4wMHBAXPnzlXFavJZIiRfMUJIgbRz504GgN2/f5/9+eefzNDQkKWkpDDGGOvRowdr0aIFY4yxMmXKsA4dOqjFfmn3RXp6OqtatSpr2bKlat2DBw8YADZp0iS1toMGDWIA2Lx581Tr5s2bxwCwIUOGqLXt2rUrMzc3V70OCQlhfD6fLV68WK3d06dPmY6Ojtr6Dh06sDJlymQ67uDgYAaA7dy585vvi1KpZB07dmQGBgbs2bNnWR4zY4yNHDmS6enpsbS0tFztt2bNmszKyorFxsaq1j1+/JjxeDw2cOBA1TpN359vSU9PZ1ZWVqxq1aosNTVVtf7MmTMMAJs7d65qXYMGDVjt2rXV4v38/BgAtnv3bsbY5/enfPnyzMXFhSmVSlW7lJQU5uDgwNq0aZMp7z59+nw3xy+OHDnCALBr165l2tasWTPWrFkz1etr164xAKxq1aosPT1dtb5Pnz6M4zjm6uqqFt+gQQO1v5ecfJYIyS90eY6QQqBnz55ITU3FmTNnkJSUhDNnzmR5aQ4AxGKx6s/x8fGQSCRo0qQJHj58qFp//vx5AMCYMWPUYsePH59lv6NGjVJ73aRJE8TGxiIxMREAcPz4cSiVSvTs2RMxMTGqxcbGBuXLl8e1a9c0P+gsLFy4EGfOnIGPjw8qV66sWv/1MSclJSEmJgZNmjRBSkoKXr58meP9REREICAgAIMGDYKZmZlqffXq1dGmTRucO3cuU0x278+3+Pv7Izo6GmPGjIGurq5qfYcOHVCpUiWcPXtWta5Xr1548OAB3r59q1p36NAhiEQiuLm5AQACAgLw5s0b9O3bF7Gxsaq/A6lUilatWuHmzZtQKpXfzTsvDRw4UG1wvbOzMxhjGDJkiFo7Z2dnfPjwQTV2Lz8+S4TkFF2eI6QQsLS0ROvWrbF//36kpKRAoVCge/fuWbY/c+YMFi1ahICAALVxIhzHqf78/v178Hg8ODg4qMWWK1cuy35Lly6t9vrL5aD4+HgYGRnhzZs3YIyhfPny34z/0TvTzp8/j/nz58PT0xPdunVT2/bs2TPMnj0bV69ezVSkSCSSHO/ry9ihihUrZtrm5OSECxcuQCqVQl9fX7U+u/cnp/upVKmS2nQTPXr0gIeHBw4dOoSZM2eCMYYjR47A1dVV1f+bN28AAO7u7lkem0QiUeUGINNnIC/99z0xNjYGAJQqVSrTeqVSCYlEAnNzc61/lgjJDSqaCCkk+vbti+HDhyMyMhKurq5Zjue4desWOnfujKZNm2Ljxo2wtbWFQCDAzp07sX///h/KIas7y9j/x8EolUpwHIe///77m22/N34oO8HBwejXrx/atGmDRYsWqW1LSEhAs2bNYGRkhAULFsDR0RG6urp4+PAhfvvtt0xnVrQlu/fnR9nZ2aFJkyY4fPgwZs6ciXv37iE0NFRtzNSXY12xYgVq1qz5zX7++/fw9Vm6vJbVe/IzP0uE5BYVTYQUEl27dsXIkSNx7949HDp0KMt2x44dg66uLi5cuKA2h9POnTvV2pUpUwZKpRLBwcFqv+aDgoJynaOjoyMYY3BwcECFChW+2/brs17ZSU1Nxa+//goTExMcOHAAPJ76yILr168jNjYWx48fR9OmTVXrg4ODc73fMmXKAABevXqVadvLly9hYWGhdpYpt77eT8uWLdW2vXr1SrX9i169emHMmDF49eoVDh06BD09PXTq1Em13dHREQBgZGSE1q1b/3B+X8vJ39mPyslniZD8QmOaCCkkDAwMsGnTJnh5eal9Sf4Xn88Hx3Fqt9qHhITg5MmTau1cXFwAABs3blRbv379+lzn+Ouvv4LP52P+/PmZzq4wxhAbG6t6ra+vr/Fls1GjRuH169c4ceKE2mWlL76cifh6n+np6ZmOLSf7tbW1Rc2aNbFr1y4kJCSo1gcGBuLixYto3769Rrlnp06dOrCyssLmzZvVLqX+/fffePHiRaa7Gbt16wY+n48DBw7gyJEj6Nixo1rxVrt2bTg6OuKPP/5AcnJypv19+vQp17l+2c/X74e25OSzREh+oTNNhBQi3xun8kWHDh2watUqtGvXDn379kV0dDQ2bNiAcuXK4cmTJ6p2tWvXRrdu3bBmzRrExsaqphx4/fo1gNydVXB0dMSiRYvg6emJkJAQdOnSBYaGhggODsaJEycwYsQITJ06VbX/Q4cOwcPDA3Xr1oWBgcE3i8GzZ89i9+7d6NatG548eaJ2DAYGBujSpQsaNmwIU1NTuLu7Y8KECeA4Dnv27PnmZTFN9wt8vsTl6uqKBg0aYOjQoaopB4yNjdXmsfoRAoEAy5Ytw+DBg9GsWTP06dNHNeWAvb09Jk+erNbeysoKLVq0wKpVq5CUlIRevXqpbefxePD29oarqyuqVKmCwYMHo0SJEggPD8e1a9dgZGSE06dP5yrXmjVrgs/nY9myZZBIJBCJRGjZsqXa1A95JSefJULyzU+4Y48QooGvpxz4nm9NObB9+3ZWvnx5JhKJWKVKldjOnTtVt5d/TSqVsrFjxzIzMzNmYGDAunTpwl69esUAsN9//13V7kvsp0+fvpljcHCw2vpjx46xxo0bM319faavr88qVarExo4dy169eqVqk5yczPr27ctMTEwYANXt5v+99f/LPr61fH2L+j///MPq16/PxGIxs7OzY9OnT2cXLlzIdIu8pvv94vLly6xRo0ZMLBYzIyMj1qlTJ/b8+XO1Njl9f77l0KFDrFatWkwkEjEzMzPWr18/FhYW9s2227ZtYwCYoaGh2jQFX3v06BH79ddfmbm5OROJRKxMmTKsZ8+e7MqVK9nm/T3btm1jZcuWZXw+X+29zWrKgSNHjqjFZ/W5zioXTT5LhOQXjrE8GqFICCkSAgICUKtWLezduxf9+vX72ekQQkiBQWOaCCnGUlNTM61bs2YNeDye2oBqQgghNKaJkGJt+fLlePDgAVq0aAEdHR38/fff+PvvvzFixIhM8+gQQkhxR5fnCCnGLl26hPnz5+P58+dITk5G6dKlMWDAAMyaNQs6OvSbihBCvkZFEyGEEEKIBmhMEyGEEEKIBqhoIoQQQgjRAA1ayCNKpRIfP36EoaFhvj5qgBBCCCG5xxhDUlIS7OzsMj2i6b+oaMojHz9+pLuNCCGEkELqw4cPKFmy5HfbUNGURwwNDQF8ftONjIx+cjaEEEII0URiYiJKlSql+h7/Hiqa8siXS3JGRkZUNBFCCCGFjCZDa2ggOCGEEEKIBqhoIoQQQgjRABVNhBBCCCEaoDFNhBBC8oRCoYBcLv/ZaRCiRiAQgM/n50lfVDQRQgj5IYwxREZGIiEh4WenQsg3mZiYwMbG5ofnUaSiiRBCyA/5UjBZWVlBT0+PJvglBQZjDCkpKYiOjgYA2Nra/lB/VDQRQgjJNYVCoSqYzM3Nf3Y6hGQiFosBANHR0bCysvqhS3U0EJwQQkiufRnDpKen95MzISRrXz6fPzrmjoomQgghP4wuyZGCLK8+n1Q0EUIIIYRooEAVTUuXLkXdunVhaGgIKysrdOnSBa9evco27siRI6hUqRJ0dXVRrVo1nDt3Tm07Ywxz586Fra0txGIxWrdujTdv3qi1iYuLQ79+/WBkZAQTExMMHToUycnJeXp8hBBCCCm8ClTRdOPGDYwdOxb37t3DpUuXIJfL0bZtW0il0ixj7ty5gz59+mDo0KF49OgRunTpgi5duiAwMFDVZvny5Vi3bh02b94MX19f6Ovrw8XFBWlpaao2/fr1w7Nnz3Dp0iWcOXMGN2/exIgRI7R6vIQQQn6eQYMGgeM41WJubo527drhyZMnqjZfb/+yNG7cWK2fa9euoWPHjrC0tISuri4cHR3Rq1cv3Lx5U63dtm3bUKNGDRgYGMDExAS1atXC0qVL8+VYSR5hBVh0dDQDwG7cuJFlm549e7IOHTqorXN2dmYjR45kjDGmVCqZjY0NW7FihWp7QkICE4lE7MCBA4wxxp4/f84AsPv376va/P3334zjOBYeHq5RrhKJhAFgEolE4+PTREZsAot7EMg+PX7O5ElSplQq87R/Qgj5Eampqez58+csNTX1Z6eSY+7u7qxdu3YsIiKCRUREsEePHrEOHTqwUqVKqdoAYDt37lS1iYiIYLGxsartGzZsYBzHsYEDB7IrV66wkJAQ9vjxY7ZmzRr2yy+/qNpt376d6enpMW9vb/bmzRsWGBjI9u/fz2bOnJmvx1xcfe9zmpPv7wI95YBEIgEAmJmZZdnm7t278PDwUFvn4uKCkydPAgCCg4MRGRmJ1q1bq7YbGxvD2dkZd+/eRe/evXH37l2YmJigTp06qjatW7cGj8eDr68vunbtmmm/MpkMMplM9ToxMTFXx5idpMPnsXHabMxODkIboRk2GVUGOA7Q4WNu4htk8DhM69gdjg3qgG9mgrCgt3h92xclrG1gX6YM+GZG4Bnog6enC85ADLFzdejYWQEAlMkpUMQmgNMTg6cvBicW0WBOQkixIhKJYGNjAwCwsbHBjBkz0KRJE3z69AmWlpYA/p0Y8b9CQ0MxadIkTJo0CatWrVLbVr16dUyYMEH1+tSpU+jZsyeGDh2qWlelShVtHBLRogJbNCmVSkyaNAmNGjVC1apVs2wXGRkJa2trtXXW1taIjIxUbf+y7nttrKys1Lbr6OjAzMxM1ea/li5divnz5+fsoHKBpWcgEQoAgDH3/78uxgB5Bk6nRCKJKTD075swveQPADieGoE50rdoJTTDFqPKqn4GSJ4ihSmw8pc2qFq7Fvimxnj24jmuX7wMR74YDYQmAMeB0xUhXSyA2NAAFosmQL/d59PQaY9eQLL5MDg9XfD0xP//r+7ngktPF7oNa0DoWBoAoEySIiM8GjqlbMDTF2v9PSKEFCyMMbCUtOwbagGnp5vrH3/JycnYu3cvypUrp9GcU8eOHYNcLsf06dO/nctXedjY2ODGjRt4//49ypQpk6v8yM9XYIumsWPHIjAwELdv3/7ZqXyTp6en2hmuxMRElCpVKs/3YzqhH5ZN6Ic5n2KRFhYBvSQZMqJioIiKxdzzJRATEwvHus1goASUcRKIH95BmeAIlBCoFyuBGclIYgooX79H8rtPAICbqRHwkr5Fa6HZ56KJMbDUNLQNv4VopRyHhofjF8fy4JsZw//jexx67IsqOgbopfvvL65XGVKIOB6qLp4Kq5ElwfF4SL37GJH9fgM4DjplbCGsVBbCSg4QOpWFsKI9hOVKgxMJ8/y9IoQUDCwlDcH2bX/Kvh1CLoLLwY+1M2fOwMDAAAAglUpha2uLM2fOgMf7d8hvnz591CZE3Lt3L7p06YLXr1/DyMhI7SzUsWPH4O7urnp99+5dVKtWDfPmzcOvv/4Ke3t7VKhQAQ0aNED79u3RvXt3tX2Rgq1AFk3jxo1TDcYuWbLkd9va2NggKipKbV1UVJTa6dYv676ePj0qKgo1a9ZUtfkyxfoXGRkZiIuL++YpWeDzKV2RSJSj4/oRBpbmMLBU/+UzdVzfTO2m/H8BAJaRAWVCEhTxiTh57To+hX9ENfsKEEllUMYlwvGhL1wf8VFLzxw6ZmWgjJNAmZCEeJYBGZTQl8qQ/uwtAOBxagT2p0WitdBMrWgamfgcYUoZDnsuxS9em8AzNcRNWTzWSwLhrGMMjxCGjJCPSDn/b/FruWoajAZ0BgDIw6IgC3gJYSUHCOztwOkUyI8kIaSIatGiBTZt2gQAiI+Px8aNG+Hq6go/Pz/VGaHVq1erDfH4+rvkv2e1XFxcEBAQgPDwcDRv3hwKhUIVc/fuXQQGBuLmzZu4c+cO3N3d4e3tjfPnz1PhVEgUqG8oxhjGjx+PEydO4Pr163BwcMg2pkGDBrhy5QomTZqkWnfp0iU0aNAAAODg4AAbGxtcuXJFVSQlJibC19cXo0ePVvWRkJCABw8eoHbt2gCAq1evQqlUwtnZOW8PMh9xOjrgW5iCb2GKluXdM23vi1H4b9nFGMOHj5GIDn4PW5E++EkpUMQnovHDB5jmewcOYiMY2JaDIj4RijgJDO48hb4sA6Y8AaBUQhkrQWhqFB7IE2HBCf7tWCTE4uR3MGc8jIyJgYE0FTx9MVKv+eKTx4rP+YqEEJQvA6GTw//PTtlDt1518E0MtfguEULyGqenC4eQiz9t3zmhr6+PcuXKqV57e3vD2NgY27Ztw6JFiwB8/mH9dZsvypcvD4lEgsjISNUPbAMDA5QrVw46WfwArFq1KqpWrYoxY8Zg1KhRaNKkCW7cuIEWLVrkKG/ycxSoomns2LHYv38//vrrLxgaGqrGExkbG6ueHTNw4ECUKFFCdZvmxIkT0axZM6xcuRIdOnTAwYMH4e/vj61btwL4/Ctg0qRJWLRoEcqXLw8HBwfMmTMHdnZ26NKlCwDAyckJ7dq1w/Dhw7F582bI5XKMGzcOvXv3hp2dXf6/ET8Rx3EwKWELkxLqDzVs0a0NvvW/9AtsBwAwWfrnQio+ET2evUDJu3dgFpMM3U/pkD15DWlaKnZLQqAA4LZwM7hluyGs4ojHTIp3hhmoncqDjSwd6YFvkB747xxadifWQtz4FwBA2v1ApD14/vlSXyUH8K3NaeA6IQUQx3E5ukRWkHAcBx6Ph9TU1Gzbdu/eHTNmzMCyZcuwevXqHO+rcuXP406/N60OKVgKVNH05RRp8+bN1dbv3LkTgwYNAvD5boWvT2M2bNgQ+/fvx+zZszFz5kyUL18eJ0+eVBs8Pn36dEilUowYMQIJCQlo3Lgxzp8/D13df3+R7Nu3D+PGjUOrVq3A4/HQrVs3rFu3TnsHW8RwIiF0bCygY2OBSk5lUal7B9U2JkvHp7uPsGDDBjx/EoiSopJQRHxC+pPX2J8chANpkRgmLoGZpWpC4FACMDLAg09hcErXgaDiv2cbpX/fQsL6/arXPFOj/xdQZSF0coBBl1bgmxrl63ETQgo3mUym+oEeHx+PP//8E8nJyejUqVO2saVLl8bKlSsxceJExMXFYdCgQXBwcEBcXBz27t0LAKqxUKNHj4adnR1atmyJkiVLIiIiAosWLYKlpaXqyggp+DjGGPvZSRQFiYmJMDY2hkQigZERfXFnJyM8Cml+gVi1YT1O3L+DUTwrtNYxBQAEZaSgXcJDGHE6eNJmEPTrVoNu3WpI/PARPP8XSH/5DvLgcECpVOuzTMBR6JT4fJdk0uHzkD19o7rMJ6zoAJ4BPVCUkLyWlpaG4OBgODg4qP0QLQwGDRqEXbt2qV4bGhqiUqVK+O2339CtWzcAn888nThxQnVl4lsuX76MVatWwdfXF4mJiTA3N0eDBg0watQouLi4APg8QHzHjh149OgRYmNjYWFhgQYNGmDevHmoVq2aVo+TfP9zmpPvbyqa8ggVTT9GmSqD7PErpPkH4tJfpzH22gk4cCIcMKmuauMuCUQwZFjZ8le4dGgPvrUZkKGAPOgD5O/CYL1zoepyXeSg2ZCevaG2D53StqpLe6Ye7jQdAiF5oDAXTaT4yKuiqUBdniPFF08sgrh+dYjrV0fPcX3RXalEXOBriF6HIu3+M6T6PcGzG/eQwDJg4PsMcQ/eAwBuIwkbFFHoXK8RJp27Bd06VaBjbQ6Dbq2hU9IK6S+Dkf7iHRTRccgIjUBGaARSb/rDbOZw1b5jF2yGPDgMQqey0G1QA+IGNeguPkIIIZnQNwMpkHg8HiyqVwKqV4Jh98/zvbyPXIY7h0+gjlwE+cMXSLsfCL+w97ifGoky128h6sHnqSd0ythisewDKlSvioGTRsK2fk0oJcmfC6iXwVBKksF9NedKytV7SH/2FtIzn89M8cyMoe/SCPodm0HctDZ4uvk3tQQhhJCCiy7P5RG6PJf/GGN4c/MOrhw4ipLxMtSMlCL9RTBiFTI4x/kBAB6a1YexgQFEtZzw1EqM5JLmaNa3ByzL/TvAPOXWA6Q/C4LsyWukXPGFMk6i2iao5IDSt3bn+7ERUljQ5TlSGNDlOVLscRyHCs0aoUKzRqp1isRk8K/8g982bUJY0DuYcCZQJiYj7Z9H2Jj0CqdlnzBp2QZMrtYIunWqgKtVEaHmeqgxpCtMhEKwjAyk3XuC5DM3ID13C3pN/30eIcvIQPS4JRA3rwt9l0Z0px4hhBQzdKYpj9CZpoKJKZWQv36PtPuBmLNuFc4+e4h5gtJoKDQBAATIk9Bd8hildcS46zYSeq0bwKBbG+hYmoIplWApaaq77lJvP8THrhM/d8znQ9y4FvQ7NIW+axPo2Fj8pCMk5OeiM02kMKC75woYKpoKD0V8ItL8n0Hm/wxHTp7AlPsXUE/HCNuM///EcR0+ttsAVdu3RjfPyRAZ6AMA5B8ikXTwb0jP3lA9XgYAwHHQrVMFZnNHQ1y/+jf2SEjRRUUTKQyoaCpgqGgqvDLS0xHlGwD9F6FIPnYR4f6P0SjODwoAF8s0Ra0+XWHY2xXC6hVUUxrI34Uh+dxNSM/ehMz/GQCg5GVviGpUBACkv3kPKJQQVLSnWctJkUZFEykMqGgqYKhoKjo+/OOHFb/NxqsnT7FR9O/zpvYYyaBTowKGLJgNu6qVVOszIj4h5fI9GPbvqCqQosctRtKh8xA4lvp8Ca9jM4hqVqICihQ5VDSRwoAGghOiJaUa1cO62xfBMjKQeuMBkg6eQ8K5m9gQ7IuYd/dheTUAndu3h2EvV+i5NISOrSWMBqg/coExAEIB5G8/IGHdPiSs2wedElbQb98U+h2aQrdhTSqgCCGkkKEzTXmEzjQVbSnRMdg6fS5OnzuLDcqSEHCfn394ip+Ip7YGGD1jKur07KJWCCmTpEi5fA/JZ28i5dJdsJTPDwAVVLRH6dt7VO2YUgnuq+cpElKY0JmmnBs0aBASEhJw8uRJAJ+ft1qzZk2sWbPmp+b1RUHLJy/QmSZC8pGelQUm+WzEJADpQaFIOvg3ko5cxJ7nj/EoKgnWQzxgve4YDHu5wrBHW+jYWoJnqA+Drq1g0LUVlKkypN70h/TMDQgq2qv6VabKEFq3F8SNf4F+h6bQa+lMj3chJB9FRkZi6dKlOHv2LMLCwmBsbIxy5cqhf//+cHd3h56e9p9Zefz4cQgEgjzt87+FWVHm4+ODSZMmISEhQev7oqKJkBwSlisN89kjYeY5DPNXb8KurdvQJdkQ8tfvEbdwM87NW47tuokYMWgwes79DTyxCDyx6PMs4y6N1PpKvekPRVQsko9dQvKxS+B0hdBr6fy5gGrbCHwTw590lIQUfe/evUOjRo1gYmKCJUuWoFq1ahCJRHj69Cm2bt2KEiVKoHPnzt+MlcvleVbomJmZ5Uk/RPvomgAhucTx+eg0dRyOvn6MOi/Pw3LVdOg6V8ex1EhciwzBX2s24X3VLvg09Q+k3Q/Et66E67VpgBLnNsF4bG/o2NuBpaVDeu4WoscuRohTJyQdv/wTjoyQ4mHMmDHQ0dGBv78/evbsCScnJ5QtWxZubm44e/YsOnX6d6wix3HYtGkTOnfuDH19fSxevBgKhQJDhw6Fg4MDxGIxKlasiLVr16rtQ6FQwMPDAyYmJjA3N8f06dMz/VvQvHlzTJo0SfVaJpNh6tSpKFGiBPT19eHs7Izr16+rtvv4+MDExAQXLlyAk5MTDAwM0K5dO0RERAAAvLy8sGvXLvz111/gOA4cx6nFf00qlWLgwIEwMDCAra0tVq5cmalNdvm8f/8enTp1gqmpKfT19VGlShWcO3dOtf3Zs2fo2LEjjIyMYGhoiCZNmuDt23+nbfH29oaTkxN0dXVRqVIlbNy4UbUtJCQEHMfh+PHjaNGiBfT09FCjRg3cvXsXAHD9+nUMHjwYEolEdaxeXl7fPNY8wUiekEgkDACTSCQ/OxXykz27fJNNadGBna7QkgVZNGZBFo3ZTdM6rJyuEZvboQdL/xDxzTilUsnSnr5hsb97s9AmA1mQRWMmC3qv2i695sfiNx1k6e8/5tehEJKt1NRU9vz5c5aampppmyI5JeslNU3ztimatc2JmJgYxnEcW7p0qUbtATArKyu2Y8cO9vbtW/b+/XuWnp7O5s6dy+7fv8/evXvH9u7dy/T09NihQ4dUccuWLWOmpqbs2LFj7Pnz52zo0KHM0NCQubm5qdo0a9aMTZw4UfV62LBhrGHDhuzmzZssKCiIrVixgolEIvb69WvGGGM7d+5kAoGAtW7dmt2/f589ePCAOTk5sb59+zLGGEtKSmI9e/Zk7dq1YxERESwiIoLJZLJvHtfo0aNZ6dKl2eXLl9mTJ09Yx44dmaGhYY7y6dChA2vTpg178uQJe/v2LTt9+jS7ceMGY4yxsLAwZmZmxn799Vd2//599urVK7Zjxw728uVLxhhje/fuZba2tuzYsWPs3bt37NixY8zMzIz5+PgwxhgLDg5mAFilSpXYmTNn2KtXr1j37t1ZmTJlmFwuZzKZjK1Zs4YZGRmpjjUpKSnTcX7vc5qT728qmvIIFU3kv5QKBZPe9GeRYxaxKcaODACrLzBmQZZNWHj3ySzxyAUmT5JmGZ8eEq72OsJ9lqoIC205hMWt3MVkr4K1fBSEfN/3voy+fF6/tXzsPVWt7dvSrbNsG9Z5nFrbdxU7fLNdTty7d48BYMePH1dbb25uzvT19Zm+vj6bPn26aj0ANmnSpGz7HTt2LOvWrZvqta2tLVu+fLnqtVwuZyVLlsyyaHr//j3j8/ksPFz9//9WrVoxT09PxtjnogkACwoKUm3fsGEDs7a2Vr12d3dX28e3JCUlMaFQyA4fPqxaFxsby8RicY7yqVatGvPy8vrmPjw9PZmDgwNLT0//5nZHR0e2f/9+tXULFy5kDRo0YIz9WzR5e3urtj979owBYC9evGCMfX4/jI2Nv3useVU00ZgmQrSE4/Gg16Q29JrUxpzZw1DW63cYP3kLBMUj9fp9JFzzRduEh2heqRr+WLMa1q0aqt19Jyhjp9afXitnKCRJSLsTgPQnrxH35DXilm6DqEZFmEzoB/2OzeguPEJ+kJ+fH5RKJfr16weZTKa2rU6dOpnab9iwATt27EBoaChSU1ORnp6OmjVrAgAkEgkiIiLg7Oysaq+jo4M6dep883I9ADx9+hQKhQIVKlRQWy+TyWBubq56raenB0dHR9VrW1tbREdH5+hY3759i/T0dLX8zMzMULFixRzlM2HCBIwePRoXL15E69at0a1bN1Sv/vnpCAEBAWjSpMk3x39JpVK8ffsWQ4cOxfDhw1XrMzIyYGxsrNb2S39fjhUAoqOjUalSJeQnKpoIyQfGttYYs2U1AEAe8hFJRy7gyGZvhMem4eqLJ0jq/RtkDiVh2LsdBJ2bw7C8faY+jAZ0gtGATlDExEN6/h9Iz95Ays0HkD1+hfhVu6DfqXn+HhQh2XAIuZj1Rr56gW///FTWbf/zY6DMgyM/khYAoFy5cuA4Dq9evVJbX7ZsWQCAWJz5LlZ9fX211wcPHsTUqVOxcuVKNGjQAIaGhlixYgV8fX1znVdycjL4fD4ePHgAPp+vts3AwED15/8WIRzHZVmI/QhN8hk2bBhcXFxw9uxZXLx4EUuXLsXKlSsxfvz4b76PX/cNANu2bVMr3ABk2tfXx/vlx6VSqcz9geUS/SwlJJ8J7O1gNm0whr26gQt/bsNil27g6+shIyQccUu94exUFY0tS+Hham8opamZ4vkWpjDq3xG2B1bA/slxmE4dBNNpQ/79hyQ5BQlbjkCZnJLfh0aIGp6+OOtFV6R5W7FmbXPC3Nwcbdq0wZ9//gmpVJqr4/vnn3/QsGFDjBkzBrVq1UK5cuXUBjgbGxvD1tZWrYjKyMjAgwcPsuyzVq1aUCgUiI6ORrly5dQWGxsbjXMTCoVQKBTfbePo6AiBQKCWX3x8PF6/fp3jfEqVKoVRo0bh+PHjmDJlCrZt2wbg8xmiW7duQS6XZ9q/tbU17Ozs8O7du0x9Ozg45Omx5hUqmgj5Sfg6Omg7dhgGn9sH++d/wWrDLET+4ogXCinux4QDi7YjpIoboscvQcT5m1BkZGTuw9wEZr8NhUGHpqp1iXtPI3b2Oryv1R1xy7ZDESfJz8MipNDYuHEjMjIyUKdOHRw6dAgvXrzAq1evsHfvXrx8+TLT2Y7/Kl++PPz9/XHhwgW8fv0ac+bMwf3799XaTJw4Eb///jtOnjyJly9fYsyYMd+dT6hChQro168fBg4ciOPHjyM4OBh+fn6quaQ0ZW9vjydPnuDVq1eIiYn5ZtFiYGCAoUOHYtq0abh69SoCAwMxaNAg8L46s6dJPpMmTcKFCxcQHByMhw8f4tq1a3BycgIAjBs3DomJiejduzf8/f3x5s0b7NmzR3WGb/78+Vi6dCnWrVuH169f4+nTp9i5cydWrVqVo2NNTk7GlStXEBMTg5QULf5gzHbUE9EIDQQneeXNHT+2c8BYFlKnl2qAazuhOSsl1GdHhkxm6cHh341POnGFva/bWxX7tnRr9mnWWiYPj8qnIyDFyfcG2BYGHz9+ZOPGjWMODg5MIBAwAwMDVq9ePbZixQomlf57owYAduLECbXYtLQ0NmjQIGZsbMxMTEzY6NGj2YwZM1iNGjVUbeRyOZs4cSIzMjJiJiYmzMPDgw0cOPC7d899uSvP3t6eCQQCZmtry7p27cqePHnCGPv2wOcTJ06wr7/So6OjWZs2bZiBgQEDwK5du/bN409KSmL9+/dnenp6zNrami1fvjzH+YwbN445OjoykUjELC0t2YABA1hMTIwq/vHjx6xt27ZMT0+PGRoasiZNmrC3b9+qtu/bt4/VrFmTCYVCZmpqypo2baoaoP9lIPijR49U7ePj4zMd06hRo5i5uTkDwObNm5fpOPNqIDg9RiWP0GNUSF5jjCHN7yli9p5GzY3zEaeU47RJTTjpGEC3QQ3IOzaGaacWMLa1zhyrUEB6+gbi1+1F+tM3n1cKdGDYqx0sV06jAeMkz9BjVEhhkFePUaF/OQkpoDiOg9i5Okqtn4X3UZE4+Nt8/NK6BcBxSLv7GMsmTYNtCTvMadIeGR/V75rh+HwYdGmJkle2w/bQH9BtVAuQZ0CZkEQFEyGE5BLdPUdIIWBgYYZev88FAGSERyHpyEU8mTcNqalK2DwORmi9PjAa3AWmE/uDb2GqiuM4DnotnaHX0hlp/s/AM/r37h95yEd8mr4SJuP7Qtz4F7XpDgghhGRGPzkJKWR0SljDdNIA3Ir/iOubfeDWtCWYLB2SzYexo3JLTGvVCXEfwjPF6dapAmEFe9XrhI0HkHrNDxG/TkJ4u5FIPnsT7CfcwksIIYUFFU2EFFI8Hg/NRrqjxOk/YXvoD+hUL49lca/wx9UzWFSzBeLX7YMyJS3LeJNxfWE09FdwukLIHr5A1KBZ+NBkIBIP/g0mz3ynHiGEFHdUNBFSyH25BFfqkjfmT5uBOoaWGAhzxC3cjNC6vfBujQ9kyZnnoRGUtoXl75NR+uFRmEwaAJ6RAeSv3+PT+CUIazNMKxPlEUJIYUZFEyFFBI/HQ7+lc+EXHwHHjfOgU8YWiug4jP9tGsqZW+H07KVg35jrScfSFOazRqBMwFGYzR0FvpUZ9Nr8+0gXxhgUicn5fTiEEFLgUNFESBHD8fkw7NUOpe/sg8BrJB4okxGengLehiP40HQQkk9d++bYJZ6hPkzH90PpB4dhOrG/an3qDX+8r/4rYrw2ICMyJj8PhRBCChQqmggpojihAKXH9kdQRDj2jZiCypa2kL95j6ihc7GmanOcXLr6m89u4umKwDPQU72Wnr4OJk2FZMNBvK/dE9EeyyF/F5aPR0IIIQUDFU2EFHEGFmbos+UPlPY/BNNpg5Goq4N5L++g60wP7KvfGal3H3833uKPqbDZvxy6ztWBdDmS9pxGaIN+iBw2D7Inr78bSwghRUmBKppu3ryJTp06wc7ODhzH4eTJk9nGbNiwAU5OThCLxahYsSJ2796ttl0ul2PBggVwdHSErq4uatSogfPnz6u18fLyAsdxakulSpXy8tAI+en4RgYwmz4EpW/4oL9zM1QXGKL+uwR87DwOH3tNRYLvt4snjuOg36YBSpzZALvTG6DXpgGgVEL611VEjVlIA8YJIcVGgSqapFIpatSogQ0bNmjUftOmTfD09ISXlxeePXuG+fPnY+zYsTh9+rSqzezZs7FlyxasX78ez58/x6hRo9C1a1c8evRIra8qVaogIiJCtdy+fTtPj42QgsK8bBlsvHsFfu9ew2RwF0CHD+mVe2jYqBE62Tvh3Y07WcaK61eH7f7lKHl9Jwx+bQ3Tif1VA8aVKWmQXvyH5noihcagQYMy/WDmOA7t2rXLl/17eXmhZs2a+bIvkjcK1Izgrq6ucHV11bj9nj17MHLkSPTq1QsAULZsWdy/fx/Lli1Dp06dVG1mzZqF9u3bAwBGjx6Ny5cvY+XKldi7d6+qLx0dHdjY2OTh0RBSsIlK2sByxVSYjOmDi1O88PLEP/gQ+gZx3afCoFcHmE4bDEEZu2/HVikH6y3z1NYlHTiHmBmrIXQqC5PxfWHQtRU4nQL1TwwhmbRr1w47d+5UWycSiX5SNqSgK1BnmnJKJpNlevCeWCyGn58f5HL5d9v890zSmzdvYGdnh7Jly6Jfv34IDQ3Ndt+JiYlqCyGFkcChBDoc34b7J89hVdPOMAUfSYfOI7RBP2zo0BdhT55p1A9LTwdnoIf0F+8QPWYRQp37QrLjBJSpMi0fASG5JxKJYGNjo7aYmpri+vXrEAqFuHXrlqrt8uXLYWVlhaioKADA+fPn0bhxY5iYmMDc3BwdO3bE27dv1foPCwtDnz59YGZmBn19fdSpUwe+vr7w8fHB/Pnz8fjxY9UZLh8fn/w8dJILhbpocnFxgbe3Nx48eADGGPz9/eHt7Q25XI6YmBhVm1WrVuHNmzdQKpW4dOkSjh8/joiICFU/zs7O8PHxwfnz57Fp0yYEBwejSZMmSEpKynLfS5cuhbGxsWopVaqU1o+XEG2q7eaK4dePo8TFrRA3r4vXqRKMP3cAFWpWx/OpS6GIk3w33mR0789zPc0cDp6FCTJCIxDz2yqE1u6B+LV7aexTMSSVSiGVStX+7tPT0yGVSiGTyb7Z9us7OuVyOaRSKdLS0jRqm5eaN2+OSZMmYcCAAZBIJHj06BHmzJkDb29vWFtbq/Lw8PCAv78/rly5Ah6Ph65du6rySk5ORrNmzRAeHo5Tp07h8ePHmD59OpRKJXr16oUpU6aoDQ35ctWEFGCsgALATpw48d02KSkpbPDgwUxHR4fx+XxmZ2fHpk+fzgCwyMhIxhhj0dHRzM3NjfF4PMbn81mFChXYmDFjmK6ubpb9xsfHMyMjI+bt7Z1lm7S0NCaRSFTLhw8fGAAmkUhydbyEFDR3dx5gv5hYMxehOQuyaMzeObiw2BU7WEZicraxCmkqS/A+xkJqdWdBFo3Zx/4z8iFj8jOkpqay58+fs9TU1EzbADAALDo6WrVu0aJFDAAbNmyYWls9PT0GgAUHB6vWrV69mgFgffv2VWtrYWHBALDAwEDVuq1bt+Y4d3d3d8bn85m+vr7asnjxYsYYYzKZjNWsWZP17NmTVa5cmQ0fPvy7/X369IkBYE+fPmWMMbZlyxZmaGjIYmNjv9l+3rx5rEaNGjnOm+Tc9z6nEolE4+/vQn2mSSwWY8eOHUhJSUFISAhCQ0Nhb28PQ0NDWFpaAgAsLS1x8uRJSKVSvH//Hi9fvoSBgQHKli2bZb8mJiaoUKECgoKCsmwjEolgZGSkthBSlNQf1Bv3Yz9i1+GDEFYpB2WSFKFLt6KShQ2WdB+INEnWZ2J5erowHvorSvsegNXG2TCbOki1TR4WhZhZ62iWcVIgtGjRAgEBAWrLqFGjAABCoRD79u3DsWPHkJaWhtWrV6vFvnnzBn369EHZsmVhZGQEe3t7AFAN7wgICECtWrVgZmaWr8dEtKdIjNIUCAQoWbIkAODgwYPo2LEjeDz1elBXVxclSpSAXC7HsWPH0LNnzyz7S05Oxtu3bzFgwACt5k1IQcfj8WDt1hqsU0tIT13HrolTERSXjO0nj6LnSwkspw2BUd8O4ATf/qeEE+jAsIeL2jrJxoOQbDuK5JNXYLF4IvTdWqjuwCNFS3Ly58JYT+/fyVKnTZuGSZMmQec/NwlER0cD+Pxj+IuxY8di+PDh4PP5am1DQkIytR00aFCuctTX10e5cuWy3H7nzue7SePi4hAXFwd9fX3Vtk6dOqFMmTLYtm0b7OzsoFQqUbVqVaSnp2fKjxQNBepMU3JysqrSB4Dg4GAEBASoqnZPT08MHDhQ1f7169fYu3cv3rx5Az8/P/Tu3RuBgYFYsmSJqo2vry+OHz+Od+/e4datW2jXrh2USiWmT5+uajN16lTcuHEDISEhuHPnDrp27Qo+n48+ffrkz4ETUsBxPB4MurTE7Jf/YN3Q8Zhduia4qDjETP0D7xv0xRHPBVBoOKZEr10jCBxLQREdh6jh8xDRexrkIR+1fATkZ9DX14e+vr5aUSwUCqGvr5/pDrUvbb/+wSsQCKCvr5/pZp6s2ua1t2/fYvLkydi2bRucnZ3h7u6uGq8UGxuLV69eYfbs2WjVqhWcnJwQHx+vFl+9enUEBAQgLi7um/0LhUIoFIo8z5tokTauHebWtWvXVNfAv17c3d0ZY5+vPzdr1kzV/vnz56xmzZpMLBYzIyMj5ubmxl6+fKnW5/Xr15mTkxMTiUTM3NycDRgwgIWHh6u16dWrF7O1tWVCoZCVKFGC9erViwUFBeUo95xcEyWksFOmyVjC1iMs2KkT22ToxACwWoYWLPH0NaZUKrONV6SmsdjlO1iQXQsWZNGYvS3ZksWt3s2UsvR8yJ7kpe+NFSno3N3dWbt27VhERITa8unTJ5aRkcHq16/PunXrxhhj7OPHj8zc3JwtX76cMcaYQqFg5ubmrH///uzNmzfsypUrrG7dumrjcWUyGatQoQJr0qQJu337Nnv79i07evQou3PnDmOMsX379jF9fX326NEj9unTJ5aWlvZT3ofiIK/GNBWooqkwo6KJFEeK5BS2vvcwZsjTYaPEJVmQRWP2oc1wJr3mp1HxJAt6z8K7TmBBFo1ZkEVjFrt8Rz5kTfJSYS+avvVDvWLFimz+/PnM1taWxcTEqNofO3aMCYVCFhAQwBhj7NKlS6of5dWrV2fXr1/PdBNTSEgI69atGzMyMmJ6enqsTp06zNfXlzH2+Yaibt26MRMTEwaA7dy5Mz8Pv1jJq6KJY4zuA84LiYmJMDY2hkQioUHhpNj5FPIe0h1/QbnrDFhKKkIUqVio8wkLfl+CpkP6fTeWMYbkIxeQsOEA7E79Cb6xYT5lTfJCWloagoOD4eDgkOkyGiEFxfc+pzn5/i5QY5oIIYWTpX0Z2C+YgNL3D8J4RA+sTwvDjU+hmDdqPCL6/QZZYNZ3onIcB8Oe7VDyuo+qYGKMIWrUAiQdPk/zOxFCCgwqmggheUbHygwWiyfgj6tn0LtybXgYlkXKxTsIazEYwYNn4vmVm1nGfj1YWHruFpKPXUL02MWI6DYJ6W+/P0M/IYTkByqaCCF5rlz9OjjwzB8ufsdh0LUVAGDT4QOo3roZptVvjYzwqO/G67dpALNZI8DpCpF66yE+NB2EuOU7oEyjR7IQQn4eKpoIIVojdCwN661eKHltJ95Z6UMBwPpZKEIbDoBk5wmwrx6D8TVOKIDppAEodWsPxC2dgXQ54lfsRFjzwUi59SB/D4IQQv6PiiZCiNaJqpbD0eBA3NixDz2btARLSUXM9FW46TIIb+/5ZxknsLeD7cEVsN42H3wrM8jffkDMjNVgNLdNgUNjz0hBllefTyqaCCH5pungvih1ZiPMF0+EXFeAkdeOoWbDBjg1Y2GW/6hxHAeDLi1R6u4+GA35FZbLp4D7/wzRLCMjy7NVJH98mVQyJSXlJ2dCSNa+fD5/dBLUIvEYFUJI4cHxeDAZ0R1JNcrCoF17CCSxsNl2BhFv42G15jfolLD+ZhzfyACWyyarrUvYdAgpF+7A8o+pEFZyyI/0yX/w+XyYmJioHoOip6dHj8UhBQZjDCkpKYiOjoaJiUmmR/LkFM3TlEdoniZCci4jPR0Pl/wJi+1nwdLSwTPUR+gQVzSZOT7T8yP/S5kqQ2jtHlB8igd0+DAZ0xumUwaBp0dzBeU3xhgiIyORkJDws1Mh5JtMTExgY2PzzYI+J9/fVDTlESqaCMm99KBQRI9fgnt376KX5Ala2pXFyX9uQN++5Hfj5GFRiJm5Bil/3wYA6JSxhcXvHtBvXT8/0ib/oVAoINfwGYSE5BeBQPDdM0xUNP0EVDQR8mOYQoEN7mMwZd82tBdZYFWJ2jBfPAGGvdple7lH+vctxHiuQUb450tE+p1bwGLxBOjYWORH6oSQQoyKpp+AiiZC8sajMxcgWLkf4sB3n1e0rAPd2cNRolrl78Ypk1MQt3wHJFuPAjwOpW74QFi+TD5kTAgpzKho+gmoaCIk77CMDCRsOIi45TuwIO4lTqfHYNPUWej5+9xszzrJnr6B7MlrGPXroFqXERlDZ50IId9Ez54jhBRqnI4OTCf2h8XZDXgkSEe8Uo7UzUcQNWgWMqLjvhsrqlZerWBKC3iJ97V7ImbOeiiT6bZ4QkjuUdFECCmwjGs64X5EKPYNnogm+paQnruFD00GItjnmMaT1aVc+AdIl0Oy+TBCGw2A9FzWz78jhJDvoaKJEFKgifT10HfHGpS8tA3CquUhiYlFo6H90LVsVcQEhWQbb/bbUNge/AM6ZWyh+BiNSPdZiBjgCXnY959/Rwgh/0VFEyGkUBBVKYeSF7cisFNdRCtleBj6DlHtRyH51LVsY/VaOaPUzd0wmdgf0OEj5fxtfGg0ABKfk9pPnBBSZFDRRAgpNDiBDvr7rMPN/UexvnoL6MZLETV0LqKGz0NiaPh3Y3l6ujCfPRKlru2ErnN1sJRUgGauJoTkABVNhJBCp2Gfbujs+xdMPdwBPh8nDx1BeUdHHJn3e7axwkoOsDu1HtY7F8FoQCfVellgEBSJydpMmxBSyFHRRAgplDihAGaew1Di/Gbs4sUhOkOGiyv+RNToBVDEJ34/lseDQcdm4P7/qBalNBWRA2bgQ4N+SD5xJc+eiE4IKVqoaCKEFGq6NSvhcsgrzGndBZMM7JF89BI+NB4AydnrGveREfEJnEgIRXQcokZ4IaL3NMhDPmovaUJIoURFEyGk0NMzMcaCSyfg+PcWCMqXgSI6Dn1+7YF+lesg7n1YtvHCcqVR6oYPTKcPAYQCpF71xYcmAxC/ejdYOj1LjRDyGRVNhJAiQ7d2FZS8uh1h3ZvgfHoMDr14gDutBkB66W62sZxICLNpg1Hqpg/ETX4BS0tH3JJt+NByCBSSpHzInhBS0FHRRAgpUni6IjTbtAQXN+/E3DK14STJQGTf6YiesBQZGhQ/QsfSsD22BlYbZ4NnYQJh+TLgGxvmQ+aEkIKOnj2XR+jZc4QUPMpUGeKWboNk82FEZaRhROprLF+0GO2njNUoXpGQBCbPgI6l6ef+kqTIiI6D0LGUNtMmhOQjevYcIYQA4IlFsFgwDnan/sSf/Fg8S5NgxowZiJz8O5RJ0mzj+SaGqoKJMYboCUsR1noYks/c0HbqhJACiIomQkiRJ65fHZue3sXgXxpjmUF5SPeexYem7ki54a9xH0yaCsWneLDkFEQNno2YeRvA5BlazJoQUtBQ0UQIKRaMbayw48EtND+zHTplbJERFoW1HftgRO0mSI6OyTaeZ6AHuxNrYTymNwBAsvEgPnadiIzI7GMJIUUDFU2EkGJF3KgWSl33gbKPCxZLg7Ht4W2sq+OC1NsPs43lBDqwmD8W1jsXgTPQQ5rvE4S1HIrUfx7lQ+aEkJ+NiiZCSLHDM9BD+XWzsW/FGnQwKYnuKWJ87DoRn2ashlKamm28QcdmKHl5G4SVy0LxKQ7R4xaDydLzIXNCyM9ERRMhpNhymzIOpz68gumgLgCABO9j6GtfBTe27ck2VuhYGiX+3gLDvh1gtXkuOJFQy9kSQn62AlU03bx5E506dYKdnR04jsPJkyezjdmwYQOcnJwgFotRsWJF7N69W227XC7HggUL4OjoCF1dXdSoUQPnz5//Zj/29vbQ1dWFs7Mz/Pz88uqwCCEFGM9AD5Z/TIXt4ZU4IpbiUEwwOo4cjHdTl0GZkvb9WD1dWK2dAbFzddU66bmbkD19o+20CSE/QYEqmqRSKWrUqIENGzZo1H7Tpk3w9PSEl5cXnj17hvnz52Ps2LE4ffq0qs3s2bOxZcsWrF+/Hs+fP8eoUaPQtWtXPHr07xiEQ4cOwcPDA/PmzcPDhw9Ro0YNuLi4IDo6Os+PkRBSMOm1qIcRt0+hR6VamKZnD7brDMJaDEaq7xON+0h/GYyo0QsR3n4UEg+c02K2hJCfocBObslxHE6cOIEuXbpk2aZhw4Zo1KgRVqxYoVo3ZcoU+Pr64vbt2wAAOzs7zJo1C2PH/juZXbdu3SAWi7F3714AgLOzM+rWrYs///wTAKBUKlGqVCmMHz8eM2bM0ChfmtySkKIj+dJdxExZAUXEJ7xVpOJ8FQssPn0YYpPv/7+tiE9E9JiFSLl8DwBg2L8jLJZOAk9XlB9pE0JyodhMbimTyaCrq6u2TiwWw8/PD3K5/LttvhRV6enpePDgAVq3bq3azuPx0Lp1a9y9m/XzqmQyGRITE9UWQkjRYNCmAUrd2gX9Xi6YnvQaq29fwMAKtZD+9sN34/imRrDZtwxmnsMBjkPS3jMIbz8a8pCP+ZQ5IUSbCnXR5OLiAm9vbzx48ACMMfj7+8Pb2xtyuRwxMTGqNqtWrcKbN2+gVCpx6dIlHD9+HBEREQCAmJgYKBQKWFtbq/VtbW2NyMjILPe9dOlSGBsbq5ZSpeixCoQUJXxjQ9j8ORvTPWfASWSEiRnmCHcZgZTr978bx/F4MPUYCNsjq8AzN0b60zcIaz0U0ov/5FPmhBBtKdRF05w5c+Dq6or69etDIBDAzc0N7u7uAD6fLQKAtWvXonz58qhUqRKEQiHGjRuHwYMHq7bnlqenJyQSiWr58OH7v0AJIYVT3wUz8TjkLeydf4FSkoyIXlPhP38NshvZoNesDkpd3QFR3apQSpKR5heYTxkTQrSlUBdNYrEYO3bsQEpKCkJCQhAaGgp7e3sYGhrC0tISAGBpaYmTJ09CKpXi/fv3ePnyJQwMDFC2bFkAgIWFBfh8PqKiotT6joqKgo2NTZb7FolEMDIyUlsIIUWTwMYCJU6ug2FvVzySJaChlwcGVa+P9OTvP79Ox84KJU6ug8XSSTCbMTSfsiWEaEuhLpq+EAgEKFmyJPh8Pg4ePIiOHTtmOpOkq6uLEiVKICMjA8eOHYObmxsAQCgUonbt2rhy5YqqrVKpxJUrV9CgQYN8PQ5CSMHFiYSwXOeJENc6yABDxOsgRPaYgoyo2O/HCQUwHtYNnI4OAIDJ0hHpPhOp9zS/K48QUjDo5EUncXFxMDEx+eFLXsnJyQgKClK9Dg4ORkBAAMzMzFC6dGl4enoiPDxcNRfT69ev4efnB2dnZ8THx2PVqlUIDAzErl27VH34+voiPDwcNWvWRHh4OLy8vKBUKjF9+nRVGw8PD7i7u6NOnTqoV68e1qxZA6lUisGDB//Q8RBCihaO4zD1wHZU/KUmHDadgtz/GcLajoDt7iUQ1aioUR/xf+6H9NwtSC/cgbnXaBiP7AmO47ScOSEkT7BcevbsGVu6dClr0KAB4/F4zNzcnA0YMIAdPXqUJScn56rPa9euMQCZFnd3d8YYY+7u7qxZs2aq9s+fP2c1a9ZkYrGYGRkZMTc3N/by5Uu1Pq9fv86cnJyYSCRS5RgeHp5p3+vXr2elS5dmQqGQ1atXj927dy9HuUskEgaASSSSHB83IaTwkQW9Z+/r92VBFo3ZFGNHtm+6l0ZxiiQpixzhxYIsGrMgi8YsYvBspkjM3b+ZhJAfl5Pv7xzN0/Tq1Sts3boVp06dQlRUFNq0aQM3Nze0b98e7969w+nTp3Hq1Cm8fv0azZs3R+fOnTF69GitFHsFDc3TREjxo0hMxjG3Ieh1/Qg4ADfGzUXjtfPAZXPWnTGGxO3HETP3T0CeAYFjKVjvXASRU9n8SZwQopKT7+8cFU07d+6Er68v3Nzc0KpVKwiF337WUkhICP766y+cPn0aly9fzln2hRQVTYQUT+lpaRjXrB2UT4Pgqe8AvXaNYb1pDngGetnGpvk/Q9SwucgIjwanpwvrbV7Qb9soH7ImhHyhtaKJZI2KJkKKt8TD5xHjsQJMlg5F+VLQ+WMyyjasm22cIjYBUaMWQPbwBUpe2Q6BvV0+ZEsI+SLfZwRPTU1FeHh4pvXPnj3Li+4JIaTAM+rZDnan1oNnZYapDy+jXtPGuLpxR7ZxfHMT2B5cgRLnNqoVTMrkFG2mSwjJhR8umo4ePYry5cujQ4cOqF69Onx9fVXbBgwY8KPdE0JIoaH7S2UYHluJd0IlJAo5Imavg2T78WwnwuT4fAgrOqhep1z1xfs6PSH9/zPsCCEFww8XTYsWLcKDBw8QEBCAnTt3YujQodi/fz8AZPsPBSGEFDUWlcrh7rvX2NtxAOrzDREzYzVipv4Bli7XuA/J1qNQxkoQ2Xc64n73BlMotJgxIURTP1w0yeVy1XPbateujZs3b2LLli1YsGABzT1CCCmWDC3M0POUD8zmjQY4Du98jqKnYzV8evNOo3ibXYthNLgLwBjiV+5CRO9pUMQmaDVnQkj2frhosrKywpMn/85sa2ZmhkuXLuHFixdq6wkhpDjhOA6m4/rCZt8yTE99i6Nhr9CrTiPIAoOyjxUJYbl8Cqw2zgYnFiH1+n18aDkUaf40TpSQn+mHi6Y9e/bAyspKbZ1QKMSBAwdw48aNH+2eEEIKNf02DbDq4B5UFpvAk2eH8A6jkXz6ukaxhj1cUOLCVggcS0HxMRrhncch/XWINtMlhHxHjoumPn36IDDw36d1lyxZMssH2zZqRPONEEJI7c6ueBz+HlVaNwNLSUPUkDm4P30plBqMVRI5lUXJS9ug36k5DHu4QFjBXvsJE0K+KcfzNPF4PFhaWuLKlSuoWrVqpu2MMUilUhgYGORZkoUBzdNECMkOy8hA7PxNuP/nTvSQPIGLgxP2+N6AnoVZ9rGMARkKcILPjwxVxEmgiE2AsHwZbadNSJGm9XmaatasiZYtW6qdcfoiOjoaJiYmuemWEEKKNE5HBxYLxyO8b0ukMSXCP3xA5K+TIA+NyD6W41QFE1MqETV6IcJaD0fyiSvaTpsQ8n85Lpo4joOPjw9atmyJli1b4unTp5naKJXKPEmOEEKKomEb/sD5zdux0b4+2ItghLUdjtS7jzWOZ9JUsHQ5WEoqokZ4IcZzTY6mNCCE5E6OiybGGPh8Pvbv349WrVp9s3CiqQYIIeT7Wo8cjOrXdkFYvQKUsRIsb9cdW0dO1iiWZ6gPuyMrYTKxPwBA4n0M4W7jkfExWpspE1Ls5fruOR6Ph3379qF169Zo2bIlTS9ACCE5pFPCGiVOb8DbxpWwIDEII7euwam+48DkGdnGcjo6MJ89EjZ7fwfPyAAy/2f40HIIUq7fz4fMCSmecnV5ThX8/8KpTZs2aNWqFRVOhBCSQzw9XbQ6uhmT23RGN5EVKl8MwMeeU6CIk2gUr+/SCCWvbIewWnkoYyWImb5Ko6KLEJJzubo8p9YBj4e9e/eqCqeAgIC8yo0QQooFPp+PPy7+BZ/jR8Az0EPa7YcIbjMULy9pNtedwN4OJc5ugtEgN1hv81INGCeE5K0cF01nz56FsbGxeif/L5zatm2Lbt265VlyhBBSnBi0b4oSf2+Gjr0dFj6/g3ourXFq8SqNYnliESxXTIWoRkXVOumFf5AeFKqtdAkpdnJcNLm6ukIkEmXuiMfDnj174ObmlieJEUJIcSRyKgvzk2vxXA9IYhn4uNwb8at25/gB6Kl3AhA5ZA7CO46B7PErLWVLSPHyw49RUevs/2ec7t69m5fdEkJIsWJQwga33r/B3m5D0UZojril2xA9wgvKlDSN+xBWKAORU1koYyUIdxuPlFsPtJgxIcVDnhZNwOeB4vXq1cvrbgkhpFjRNdBHv6PesFw5DdDhI+L4RfRyrIawR5nnxvsWvoUp7E6ug7jJL2DSVET0nobkM/Q8UEJ+RJ4XTYQQQvKO0cDOsDu2BvPkoTgaGYTOjZoh1VezO5V5Bnqw2b8c+h2aAelyRA2di8Q9p7ScMSFFV54UTWFhYTQLOCGEaIm4YU0sPXMEVQ3MMFdYGh9/nYTE/Wc1iuXpimC9fT4MB3QClEp88liBlBv+Ws6YkKIpT4qmypUrIyQkJC+6IoQQ8g2VmzbEo/D3qN+1I5Aux6eJv8N/7Fwo0tOzjeX4fFiunAaTif1h0KMtxE1+yYeMCSl68qRoyuldHYQQQnJOx8gA1tsXwHT6EIQr0uCy6Xe0t3dCwoeP2cZyHAfz2SNh9ecscLzP//SzdDlNhElIDtCYJkIIKUQ4Hg9m0wYjcmxXJDMFwqKjENllItJfh2gcDwBMoUDU6IWIHDwbylSZFjMmpOjI1bSxu3fvVnudkZGB48ePw8rKSrVu4MCBP5YZIYSQLPVcOBN2lSuCt3gHBKGRCG83ClZb5kG/TQON4tNfBCPl4j9gaemI6DkFNnuXgm9sqOWsCSncOJaLa2stWrRQe33r1i3UqVMHYrH4c6cch6tXr+ZNhoVEYmIijI2NIZFIYGRk9LPTIYQUE4qYeEQOmYO0u49xSvYJGS71MeXQDvB42V9ISL37GJH9foMySQphlXKwPfQHdKzN8yFrQgqOnHx/56po+i9DQ0M8fvwYZcuW/dGuCi0qmgghPwtLl8Nv1Gw03bkC6WDY4dIb7id8wBNnfnrDf8kCgxDRcwoUn+KgY18CdkdWQWBvlw9ZE1Iw5OT7m8Y0EUJIIccJBajrvRSzuvdHa5E5Gvt/wEe38ciI+JRtrKhqOZQ4uxE6ZWyRERKO8A6jIXsWlA9ZE1L4UNFECCFFAI/Hw9wju3Hy4nnomBlD9ugFPrQZjo/3sn98isChBEqc2Qhh5bJQJiZDmSjNh4wJKXzypGiaOXMmzMzM8qIrQgghP0C/aR2UvLgNgkoOWBP8CLWaNMKTUxeyjdOxsYDdX3/C9uAfEDeokQ+ZElL45EnR5OnpCRMTkx/u5+bNm+jUqRPs7OzAcRxOnjyZbcyGDRvg5OQEsViMihUrZrqzDwDWrFmDihUrQiwWo1SpUpg8eTLS0v598KWXlxc4jlNbKlWq9MPHQwghP4PA3g6mB5bhApeE6AwZTg2bgrSAl9nG8U0MIW5US/Va9vwtko5d0maqhBQquZpyQFukUilq1KiBIUOG4Ndff822/aZNm+Dp6Ylt27ahbt268PPzw/Dhw2FqaopOnToBAPbv348ZM2Zgx44daNiwIV6/fo1BgwaB4zisWrVK1VeVKlVw+fJl1WsdnQL11hBCSI4YlrTFjScPsddtELpEKhDx6yTYHvoDunWrahSfERX7eYB4VCwUn+JhMqqnljMmpOArUJWBq6srXF1dNW6/Z88ejBw5Er169QIAlC1bFvfv38eyZctURdOdO3fQqFEj9O3bFwBgb2+PPn36wNfXV60vHR0d2NjY5NGREELIz2dd1h6T755DRJ/pSLv3GCHdJ0G6eDRq9++WbSzf0hQGXVpCsuUIYueshyJOAjPPYeA4Lh8yJ6RgKtQDwWUyGXR1ddXWicVi+Pn5QS6XAwAaNmyIBw8ewM/PDwDw7t07nDt3Du3bt1eLe/PmDezs7FC2bFn069cPoaGh2e47MTFRbSGEkIKGZ6AH24MrIGhcC5MiA9B8YC9cXu+dbRzH48F84XiYzRwOAEhYvRsx01aCKRTaTpmQAkurRdN/z+bkNRcXF3h7e+PBgwdgjMHf3x/e3t6Qy+WIiYkBAPTt2xcLFixA48aNIRAI4OjoiObNm2PmzJmqfpydneHj44Pz589j06ZNCA4ORpMmTZCUlJTlvpcuXQpjY2PVUqpUKa0eKyGE5BZPXwwz7/lINtGDjCkRNv9PSC/dzTaO4ziYTh4Iy5XTAI5D4q6/EDXcC0yW/UOCCSmSmBaVKlUq17EA2IkTJ77bJiUlhQ0ePJjp6OgwPp/P7Ozs2PTp0xkAFhkZyRhj7Nq1a8za2ppt27aNPXnyhB0/fpyVKlWKLViwIMt+4+PjmZGREfP29s6yTVpaGpNIJKrlw4cPDACTSCS5Ol5CCNE2aXwCO+HSjwVZNGZBts1Z8rmbGscm/XWVBdm1YEEWjVnMws1azJKQ/CWRSDT+/v7hMU09e357cCBjDHFxcT/a/XeJxWLs2LEDW7ZsQVRUFGxtbbF161YYGhrC0tISADBnzhwMGDAAw4YNAwBUq1YNUqkUI0aMwKxZs775qAETExNUqFABQUFZT/AmEokgEmU/2y4hhBQUeibGcDvtg6hRCyA9dQ3PBv2GiNFd4OY1PdtYg84twDM2RPzq3TCd2D8fsiWk4Pnhouny5cvYs2cPDAwM1NYzxnDz5s0f7V4jAoEAJUuWBAAcPHgQHTt2VBVDKSkpmQojPp+vyvFbkpOT8fbtWwwYMECLWRNCSP7jBDqw3jIXQVBg0K61eDP/HnZLpeizYn62sXrN6kDctLZqMDhjDEpJMvgm9KBfUjz8cNHUvHlzGBoaomnTppm2Va9ePUd9JScnq53dCQ4ORkBAAMzMzFC6dGl4enoiPDxcNRfT69ev4efnB2dnZ8THx2PVqlUIDAzErl27VH106tQJq1atQq1ateDs7IygoCDMmTMHnTp1UhVPU6dORadOnVCmTBl8/PgR8+bNA5/PR58+fXLzlhBCSIHG6ejAfuNcVP7nHD69fgaL7WeRWKMujPp3zD72q7vnEtbvh2T7cdgdWQlhBXstZkxIwfDDRdPx48ez3HbpUs4mRfP390eLFi1Urz08PAAA7u7u8PHxQUREhNpdbQqFAitXrsSrV68gEAjQokUL3LlzB/b29qo2s2fPBsdxmD17NsLDw2FpaYlOnTph8eLFqjZhYWHo06cPYmNjYWlpicaNG+PevXuqS3yEEFLUCEQiHHzqh6fjF8Do2HV8mrwMLF0O4yFdNYpXpsqQdOhvKD5GI7zTONgeWA7dXyprOWtCfi6OZXWNKgt9+vTBrFmzULWqZhOkFRc5eUoyIYQUFIwxxM79E5LNh/EqQ4qgDnUxYe8WjWIVsQmI6DMdskcvwOmJYbN7CfSa1dFyxoTkrZx8f+d4yoFDhw6hVatWCAwM/OZ2xhiSk5Nz2i0hhJCfgOM4mC8YB9mQThgoCcTEfVuxbcBojWL55iawO74G4mZ1wFJSEdFnGpL/uqbljAn5eXI1T1PNmjXRsmXLbxZO0dHRefIcOkIIIfmD4zhUWjoV/Vu0gRNfH7XPBSBu2fYsb5b5Gs9AD7b7lkG/cwtAnoGo4fMg8Tmp/aQJ+QlyXDRxHAcfHx+0bNkSLVu2xNOnTzO1USqVeZIcIYSQ/MHj8bD68hlc/H0tjHk6iP/DB3ELt2hUOHEiIay3zoPRIDeAsc8LIUVQjosmxhj4fD7279+PVq1afbNwomcTEUJI4cNxHEpOHQrzxRMBAEf/WAePxi4a/RDm+HxYLJ8Cu5PrYDxYs8HkhBQ2uX6MCo/Hw759+9C6dWu0bNkST548ycu8CCGE/CQmI7ojzdMdE5JeYs2dS9jSqT+YJoUTx0HcqJbqtSJOgtjFW8HkGdpMl5B8k6vLc6rg/xdObdq0QatWrahwIoSQIqKKxzD8PmQM2oss0NI3FJ8mLcvRw3oZY4h0n4WENXsQOdATypQ0LWZLSP7I1eU5tQ54POzdu1dVOAUEBORVboQQQn6iydv/xIG9+6Cjo4OkA+cQPXYxFOmaPayX4ziYTOgHTixCyuV7iOg+GYqErB+CTkhhkOOi6ezZszA2Nlbv5P+FU9u2bdGtW7c8S44QQsjPZdS9Lay3eQE6fCzfswM9Kv2CdGmKRrH6bRrA9sgq8IwNkHY/EB87j0NGZIx2EyZEi3JcNLm6un7zQbU8Hg979uyBm5ubRndbEEIIKRwMOjWHdMlorE8JxYngZ9jbvj+YTLMzTmLn6rA79Sf41uZIf/EO4R3GQP4uTMsZE6IdOSqaIiMjIZPJsu7s/2ec7t27BwB49+7dj2VHCCGkQKg+uBf2L1yOKUZl0ez5J0QM8IQyNevvg6+JKjuixNmN0LEvgYzQCESNWUg/rkmhlKOi6ejRozAzM0PXrl2xc+dOfPr0KVMbPz8/nDx5ElWqVEGNGjXyLFFCCCE/V/fZU7Hw7BFwerpIveaH0N5TkPwpVqNYQRk7lDi7EeLmdWG1YRZNTUMKpRw/ey4oKAinTp3CX3/9hXv37qFu3bpo3749goODcebMGQBAhw4d4ObmhjZt2kBXV1criRc09Ow5QkhxkXrvCcJ6T4VHxCPEGAhxIfAhjGytc9VXRlQsdKzN8zhDQjSXk+/vHBdNX4uNjcWZM2dw7tw52Nvbw83NDQ0aNCiWvyCoaCKEFCePj51B4x5dkMaU2F+nPX69dAB8E8Mc9ZFyxReRg2fBYpkHjPq011KmhHxfvhVN5F9UNBFCipt/9h3F02m/o41cDGG18rA7sgp8cxON4z9NX4XEnScAAObzx8JkTG8tZUpI1nLy/Z3rGcEJIYQUb436dcfgy4fAtzRF+tM3eN5xFCKev9Y43mLZZBiP/Vwoxc7bgNgFm2mAOCnQqGgihBCSa6LKjrD7az2kFkbo738WzerUQ9jjQI1iOY6DhddYmM0dBQBIWL8PnybnbOZxQvITFU2EEEJ+iLB8GQg3eiKay0BMmhQv+02DPCxK43jT8f1gufo3gMdD0r6ziJm+is44kQKJiiZCCCE/rFKLxrh+9Rr2VmoBh6hkfOw8DvKQjxrHG/XvCOst8wAeD8qUVIDONpECiAaC5xEaCE4IIUDGx2h87DoR8ndhCDHVhe2mOajcqqnG8am+T6Bbtyo4Hv2mJ/kj3+6eu3LlCq5cuYLo6GgolUq1bTt27Mhtt4USFU2EEPJZRmQM7nQYhh4BfwM8DldOnUVV11Y57ocpFEi79wTiRrW0kCUhn+XL3XPz589H27ZtceXKFcTExCA+Pl5tIYQQUjzp2Fig3J5lMBXrwZTxkT5hGWSBQTnqg2VkIHrUAnzsOhFJRy9qKVNCckYnt4GbN2+Gj48PBgwYkJf5EEIIKQLsKlfEjYCH+Dh4NoxehuJj1wmwPbIKujUradYBnw+euQnAGKLHLQHPUB/6Lo20mjMh2cn1mab09HQ0bNgwL3MhhBBShFiXc0D1s1sgqlsVyoQkHGrXHzd37tcoluM4WCyZCIOeLoBCgaihc5F6+6GWMybk+3JdNA0bNgz792v24SeEEFI88Y0MYHd4JZ5VssbIqEfoMHQg7u8+rFEsx+PBau0M6LdvAiZLR0T/GUh7+FzLGROStVxfnktLS8PWrVtx+fJlVK9eHQKBQG37qlWrfjg5QgghhR/PQA/Nj21G7aq+EEtSYDRrM1LKlIVeszrZxnI6OrDaMg+Rfacj9dZDRPSeBru/1kPkVDYfMidEXa7vnmvRokXWnXIcrl69muukCiO6e44QQr5PGp+ATyPnQ3HNH5xICOudi6DfpoFGscrkFHzsPhnpgUGw9lkM/db1tZwtKS7ogb0/ARVNhBCSPSZLR9QIL0jP3cLO9AhUmzAEvRbO1ChWEZ+I9NchEDtX13KWpDihB/YSQggpkDiRENbeC+BbuxQWJ75F/0Wz4b9Os3n9+KZGagWT/P1HKGITtJQpIZnlekwTACQkJGD79u148eIFAKBy5coYOnQojI2N8yQ5QgghRQ8n0EGPv3bieLXnsAqLhckiHyTZ2MGwZzuN+0h/GYyP3SdDx9YSdsfXgGeor8WMCfks12ea/P394ejoiNWrVyMuLg5xcXFYvXo1HB0d8fAh3RZKCCEkawKRCIee+2PeiLHg/j8Xk2T3Kc074HFg8gzIAl4iov8MKFNl2kuWkP/L9ZimJk2aoFy5cti2bRt0dD6fsMrIyMCwYcPw7t073Lx5M08TLehoTBMhhOQcUyoRM3MtEryPwTP5DRp0d8OUvVs1ipU9foXwLhPAklOg17YhbHwWgxP80AUUUgzly5gmf39//Pbbb6qCCQB0dHQwffp0+Pv756rPmzdvolOnTrCzswPHcTh58mS2MRs2bICTkxPEYjEqVqyI3bt3Z2qzZs0aVKxYEWKxGKVKlcLkyZORlpaWqR97e3vo6urC2dkZfn5+uToGQgghmuN4PFgsnYRbLSrhmCwa0/dtg/+KzRrFimpUhO2+ZeB0hUi5eAfR4xaDKRRazpgUZ7kumoyMjBAaGppp/YcPH2BoaJirPqVSKWrUqIENGzZo1H7Tpk3w9PSEl5cXnj17hvnz52Ps2LE4ffq0qs3+/fsxY8YMzJs3Dy9evMD27dtx6NAhzJz5790ahw4dgoeHB+bNm4eHDx+iRo0acHFxQXR0dK6OgxBCiOY4jsOgQ1sxuYkL1htWgunKg5BevKNRrLhhTVjvWATo8JF8/DJiZqwG3RROtIbl0vjx41nJkiXZwYMHWWhoKAsNDWUHDhxgJUuWZBMnTsxttyoA2IkTJ77bpkGDBmzq1Klq6zw8PFijRo1Ur8eOHctatmz53Tb16tVjY8eOVb1WKBTMzs6OLV26VON8JRIJA8AkEonGMYQQQv6lVCpZ1NhFLMiiMXtbujVLffBM49jE45dYkGUTFtpyCFMkSbWYJSlqcvL9neuLv3/88Qc4jsPAgQORkZEBABAIBBg9ejR+//33vKnosiGTyaCrq6u2TiwWw8/PD3K5HAKBAA0bNsTevXvh5+eHevXq4d27dzh37pzqQcPp6el48OABPD09VX3weDy0bt0ad+/e/e6+ZbJ/Bx4mJibm8dERQkjxwnEcLFf/hoxP8Yi+/A/GN2+NZcf3o2rr5tnGGnZtDZ6uCLqNaoFnoKf9ZEmxlOvLc0KhEGvXrkV8fDwCAgIQEBCguoNOJBLlZY5ZcnFxgbe3Nx48eADGGPz9/eHt7Q25XI6YmBgAQN++fbFgwQI0btwYAoEAjo6OaN68ueryXExMDBQKBaytrdX6tra2RmRkZJb7Xrp0KYyNjVVLqVKltHeghBBSTHACHdhsX4DFolicS4pAz85dkB7xSaNYfdcm4BsZqF6nv3mvrTRJMfXDk1vq6emhWrVqqFatGvT08re6nzNnDlxdXVG/fn0IBAK4ubnB3d0dwOezRQBw/fp1LFmyBBs3bsTDhw9x/PhxnD17FgsXLvyhfXt6ekIikaiWDx8+/PDxEEII+fysujWXTqOugQV+Fzkgqt9vUCZJc9RH/J/78aHxQCSduKylLElxlKPLcx4eHli4cCH09fXh4eHx3bb58cBesViMHTt2YMuWLYiKioKtrS22bt0KQ0NDWFpaAvhcWA0YMADDhg0DAFSrVg1SqRQjRozArFmzYGFhAT6fj6ioKLW+o6KiYGNjk+W+RSJRvp1RI4SQ4qZElYq4/fgRwjuMRvrTN4gcPBu2+5eDEwqyjWWMISM0AlAqET1mEXj6etBv2zAfsiZFXY7OND169AhyuVz156yWgIAAbeSaJYFAgJIlS4LP5+PgwYPo2LGj6kxTSkqK6s9f8Pl8AJ//xxIKhahduzauXLmi2q5UKnHlyhU0aKDZgyQJIYTkPWHZkrA9sAKcnhivrt7GxPotofj/GNrv4TgOFr9PhkG3NkCGAlFD5yD1n0f5kDEp6nJ0punatWuqP+/atQslS5bMVJAwxnJ9qSo5ORlBQUGq18HBwQgICICZmRlKly4NT09PhIeHq+Ziev36Nfz8/ODs7Iz4+HisWrUKgYGB2LVrl6qPTp06YdWqVahVqxacnZ0RFBSEOXPmoFOnTqriycPDA+7u7qhTpw7q1auHNWvWQCqVYvDgwbk6DkIIIXlDt2YlGG2chT6d2yLqUTqM23XDwst/ZRvH8XiwWj8TyuQUpFz4BxH9Z8DuxFro1qyUD1mTIiu3t+jxeDwWFRWVaX1MTAzj8Xi56vPatWsMQKbF3d2dMcaYu7s7a9asmar98+fPWc2aNZlYLGZGRkbMzc2NvXz5Uq1PuVzOvLy8mKOjI9PV1WWlSpViY8aMYfHx8Wrt1q9fz0qXLs2EQiGrV68eu3fvXo5ypykHCCFEezaPmcIq8/XZHbN6LH7zYY3jFKlpLMxtPAuyaMzeVejAZC/faTFLUhjl5Ps7149R4fF4iIyMhJWVldr69+/fo3LlypBKczZor7Cjx6gQQoh2Ra/yQdLS7QDHwXqrFwy6tNQoTpmcgo+/ToLs0QuYL5oAk5E9tJwpKUxy8v2d43mavgwA5zgOc+fOVbtjTqFQwNfXFzVr1sxpt4QQQsh3WU52Bxcdj8Ttx3Fq2BSYhY5Cuwkjs43jGejB9uAKpFy6C8Ne7fIhU1JU5bhoevTo82A6xhiePn0KoVCo2iYUClGjRg1MnTo17zIkhBBC8P8B3osn4O7Txxh8bjeEk8bhtn0Z1OicfSHENzNWK5iUySlgGQrwTXL32C9SPOX68tzgwYOxdu1auhT1f3R5jhBC8kdKggQtHSvDOFmGteUawvHCNghKWmcf+H+K+ERE9J0OMAa7o6tpBvFiLiff37me3HLnzp1UHBBCCMl3eibGOB9wH5vrtoMgOh4RvaZAEa/5o6wUn+Igf/sBsgfPEek+E8o0WfZBhOAHzjR98fz5c4SGhiI9PV1tfefOnX8oscKGzjQRQkj+yvgYjTDX0VB8jMb10vrodfEADMxNNYpNe/gcH3+dBCZNhZ5rY9jsWAhOJ9ePYyWFWE6+v3NdNL179w5du3bF06dPwXEcvnTDcRyAz4PCixMqmgghJP+lvwzG/MauWBL7Ci4ly+N00FMINHxaQ+rth4joPQ1Mlg6Dni6wWj8THO+Hny5GCpl8uTw3ceJEODg4IDo6Gnp6enj27Blu3ryJOnXq4Pr167ntlhBCCNGYsJIDWi6aARF4cIxNQ/ysddD0XIC48S+w9p4P8PlIPnwBsTmIJcVTroumu3fvYsGCBbCwsACPxwOPx0Pjxo2xdOlSTJgwIS9zJIQQQrLUatQg+G/bBw8DeyTtOoWEVbs1jtVv1xhWf84EOA7Jf12FIipWi5mSwi7XF3AVCgUMDT/fqmlhYYGPHz+iYsWKKFOmDF69epVnCRJCCCHZqTqsNyScEDEzViNm6TY8SPqE1l6aTX9j2L0tWIYCunWrQMfGQsuZksIs10VT1apV8fjxYzg4OMDZ2RnLly+HUCjE1q1bUbZs2bzMkRBCCMmW8dBfkRoWieFL5uHc/Gk4wCnQc95vGsUa9XZVe62ITQDf3EQLWZLCLNeX52bPng2lUgkAWLBgAYKDg9GkSROcO3cOa9euzbMECSGEEE1ZzRkFQ8fS4IHDx/V7kfbweY77SLnmh/d1eiH55FUtZEgKsx+ecuBrcXFxMDU1Vd1BV5zQ3XOEEFIwyFPTcKnzMFQMeA+euTFKnN0IoWNpjeM/zViNxO3HAYEObHYvhX7r+lrMlvxs+XL3XMuWLTF//ny1dWZmZkhISEDLlpo9RJEQQgjJawKxLtqd2ApRzUpQxkrwtvskhD3V/IyTxeIJMOjaCpBnIGrIbKTefazFbElhkuszTTweD+bm5mjUqBH27dsHfX19AEBUVBTs7OxoniZCCCE/VcaneDxpMxiDn12BXFeAf14+g2kJW41imTwDkQM9kXL5HniG+rA7sRaiGhW1nDH5GfLlTBMAXL58GZGRkahfvz5CQkJ+pCtCCCEkT+lYmsJg3W/4yOSIlCbBf9B0sHS5RrGcQAfW2xdCt0ENKJOk+NhrCtLfvNdyxqSg+6GiydbWFjdu3EC1atVQt25dmtSSEEJIgVKhaQOc3rsfh23qoWxACKIn/Q72/5uYssPT04XtvmUQ1agIZawEkm1HtZwtKehyXTR9GewtEomwf/9+TJw4Ee3atcPGjRvzLDlCCCHkR9Xv/Ssa7lkF6PCRfOQi3s1arfHM3zxDfdge+gMmkwfCYslELWdKCrofGtMUGRkJKysr1bpjx47B3d0dqampNKaJEEJIgZJ48G/8M3oWBic+w9guPTHn2J5c9cMYA0tJA09fnMcZkp8hX8Y0BQcHw8JCfebUbt264d69e9ixY0duuyWEEEK0wqi3Kx63qIIoZTp2/3UcMYfP57gPplDg0+Rl+NjDA0ppqhayJAVZns7TVJzRmSZCCCn4lEolVrTridYPwmCiqwe7Q39A3PgXjePlIR8R1mYYlAlJEDevC9u9v4MTCbWYMdG2nHx/56ho8vDwwMKFC6Gvrw8PD4/vtl21apWm3RYJVDQRQkjhwBQKRA2bB+mZG+AZ6sPy+GoY1HTSOD7N/xk+dpsMlpIK/Q7NYO3tBU4n108lIz9ZTr6/c/S3/OjRI8jlctWfs1IcZwQnhBBSOHB8Pqw2zUFETALO3byGRfXq4OK1a6jYqJ5G8bp1qsBm9xJE9J0O6dkb+DR5OSzXzgDH+6Eb0kkhkOvLc6GhoShZsiR4//mQMMbw4cMHlC6t+ZT1RQGdaSKEkMIlPTYBdewd8TQ5Dv2ty8PnhT/4ppr/+5189iaihs4FFAqYThsMs+lDtJgt0ZZ8GQju4OCAmJiYTOvj4uLg4OCQ224JIYSQfCE0N8GZ61cx0qI8ZmVYIrLfb1CmyjSON+jQFJZ/TAUAxK/eDXlwuLZSJQVEroumrE5QJScnQ1dXN9cJEUIIIfmldO0aWHvzPEQmRki7H4joUfOhzMjQON6of0eYTh0E2wMrIHAoocVMSUGQ45FrXwaAcxyHuXPnQk9PT7VNoVDA19cXNWvWzLMECSGEEG0SOZWFze6liOg5BWuPHsCHR1ewO+BupuEnWTH7baiWMyQFRY6Lpi8DwBljePr0KYTCf2+1FAqFqFGjBqZOnZp3GRJCCCFaJm5YE7Ge/bF83BAon4ag84ip6Omd87vA09+GImH1HliunEZTERRBOS6arl27BgAYPHgw1q5dS4OeCSGEFAl1xw7Gal9fRBy7gF9O+iGxxVkY9eugcTyTZyCi11RkvI8AeLzPd9TR3eRFCk1umUfo7jlCCCkaYhduRsK6fQCfD5vdS6DftqHGsSnX/BDRexqgVMJ84XiYjOqpxUxJXsiXu+cA4NatW+jfvz8aNGiA8PDPdw3s2bMHt2/f/pFuCSGEkJ/GbPZIGPRsB3mGHCO69cTVHXs1jtVrUQ/m88cCAGLnbUDKVV9tpUl+glwXTceOHYOLiwvEYjEePXoEmezzbZoSiQRLlizJswQJIYSQ/MRxHKzW/AYfWw77k8PRc8RQxD5+rnG88cgeMOzTHlAqETXcC+lBoVrMluSnXBdNixYtwubNm7Ft2zYIBALV+kaNGuHhw4e56vPmzZvo1KkT7OzswHEcTp48mW3Mhg0b4OTkBLFYjIoVK2L37t1q25s3bw6O4zItHTr8e5160KBBmba3a9cuV8dACCGk8OMEOph95SQam9phiZ4jkod6ISMqVrNYjoPliinQrVsVysRkRPafAUVCkpYzJvkh10XTq1ev0LRp00zrjY2NkZCQkKs+pVIpatSogQ0bNmjUftOmTfD09ISXlxeePXuG+fPnY+zYsTh9+rSqzfHjxxEREaFaAgMDwefz0aNHD7W+2rVrp9buwIEDuToGQgghRYOBlQWuvngCl4rVkfE+AhF9p0OZnKJRLCcSwtpnMXRKWIFvZgwm13zuJ1Jw5foJgzY2NggKCoK9vb3a+tu3b6Ns2bK56tPV1RWurq4at9+zZw9GjhyJXr16AQDKli2L+/fvY9myZejUqRMAwMzMTC3m4MGD0NPTy1Q0iUQi2NjY5CpvQgghRZPA2hx2h1cirP0ofAp4jsW/NMVq/2sQGxlmG6tjZQa7E+ugY2dJ0w8UEbk+0zR8+HBMnDgRvr6+4DgOHz9+xL59+zB16lSMHj06L3PMkkwmyzT7uFgshp+fn+rBwv+1fft29O7dG/r6+mrrr1+/DisrK1SsWBGjR49GbKxmp2EJIYQUbQKHErDZvxzDk19gy5sHGOrcHEyp1Dj264JJ/v6jttIk+SDXRdOMGTPQt29ftGrVCsnJyWjatCmGDRuGkSNHYvz48XmZY5ZcXFzg7e2NBw8egDEGf39/eHt7Qy6Xf/O5eH5+fggMDMSwYcPU1rdr1w67d+/GlStXsGzZMty4cQOurq5QKBRZ7lsmkyExMVFtIYQQUjSJazlh4eLFKMXXRf9IhrhFW3IUzxQKxM7fiNCG/ZHm91RLWRJt++F5mtLT0xEUFITk5GRUrlwZBgYGeZMYx+HEiRPo0qVLlm1SU1MxduxY7NmzB4wxWFtbo3///li+fDkiIyNhbW2t1n7kyJG4e/cunjx58t19v3v3Do6Ojrh8+TJatWr1zTZeXl6YP39+pvU0TxMhhBRdMXtPQTJ5BQDAfPFEmIzorlEcUyoRNXQupGdugG9pihIXt0FQ0jr7QKJ1+TZPE/D50SmVK1dGvXr18qxg0pRYLMaOHTuQkpKCkJAQhIaGwt7eHoaGhrC0tFRrK5VKcfDgQQwdmv0zgsqWLQsLCwsEBQVl2cbT0xMSiUS1fPjw4YePhxBCSMFm0b8zzGaNAAD4z/gde6fP0yiO4/Fg9ecsCKuUg+JTPCIHeEIpTdVmqkQLcj0QHACuXLmCK1euIDo6Gsr/XN/dsWPHDyWWEwKBACVLlgTweaB3x44dMz1o8ciRI5DJZOjfv3+2/YWFhSE2Nha2trZZthGJRBCJRD+WOCGEkELHZGJ/vHv5Gj23/o6kFQ9hVsIW7SeOyjaOpy+GzZ6lCGs7HOmBbxA9YSmsvefTo1YKkVyfaZo/fz7atm2LK1euICYmBvHx8WpLbiQnJyMgIAABAQEAgODgYAQEBCA09PPEYJ6enhg4cKCq/evXr7F37168efMGfn5+6N27NwIDA785ueb27dvRpUsXmJubZ9rntGnTcO/ePYSEhODKlStwc3NDuXLl4OLikqvjIIQQUnRxHIea6+eihUMlOOnow3LVIaS/CtYoVlDKBjY7FwMCHUhPXUP8Sh/tJkvyFsslGxsbtnv37tyGf9O1a9cYgEyLu7s7Y4wxd3d31qxZM1X758+fs5o1azKxWMyMjIyYm5sbe/nyZaZ+X758yQCwixcvZtqWkpLC2rZtyywtLZlAIGBlypRhw4cPZ5GRkTnKXSKRMABMIpHkKI4QQkjhlCpJZK/aDWdBFo3Ze+c+LEOSpHGsZM9pFmTRmAVZNmGyV8HaS5JkKyff37keCG5ubg4/Pz84OjrmVf1WqNEDewkhpPhRxMQjrPUwZIRHI7R+RTQ5vgk6Xz0l43tiF2yGqHoFGHRpqeUsyffky0DwYcOGYf/+/bkNJ4QQQgo9voUprHcuwtGMGLic2YHfXLtpHGs+dxQVTIVMrgeCp6WlYevWrbh8+TKqV6+u9vw5AFi1atUPJ0cIIYQUdLq1nGDZtxPkG1/i2a07SLp4B4ZtG+aoj4yIT4hfsxcWC8eBE2p2porkv1wXTU+ePEHNmjUBAIGBgXmVDyGEEFLoDNmwHMbREtS49gwxYxZC95I3BA4lNIplCgU+dp8M+ev3YOnpsFw1ne6oK6B+eHJL8hmNaSKEkOKNydIR3mUCZP7PIKziCNszG6FjoKdRrPTyPUT2nQ4wBoslE2E8XLNJM8mPy8n3d66LJg8Pj293yHHQ1dVFuXLl4ObmlumBuUUVFU2EEEIyIj7hfcsh+ON9AD7YGOKvN0/B5/M1ik3YcACxXhsBPh+2h/6AXrM6Ws6WAPlUNLVo0QIPHz6EQqFAxYoVAXyeN4nP56NSpUp49eoVOI7D7du3Ubly5dzsolChookQQggAPNh7DA0G9IAcDCcmzkaXNQs1imOMIXrcEiQfPg+esQFKXNgKoWMpLWdL8uXuOTc3N7Ru3RofP37EgwcP8ODBA4SFhaFNmzbo06cPwsPD0bRpU0yePDm3uyCEEEIKndr9u2HNwNFYZVAB1Q7eQuo/jzSK4zgOliunQlSnCpSSZEQO8IQiMVnL2ZKcyPWZphIlSuDSpUuZziI9e/YMbdu2RXh4OB4+fIi2bdsiJiYmT5ItyOhMEyGEkC8YY4gevRDJxy6Bb2mKkle2Q8fWMvtAABmRMQhrOwJ8E0PY7F9OD/bVsnw50ySRSBAdHZ1p/adPn5CYmAgAMDExQXp6em53QQghhBRKHMfBctV0CKuUQ3J0DDwau0Aan6BRrI6NBeyOrUaJc5uoYCpgfujy3JAhQ3DixAmEhYUhLCwMJ06cwNChQ9GlSxcAgJ+fHypUqJBXuRJCCCGFBk9PFzY+izE65TXWv3uEoU1aaxwrLF8GvK/uvMuIitVGiiSHcl00bdmyBa1atULv3r1RpkwZlClTBr1790arVq2wefNmAEClSpXg7e2dZ8kSQgghhYnA3g6zFy2ENU8It7B0JO49k6N4xhji1+9DaN1eSPN/pqUsiaZ+eJ6m5ORkvHv3DgBQtmxZGBgY5ElihQ2NaSKEEJKViGXeSPljFyAUoMSZDdCt5aRRHFMqETloFlL+vg2+lRlKXtoGHTsrLWdbvOTLmKYvDAwMUL16dVSvXr3YFkyEEELI99hMGwI918ZAuhxP+01F6NPnGsVxPB6sN86B0KksFNFxiBw4E8qUNC1nS7Lyw2eanj9/jtDQ0EwDvjt37vxDiRU2dKaJEELI9ygSk3G+UXcMfX4NdsamuPPhLXT19TWKlb//iDCXEVDGSmDQtRWstsyjR63kkZx8f+f62XPv3r1D165d8fTpU3Achy+115e/RIVCkduuCSGEkCKHb2SAsqtmILXdFSQmJuLV7NWosXq2RrGCMnaw2b4QH7tPRvKJKxA6lYXp5IFazpj8V64vz02cOBEODg6Ijo6Gnp4enj17hps3b6JOnTq4fv16HqZICCGEFA1ObZrj1Ir1OGZcAwZ7LyD5xBWNY8WNasHi988TRsct2QbZ0zfaSpNkIddnmu7evYurV6/CwsICPB4PPB4PjRs3xtKlSzFhwgQ8eqTZDKiEEEJIcdLMYxRik4GE9fsQPel38MqXhl7V8hrFGru7Qf7mPQRlS0FUTbMYkndyfaZJoVDA0NAQAGBhYYGPHz8CAMqUKYNXr17lTXaEEEJIEWQ2cxjEzergfHwYatatg4igdxrHWiyaAOMhXbWYHclKroumqlWr4vHjxwAAZ2dnLF++HP/88w8WLFiAsmXL5lmChBBCSFHD6ejAdL0nVqWH401aIhZ17gOmVOa4H0V8ImIXbgZLl2shS/JfuS6aZs+eDeX//4IXLFiA4OBgNGnSBOfOncO6devyLEFCCCGkKBLbWuHYgYMYZVgGE6IFiF+5K0fxTKlERA8PJKzbh5hZa7WUJfnaD0858LW4uDiYmpoWy9sgacoBQgghuZF48G98Gr8EAGCz73fot22kcaz04h1E9p8BMAaLZR502S4XcvL9/UNFU1paGp48eYLo6GjVWacvaJ4mQgghRDOfflsNyfZj2IVYdN2zDr+4ttE4Nn79PsQt2Azw+bA9shJ6TWprMdOiJ1+KpvPnz2PAgAGIjc38EEGO44rdPE1UNBFCCMktli7H3OpNsejVPZTRNcST4CAY2Wj2uBTGGKLHLkLykYvgmRqh5IWtEDiU0HLGRUe+PEZl/Pjx6NmzJyIiIqBUKtWW4lYwEUIIIT+CEwow7vgu2Av14c63RMrsP6HpOQ2O42C5ajpEvzhBGZ+IiAEzoEySajnj4inXRVNUVBQ8PDxgbW2dl/kQQgghxZJ15Qp4dOk6BhqWgvSva5BsPqRxLE9XBJtdS8C3sQBLlSEjOk6LmRZfuS6aunfvTjN/E0IIIXnIpGkdWCyaAACI9NoIPx/NCycdGwvYHvoDJS9sgdCxlLZSLNZyPaYpJSUFPXr0gKWlJapVqwaBQKC2fcKECXmSYGFBY5oIIYTkBcYYXg2bjYG7/8QLZQp8r99A5SYNc9WXIiEJfBPDPM6waMmXgeDbt2/HqFGjoKurC3Nzc7VpBjiOw7t3ms9uWhRQ0UQIISSvyBKT0aR0OTxPjMHWWm3R+58T4OmKctRH4r6ziJ2zHrZHV0H3l8payrTwy5eB4LNmzcL8+fMhkUgQEhKC4OBg1VLcCiZCCCEkL4mMDHDs8gX8VboRnEOTEOO5JkfxjDFIz9+GMkmKyIEzkREZo51Ei5lcF03p6eno1asXeLxcd0EIIYSQLJSqUwMNfP4AeDwk7T2DuJ0nNI7lOA7WG2dDUMkBiqhYRA6cCWWqTIvZFg+5rnjc3d1x6JDmA9QIIYQQkjN6zevCbOZwBGWkwHlEf5zb4K1xLM9QH7Z7fgfP1AiyRy/wafIyjacxIN+W66JJoVBg+fLlaNasGcaPHw8PDw+1JTdu3ryJTp06wc7ODhzH4eTJk9nGbNiwAU5OThCLxahYsSJ2796ttr158+bgOC7T0qFDB1Ubxhjmzp0LW1tbiMVitG7dGm/evMnVMRBCCCF5yWRCPxy04RCUkYJpU6ciPQeX2gT2drDZsRDg85F87BIS1u/XYqZFX66LpqdPn6JWrVrg8XgIDAzEo0ePVEtAQECu+pRKpahRowY2bNigUftNmzbB09MTXl5eePbsGebPn4+xY8fi9OnTqjbHjx9HRESEagkMDASfz0ePHj1UbZYvX45169Zh8+bN8PX1hb6+PlxcXJCWlpar4yCEEELyCsdx2HDrItxtKmCnXkV8GjkfTJ6hcby48S+wWDIRABC3aAvSHj7XVqpFXp4+sDcvcRyHEydOoEuXLlm2adiwIRo1aoQVK1ao1k2ZMgW+vr64ffv2N2PWrFmDuXPnIiIiAvr6+mCMwc7ODlOmTMHUqVMBABKJBNbW1vDx8UHv3r01ypfuniOEEKJN6W/eI6ztCLDkFBiP7KGaz0lTn6avAt/aDKYe7mp3vBd3+XL3XEEgk8mgq6urtk4sFsPPzw9yufybMdu3b0fv3r2hr68PAAgODkZkZCRat26tamNsbAxnZ2fcvXtXe8kTQgghOSAsXwbWG2YBAC6s34ZNY6fmKN5i2WSYTRlEBdMPKNRFk4uLC7y9vfHgwQMwxuDv7w9vb2/I5XLExGS+5uvn54fAwEAMGzZMtS4yMhIAMj0OxtraWrXtW2QyGRITE9UWQgghRJv02zdFSM9mcE8MxISNq3D74DGNY78ulpSpMkh2nKCB4TlUqIumOXPmwNXVFfXr14dAIICbmxvc3d0B4JtTIWzfvh3VqlVDvXr1fnjfS5cuhbGxsWopVYqmrCeEEKJ9LdZ6wbVkBXQQWcBi+X4o4nP2o50pFPjYeRxiflsFydajWsqyaCrURZNYLMaOHTuQkpKCkJAQhIaGwt7eHoaGhrC0tFRrK5VKcfDgQQwdOlRtvY2NDYDPDyD+WlRUlGrbt3h6ekIikaiWDx8+5NFREUIIIVnj6ejgsP8/WFOlGQQfohE1agGYQqFxPMfnw7C3KwAgdv5GyB6/0laqRU6hLpq+EAgEKFmyJPh8Pg4ePIiOHTtmOtN05MgRyGQy9O/fX229g4MDbGxscOXKFdW6xMRE+Pr6okGDBlnuUyQSwcjISG0hhBBC8oPY2gK2u5aCE4uQetUXlyfMzVG80ZCu0G/fBJBnIGqEF5TJKVrKtGgpUEVTcnIyAgICVFMWBAcHIyAgAKGhoQA+n90ZOHCgqv3r16+xd+9evHnzBn5+fujduzcCAwOxZMmSTH1v374dXbp0gbm5udp6juMwadIkLFq0CKdOncLTp08xcOBA2NnZfffOPUIIIeRnElUtB4s/pmJR8ju03bgEW6fM0jiW4zhYrpkBnRJWkL8Lw6ffVmkx06KjQBVN/v7+qFWrFmrVqgUA8PDwQK1atTB37ucKOiIiQlVAAZ8n2Fy5ciVq1KiBNm3aIC0tDXfu3IG9vb1av69evcLt27czXZr7Yvr06Rg/fjxGjBiBunXrIjk5GefPn890Zx4hhBBSkBj1bAfLOtUAAK92HEZ6UGg2Ef/imxrBavM8gMdD8uELSDp0XltpFhkFdp6mwobmaSKEEPIzKGTpON2yD6q9joagoj1Knt8CnoGexvHxK3ch7ndv6JSyQel7+8EJBVrMtuApNvM0EUIIIcUdXyREx+NbwbexgPxVCCLHL0FGhuYzhptM6g+TcX1Q4syGYlcw5RQVTYQQQkghp2NtDpsdC5HEB9z3b8JU164ax3J8PsznjYGOnZUWMywaqGgihBBCigDdulXxolcTXE6Pw6bLZ/Hq8Jlc9SP9+xakF+/kcXZFg87PToAQQggheaP3msV47v8IvzyLgHDOZsgb1IGgVNZzDv6X9NxNRLrPAs/UCKWu7YBOCevsg4oROtNECCGEFBEcx2H+lZOoW7culHESRA6aBWWqTON4vdYNIKpZCcr4RESNWgiWg7FRxQEVTYQQQkgRwtMVwXrnIvDMjRHy6CkmNW4LhYYzhnNCAay3eoEz0EPavceIX7lLy9kWLlQ0EUIIIUWMoKQ1jP+ciV6SJ1j/8CYW9R6keaxDCViumgbg83QEqbcfainLwoeKJkIIIaQIMmvdELP6uMOJr49mN94gze+pxrGGXVvDsF8HgDFEjV4IRUy8FjMtPKhoIoQQQoqoMXs248KAiSjFBIgcMgcZkTEax1osnghBhTJQRMYg+cwNLWZZeNCM4HmEZgQnhBBSECmTUxDmOgryl8EIrmSH+qe2wMDURKNY2fO3kAeFwqBzC+0m+RPRjOCEEEIIAQDwDPRg47MY53lJ6HT7KAY2aglNz5eIKjsW6YIpp6hoIoQQQoo4oWMplJ8+Ahlg+F97dx4WZbn3Afz7MBuTsojIjmIWJKhopoRW6htur6mpby6n1DzpMQ/uS2quFaGmWOZG7nk6aSdeQ0vSzONxVxLl5MqSLJosIrGJAs7c7x+9zolEe0bnmRng+7muuczhvu/53T8JvtczzzxPYXomrv99l9lr3MktQP7ERTCW3lSgwtqBF7ckIiKqB3pM+yu+uXwVzb84hLLZH8OlbQh0rZ6QNVcIgdwRb6PizEWIyip4rJ0HSZIUrtj+8EgTERFRPdFjZRScuodD3K5E3tiFMJTfljVPkiS4R00AVCqU/e8+lG7/VuFK7RNDExERUT0hOTjAY9UcwMMNK5KPYFjH52Wf3+TYsTXcZr0BACiY9SEq07KULNUuMTQRERHVI6rGriiYMhgryrPw5flT2Lt8rey5rhNfhf6F9hDlt5E3ZgGMt+XfoqUuYGgiIiKqZ8JGv4r5L/bH0oaBCNrwLe5cl3fxSsnBAR6r58LB3RWV53/CjQVrFK7UvjA0ERER1UNzv/kCQ9o9C2NBEa5PXiz7bTq1lzs8V80FANw6nARjWbmSZdoVhiYiIqJ6yMFRB4+18wCtBr/sPYJdb70re+5jL4bBc+O78Nu3Hg4NH1OwSvvC0ERERFRP6UKegHr6CAwqSsagZe/gaNxO2XMb9usGhwZ6BauzPwxNRERE9Zj/xOEI9PaDi6RG5vtrISqrzJovjEYUrd6GwqWbFarQfjA0ERER1WMOKhU2fp+Ab5u/gGev3kTh4o1mzb99LBk3Fq7BL0s3o/zQKYWqtA8MTURERPWce1ALBH88HwBQtOpzlB85LXuu/rmn4TS8LyAE8se9J/uTeLURQxMRERGhYZ8X4PRqH5ypLEannhHIvpAie6571ERoggJgyC9E/vj3IYxGBSu1HYYmIiIiAgA0fm8Cou/8jH+X/4Jp/QfLvgyBw2OO8Fy3EJKjFrf+eRLFsf9QuFLbYGgiIiIiAIDKqQG2bP0Ugxw98XbhYyiL+072XF1wCzSOmggAuPFeLG6fuahUmTbD0EREREQmbQb2wfqoJXB2UOP6W8tRlXVN9lznEf3QoG9XQJJQeSlDuSJtRBJyj73RA5WUlMDFxQXFxcVwdna2dTlEREQPTRgMuNZvAm4nnsXpFm7os+8zPObkJGuuobgUdzKvQRcapHCVlmHO728eaSIiIqJqJJUKHmvmYtWdHAw+uQtT/nug7LkqF6dqgakuHZthaCIiIqJ7aJr54Pm/jgIAlCddwK2k82avUfFjKq7+1xuoTM20cHW2wdBERERENRoQ9TYO/s9fsbDB47g+Lsrsm/MWLtmIynNpyBuzAMZbFQpVaT12FZoOHTqEvn37wsfHB5IkIT4+/g/nrF69Gi1btoRer0dQUBC2bt16z5iioiJERkbC29sbOp0OgYGBSEhIMH194cKFkCSp2uOpp56y5NaIiIhqHUmS0HnDYqh9PVCVcRUFcz826+22JsvfgqpJI1ReuIwbC1YpWKl12FVounnzJkJDQ7F69WpZ49euXYvZs2dj4cKFOH/+PN555x1ERkbi66+/No2prKxE9+7dkZmZibi4OKSkpGD9+vXw9fWttlZISAhycnJMjyNHjlh0b0RERLWRysUJHqvnolQYMC72Q3w8frrsuWrPxvBYPRcAULI5HmVf/0uZIq1EbesCfqt3797o3bu37PF/+9vfMHbsWAwZMgQA8Pjjj+OHH37AkiVL0LdvXwDApk2bUFhYiGPHjkGj0QAAAgIC7llLrVbDy8vr0TdBRERUx+g7t8P+8ObY8c1x7F27An+aMA5NnnpC1tzHunWE64RXUbTy77g+eQl0oUHQNPVWuGJl2NWRJnNVVFTA0dGx2nN6vR6JiYmoqvr1Ls27du1CeHg4IiMj4enpiVatWiE6OhoGg6HavLS0NPj4+ODxxx/Hq6++iuzsbKvtg4iIyN5N/nIThnoHYqNzMKrmrTHrVilus0dD1z4YxpIy5L35LkTVHQUrVU6tDk09e/bEhg0bkJSUBCEETp06hQ0bNqCqqgoFBQUAgMuXLyMuLg4GgwEJCQmYN28eYmJiEBUVZVonLCwMW7ZswZ49e7B27VpkZGTg+eefR2lp6X1fu6KiAiUlJdUeREREdZXKUYdPD36HDs4euPWvH1C8Lk72XEmjhucnC+Dg3BAOjznCePOWgpUqSNgpAOKrr7564Jjy8nIxatQooVarhUqlEj4+PuKtt94SAERubq4QQognn3xS+Pv7izt37pjmxcTECC8vr/uu+8svvwhnZ2exYcOG+45ZsGCBAHDPo7i42LyNEhER1SJFm78S6e7PiZOencWJL+PNmluRkiGMBoNClT2c4uJi2b+/a/WRJr1ej02bNqG8vByZmZnIzs5GQEAAnJyc0KRJEwCAt7c3AgMDoVKpTPNatmyJ3NxcVFZW1riuq6srAgMDkZ6eft/Xnj17NoqLi02PK1euWHZzREREdsh5ZH9kdHwSffITMeDVP+FGTq7sudrAAEgO/4keorJKiRIVU6tD010ajQZ+fn5QqVTYvn07XnrpJTj8/z9K586dkZ6eDuNv3ntNTU2Ft7c3tFptjeuVlZXhp59+grf3/U9U0+l0cHZ2rvYgIiKq6yRJwjOr3kFDtRYNDcBP78r7xPtvGctvI3/qB8h5bZZZ50bZml2FprKyMiQnJyM5ORkAkJGRgeTkZNNJ2bNnz8aIESNM41NTU/HZZ58hLS0NiYmJGDp0KM6dO4fo6GjTmHHjxqGwsBCTJk1Camoqdu/ejejoaERGRprGTJ8+HQcPHkRmZiaOHTuGAQMGQKVSYdiwYdbZOBERUS3i2twfu9ZvxleuoWgc9y+UH0g0a/6dq7koi/sOtw4komjNdoWqtDy7Ck2nTp1Cu3bt0K5dOwDA1KlT0a5dO8yfPx8AkJOTU+1TbQaDATExMQgNDUX37t1x+/ZtHDt2rNolBfz9/bF371788MMPaNOmDSZOnIhJkyZh1qxZpjFXr17FsGHDEBQUhMGDB6Nx48Y4ceKE6S0+IiIiqq71yFfgMfoVAED++PdhuFEke642MADu708EABS+vw63H+IWLbYgCVGH7qRnQ+bcJZmIiKguMN6qwNXuo7Hjxx/wjfMdfJtx0XRNxD8ihEDemIW4ufOfUDf1ht+BTVA5N1S44nuZ8/vbro40ERERUe3hoNdBFT0e88rSsf/nn7Bm7GTZcyVJQpPlM6Bu6o072Tm4PnWpWbdosQWGJiIiInpovi+E4cOR4zBB74/e319C5U/yLw6tcm4Iz3ULALUKN3f+E6WffaNgpY+OoYmIiIgeyRsbV2BWrwFQ3apE/rgos6747dg+BG5z/gIHNxeoPBsrWOWj4zlNFsJzmoiIqD67cy0fV7q8DsMvJTjbvyMGbFwue64wGmEoKILaw03BCmvGc5qIiIjIqtQ+Hmi8dBreLL2IgZs+xOfvL5M9V3JwqBaYDEX3v42ZLTE0ERERkUU4v/wiQlq3hhYSsj/ZBkNJmdlr3Ew4hOwOQ1C284ACFT4ahiYiIiKymCXfxSMhpCdeufUYCmbKf4vurtunL8JYVIrrUz9AVdY1BSp8eAxNREREZDGObq7ovHkpoFKhLG4fSnd8b9Z8t5lvQNehFYwlZcgb+45ZJ5UrjaGJiIiILMqxQys0mjoCVw230eu1ofhhj/zgJGnU8IydDweXhqhIuoDCRRsUrNQ8DE1ERERkcY2mjsDH+mIcu3UDb/7pNRjvyD9ipGnqjSYfzgQAFK38u9n3tlMKQxMRERFZnKRWY9XXO9BD74EY+KN41Taz5jfs2xXOo14GAORHRuFO3g0FqjQPQxMREREpwvvpVvhy42b4qxxRuGQjbidfMmt+43fGQxv8OBq81AUONrgv3e8xNBEREZFinIb2RoO+XYE7BhwZMQ25GVmy5zrodfBNiEWTD6bBQa9Trki59di6ACIiIqq7JElCk5gZSNBX4KWzezAiordZN+Z1aKBXsDrzMDQRERGRolSNnBH27jQICFRcyUV+/D5bl/RQGJqIiIhIcR1fH4K9Y2dio3Mwymd/bBcndpuLoYmIiIisosuKd6BrHQjjjWLkT1xk1tt09oChiYiIiKxC0mnhGTsPBp0aH3zzJWb0GWTrkszC0ERERERWow1qjktDumBFeTaWf/sVzuzaY+uSZGNoIiIiIqvqu2wBxgY9g2UNA+G+fDtERaWtS5KFoYmIiIisSpIkrDq0FwP8AlF5/ifciF5v65JkYWgiIiIiq1N7uMFjxSwAQP7qz3Fw7RbbFiQDQxMRERHZRIMenXHrf7phYFEy+owfg9SkZFuX9EAMTURERGQzQR/MhMtjDeAoJJyfu9yuL0PA0EREREQ2o3FqgM/jvkSC+zNocyoDpdsSbF3SfTE0ERERkU216NEFT86NBAAUvL0CVZev2riimjE0ERERkc25Rg6FY6e2SCrKw4sdn0XxjUJbl3QPhiYiIiKyOUmlgtuKWZhxMx2Hb/yMOQOG2bqkezA0ERERkV3QB/hi3TvvY4DOA6MvluF24llbl1QNQxMRERHZjR5vT8baP4+HExyQ99f3YCy9aeuSTBiaiIiIyK64L54CdVNv3MnKwbevT4XRaLR1SQAYmoiIiMjOqJwbwmPNXCwtz8JLO9YhetQ4W5cEwM5C06FDh9C3b1/4+PhAkiTEx8f/4ZzVq1ejZcuW0Ov1CAoKwtatW+8ZU1RUhMjISHh7e0On0yEwMBAJCQn3rBMQEABHR0eEhYUhMTHRUtsiIiIiM+nD2iC4VzcAQNbO73Dn5zwbVwSobV3Ab928eROhoaH485//jIEDB/7h+LVr12L27NlYv349OnTogMTERIwZMwaNGjVC3759AQCVlZXo3r07PDw8EBcXB19fX2RlZcHV1dW0zhdffIGpU6ciNjYWYWFh+Oijj9CzZ0+kpKTAw8NDqe0SERHRA4zftgEtXijBUz8VIG98NHz+90NIDrY73iMJO71euSRJ+Oqrr/Dyyy/fd0ynTp3QuXNnLF261PTctGnTcPLkSRw5cgQAEBsbi6VLl+LSpUvQaDQ1rhMWFoYOHTpg1apVAACj0Qh/f39MmDABs2bNklVvSUkJXFxcUFxcDGdnZ5m7JCIiogep/OkKrv7XGxDlt+C2YBwajf+TRdc35/e3Xb09Z66Kigo4OjpWe06v1yMxMRFVVVUAgF27diE8PByRkZHw9PREq1atEB0dDYPBAODXI1FJSUmIiIgwreHg4ICIiAgcP378ga9dUlJS7UFERESWpW3hD/f3JwJqla1Lqd2hqWfPntiwYQOSkpIghMCpU6ewYcMGVFVVoaCgAABw+fJlxMXFwWAwICEhAfPmzUNMTAyioqIAAAUFBTAYDPD09Ky2tqenJ3Jzc+/72osWLYKLi4vp4e/vr9xGiYiI6jGnV/vA/8hWix9lMletDk3z5s1D79698eyzz0Kj0aB///4YOXIkgF+PFgG/vtXm4eGBdevWoX379hgyZAjmzJmD2NjYR3rt2bNno7i42PS4cuXKI++HiIiI7iVJErQtmtq6jNodmvR6PTZt2oTy8nJkZmYiOzsbAQEBcHJyQpMmTQAA3t7eCAwMhEr1n8N6LVu2RG5uLiorK+Hu7g6VSoW8vOpn5efl5cHLy+u+r63T6eDs7FztQURERHVXrQ5Nd2k0Gvj5+UGlUmH79u146aWXTEeaOnfujPT09GoXxkpNTYW3tze0Wi20Wi3at2+P/fv3m75uNBqxf/9+hIeHW30vREREZJ/sKjSVlZUhOTkZycnJAICMjAwkJycjOzsbwK9viY0YMcI0PjU1FZ999hnS0tKQmJiIoUOH4ty5c4iOjjaNGTduHAoLCzFp0iSkpqZi9+7diI6ORmRkpGnM1KlTsX79enz66ae4ePEixo0bh5s3b2LUqFHW2TgRERHZPbu6TtOpU6fQrVs309+nTp0KABg5ciS2bNmCnJwcU4ACAIPBgJiYGKSkpECj0aBbt244duwYAgICTGP8/f2xd+9eTJkyBW3atIGvry8mTZqEmTNnmsYMGTIE169fx/z585Gbm4u2bdtiz54995wcTkRERPWX3V6nqbbhdZqIiIhqn3pznSYiIiIia2FoIiIiIpKBoYmIiIhIBoYmIiIiIhkYmoiIiIhkYGgiIiIikoGhiYiIiEgGhiYiIiIiGezqiuC12d1rhJaUlNi4EiIiIpLr7u9tOdf6ZmiykNLSUgC/3raFiIiIapfS0lK4uLg8cAxvo2IhRqMR165dg5OTEyRJsujaJSUl8Pf3x5UrV3iLFgWxz9bBPlsH+2wd7LN1KNlnIQRKS0vh4+MDB4cHn7XEI00W4uDgAD8/P0Vfw9nZmf9TWgH7bB3ss3Wwz9bBPluHUn3+oyNMd/FEcCIiIiIZGJqIiIiIZGBoqgV0Oh0WLFgAnU5n61LqNPbZOthn62CfrYN9tg576TNPBCciIiKSgUeaiIiIiGRgaCIiIiKSgaGJiIiISAaGJiIiIiIZGJpsYPXq1QgICICjoyPCwsKQmJj4wPFffvklnnrqKTg6OqJ169ZISEio9nUhBObPnw9vb2/o9XpEREQgLS1NyS3UCpbsc1VVFWbOnInWrVujQYMG8PHxwYgRI3Dt2jWlt2H3LP39/FtvvvkmJEnCRx99ZOGqayclen3x4kX069cPLi4uaNCgATp06IDs7GyltlArWLrPZWVlGD9+PPz8/KDX6xEcHIzY2Fglt1ArmNPn8+fPY9CgQQgICHjgzwRz/+3MJsiqtm/fLrRardi0aZM4f/68GDNmjHB1dRV5eXk1jj969KhQqVTigw8+EBcuXBBz584VGo1GnD171jRm8eLFwsXFRcTHx4t///vfol+/fqJ58+bi1q1b1tqW3bF0n4uKikRERIT44osvxKVLl8Tx48dFx44dRfv27a25LbujxPfzXTt27BChoaHCx8dHfPjhhwrvxP4p0ev09HTh5uYmZsyYIU6fPi3S09PFzp0777tmfaBEn8eMGSNatGghDhw4IDIyMsQnn3wiVCqV2Llzp7W2ZXfM7XNiYqKYPn262LZtm/Dy8qrxZ4K5az4MhiYr69ixo4iMjDT93WAwCB8fH7Fo0aIaxw8ePFj06dOn2nNhYWFi7NixQgghjEaj8PLyEkuXLjV9vaioSOh0OrFt2zYFdlA7WLrPNUlMTBQARFZWlmWKroWU6vPVq1eFr6+vOHfunGjWrBlDk1Cm10OGDBGvvfaaMgXXUkr0OSQkRLz77rvVxjz99NNizpw5Fqy8djG3z791v58Jj7KmXHx7zooqKyuRlJSEiIgI03MODg6IiIjA8ePHa5xz/PjxauMBoGfPnqbxGRkZyM3NrTbGxcUFYWFh912zrlOizzUpLi6GJElwdXW1SN21jVJ9NhqNGD58OGbMmIGQkBBliq9llOi10WjE7t27ERgYiJ49e8LDwwNhYWGIj49XbB/2Tqnv6U6dOmHXrl34+eefIYTAgQMHkJqaih49eiizETv3MH22xZo1YWiyooKCAhgMBnh6elZ73tPTE7m5uTXOyc3NfeD4u3+as2Zdp0Sff+/27duYOXMmhg0bVm9v0qlUn5csWQK1Wo2JEydavuhaSole5+fno6ysDIsXL0avXr3w3XffYcCAARg4cCAOHjyozEbsnFLf0ytXrkRwcDD8/Pyg1WrRq1cvrF69Gi+88ILlN1ELPEyfbbFmTdQWW4monqiqqsLgwYMhhMDatWttXU6dkpSUhBUrVuD06dOQJMnW5dRpRqMRANC/f39MmTIFANC2bVscO3YMsbGx6NKliy3Lq1NWrlyJEydOYNeuXWjWrBkOHTqEyMhI+Pj43HOUiuwbjzRZkbu7O1QqFfLy8qo9n5eXBy8vrxrneHl5PXD83T/NWbOuU6LPd90NTFlZWdi3b1+9PcoEKNPnw4cPIz8/H02bNoVarYZarUZWVhamTZuGgIAARfZRGyjRa3d3d6jVagQHB1cb07Jly3r76Tkl+nzr1i28/fbbWL58Ofr27Ys2bdpg/PjxGDJkCJYtW6bMRuzcw/TZFmvWhKHJirRaLdq3b4/9+/ebnjMajdi/fz/Cw8NrnBMeHl5tPADs27fPNL558+bw8vKqNqakpAQnT56875p1nRJ9Bv4TmNLS0vD999+jcePGymygllCiz8OHD8ePP/6I5ORk08PHxwczZszA3r17lduMnVOi11qtFh06dEBKSkq1MampqWjWrJmFd1A7KNHnqqoqVFVVwcGh+q9blUplOtpX3zxMn22xZo0sdko5ybJ9+3ah0+nEli1bxIULF8Rf/vIX4erqKnJzc4UQQgwfPlzMmjXLNP7o0aNCrVaLZcuWiYsXL4oFCxbUeMkBV1dXsXPnTvHjjz+K/v3785IDFu5zZWWl6Nevn/Dz8xPJyckiJyfH9KioqLDJHu2BEt/Pv8dPz/1KiV7v2LFDaDQasW7dOpGWliZWrlwpVCqVOHz4sNX3Zy+U6HOXLl1ESEiIOHDggLh8+bLYvHmzcHR0FGvWrLH6/uyFuX2uqKgQZ86cEWfOnBHe3t5i+vTp4syZMyItLU32mpbA0GQDK1euFE2bNhVarVZ07NhRnDhxwvS1Ll26iJEjR1Yb/49//EMEBgYKrVYrQkJCxO7du6t93Wg0innz5glPT0+h0+nEiy++KFJSUqyxFbtmyT5nZGQIADU+Dhw4YKUd2SdLfz//HkPTfyjR640bN4onnnhCODo6itDQUBEfH6/0Nuyepfuck5MjXn/9deHj4yMcHR1FUFCQiImJEUaj0RrbsVvm9Pl+P4O7dOkie01LkIQQwnLHrYiIiIjqJp7TRERERCQDQxMRERGRDAxNRERERDIwNBERERHJwNBEREREJANDExEREZEMDE1EREREMjA0EREREcnA0ERE9UbXrl0xefJkW5dBRLUUrwhORHVS165d0bZtW3z00Uem5woLC6HRaODk5GT1eqZMmYKsrCzs2LHD6q9NRJbBI01EVG+4ubnZJDABQGJiIp555hmbvDYRWQZDExHVOa+//joOHjyIFStWQJIkSJKEzMzMe96e69q1KyZMmIDJkyejUaNG8PT0xPr163Hz5k2MGjUKTk5OeOKJJ/Dtt9+a5hiNRixatAjNmzeHXq9HaGgo4uLi7ltLZWUlNBoNjh07hjlz5kCSJDz77LNKbp+IFMLQRER1zooVKxAeHo4xY8YgJycHOTk58Pf3r3Hsp59+Cnd3dyQmJmLChAkYN24cXnnlFXTq1AmnT59Gjx49MHz4cJSXlwMAFi1ahK1btyI2Nhbnz5/HlClT8Nprr+HgwYM1rq9Wq3H06FEAQHJyMnJycrBnzx5lNk5EiuI5TURUJ9V0TtPvn+vatSsMBgMOHz4MADAYDHBxccHAgQOxdetWAEBubi68vb1x/PhxtGvXDm5ubvj+++8RHh5uWnf06NEoLy/H559/XmMt8fHxGD16NAoKCpTZLBFZhdrWBRAR2VKbNm1M/61SqdC4cWO0bt3a9JynpycAID8/H+np6SgvL0f37t2rrVFZWYl27drd9zXOnDmD0NBQC1dORNbG0ERE9ZpGo6n2d0mSqj0nSRKAX89lKisrAwDs3r0bvr6+1ebpdLr7vkZycjJDE1EdwNBERHWSVquFwWCw6JrBwcHQ6XTIzs5Gly5dZM87e/YsBg0aZNFaiMj6GJqIqE4KCAjAyZMnkZmZiYYNG8LNze2R13RycsL06dMxZcoUGI1GPPfccyguLsbRo0fh7OyMkSNH1jjPaDQiJSUF165dQ4MGDeDi4vLItRCR9fHTc0RUJ02fPh0qlQrBwcFo0qQJsrOzLbLue++9h3nz5mHRokVo2bIlevXqhd27d6N58+b3nRMVFYUtW7bA19cXUVFRFqmDiKyPn54jIiIikoFHmoiIiIhkYGgiIiIikoGhiYiIiEgGhiYiIiIiGRiaiIiIiGRgaCIiIiKSgaGJiIiISAaGJiIiIiIZGJqIiIiIZGBoIiIiIpKBoYmIiIhIBoYmIiIiIhn+D5ZLa5NiCkORAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk0AAAHICAYAAABTb96uAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAmSVJREFUeJzs3Xd4VMXXwPHvbnpvJCSh9yJVQKT33kG6NAGpUiIiSO8CgiBSBKSLIFKUIgpIEQRCCxBKaKGFhPTeNrvz/sGPfY0USQhsAufzPPeRnTt37rnLyp6dO3dGo5RSCCGEEEKI59KaOgAhhBBCiJxAkiYhhBBCiBcgSZMQQgghxAuQpEkIIYQQ4gVI0iSEEEII8QIkaRJCCCGEeAGSNAkhhBBCvABJmoQQQgghXoAkTUIIIYQQL0CSJiFEtnL79m00Gg1r1qx5K877pqhbty5169Y1dRhCvFKSNAmRTa1ZswaNRoNGo+Ho0aNP7FdKkS9fPjQaDS1btjRBhC9n48aNLFiw4K0575vg8uXLTJ48mdu3b5s6FCFMwtzUAQghns/a2pqNGzdSs2bNdOWHDx/m/v37WFlZmSiyl7Nx40b8/f0ZMWJEuvICBQqQlJSEhYXFG3XeN8Hly5eZMmUKdevWpWDBgun2/fHHH6YJSojXSHqahMjmmjdvzpYtW0hLS0tXvnHjRipVqoSnp6eJIns1NBoN1tbWmJmZvRXnzW4SEhIydZylpSWWlpZZHI0Q2YskTUJkc127diUiIoJ9+/YZy1JTU/n555/p1q3bU4/56quvqF69Om5ubtjY2FCpUiV+/vnnJ+olJSUxbNgwcuXKhYODA61btyYoKAiNRsPkyZON9SZPnoxGo+HGjRv07t0bZ2dnnJyc6NOnD4mJiU+0u2HDBipVqoSNjQ2urq506dKFe/fuGffXrVuX3bt3c+fOHeMtyMc9F/8eW3To0CFjnX9v/+zt+OWXX2jRogXe3t5YWVlRpEgRpk2bhl6vz9R5H/vzzz+pVasWdnZ2ODs706ZNG65cuZKuTkbfn6fZsmWL8T3LlSsXH374IUFBQcb9X331FRqNhjt37jxx7NixY7G0tCQqKspYdvLkSZo2bYqTkxO2trbUqVOHY8eOPTXuy5cv061bN1xcXJ7o0XxszZo1dOzYEYB69eoZ379Dhw4Z39t/jml6/Pf2008/MWXKFPLkyYODgwMffPABMTExpKSkMGLECDw8PLC3t6dPnz6kpKQ8cd7/+iwJ8TrJ7TkhsrmCBQtSrVo1fvzxR5o1awbAb7/9RkxMDF26dOGbb7554piFCxfSunVrunfvTmpqKps2baJjx47s2rWLFi1aGOv17t2bn376iR49evD+++9z+PDhdPv/rVOnThQqVIhZs2Zx9uxZVq5ciYeHB7NnzzbWmTFjBhMmTKBTp07069ePsLAwFi1aRO3atTl37hzOzs6MGzeOmJgY7t+/z9dffw2Avb39U89ZqlQp1q9fn64sOjoaHx8fPDw8jGVr1qzB3t4eHx8f7O3t+fPPP5k4cSKxsbHMnTsXIEPnBdi/fz/NmjWjcOHCTJ48maSkJBYtWkSNGjU4e/bsE7eoXuT9eZo1a9bQp08fqlSpwqxZs3j48CELFy7k2LFjxvesU6dOjB49mp9++onPPvss3fE//fQTjRs3xsXFBXiU6DVr1oxKlSoxadIktFotq1evpn79+vz111+899576Y7v2LEjxYoVY+bMmSilnhpj7dq1GTZsGN988w1ffPEFpUqVAjD+91lmzZqFjY0NY8aM4caNGyxatAgLCwu0Wi1RUVFMnjyZEydOsGbNGgoVKsTEiRONx77IZ0mI10oJIbKl1atXK0CdOnVKffvtt8rBwUElJiYqpZTq2LGjqlevnlJKqQIFCqgWLVqkO/ZxvcdSU1NVmTJlVP369Y1lZ86cUYAaMWJEurq9e/dWgJo0aZKxbNKkSQpQH330Ubq67dq1U25ubsbXt2/fVmZmZmrGjBnp6l28eFGZm5unK2/RooUqUKDAE9cdGBioALV69eqnvi8Gg0G1bNlS2dvbq0uXLj3zmpVSasCAAcrW1lYlJydn6rwVKlRQHh4eKiIiwlh2/vx5pdVqVc+ePY1lL/r+PE1qaqry8PBQZcqUUUlJScbyXbt2KUBNnDjRWFatWjVVqVKldMf7+voqQK1bt04p9ej9KVasmGrSpIkyGAzGeomJiapQoUKqUaNGT8TdtWvX58b42JYtWxSgDh48+MS+OnXqqDp16hhfHzx4UAGqTJkyKjU11VjetWtXpdFoVLNmzdIdX61atXR/Lxn5LAnxusjtOSFygE6dOpGUlMSuXbuIi4tj165dz7w1B2BjY2P8c1RUFDExMdSqVYuzZ88ay/fu3QvA4MGD0x37ySefPLPdgQMHpntdq1YtIiIiiI2NBWDbtm0YDAY6depEeHi4cfP09KRYsWIcPHjwxS/6GaZNm8auXbtYs2YNpUuXNpb/85rj4uIIDw+nVq1aJCYmcvXq1QyfJzg4GD8/P3r37o2rq6uxvFy5cjRq1Ig9e/Y8ccx/vT9Pc/r0aUJDQxk8eDDW1tbG8hYtWlCyZEl2795tLOvcuTNnzpzh5s2bxrLNmzdjZWVFmzZtAPDz8+P69et069aNiIgI499BQkICDRo04MiRIxgMhufGnZV69uyZbnB91apVUUrx0UcfpatXtWpV7t27Zxy79zo+S0JklNyeEyIHcHd3p2HDhmzcuJHExET0ej0ffPDBM+vv2rWL6dOn4+fnl26ciEajMf75zp07aLVaChUqlO7YokWLPrPd/Pnzp3v9+HZQVFQUjo6OXL9+HaUUxYoVe+rxL/tk2t69e5kyZQpjx46lQ4cO6fZdunSJ8ePH8+effz6RpMTExGT4XI/HDpUoUeKJfaVKleL3338nISEBOzs7Y/l/vT8ZPU/JkiXTTTfRsWNHfHx82Lx5M1988QVKKbZs2UKzZs2M7V+/fh2AXr16PfPaYmJijLEBT3wGstK/3xMnJycA8uXL90S5wWAgJiYGNze3V/5ZEiIzJGkSIofo1q0b/fv3JyQkhGbNmj1zPMdff/1F69atqV27NkuWLMHLywsLCwtWr17Nxo0bXyqGZz1Zpv43DsZgMKDRaPjtt9+eWvd544f+S2BgIN27d6dRo0ZMnz493b7o6Gjq1KmDo6MjU6dOpUiRIlhbW3P27Fk+//zzJ3pWXpX/en9elre3N7Vq1eKnn37iiy++4MSJE9y9ezfdmKnH1zp37lwqVKjw1Hb+/ffwz166rPas98SUnyUhMkuSJiFyiHbt2jFgwABOnDjB5s2bn1lv69atWFtb8/vvv6ebw2n16tXp6hUoUACDwUBgYGC6X/M3btzIdIxFihRBKUWhQoUoXrz4c+v+s9frvyQlJdG+fXucnZ358ccf0WrTjyw4dOgQERERbNu2jdq1axvLAwMDM33eAgUKABAQEPDEvqtXr5IrV650vUyZ9c/z1K9fP92+gIAA4/7HOnfuzODBgwkICGDz5s3Y2trSqlUr4/4iRYoA4OjoSMOGDV86vn/KyN/Zy8rIZ0mI10XGNAmRQ9jb27N06VImT56c7kvy38zMzNBoNOketb99+zY7duxIV69JkyYALFmyJF35okWLMh1j+/btMTMzY8qUKU/0riiliIiIML62s7N74dtmAwcO5Nq1a2zfvj3dbaXHHvdE/POcqampT1xbRs7r5eVFhQoVWLt2LdHR0cZyf39//vjjD5o3b/5Csf+XypUr4+HhwbJly9LdSv3tt9+4cuXKE08zdujQATMzM3788Ue2bNlCy5Yt0yVvlSpVokiRInz11VfEx8c/cb6wsLBMx/r4PP98P16VjHyWhHhdpKdJiBzkeeNUHmvRogXz58+nadOmdOvWjdDQUBYvXkzRokW5cOGCsV6lSpXo0KEDCxYsICIiwjjlwLVr14DM9SoUKVKE6dOnM3bsWG7fvk3btm1xcHAgMDCQ7du38/HHHzNq1Cjj+Tdv3oyPjw9VqlTB3t7+qcng7t27WbduHR06dODChQvprsHe3p62bdtSvXp1XFxc6NWrF8OGDUOj0bB+/fqn3hZ70fPCo1tczZo1o1q1avTt29c45YCTk1O6eaxehoWFBbNnz6ZPnz7UqVOHrl27GqccKFiwICNHjkxX38PDg3r16jF//nzi4uLo3Llzuv1arZaVK1fSrFkz3nnnHfr06UOePHkICgri4MGDODo6snPnzkzFWqFCBczMzJg9ezYxMTFYWVlRv379dFM/ZJWMfJaEeG1M8MSeEOIF/HPKged52pQD33//vSpWrJiysrJSJUuWVKtXrzY+Xv5PCQkJasiQIcrV1VXZ29urtm3bqoCAAAWoL7/80ljv8bFhYWFPjTEwMDBd+datW1XNmjWVnZ2dsrOzUyVLllRDhgxRAQEBxjrx8fGqW7duytnZWQHGx83//ej/43M8bfvnI+rHjh1T77//vrKxsVHe3t5q9OjR6vfff3/iEfkXPe9j+/fvVzVq1FA2NjbK0dFRtWrVSl2+fDldnYy+P0+zefNmVbFiRWVlZaVcXV1V9+7d1f37959ad8WKFQpQDg4O6aYp+Kdz586p9u3bKzc3N2VlZaUKFCigOnXqpA4cOPCfcT/PihUrVOHChZWZmVm69/ZZUw5s2bIl3fHP+lw/K5YX+SwJ8bpolMqiEYpCiDeCn58fFStWZMOGDXTv3t3U4QghRLYhY5qEeIslJSU9UbZgwQK0Wm26AdVCCCFkTJMQb7U5c+Zw5swZ6tWrh7m5Ob/99hu//fYbH3/88RPz6AghxNtObs8J8Rbbt28fU6ZM4fLly8THx5M/f3569OjBuHHjMDeX31RCCPFPkjQJIYQQQrwAGdMkhBBCCPECJGkSQgghhHgBMmghixgMBh48eICDg8NrXWpACCGEEJmnlCIuLg5vb+8nlmj6N0massiDBw/kaSMhhBAih7p37x558+Z9bh1JmrKIg4MD8OhNd3R0NHE0QgghhHgRsbGx5MuXz/g9/jySNGWRx7fkHB0dJWkSQgghcpgXGVojA8GFEEIIIV6AJE1CCCGEEC9AkiYhhBBCiBcgY5qEEEJkCb1ej06nM3UYQqRjYWGBmZlZlrQlSZMQQoiXopQiJCSE6OhoU4cixFM5Ozvj6en50vMoStIkhBDipTxOmDw8PLC1tZUJfkW2oZQiMTGR0NBQALy8vF6qPUmahBBCZJperzcmTG5ubqYOR4gn2NjYABAaGoqHh8dL3aqTgeBCCCEy7fEYJltbWxNHIsSzPf58vuyYO0mahBBCvDS5JSeys6z6fErSJIQQQgjxArJV0jRr1iyqVKmCg4MDHh4etG3bloCAgP88bsuWLZQsWRJra2vKli3Lnj170u1XSjFx4kS8vLywsbGhYcOGXL9+PV2dyMhIunfvjqOjI87OzvTt25f4+PgsvT4hhBBC5FzZKmk6fPgwQ4YM4cSJE+zbtw+dTkfjxo1JSEh45jF///03Xbt2pW/fvpw7d462bdvStm1b/P39jXXmzJnDN998w7Jlyzh58iR2dnY0adKE5ORkY53u3btz6dIl9u3bx65duzhy5Agff/zxK71eIYQQptO7d280Go1xc3Nzo2nTply4cMFY55/7H281a9ZM187Bgwdp2bIl7u7uWFtbU6RIETp37syRI0fS1VuxYgXly5fH3t4eZ2dnKlasyKxZs17LtYosorKx0NBQBajDhw8/s06nTp1UixYt0pVVrVpVDRgwQCmllMFgUJ6enmru3LnG/dHR0crKykr9+OOPSimlLl++rAB16tQpY53ffvtNaTQaFRQU9EKxxsTEKEDFxMS88PW9iLSIaBV51l+FX76m0lJTs7RtIYR4WUlJSery5csqKSnJ1KFkWK9evVTTpk1VcHCwCg4OVufOnVMtWrRQ+fLlM9YB1OrVq411goODVUREhHH/4sWLlUajUT179lQHDhxQt2/fVufPn1cLFixQ7777rrHe999/r2xtbdXKlSvV9evXlb+/v9q4caP64osvXus1v62e9znNyPd3tp5yICYmBgBXV9dn1jl+/Dg+Pj7pypo0acKOHTsACAwMJCQkhIYNGxr3Ozk5UbVqVY4fP06XLl04fvw4zs7OVK5c2VinYcOGaLVaTp48Sbt27Z44b0pKCikpKcbXsbGxmbrG/xK3+TeWjJ7A+PgbNLJ0ZalTaTAzQ2NhwYTYa6RpNXzWogNFKlfEzNWRoJAQbl66Qr7ChShcpjTmXu6YubugdbBD62SP1trqlcQphBA5kZWVFZ6engB4enoyZswYatWqRVhYGO7u7sD/T4z4b3fv3mXEiBGMGDGC+fPnp9tXrlw5hg0bZnz966+/0qlTJ/r27Wsse+edd17FJYlXKNsmTQaDgREjRlCjRg3KlCnzzHohISHkzp07XVnu3LkJCQkx7n9c9rw6Hh4e6fabm5vj6upqrPNvs2bNYsqUKRm7qExQOj2x6AFw0piDAtL0qDQ9O2ODiFN6+u46hMteXwC2JgUzIeEmDSxd+c6xtLGdHjEXSVR65pVvQJmK5dG6OHL1zm2O+J6gqJsHtQqXxMzVCa2bMwY3J2zy5samekUs8j563wzJKaBLQ2Nng0abre7qCiGyGaUUKjH5vyu+Ahpb60w/KRUfH8+GDRsoWrToC805tXXrVnQ6HaNHj356LP+Iw9PTk8OHD3Pnzh0KFCiQqfiE6WXbpGnIkCH4+/tz9OhRU4fyVGPHjk3XwxUbG0u+fPmy/Dwuw7oze1h3JoSEkXTnPrbRiaQFh5EWEs6E/e6ER0RQpFYjHJQWfVQsNicOk//OA/KY26Rrxz8tnjilx3DzHvF3IgA4lBTMxISbNHzgSuU7/99TVi/yFGEGHT96VeHd/IXRujpx5uE9frp8hnfM7eninB+NjTVae1uum6Vi7ehIqUHdcWleF62tNbq7wST9dRbLYvmxLFMMra11lr8vQojsSyUmE1iwsUnOXej2H2jsbP674v/s2rULe3t7ABISEvDy8mLXrl1o//HjsGvXrukmRNywYQNt27bl2rVrODo6puuF2rp1K7169TK+Pn78OGXLlmXSpEm0b9+eggULUrx4capVq0bz5s354IMP0p1LZG/ZMmkaOnSocTB23rx5n1vX09OThw8fpit7+PBhuu7Wx2X/nD794cOHVKhQwVjn8RTrj6WlpREZGfnULll41KVrZfX6bnXZe7pj7+meruyzMf2eqPfp/zYAZTBgiEvAEBnLjj//JPTWHcoWK411ih5DdCyFDh2k6Vk9Fa2dMXNww5CYhEpKIUqlkYwBuyQdupv34OY9LiQFszE5hIaWrnRO9kQlp2KIiqVP5CnuG1L46cwF3rVwRGNtyRF9LN+GXeN9CydG2hfEvKA31u+Vxfrd0lhVKIFl6SJym1AIkS3Uq1ePpUuXAhAVFcWSJUto1qwZvr6+xh6hr7/+Ot0Qj39+l/y7V6tJkyb4+fkRFBRE3bp10ev1xmOOHz+Ov78/R44c4e+//6ZXr16sXLmSvXv3SuKUQ2SrpEkpxSeffML27ds5dOgQhQoV+s9jqlWrxoEDBxgxYoSxbN++fVSrVg2AQoUK4enpyYEDB4xJUmxsLCdPnmTQoEHGNqKjozlz5gyVKlUC4M8//8RgMFC1atWsvcjXSKPVYubkgJmTA/X79nhi/4ef9+XDpxx3PzyC0Ft38LaxRxuXiD4qlpqnT/PZ30coZGGHnUch9BHR6CNjsTt1AbvUNFwsHiVBKjmVe0lRnEmLJZfWApQiLTCI+MAgxny/hFxaCz4aNJBio/ph7pmLtKCH6MOjsSxVGI2lxSt+R4QQr4PG1ppCt/8w2bkzws7OjqJFixpfr1y5EicnJ1asWMH06dOBRz+s/1nnsWLFihETE0NISIjxB7a9vT1FixbF3PzpX69lypShTJkyDB48mIEDB1KrVi0OHz5MvXr1MhS3MI1slTQNGTKEjRs38ssvv+Dg4GAcT+Tk5GRcO6Znz57kyZPH+Jjm8OHDqVOnDvPmzaNFixZs2rSJ06dPs3z5cuDRr4ARI0Ywffp0ihUrRqFChZgwYQLe3t60bdsWgFKlStG0aVP69+/PsmXL0Ol0DB06lC5duuDt7f363wgTc8rlhlOu9Pfz67WoTT18nqh79X//VUqhEpLQR8bQyf8yef86imtUAtYhKaT4XSY+PoH1yQ/QA21WbcNy7W7M8+bmAkncvHmTyjYuFCz7DlbvlsKqfMlHPVIlCqJ5xj88QojsS6PRZOgWWXai0WjQarUkJSX9Z90PPviAMWPGMHv2bL7++usMn6t06UfjTp83rY7IXrLVN9LjLtK6deumK1+9ejW9e/cGHj2t8M9uzOrVq7Nx40bGjx/PF198QbFixdixY0e6weOjR48mISGBjz/+mOjoaGrWrMnevXuxtv7/XyQ//PADQ4cOpUGDBmi1Wjp06MA333zz6i72DaPRaNDY26K1t6VEfi9KNG9g3KcMBiLOX2HqvAVcuXCB/C4l0V29Tdr9h/wYf4Mfk0Pol5aHMefNSTkfgEEp/NLiKGPvQpFD67Asmh8AfWw8WjsbNC+x2KIQQvxTSkqK8Qd6VFQU3377LfHx8bRq1eo/j82fPz/z5s1j+PDhREZG0rt3bwoVKkRkZCQbNmwAMI6FGjRoEN7e3tSvX5+8efMSHBzM9OnTcXd3N94ZEdmfRimlTB3EmyA2NhYnJydiYmJwdHQ0dTjZniE+keRzV5j31VdsO3qIQVbeNNA9WlDxRloiTaPP4qgx40zplthXKYN1lTJEHvaFExexKlscqwolsKpQEqsKJbEonFee6BPCRJKTkwkMDKRQoULpfojmBL1792bt2rXG1w4ODpQsWZLPP/+cDh06AI9+EG7fvt14Z+Jp9u/fz/z58zl58iSxsbG4ublRrVo1Bg4cSJMmTYBHA8RXrVrFuXPniIiIIFeuXFSrVo1JkyZRtmzZV3qd4vmf04x8f0vSlEUkaXo56n9jn5LPXOL3LdsZtGMthbDiR6f//8ekV4w/gfokZtgXpZali7Fc42CHVfkSeG+ZJ7fzhHjNcnLSJN4eWZU0yTeMyBY0Gg0WhfNiUTgvH3RsQge1lOjgh1jfDiH59CWST/vj/8NJYgw63LT/P2D8r9QoFt+7QJPoQD5d8h7Wld/BqnwJQgdPwxCf+Gh8VMVHPVLmeXPLSuxCCCEyTZImkS1pNBpcvD3B2xOb6hUAuPvtWE7s/p0q5o7oz10l+fQlfP/ey+m0WAokWhM5bdmjg7VaZsTdpIDWmjaHTuKgffQx17o5YVW+JLa1K+E8pKuJrkwIIUROJUmTyDEcHR1p3LXjoxcdH40TGHU1gPI/bCZvvB67aD3Jpy8R+uABq5OCAGht9f9zW50JuUd0cCBVw0Jx7NUGrf2jMVQPh8zAoqA3VuVLYFOtPFoHu9d7YUIIIXIESZpEjla4ZAkGTJuYrszyvD9jZ83lXsB13D3LkXLhGqTqWJcczM6UMEacjGdokWZYlioEJQviv/lXiprZotVo0FhZYtu4OvYdGmHboKpMwimEEMJIkibxxvEuX4aZm/7/iRiVkkrKxesUGT+OIieOUiVXAYgxkHrpJn5+fnwQc54CWmsO5KqCSkklYechEnYeQutoj+uEATj1bmuqSxFCCJGNSNIk3ngaK0usK7/D13t38Hj6ubSQcJJPXyJq7Tpstl+iqIU9GP7/QdLvkoIonGJNh39McJf2IJS00EisypeQAeVCCPEWkqRJvJXMPXNh37IO/VrWoXfad0Q+DMUxKIK4bfu5vWUPX4ffJg1FwS++4p0t+3Do1JS0oIfELPsJiyL5sO/QCPv2DbEskvWLNAshhMieZJ6mLCLzNL05Qu7d58sRn3H11BkWp+UBXRoAa5MeoNdAG0t347QHVhVLYd++IfbtGmCe2+15zQrxRpJ5mkROIPM0CfGKeObLy4KtPwKgj4whfsefRG3aw9L9JwlXOvI7WNHQ1gMMBlLOXSHl3BWivl5HwUs7ZHJNIYR4g8naE0I8h5mrE04ftcNr57dMnDSR+sVK06BQCdDrQSl+TQ5lalIgN50sSbsfCjya3Txs9Dzidx7CkJxi2gsQQmQ7vXv3TrcsS926dRkxYoTJ4vm37BZPdiJJkxAvwMrKik8mjefAtUsUObcV7+0LcejSjPW6h6xLCOLApXPcrdKZoJZDiJyxnNjVO3j40QTulG5D6LBZJB45jdLrTX0ZQoh/CQkJYfjw4RQtWhRra2ty585NjRo1WLp0KYmJia8lhm3btjFt2rQsbfPfidmbbM2aNTg7O7+Wc8m9BCEySKPVYlPzXWxqvsuMhmX4fs58OrkUB9+rJJ+8wOGjf7EyKYiujnmpHwdxP+4h7sc9mHm4Yt+uAU4ftceicF5TX4YQb71bt25Ro0YNnJ2dmTlzJmXLlsXKyoqLFy+yfPly8uTJQ+vWrZ96rE6nw8LC4qn7MsrV1TVL2hGvnvQ0CfESmrVpzc/HDlFx13IKnN+K68SBbLdK4GBqJH/GP7pdp7G2QmNliT40kpjvtqC7H2I8XqWlmSp0Id56gwcPxtzcnNOnT9OpUydKlSpF4cKFadOmDbt376ZVq1bGuhqNhqVLl9K6dWvs7OyYMWMGer2evn37UqhQIWxsbChRogQLFy5Mdw69Xo+Pjw/Ozs64ubkxevRo/v381b9vh6WkpDBq1Cjy5MmDnZ0dVatW5dChQ8b9j3tWfv/9d0qVKoW9vT1NmzYlODgYgMmTJ7N27Vp++eUXNBoNGo0m3fH/lJCQQM+ePbG3t8fLy4t58+Y9Uee/4rlz5w6tWrXCxcUFOzs73nnnHfbs2WPcf+nSJVq2bImjoyMODg7UqlWLmzdvGvevXLmSUqVKYW1tTcmSJVmyZIlx3+3bt9FoNGzbto169epha2tL+fLlOX78OACHDh2iT58+xMTEGK918uTJT73WLKFEloiJiVGAiomJMXUowsSuXr2qRvcdoPb1+VTdKtlS3chVUx1xqayKmdmqMW4lVMTC9UoXHKaUUips3EJ1r2E/FbV0k7FMiJwkKSlJXb58WSUlJT2xTx+f+OwtKfnF6ya+WN2MCA8PVxqNRs2aNeuF6gPKw8NDrVq1St28eVPduXNHpaamqokTJ6pTp06pW7duqQ0bNihbW1u1efNm43GzZ89WLi4uauvWrery5cuqb9++ysHBQbVp08ZYp06dOmr48OHG1/369VPVq1dXR44cUTdu3FBz585VVlZW6tq1a0oppVavXq0sLCxUw4YN1alTp9SZM2dUqVKlVLdu3ZRSSsXFxalOnTqppk2bquDgYBUcHKxSUlKeel2DBg1S+fPnV/v371cXLlxQLVu2VA4ODhmKp0WLFqpRo0bqwoUL6ubNm2rnzp3q8OHDSiml7t+/r1xdXVX79u3VqVOnVEBAgFq1apW6evWqUkqpDRs2KC8vL7V161Z169YttXXrVuXq6qrWrFmjlFIqMDBQAapkyZJq165dKiAgQH3wwQeqQIECSqfTqZSUFLVgwQLl6OhovNa4uLgnrvN5n9OMfH9L0pRFJGkST2NI1an434+qMe/WVYCqauGkbuSqqW541Fb3O/qoG0WbPXqdq6a64V5LBbUfrmI27FJp0bGmDl2IF/K8LyPjZ/sp24Muo9LVvZm/4TPr3m89NF3dWyVaPLVeRpw4cUIBatu2benK3dzclJ2dnbKzs1OjR482lgNqxIgR/9nukCFDVIcOHYyvvby81Jw5c4yvdTqdyps37zOTpjt37igzMzMVFBSUrt0GDRqosWPHKqUeJU2AunHjhnH/4sWLVe7cuY2ve/Xqle4cTxMXF6csLS3VTz/9ZCyLiIhQNjY2GYqnbNmyavLkyU89x9ixY1WhQoVUamrqU/cXKVJEbdy4MV3ZtGnTVLVq1ZRS/580rVy50rj/0qVLClBXrlxRSj16P5ycnJ57rVmVNMmYJiFeIY2FOXaNazCm6g4KrV2P250wrK+EknzKn5g/T9A06gw1rd0Yk6ccdlHxJB05Q9KRM4SNnodjt+a4zx1l6ksQ4q3i6+uLwWCge/fupKSkf/q1cuXKT9RfvHgxq1at4u7duyQlJZGamkqFChUAiImJITg4mKpVqxrrm5ubU7ly5Sdu0T128eJF9Ho9xYsXT1eekpKCm9v/zwVna2tLkSJFjK+9vLwIDQ3N0LXevHmT1NTUdPG5urpSokSJDMUzbNgwBg0axB9//EHDhg3p0KED5cqVA8DPz49atWo9dfxXQkICN2/epG/fvvTv399YnpaWhpOTU7q6j9t7fK0AoaGhlCxZMkPX/LIkaRLiNXBycuLjYUONr1Nv3uPHybO4t+FvDiVHMDkyDjQatE4OpGgVFlHxaKwsjfWVXk/SsXPY1KiIxszMFJcgRIYVuv3Hs3eapR9SW/Dyr8+uq01ft8CZLS8TFgBFixZFo9EQEBCQrrxw4cIA2NjYPHGMnZ1dutebNm1i1KhRzJs3j2rVquHg4MDcuXM5efJkpuOKj4/HzMyMM2fOYPav/9ft7e2Nf/53EqLRaJ6ZiL2MF4mnX79+NGnShN27d/PHH38wa9Ys5s2bxyeffPLU9/GfbQOsWLEiXeIGPHGuf17v42WsDAZD5i8skyRpEsIELIvko8fab8nbqz2hJ/1wDksj/peDGGLi6BB1DhetBTMO5KZC0fzYt6lPysVrBHcYaXwCz75DI6wqlJQ18ES2prV79hfm66r7LG5ubjRq1Ihvv/2WTz755ImE6EUcO3aM6tWrM3jwYGPZPwc4Ozk54eXlxcmTJ6lduzbwqBflzJkzvPvuu09ts2LFiuj1ekJDQ6lVq1aGY3rM0tIS/X9Mc1KkSBEsLCw4efIk+fPnByAqKopr165Rp06dDMWTL18+Bg4cyMCBAxk7diwrVqzgk08+oVy5cqxdu/apTxvmzp0bb29vbt26Rffu3V/ptWYVeXpOCBPRarU0aNiQruNG4bFgDAUv/ULM5L5c1ifgq4vB/tp9wj+bx+0ybQmctAjsrI1P4AU1/ph7VbsROft7dHcemPpShMiRlixZQlpaGpUrV2bz5s1cuXKFgIAANmzYwNWrV5/o7fi3YsWKcfr0aX7//XeuXbvGhAkTOHXqVLo6w4cP58svv2THjh1cvXqVwYMHEx0d/cw2ixcvTvfu3enZsyfbtm0jMDAQX19fZs2axe7du1/42goWLMiFCxcICAggPDwcnU73RB17e3v69u3LZ599xp9//om/vz+9e/dG+4+evReJZ8SIEfz+++8EBgZy9uxZDh48SKlSpQAYOnQosbGxdOnShdOnT3P9+nXWr19v7OGbMmUKs2bN4ptvvuHatWtcvHiR1atXM3/+/Axda3x8PAcOHCA8PPzVzq/1n6OexAuRgeAiq9y8eVP9sGy5ilryo7pbp5e6kaumamrppgpqrdVaz0rqTtWu6mae+v8/ADZ3HZV8PsDUYYu31PMG2OYEDx48UEOHDlWFChVSFhYWyt7eXr333ntq7ty5KiEhwVgPUNu3b093bHJysurdu7dycnJSzs7OatCgQWrMmDGqfPnyxjo6nU4NHz5cOTo6KmdnZ+Xj46N69uz53KfnHj+VV7BgQWVhYaG8vLxUu3bt1IULF5RSTx/4vH37dvXPr/TQ0FDVqFEjZW9vrwB18ODBp15/XFyc+vDDD5Wtra3KnTu3mjNnTobjGTp0qCpSpIiysrJS7u7uqkePHio8PNx4/Pnz51Xjxo2Vra2tcnBwULVq1VI3b9407v/hhx9UhQoVlKWlpXJxcVG1a9c2DtB/PBD83LlzxvpRUVFPXNPAgQOVm5ubAtSkSZOeuM6sGgguC/ZmEVmwV7wqMWcuUajWe0QlJbLTuQKlzB+NI4j3cMTS2gZ7OzvyHl7z//f5k1LQ2liZMmTxFpEFe0VOkFUL9srtOSGyOadK73A39CE///QT9bYsxb5dAzTWliwLvECVczv49vxRIiYtJi0sCkN8InerdCZ05Gx0d4NNHboQQrxRZCC4EDmAvb09HTp2BMCu4fvoY+Pxr1qNhKv3yacsiVm6mdi1v2JTuxL6hxHEbdhF3KbfcOjaHJeRPbHI52niKxBCiJxPepqEyIHMHO05cvkCR44coffWVViVL4FKTGL3r7/yrS6Y5HzukKYnbv1O7lbtStinc9HdC/nvhoUQQjyT9DQJkUNpNBrjI8B2Dd8nbtch5nRpx/XEGAjQ8UnukpjlciEtMIjYdb8St3kv+c/9jLm7i4kjF0KInEl6moR4A2g0Guxb1GHqyqVULlaSj0q/h4pLfJQw2VtBwTzYNqmRLmHSx8abMGIhhMh5JGkS4g2h1Wrp0rUrp65doczxH3Ff9AXmBbyY8OA89c/+wsE//yRm7S+oVB26W/e5U7YdYaPnkRb00NShCyFEjiBJkxBvII25OY5dmuG0dymnbNK4a0jGMTqR8FFfcbd6dyKmf4dKTCZ29Q7uvNeVsNHzSXuQsXWrhBDibSNJkxBvMOdcbty8f48tP26ixuwvMHN3Je1OMBu3/MRJR7AoURBSdcSu3s6dKl0I+/xrSZ6EEOIZJGkS4g1nb2/PB1064/zxB+Q/vRntZz2ZkniL7reOcuDiOczze2FRotCj5GnVNu437IdKfXLJBSGEeNtlq6TpyJEjtGrVCm9vbzQaDTt27PjPYxYvXkypUqWwsbGhRIkSrFu3Lt1+nU7H1KlTKVKkCNbW1pQvX569e/emqzN58mQ0Gk26rWTJkll5aUJkC1pba5z6daDnx/0pn6cAtdzyknY3GF1AIIZC3liULIxDrzZoLB8trKmUIi000sRRCyFE9pCtkqaEhATKly/P4sWLX6j+0qVLGTt2LJMnT+bSpUtMmTKFIUOGsHPnTmOd8ePH891337Fo0SIuX77MwIEDadeuHefOnUvX1jvvvENwcLBxO3r0aJZemxDZhaurK4uWLuH07RsUOrsF55E9UbbWtD+3h09O/Ubg3kMk/nUGgKRDp7j7bkfCxy4gLSTcxJELkbV69+79xA9mjUZD06ZNX8v5J0+eTIUKFV7LuUTWyFbzNDVr1oxmzZq9cP3169czYMAAOnfuDEDhwoU5deoUs2fPplWrVsY648aNo3nz5gAMGjSI/fv3M2/ePDZs2GBsy9zcHE9PmTVZvD3Mzc3B2QG3L/pzuUI+/Fs047Y+iQkXrhPcfgTWNd/FzNkBlZJKzMqtxK7fiWPP1jgP6465Zy5Thy9ElmjatCmrV69OV2ZlJWs3iqfLVj1NGZWSkvLEwns2Njb4+vqi0+meW+ffPUnXr1/H29ubwoUL0717d+7evfuf546NjU23CZFT1WrelLNnz7JsyVIK9O8MlhYkHz3Lpq0/E/9OQSzfKfooeVrxM3erdCZ83DfS8yTeCFZWVnh6eqbbXFxcOHToEJaWlvz111/GunPmzMHDw4OHDx9N07F3715q1qyJs7Mzbm5utGzZkps3b6Zr//79+3Tt2hVXV1fs7OyoXLkyJ0+eZM2aNUyZMoXz588be7jWrFnzOi9dZEKOTpqaNGnCypUrOXPmDEopTp8+zcqVK9HpdISHhxvrzJ8/n+vXr2MwGNi3bx/btm0jOPj/FzOtWrUqa9asYe/evSxdupTAwEBq1apFXFzcM889a9YsnJycjFu+fPle+fUK8SpVrFiR7gP74/7lSPKf/JEHzd/DJy6AGkd+5MHFy1i/VwbLMkVRyanELN9CcPfPTR2yyOYSEhJISEhAKWUsS01NJSEhgZSUlKfWNRgMxjKdTkdCQgLJyckvVDcr1a1blxEjRtCjRw9iYmI4d+4cEyZMYOXKleTOndsYh4+PD6dPn+bAgQNotVratWtnjCs+Pp46deoQFBTEr7/+yvnz5xk9ejQGg4HOnTvz6aefphsa8viuicjGVDYFqO3btz+3TmJiourTp48yNzdXZmZmytvbW40ePVoBKiQkRCmlVGhoqGrTpo3SarXKzMxMFS9eXA0ePFhZW1s/s92oqCjl6OioVq5c+cw6ycnJKiYmxrjdu3dPASomJiZT1ytEdnP69Gn1bpmyqnmhUuqGR211I1dNdSNXTXWv9RB1t24fFbttn7GuPilZ6ULCTRitMJWkpCR1+fJllZSU9MQ+QAEqNDTUWDZ9+nQFqH79+qWra2trqwAVGBhoLPv6668VoLp165aubq5cuRSg/P39jWXLly/PcOy9evVSZmZmys7OLt02Y8YMpZRSKSkpqkKFCqpTp06qdOnSqn///s9tLywsTAHq4sWLSimlvvvuO+Xg4KAiIiKeWn/SpEmqfPnyGY5bZNzzPqcxMTEv/P2do3uabGxsWLVqFYmJidy+fZu7d+9SsGBBHBwccHd3B8Dd3Z0dO3aQkJDAnTt3uHr1Kvb29hQuXPiZ7To7O1O8eHFu3LjxzDpWVlY4Ojqm24R4k1SqVInTF87zo98J8v21Frs29Yk3pNFo92pWnT5CzO/H0N1+AEDsup2PbttN/FaethM5Sr169fDz80u3DRw4EABLS0t++OEHtm7dSnJyMl9//XW6Y69fv07Xrl0pXLgwjo6OFCxYEMA4vMPPz4+KFSvi6ur6Wq9JvDrZaiB4ZllYWJA3b14ANm3aRMuWLdFq0+eD1tbW5MmTB51Ox9atW+nUqdMz24uPj+fmzZv06NHjlcYtRHan0Wge/SBwdMRz5RTWuei4+tUJ1iQG0eXnfdz95SCO3Vqgux+CSkohZulmYtfswLFPO5yHdMXcQ74s3mbx8Y/WN7S1tTWWffbZZ4wYMeLRgwj/EBr6aFJVGxsbY9mQIUPo378/ZmZm6erevn37ibq9e/fOVIx2dnYULVr0mfv//vtvACIjI4mMjMTOzs64r1WrVhQoUIAVK1bg7e2NwWCgTJkypKamPhGfeDNkq6QpPj4+Xe9OYGAgfn5+uLq6kj9/fsaOHUtQUJBxLqZr167h6+tL1apViYqKYv78+fj7+7N27VpjGydPniQoKIgKFSoQFBTE5MmTMRgMjB492lhn1KhRxg//gwcPmDRpEmZmZnTt2vX1XbwQOcCIGZOxL5SX3KkKh79vkXTQl5i1v3BUxdG4WTP0wWGkXrhGzJJNxK7ejuNH7XAe0i3dQsHi7fHPBOMxS0tLLC0tX6iuhYUFFhYWL1w3q928eZORI0eyYsUKNm/eTK9evdi/fz9arZaIiAgCAgJYsWIFtWrVAnjiAaNy5cqxcuVKIiMjn9rbZGlpiV6vz/K4xauTrW7PnT59mooVK1KxYkUAfHx8qFixIhMnTgQgODg43VNter2eefPmUb58eRo1akRycjJ///23sYsUIDk5mfHjx1O6dGnatWtHnjx5OHr0KM7OzsY6j59uKFGiBJ06dcLNzY0TJ04Yb/EJIR6xtLRk8ODBdBgxBO+f5uG9czF/FXGmT+QF2m5eSkpAIHat6mBZrvijnqfFmwj/fL6pwxbimVJSUggJCUm3hYeHo9fr+fDDD2nSpAl9+vRh9erVXLhwgXnz5gHg4uKCm5sby5cv58aNG/z555/4+Pika7tr1654enrStm1bjh07xq1bt9i6dSvHjx8HoGDBgsbOgfDw8CcGx4ts6FUMuHobZWQgmRBvkmXLlil7G1s1pFAF42DxG/kbqpCPJ6m7DT5SyX5XjXXTwiJVWlikCaMVWe15A2yzu169ehkHq/9zK1GihJoyZYry8vJS4eH//4DD1q1blaWlpfLz81NKKbVv3z5VqlQpZWVlpcqVK6cOHTr0xENMt2/fVh06dFCOjo7K1tZWVa5cWZ08eVIp9eiBog4dOihnZ2cFqNWrV7/Oy3+rZNVAcI1S/3gWVGRabGwsTk5OxMTEyKBw8dYJCwt7dCvl1BUiZ63gmt8FZsTfYqRHSWr6DMTp4w/Q2tsSNno+cZt/w3lgZ5xH9EBrI5MI5nTJyckEBgZSqFChJ+bEEyK7eN7nNCPf39nq9pwQImdyd3fH2dkZu0bVyHvge1aUd+GgLor5oVeJnLWCO5U7EfXtRlIuXkMlJhM1fy336/Uh6cQFU4cuhBAvTJImIUSW0mg0TF+xlG5duzJt5kwsCufFEBFD0ORvuX3jBg7dW2KW2w3dzXs8aDWEsM+/xhCfaOqwhRDiP0nSJITIckWLFuWHjRupOWog+Y6tx/2bsfxgFU/9G38ye8VSsLTAtuH7AMSu2sa9mj1I9rtq4qiFEOL5JGkSQrxSGnNzHLs251b1EuhQeLu4ob8XQuL+E9g2qYF5Pk8MicmYe3uYOlQhhHguSZqEEK/F5i1bOHz4MMP8D+LYszUA/rv3EZKSgMuYvukmwkz2vWiqMEUmyTNFIjvLqs+nJE1CiNemdu3aWDg74j7vM9w2zWF4yk2aXNnHHp/JhH06F0NcAvG7DhPUYjAhvceTFhJu6pDFf3g8qWRiooxLE9nX48/ny06Cmq1mBBdCvD0SSxXAtmRhzK4GUMTMhth1v5J44AQ2Dd4HczMSdh8m6egZ3KYOxaFrczQajalDFk9hZmaGs7OzcRkUW1tb+bsS2YZSisTEREJDQ3F2dn5iSZ6MknmasojM0yRExul0OgICAigSoyN0xJek3X7AtbQEKrRsQtr9EFL9Hy2rZFO3Cu7zPsMiv5eJIxZPo5QiJCSE6OhoU4cixFM5Ozvj6en51IQ+I9/fkjRlEUmahHg5hoQk9g0ZR/O1X9PY0o0FRarj0rAa8dv3o5JT0dja4D7HB4fOTU0dqngGvV6PTqczdRhCpGNhYfHcHqaMfH/L7TkhRLagtbMh8P3iaDeYY+1gj3lYFHE/7sG2WU304dGknPLHLJcs/JudmZmZvfTtDyGyMxkILoTINgYOHMhJ35Os8Psbp8FdQKMhYs9hQm8E4vL5R9g2qGqsm3I+AKVLM2G0Qoi3jdyeyyJye06IrJd8yp8hrT/g14e3mO1QnBZdOpJr5nBUSip3a/TAooA3HgvHYFW+hKlDFULkULL2nBDijaDKFMHXzZxwpUOj0RC/bT/3avUkdv1ONBbmpF66wf0mA4iYugxDUoqpwxVCvOEkaRJCZFs2NjacOn2an3/+ma4Hf8KiZCH0YVHcnrMS6yplsW1aE/R6ohf9IAsACyFeObk9l0Xk9pwQr55KSeXOzO+oOf0zqlk4MSFfBby7tiJ+2370DyMAcOr/AW4zhslcQUKIFyK354QQbySNlSWny3rxQKVyUpMIUXHELN2MVfkS2Ldv+KiShbkkTEKIV0J6mrKI9DQJ8focO3YM0vSU8r1J1Py1kKZH52SH+0ftcR7eAzM7GwB0d4PROthh5iL/Twohnk56moQQb7QaNWpQo05tXD/rQ959KzniZU2DwEPsnr2I0AFTSAsJR+n1PBw4lXs1PiT+14OmDlkI8QaQpEkIkaNZvlOEVY5JPDCkcFgfTeLvx7hXswfRK37GEBOHPiyKh30nygLAQoiXJkmTECJH02g0/LZ3L5MnT2beX79jVaEkhph4wscvwjxPbpw+/sC4APC9mj2I3bgbGZUghMgMGdOURWRMkxDZg0pLI3rJZnqO8cFFmfF57tJ4DexKwv7jpJ4PAMCmTmVyL5+MmauTiaMVQpiajGkSQry1NObm3KpRkl1JoWxMCeFGTARR89agdXLAediHaKwt0UfFonW0M3WoQogcRhbsFUK8cSpVqsTvv//OJX9/6lh7EzlrBclHTpN82h+XT7pj16ouGvNH//yplFR090KwLJrfxFELIbI76WkSQryRGjduzEgfH5wHdyHvodXElCtMxwcnOTBzIeFfLER3+wEAUfPXca9Ob6Lmr5MFgIUQzyVJkxDijWdZJD+LC5pzLi2OaYmBJP11hnt1ehG9fAspl29Cqo7IWSu436g/Kf8b9ySEEP8mSZMQ4q3w1Vdf8dFHH7Hml23Y1KiISkwmYtw36KNjcZs8GK2L4/8vADxNFgAWQjxJnp7LIvL0nBA5hzIYiF3zC999NoFbSTEMdytG7uE9SL0SSML/JsK0KJKP3N9Nwqp8CRNHK4R4leTpOSGEeA6NVktam9rM0N3lu6T7bIu+R9TsVeiDw3D7ciRmud1ICw5D6+Rg6lCFENmIJE1CiLeSm5sba9aupW3btgxeNAeNvS3Jp/yJnLQYh95tyL1mOhYFvY31U6/fMWG0QojsQJImIcRbq127dmzfvh2X3u3I99c6rOpUZmLEFf6e8Q1RX35PakAgAEnHznGvZk8i56xCGQwmjloIYSrZKmk6cuQIrVq1wtvbG41Gw44dO/7zmMWLF1OqVClsbGwoUaIE69atS7dfp9MxdepUihQpgrW1NeXLl2fv3r1PbadgwYJYW1tTtWpVfH19s+qyhBA5gEXe3OxsUJwfkoP5MNafiNMXuVe/L1EL1pP0tx8YDETNXU1Izy/Qx8abOlwhhAlkq6QpISGB8uXLs3jx4heqv3TpUsaOHcvkyZO5dOkSU6ZMYciQIezcudNYZ/z48Xz33XcsWrSIy5cvM3DgQNq1a8e5c+eMdTZv3oyPjw+TJk3i7NmzlC9fniZNmhAaGprl1yiEyL46dOhA+/btmTZtGh5Naj2aimDGchJ/P4bL2H5orCxJ/P0YQY0/JvXabVOHK4R4zbLt03MajYbt27fTtm3bZ9apXr06NWrUYO7cucayTz/9lJMnT3L06FEAvL29GTduHEOGDDHW6dChAzY2NmzYsAGAqlWrUqVKFb799lsADAYD+fLl45NPPmHMmDEvFK88PSfEm+Gf/yTG//Q7vp/N4LeIe3zsXIhcw3sQt3E3aUGhaOxsyL1kPHbNa5swWiHEy3prnp5LSUnB2to6XZmNjQ2+vr7odLrn1nmcVKWmpnLmzBkaNmxo3K/VamnYsCHHjx9/7rljY2PTbUKInE+j0Rg32w8aMT53CvMS7zAx4gpRc1dj06Aq1tXKoxKSCOk1juTTl0wdshDiNcnRSVOTJk1YuXIlZ86cQSnF6dOnWblyJTqdjvDwcGOd+fPnc/36dQwGA/v27WPbtm0EBwcDEB4ejl6vJ3fu3Onazp07NyEhIc8896xZs3BycjJu+fLle3UXKoQwCa1Wy+Bhn1CyZEnGDfcBIG7dTtBqcejZGvtOTbGqVNrEUQohXpccnTRNmDCBZs2a8f7772NhYUGbNm3o1asX8OgfO4CFCxdSrFgxSpYsiaWlJUOHDqVPnz7G/Zk1duxYYmJijNu9e/de+nqEENmLRqOhR48eXLp0ibKzR5N71TQ0tjbcOHKcpEOncBrQEY1GA4A+Nt74tJ0Q4s2Uo5MmGxsbVq1aRWJiIrdv3+bu3bsULFgQBwcH3N3dAXB3d2fHjh0kJCRw584drl69ir29PYULFwYgV65cmJmZ8fDhw3RtP3z4EE9Pz2ee28rKCkdHx3SbEOLN9PhHln2rujyYPZDG0WeZfuVv7rUcTPwvB1EGA6GDpnG/yQDidx02cbRCiFclRydNj1lYWJA3b17MzMzYtGkTLVu2fKInydramjx58pCWlsbWrVtp06YNAJaWllSqVIkDBw4Y6xoMBg4cOEC1atVe63UIIbK/k0GBpCoDd5ytIDGZh/0mEjFlKYaEJFRCEg/7jCdixnKUXm/qUIUQWSxLkqbIyEgMWTDhW3x8PH5+fvj5+QEQGBiIn58fd+/eBR7dEuvZs6ex/rVr19iwYQPXr1/H19eXLl264O/vz8yZM411Tp48ybZt27h16xZ//fUXTZs2xWAwMHr0aGMdHx8fVqxYwdq1a7ly5QqDBg0iISGBPn36vPQ1CSHeLJ9++im//vorW/xP4TKkKwAxSzahsbbC8aN2AEQvWE9I9zHoo+NMGaoQIqupTLp06ZKaNWuWqlatmtJqtcrNzU316NFD/fzzzyo+Pj5TbR48eFABT2y9evVSSinVq1cvVadOHWP9y5cvqwoVKigbGxvl6Oio2rRpo65evZquzUOHDqlSpUopKysrY4xBQUFPnHvRokUqf/78ytLSUr333nvqxIkTGYo9JiZGASomJibD1y2EyLlit/yuPncqolY5vqPuVO2qIhf9oG7ma6Bu5KqpblfurJIv3zR1iEKI58jI93eG5mkKCAhg+fLl/Prrrzx8+JBGjRrRpk0bmjdvzq1bt9i5cye//vor165do27durRu3ZpBgwa9kmQvu5F5moR4O+3bt4/GjRujBXY7v0sJF3dcxnxEzLItpN0LwaJ4AfIdWYvGzMzUoQohniIj398ZSppWr17NyZMnadOmDQ0aNMDS0vKp9W7fvs0vv/zCzp072b9/f8aiz6EkaRLi7ZSSksKgQYNwsLRidJAZySfOg0aD8yfdSb1yE5fRH2FdoaSpwxRCPMMrS5rEs0nSJMTbSymFUgpNmp7w8YsIXfUz8UpPgdaN8Fj0BVp7WwASD53CqnwJzFzk3wghsovXPiN4UlISQUFBT5RfuiQz5Qoh3nwajQatVovG0oJcs0cyrYQVbaPPc3LHboJaDEJ3+wEp5wMI6TGG+437k3L5pqlDFkJkwksnTT///DPFihWjRYsWlCtXjpMnTxr39ejR42WbF0KIHCUyMhK/iGDCNGkkONmQevkW9xv1I9nvKmYebqTdfkBQs4HE7/jT1KEKITLopZOm6dOnc+bMGfz8/Fi9ejV9+/Zl48aNQPqFL4UQ4m3g5ubGyZMn2b59O52O/4LVu6UwRMcRPno+Dt2aY1O7MioxmYf9JxExdanM5yREDvLSSZNOpzOu21apUiWOHDnCd999x9SpU43LCwghxNvEycmJVq1aYe7ljvcvi0huXYuJsde4N/M7tO7OOA3oBED0oo0Ed/kMfZQs+C1ETvDSSZOHhwcXLlwwvnZ1dWXfvn1cuXIlXbkQQryNtNZWjLx3mo3JIXyWcJ2ErftJOu6H25cj0dhak3ToFHEbd5s6TCHEC3jpp+fu37+Pubn5U9dpO3bsGDVq1HiZ5nMMeXpOCPEsJ06coE+fPmwcNx3naasxRMagzeWM24RBpPhdIdeXI9G85CLiQojMeaVPz3Xt2hV/f3/j67x58z5zYdu3JWESQojnef/99/H396fihx3Iu28Flu8U5f7DEMI+nYNlqcLwv6EMhqQUopf9hEpLM3HEQoinyXDStHnzZho0aJAucfonpRTx8fEvHZgQQrxJzP43I7hFfi9i5w2jRfxFJkYHEPzZV4R9OheVkkr46HlETFhEcOdR6CNjTByxEOLfMtUfXKFCBerXr//UxCk0NBRnZ+eXjUsIId5Yx8+dIT4tlcA8TiiNhrj1O3nQbjhWld9BY2tD0pEz3G/Un5SL100dqhDiHzKcNGk0GtasWUP9+vWpX78+Fy9efKKOwWDIkuCEEOJN1K9fP/bs2cOOv49QYNM8tI72JJ/yJ+qrNbh//RnmBfOQdjeYoBaDiNu6z9ThCiH+J8NJk1IKMzMzNm7cSIMGDZ6aOMlUA0II8XxNmzbFw8MD2wZVyfPHcrY4pvLbnauEDfsSp0GdsKlfFZWUQujAqYRPWCTjnITIBjL9uIZWq+WHH36gYcOG1K9fX6YXEEKITDofGcL4O2cYHHeVM/HhRHz+NRaF8uI8rDsAcZv3og+NNHGUQgjzjB7wz16kx4nThx9+SIMGDThw4IBxokshhBAvpmLFigwZMoTIiAjql61H9FdriP1+K9Y138V94RjM8+bG3NvD1GEK8dbLcNL072mdtFotGzZsMCZOGzZsyLLghBDibWBubs7ChQvR6/WYmZlhVaYYDwZP5c7h4+S5G4zn2pnGugn7jmOIjsWhYxMTRizE2ynDt+d2796Nk5NT+kb+lzg1btyYDh06ZFlwQgjxNnk8LYF9i9p8Wzc/beIucPJmAEHNBxK//QC6+w8JHTCF0MHTCR//jYxzEuI1y3DS1KxZM6ysrJ5sSKtl/fr1tGnTJksCE0KIt1VCQgJHzp8lPC2FmFL5UUkpPPx4MjGrtuHY79EP05jvtvDgAx/04VEmjlaIt0eWztv/uMfp+PHjWdmsEEK8Vezs7Dh27Bhbtmyh39EdOA/tCkDMoo2kXriG+5LxaOxsSD52jvsN+5FyPsDEEQvxdnjptefEI7L2nBDiVQpav4PPBw1lpFVe3IsWwm3aUCImLkZ38x4aK0vc532GQ+empg5TiBznla49J4QQ4vUbtWczPyQEMSTlJqk37/FwwFRcRn+EbePqqJRUkk89fWkrIUTWyZKk6f79+zILuBBCvEJjxoyhRIkSzN/6IzbVK6DiEwkdMAXLiiXJNfdTcs0cbuoQhXjjZUnSVLp0aW7fvp0VTQkhhHiK8uXLc+nSJao3aYj31gU4ftSeYH0KUV9+T9Kh06hUHQAqLY2HQ2aQfO6KiSMW4s2TJUmTDIsSQohX7/GUBBoLc5KGdKC9/jqjEm8Quesg95sNRBcYRPTSzcT/tJcHrYYS++MeE0csxJtFxjQJIUQOdOLECSIT4gjM6wweLuiuBnK/cX8siuTHtmlNVEoqYcNmEbVgvalDFeKNkeEZwQHWrVuX7nVaWhrbtm3Dw+P/p/nv2bPny0UmhBDimTp16oS7uzuFCxcmj5UdIX3Gk3L6Eg/7jMd1/AAsSxUi+uv1RM5YjiEuAdfxA2QxdSFeUqamHKhXr16613/99ReVK1fGxsbmUaMaDX/++WfWRJhDyJQDQghTUimprGjbm7ijZ2hr7YH9B42wLFmYyOnfAeDYpx25vhyBRis3GIT4p4x8f2fJPE0ODg6cP3+ewoULv2xTOZYkTUIIUwoICKBChQokJyez0qUMdc2csSxXHPv2DYmcshSNjRV596/EslgBU4cqRLaSke/vTN2eE0IIkb0ULVqUkSNHcuHCBTqPnkzYx5NJvXCNuMRkcs0cjkXR/JIwCfGSJGkSQog3gJmZGTNnziQtLQ1zc3Msdy8luMMIIq/dQi3bjPfWBca6qdfvYJ4nN1pba9MFLEQOlCU3t7/44gtcXV2zoikhhBAvwdz80W9hyyL5WNOoKG0SLnLnViBBrYaSev0OqdfvENR6KMGdPkUfG2/iaIXIWbIkaRo7dizOzs4v3c6RI0do1aoV3t7eaDQaduzY8Z/HLF68mFKlSmFjY0OJEiWeeLIPYMGCBZQoUQIbGxvy5cvHyJEjSU5ONu6fPHkyGo0m3VayZMmXvh4hhDCVuLg41m/fyt2UBI66mqEPDiOo9VCSz16B1DSST14guP0I9JExpg5ViBwjWz1GkZCQQPny5Vm8ePEL1V+6dCljx45l8uTJXLp0iSlTpjBkyBB27txprLNx40bGjBnDpEmTuHLlCt9//z2bN2/miy++SNfWO++8Q3BwsHE7evRoll6bEEK8Tg4ODhw+fJglS5bw+cm9WJYrjiE8mohxC3GbMQytmxMp5wMIavMJaSHhpg5XiBwhW41patasGc2aNXvh+uvXr2fAgAF07twZgMKFC3Pq1Clmz55Nq1atAPj777+pUaMG3bp1A6BgwYJ07dqVkydPpmvL3NwcT0/PLLoSIYQwvTx58jBo0CAAvLcv5F4nH275nkWN+ZpcX44kcsZydFcf3brz3vo1Fvm9TByxENlbtuppyqiUlBSsrdMPZLSxscHX1xed7tE6TNWrV+fMmTP4+voCcOvWLfbs2UPz5s3THXf9+nW8vb0pXLgw3bt35+7du/957tjY2HSbEEJkW3Y2fG4fxQcJl/CPCSP8s69w/aI/5gW8SLsdRFCroehuPzB1lEJka680afp3b05Wa9KkCStXruTMmTMopTh9+jQrV65Ep9MRHv6ou7lbt25MnTqVmjVrYmFhQZEiRahbt26623NVq1ZlzZo17N27l6VLlxIYGEitWrWIi4t75rlnzZqFk5OTccuXL98rvVYhhHgZCQkJBN69Q7zSE1u+CCo5lbBP5+I8ogcWxQtgnscDs1zOpg5TiOxNvUL58uXL9LGA2r59+3PrJCYmqj59+ihzc3NlZmamvL291ejRoxWgQkJClFJKHTx4UOXOnVutWLFCXbhwQW3btk3ly5dPTZ069ZntRkVFKUdHR7Vy5cpn1klOTlYxMTHG7d69ewpQMTExmbpeIYR41WJiYtSBAweUIVWngvtOVDdy1VQ3ctdR0d9vVWnRsaYOTwiTiImJeeHv75ce09SpU6dnJWNERka+bPPPZWNjw6pVq/juu+94+PAhXl5eLF++HAcHB9zd3QGYMGECPXr0oF+/fgCULVuWhIQEPv74Y8aNG4f2KUsKODs7U7x4cW7cuPHMc1tZWWFlZfVqLkwIIV4BR0dH6tevD0Du7yYSgJ4LP++k0pgFaMzNcezZGoCob37AqkIJbGtXNmW4QmQ7L5007d+/n/Xr12Nvb5+uXCnFkSNHXrb5F2JhYUHevHkB2LRpEy1btjQmQ4mJiU8kRmZmZsYYnyY+Pp6bN2/So0ePVxi1EEKYTmx8PB/67eVSwmWWqRLU/HQuhsQkzPPkJnLaMjRWluT+fip2TWqYOlQhso2XTprq1q2Lg4MDtWvXfmJfuXLlMtRWfHx8ut6dwMBA/Pz8cHV1JX/+/IwdO5agoCDjXEzXrl3D19eXqlWrEhUVxfz58/H392ft2rXGNlq1asX8+fOpWLEiVatW5caNG0yYMIFWrVoZk6dRo0bRqlUrChQowIMHD5g0aRJmZmZ07do1M2+JEEJke1ZWVnh5eXHnzh2Kde4Am/8kYsK3OI/qhW3TmiTuPUpI73F4LBmPQ7uGpg5XiGzhpZOmbdu2PXPfvn37MtTW6dOnqVevnvG1j48PAL169WLNmjUEBwene6pNr9czb948AgICsLCwoF69evz9998ULFjQWGf8+PFoNBrGjx9PUFAQ7u7utGrVihkzZhjr3L9/n65duxIREYG7uzs1a9bkxIkTxlt8QgjxprG2tmbr1q3cvXuXIkWKEF24CJGzVhD91VqcBnfBvkMj4rfuI3TAVFR8Eo49Wpk6ZCFMTqOedY/qGbp27cq4ceMoU6bMq4opR8rIKslCCJEdnZg0H9+vl9PCyh2H3m3BYCBu3a8AuE0bivPAzqYNUIhXICPf3xmecmDz5s00aNAAf3//p+5XShEfL+sZCSFEThIUFES75XMZEX+NP1IjiFuzA5WcgtOgR4lSxIRvSTkfYOIohTCtTM3TVKFCBerXr//UxCk0NDRL1qETQgjx+nh5edG6dWvKli1LswVTwcyM+J9+R3f/IS6f9cFtyhCsypcwdZhCmFSGkyaNRsOaNWuoX78+9evX5+LFi0/UMRgMWRKcEEKI10Or1bJs2TKOHDlCwT4fkPv7qWBpQeLOQ6T4XcWxTztjXX1sPEqvN12wQphIhpMmpRRmZmZs3LiRBg0aPDVx0mg0WRagEEKI10Oj0eDk5ASAfYvanB/aipW6EBL3HSek+2gM8YnoY+N50G44oYOno3RpJo5YiNcr08uoaLVafvjhBxo2bEj9+vW5cOFCVsYlhBDChG7dukW3KWP5MuYGvxNL0l9nedDpU5L+OkPq5ZvEb9tPyEcTMCSnmDpUIV6bTN2eMx78v8SpUaNGNGjQQBInIYR4QxQuXJiJEyfStm1beuxah9bZgZRT/kTNW4vHt+PQWFk+msup++cY4hNNHa4Qr0Wmbs+la0CrZcOGDcbEyc/PL6tiE0IIYUJffPEFW7duxaFqebx3fIOZuwspF64R9fU6PJaMR2NrQ9KRMwR3+hR9zLMXOBfiTZHhpGn37t3Ge97GRv6XODVu3JgOHTpkWXBCCCFM6/EyVFbvFOXHVmWYoh6QcjWQiGnf4bFkPFone5JP+fOg7XD04VEmjlaIVyvDSVOzZs2eulCtVqtl/fr1tGnT5plrugkhhMiZrly5wri5X7IhMpCjLhrSbgcRMW4h7t+Ow8zdBX14FIb4JFOHKcQrlaEZwUNCQnBxcXlq0vSYUopTp07x3nvvcevWLQoXLpwlgWZ3MiO4EOJNt2HDBm7cuMH4AUN40GEkuut3MHN3JdfXo7EslAfL4gVNHaIQGfbKZgT/+eefcXV1pV27dqxevZqwsLAn6vj6+rJjxw7eeecdypcvn7HIhRBCZFsffvghkydPxtzLHe9fFqEtXYTk0HDCPpmJITHZWC9h/wlSAwJNGKkQr0aG1567ceMGv/76K7/88gsnTpygSpUqNG/enMDAQHbt2gVAixYtaNOmDY0aNcLa2vqVBJ7dSE+TEOJtotfr6dWtO2GHTvC1Pg/WDvZ4/TgXgOAPRqKxs8H7p3kyi7jI9jLy/Z3hpOmfIiIi2LVrF3v27KFgwYK0adOGatWqvZWTW0rSJIR4m5w/f56qVaui1+vZ/H5ryl8NRWNjhcfi8UR/8wMpflfROtjhuXEONu+XM3W4QjzTa0uaxP+TpEkI8bY5cOAAkZGRdGjZmod9xpN44ARYWuDx7RfErt5B8vHzaGys8Fw3C9u6VUwdrhBPJUmTCUjSJIR4m6mUVK71+YLk349hb2GF+4LPid9+gKQ/T4KlBZ4rJmPXvLapwxTiCa9sILgQQgjxNHEpyfS6+Rd9LYKI1aUQNmwWds1rY9eyDqTqCPloIsmn/E0dphAvxdzUAQghhMj57t69y/UbNwCIb10Dx10nCR81F9epn6C1s0Hp0rB6t5SJoxTi5cjtuSwit+eEEG+7CxcuoNPpePfdd4mYvISYJZsAcPmiPy6fdENj/uh3ujIY0GjlRofIHjLy/S09TUIIIbJEuXL//5Sc2+TBBCbFolu5HWauQCUm4/pFf1CK0CHTMc/nhevYfm/l09Yi53qppOnAgQMcOHCA0NBQDAZDun2rVq16qcCEEELkXIGBgbTbuBhLszTW6vPDgvWohCRsGrxP/M/7AFDxibhN/0R6nUSOkelP6pQpU2jcuDEHDhwgPDycqKiodJsQQoi3l1arxdLSEhsPN7wnDQYgZsXPJOw8iNvM4cbXYSPnoPR6U4YqxAvL9JgmLy8v5syZQ48ePbI6phxJxjQJIUR69+7dw9zcHC8vL+I27yV02CwwGLBv3xCb2pUI85kLBgN2reuRe+kENJYWpg5ZvIVey5QDqampVK9ePbOHCyGEeMPly5cPLy8vABw6N+XK0NZcJ4X4bftJ+P0YHkvHg4U5Cb8eJKT3OAxJKSaOWIjny3TS1K9fPzZu3JiVsQghhHhDHT9+nE6zJvCh7jq3zdJI/O0ocT/+Ru4VU9DYWJF4+DSpl26YOkwhnivTA8GTk5NZvnw5+/fvp1y5clhYpO9WnT9//ksHJ4QQ4s1QvHhxSpcujaenJ5U/nUBE7wkkHTqFSkrBc/UMlE6HdeV3TB2mEM+V6TFN9erVe3ajGg1//vlnpoPKiWRMkxBCPF9MTAxWVlZYW1uTfMqf4C6fYYiNx6pCSbw2f4WZqxMAacFhaF0c0VpbmThi8TaQtedMQJImIYTImG/GTcJj/R9USTLHslRhvLbMxxATx4OOn2JdsSS5v5+KxszM1GGKN5ysPSeEECJb+/XXXxk+cyofhflxz9mK1Cu3eNB6KKmXb6IPjyJh9xHCPpuH/K4X2clLTW4ZHR3N999/z5UrVwAoXbo0ffv2xcnJKUuCE0II8WZq3LgxzZo1o0yZMlQfOIzgD0aiu3WfiKnLyDVzOOGj5xO3fidmuVxw+6K/qcMVAniJ23OnT5+mSZMm2NjY8N577wFw6tQpkpKS+OOPP3j33XezNNDsTm7PCSFExuh0OszNzdFoNKQFPeRBh5Hobt7DolgBHD9sScSkxQC4TR+G84COJo5WvKley5imWrVqUbRoUVasWIH5/xZhTEtLo1+/fty6dYsjR45kptkcS5ImIYTIPIPBwMBefSh35CrNEi2xqlQa23rvEfXVGgA8lk7A4YPGpg1SvJFey5im06dP8/nnnxsTJgBzc3NGjx7N6dOnM9XmkSNHaNWqFd7e3mg0Gnbs2PGfxyxevJhSpUphY2NDiRIlWLdu3RN1FixYQIkSJbCxsSFfvnyMHDmS5OTkJ9opWLAg1tbWVK1aFV9f30xdgxBCiIz74YcfWLFhHSMfnCXI3pyUM5dJOnMZx77tAYhZ9pMstyJMLtNjmhwdHbl79y4lS5ZMV37v3j0cHBwy1WZCQgLly5fno48+on379v9Zf+nSpYwdO5YVK1ZQpUoVfH196d+/Py4uLrRq1QqAjRs3MmbMGFatWkX16tW5du0avXv3RqPRGOeS2rx5Mz4+PixbtoyqVauyYMECmjRpQkBAAB4eHpm6FiGEEC+ue/fuHDt2jLp16/Je0bI86DCC5IO+mLk64jK2H05928uTdML0VCZ98sknKm/evGrTpk3q7t276u7du+rHH39UefPmVcOHD89ss0aA2r59+3PrVKtWTY0aNSpdmY+Pj6pRo4bx9ZAhQ1T9+vWfW+e9995TQ4YMMb7W6/XK29tbzZo164XjjYmJUYCKiYl54WOEEEI8Xfy+4+qGZx11I1dNFTb+G2UwGIz79HEJJoxMvGky8v2d6dtzX331Fe3bt6dnz54ULFiQggUL0rt3bz744ANmz56dZUnd86SkpGBtbZ2uzMbGBl9fX3Q6HQDVq1fnzJkzxtttt27dYs+ePTRv3hx4tIbemTNnaNiwobENrVZLw4YNOX78+HPPHRsbm24TQgiRNQxV32FySStC9CnELPuJ6EWPlu2KXvYT92r1JC3ooYkjFG+jTCdNlpaWLFy4kKioKPz8/PDz8yMyMpKvv/4aK6vXM4trkyZNWLlyJWfOnEEpxenTp1m5ciU6nY7w8HAAunXrxtSpU6lZsyYWFhYUKVKEunXr8sUXXwAQHh6OXq8nd+7c6drOnTs3ISEhzzz3rFmzcHJyMm758uV7dRcqhBBvmY8//pgNh/5gpHM0Sikipy0jZs0OYtf/Str9hzzo+Cn6yBhThyneMi89uaWtrS1ly5albNmy2NraZkVML2zChAk0a9aM999/HwsLC9q0aUOvXr2AR71FAIcOHWLmzJksWbKEs2fPsm3bNnbv3s20adNe6txjx44lJibGuN27d++lr0cIIcQjs2bNoly5cny7aQMuw7oDED5mAc5DumLm7YHu+h2Cu43GkJBk4kjF2yRDA8F9fHyYNm0adnZ2+Pj4PLfu61iw18bGhlWrVvHdd9/x8OFDvLy8WL58OQ4ODri7uwOPEqsePXrQr18/AMqWLUtCQgIff/wx48aNI1euXJiZmfHwYfqu3ocPH+Lp6fnMc1tZWb22HjUhhHjbFCxYkHPnzqHValFVqqAPiyJu02+Efz6fXPM/J2LcQlLOXCakz3i8NnyJxtLivxsV4iVlqKfp3LlzxrFC586de+bm5+f3KmJ9JgsLC/LmzYuZmRmbNm2iZcuWxp6mxMRE458fM/vfExhKKSwtLalUqRIHDhww7jcYDBw4cIBq1aq9vosQQgiRzuN/uzUaDYkjOrM6rxmGpBQixn6N24xhaGytSTroS+iwWSiDwcTRirdBhnqaDh48aPzz2rVryZs37xMJiVIq07eq4uPjuXHjhvF1YGAgfn5+uLq6kj9/fsaOHUtQUJBxLqZr167h6+tL1apViYqKYv78+fj7+7N27VpjG61atWL+/PlUrFiRqlWrcuPGDSZMmECrVq2MyZOPjw+9evWicuXKvPfeeyxYsICEhAT69OmTqesQQgiRdeLi4qhZpw5BQUHYlK5Fl9B4IqcuI9dsH8JGziZ+6z7s2zfErnF1U4cq3nCZnqepUKFCBAcHPzGPUWRkJIUKFUKfiUnITp8+Tb169YyvH98C7NWrF2vWrCE4OJi7d+8a9+v1eubNm0dAQAAWFhbUq1ePv//+m4IFCxrrjB8/Ho1Gw/jx4wkKCsLd3Z1WrVoxY8YMY53OnTsTFhbGxIkTCQkJoUKFCuzdu/eJweFCCCFePwcHB3x8fFi9ejUfblqOdtAsUq/cInrBenLNGoFKTpGESbwWmV5GRavVEhIS8kTSdOfOHUqXLk1CQkKWBJhTyDIqQgjxaiUlJWFjY0NacBhBLQaTdi8Eq4ql8N62AK39oweRlFJoNBoTRypykox8f2e4p+lx749Go2HixInpnpjT6/WcPHmSChUqZLRZIYQQ4rlsbGwAMPdy5/aYrsSO/prS5648Ggz+w2wMScmE9BqHU78O2LesY+JoxZsow0nTuXPngEfZ/MWLF7G0tDTus7S0pHz58owaNSrrIhRCCCH+4ciRIzTt1R1HWzu2WJciz6FThA6dgUXxgiQfO0fyKX/MNn+FTc13TR2qeMNk+vZcnz59WLhwodyK+h+5PSeEEK9HbGwsderUIW/evKwaNIrYfpNBl4bjR+1ICwkncc9faOxtyfPLIqzKFTd1uCKby8j3d6aTJpGeJE1CCPH6RERE4OTkhLm5OXHb9hM6YAoALp/1IenYOZL/9sPM3YU8u5ZgUTiviaMV2dkrHdP0b5cvX+bu3bukpqamK2/duvXLNi2EEEI8lZubm/HPDu0bsv/IYUpt+JOouatxmzEMQ2wCqf7XedDJhzy7lmDumcuE0Yo3RaZ7mm7dukW7du24ePEiGo2Gx808fmohM1MO5GTS0ySEEKbx9ddf4+PjQ7d3qzPljgaNmRm5vv6c6K/XkXY7COua75Jn+0JThymyqYx8f2d67bnhw4dTqFAhQkNDsbW15dKlSxw5coTKlStz6NChzDYrhBBCZEjRokXRarV41auG/YctwGAgYvQ8XMf0xapiKdxnjzR1iOINkenbc8ePH+fPP/8kV65caLVatFotNWvWZNasWQwbNsz4lJ0QQgjxKrVq1Yrz589TpkwZVFoaD6PiSNjzF+GfzcPrl0VYFi9o6hDFGyLTPU16vR4HBwcAcuXKxYMHDwAoUKAAAQEBWROdEEII8QLKlCkDgMbcHPelEwksnRdDXAIhXUahu/3o+ynxrzOEf7EQef5JZFamk6YyZcpw/vx5AKpWrcqcOXM4duwYU6dOpXDhwlkWoBBCCPGidDodfQZ+TMuT2/HLa48+NJLgTp+ScuUWId0/J2bFz0TOWG7qMEUOlemkafz48Rj+t6r01KlTCQwMpFatWuzZs4eFC2XAnRBCiNdPo9EQExNDWloaCf3aYJ7fC13gfUKHzsBt4kAAohduIHrZZhNHKnKiLJ2nKTIyEhcXl7dy3R95ek4IIbKHxMRETp8+Te3atUm9eY+gloMxhEdjU+tdrGtUJOrL7wHwWDIeh45NTBytMLXX8vRc/fr1mTJlSroyV1dXoqOjqV+/fmabFUIIIV6Kra0ttWvXBsCySD6cV08j3sacpL/OknLpJo4ffwBA6LBZJOw7bspQRQ6T6aTp0KFDfPvtt7Rt25aEhARjeWpqKocPH86S4IQQQoiXERERQQufwXziGkuKuYbEnYdQqWnYd2gEaXoe9p1AyqUbpg5T5BCZTpoA9u/fT0hICO+//z63b9/OopCEEEKIrPHgwQMuXbrExTu3iBvTEzQa4tbswLxQHmwbvI9dyzoyJYF4YS+VNHl5eXH48GHKli1LlSpVZFJLIYQQ2UrZsmX59ddfOXr0KFWH9yPXrBEARH+1BpsGVfH4dhwai5deUUy8JTKdND0e7G1lZcXGjRsZPnw4TZs2ZcmSJVkWnBBCCPGy6tSpwzvvvAOAU9/2WH3SBYCIcd+QsPsIAEqvJ3LeGvThUSaLU2R/mU6v//3Q3fjx4ylVqhS9evV66aCEEEKIV+HKlSs0WzWXzyq/T9PTQTwcOBUzF0cSfjtKzPItJO49hvf2hWjtbU0dqsiGMt3TFBgYSK5c6VeN7tChAydOnGDVqlUvHZgQQgiR1TZt2sSdO3dYes8fy2Y1IVVHcI+xWFcrj9bViRS/q4T0HodKSTV1qCIbytJ5mt5mMk+TEEJkfwaDgZkzZzJw4EBc7R0I7vIZycfOYebuSq45PoQOmYFKTMK+bX08vpuERvtSQ39FDpCR7+8MJU0+Pj5MmzYNOzs7fHx8nlt3/vz5L9rsG0GSJiGEyHn0sfHcbzWUtMs3MS/ojevY/oQOnQG6NBz7tifXrBFv5YTNb5OMfH9naEzTuXPn0Ol0xj8/i3zAhBBC5AT7jx/j88izfJ+nEM63HxC9aCO55nxKuM8cYr/fhpm7C66f9jZ1mCKbyFDSdPDgQeOf165dS968edH+q+tSKcW9e/eyJjohhBDiFdHpdAwbNoxr166xrk9VRqYqUv2vE7/ld1ynDCZqxgqsShcxdZgiG8n0zdpChQoRHh7+RHlkZCSFChV6qaCEEEKIV83CwoKdO3cyePBg5i5bjNemr9DY25L8tx8pJ/3Je3Qdds1qmTpMkY1kOml61lCo+Ph4rK2tMx2QEEII8boUL16cxYsXY2lpiVW54nitnwWWFiTsPkzMoo3G7zrdnQck/e1n2mCFyWV4nqbHA8A1Gg0TJ07E1vb/57LQ6/WcPHmSChUqZFmAQgghxOuy8twx7tfMw8cH7xC77lfM3F1w6NyMoFZDMMQnkueXRViVL2HqMIWJZDhpejwAXCnFxYsXsbS0NO6ztLSkfPnyjBo1KusiFEIIIV6D06dPM2zYMABqfT6NUt//TtS8tWidHLAoVoDko2d50GUUeXYtwbJIPhNHK0wh0/M09enTh4ULF8rj9f8jUw4IIUTON23aNLRaLV988QVRX60has4q0GhwXziGmBU/k3rxOub5vcizewnmnrn+u0GR7b2yeZrEs0nSJIQQbxalFOGff03s6u1gYY7H0olEzViOLvA+lqUK4/3rt5g5O5g6TPGSMvL9/VJTnf711198+OGHVKtWjaCgIADWr1/P0aNHX6ZZIYQQwuT0ej2zdPe4X/Md0KURNnwWrlMGY+bhSuqVW4R8OAZDUoqpwxSvUaaTpq1bt9KkSRNsbGw4d+4cKSmPPjgxMTHMnDkzywIUQgghTGHKlCl8vWABvc7uRVO9HCohiTCfOeSaNxqtoz2GpGRUYpKpwxSvUaaTpunTp7Ns2TJWrFiBhYWFsbxGjRqcPXs2U20eOXKEVq1a4e3tjUajYceOHf95zOLFiylVqhQ2NjaUKFGCdevWpdtft25dNBrNE1uLFi2MdXr37v3E/qZNm2bqGoQQQrwZRo4cScWKFZn/9XwKbpiDZbniGMKjiRi3EI8Vk8mz4xvM3JxNHaZ4jTL89NxjAQEB1K5d+4lyJycnoqOjM9VmQkIC5cuX56OPPqJ9+/b/WX/p0qWMHTuWFStWUKVKFXx9fenfvz8uLi60atUKgG3btpGa+v+rVUdERFC+fHk6duyYrq2mTZuyevVq42srK6tMXYMQQog3g6urK6dOncLMzAwArx/nEtRiMGm3g4icsgTvX7811tXduo9F4bymClW8JplOmjw9Pblx4wYFCxZMV3706FEKFy6cqTabNWtGs2bNXrj++vXrGTBgAJ07dwagcOHCnDp1itmzZxuTJldX13THbNq0CVtb2yeSJisrKzw9PTMVtxBCiDfT44QJIMHKjLV1CtA9IZHUy7cI+XAsnpu/Imbxj0R9tQbP9TOxa1zDhNGKVy3Tt+f69+/P8OHDOXnyJBqNhgcPHvDDDz8watQoBg0alJUxPlNKSsoTs4/b2Njg6+trXFj4377//nu6dOmCnZ1duvJDhw7h4eFBiRIlGDRoEBEREa8sbiGEEDmLwWCgcePGTJo3h8VVPdA62JF84jyhA6egfxgOBgOhA6eReuOuqUMVr1Cmk6YxY8bQrVs3GjRoQHx8PLVr16Zfv34MGDCATz75JCtjfKYmTZqwcuVKzpw5g1KK06dPs3LlSnQ63VPXxfP19cXf359+/fqlK2/atCnr1q3jwIEDzJ49m8OHD9OsWTP0ev0zz52SkkJsbGy6TQghxJtJq9Xy6aef4uXlRY9hQ/BcPwuNlSWJvx3FkKLDumo5DHEJhPQYiz423tThilfkpedpSk1N5caNG8THx1O6dGns7e2zJjCNhu3bt9O2bdtn1klKSmLIkCGsX78epRS5c+fmww8/ZM6cOYSEhJA7d+509QcMGMDx48e5cOHCc89969YtihQpwv79+2nQoMFT60yePJkpU6Y8US7zNAkhxJsrPj7e+D0Xv/sIDz+aAAYDzsM/JO6n39EHh2HbpAae62ai0b7UrD7iNXlt8zTBo6VTSpcuzXvvvZdlCdOLsrGxYdWqVSQmJnL79m3u3r1LwYIFcXBwwN3dPV3dhIQENm3aRN++ff+z3cKFC5MrVy5u3LjxzDpjx44lJibGuN27d++lr0cIIUT29s/vuYcl83Cp16Mf1tHf/IDzkK6Pep9+P0bU3NXPakLkYJkeCA5w4MABDhw4QGhoKAaDId2+VatWvVRgGWFhYUHevI+eWti0aRMtW7ZE+68Mf8uWLaSkpPDhhx/+Z3v3798nIiICLy+vZ9axsrKSJ+yEEOItdf36dWrWrElCQgLb23xE4T/OETVnFS6ff0Tk1GVEfbUGuxZ1sCpT1NShiiyU6aRpypQpTJ06lcqVK+Pl5YVGo3npYOLj49P17gQGBuLn54erqyv58+dn7NixBAUFGediunbtGr6+vlStWpWoqCjmz5+Pv78/a9eufaLt77//nrZt2+Lm5vbEOadMmUKHDh3w9PTk5s2bjB49mqJFi9KkSZOXviYhhBBvngIFClC+fHnCwsJ4Z8anqKgvST7lT9ym33D6uCOWpYtIwvQGynTStGzZMtasWUOPHj2yLJjTp09Tr14942sfHx8AevXqxZo1awgODubu3f9/MkGv1zNv3jwCAgKwsLCgXr16/P33309MgxAQEMDRo0f5448/njinmZkZFy5cYO3atURHR+Pt7U3jxo2ZNm2a9CQJIYR4KktLS7Zu3YpSCkdHR9JWTeN+o/7ort0hrWh+3KYNNXWI4hXI9EBwNzc3fH19KVKkSFbHlCPJgr1CCPF2u7JjLxaDZ6PRpeEypi+un/ZGHxFNzPKfcRndB80/5nwS2cdrGQjer18/Nm7cmNnDhRBCiDfGunXreLdrO7Y3KgFA1JffE7/7MEGthxI1fy2Rs1aaOEKRFTJ9ey45OZnly5ezf/9+ypUrl279OYD58+e/dHBCCCFEThAREUFycjLH40Lp1acdcau3Ezp0Ji6jehM5eQnRCzdgVaYY9m3rmzpU8RIynTRduHCBChUqAODv759V8QghhBA5zogRI8iXLx/t27dHozegu3qL5OPniVu/E8f+HxC74mdCh8/Comh+GSCeg7305JbiERnTJIQQ4rG0sCjuNeiLITgMm4bvQ5qepEOnMM/vRd59KzBzdTJ1iOJ/MvL9nemepsdPtv2bRqPB2tqaokWL0qZNmycWzBVCCCHeZAaDgZlLF/GglA2joyxJ2n8Cp0Fd0N0OIu32Ax72n4TX5q/QmL/UVInCBDLd01SvXj3Onj2LXq+nRIlHA9+uXbuGmZkZJUuWJCAgAI1Gw9GjRyldunSWBp0dSU+TEEIIeLTO6fvvv49Sin1T51Hom+0AuE4dQtSXqzDP7Yb3joWYe3uYOFIBr6mn6XEv0urVq40niYmJoV+/ftSsWZP+/fvTrVs3Ro4cye+//57Z0wghhBA5ynvvvceXX36Jh4cHDXv3JjzVgphlPxH15SpyfTkCu2a1MHN2MHWYIhMy3dOUJ08e9u3b90Qv0qVLl2jcuDFBQUGcPXuWxo0bEx4eniXBZmfS0ySEEOJpVFoawZ0+Jemvs5gXzPNoTNP/kiaVkorGytLEEb7dXss8TTExMYSGhj5RHhYWRmxsLADOzs6kpqZm9hRCCCFEjpes07GhfC7I60Ha7SAefjwZQ1oaMd9v427NnujDo0wdonhBmU6a2rRpw0cffcT27du5f/8+9+/fZ/v27fTt25e2bdsCj+7rFi9ePKtiFUIIIXIUpRTNmzfn88kTWVLBFY2NFUkHfYmcsoyYFT+TdjuIkH6TULo0U4cqXkCmk6bvvvuOBg0a0KVLFwoUKECBAgXo0qULDRo0YNmyZQCULFmSlStlFlQhhBBvJ41Gw5AhQ8iVKxfNP+yC+8IxAMQs24xjz9Zo7G1JPnaOiEmLTRypeBEvPU9TfHw8t27dAqBw4cLY29tnSWA5jYxpEkII8SyxsbHG74aIqUuJXrQRjY0VruMGEDH+GwDcvxmLY9fmpgzzrfRaxjQ9Zm9vT7ly5ShXrtxbmzAJIYQQz/PPL2PDgPakVi+LSkohZvkWnId2AyD8s3kkn71sqhDFC3jpmbUuX77M3bt3nxjw3bp165dtWgghhHijnDt3jnbt2lGmZCkWFfAm7c4Dkv2uYNukBom/HyOk93jyHV6DmYvcsciOMp003bp1i3bt2nHx4kU0Gg2P7/JpNBoA9Hp91kQohBBCvCGUUjx8+BALCws0369H02MiyUfP4fhROyxLFca+UxO0ModTtpXp23PDhw+nUKFChIaGYmtry6VLlzhy5AiVK1fm0KFDWRiiEEII8WZ499132blzJ6dOnaJg7ffxWDwOgNhV23Ea0BGXod2MnQ8i+8l00nT8+HGmTp1Krly50Gq1aLVaatasyaxZsxg2bFhWxiiEEEK8MRo2bIizszMA9i3r4DyyJwDhY74m5XwAAIb4RBIPnTJViOIZMp006fV6HBwedSHmypWLBw8eAFCgQAECAgKyJjohhBDiDbZr1y7a/rYOVbcSKjmVkF5fkHL9DvebDSS422iSfS+aOkTxD5lOmsqUKcP58+cBqFq1KnPmzOHYsWNMnTqVwoULZ1mAQgghxJsoMTGRAQMGcPToUdYXtcWiSD7SgkIJ85mDZdH8oEsjpM940oLDTB2q+J9MJ03jx4/HYDAAMHXqVAIDA6lVqxZ79uzhm2++ybIAhRBCiDeRra0tP/30E5988gnjpkzGc91MNPa2pJy4gNbVCctShdGHRhLSexyG5BRThyvIgskt/ykyMhIXF5e3chCbTG4phBDiZSXsPUpIj7EAuI4fQPS3GzFEx+HQrQXuCz5/K79fX7WMfH+/1DxNycnJXLhwgdDQUGOv02MyT5MQQgjx4pRSbLx3haoft8Fu+S9EzlmF26RBREz4lriNu7EqVxynvu1NHeZbLdM9TXv37qVHjx5EREQ82ahG89bN0yQ9TUIIIV7GzJkzGTduHJUrV+bnEvVI+/04Zp65cOjWnOj56zDPm5t8f/+A1sbK1KG+UV7LMiqffPIJnTp1Ijg4GIPBkG572xImIYQQ4mV1794dDw8POnXqRN6lk7AoURB9SDiJR87gMqo3eX5bJgmTiWX69tzDhw/x8fEhd+7cWRmPEEII8VYqUKAA169fN/Z2eK6dSVDjj0k9fQnr0kUw98xl4ghFpnuaPvjgA5n5WwghhMhC/7w9pC3gRcLkfqDRELvuV2LW/gJA/I4/Cft0Lln4HJd4QZnuafr222/p2LEjf/31F2XLlsXCwiLdfpkVXAghhMicyMhIOnXqxJUrVzgwdAwWi34ifOwCtM4OhA6aCml6LIrlx3lgZ1OH+lbJdNL0448/8scff2Btbc2hQ4fSPQap0WgkaRJCCCEyycLCggcPHhATE8P96qUoc7suCTsPETF2IS4+vYias4qIyUuxLF0E29qVTR3uWyPTT895enoybNgwxowZg1ab6bt8bwx5ek4IIURWunbtGqmpqZQpUwZDfCJBLQaRevkWlhVLYlkkH/E/70Pr6kTeP5ZjUcDb1OHmWK/l6bnU1FQ6d+4sCZMQQgjxChQvXpwyZcoAoLW3JfeamWidHUg9dxXQYFWhJIbIGEJ6jcOQkGTaYN8Smc54evXqxebNm7MyFiGEEEI8xfXr16nVpT0hn3cHrZb4n//AtkkNzNxdSL10g7ARX8rA8Ncg00mTXq9nzpw51KlTh08++QQfH590W2YcOXKEVq1a4e3tjUajYceOHf95zOLFiylVqhQ2NjaUKFGCdevWpdtft25dNBrNE1uLFi2MdZRSTJw4ES8vL2xsbGjYsCHXr1/P1DUIIYQQWW3ChAn4+voyavUSXCcOBCDqqzU4j+gJFuaY5/OEf63MIbJepgeCX7x4kYoVKwLg7++fbl9m18ZJSEigfPnyfPTRR7Rv/99TxS9dupSxY8eyYsUKqlSpgq+vL/3798fFxYVWrVoBsG3bNlJTU43HREREUL58eTp27GgsmzNnDt988w1r166lUKFCTJgwgSZNmnD58mWsra0zdS1CCCFEVlm6dClmZmZ89dVXOHt6knrxOvFb9xE1fw3e2xZi8345U4f4VsjSBXuzkkajYfv27bRt2/aZdapXr06NGjWYO3eusezTTz/l5MmTHD169KnHLFiwgIkTJxIcHIydnR1KKby9vfn0008ZNWoUADExMeTOnZs1a9bQpUuXF4pXBoILIYR4XQyJyQS1HEzqxetYlitOnl1L0NpYoVJS0UfFykSYGfBaBoJnBykpKU/0BNnY2ODr64tOp3vqMd9//z1dunTBzs4OgMDAQEJCQmjYsKGxjpOTE1WrVuX48eOvLnghhBAik074neVMj3po3ZxIvXCNsE/noAsJ50G74Tzo6IMhPtHUIb6RcnTS1KRJE1auXMmZM2dQSnH69GlWrlyJTqcjPDz8ifq+vr74+/vTr18/Y1lISAjAE8vB5M6d27jvaVJSUoiNjU23CSGEEK/a0aNHqVOnDj2HDyFuUj8wMyN+yx/ErfsF3d1gdFcDCR06UwaGvwI5OmmaMGECzZo14/3338fCwoI2bdrQq1cvgKdOhfD9999TtmxZ3nvvvZc+96xZs3BycjJu+fLle+k2hRBCiP9StWpVatSoQbNmzSjcqiFuU4cCEDVvHc7DPwRLCxJ2Hyb66/UmjvTNk6OTJhsbG1atWkViYiK3b9/m7t27FCxYEAcHB9zd3dPVTUhIYNOmTfTt2zdduaenJ/BoAeJ/evjwoXHf04wdO5aYmBjjdu/evSy6KiGEEOLZLCws2LVrF5s2bcLe3h6n/h1w6NwUDAai5q7GdXQfACK/XEnCH8dMHO2bJUcnTY9ZWFiQN29ezMzM2LRpEy1btnyip2nLli2kpKTw4YcfpisvVKgQnp6eHDhwwFgWGxvLyZMnqVat2jPPaWVlhaOjY7pNCCGEeB3s7e2NT6prNBoiB7TBqmIpDFGxxG8/gMOHLUEpQgdOI/XGXRNH++bIVklTfHw8fn5++Pn5AY8Gafv5+XH37qO/8LFjx9KzZ09j/WvXrrFhwwauX7+Or68vXbp0wd/fn5kzZz7R9vfff0/btm1xc3NLV67RaBgxYgTTp0/n119/5eLFi/Ts2RNvb+/nPrknhBBCmJrBYGD06NG8U6E8F/s0/N9klzfRx8RjXbUchrgEQj+R8U1ZJdPzNL0Kp0+fpl69esbXjyfJ7NWrF2vWrCE4ONiYQMGjCTbnzZtHQEAAFhYW1KtXj7///puCBQumazcgIICjR4/yxx9/PPW8o0ePJiEhgY8//pjo6Ghq1qzJ3r17ZY4mIYQQ2ZpWqyUqKgqDwcCZm9eou2o6D9oNI3HnIZxH9kRjY0WuL0dmev5EkV62nacpp5F5moQQQphCSkoKBw8epGnTpgDErNlB+GfzQKPB68e52DaoauIIs7e3Zp4mIYQQ4m1nZWVlTJgAHHq2xv5/Y5oeDpiM7tZ9ABIPnSJh79MnfhYvRpImIYQQ4g0RHx9P165d2ZzfEqsqZTDExBPc6wsS9v1NcOdRPBw4ldSrgaYOM8eSpEkIIYR4Q/z000/89NNPjB0/Hu2cYZjldkN3NZDY9TuxrlYelZBESM8v0EfHmTrUHEmSJiGEEOIN0adPH4YNG8a+ffvwLlMKzzUzwNKCxN+OYl2pNOb5PNEF3ufhgCkovd7U4eY4kjQJIYQQbwiNRsPChQupXr06ANaV38H9y5EARC/aiNOAjmhsrEj68yRR89eZMtQcSZImIYQQ4g314MEDVkXcxLFPO1CKqNmrcBn1aMbwqK/WkHTygokjzFkkaRJCCCHeQHFxcVSpUoWRI0eyu4QT1u+XxxCXQNyPe7BrWx8MBhJ2HzF1mDmKJE1CCCHEG8jBwYGBAwfyzjvvUKN2bXJ/PxUzbw90N+5iiI3HY9lE3KYMMXWYOYokTUIIIcQbaty4cZw8eZJixYph7uGK59oZaKwsSfrTl7S7wTJTeAZJ0iSEEEK8obRaLXZ2dsbX9+zMcJ41HIDI2atIPn0JfWQMDwdNNU6CKZ5NkiYhhBDiLbB161YqVqzIzPNHsG/XAPR6Hg6cQtinc4n/eR8PB05F6dJMHWa2JkmTEEII8RYwGAwkJCRw/vx5nGYNxzy/F2l3glEGA1one1LOXSFy9vemDjNbk6RJCCGEeAt07NiR3bt389tvv2Ht5kLupRPAzIzEPX9h37EJANHf/EDS0bMmjjT7kqRJCCGEeEs0b94cc3NzAKzfK4vLZ70BHk1D0Kb+o0V+B09HHxljwiizL0mahBBCiLeMwWBg3rx5zA27ivX7j9ak090OwqJwPvTBYYT5zEEpZeowsx1zUwcghBBCiNfr2LFjjBo1CoB2e/7A/cpNUs8HYN+1Gbp7waScD0D/MAJzz1wmjjR7kaRJCCGEeMvUqlULHx8fSpQoQZWmDUmYb87DvhOJ37QX17H9cPyoHWZODqYOM9vRKOl/yxKxsbE4OTkRExODo6OjqcMRQgghMiR05GziNuzCzMudfIdWY+bqZOqQXouMfH/LmCYhhBDiLafT6bjdvgYWRfM/GtM0cjYGg4HY9b8SMWO5qcPLNiRpEkIIId5iYWFh1KhRg/rNmhI/rjdYmJOw5y8ip39HmM9cohesJ/HASVOHmS1I0iSEEEK8xVxdXbG1tcXS0pIgK3CbMACA2BU/Y9++IQChn8wkLSzKlGFmCzKmKYvImCYhhBA51f3791FKkS9fPpTBQHCXz0g66ItFyYKgQBdwG9uG7+O5cc4bt8ivjGkSQgghxAvLmzcv+fLlA0Cj1eKx6AvM3F3QXb2NVZliaKwsSdx/gtiVW00cqWlJ0iSEEEIIo3PnztHmo55YzRwGQPzWfdh3aQZAxJSlpFy6YcrwTEqSJiGEEEIAoNfr6dKlC3v27OHLgztx+rgjAPE7D2JTpzJKl0byKX8TR2k6MrmlEEIIIQAwMzNj1apVLFiwgAkTJuDm4EjSsXOkXrqB0qXhtX0BttUrmjpMk5GeJiGEEEIY1ahRgy1btpArVy40VpbkXj4JjY0VyX/7keoXYOrwTEqSJiGEEEI808W4CFymDgEgYvp3pJwPIPXGXR509CEtJNzE0b1ekjQJIYQQ4qmmT59OlSpV+C4kALsWdUCXxsOPJxM6bBZJh04ROmQ6ymAwdZivjSRNQgghhHgqb29vlFLcvXsX969HY+blju7Wfcxzu6GxtSbpyBmiF/9o6jBfG5ncMovI5JZCCCHeNEopjh8/TvXq1QFIOnaOB+2Gg1I49mxN7LpfwdyMPL8tw7pCSRNHmzkyuaUQQgghXppGozEmTAA2NSriPKIHAHHbD2DT8H1I0xP68RQM8YmmCvO1yVZJ05EjR2jVqhXe3t5oNBp27Njxn8csXryYUqVKYWNjQ4kSJVi3bt0TdaKjoxkyZAheXl5YWVlRvHhx9uzZY9w/efJkNBpNuq1kyZyZMQshhBCvQkJCAgMHDuRYKXesKpVGxSVgiIzFzNsDXeB9wr9YaOoQX7lsNU9TQkIC5cuX56OPPqJ9+/b/WX/p0qWMHTuWFStWUKVKFXx9fenfvz8uLi60atUKgNTUVBo1aoSHhwc///wzefLk4c6dOzg7O6dr65133mH//v3G1+bm2eqtEUIIIUzqm2++4bvvvmP79u1cO/Q3qc0Hk3L2MvZdmxO/6TdSr9/BkJiM1tba1KG+MtkqM2jWrBnNmjV74frr16/n/9q796ioy/wP4O9hmAsSDAIyXBWtMCDFS0pou+iKort5SUtzV7RazfWH5n3xklrpQml4XZPUXHM9aWWK7sF0zVxTUUdRMm9ckosXBiVTQHAGZ57fH66zTYENNVd4v86ZowzPPN/P84nkfb7znec7fvx4jBgxAgDQrl07nDhxAu+8844pNG3YsAE3b95EdnY2ZDIZACA8PPwnc7m7uyMwMPDXL4KIiKgJmjZtGg4fPoxp06ZBFfko3JZMx/UJC1H98R74LZwI1StDIZE5VaywOqd6e66xdDodlErzROvh4QGNRoO6ujoAwK5duxAXF4fk5GSo1Wo8+eSTSE1NhcFgMHtdQUEBgoOD0a5dO/zpT39CaWnpzx67srLS7EFERNRUKRQKZGVloU+fPgAAr+f74ZHhiYDRiNsZn8BYU+vgCm3PpUNTYmIi1q9fj5ycHAghcPLkSaxfvx51dXWoqLi/4dalS5ewbds2GAwG7N69G/PmzUN6ejoWLVpkmic2NhYbN27Enj17sGbNGhQVFeE3v/kNqqqqGjx2WloaVCqV6fHg7tBERETNwffff4+q8UPgHh6Me1fKcWP6uzDq9Kh4YzVupm90dHk24bRbDkgkEuzYsQNDhgxpcExtbS2Sk5Pxz3/+E0IIqNVqjBo1CosXL4ZWq4VarUZERATu3r2LoqIiSKVSAMDSpUuxZMkSlJWV1TvvrVu30KZNGyxduhR//vOf6x2j0+mg0+lMX1dWViIsLIxbDhARUZOXk5ODIUOGwM/PDwczNqLiuSnAPQO8xw5D5frPADc3BO9aBY/Yjo4u9Wc1my0HPDw8sGHDBtTU1KC4uBilpaUIDw+Hl5cXWrVqBQAICgpCRESEKTABQGRkJLRaLfR6fb3z+vj4ICIiAoWFhQ0eW6FQwNvb2+xBRETUHISEhODu3buoqanBdwHe8E25f4Kh6qPdaNG/J2A04vqEhTBUVju4Uuty6dD0gEwmQ2hoKKRSKbZu3Ypnn30Wbm73l9azZ08UFhbC+INt3vPz8xEUFAS5XF7vfNXV1fj2228RFBRkl/qJiIhcSWBgIPbu3YvTp0+jXbt28Jn0Ryif6QJRU4t7V8rh3joI9y5rUTHjXTjpG1q/iFOFpurqauTm5iI3NxcAUFRUhNzcXNNF2bNnz8bo0aNN4/Pz87F582YUFBRAo9HgxRdfxNmzZ5GammoaM2HCBNy8eROTJ09Gfn4+srKykJqaiuTkZNOYGTNm4ODBgyguLkZ2djaee+45SKVSjBw50j4LJyIicjFdunSBp6cnAEAilUL93utwa+kN/dlCKLs/CUilqN6xH9Wf7HVwpdbjVKHp5MmT6Ny5Mzp37gzg/scbO3fujPnz5wMAysrKzD7VZjAYkJ6ejpiYGPTt2xd3795Fdna22ZYCYWFh2Lt3L06cOIGOHTvitddew+TJkzFr1izTmCtXrmDkyJFo3749hg8fDj8/Pxw7dsz0Fh8RERE1bMeOHUh+43W0WvZXAED1tn145IV+AIAbKUtRV3TVkeVZjdNeCO5qeO85IiJqjkpKSvD444+jrq4On376KeKPF6Ny4064tWoJWesg6POKoV73JjwTnnZ0qfVqzO/vpr0LFREREdlUmzZt8Le//Q0VFRUYNGgQ3H9vRO3Rr1GXVwzJE20R+uUGyNuGOLpMq+CZJivhmSYiIqL7dOcKcTVxPIROD/+0KVCNHQYAEEJAIpE4uDpzzWbLASIiInIuQgic11fBb8EEAMB3b7wH3blC1Bw8iauJ42H43nXvoMHQRERERFah1+vxwgsv4KmnnsLZqCC06BsHodND++obqJi1DLrTF3Bj6mKX3YaAoYmIiIisQi6Xw8PDA25ubjh//jwCVs6GNMAX9/JLII9sB8jccSfrIKo2/8vRpf4ivKbJSnhNExEREXD79m18++236NKlCwCg5oAGZcOnAwC8XhyAqq2fQ+KhQOj+DyB/vI0jSwXAa5qIiIjIQVQqlSkwAUCL3t2hSn4RAFC95zCUT3eEqNWh/NU3IXT1387MWTE0ERERkU1cvXoVw4YNQ03SAMg7RkDcqoIwCrj5qqA/W4Dv/rbW0SU2CkMTERER2cTYsWOxfft2THhtEtRrF0DSQgmd5hu0+O9Gl4YbNyF+cG9YZ8fQRERERDaxcuVK9OrVC0uXLoX80dbwT50CAKje/gVarZgF9Zr5kLi5ThRxnUqJiIjIpTz++OM4cOAA2rdvDwDw+uPv4Tn4d8A9A75f9k8Yq2sA3N/byRU+l8bQRERERHZRWFgIz4X/B/dQNe4VX8WNlGUwfHcL2tFzULn+M0eX97MYmoiIiMjmtmzZgk6dOiFl4ZsIWDMfcHND9Sd78N3C91Gz5zC+e3MNdOcKHV3mQzE0ERERkc35+/ujpqYGeXl5kHZ5Ai2njwEAVGXuh/KZLhA6PcrHvwljrc7BlTaMoYmIiIhsrm/fvvjyyy+xb98+yOVytJw2GsruHYA7tTBW3YE0wBd1ecX4bsFqR5faIIYmIiIisovevXvD7b+flpO4uyMgYz7cvB+B/us8ePymKwCg8h87cGfPYUeW2SCGJiIiIrIro9GIxYsX44OsTLRKnwng/jYEnkN+BwC4Pvlt3Cu74cgS6+Xu6AKIiIioefnss8+QkpICpVKJARcvwmvk71G1ZTdqj38DefSjMFbegaHiFtyDWjm6VDMMTURERGRXzz//PJ5//nn0798frVu3hkidjLvHz6Du0hVIn2iH4J2rIFV5ObrMn5AIV9hNygU05i7JREREZE73dR6uDPgLUHcPrZbOhHfSIACAMBggkUptdtzG/P7mNU1ERETkUHq9HsVKwG/uqwCAirkrocsrwu2NmbjSZ6xp53BHY2giIiIih7l8+TLi4uLQp08fGEb0hUevbhC1OpSPfQPfL9sE/blCVMxd6egyATA0ERERkQP5+vqiuroatbW1yMvPR8CqOXDzU6Hu4iUou0YDEgmqPspCdeaXji6VoYmIiIgcx9PTE9u3b8eZM2fQo0cPuAf6I2DlbADAnX/9x7QNwY3pSxy+DQFDExERETlUdHQ0QkJCTF979usJ1dhhAIDaQzlQdI2Cz8SRkAb4OqpEAAxNRERE5ERycnKQlJQErzljIY9qB2PFLUi8POEzeZRNP0VnCYYmIiIicgo1NTUYMGAANm/ejOXvrYb6/TcgUcpx9z8ncHvtp44uj6GJiIiInEOLFi2wcuVKDBs2DOPGjYP8ibbwe2siAOC7tzKgO5Pv0Pq4uaWVcHNLIiIi6xBCQCKRmP6uHTMHNZ8fRovEngja/LZVj9WY39+8jQoRERE5lQeBCQAuXryIiGUp+L5tKHz/+ooDq+Lbc0REROSk5syZg+joaHy2/9/wfzMZbp4eDq3HqULTV199hYEDByI4OBgSiQSZmZk/+5rVq1cjMjISHh4eaN++PTZt2vSTMbdu3UJycjKCgoKgUCgQERGB3bt3/2Se8PBwKJVKxMbGQqPRWGtZRERE9AtIpVIIIXDixAlHlwLAyd6eu3PnDmJiYvDKK69g6NChPzt+zZo1mD17NtatW4du3bpBo9Fg3LhxaNmyJQYOHAjg/v1s+vbti4CAAGzbtg0hISEoKSmBj4+PaZ6PP/4Y06ZNQ0ZGBmJjY7F8+XIkJiYiLy8PAQEBtlouERERPcT8+fMRHx+PhIQER5cCwIkvBJdIJNixYweGDBnS4JgePXqgZ8+eWLJkiem56dOn4/jx4zh8+DAAICMjA0uWLMHFixchk8nqnSc2NhbdunXD3//+dwCA0WhEWFgYJk2ahFmzZllULy8EJyIicj2N+f3tVG/PNZZOp4NSqTR7zsPDAxqNBnV1dQCAXbt2IS4uDsnJyVCr1XjyySeRmpoKg8EA4P6ZqJycHLMU6+bmhoSEBBw9evShx66srDR7EBERUdPl0qEpMTER69evR05ODoQQOHnyJNavX4+6ujpUVFQAAC5duoRt27bBYDBg9+7dmDdvHtLT07Fo0SIAQEVFBQwGA9RqtdncarUaWq22wWOnpaVBpVKZHmFhYbZbKBERETmcS4emefPmYcCAAXj66achk8kwePBgjBkzBsD9s0XA/bfaAgICsHbtWnTt2hUjRozA3LlzkZGR8auOPXv2bNy+fdv0uHz58q9eDxERETkvlw5NHh4e2LBhA2pqalBcXIzS0lKEh4fDy8sLrVq1AgAEBQUhIiIC0h/cryYyMhJarRZ6vR7+/v6QSqUoLy83m7u8vByBgYENHluhUMDb29vsQURERE2XS4emB2QyGUJDQyGVSrF161Y8++yzpjNNPXv2RGFhIYxGo2l8fn4+goKCIJfLIZfL0bVrV+zfv9/0faPRiP379yMuLs7uayEiIiLn5FShqbq6Grm5ucjNzQUAFBUVITc3F6WlpQDuvyU2evRo0/j8/Hxs3rwZBQUF0Gg0ePHFF3H27FmkpqaaxkyYMAE3b97E5MmTkZ+fj6ysLKSmpiI5Odk0Ztq0aVi3bh0+/PBDXLhwARMmTMCdO3fw8ssv22fhRERE5PScap+mkydPonfv3qavp02bBgAYM2YMNm7ciLKyMlOAAgCDwYD09HTk5eVBJpOhd+/eyM7ORnh4uGlMWFgY9u7di6lTp6Jjx44ICQnB5MmTkZKSYhozYsQI3LhxA/Pnz4dWq0WnTp2wZ8+en1wcTkRERM2X0+7T5Gq4TxMREZHraTb7NBERERHZC0MTERERkQUYmoiIiIgswNBEREREZAGGJiIiIiILMDQRERERWYChiYiIiMgCDE1EREREFnCqHcFd2YM9QisrKx1cCREREVnqwe9tS/b6ZmiykqqqKgD3b9tCRERErqWqqgoqleqhY3gbFSsxGo24du0avLy8IJFIrDp3ZWUlwsLCcPnyZd6ixYbYZ/tgn+2DfbYP9tk+bNlnIQSqqqoQHBwMN7eHX7XEM01W4ubmhtDQUJsew9vbm/9T2gH7bB/ss32wz/bBPtuHrfr8c2eYHuCF4EREREQWYGgiIiIisgBDkwtQKBRYsGABFAqFo0tp0thn+2Cf7YN9tg/22T6cpc+8EJyIiIjIAjzTRERERGQBhiYiIiIiCzA0EREREVmAoYmIiIjIAgxNDrB69WqEh4dDqVQiNjYWGo3moeM//fRTPPHEE1AqlejQoQN2795t9n0hBObPn4+goCB4eHggISEBBQUFtlyCS7Bmn+vq6pCSkoIOHTrA09MTwcHBGD16NK5du2brZTg9a/88/9Bf/vIXSCQSLF++3MpVuyZb9PrChQsYNGgQVCoVPD090a1bN5SWltpqCS7B2n2urq7GxIkTERoaCg8PD0RFRSEjI8OWS3AJjenzuXPnMGzYMISHhz/034TG/rdrNEF2tXXrViGXy8WGDRvEuXPnxLhx44SPj48oLy+vd/yRI0eEVCoVixcvFufPnxevv/66kMlk4ptvvjGNefvtt4VKpRKZmZni66+/FoMGDRJt27YVtbW19lqW07F2n2/duiUSEhLExx9/LC5evCiOHj0qunfvLrp27WrPZTkdW/w8P7B9+3YRExMjgoODxbJly2y8Eudni14XFhYKX19fMXPmTHHq1ClRWFgodu7c2eCczYEt+jxu3Djx6KOPigMHDoiioiLx/vvvC6lUKnbu3GmvZTmdxvZZo9GIGTNmiC1btojAwMB6/01o7Jy/BEOTnXXv3l0kJyebvjYYDCI4OFikpaXVO3748OHiD3/4g9lzsbGxYvz48UIIIYxGowgMDBRLliwxff/WrVtCoVCILVu22GAFrsHafa6PRqMRAERJSYl1inZBturzlStXREhIiDh79qxo06YNQ5OwTa9HjBghRo0aZZuCXZQt+hwdHS3eeustszFdunQRc+fOtWLlrqWxff6hhv5N+DVzWopvz9mRXq9HTk4OEhISTM+5ubkhISEBR48erfc1R48eNRsPAImJiabxRUVF0Gq1ZmNUKhViY2MbnLOps0Wf63P79m1IJBL4+PhYpW5XY6s+G41GJCUlYebMmYiOjrZN8S7GFr02Go3IyspCREQEEhMTERAQgNjYWGRmZtpsHc7OVj/TPXr0wK5du3D16lUIIXDgwAHk5+ejX79+tlmIk/slfXbEnPVhaLKjiooKGAwGqNVqs+fVajW0Wm29r9FqtQ8d/+DPxszZ1Nmizz929+5dpKSkYOTIkc32Jp226vM777wDd3d3vPbaa9Yv2kXZotfXr19HdXU13n77bfTv3x///ve/8dxzz2Ho0KE4ePCgbRbi5Gz1M71q1SpERUUhNDQUcrkc/fv3x+rVq/Hb3/7W+otwAb+kz46Ysz7uVpuJqJmoq6vD8OHDIYTAmjVrHF1Ok5KTk4MVK1bg1KlTkEgkji6nSTMajQCAwYMHY+rUqQCATp06ITs7GxkZGYiPj3dkeU3KqlWrcOzYMezatQtt2rTBV199heTkZAQHB//kLBU5N55psiN/f39IpVKUl5ebPV9eXo7AwMB6XxMYGPjQ8Q/+bMycTZ0t+vzAg8BUUlKCffv2NduzTIBt+nzo0CFcv34drVu3hru7O9zd3VFSUoLp06cjPDzcJutwBbbotb+/P9zd3REVFWU2JjIystl+es4Wfa6trcWcOXOwdOlSDBw4EB07dsTEiRMxYsQIvPvuu7ZZiJP7JX12xJz1YWiyI7lcjq5du2L//v2m54xGI/bv34+4uLh6XxMXF2c2HgD27dtnGt+2bVsEBgaajamsrMTx48cbnLOps0Wfgf8FpoKCAnzxxRfw8/OzzQJchC36nJSUhDNnziA3N9f0CA4OxsyZM7F3717bLcbJ2aLXcrkc3bp1Q15entmY/Px8tGnTxsorcA226HNdXR3q6urg5mb+61YqlZrO9jU3v6TPjpizXla7pJwssnXrVqFQKMTGjRvF+fPnxauvvip8fHyEVqsVQgiRlJQkZs2aZRp/5MgR4e7uLt59911x4cIFsWDBgnq3HPDx8RE7d+4UZ86cEYMHD+aWA1bus16vF4MGDRKhoaEiNzdXlJWVmR46nc4ha3QGtvh5/jF+eu4+W/R6+/btQiaTibVr14qCggKxatUqIZVKxaFDh+y+Pmdhiz7Hx8eL6OhoceDAAXHp0iXxj3/8QyiVSvHee+/ZfX3OorF91ul04vTp0+L06dMiKChIzJgxQ5w+fVoUFBRYPKc1MDQ5wKpVq0Tr1q2FXC4X3bt3F8eOHTN9Lz4+XowZM8Zs/CeffCIiIiKEXC4X0dHRIisry+z7RqNRzJs3T6jVaqFQKESfPn1EXl6ePZbi1KzZ56KiIgGg3seBAwfstCLnZO2f5x9jaPofW/T6gw8+EI899phQKpUiJiZGZGZm2noZTs/afS4rKxMvvfSSCA4OFkqlUrRv316kp6cLo9Foj+U4rcb0uaF/g+Pj4y2e0xokQghhvfNWRERERE0Tr2kiIiIisgBDExEREZEFGJqIiIiILMDQRERERGQBhiYiIiIiCzA0EREREVmAoYmIiIjIAgxNRERERBZgaCKiZqNXr16YMmWKo8sgIhfFHcGJqEnq1asXOnXqhOXLl5ueu3nzJmQyGby8vOxez9SpU1FSUoLt27fb/dhEZB0800REzYavr69DAhMAaDQaPPXUUw45NhFZB0MTETU5L730Eg4ePIgVK1ZAIpFAIpGguLj4J2/P9erVC5MmTcKUKVPQsmVLqNVqrFu3Dnfu3MHLL78MLy8vPPbYY/j8889NrzEajUhLS0Pbtm3h4eGBmJgYbNu2rcFa9Ho9ZDIZsrOzMXfuXEgkEjz99NO2XD4R2QhDExE1OStWrEBcXBzGjRuHsrIylJWVISwsrN6xH374Ifz9/aHRaDBp0iRMmDABL7zwAnr06IFTp06hX79+SEpKQk1NDQAgLS0NmzZtQkZGBs6dO4epU6di1KhROHjwYL3zu7u748iRIwCA3NxclJWVYc+ePbZZOBHZFK9pIqImqb5rmn78XK9evWAwGHDo0CEAgMFggEqlwtChQ7Fp0yYAgFarRVBQEI4ePYrOnTvD19cXX3zxBeLi4kzzjh07FjU1Nfjoo4/qrSUzMxNjx45FRUWFbRZLRHbh7ugCiIgcqWPHjqa/S6VS+Pn5oUOHDqbn1Go1AOD69esoLCxETU0N+vbtazaHXq9H586dGzzG6dOnERMTY+XKicjeGJqIqFmTyWRmX0skErPnJBIJgPvXMlVXVwMAsrKyEBISYvY6hULR4DFyc3MZmoiaAIYmImqS5HI5DAaDVeeMioqCQqFAaWkp4uPjLX7dN998g2HDhlm1FiKyP4YmImqSwsPDcfz4cRQXF+ORRx6Br6/vr57Ty8sLM2bMwNSpU2E0GvHMM8/g9u3bOHLkCLy9vTFmzJh6X2c0GpGXl4dr167B09MTKpXqV9dCRPbHT88RUZM0Y8YMSKVSREVFoVWrVigtLbXKvAsXLsS8efOQlpaGyMhI9O/fH1lZWWjbtm2Dr1m0aBE2btyIkJAQLFq0yCp1EJH98dNzRERERBbgmSYiIiIiCzA0EREREVmAoYmIiIjIAgxNRERERBZgaCIiIiKyAEMTERERkQUYmoiIiIgswNBEREREZAGGJiIiIiILMDQRERERWYChiYiIiMgCDE1EREREFvh/x1qeNOEZUqoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -952,7 +943,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
qiskit_aer0.13.3
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:21:43 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 14:57:46 2025 CEST
" ], "text/plain": [ "" @@ -964,7 +955,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -999,7 +990,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/11_VarQTE.ipynb b/docs/tutorials/11_VarQTE.ipynb index dd6ba1b9..bc0f702c 100644 --- a/docs/tutorials/11_VarQTE.ipynb +++ b/docs/tutorials/11_VarQTE.ipynb @@ -115,7 +115,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjAElEQVR4nO3deViU9f7/8ecM+yqrgiugIIgLplJqmXa0NE3NviRmtFytJ80Wk37ZMY91ytROlplWp7KvZWRHPbm2WGpSmslRE4FE2ZRlVARkHxhmvn/4EyNQGZyZ23t4P66r68g9n7nnPZx585q5574/H43JZDIhhBBCqJRW6QKEEEKIqyFBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqjkoXIJozmUwYavRKl2EWRzcXNBqNxfZnMkFtg8V2ZxOuDmDBX0G7p7Y+kB5QrgckyK5Bhho9a3req3QZZpme9RlO7q4W219tA9y0zWK7s4nk28FNOspi1NYH0gPK9YAcWhRCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomlz1YkeChkYzdsOCJtvqq2oozy4ia91uMj7ahqnBqFB11leRuovMv41qsk3r6oFL5wj8RybQccKTaBzkJW/PpAfaZw/Y3zMSZG9IJn/HAdBocAv0oVfczcQueIAO4V3YO+d9pcuzOt8R0+gw6HYwmagv1XF212ryP36W2vwMesz4QOnyhA1ID7SvHpAgs0NnU3PIXp/c+PPRT77lzuS3ibjnLxx4PQn92XIFq7M+97Dr8B95cUaIwNufIO2JSIq3f0jne1/FqUOggtUJW5AeaF89IN+RtQOGGj1nDhxDo9Xi3aOT0uXYnIOrBx69bwCTCb0uS+lyhAKkB+y7ByTI2gmvkPPNqy+rVLgSZVxoXkdPP4UrEUqRHrDfHpBDi3bI0c0ZFz+vxu8Het93K/79wjhz4Bjl2UVKl2d1Rn01hvLi87Onl+o488171GQfxD08FtcuEUqXJ2xAeqB99YDdB1lxcTGLFy9mw4YN5OfnExgYyJQpU3jttdeYNWsWH3/8Me+88w4zZ85UulSLGZgYz8DE+Cbbcrf+wr4XPlSoItsqSppPUdL8Jtt8hk6h+2PvKlTRteH3nDKyTpbT0GAiONCdQX0C0Grtc90Z6YH21QN2HWSHDh1i3Lhx6HQ6PDw86NOnD4WFhSxbtoysrCxKSkoAiImJUbZQCzv66Xfkbt6L1skR38ju9J0xGY9gfxr0dY1jbl75DGg1/PjYm43bnH08mbxrKSkvryZ7Q3JLu1aFgNsexXdYHKaGemryUtFtWERdcT4ap4tLbFSkJXP85XHN7msy1GEyNjDoPypbCOoSGhqMrP0mhxVfZvDzwVNNbgvv4c1f747i4SkReHk4K1ShdUgPtK8esNvvyIqLi7njjjvQ6XTMnj2boqIiDhw4gE6nY9GiRWzdupX9+/ej0Wjo37+/0uVaVHm2jqLkVAp2HOTIio38cP/rBMT0ZOiixxrH7H3hX3Qc0pvQycMbt93w2sOc/vV3VTcwgEtwON4xo+kwaBxBUxLp9eJmqo/v58TKxxvHeEXfxMC1lU3+i16RiaNXAJ3veUXB6i2nVm8g7rkdTH9hV7MQAziWV86zS/Zx4/1bKThVpUCF1iM90L56wG6DbNasWeTn5zNz5kzeeOMNvLy8Gm9LTExkwIABGAwGQkJC8Pb2VrBS6zuTcpSsdbsJnTycwMG9Aagrq2TP7JVc/+rDuHXypcf4GwgaFs3e5+3vGhvPqGH4jUyg9Ke1VGbsaXGMsV5P9utT8OxzI8Fxc21coeUZjSYS5v7If37Iu+LYw5kl3Pb4N5SVq2c1ZnNJD9h3D9hlkGVkZLB27VoCAgJYuHBhi2MGDRoEwIABA5psz8nJYeLEiXh5eeHr68t9993H2bNnrV6ztf22dB1GQwMD50xt3Faw8xC5m/cwYvksbnj9EfbMXom+1D7P6AqeOg+0DhR+/lKLt59Y8TjG+lpCnvrEtoVZybc/57Nue26rx6dllfH2mjTrFXQNkB6w3x6wyyBLSkrCaDQyffp0PD09Wxzj5uYGNA2yiooKRo0aRX5+PklJSXzwwQckJyczYcIEjEZ1T2tTkasjZ+PPdB7Rn47XRzVuT1mwGq/QIAp2HCT/hwMKVmhdrsG98LspnorDP1CR1vSw0enNyziXsoWeL3yF1sVdoQota8XaDLPv88H6o9TXq/t1fjnSA/bbA3YZZDt27ABg1KhRlxyTn58PNA2yDz74gIKCAr766ismTJhAXFwcn3/+Ob/88gubNm2ybtE2cPjt9Rgbmr4jNdToqcw7TWnGCQUrs42guBdBq23yjrTi8E7yVz9PWOK/cekUolxxFnT6bA1bk0+afb/C09X8sK/QChVdO6QH7LMHNCaTyaR0EZbWrVs38vPzOXjwYItnJBoMBoKDgykuLiYrK4uwsDDgYvDt3LmzyfiePXsycuRIPvroozbVM3jwYHQ6XavHO5m0zDfGtumx2mLs+gWc3P5f0t5re1gv0P5KvcZy7+Y1zm50euuYxfbXEv2pXH5/bgjB8fPpOP7qL7849XQ4proaC1R2deocgjjT4a9tuq9P1SY89P+1cEVtY8s+kB5QvgeCgoJISUlp033t8vT7qqrzZ2DV1LT8C127di3FxcV4eXkRGhrauD09PZ24uLhm46Ojo0lPT29zPTqdjoKCglaPd9Y4gMpm0SksKqTOZLnTdbUu7lb9FRj11WQtnEyH2IkWaWCAwsJCjPpqi+zrqrhqoEPb7lpWWkpZaetfq9aktj6QHlCuB+wyyIKCgigtLeXAgQMMHTq0yW1FRUXMmTMHgP79+6PRXLwgtLS0FB8fn2b78/Pz4+jRo1dVjzmcTFpQ2VcVnYM7W/zdqDWV7llPTc5v1BZkUvrT2ma3Ry9Pxzmwu1n77Ny58zXxiaxB44bOZASN+d8c+HfQ4OrexQpVmU9tfSA9cHU9YO7fyT+yyyAbPXo0GRkZLFq0iDFjxhARcX5Klv3795OQkEBxcTFguwuhzf24XF9dy5qe9155oIV8c9f8Kw+6gsxjmTi5u155YCvVGOCmbRbbXTP+oxLwH5Vg0X1mZh7D7RrpqEmztrNpl3nf+XTp6E7ugZ04Ol4bX53bsg+kByxDqR64Nl6xFpaYmIi/vz8nT54kOjqafv36ER4eTmxsLGFhYdxyyy1A81PvfX19KSsra7a/kpIS/Pzsb6JNYb+emBp15UF/8lhc5DUTYkKYwy5ftV27diU5OZnx48fj6upKbm4ufn5+vP/++2zdupXMzEygeZBFRUW1+F1Yeno6UVHm/2EQQiljhnYhfmxYq8f3j/DjqenRVqxICOu5Rg6EWF5UVBRbtmxptr2yspLc3Fy0Wi19+/ZtctuECROYO3cu+fn5dO3aFYB9+/aRlZXFkiVLbFK3EJag1Wr45B8jMJpMfPltzmXHDoz0Z+u7t+LtaV/zLYr2wy4/kV1OWloaJpOJ8PBw3N2bXvj36KOPEhwczKRJk9iyZQvr1q1j2rRpxMbGMmnSJIUqFqJtXJwdSFo0ii/fuIWRQ4Kb3d6npw/L5w4l+ZPxBAeq7yJYIS6w209kl5Kamgo0P6wI4O3tzY4dO3jqqaeIj4/H0dGRCRMmsHTpUrTadpf5wg5otRribg0l7tZQjuWdY+i9mzl7Tk+grytHNkxpctauEGolQfYnPXv2bPGQpBBqF96jA64uDgA4O2klxITdkCCzI759ejDsjcdx8nSjKv8Mu598B9+IboxeM5fyrEK+i3+F2rPlOLg5M/yfTxAQ0xOT0cSBhZ+Tt/UXAAbPSyBk0jBKUnPY8eBihZ+ReapzfiPv3Ucw1lTgHNiDkGc+pfZEGsdeHodrl96E//07nHw6UvDpXEr3bkDr5ILGwYnO975Kh+tuA+DUxqWc2fYuWjdP+rx1SNknJMzW2h64oEN4F+74djGZn23n15c+AaDPoxOIfOA2DFW1bBozR6Fn0jat7QGA09tWcGbrO+DgiEajJXLJPrTOruSvmkPJT2tx73kdveZ+pewTaqV2F2QX5mG0Rze+NZOfn3mXkrRcesXfwpCX7uP4Fzspzyps0pB9H5+Isa6eDcOexLNbR8ZvW4huzxH0pZWkvPIpZUdP0n2c7abIspTctx8gZNYq3MNiKP7+Y/JXPUfAXx7EtUvvJqHk2ecmgu+eh9bFjeqc3zg6dwT9VxXi4OpBp0nP4B42kJMfPa3Y8xBt19oeANA4OjBsyePkff1rk+3pH2yhJDWH2JcfsGHlltHaHijbt5GSH9cQufgXHDw6UH/uDBoHJwC6PrgE1+7RlO37Spkn0QbyxY+d8OsbiqG6lpK0XACyvtxFt1sHo3Vu/l4lZNJwjq7+DoDKk6fR7Umj+7jrbVmuxVVnH8TBzRP3sBgA/Efdz7lfN2Ey1DUb22HQOLQu52dNcOvRD0wmDOfO2LJcYQXm9ABAzLNx5G7eS0V2kQ2rtB5zekD3nyV0jp+Pg8f5ucycOgSicXCwZbkW1e4+kdkrz+4d8Y3szsTtFy8TcHRzwT2o+YXcnl0CqMy/+Ie78uRpPLoE2KROa9GfyqEmL5X0p2Matxn11dSdvfy8gWd/WIVLUBjOHXtYuUJhbeb0QMDAcAIHRfDd1JeJmX23Lcu0GnN6oPZkOlXHUyj8YgGmej3+o+6j4x2zbFitZUmQ2ZEzB4+xfdo/Gn+OP9K22frVyiP8esIXfNv4828JgZcdX/7bDxR+sYCIBdvlxAc70ZoecHBz5obXH2bXw/+0ZWk20doeMDUYqDuVQ+/XdtNQVcrRuTfjHBSGz5AJtirVoiTI7ERl3qkmn6qcPN1wdHelWlfSfGxBMZ5dA6k5XQaAZ7eOFP74m61KtQqXTmHUFV+cW7ChupyG2iqc/VueALfiyI/kLnuQXn/bjGvX3rYqU1hRa3vAq0cQnl0CGLv+7wA4e3uAVoNzB09+emq5LUu2KHN6wDmwO74jpqFxcMDRO4AOg26n6ugvqg0y+Y7MTpSk5WKsbyB4RH8AIh+4jZyNP2OsMzQbm7d5L73vuxU4H2JBw6I58c2vzcapiXtYDBoHJ8oPbQfgzLYV+N04FY1j89kqKtJ2k7M0gV4vbsQ91P7OXm2vWtsDZb+f4Iu+D7Eu9gnWxT5B+r+2cvyLHaoOMTCvB/xG3EP5gW8AMOprqDiyS9W9IEFmR3bPeJtBc6czZc87BA2LJuWVT1scd2TFRhxcnZmydzljkv7Gvrkfoi+psHG1lhf67BoKVr/Akcd6UXFkF10fbHlasbx3HsJUryd32YOkPx1D+tMx1OSm2rhaYQ2t7QF71doe6DTpWerLTpE2ow8ZswfT4bpx+A5vvhajWsihRTtS9vsJtox9/orjDDV6fnx8qQ0qsi23kH5EvXnlJXP6vmfdVXeFclrbA3906J9fWqka22ttD2idXQl9+n9tUJFtyCcyO9dQb8DF14uJ25fg6u99xfGD5yXQ78k70ZdV2qA669M4OmMoP0v60zHUl52+4vhTG5dy4r0ncPRS91mc4iJze6DPoxO44fWHqbWDoxRgfg/kr5qDbt1CHD18bVCdZWhMJpNJ6SJEU7ZeWNMSpmd9pqpFBa0h+XaumYU1L6Xr6CQKTlfTpaM7+d9PU7qcy1JbH0gPKNcD8olMCCGEqkmQCSGEUDU5tHgNMplMGGr0SpdhFkc3F4teVGwyQW2DxXZnE64OcK1fV62mQ4tq6wPpAeV64Bo/ot8+aTQaix5rVyON5tr/vklYV3vvA+mB1pNDi0IIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTdYfvQapbYl3kGXeQbll3u2V2vpAekC5HpAguwYZavSs6Xmv0mWYZXrWZxZdlr62AW7aZrHd2UTy7bI0vSWprQ+kB5TrATm0KIQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE3OsRLCjtXUGjicWcJ/04s5fKyUknPnT2cvLdezZNVhBvUJ4Loof3y8XRSuVIi2kyATwg79N72Yd79IJ+nrbGr1zS9Gqq5tIHHpfuD8dT+339SNJ6ZGMXZ4V7RauRhOqIsEmRB2JDP3HI++/BM/puhafR+TCbbuPsnW3ScJ7+HN+/OGMyq2sxWrFMKyJMjsSNDQaMZuWNBkW31VDeXZRWSt203GR9swNRgVqs76KlJ3kfm3UU22aV09cOkcgf/IBDpOeBKNg32+5I1GE2+vSWPuspQWP4G11rG8cm55+Gv+encki5+NxdPdyYJVWp/0QPvsAft7RoLsDcnk7zgAGg1ugT70iruZ2AUP0CG8C3vnvK90eVbnO2IaHQbdDiYT9aU6zu5aTf7Hz1Kbn0GPGR8oXZ7F1dcbue/FH/nim2yL7XPll7+zL/UM36y8jUA/N4vt11akB9pXD8hZi3bobGoO2euTyV63m7SVm9g6fi5VBcVE3PMXXPy9lS7P6tzDrsN/5L34j0ogaMocIhf/gpN/V4q3f0j9uTNKl2dRDQ1Gpr+wy6IhdsGBjLP85ZGvKS1Xz3yHF0gPtJ8eAAmydsFQo+fMgWNotFq8e3RSuhybc3D1wKP3DWAyoddlKV2ORc1bfoB/f5djtf2nHivl7ud2YDKZrPYYtiA9YL89ABJk7YZXyPnm1ZdVKlyJMi40r6Onn8KVWM6+w6dZtOqwWffZnzSRk9vj2Z80sdX3+f6XQt7/9+/mlnfNkR6wvx64oF0EWXFxMYmJifTq1QtXV1e6devGU089RVVVFQ899BAajYbly5crXabFOLo54+LnhYu/Nz6R3bn+tYfx7xfGmQPHKM8uUro8qzPqqzGUF1N/7gw1uamceG8GNdkHcQ+PxbVLhNLlWYS+roEHX0rGaDTvk1JQgDtdO3kQFOBu1v3mvLmfvMIKs+6jJOkB+++BP7L7kz0OHTrEuHHj0Ol0eHh40KdPHwoLC1m2bBlZWVmUlJQAEBMTo2yhFjQwMZ6BifFNtuVu/YV9L3yoUEW2VZQ0n6Kk+U22+QydQvfH3lWoIstbtz2HjOwymz1eZXU9Sz9N463nb7DZY14N6QH774E/susgKy4u5o477kCn0zF79mzmz5+Pl5cXAIsXL+b555/H0dERjUZD//79Fa7Wco5++h25m/eidXLEN7I7fWdMxiPYnwZ9XeOYm1c+A1oNPz72ZuM2Zx9PJu9aSsrLq8nekKxE6RYRcNuj+A6Lw9RQT01eKroNi6grzkfjdHGtqIq0ZI6/PK7ZfU2GOkzGBgb959pe0XDF2gybP+Ynm47x6pOD8FDBKfnSA/bfA39k14cWZ82aRX5+PjNnzuSNN95oDDGAxMREBgwYgMFgICQkBG9v+zmTqTxbR1FyKgU7DnJkxUZ+uP91AmJ6MnTRY41j9r7wLzoO6U3o5OGN22547WFO//q7qhsYwCU4HO+Y0XQYNI6gKYn0enEz1cf3c2Ll441jvKJvYuDayib/Ra/IxNErgM73vKJg9VeWmlnCnkOnbf645yrqrHJ2pDVID9h3D/yZ3QZZRkYGa9euJSAggIULF7Y4ZtCgQQAMGDCgcduF4IuNjcXFxbJLlyvlTMpRstbtJnTycAIH9wagrqySPbNXcv2rD+PWyZce428gaFg0e5+3v2tsPKOG4TcygdKf1lKZsafFMcZ6PdmvT8Gzz40Ex821cYXm2blfue94dqWo8/sl6QH76oE/s9sgS0pKwmg0Mn36dDw9PVsc4+Z2/kLPPwbZ8ePHWb9+PUFBQQwZMsQmtdrCb0vXYTQ0MHDO1MZtBTsPkbt5DyOWz+KG1x9hz+yV6Evt84yu4KnzQOtA4ecvtXj7iRWPY6yvJeSpT2xbWBv8N71Ywcc+q9hjXy3pAfvpgT+z2yDbsWMHAKNGjbrkmPz8fKBpkI0YMYKioiI2bdrE6NGjrVukDVXk6sjZ+DOdR/Sn4/VRjdtTFqzGKzSIgh0Hyf/hgIIVWpdrcC/8boqn4vAPVKQ1PWx0evMyzqVsoecLX6F1Me9sPiUc/F25MPk9p4yq6nrFHv9qSA/YTw/8md2e7JGXlwdAjx49WrzdYDDw888/A02DTKu1fLYPHjwYna71k7g6mbTMJ9bidRx+ez2hk4czcM5Uvv2fvwPnLxStzDtNacaJq9p3RHgE9RrLzWGncXaj01vHLLY/gKC4FylJTqLw85fo/epOACoO7yR/9fOEv/Q1Lp1Crmr/ERHhmOpqLFDp5RX5PAdarxZv25808bKn1gcFuDX+78nt8ZccpyuuZsi0Tc22m0zQM3IAjsZyM6s2nzX6QHrg2u2BoKAgUlJS2nRfuw2yqqoqAGpqWv6lrl27luLiYry8vAgNDbVqLTqdjoKCglaPd9Y4QBsmH9DtTeOT4P+55O3njhWwuuvUS95+NQqLCqkzWe4sJ62Lu9m/Aq9+Ixm08dLXVbl1i2pyJpb+VC7ZS+6m6wNL8Oo3sm2F/kFhYSFGffVV7+eKvLnksZQL14ldiaODtlXjWnJKdwbqrX94sy19ID3QTnrgT+w2yIKCgigtLeXAgQMMHTq0yW1FRUXMmTMHgP79+1v9hI6goCCzxjuZtKCyCbo7B3e2+LtRazLqq8laOJkOsRPpOH6mRfbZuXNn23wi05ou+fLQFV/+j0hQgBuODloMDUZ0xZeu9XL7CeoUgIPJ+gtxqq0PpAeurgfM/Tv5R3YbZKNHjyYjI4NFixYxZswYIiLOX82+f/9+EhISKC4+/47SFhdCm/txub66ljU977VSNdaReSwTJ3fXKw9spRoD3LTNYrtrpnTPempyfqO2IJPSn9Y2uz16eTrOgd3N2mdm5jHcbNBRQ+/dxC+HW574taXDgX90cns8XTt5oCuuoduYL8x+bBdnB05kp+HkZP2v19XWB9IDtuuBP7PbIEtMTOTzzz/n5MmTREdHExkZSW1tLcePH2fcuHGEhITw7bffNvl+rL365q75Vx5kZ/xHJeA/KkHpMtpkUJ+ASwaZtQ2I8LNJiNma9IC62d8r8v/r2rUrycnJjB8/HldXV3Jzc/Hz8+P9999n69atZGZmAkiQCdUZ1CdAwcf2V+yxhbgUu/1EBhAVFcWWLVuaba+srCQ3NxetVkvfvn0VqEyIths7vCuOjhoMBtsvrTLhZvMONQlhC3YdZJeSlpaGyWQiIiICd/fmpyqvW7cOgPT09CY/h4SEMHjwYNsVKkQLggPdufOWEKuuQ9aS0C5ejB3e1aaPKURrtMsgS01NBS59WDEuLq7Fn++//34++eQTq9YmRGs8MTXK5kH2eFwkWq36p2wT9keCrAVqXw1X2L+bBwdxx83d2fzj1V3E21o9u3kxIz7qygOFUIAEmR3x7dODYW88jpOnG1X5Z9j95Dv4RnRj9Jq5lGcV8l38K9SeLadX/C1EPzqeDuFdSXl5Nen/2tq4j8HzEgiZNIyS1Bx2PLhYwWdjvuqc38h79xGMNRU4B/Yg5JlPqT2RxrGXx+HapTfhf/8OJ5+OFHz6ImX7N6HROgAQNOX/4Tfi/CwX+avmUPLTWtx7XkevuV8p+GwuT6PR8P5Lw0merKOsou7Kd7hKHy+4SRXLt7S2B258awbBI/qjP3t+hpLC3YdJeeVToH30QNZrd6I/ffETfU3uYXq+8BU+10/k1MalnNn2Llo3T/q8dUi5J2OGdhlkF+ZhtDc3vjWTn595l5K0XHrF38KQl+7j+Bc7Kc8qZNOYOY3jzh7OYtdjb9LvySnN9pHyyqeUHT1J93GWnyLL2nLffoCQWatwD4uh+PuPyV/1HAF/eRDXLr2bNGSnO+fQJeFVAOrOFpA2IwrvmNE4egfQ9cEluHaPpmzfV8o8CTMEB7rz3rzhxCfubPV9LlzofKULp//oufv7MWJwsNn1KaG1PQCQtnJTkzdxF7SHHug59z+N/646lsKxBWPxvm4sAJ0mPYN72EBOfvS0jatvO7s9/b698esbiqG6lpK0XACyvtxFt1sHo3Vu/l6lND2Pc8cKwKiiaROuoDr7IA5unriHxQDgP+p+zv26CZOh+acVR0+fxn8bayrBZMKk0t/F1LFhvJV4favHD5m2iW5jvrjihdMXJEzoxaJn1LEKhDk9YI/M6YE/Kv7+I/xH3ovWydkGVVpH+/h/uB3w7N4R38juTNy+pHGbo5sL7kF+ClZlO/pTOdTkpZL+dEzjNqO+mrqzLc9xeXrzMk5ve5f6s/n0mPkhTj4dbVSp5T11b19cXRyZ8doeGhos9/3uX++O5J0XhqrmBA9zeyDq4dvpFX8LVQXFHFyU1BiAamVuD5y/vYbS5CR6v6buhUQlyOzImYPH2D7tH40/xx/5SMFqbM8j/HrCF3zb+PNvCYGXHNvxjll0vGMW1Tm/kbP0XrxjbsXRW70X+z4WF8mgPv48OC+ZI8dLr2pfgb6urPzbMO4aY93JtK2htT1w4PUkqk+VgslE93GxjF7zIhuGPYmhutZWpVqFOT0AULpnHS6dI3AL6Wft0qxKDi3aicq8U3h0uTjjg5OnG47urlTrShSsynZcOoVRV3zxDL6G6nIaaqtw9u9y2fu5hw7A2a8LFUd2WblC6xscHUjKF5N4ecZ1BPqaP+efq4sDj9zVm/Sv7lJliJnTA9W6kvNr0gAnvv6V+opqOvTqbLNaraEtPVD8/UcEjH7IFuVZlQSZnShJy8VY30DwiP4ARD5wGzkbf8ZYZ1C4MttwD4tB4+BE+aHtAJzZtgK/G6eicWx+3L/mRHrjv/VFWVRnH8S1Wx+b1WpNLs4OzHtsICe3x7Nm4UhuiQ3G8zJnGzo5ahkcHcCbc66n8IdpfDD/RgLaEILXAnN6wD344uHGwOvCcfHzojyn9WsGXovM6QGA2qLjVB9PwW/ENFuWaRVyaNGO7J7xNje+NQPn1x+hIlfH7pnL8O3dfEqhXnePZODz03D28aD72FiiH5/ID/e/TskR215ga2mhz64hd9mDnFj5V1yCexH67GfU5B1pNq7gfxPRn8pB4+iERutI98eW49bNvq6RcnF24J7xPblnfE+MRhOZeec4nFlCRVU9RqMJdzdHIkN96NvLFxdnB6XLtZjW9sCNb83ELbADpgYjhto6dj3yT+orbL+OlqW1tgcAzn7/MT5D78LB3dvGVVqeBJkdKfv9BFvGPn/Fcce/3MXxL3dZvyAbcwvpR9SbV14yp9e85vNv2jOtVkNkqA+RoT5Kl2J1re2B76a+bINqbK+1PQDQJeE1K1djO3Jo0c411Btw8fVi4vYluPpf+Z3X4HkJ9HvyTvRllTaozvo0js4Yys+S/nQM9WWnrzg+f9UcdOsW4ujha4PqhC1ID5jXA6c2LuXEe0/g6KXcKgvm0phkPqZrjtoWFASYnvWZqhYVtIbk21FkUUF7pbY+kB5QrgfkE5kQQghVkyATQgihanJo8RpkMpkw1OiVLsMsjm4uaDSWmwHCZILaBovtziZcHcCCv4J2T219ID2gXA9IkAkhhFA1ObQohBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1f4P43I/FYB900UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIwBJREFUeJzt3XlYlPX+//HnDPsqq4IroCCIC6ZSapl2tDRNzb4kZrRcrSfNFpN+2TGPdcrUTpaZVqeyr2VkRz25tlhqUprJUROBRNmUZVQEZB8YZr5/+BMjUBmcmdt7eD+uq+vIPZ+55z2cefOauee+Px+NyWQyIYQQQqiUVukChBBCiKshQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihao5KFyCaM5lMGGr0SpdhFkc3FzQajcX2ZzJBbYPFdmcTrg5gwV9Bu6e2PpAeUK4HJMiuQYYaPWt63qt0GWaZnvUZTu6uFttfbQPctM1iu7OJ5NvBTTrKYtTWB9IDyvWAHFoUQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJpc9WJHgoZGM3bDgibb6qtqKM8uImvdbjI+2oapwahQddZXkbqLzL+NarJN6+qBS+cI/Ecm0HHCk2gc5CVvz6QH2mcP2N8zEmRvSCZ/xwHQaHAL9KFX3M3ELniADuFd2DvnfaXLszrfEdPoMOh2MJmoL9Vxdtdq8j9+ltr8DHrM+EDp8oQNSA+0rx6QILNDZ1NzyF6f3Pjz0U++5c7kt4m45y8ceD0J/dlyBauzPvew6/AfeXFGiMDbnyDtiUiKt39I53tfxalDoILVCVuQHmhfPSDfkbUDhho9Zw4cQ6PV4t2jk9Ll2JyDqwcevW8Akwm9LkvpcoQCpAfsuwckyNoJr5Dzzasvq1S4EmVcaF5HTz+FKxFKkR6w3x6QQ4t2yNHNGRc/r8bvB3rfdyv+/cI4c+AY5dlFSpdndUZ9NYby4vOzp5fqOPPNe9RkH8Q9PBbXLhFKlydsQHqgffWA3QdZcXExixcvZsOGDeTn5xMYGMiUKVN47bXXmDVrFh9//DHvvPMOM2fOVLpUixmYGM/AxPgm23K3/sK+Fz5UqCLbKkqaT1HS/CbbfIZOoftj7ypU0bXh95wysk6W09BgIjjQnUF9AtBq7XPdGemB9tUDdh1khw4dYty4ceh0Ojw8POjTpw+FhYUsW7aMrKwsSkpKAIiJiVG2UAs7+ul35G7ei9bJEd/I7vSdMRmPYH8a9HWNY25e+QxoNfz42JuN25x9PJm8aykpL68me0NyS7tWhYDbHsV3WBymhnpq8lLRbVhEXXE+GqeLS2xUpCVz/OVxze5rMtRhMjYw6D8qWwjqEhoajKz9JocVX2bw88FTTW4L7+HNX++O4uEpEXh5OCtUoXVID7SvHrDb78iKi4u544470Ol0zJ49m6KiIg4cOIBOp2PRokVs3bqV/fv3o9Fo6N+/v9LlWlR5to6i5FQKdhzkyIqN/HD/6wTE9GTooscax+x94V90HNKb0MnDG7fd8NrDnP71d1U3MIBLcDjeMaPpMGgcQVMS6fXiZqqP7+fEyscbx3hF38TAtZVN/otekYmjVwCd73lFweotp1ZvIO65HUx/YVezEAM4llfOs0v2ceP9Wyk4VaVAhdYjPdC+esBug2zWrFnk5+czc+ZM3njjDby8vBpvS0xMZMCAARgMBkJCQvD29lawUus7k3KUrHW7CZ08nMDBvQGoK6tkz+yVXP/qw7h18qXH+BsIGhbN3uft7xobz6hh+I1MoPSntVRm7GlxjLFeT/brU/DscyPBcXNtXKHlGY0mEub+yH9+yLvi2MOZJdz2+DeUlatnNWZzSQ/Ydw/YZZBlZGSwdu1aAgICWLhwYYtjBg0aBMCAAQOabM/JyWHixIl4eXnh6+vLfffdx9mzZ61es7X9tnQdRkMDA+dMbdxWsPMQuZv3MGL5LG54/RH2zF6JvtQ+z+gKnjoPtA4Ufv5Si7efWPE4xvpaQp76xLaFWcm3P+ezbntuq8enZZXx9po06xV0DZAesN8esMsgS0pKwmg0Mn36dDw9PVsc4+bmBjQNsoqKCkaNGkV+fj5JSUl88MEHJCcnM2HCBIxGdU9rU5GrI2fjz3Qe0Z+O10c1bk9ZsBqv0CAKdhwk/4cDClZoXa7BvfC7KZ6Kwz9Qkdb0sNHpzcs4l7KFni98hdbFXaEKLWvF2gyz7/PB+qPU16v7dX450gP22wN2GWQ7duwAYNSoUZcck5+fDzQNsg8++ICCggK++uorJkyYQFxcHJ9//jm//PILmzZtsm7RNnD47fUYG5q+IzXU6KnMO01pxgkFK7ONoLgXQatt8o604vBO8lc/T1jiv3HpFKJccRZ0+mwNW5NPmn2/wtPV/LCv0AoVXTukB+yzBzQmk8mkdBGW1q1bN/Lz8zl48GCLZyQaDAaCg4MpLi4mKyuLsLAw4GLw7dy5s8n4nj17MnLkSD766KM21TN48GB0Ol2rxzuZtMw3xrbpsdpi7PoFnNz+X9Lea3tYL9D+Sr3Gcu/mNc5udHrrmMX21xL9qVx+f24IwfHz6Tj+6i+/OPV0OKa6GgtUdnXqHII40+GvbbqvT9UmPPT/tXBFbWPLPpAeUL4HgoKCSElJadN97fL0+6qq82dg1dS0/Atdu3YtxcXFeHl5ERoa2rg9PT2duLi4ZuOjo6NJT09vcz06nY6CgoJWj3fWOIDKZtEpLCqkzmS503W1Lu5W/RUY9dVkLZxMh9iJFmlggMLCQoz6aovs66q4aqBD2+5aVlpKWWnrX6vWpLY+kB5QrgfsMsiCgoIoLS3lwIEDDB06tMltRUVFzJkzB4D+/fuj0Vy8ILS0tBQfH59m+/Pz8+Po0aNXVY85nExaUNlXFZ2DO1v83ag1le5ZT03Ob9QWZFL609pmt0cvT8c5sLtZ++zcufM18YmsQeOGzmQEjfnfHPh30ODq3sUKVZlPbX0gPXB1PWDu38k/sssgGz16NBkZGSxatIgxY8YQEXF+Spb9+/eTkJBAcXExYLsLoc39uFxfXcuanvdeeaCFfHPX/CsPuoLMY5k4ubteeWAr1Rjgpm0W210z/qMS8B+VYNF9ZmYew+0a6ahJs7azaZd53/l06ehO7oGdODpeG1+d27IPpAcsQ6keuDZesRaWmJiIv78/J0+eJDo6mn79+hEeHk5sbCxhYWHccsstQPNT7319fSkrK2u2v5KSEvz87G+iTWG/npgadeVBf/JYXOQ1E2JCmMMuX7Vdu3YlOTmZ8ePH4+rqSm5uLn5+frz//vts3bqVzMxMoHmQRUVFtfhdWHp6OlFR5v9hEEIpY4Z2IX5sWKvH94/w46np0VasSAjruUYOhFheVFQUW7Zsaba9srKS3NxctFotffv2bXLbhAkTmDt3Lvn5+XTt2hWAffv2kZWVxZIlS2xStxCWoNVq+OQfIzCaTHz5bc5lxw6M9Gfru7fi7Wlf8y2K9sMuP5FdTlpaGiaTifDwcNzdm1749+ijjxIcHMykSZPYsmUL69atY9q0acTGxjJp0iSFKhaibVycHUhaNIov37iFkUOCm93ep6cPy+cOJfmT8QQHqu8iWCEusNtPZJeSmpoKND+sCODt7c2OHTt46qmniI+Px9HRkQkTJrB06VK02naX+cIOaLUa4m4NJe7WUI7lnWPovZs5e05PoK8rRzZMaXLWrhBqJUH2Jz179mzxkKQQahfeowOuLg4AODtpJcSE3ZAgsyO+fXow7I3HcfJ0oyr/DLuffAffiG6MXjOX8qxCvot/hdqz5Ti4OTP8n08QENMTk9HEgYWfk7f1FwAGz0sgZNIwSlJz2PHgYoWfkXmqc34j791HMNZU4BzYg5BnPqX2RBrHXh6Ha5fehP/9O5x8OlLw6VxK925A6+SCxsGJzve+SofrbgPg1MalnNn2Llo3T/q8dUjZJyTM1toeuKBDeBfu+HYxmZ9t59eXPgGgz6MTiHzgNgxVtWwaM0ehZ9I2re0BgNPbVnBm6zvg4IhGoyVyyT60zq7kr5pDyU9rce95Hb3mfqXsE2qldhdkF+ZhtEc3vjWTn595l5K0XHrF38KQl+7j+Bc7Kc8qbNKQfR+fiLGung3DnsSzW0fGb1uIbs8R9KWVpLzyKWVHT9J9nO2myLKU3LcfIGTWKtzDYij+/mPyVz1HwF8exLVL7yah5NnnJoLvnofWxY3qnN84OncE/VcV4uDqQadJz+AeNpCTHz2t2PMQbdfaHgDQODowbMnj5H39a5Pt6R9soSQ1h9iXH7Bh5ZbR2h4o27eRkh/XELn4Fxw8OlB/7gwaBycAuj64BNfu0ZTt+0qZJ9EG8sWPnfDrG4qhupaStFwAsr7cRbdbB6N1bv5eJWTScI6u/g6AypOn0e1Jo/u4621ZrsVVZx/Ewc0T97AYAPxH3c+5XzdhMtQ1G9th0Di0LudnTXDr0Q9MJgznztiyXGEF5vQAQMyzceRu3ktFdpENq7Qec3pA958ldI6fj4PH+bnMnDoEonFwsGW5FtXuPpHZK8/uHfGN7M7E7RcvE3B0c8E9qPmF3J5dAqjMv/iHu/LkaTy6BNikTmvRn8qhJi+V9KdjGrcZ9dXUnb38vIFnf1iFS1AYzh17WLlCYW3m9EDAwHACB0Xw3dSXiZl9ty3LtBpzeqD2ZDpVx1Mo/GIBpno9/qPuo+Mds2xYrWVJkNmRMwePsX3aPxp/jj/Sttn61coj/HrCF3zb+PNvCYGXHV/+2w8UfrGAiAXb5cQHO9GaHnBwc+aG1x9m18P/tGVpNtHaHjA1GKg7lUPv13bTUFXK0bk34xwUhs+QCbYq1aIkyOxEZd6pJp+qnDzdcHR3pVpX0nxsQTGeXQOpOV0GgGe3jhT++JutSrUKl05h1BVfnFuwobqchtoqnP1bngC34siP5C57kF5/24xr1962KlNYUWt7wKtHEJ5dAhi7/u8AOHt7gFaDcwdPfnpquS1LtihzesA5sDu+I6ahcXDA0TuADoNup+roL6oNMvmOzE6UpOVirG8geER/ACIfuI2cjT9jrDM0G5u3eS+977sVOB9iQcOiOfHNr83GqYl7WAwaByfKD20H4My2FfjdOBWNY/PZKirSdpOzNIFeL27EPdT+zl5tr1rbA2W/n+CLvg+xLvYJ1sU+Qfq/tnL8ix2qDjEwrwf8RtxD+YFvADDqa6g4skvVvSBBZkd2z3ibQXOnM2XPOwQNiybllU9bHHdkxUYcXJ2Zsnc5Y5L+xr65H6IvqbBxtZYX+uwaCla/wJHHelFxZBddH2x5WrG8dx7CVK8nd9mDpD8dQ/rTMdTkptq4WmENre0Be9XaHug06Vnqy06RNqMPGbMH0+G6cfgOb74Wo1rIoUU7Uvb7CbaMff6K4ww1en58fKkNKrItt5B+RL155SVz+r5n3VV3hXJa2wN/dOifX1qpGttrbQ9onV0Jffp/bVCRbcgnMjvXUG/AxdeLiduX4OrvfcXxg+cl0O/JO9GXVdqgOuvTODpjKD9L+tMx1JedvuL4UxuXcuK9J3D0UvdZnOIic3ugz6MTuOH1h6m1g6MUYH4P5K+ag27dQhw9fG1QnWVoTCaTSekiRFO2XljTEqZnfaaqRQWtIfl2rpmFNS+l6+gkCk5X06WjO/nfT1O6nMtSWx9IDyjXA/KJTAghhKpJkAkhhFA1ObR4DTKZTBhq9EqXYRZHNxeLXlRsMkFtg8V2ZxOuDnCtX1etpkOLausD6QHleuAaP6LfPmk0Gosea1cjjeba/75JWFd77wPpgdaTQ4tCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE3WH70GqW2Jd5Bl3kG5Zd7tldr6QHpAuR6QILsGGWr0rOl5r9JlmGV61mcWXZa+tgFu2max3dlE8u2yNL0lqa0PpAeU6wE5tCiEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNzrESwo7V1Bo4nFnCf9OLOXyslJJz509nLy3Xs2TVYQb1CeC6KH98vF0UrlSItpMgE8IO/Te9mHe/SCfp62xq9c0vRqqubSBx6X7g/HU/t9/UjSemRjF2eFe0WrkYTqiLBJkQdiQz9xyPvvwTP6boWn0fkwm27j7J1t0nCe/hzfvzhjMqtrMVqxTCsiTI7EjQ0GjGbljQZFt9VQ3l2UVkrdtNxkfbMDUYFarO+ipSd5H5t1FNtmldPXDpHIH/yAQ6TngSjYN9vuSNRhNvr0lj7rKUFj+BtdaxvHJuefhr/np3JIufjcXT3cmCVVqf9ED77AH7e0aC7A3J5O84ABoNboE+9Iq7mdgFD9AhvAt757yvdHlW5ztiGh0G3Q4mE/WlOs7uWk3+x89Sm59BjxkfKF2exdXXG7nvxR/54ptsi+1z5Ze/sy/1DN+svI1APzeL7ddWpAfaVw/IWYt26GxqDtnrk8let5u0lZvYOn4uVQXFRNzzF1z8vZUuz+rcw67Df+S9+I9KIGjKHCIX/4KTf1eKt39I/bkzSpdnUQ0NRqa/sMuiIXbBgYyz/OWRryktV898hxdID7SfHgAJsnbBUKPnzIFjaLRavHt0Urocm3Nw9cCj9w1gMqHXZSldjkXNW36Af3+XY7X9px4r5e7ndmAymaz2GLYgPWC/PQASZO2GV8j55tWXVSpciTIuNK+jp5/ClVjOvsOnWbTqsFn32Z80kZPb49mfNLHV9/n+l0Le//fv5pZ3zZEesL8euKBdBFlxcTGJiYn06tULV1dXunXrxlNPPUVVVRUPPfQQGo2G5cuXK12mxTi6OePi54WLvzc+kd25/rWH8e8XxpkDxyjPLlK6PKsz6qsxlBdTf+4MNbmpnHhvBjXZB3EPj8W1S4TS5VmEvq6BB19Kxmg075NSUIA7XTt5EBTgbtb95ry5n7zCCrPuoyTpAfvvgT+y+5M9Dh06xLhx49DpdHh4eNCnTx8KCwtZtmwZWVlZlJSUABATE6NsoRY0MDGegYnxTbblbv2FfS98qFBFtlWUNJ+ipPlNtvkMnUL3x95VqCLLW7c9h4zsMps9XmV1PUs/TeOt52+w2WNeDekB+++BP7LrICsuLuaOO+5Ap9Mxe/Zs5s+fj5eXFwCLFy/m+eefx9HREY1GQ//+/RWu1nKOfvoduZv3onVyxDeyO31nTMYj2J8GfV3jmJtXPgNaDT8+9mbjNmcfTybvWkrKy6vJ3pCsROkWEXDbo/gOi8PUUE9NXiq6DYuoK85H43RxraiKtGSOvzyu2X1NhjpMxgYG/efaXtFwxdoMmz/mJ5uO8eqTg/BQwSn50gP23wN/ZNeHFmfNmkV+fj4zZ87kjTfeaAwxgMTERAYMGIDBYCAkJARvb/s5k6k8W0dRcioFOw5yZMVGfrj/dQJiejJ00WONY/a+8C86DulN6OThjdtueO1hTv/6u6obGMAlOBzvmNF0GDSOoCmJ9HpxM9XH93Ni5eONY7yib2Lg2som/0WvyMTRK4DO97yiYPVXlppZwp5Dp23+uOcq6qxydqQ1SA/Ydw/8md0GWUZGBmvXriUgIICFCxe2OGbQoEEADBgwoHHbheCLjY3FxcWyS5cr5UzKUbLW7SZ08nACB/cGoK6skj2zV3L9qw/j1smXHuNvIGhYNHuft79rbDyjhuE3MoHSn9ZSmbGnxTHGej3Zr0/Bs8+NBMfNtXGF5tm5X7nveHalqPP7JekB++qBP7PbIEtKSsJoNDJ9+nQ8PT1bHOPmdv5Czz8G2fHjx1m/fj1BQUEMGTLEJrXawm9L12E0NDBwztTGbQU7D5G7eQ8jls/ihtcfYc/slehL7fOMruCp80DrQOHnL7V4+4kVj2OsryXkqU9sW1gb/De9WMHHPqvYY18t6QH76YE/s9sg27FjBwCjRo265Jj8/HygaZCNGDGCoqIiNm3axOjRo61bpA1V5OrI2fgznUf0p+P1UY3bUxasxis0iIIdB8n/4YCCFVqXa3Av/G6Kp+LwD1SkNT1sdHrzMs6lbKHnC1+hdTHvbD4lHPxduTD5PaeMqup6xR7/akgP2E8P/JndnuyRl5cHQI8ePVq83WAw8PPPPwNNg0yrtXy2Dx48GJ2u9ZO4Opm0zCfW4nUcfns9oZOHM3DOVL79n78D5y8Urcw7TWnGiavad0R4BPUay81hp3F2o9Nbxyy2P4CguBcpSU6i8POX6P3qTgAqDu8kf/XzhL/0NS6dQq5q/xER4ZjqaixQ6eUV+TwHWq8Wb9ufNPGyp9YHBbg1/u/J7fGXHKcrrmbItE3NtptM0DNyAI7GcjOrNp81+kB64NrtgaCgIFJSUtp0X7sNsqqqKgBqalr+pa5du5bi4mK8vLwIDQ21ai06nY6CgoJWj3fWOEAbJh/Q7U3jk+D/ueTt544VsLrr1EvefjUKiwqpM1nuLCeti7vZvwKvfiMZtPHS11W5dYtqciaW/lQu2UvupusDS/DqN7Jthf5BYWEhRn31Ve/niry55LGUC9eJXYmjg7ZV41pySncG6q1/eLMtfSA90E564E/sNsiCgoIoLS3lwIEDDB06tMltRUVFzJkzB4D+/ftb/YSOoKAgs8Y7mbSgsgm6Owd3tvi7UWsy6qvJWjiZDrET6Th+pkX22blzZ9t8ItOaLvny0BVf/o9IUIAbjg5aDA1GdMWXrvVy+wnqFICDyfoLcaqtD6QHrq4HzP07+Ud2G2SjR48mIyODRYsWMWbMGCIizl/Nvn//fhISEiguPv+O0hYXQpv7cbm+upY1Pe+1UjXWkXksEyd31ysPbKUaA9y0zWK7a6Z0z3pqcn6jtiCT0p/WNrs9enk6zoHdzdpnZuYx3GzQUUPv3cQvh1ue+LWlw4F/dHJ7PF07eaArrqHbmC/MfmwXZwdOZKfh5GT9r9fV1gfSA7brgT+z2yBLTEzk888/5+TJk0RHRxMZGUltbS3Hjx9n3LhxhISE8O233zb5fqy9+uau+VceZGf8RyXgPypB6TLaZFCfgEsGmbUNiPCzSYjZmvSAutnfK/L/69q1K8nJyYwfPx5XV1dyc3Px8/Pj/fffZ+vWrWRmZgJIkAnVGdQnQMHH9lfssYW4FLv9RAYQFRXFli1bmm2vrKwkNzcXrVZL3759FahMiLYbO7wrjo4aDAbbL60y4WbzDjUJYQt2HWSXkpaWhslkIiIiAnf35qcqr1u3DoD09PQmP4eEhDB48GDbFSpEC4ID3bnzlhCrrkPWktAuXowd3tWmjylEa7TLIEtNTQUufVgxLi6uxZ/vv/9+PvnkE6vWJkRrPDE1yuZB9nhcJFqt+qdsE/ZHgqwFal8NV9i/mwcHccfN3dn849VdxNtaPbt5MSM+6soDhVCABJkd8e3Tg2FvPI6TpxtV+WfY/eQ7+EZ0Y/SauZRnFfJd/CvUni2nV/wtRD86ng7hXUl5eTXp/9rauI/B8xIImTSMktQcdjy4WMFnY77qnN/Ie/cRjDUVOAf2IOSZT6k9kcaxl8fh2qU34X//DiefjhR8+iJl+zeh0ToAEDTl/+E34vwsF/mr5lDy01rce15Hr7lfKfhsLk+j0fD+S8NJnqyjrKLuyne4Sh8vuEkVy7e0tgdufGsGwSP6oz97foaSwt2HSXnlU6B99EDWa3eiP33xE31N7mF6vvAVPtdP5NTGpZzZ9i5aN0/6vHVIuSdjhnYZZBfmYbQ3N741k5+feZeStFx6xd/CkJfu4/gXOynPKmTTmDmN484ezmLXY2/S78kpzfaR8sqnlB09Sfdxlp8iy9py336AkFmrcA+Lofj7j8lf9RwBf3kQ1y69mzRkpzvn0CXhVQDqzhaQNiMK75jROHoH0PXBJbh2j6Zs31fKPAkzBAe689684cQn7mz1fS5c6HylC6f/6Ln7+zFicLDZ9SmhtT0AkLZyU5M3cRe0hx7oOfc/jf+uOpbCsQVj8b5uLACdJj2De9hATn70tI2rbzu7Pf2+vfHrG4qhupaStFwAsr7cRbdbB6N1bv5epTQ9j3PHCsCoomkTrqA6+yAObp64h8UA4D/qfs79ugmTofmnFUdPn8Z/G2sqwWTCpNLfxdSxYbyVeH2rxw+ZtoluY7644oXTFyRM6MWiZ9SxCoQ5PWCPzOmBPyr+/iP8R96L1snZBlVaR/v4f7gd8OzeEd/I7kzcvqRxm6ObC+5BfgpWZTv6UznU5KWS/nRM4zajvpq6sy3PcXl68zJOb3uX+rP59Jj5IU4+HW1UqeU9dW9fXF0cmfHaHhoaLPf97l/vjuSdF4aq5gQPc3sg6uHb6RV/C1UFxRxclNQYgGplbg+cv72G0uQker+m7oVEJcjsyJmDx9g+7R+NP8cf+UjBamzPI/x6whd82/jzbwmBlxzb8Y5ZdLxjFtU5v5Gz9F68Y27F0Vu9F/s+FhfJoD7+PDgvmSPHS69qX4G+rqz82zDuGmPdybStobU9cOD1JKpPlYLJRPdxsYxe8yIbhj2JobrWVqVahTk9AFC6Zx0unSNwC+ln7dKsSg4t2onKvFN4dLk444OTpxuO7q5U60oUrMp2XDqFUVd88Qy+hupyGmqrcPbvctn7uYcOwNmvCxVHdlm5QusbHB1IyheTeHnGdQT6mj/nn6uLA4/c1Zv0r+5SZYiZ0wPVupLza9IAJ77+lfqKajr06myzWq2hLT1Q/P1HBIx+yBblWZUEmZ0oScvFWN9A8Ij+AEQ+cBs5G3/GWGdQuDLbcA+LQePgRPmh7QCc2bYCvxunonFsfty/5kR647/1RVlUZx/EtVsfm9VqTS7ODsx7bCAnt8ezZuFIbokNxvMyZxs6OWoZHB3Am3Oup/CHaXww/0YC2hCC1wJzesA9+OLhxsDrwnHx86I8p/VrBl6LzOkBgNqi41QfT8FvxDRblmkVcmjRjuye8TY3vjUD59cfoSJXx+6Zy/Dt3XxKoV53j2Tg89Nw9vGg+9hYoh+fyA/3v07JEdteYGtpoc+uIXfZg5xY+VdcgnsR+uxn1OQdaTau4H8T0Z/KQePohEbrSPfHluPWzb6ukXJxduCe8T25Z3xPjEYTmXnnOJxZQkVVPUajCXc3RyJDfejbyxcXZwely7WY1vbAjW/NxC2wA6YGI4baOnY98k/qK2y/jpaltbYHAM5+/zE+Q+/Cwd3bxlVangSZHSn7/QRbxj5/xXHHv9zF8S93Wb8gG3ML6UfUm1deMqfXvObzb9ozrVZDZKgPkaE+Spdida3tge+mvmyDamyvtT0A0CXhNStXYztyaNHONdQbcPH1YuL2Jbj6X/md1+B5CfR78k70ZZU2qM76NI7OGMrPkv50DPVlp684Pn/VHHTrFuLo4WuD6oQtSA+Y1wOnNi7lxHtP4Oil3CoL5tKYZD6ma47aFhQEmJ71maoWFbSG5NtRZFFBe6W2PpAeUK4H5BOZEEIIVZMgE0IIoWpyaPEaZDKZMNTolS7DLI5uLmg0lpsBwmSC2gaL7c4mXB3Agr+Cdk9tfSA9oFwPSJAJIYRQNTm0KIQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtX+D+NyPxWAfdNFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -126,10 +126,10 @@ } ], "source": [ - "from qiskit.circuit.library import EfficientSU2\n", + "from qiskit.circuit.library import efficient_su2\n", "\n", - "ansatz = EfficientSU2(hamiltonian.num_qubits, reps=1)\n", - "ansatz.decompose().draw(\"mpl\")" + "ansatz = efficient_su2(hamiltonian.num_qubits, reps=1)\n", + "ansatz.draw(\"mpl\")" ] }, { @@ -222,9 +222,9 @@ "outputs": [], "source": [ "from qiskit_algorithms import VarQITE\n", - "from qiskit.primitives import Estimator\n", + "from qiskit.primitives import StatevectorEstimator\n", "\n", - "var_qite = VarQITE(ansatz, init_param_values, var_principle, Estimator())\n", + "var_qite = VarQITE(ansatz, init_param_values, var_principle, StatevectorEstimator())\n", "# an Estimator instance is necessary, if we want to calculate the expectation value of auxiliary operators.\n", "evolution_result = var_qite.evolve(evolution_problem)" ] @@ -305,7 +305,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGwCAYAAACw64E/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABZuUlEQVR4nO3deXwU9eHG8c9sjs2dEHJDuAQJCJFLEETFQgHxolIq/EABEZQKymEVrKKgglcVr4paAW2hKFqsokUREDyQ06BckdNADgKEJCQhyWZ3f39EViMEck9287xfr3nJzn539pmkZR9mZr9jOJ1OJyIiIiJSIRazA4iIiIi4E5UnERERkUpQeRIRERGpBJUnERERkUpQeRIRERGpBJUnERERkUpQeRIRERGpBG+zA3gih8NBWloawcHBGIZhdhwRERGpAKfTyalTp4iLi8NiKf/4kspTLUhLSyM+Pt7sGCIiIlIFhw8fpmnTpuU+r/JUC4KDg4HSH35ISIjJaURERKQicnNziY+Pd32Ol0flqRacOVUXEhKi8iQiIuJmLnTJjS4YFxEREakElScRERGRSlB5EhEREakEXfMkIiJSC+x2OzabzewY8is+Pj54eXlVezsqTyIiIjXI6XSSkZFBdna22VHkHMLCwoiJianWPIwqTyIiIjXoTHGKiooiICBAkyXXE06nk4KCAjIzMwGIjY2t8rZUnkRERGqI3W53FafGjRubHUd+w9/fH4DMzEyioqKqfApPF4yLiIjUkDPXOAUEBJicRMpz5ndTnevRVJ5ERERqmE7V1V818btReRIRERGpBLcvT6+88gotWrTAz8+PHj16sGnTpvOOX7ZsGQkJCfj5+dGxY0c++eSTMs87nU5mzpxJbGws/v7+9OvXj71799bmLoiIiIgbcevy9M477zB16lQeeeQRtm3bxqWXXsqAAQNcV9L/1jfffMPw4cMZO3Ys3333HYMHD2bw4MHs2LHDNebpp5/mxRdfZP78+WzcuJHAwEAGDBhAYWFhXe2WiIiI1GNuXZ6ee+45xo0bx5gxY2jfvj3z588nICCABQsWnHP8Cy+8wMCBA/nLX/5Cu3bteOyxx+jSpQsvv/wyUHrUad68eTz00EPcdNNNJCYm8vbbb5OWlsYHH3xQh3t2bgXFJSRnnKKoxG52FBER8RA33HADAwcOPOdzX375JYZh8P3331d5+9988w2DBg2iUaNGrrM+zz33HHZ72c8ywzD44IMPWLRoEYZhnHc5dOgQjz766DmfS0hIqHLWinLb8lRcXMzWrVvp16+fa53FYqFfv35s2LDhnK/ZsGFDmfEAAwYMcI0/ePAgGRkZZcaEhobSo0ePcrcJUFRURG5ubpmlNvR56nNun/c++w9n1Mr2RUSk4Rk7diyrVq3iyJEjZz23cOFCunXrRmJiYqW2WVxcDMDy5cu5+uqradq0KWvXrmXPnj3ce++9PP744wwbNgyn03nWa2+55RbS09NdS8+ePRk3blyZdfHx8QBccsklZdanp6fz1VdfVeGnUDluO8/T8ePHsdvtREdHl1kfHR3Nnj17zvmajIyMc47PyMhwPX9mXXljzmXu3LnMmjWr0vtQWW9ZZtHObxfbkl+AlqNr/f1ERKR6nE4np23mnC3w9/Gq0DfLrr/+eiIjI1m0aBEPPfSQa31eXh7Lli1j+vTpDB8+nPXr13Py5EkuuugiHnzwQYYPH+4a26dPHzp06IC3tzf/+te/6NixIytWrGDcuHHceOONvP76666xd9xxB9HR0dx44428++673HLLLWVz+/u75mMC8PX1JSAggJiYmLOye3t7n3N9bXPb8lSfzJgxg6lTp7oe5+bmulpxTcr3jwPbLoqOHajxbYuISM07bbPTfuanprz3rtkDCPC98Me8t7c3t912G4sWLeKvf/2rq3AtW7YMu93OyJEjWbZsGQ888AAhISF8/PHH3HrrrVx00UV0797dtZ233nqLCRMm8PXXXwPw2WefceLECe67776z3vOGG27g4osv5t///vdZ5ckduO1pu4iICLy8vDh69GiZ9UePHi23hcbExJx3/Jn/VmabAFarlZCQkDJLbbCFNAPAkn2oVrYvIiIN0+23387+/ftZt26da93ChQsZMmQIzZs357777qNTp060atWKSZMmMXDgQN59990y22jTpg1PP/00bdu2pW3btvz4448AtGvX7pzvmZCQ4BpTVT/88ANBQUFllrvuuqta26wItz3y5OvrS9euXVm9ejWDBw8GwOFwsHr1aiZOnHjO1/Ts2ZPVq1czefJk17pVq1bRs2dPAFq2bElMTAyrV6+mU6dOQOlRpI0bNzJhwoTa3J0K8WrcEo5AQN5hs6OIiEgF+Pt4sWv2ANPeu6ISEhLo1asXCxYsoE+fPuzbt48vv/yS2bNnY7fbmTNnDu+++y6pqakUFxdTVFR01izqXbt2Pee2z3Vd0xm+vr4Vzngubdu25cMPPyyzrrYOYPya25YngKlTpzJq1Ci6detG9+7dmTdvHvn5+YwZMwaA2267jSZNmjB37lwA7r33Xq6++mr+9re/cd1117F06VK2bNniOhdrGAaTJ0/m8ccfp02bNrRs2ZKHH36YuLg4V0EzU1BMG9gOjYrTzI4iIiIVYBhGhU6d1Qdjx45l0qRJvPLKKyxcuJCLLrqIq6++mqeeeooXXniBefPm0bFjRwIDA5k8ebLrovAzAgMDyzxu06YNALt376ZXr15nvd/u3btdByqqytfXl9atW1drG1XhHr/Rctxyyy0cO3aMmTNnkpGRQadOnVi5cqXrgu+UlBQsll/OTPbq1YslS5bw0EMP8eCDD9KmTRs++OADOnTo4Bpz//33k5+fz/jx48nOzqZ3796sXLkSPz+/Ot+/32ocfzEA0Y5jlNiK8fapXmMXERE5409/+hP33nsvS5Ys4e2332bChAkYhsHXX3/NTTfdxMiRI4HSszw//vgj7du3P+/2BgwYQHh4OH/729/OKk8ffvghe/fuZd68ebW1O7XKrcsTwMSJE8s9TffFF1+ctW7o0KEMHTq03O0ZhsHs2bOZPXt2TUWsMZGxLShy+mA1bKQdOUBcy9qfy0JERBqGoKAgbrnlFmbMmEFubi6jR48GSo8gvffee3zzzTc0atSI5557jqNHj16wPAUGBvLaa68xbNgwxo8fz8SJEwkJCWH16tX85S9/Ydy4cQwaNKhamUtKSs76NrxhGGd9a76muX15akgsXl585DuQo6cNup+yE2d2IBER8Shjx47lzTffZNCgQcTFlX7KPPTQQxw4cIABAwYQEBDA+PHjGTx4MDk5ORfc3h//+EfWrl3LE088wZVXXumaB/Gpp57i/vvvr3benTt3EhsbW2ad1Wqt9buCGM7zXcklVZKbm0toaCg5OTk1fuHamIWbWJt8jLk3d2R492Y1um0REamewsJCDh48SMuWLevF5R71TWFhITfddBOHDx9m3bp1REZGmpKhvN9RRT+/3XaqgoaqWXjptxt+OlFgchIREZHK8fPz47///S+33XYb69evNztOlem0nZtp1shKHMexpRcBuuZJRETci5+fH9OnTzc7RrWoPLmZLoUbGet3D3tTWwM3mx1HRESkwdFpOzcT2rR0uoIoe7rJSURERBomlSc3E9OsLQCh5JOTdczkNCIiIg2PypObCQgK5ThhAGSmJJsbRkREpAFSeXJDx31K57TITdtrchIREZGGR+XJDZ3ybwpA8fEDJicRERFpeFSe3FBJaHMALNmHzA0iIiLSAKk8uaGipr15teQG1hmXmR1FREQ8xOjRozEM46xl4MCBdfL+jz76KJ06daqT96ouzfPkhgIuvpqn1voSf9qf6t8ZSEREpNTAgQNZuHBhmXVWq9WkNPWXjjy5oTO3aEnLLsRmd5icRkREPIXVaiUmJqbM0qhRI7744gt8fX358ssvXWOffvppoqKiOHr0KAArV66kd+/ehIWF0bhxY66//nr2799fZvtHjhxh+PDhhIeHExgYSLdu3di4cSOLFi1i1qxZbN++3XXEa9GiRXW565WiI09uKCrYSrx3NrH2dDKOdiE+LsbsSCIicj7F+eU/Z3iBj18Fx1rAx//CY30DK5fvAvr06cPkyZO59dZb2b59OwcOHODhhx9m2bJlREdHA5Cfn8/UqVNJTEwkLy+PmTNn8oc//IGkpCQsFgt5eXlcffXVNGnShA8//JCYmBi2bduGw+HglltuYceOHaxcuZLPP/8cgNDQ0Brdh5qk8uSGLBaDf/nOpbnjMD/sa0N83E1mRxIRkfOZE1f+c236w4hlvzx+pjXYyrn5e/PeMObjXx7P6wgFJ84e92hOlWKuWLGCoKCgMusefPBBHnzwQR5//HFWrVrF+PHj2bFjB6NGjeLGG290jRsyZEiZ1y1YsIDIyEh27dpFhw4dWLJkCceOHWPz5s2Eh4cD0Lp1a9f4oKAgvL29iYmp/wcEVJ7cVLY1juanD1NwdJ/ZUURExENcc801vPrqq2XWnSk6vr6+LF68mMTERJo3b87zzz9fZtzevXuZOXMmGzdu5Pjx4zgcpZeVpKSk0KFDB5KSkujcubNre+5M5clNnQ5qBqc34sjSXE8iIvXeg2nlP2d4lX38l/P8o9j4zaXKk3+oeqZzCAwMLHM06Le++eYbALKyssjKyiIw8JfTgzfccAPNmzfnjTfeIC4uDofDQYcOHSguLgbA39//nNt0R7pg3F01agGA9VSKuTlEROTCfAPLX359vdMFx/pXbGwt2L9/P1OmTOGNN96gR48ejBo1ynV06cSJEyQnJ/PQQw/Rt29f2rVrx8mTJ8u8PjExkaSkJLKyss65fV9fX+x2e61kr2kqT27KL+oiAEJOp5qcREREPEVRUREZGRllluPHj2O32xk5ciQDBgxgzJgxLFy4kO+//56//e1vADRq1IjGjRvz+uuvs2/fPtasWcPUqVPLbHv48OHExMQwePBgvv76aw4cOMD777/Phg0bAGjRogUHDx4kKSmJ48ePU1RUVOf7X1EqT24qrEkbAKLsGTidTpPTiIiIJ1i5ciWxsbFllt69e/PEE0/w008/8dprrwEQGxvL66+/zkMPPcT27duxWCwsXbqUrVu30qFDB6ZMmcIzzzxTZtu+vr589tlnREVFMWjQIDp27MiTTz6Jl1fpacshQ4YwcOBArrnmGiIjI/n3v/9d5/tfUYZTn7w1Ljc3l9DQUHJycggJCamV9zidfwr/Z0rvcZcz6UdCG0fXyvuIiEjFFRYWcvDgQVq2bImfn9+FXyB17ny/o4p+fuuCcTflHxjMa5Zb+KkoiP/LKSa0sdmJREREGgadtnNjn0WOZom9L4fyvC48WERERGqEypMba/7zbVpSssqZTE1ERERqnE7bubHWIXa6GXsgJQcof14OERERqTk68uTGLiv6lvess7kq9TWzo4iIyK/ou1j1V038blSe3FhQbOnRpvDi88xcKyIidcbHxweAggJdTlFfnfndnPldVYVO27mxyPgEAKIdx7AVF+HjazU5kYhIw+bl5UVYWBiZmZkABAQEYBiGyakESo84FRQUkJmZSVhYmGt+qapQeXJjjWPiKXT64GfYSE/ZS9PWHcyOJCLS4MXExAC4CpTUL2FhYa7fUVWpPLkxw2IhwyuGFo7DnEz9UeVJRKQeMAyD2NhYoqKisNlsZseRX/Hx8anWEacz3LY8ZWVlMWnSJD766CMsFgtDhgzhhRdeICgoqNzxjzzyCJ999hkpKSlERkYyePBgHnvsMUJDQ13jznV49d///jfDhg2rtX2pjmxrUzh9mIKj+82OIiIiv+Ll5VUjH9RS/7hteRoxYgTp6emsWrUKm83GmDFjGD9+PEuWLDnn+LS0NNLS0nj22Wdp3749P/30E3fddRdpaWm89957ZcYuXLiQgQMHuh6HhYXV5q5US2FQPJzegDProNlRREREGgS3LE+7d+9m5cqVbN68mW7dugHw0ksvMWjQIJ599lni4uLOek2HDh14//33XY8vuuginnjiCUaOHElJSQne3r/8KGrifGhdOdH8Wh5KC8Tf53IuNzuMiIhIA+CWUxVs2LCBsLAwV3EC6NevHxaLhY0bN1Z4O2du/Pfr4gRw9913ExERQffu3VmwYMEF54QoKioiNze3zFJX/C66gn/Zf8/XeU3q7D1FREQaMrc88pSRkUFUVFSZdd7e3oSHh5ORkVGhbRw/fpzHHnuM8ePHl1k/e/Zsfve73xEQEMBnn33Gn//8Z/Ly8rjnnnvK3dbcuXOZNWtW5XekBjT7+RYth7MKcDqd+kqsiIhILatXR56mT5+OYRjnXfbs2VPt98nNzeW6666jffv2PProo2Wee/jhh7niiivo3LkzDzzwAPfffz/PPPPMebc3Y8YMcnJyXMvhw4ernbGi4sMD6GL8SD/bWrKzT9bZ+4qIiDRU9erI07Rp0xg9evR5x7Rq1YqYmJiz5s8oKSkhKyvrgtcqnTp1ioEDBxIcHMzy5csvOMNojx49eOyxxygqKsJqPfcklFartdznapufjxfzrS8SRRY/HhxIo0Z9TMkhIiLSUNSr8hQZGUlkZOQFx/Xs2ZPs7Gy2bt1K165dAVizZg0Oh4MePXqU+7rc3FwGDBiA1Wrlww8/xM/P74LvlZSURKNGjUwrRxVxwieWKFsWuel7gT5mxxEREfFo9ao8VVS7du0YOHAg48aNY/78+dhsNiZOnMiwYcNc37RLTU2lb9++vP3223Tv3p3c3Fz69+9PQUEB//rXv8pc2B0ZGYmXlxcfffQRR48e5fLLL8fPz49Vq1YxZ84c7rvvPjN394JOBcRDzk5Kjmm6AhERkdrmluUJYPHixUycOJG+ffu6Jsl88cUXXc/bbDaSk5NdNwDctm2b65t4rVu3LrOtgwcP0qJFC3x8fHjllVeYMmUKTqeT1q1b89xzzzFu3Li627EqsIc2gxyw5BwyO4qIiIjHM5wX+h6+VFpubi6hoaGuqRBq2+b/vspl301np++lXPLg+lp/PxEREU9U0c/vevVtO6ma4Lg2AIQXp5mcRERExPOpPHmAxvEXAxDlPE5xUaHJaURERDybypMHiIhqyqOO27nddj+p2SpPIiIitUnlyQMYFgvfNBrMOselpOTYzI4jIiLi0VSePMSZ27SkZBWYnERERMSzqTx5iMTAHAZbvsLrwFqzo4iIiHg0lScP0d22mXm+f6dd6jKzo4iIiHg0lScP4R/dCoCQwlSTk4iIiHg2lScPEdakdLqCmJJ0nA6HyWlEREQ8l8qTh4hudjEOp0GgUUj2iQyz44iIiHgslScP4ecfyDEjHIDMn/aYnEZERMRzqTx5kBM+cQCcSt9rchIRERHPpfLkQfIC4wGwHT9gchIRERHP5W12AKk5h1oN5+/fdqCFbw96mh1GRETEQ+nIkwfxb96NLxyd+CE3wOwoIiIiHkvlyYO0aBwIwE8ndIsWERGR2qLTdh6kWbg/N1q+ofnpDPJOdSMoOMzsSCIiIh5HR548SGiAL7N832aaz3scPbjT7DgiIiIeSeXJw2R6l05XkJP6o8lJREREPJPKk4c5FVA6XUFR5j6Tk4iIiHgmlScPYwtrCYBX9kGTk4iIiHgmlScP4x1xEQCB+SkmJxEREfFMKk8eJjjuYgAiitNMTiIiIuKZVJ48THTzdqX/5QSFBXkmpxEREfE8mufJw4Q1jubPTCe5qDGv5pRwsSYbFxERqVE68uRhDIuFw42vZL+zCYeyCs2OIyIi4nFUnjxQ88alh5t0mxYREZGap/Lkgbr5pfNnrw8I2/u+2VFEREQ8jsqTB7rE2M/9Pu+SkPmJ2VFEREQ8jsqTBwqMLZ2uoHFxqslJREREPI/KkweKavbzdAWOTIqLdNG4iIhITXLb8pSVlcWIESMICQkhLCyMsWPHkpd3/nmN+vTpg2EYZZa77rqrzJiUlBSuu+46AgICiIqK4i9/+QslJSW1uSs1rnFMPAVOK16Gk4wU3SBYRESkJrntPE8jRowgPT2dVatWYbPZGDNmDOPHj2fJkiXnfd24ceOYPXu263FAwC8TIdntdq677jpiYmL45ptvSE9P57bbbsPHx4c5c+bU2r7UNMNi4ahXLC0dhzh5OJlmbRLNjiQiIuIx3PLI0+7du1m5ciX/+Mc/6NGjB7179+all15i6dKlpKWd/7YkAQEBxMTEuJaQkBDXc5999hm7du3iX//6F506deLaa6/lscce45VXXqG4uLi2d6tGZfs3BeD00b0mJxEREfEsblmeNmzYQFhYGN26dXOt69evHxaLhY0bN573tYsXLyYiIoIOHTowY8YMCgp+mQtpw4YNdOzYkejoaNe6AQMGkJuby86dO8vdZlFREbm5uWUWsxWFNC/9Q9ZBc4OIiIh4GLc8bZeRkUFUVFSZdd7e3oSHh5ORkVHu6/7v//6P5s2bExcXx/fff88DDzxAcnIy//nPf1zb/XVxAlyPz7fduXPnMmvWrKruTq04mnAb/Q5dSiu/9lxudhgREREPUq/K0/Tp03nqqafOO2b37t1V3v748eNdf+7YsSOxsbH07duX/fv3c9FFF1V5uzNmzGDq1Kmux7m5ucTHx1d5ezUhsklr9jlP4DhpNzWHiIiIp6lX5WnatGmMHj36vGNatWpFTEwMmZmZZdaXlJSQlZVFTExMhd+vR48eAOzbt4+LLrqImJgYNm3aVGbM0aNHAc67XavVitVqrfD71oXmEYEAHD5ZQIndgbeXW56hFRERqXfqVXmKjIwkMjLyguN69uxJdnY2W7dupWvXrgCsWbMGh8PhKkQVkZSUBEBsbKxru0888QSZmZmu04KrVq0iJCSE9u3bV3JvzBUb4sedPv+jpfMwmaltiWtW9SNrIiIi8gu3PBzRrl07Bg4cyLhx49i0aRNff/01EydOZNiwYcTFxQGQmppKQkKC60jS/v37eeyxx9i6dSuHDh3iww8/5LbbbuOqq64iMbH0q/z9+/enffv23HrrrWzfvp1PP/2Uhx56iLvvvrveHVm6EIvF4P981jLM+wtOHPrB7DgiIiIewy3LE5R+ay4hIYG+ffsyaNAgevfuzeuvv+563mazkZyc7Po2na+vL59//jn9+/cnISGBadOmMWTIED766CPXa7y8vFixYgVeXl707NmTkSNHctttt5WZF8qdZFubAJCfoekKREREakq9Om1XGeHh4eedELNFixY4nU7X4/j4eNatW3fB7TZv3pxPPvGMG+oWBjeH0xtxnjhgdhQRERGP4bZHnuTCjPBWAPid+snkJCIiIp5D5cmD+ce0ASCs8LDJSURERDyHypMHa9ys9BuCsfZ07HbN9yQiIlITVJ48WHSzNhQ7vfAzbBw9otu0iIiI1ASVJw/m5e3DnUEvkVC4kH1FoWbHERER8QgqTx7OO7othVg5eDzf7CgiIiIeQeXJw7X6+TYtKk8iIiI1w23neZKK6eR7hDne/yBkXxTwmtlxRERE3J7Kk4drHlDEtd5rOHwqzuwoIiIiHkGn7TxcVPNLAIh1ZFBcVGRyGhEREfen8uThGsc2p8BpxdtwkP7THrPjiIiIuD2VJw9nWCxkeJeesstK2W1yGhEREfen8tQAZPs3A6AwI9nkJCIiIu5P5akBKA4rvUGwkbXf5CQiIiLuT+WpAfCJbF36h4IT5gYRERHxAJqqoAHw6Xgzl2yIIcg3jI1mhxEREXFzOvLUADSPiSQff47mFpFfVGJ2HBEREbem8tQAhAb4EB7oC+g2LSIiItWl8tRA3OO/kn/6zCFv56dmRxEREXFrKk8NREevFK702oE9bbvZUURERNyaylMDUdKodLoC75OarkBERKQ6VJ4aCN+oiwEIzv/J5CQiIiLuTeWpgQhrmgBAdEkqTqfT5DQiIiLuS+WpgYhpeQkAjckh+6QmyxQREakqlacGwj84jGM0AiDj4A6T04iIiLgvlacG5LhvU445QziWmWF2FBEREbel8tSALE14gcuK5rPB6GR2FBEREbel8tSAtIgOB2B/Zp7JSURERNyXylMDclFkEAD7j6k8iYiIVJW32QGk7rQOsfGWz5M0zT2OzfY9Pj4+ZkcSERFxOzry1IDERETR07KLi4w00lL2mh1HRETELbltecrKymLEiBGEhIQQFhbG2LFjycsr/3TUoUOHMAzjnMuyZctc4871/NKlS+til2qdxdubNO8mAJw4+IPJaURERNyT2562GzFiBOnp6axatQqbzcaYMWMYP348S5YsOef4+Ph40tPTy6x7/fXXeeaZZ7j22mvLrF+4cCEDBw50PQ4LC6vx/GY56d+CFnk/cTp9j9lRRERE3JJblqfdu3ezcuVKNm/eTLdu3QB46aWXGDRoEM8++yxxcXFnvcbLy4uYmJgy65YvX86f/vQngoKCyqwPCws7a+z5FBUVUVRU5Hqcm5tbmd2pU8WNWkPeOixZ+8yOIiIi4pbc8rTdhg0bCAsLcxUngH79+mGxWNi4cWOFtrF161aSkpIYO3bsWc/dfffdRERE0L17dxYsWHDBe8HNnTuX0NBQ1xIfH1+5HapDvtFtAQjOO2hyEhEREffkluUpIyODqKioMuu8vb0JDw8nI6Nis2e/+eabtGvXjl69epVZP3v2bN59911WrVrFkCFD+POf/8xLL7103m3NmDGDnJwc13L48OHK7VAdCmvWHoAYW4puECwiIlIF9eq03fTp03nqqafOO2b37t3Vfp/Tp0+zZMkSHn744bOe+/W6zp07k5+fzzPPPMM999xT7vasVitWq7XauepCbKuOZDsD+ckZhTM7l8hGoWZHEhERcSvVKk82m42MjAwKCgqIjIwkPDy8WmGmTZvG6NGjzzumVatWxMTEkJmZWWZ9SUkJWVlZFbpW6b333qOgoIDbbrvtgmN79OjBY489RlFRkdsUpPPxCwrj9wH/5PDJQpaeLCGykdmJRERE3Euly9OpU6f417/+xdKlS9m0aRPFxcU4nU4Mw6Bp06b079+f8ePHc9lll1U6TGRkJJGRkRcc17NnT7Kzs9m6dStdu3YFYM2aNTgcDnr06HHB17/55pvceOONFXqvpKQkGjVq5BHF6YyLooI5fLKQ/cfyuLxVY7PjiIiIuJVKXfP03HPP0aJFCxYuXEi/fv344IMPSEpK4scff2TDhg088sgjlJSU0L9/fwYOHMjevbUzEWO7du0YOHAg48aNY9OmTXz99ddMnDiRYcOGub5pl5qaSkJCAps2bSrz2n379rF+/XruuOOOs7b70Ucf8Y9//IMdO3awb98+Xn31VebMmcOkSZNqZT/M4rpNy1HdpkVERKSyKnXkafPmzaxfv55LLrnknM93796d22+/nfnz57Nw4UK+/PJL2rRpUyNBf2vx4sVMnDiRvn37YrFYGDJkCC+++KLreZvNRnJyMgUFBWVet2DBAtcRst/y8fHhlVdeYcqUKTidTlq3bs1zzz3HuHHjamUfzHKVYwsjfR/n2O6L4cYVZscRERFxK4ZTX7mqcbm5uYSGhpKTk0NISIjZcc6y+6sPaPf5KA4ZTWjxyC6z44iIiNQLFf38rvJUBaNGjWL9+vVVfbmYKKZVIgBNHBmcPl1ochoRERH3UuXylJOTQ79+/WjTpg1z5swhNTW1JnNJLQqLaU4BVnwMO6kHqz/1g4iISENS5fL0wQcfkJqayoQJE3jnnXdo0aIF1157Le+99x42m60mM0oNMyxepHuXzoKe9dMOk9OIiIi4l2rNMB4ZGcnUqVPZvn07GzdupHXr1tx6663ExcUxZcqUWvu2nVRfbmALAIqP6gbBIiIilVEjt2dJT09n1apVrFq1Ci8vLwYNGsQPP/xA+/btef7552viLaSGlYSXfgvSWzcIFhERqZQqlyebzcb777/P9ddfT/PmzVm2bBmTJ08mLS2Nt956i88//5x3332X2bNn12ReqSE+cYlsd7Rib7EmyRQREamMKt+eJTY2FofDwfDhw9m0aROdOnU6a8w111xDWFhYNeJJbQntfBPXrA7Fz2lhhMOJxWKYHUlERMQtVLk8Pf/88wwdOhQ/P79yx4SFhXHw4MGqvoXUovhG/vh6WSi0OUjNPk18eIDZkURERNxClU/b3XrrrectTlK/eXtZaBUZiDcl7Es9ZnYcERERt1HlI09Tp04953rDMPDz86N169bcdNNNhIeHVzmc1K7pLKSX9b9s2j4VOj5kdhwRERG3UOXy9N1337Ft2zbsdjtt27YF4Mcff8TLy4uEhAT+/ve/M23aNL766ivat29fY4Gl5gQGh+KbbcdyPNnsKCIiIm6jyqftbrrpJvr160daWhpbt25l69atHDlyhN///vcMHz6c1NRUrrrqKqZMmVKTeaUG+caW3uA5NE/TFYiIiFRUlW8M3KRJE1atWnXWUaWdO3fSv39/UlNT2bZtG/379+f48eM1EtZd1PcbA59xZPdGmr7Tn2xnICEzj2DxqpFpv0RERNxSrd8YOCcnh8zMzLPWHzt2jNzcXKD023bFxcVVfQupZbEXJWJ3GoQZ+aSlHjI7joiIiFuo1mm722+/neXLl3PkyBGOHDnC8uXLGTt2LIMHDwZg06ZNXHzxxTWVVWqYl68/6V6xABzdv93kNCIiIu6hyheMv/baa0yZMoVhw4ZRUlJSujFvb0aNGuW6JUtCQgL/+Mc/aiap1IqsgFY0zUujIHUH8Aez44iIiNR7VS5PQUFBvPHGGzz//PMcOHAAgFatWhEUFOQac65Zx6V+ORnTixXJJaQXRnCl2WFERETcQJVO29lsNvr27cvevXsJCgoiMTGRxMTEMsVJ3ENh57FMtN3DBwUdzI4iIiLiFqpUnnx8fPj+++9rOouY4OLoYAD2ZeZhd1Tpi5ciIiINSpUvGB85ciRvvvlmTWYREzQLD8DPG6Ls6Rw52rCmlBAREamKKl/zVFJSwoIFC/j888/p2rUrgYGBZZ5/7rnnqh1Oap+XxeAT64O0sh9iy+5GNI/VReMiIiLnU+XytGPHDrp06QKU3pbl1wzDqF4qqVN5/k0h7xCn9Y07ERGRC6pyeVq7dm1N5hATFYdfDHlfYTmhe9yJiIhcSLXux/Hll18ycuRIevXqRWpqKgD//Oc/+eqrr2oknNQN68/3uAs7td/kJCIiIvVflcvT+++/z4ABA/D392fbtm0UFRUBpbdtmTNnTo0FlNrXuGUiAE1KfsJud5icRkREpH6rcnl6/PHHmT9/Pm+88QY+Pj6u9VdccQXbtm2rkXBSN2JadXTd4y71yCGz44iIiNRrVS5PycnJXHXVVWetDw0NJTs7uzqZpI5ZfP3JcN3jLsncMCIiIvVclctTTEwM+/btO2v9V199RatWraoVSured42v5+WSm0guCDY7ioiISL1W5fI0btw47r33XjZu3IhhGKSlpbF48WLuu+8+JkyYUJMZpQ4cvuQuni25hY2nIsyOIiIiUq9VeaqC6dOn43A46Nu3LwUFBVx11VVYrVbuu+8+Jk2aVJMZpQ4kxJYecdqTnmtyEhERkfqtykeeDMPgr3/9K1lZWezYsYNvv/2WY8eO8dhjj9VkvnI98cQT9OrVi4CAAMLCwir0GqfTycyZM4mNjcXf359+/fqxd+/eMmOysrIYMWIEISEhhIWFMXbsWPLy8mphD+qXdtHBRHKSJie+obDYZnYcERGReqta8zwB+Pr60r59e7p3705QUFBNZKqQ4uJihg4dWqlThE8//TQvvvgi8+fPZ+PGjQQGBjJgwAAKCwtdY0aMGMHOnTtZtWoVK1asYP369YwfP742dqFeiQ725iu/ySzyeZKU/bvMjiMiIlJvGU6n01nVF69evZrVq1eTmZmJw1F2fqAFCxZUO1xFLFq0iMmTJ1/wG35Op5O4uDimTZvGfffdB5TOSRUdHc2iRYsYNmwYu3fvpn379mzevJlu3boBsHLlSgYNGsSRI0eIi4urUKbc3FxCQ0PJyckhJCSkWvtXlw480ZVWtn180/V5et1wu9lxRERE6lRFP7+rfORp1qxZ9O/fn9WrV3P8+HFOnjxZZqlvDh48SEZGBv369XOtCw0NpUePHmzYsAGADRs2EBYW5ipOAP369cNisbBx48Zyt11UVERubm6ZxR3lhLQFwJa2w+QkIiIi9VeVLxifP38+ixYt4tZbb63JPLUmIyMDgOjo6DLro6OjXc9lZGQQFRVV5nlvb2/Cw8NdY85l7ty5zJo1q4YTmyC6A5z4GP+Te8xOIiIiUm9V+chTcXExvXr1qsksTJ8+HcMwzrvs2VP/PthnzJhBTk6Oazl8+LDZkaoktEUnAGIK91GNs7kiIiIercpHnu644w6WLFnCww8/XGNhpk2bxujRo887pqoTcMbExABw9OhRYmNjXeuPHj1Kp06dXGMyMzPLvK6kpISsrCzX68/FarVitVqrlKs+iWvbDT6BZhzl2IksIiMamx1JRESk3qlyeSosLOT111/n888/JzExscz97QCee+65Sm8zMjKSyMjIqkY6r5YtWxITE8Pq1atdZSk3N5eNGze6vrHXs2dPsrOz2bp1K127dgVgzZo1OBwOevToUSu56hO/0CiOG+FEOLM4nLyFyIgBZkcSERGpd6pcnr7//ntXCdmxo+wFxoZhVCtURaSkpJCVlUVKSgp2u52kpCQAWrdu7ZoyISEhgblz5/KHP/wBwzCYPHkyjz/+OG3atKFly5Y8/PDDxMXFMXjwYADatWvHwIEDGTduHPPnz8dmszFx4kSGDRtW4W/aubtVkaPYmlpAh4JwupgdRkREpB6qcnlau3ZtTeaotJkzZ/LWW2+5Hnfu3BkozdWnTx+g9ObFOTk5rjH3338/+fn5jB8/nuzsbHr37s3KlSvx8/NzjVm8eDETJ06kb9++WCwWhgwZwosvvlg3O1UPZLUbyXspydhOeDPa7DAiIiL1ULXmefryyy957bXXOHDgAMuWLaNJkyb885//pGXLlvTu3bsmc7oVd53nCWDNnqPcvmgLbaOD+XTKVWbHERERqTO1Ps/T+++/z4ABA/D392fbtm0UFRUBpRNPzpkzp6qbFZMlRAVwmbGHHieWU2QrMTuOiIhIvVPl8vT4448zf/583njjjTIXi19xxRVs27atRsJJ3YsN8WWJ9Qlmey/gpwP1b1oIERERs1W5PCUnJ3PVVWef1gkNDb3grVKk/jK8raR6Nwfg+D6VYBERkd+qcnmKiYlh3759Z63/6quvqjwXk9QPOSEXA1Cc+oPJSUREROqfKpencePGce+997Jx40YMwyAtLY3Fixdz3333ueZNEvfkjLoEAP+Tu01OIiIiUv9UeaqC6dOn43A46Nu3LwUFBVx11VVYrVbuu+8+Jk2aVJMZpY4Ft+gMeyDm9H6zo4iIiNQ71ZqqAErvcbdv3z7y8vJo3769a4LKhsydpyoAOJ2Vjv+LCTicBsfvPUBUeLjZkURERGpdRT+/q3zk6QxfX1/at29f3c1IPeIfHkuWEUo4ORzes5WoXr83O5KIiEi9UalrnlJSUiq18dTU1EqNl/rj/dj7GFL0CJsLYi88WEREpAGpVHm67LLLuPPOO9m8eXO5Y3JycnjjjTfo0KED77//frUDijmcCdex1dmW748WmR1FRESkXqnUabtdu3bxxBNP8Pvf/x4/Pz+6du1KXFwcfn5+nDx5kl27drFz5066dOnC008/zaBBg2ort9SyDnGhAOxIzTU5iYiISP1SpQvGT58+zccff8xXX33FTz/9xOnTp4mIiKBz584MGDCADh061EZWt+HuF4wD5Jwq4LEnH+US4xA3P7CI0OAAsyOJiIjUqop+flf723ZyNk8oTzidnJoVRzAFJF23gk6XXWl2IhERkVpV6zcGFg9nGKT5l840nrN/i8lhRERE6g+VJynX6calM40bGdtNTiIiIlJ/qDxJuXzjOwMQnqvbtIiIiJyh8iTlik24HIBW9oPkndaUBSIiIqDyJOfRKL49p7ESYBRxMFmn7kRERKCGylNWVhYOh6MmNiX1icWLVGtrAI7v32ZyGBERkfqhyuVp165dPPnkk/Tq1YvIyEiioqK47bbbeP/998nPz6/JjGKiby6ZyWWFf2eFvafZUUREROqFSpWn5ORkpk2bRps2bbj88svZvHkzd911F0ePHuWTTz6hefPmzJ49m4iICK699lpeffXV2sotdSSudWeOEcaO1Byzo4iIiNQLlbo9yzfffEN+fj4vvvgiffv2xdfX1/VcREQE3bt357HHHuPQoUP897//5T//+Q8TJkyo8dBSdzo0Kb1Ny75jeZwutuPv62VyIhEREXNphvFa4BEzjP/K3x/7M+2Ld9B46Dw6JnYxO46IiEitqOjnd6WOPAEEBwfTuXNnunbtSpcuXejSpQvt27fHMIxqBZb6q793Eq3tO/liz9eg8iQiIg1cpcvTU089xdatW1mzZg0vv/wyDocDf39/EhMTyxSqSy+9tDbyignyIi6F1J2Qpm/ciYiIVLo8/fnPf3b9+fTp0wQGBjJp0iSysrL49ttv+cc//kFxcTF2u71Gg4p5/JtfBqlLiMzdYXYUERER01W6PP2av78/AMOHDycxMRGAkpISdu3aVf1kUm/EdbgCvoHW9oNk5eYRHhJkdiQRERHT1PgM497e3q4iJZ4hOPZicgnCatg4sHOT2XFERERMpduzyIUZBmmB7QDI3bfR5DAiIiLmqnR5uuOOO3j11VfZvHkzRUWlN4vVN+08X1FUJ045/TmRddzsKCIiIqaq9DVPe/fuZdmyZZw6dQpv79KXz5o1iz59+tClSxc6depEQEBAjQcVczmvnEri7qsJz/Xjj06nCrOIiDRYlT7ytG7dOnJyckhOTubtt9/mvvvuIzs7m5kzZ9K7d29CQ0O55JJLaiNrGU888QS9evUiICCAsLCwC4632Ww88MADdOzYkcDAQOLi4rjttttIS0srM65FixYYhlFmefLJJ2tpL9xHQnw03l5enMgv5sjJ02bHERERMU2Vv23Xpk0b2rRpw7Bhw1zrDh48yJYtW/juu+9qJNz5FBcXM3ToUHr27Mmbb755wfEFBQVs27aNhx9+mEsvvZSTJ09y7733cuONN7Jly5YyY2fPns24ceNcj4ODg2s8v7vx8/EiISaEH1Jz+P5wNvHhOrooIiINU6XKU0ZGBo0aNcJqtZ7z+ZYtW9KyZUuGDh0KwIEDB2jVqlX1U57DrFmzAFi0aFGFxoeGhrJq1aoy615++WW6d+9OSkoKzZo1c60PDg4mJiamxrJ6ijv9PqO97zsc2PxHuPQJs+OIiIiYolKn7d577z3Cw8P5wx/+wMKFCzl27NhZYzZu3MiDDz7IJZdcUu9nGc/JycEwjLNO+z355JM0btyYzp0788wzz1BSUnLe7RQVFZGbm1tm8UTNQrxoZckg6FjtH1kUERGprypVniZOnMj27du58sorWbRoEU2bNqV3797MmTOHcePGERsby+DBg8nMzOTJJ588Z7mqLwoLC3nggQcYPnx4mZv/3XPPPSxdupS1a9dy5513MmfOHO6///7zbmvu3LmEhoa6lvj4+NqOb4qIdlcC0KpwJ8U2zSAvIiINk+F0Op1VffGJEydYsWIFn3zyCS1atOCmm26iZ8+eVf4m1vTp03nqqafOO2b37t0kJCS4Hi9atIjJkyeTnZ1d4fex2WwMGTKEI0eO8MUXX5z3zskLFizgzjvvJC8vr9zTlUVFRa5pG6D0rszx8fEXvCuzu3EWF1Aypyk+2Nk59EsuuUSToYqIiOfIzc0lNDT0gp/f1bo9S+PGjRk1ahSjRo2qzmZcpk2bxujRo887prrXUNlsNv70pz/x008/sWbNmguWmx49elBSUsKhQ4do27btOcdYrdZyi5UnMXwDOGxtQ6uiPWTuUnkSEZGGqVrlqaZFRkYSGRlZa9s/U5z27t3L2rVrady48QVfk5SUhMViISoqqtZyuZNTEZ0hdQ/GkY3A3WbHERERqXNue3uWlJQUkpKSSElJwW63k5SURFJSEnl5ea4xCQkJLF++HCgtTn/84x/ZsmULixcvxm63k5GRQUZGBsXFxQBs2LCBefPmsX37dg4cOMDixYuZMmUKI0eOpFGjRqbsZ30TcFEvAGJyv6caZ3xFRETcVr068lQZM2fO5K233nI97ty5MwBr166lT58+ACQnJ5OTkwNAamoqH374IQCdOnUqs60zr7FarSxdupRHH32UoqIiWrZsyZQpU5g6dWrt75CbaJrYhz1fxLPJ0ZqgkwU0DQ80O5KIiEidqtYF43JuFb3gzF3d9PJXbD+SwwvDOnFTpyZmxxEREakRFf38dtvTdmKeLs1LT2Fu++mkyUlERETqnsqTVFrX5o3woYSjB3eYHUVERKTOue01T2Ke7sHH+cE6lsKTvhQU3UyA1dfsSCIiInVGR56k0qKatQPDIMzIJ3nnNrPjiIiI1CmVJ6k8Lx8O+7cD4MSu9SaHERERqVsqT1Ilp+MuB8Ca+q3JSUREROqWypNUSXj7PgBcVJCkmwSLiEiDovIkVdKkw1XY8CLOOEFysr51JyIiDYfKk1SJYQ0ixVp6o+TMH1abnEZERKTuaKoCqbK01sNYlrSLrNwW9DU7jIiISB3RkSepsvArRjPffiMfpwZQYneYHUdERKROqDxJlSXEhBDi501+sZ2dablmxxEREakTKk9SZV4Wg35Nndxo+ZqDSevMjiMiIlIndM2TVMto4yMSff/Fuh8PATeZHUdERKTW6ciTVEtw2z4ANDv1HXaH09wwIiIidUDlSaolvlNfHE6DlqTx4769ZscRERGpdSpPUi3eQeGkWNsAkLbtfyanERERqX0qT1Jtp+KuAMA3RTcJFhERz6fyJNUWnjgAgIvzt1JYXGJyGhERkdql8iTVFtexD4X4Em2cZOfOJLPjiIiI1CqVJ6k2w8efRc3mcFnh31mVEWR2HBERkVql8iQ1IqrTtRwjjK/3HTc7ioiISK1SeZIa0bt1BAA70nI4mV9schoREZHao/IkNSIqxI8pYV/ylvdcdm1ZY3YcERGRWqPyJDWmr/+PXOX1A6d3fWp2FBERkVqj8iQ1xuuiPgBEZ36N06lbtYiIiGdSeZIa06LHjQC0d/zIgZTDJqcRERGpHSpPUmP8I1tw2KcFXoaTQxs/MjuOiIhIrVB5khqV3eQaAKwHPzc5iYiISO1QeZIaFdH5BgDaF2ziVEGhyWlERERqnsqT1KjYDldz3GjEdsdFbNq93+w4IiIiNc5ty9MTTzxBr169CAgIICwsrEKvGT16NIZhlFkGDhxYZkxWVhYjRowgJCSEsLAwxo4dS15eXi3sgYfy8ubVzh8yxvYAnx7UTYJFRMTzuG15Ki4uZujQoUyYMKFSrxs4cCDp6emu5d///neZ50eMGMHOnTtZtWoVK1asYP369YwfP74mo3u8a9rFAbA2+ZimLBAREY/jbXaAqpo1axYAixYtqtTrrFYrMTEx53xu9+7drFy5ks2bN9OtWzcAXnrpJQYNGsSzzz5LXFxctTI3FJe1bESArxfep9LYfegI7VvGmx1JRESkxrjtkaeq+uKLL4iKiqJt27ZMmDCBEydOuJ7bsGEDYWFhruIE0K9fPywWCxs3bix3m0VFReTm5pZZGjKrtxdvhrzBBr9JpH291Ow4IiIiNapBlaeBAwfy9ttvs3r1ap566inWrVvHtddei91uByAjI4OoqKgyr/H29iY8PJyMjIxytzt37lxCQ0NdS3y8jrQENWkHQMhPulWLiIh4lnpVnqZPn37WBd2/Xfbs2VPl7Q8bNowbb7yRjh07MnjwYFasWMHmzZv54osvqpV7xowZ5OTkuJbDhzW7drNefwLg0uLvOJJ+1OQ0IiIiNadeXfM0bdo0Ro8efd4xrVq1qrH3a9WqFREREezbt4++ffsSExNDZmZmmTElJSVkZWWVe50UlF5HZbVaayyXJwht1pE0rybE2VP58ev/0PSPlbuwX0REpL6qV+UpMjKSyMjIOnu/I0eOcOLECWJjYwHo2bMn2dnZbN26la5duwKwZs0aHA4HPXr0qLNcHsEwOB4/gLhDC/Db9wmg8iQiIp6hXp22q4yUlBSSkpJISUnBbreTlJREUlJSmTmZEhISWL58OQB5eXn85S9/4dtvv+XQoUOsXr2am266idatWzNgwAAA2rVrx8CBAxk3bhybNm3i66+/ZuLEiQwbNkzftKuCmMv/CEDi6U0cO5ljchoREZGa4bblaebMmXTu3JlHHnmEvLw8OnfuTOfOndmyZYtrTHJyMjk5pR/aXl5efP/999x4441cfPHFjB07lq5du/Lll1+WOeW2ePFiEhIS6Nu3L4MGDaJ37968/vrrdb5/niDq4p4cs0QQZBSy66sPzY4jIiJSIwynZjGscbm5uYSGhpKTk0NISIjZcUz1+ZLn+c+OLOwX9eO1sVebHUdERKRcFf38dtsjT+IeWvS7g08cl7P2QAG5hTaz44iIiFSbypPUqtZRwbSOCqLY7uCznZqyQERE3J/Kk9S6YW29meT1H7zWPWl2FBERkWqrV1MViGe6rmkhsT7vcSrHnxPZT9A4LNTsSCIiIlWmI09S62I7XsMxSwTBxml++GKZ2XFERESqReVJap/FQlrTQQBYdy83OYyIiEj1qDxJnYi78lYAuhRuJO1o5gVGi4iI1F8qT1InIltfRqpXU6yGjT1f/NvsOCIiIlWm8iR1wzA43vJGAEL36tSdiIi4L5UnqTMtrxlFntOPHwvD2HHkpNlxREREqkTlSepMSJMEHmrzATNKxvHetjSz44iIiFSJypPUqT90bw3A8u9SKbTZTU4jIiJSeSpPUqd6t44gNsRKfGEy3278xuw4IiIilabyJHXKy2Lwt+iVrLA+hM83z5sdR0REpNJUnqTOtbz8JgC65q8nPSPD5DQiIiKVo/IkdS62fW8OezfHz7Cxe9UCs+OIiIhUisqT1D3DILvd/wHQ/MASbCW6cFxERNyHypOYou2AOzmNlYuch9my7iOz44iIiFSYypOYwjeoET9GXweAZfPrJqcRERGpOJUnMU2T/vcCEFvwI3sOHzU5jYiISMWoPIlpIi7qxLwmz3NN8XO8tTnT7DgiIiIVovIkpurZ9ybseLH8uyPkFNjMjiMiInJBKk9iqu4tw0mICcZuK2bF2nVmxxEREbkgb7MDSMNmGAb3X1pEu5OTKdnsS2G/H/Cz+podS0REpFw68iSmu/Lyywkwiokng02fLDI7joiIyHmpPInpfPyDOdBqJAAx379KiSbNFBGRekzlSeqFhBvv4zRWLnYeYPOa/5gdR0REpFwqT1Iv+IdFsifuZgACN83D6XSanEhEROTcVJ6k3mh543SKnd4kluxg05oPzI4jIiJyTipPUm+ExbRgZ2zp0acDG1dgd+jok4iI1D8qT1KvXPTHRxnJ48zIvZmPtqeZHUdEROQsbluennjiCXr16kVAQABhYWEVeo1hGOdcnnnmGdeYFi1anPX8k08+WUt7Ib8VEtGEnldfC8C8z3/EZneYnEhERKQsty1PxcXFDB06lAkTJlT4Nenp6WWWBQsWYBgGQ4YMKTNu9uzZZcZNmjSppuPLeYzu1YLGgb6cPnGENatXmh1HRESkDLedYXzWrFkALFq0qMKviYmJKfP4v//9L9dccw2tWrUqsz44OPissedTVFREUVGR63Fubm6FXytnC7R683jHY/zuuykc/6YReVdcRVBgkNmxREREADc+8lRdR48e5eOPP2bs2LFnPffkk0/SuHFjOnfuzDPPPENJScl5tzV37lxCQ0NdS3x8fG3FbjB+1/96ciwhNCGTrUsfNzuOiIiIS4MtT2+99RbBwcHcfPPNZdbfc889LF26lLVr13LnnXcyZ84c7r///vNua8aMGeTk5LiWw4cP12b0BsEaEELGZdMB6JaygNSUAyYnEhERKVWvytP06dPLvaj7zLJnz54aea8FCxYwYsQI/Pz8yqyfOnUqffr0ITExkbvuuou//e1vvPTSS2VOy/2W1WolJCSkzCLV13HgHfzo245Ao4jDyx4wO46IiAhQz655mjZtGqNHjz7vmN9en1QVX375JcnJybzzzjsXHNujRw9KSko4dOgQbdu2rfZ7S8UZFgu+1z8N/7mBy099xvcbPiOxZ3+zY4mISANXr8pTZGQkkZGRtf4+b775Jl27duXSSy+94NikpCQsFgtRUVG1nkvO1iLxKrZ+cR1dsz4m+LNpFHbehJ+fv9mxRESkAatXp+0qIyUlhaSkJFJSUrDb7SQlJZGUlEReXp5rTEJCAsuXLy/zutzcXJYtW8Ydd9xx1jY3bNjAvHnz2L59OwcOHGDx4sVMmTKFkSNH0qhRo1rfJzm3i299nqM05kNbN15es8/sOCIi0sDVqyNPlTFz5kzeeust1+POnTsDsHbtWvr06QNAcnIyOTk5ZV63dOlSnE4nw4cPP2ubVquVpUuX8uijj1JUVETLli2ZMmUKU6dOrb0dkQsKbhTNtzev4fklO/H+6jDXdW5Ou1hdVyYiIuYwnLp9fY3Lzc0lNDSUnJwcXTxeg+7651ZW7sygWxN/lt51Jd4+PmZHEhERD1LRz2+3PW0nDc+smy6hs18ajx27h43/mml2HBERaaBUnsRtRIf4MbOLjXaWw3Q/9Bq7t6w1O5KIiDRAKk/iVjrfMIFtIb/Dx7AT/PFdnMrJMjuSiIg0MCpP4l4Mg9a3v0EGkTR1ZrDnzfE4HQ6zU4mISAOi8iRuJyQsguxrX6bEaeGy3FVsfOdJsyOJiEgDovIkbimhx0C2XjwFgG57nmHXtytNTiQiIg2FypO4re7DH2JLcF++c7ZmyqpTZOQUmh1JREQaAJUncVuGxUL7u95iVqMnSc4PYMyizZwqtJkdS0REPJzKk7i1gMBgXh3Vk4ggK7vTc3njjZcpLjxtdiwREfFgKk/i9uLDA1g4+jKm+P6XqSceZcff/w9HSYnZsURExEOpPIlH6Ng0lKt/NxCb04suuWv47u+34nTYzY4lIiIeSOVJPEanPjeztdvT2J0GXbM+Ydsro1SgRESkxqk8iUe5/IY72NT5qdICdeIjvntlFI4SXUQuIiI1R+VJPE7PwXeysdMc7E6DLic+4ocXbsZWoiNQIiJSM1SexCP1+sOf2XzZcxQ5fXg/qyV3vL2VgmJdRC4iItWn8iQe6/Lrb2fbjZ+xzDKIdT8eY8irGzh8Is/sWCIi4uZUnsSj9ezahcXjehAR5Etqehp5L11J8rp3zI4lIiJuTOVJPF6XZo34cGJvHmr0Oe04QNu14/nuH3djtxWZHU1ERNyQypM0CHFh/tx470usazQEgM5H/kXK0704/tNOk5OJiIi7UXmSBsPPz4+r7nmTr7q9SLYziJa2fQQtvJrvlz6Ks6TY7HgiIuImVJ6kQTEMg97XjyJ79Bd859MJP2wk7nme9+dN4eDxfLPjiYiIG1B5kgapRcs2dHxgDWvbzWavsymzj1/FgHnrefbTZE6d1lEoEREpn8qTNFje3l5cc8u9WCdt5NI2LSgucfDy2r1sf2oA29/+C7aCHLMjiohIPWQ4nU6n2SE8TW5uLqGhoeTk5BASEmJ2HKkAp9PJZ7uOsvKjZTxf+BAA2QST0uY22t44FWtwhMkJRUSktlX081vlqRaoPLkvW4mdr1csomXSszQnDYAC/Ngb/0daXX8fwdEtTU4oIiK1ReXJRCpP7q+gsJCNKxbSZOd8LnYeAsDhNHi59Rtc3ef3JDYNxTAMc0OKiEiNUnkykcqT5yi22dm46h2Ctr5KI9tRrin+G04sXBIXwuS4PXRKTCSyTXdQkRIRcXsqTyZSefI8TqeTbfuO8M+tx/lkRwaOkmI2Wf9MuJFHmlcTjscPIKrrTcRcciVYvMyOKyIiVaDyZCKVJ8+WlV/M6s0/0OTbR+hy+lv8DJvruRyCORzeE2enkbS+/Hr8fVWkRETchcqTiVSeGo70zGPsWfcOvgc+o0PBFkKN0ok255XczCvOoXRsEsqV8d4MsGyhScerCW3aTkemRETqKZUnE6k8NUy5BafZuXE1BTs/4Z/ZiXyRFw9Af8tmXvd9HoDTWEm1tiYv/BJ8m3Ym8uLLiGjRAcPH38zoIiKCh5enQ4cO8dhjj7FmzRoyMjKIi4tj5MiR/PWvf8XX17fc1xUWFjJt2jSWLl1KUVERAwYM4O9//zvR0dGuMSkpKUyYMIG1a9cSFBTEqFGjmDt3Lt7e3hXOp/IkTqeTw1mn2XQoi9zvP6bb4UW0tu8nwCg6a+xkx1T2R/alVWQgl/lncKlzF4HRrQmLvYhGca0wfANM2AMRkYanop/fFW8E9ciePXtwOBy89tprtG7dmh07djBu3Djy8/N59tlny33dlClT+Pjjj1m2bBmhoaFMnDiRm2++ma+//hoAu93OddddR0xMDN988w3p6encdttt+Pj4MGfOnLraPfEAhmHQrHEAzRoHQNc7gTvJLSgkac92Tu7fAunbaZSzixYlB9hpi2Fvag4/pOYQ4/URI33+XWZbJwklyyeafP9YtrS6GyPyYhoHWYnjBBGWXEIi4giNiMPLx2rOzoqINDBueeTpXJ555hleffVVDhw4cM7nc3JyiIyMZMmSJfzxj38ESktYu3bt2LBhA5dffjn/+9//uP7660lLS3MdjZo/fz4PPPAAx44dK/eoVlFREUVFvxxRyM3NJT4+Xkee5IKKbXZSsvLZf7yA/cfyCN73EQmZn9DIlkG04xjBxuky4wcVzWGXswUAE7w+5AGfpa7nThFAnhFEgVcwhV7BLI+5h/zQNgT7+XCRbS/NT+/Cyz8UH/8gvKwB+PgF4e0XhG9AEN6NmuHvH4ifjxdWbwsWi6ZeEJGGx6OPPJ1LTk4O4eHh5T6/detWbDYb/fr1c61LSEigWbNmrvK0YcMGOnbsWOY03oABA5gwYQI7d+6kc+fO59z23LlzmTVrVs3tjDQYvj5etI4OoXX0z/8n7TMFmAKUFqsjx46Slbaf/KMHKT7xE1cEdaXlaV+O5xURluVPZlE4jZw5+Bh2gikg2FkAJZlQAvf9eJTdTj8A/uz1Ebf4vFtujqFFM9nsTABgpNcq7vd+hyLDlxJ8KDF+WeyGNwtD7iLFrx3eXgaXFidxVf5KHBZfnBYfHBZf8PLCMLzA4s2OqEGcDGiFl2EQeXo/rU9+DRYLTot36YXzRul/DcNCZkQP8gPj8bIYBBUeJSLneywWC4ZhwTAMDIvl54lJDU6FtaMoMBYD8C0+ScjJXaXPGWBgwWmxYGCAYXA6uDm2gBgMA7xteQTk7Pt5bOm2DIul9L+GheKAKOwBkRiAxX4aa24KP2+2NANn3sOgxL8xjoDS2/YYJYX45v5U9of6q7m/SqyNsAdElj5w2LDmHCoz1GkYruEO3xBKAqJ+flCCb27KL5ukbKm1+wZhPzPW6cDn5wznmnbM4RP4y1jA99RPZw86M9bb3zXWwMD71BH49b+zf/UGTi9fHIG/bNc7Lw2cjnNv2OKDPTD6vGPPbNpp8cYeGONa75WfgeEo+fXIXzIYFuxBcb8aexTDYePcDEqCm/wytiATw17ezcB/O/Y4hr2wnLFQEtTEtQOW0yewlJw+z9g4MCw/j83CUlJQ/tjAWNcXTSyFJ7HY8s8zNgYs3j+PzcZiyyt/bEAUeJUeFLAU5WApPnWesZHgZf15bC6W4txyx9r9I3B6l/7dYxTn4VWUXf5Yv8Y4f77m07Dl41V48jxjw3H6/HIZQ7PwAHy9zblFr0eUp3379vHSSy+d95RdRkYGvr6+hIWFlVkfHR1NRkaGa8yvi9OZ5888V54ZM2YwdepU1+MzR55EqsPXx4umcXE0jYsDrgTg6jIjegLzKCkp4XjWMXJPpJOfk4Ut7wS2gmxGhPYiq8SP3NM24o52YNvJDHxtp/CyF+LrKMTqLF38KMRm8Qd76VaDOU2IUQD8/Je58+flZz9lHOdbxwkAWnjtorvPmnL34R8p0axxlL54iGU9o3znlzt2YvEkVjh6AjDI8i1/932x3LF/sY1nmb0PAH0s37HI95lyx860jeJt+wAALrfsYqnv4+WOfdI2jPn2GwFINPbzofXhcse+UHIzz5eUHsVubRzhc+v95Y59reQ65paMAKAJx/ja795yx/6zpB8Pl9wOQDi5bPO7q9yx79uvZJptAgB+FLHHb0y5Yz+2d+du22TX40N+/1fu2LX2Sxlje8D1eJd1zDmv1wPY6EjgluKZrsdbrHcRYZz7g/V7R0tuLH7C9fhL33uJtxw759i9jib8vviX3+unvvfT1nLknGOPOCO4puiX/7184PsQnSznPguR5QyiS9Hrrsf/9nmcnl67zjn2tNOXdkWLXI/f9HmGvl7fnXMsQIvCxZwpdS/7vMD1XhvLHdu+cAEFlBaMZ7znM9R7fbljuxa+yglCAZjlvZBR3qvKHdu7aB5HnKVldrr3Eu7yXlHu2P5FT/Gjs/Sz6l6v95ni8365Y28qms12Z2sAxnmt4K8+S8odO7z4r2xwXAKU/mPscZ+F5Y69vfg+1ji6AKV/R/ztPH9H3F18Dx87Lnc9XjPtalpFBpU7vjbVq/I0ffp0nnrqqfOO2b17NwkJCa7HqampDBw4kKFDhzJu3LjajnhOVqsVq1XXm4g5vL29iYiKJSIqtsz6HmUetQfK/8D+ALA7nBTa7BTmdSc9+26KC09TVHQah60Iu60QR4kNh62QceFdGOEdhs3uIPCkL1uORUJJMU57MYa9GKejBKe9BBx2ukd0oYVfSxxOJ01ys9l6YhCG047htIPTgcVpB6cdw+mgZdPWDLBGY3dAi4J4krM7gNOJgfPnox5OjJ//2ygsji6+YTiBuKJIDuS1wsDpWs6MNXASFBpBO2sITqeTmJJQ0vOjfx6Da6zl59f5BYXS0icQp9NJlD2QrMLQcn9mXtZAYgNLP/waO/w5aSv/EL+XbyAxAT+PdfqTYyv/L3yLbwDRAaV/n4Q6reTaAssdi48/UX6lY61OyCv59ZcLfnNFhrc/kT+PdTohv8TP9dRvD1Q5vf2IsFpd2ygqsbrGGL/ZrtPiS+PAXy5psNl9KeTsSxycgMPiS/ivxpbYfTl9jrEAJRZfGgX4uB7bHecZa/gQ9quxjvOMLTasvxnrU+7YIsO3zFjnebYLEObv4zryZFxgbKi/N76GT4XGhvj7YP95rNeFxvr5EPbzWO/z7BtA8K/G+jh9KHT6lDs26FdjfZ2+5x0bYP1lrPUC263MWL9fjQWwmHhnh3p1zdOxY8c4ceLEece0atXKde1RWloaffr04fLLL2fRokVYLOUfvluzZg19+/bl5MmTZY4+NW/enMmTJzNlyhRmzpzJhx9+SFJSkuv5gwcP0qpVK7Zt21buabvf0rftRERE3I9bXvMUGRlJZGRkhcampqZyzTXX0LVrVxYuXHje4gTQtWtXfHx8WL16NUOGDAEgOTmZlJQUevYsPVXQs2dPnnjiCTIzM4mKKj3suWrVKkJCQmjfvn019kxEREQ8hTlXWlVTamoqffr0oVmzZjz77LMcO3aMjIyMMtclpaamkpCQwKZNmwAIDQ1l7NixTJ06lbVr17J161bGjBlDz549ufzy0nOo/fv3p3379tx6661s376dTz/9lIceeoi7775bp+VEREQEqGdHnipq1apV7Nu3j3379tG0adMyz505C2mz2UhOTqag4JdvMDz//PNYLBaGDBlSZpLMM7y8vFixYgUTJkygZ8+eBAYGMmrUKGbPnl03OyYiIiL1Xr265slT6JonERER91PRz2+3PG0nIiIiYhaVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKcMt729V3Z+54k5uba3ISERERqagzn9sXunOdylMtOHXqFADx8fEmJxEREZHKOnXqFKGhoeU+rxsD1wKHw0FaWhrBwcEYhlFj283NzSU+Pp7Dhw/rhsO1SD/nuqGfc93Qz7lu6OdcN2r75+x0Ojl16hRxcXFYLOVf2aQjT7XAYrHQtGnTWtt+SEiI/s9ZB/Rzrhv6OdcN/Zzrhn7OdaM2f87nO+J0hi4YFxEREakElScRERGRSlB5ciNWq5VHHnkEq9VqdhSPpp9z3dDPuW7o51w39HOuG/Xl56wLxkVEREQqQUeeRERERCpB5UlERESkElSeRERERCpB5UlERESkElSe3Mgrr7xCixYt8PPzo0ePHmzatMnsSB5l/fr13HDDDcTFxWEYBh988IHZkTzS3LlzueyyywgODiYqKorBgweTnJxsdiyP8+qrr5KYmOiaTLBnz57873//MzuWx3vyyScxDIPJkyebHcWjPProoxiGUWZJSEgwLY/Kk5t45513mDp1Ko888gjbtm3j0ksvZcCAAWRmZpodzWPk5+dz6aWX8sorr5gdxaOtW7eOu+++m2+//ZZVq1Zhs9no378/+fn5ZkfzKE2bNuXJJ59k69atbNmyhd/97nfcdNNN7Ny50+xoHmvz5s289tprJCYmmh3FI11yySWkp6e7lq+++sq0LJqqwE306NGDyy67jJdffhkovX9efHw8kyZNYvr06San8zyGYbB8+XIGDx5sdhSPd+zYMaKioli3bh1XXXWV2XE8Wnh4OM888wxjx441O4rHycvLo0uXLvz973/n8ccfp1OnTsybN8/sWB7j0Ucf5YMPPiApKcnsKICOPLmF4uJitm7dSr9+/VzrLBYL/fr1Y8OGDSYmE6m+nJwcoPSDXWqH3W5n6dKl5Ofn07NnT7PjeKS7776b6667rszf01Kz9u7dS1xcHK1atWLEiBGkpKSYlkU3BnYDx48fx263Ex0dXWZ9dHQ0e/bsMSmVSPU5HA4mT57MFVdcQYcOHcyO43F++OEHevbsSWFhIUFBQSxfvpz27dubHcvjLF26lG3btrF582azo3isHj16sGjRItq2bUt6ejqzZs3iyiuvZMeOHQQHB9d5HpUnETHN3XffzY4dO0y9dsGTtW3blqSkJHJycnjvvfcYNWoU69atU4GqQYcPH+bee+9l1apV+Pn5mR3HY1177bWuPycmJtKjRw+aN2/Ou+++a8ppaJUnNxAREYGXlxdHjx4ts/7o0aPExMSYlEqkeiZOnMiKFStYv349TZs2NTuOR/L19aV169YAdO3alc2bN/PCCy/w2muvmZzMc2zdupXMzEy6dOniWme321m/fj0vv/wyRUVFeHl5mZjQM4WFhXHxxRezb98+U95f1zy5AV9fX7p27crq1atd6xwOB6tXr9b1C+J2nE4nEydOZPny5axZs4aWLVuaHanBcDgcFBUVmR3Do/Tt25cffviBpKQk19KtWzdGjBhBUlKSilMtycvLY//+/cTGxpry/jry5CamTp3KqFGj6NatG927d2fevHnk5+czZswYs6N5jLy8vDL/ijl48CBJSUmEh4fTrFkzE5N5lrvvvpslS5bw3//+l+DgYDIyMgAIDQ3F39/f5HSeY8aMGVx77bU0a9aMU6dOsWTJEr744gs+/fRTs6N5lODg4LOu1wsMDKRx48a6jq8G3Xfffdxwww00b96ctLQ0HnnkEby8vBg+fLgpeVSe3MQtt9zCsWPHmDlzJhkZGXTq1ImVK1eedRG5VN2WLVu45pprXI+nTp0KwKhRo1i0aJFJqTzPq6++CkCfPn3KrF+4cCGjR4+u+0AeKjMzk9tuu4309HRCQ0NJTEzk008/5fe//73Z0UQq7ciRIwwfPpwTJ04QGRlJ7969+fbbb4mMjDQlj+Z5EhEREakEXfMkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIvIbo0ePZvDgwWbHEJF6SrdnEZEGxTCM8z7/yCOP8MILL6CbL4hIeVSeRKRBSU9Pd/35nXfeYebMmSQnJ7vWBQUFERQUZEY0EXETOm0nIg1KTEyMawkNDcUwjDLrgoKCzjpt16dPHyZNmsTkyZNp1KgR0dHRvPHGG+Tn5zNmzBiCg4Np3bo1//vf/8q8144dO7j22msJCgoiOjqaW2+9lePHj9fxHotITVN5EhGpgLfeeouIiAg2bdrEpEmTmDBhAkOHDqVXr15s27aN/v37c+utt1JQUABAdnY2v/vd7+jcuTNbtmxh5cqVHD16lD/96U8m74mIVJfKk4hIBVx66aU89NBDtGnThhkzZuDn50dERATjxo2jTZs2zJw5kxMnTvD9998D8PLLL9O5c2fmzJlDQkICnTt3ZsGCBaxdu5Yff/zR5L0RkerQNU8iIhWQmJjo+rOXlxeNGzemY8eOrnXR0dEAZGZmArB9+3bWrl17zuun9u/fz8UXX1zLiUWktqg8iYhUgI+PT5nHhmGUWXfmW3wOhwOAvLw8brjhBp566qmzthUbG1uLSUWktqk8iYjUgi5duvD+++/TokULvL31V62IJ9E1TyIiteDuu+8mKyuL4cOHs3nzZvbv38+nn37KmDFjsNvtZscTkWpQeRIRqQVxcXF8/fXX2O12+vfvT8eOHZk8eTJhYWFYLPqrV8SdGU5NoysiIiJSYfrnj4iIiEglqDyJiIiIVILKk4iIiEglqDyJiIiIVILKk4iIiEglqDyJiIiIVILKk4iIiEglqDyJiIiIVILKk4iIiEglqDyJiIiIVILKk4iIiEgl/D+eSOOL8XuzpgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGwCAYAAACw64E/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWblJREFUeJzt3Xl8FPXhxvHPbI7NnRByQ7gECQiRSxBExUIB8aJSKvxAARGUCsphFayioIJXFa+KWgFtoSharKJFERA8kNOgXJHTQA4ChCQkIclmd39/RFYjBHJPdvO8X695yc5+d/aZpGUfZma/YzidTiciIiIiUiEWswOIiIiIuBOVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQRvswN4IofDQVpaGsHBwRiGYXYcERERqQCn08mpU6eIi4vDYin/+JLKUy1IS0sjPj7e7BgiIiJSBYcPH6Zp06blPq/yVAuCg4OB0h9+SEiIyWlERESkInJzc4mPj3d9jpdH5akWnDlVFxISovIkIiLiZi50yY0uGBcRERGpBJUnERERkUpQeRIRERGpBF3zJCIiUgvsdjs2m83sGPIrPj4+eHl5VXs7Kk8iIiI1yOl0kpGRQXZ2ttlR5BzCwsKIiYmp1jyMKk8iIiI16ExxioqKIiAgQJMl1xNOp5OCggIyMzMBiI2NrfK2VJ5ERERqiN1udxWnxo0bmx1HfsPf3x+AzMxMoqKiqnwKTxeMi4iI1JAz1zgFBASYnETKc+Z3U53r0VSeREREaphO1dVfNfG7UXkSERERqQS3L0+vvPIKLVq0wM/Pjx49erBp06bzjl+2bBkJCQn4+fnRsWNHPvnkkzLPO51OZs6cSWxsLP7+/vTr14+9e/fW5i6IiIiIG3Hr8vTOO+8wdepUHnnkEbZt28all17KgAEDXFfS/9Y333zD8OHDGTt2LN999x2DBw9m8ODB7NixwzXm6aef5sUXX2T+/Pls3LiRwMBABgwYQGFhYV3tloiIiNRjbl2ennvuOcaNG8eYMWNo37498+fPJyAggAULFpxz/AsvvMDAgQP5y1/+Qrt27Xjsscfo0qULL7/8MlB61GnevHk89NBD3HTTTSQmJvL222+TlpbGBx98UId7dm4FxSUkZ5yiqMRudhQREfEQN9xwAwMHDjznc19++SWGYfD9999XefvffPMNgwYNolGjRq6zPs899xx2e9nPMsMw+OCDD1i0aBGGYZx3OXToEI8++ug5n0tISKhy1opy2/JUXFzM1q1b6devn2udxWKhX79+bNiw4Zyv2bBhQ5nxAAMGDHCNP3jwIBkZGWXGhIaG0qNHj3K3CVBUVERubm6ZpTb0eepzbp/3PvsPZ9TK9kVEpOEZO3Ysq1at4siRI2c9t3DhQrp160ZiYmKltllcXAzA8uXLufrqq2natClr165lz5493HvvvTz++OMMGzYMp9N51mtvueUW0tPTXUvPnj0ZN25cmXXx8fEAXHLJJWXWp6en89VXX1Xhp1A5bjvP0/Hjx7Hb7URHR5dZHx0dzZ49e875moyMjHOOz8jIcD1/Zl15Y85l7ty5zJo1q9L7UFlvWWbRzm8X25JfgJaja/39RESkepxOJ6dt5pwt8PfxqtA3y66//noiIyNZtGgRDz30kGt9Xl4ey5YtY/r06QwfPpz169dz8uRJLrroIh588EGGDx/uGtunTx86dOiAt7c3//rXv+jYsSMrVqxg3Lhx3Hjjjbz++uuusXfccQfR0dHceOONvPvuu9xyyy1lc/v7u+ZjAvD19SUgIICYmJizsnt7e59zfW1z2/JUn8yYMYOpU6e6Hufm5rpacU3K948D2y6Kjh2o8W2LiEjNO22z037mp6a8967ZAwjwvfDHvLe3N7fddhuLFi3ir3/9q6twLVu2DLvdzsiRI1m2bBkPPPAAISEhfPzxx9x6661cdNFFdO/e3bWdt956iwkTJvD1118D8Nlnn3HixAnuu+++s97zhhtu4OKLL+bf//73WeXJHbjtabuIiAi8vLw4evRomfVHjx4tt4XGxMScd/yZ/1ZmmwBWq5WQkJAyS22whTQDwJJ9qFa2LyIiDdPtt9/O/v37WbdunWvdwoULGTJkCM2bN+e+++6jU6dOtGrVikmTJjFw4EDefffdMtto06YNTz/9NG3btqVt27b8+OOPALRr1+6c75mQkOAaU1U//PADQUFBZZa77rqrWtusCLc98uTr60vXrl1ZvXo1gwcPBsDhcLB69WomTpx4ztf07NmT1atXM3nyZNe6VatW0bNnTwBatmxJTEwMq1evplOnTkDpUaSNGzcyYcKE2tydCvFq3BKOQEDeYbOjiIhIBfj7eLFr9gDT3ruiEhIS6NWrFwsWLKBPnz7s27ePL7/8ktmzZ2O325kzZw7vvvsuqampFBcXU1RUdNYs6l27dj3nts91XdMZvr6+Fc54Lm3btuXDDz8ss662DmD8mtuWJ4CpU6cyatQounXrRvfu3Zk3bx75+fmMGTMGgNtuu40mTZowd+5cAO69916uvvpq/va3v3HdddexdOlStmzZ4joXaxgGkydP5vHHH6dNmza0bNmShx9+mLi4OFdBM1NQTBvYDo2K08yOIiIiFWAYRoVOndUHY8eOZdKkSbzyyissXLiQiy66iKuvvpqnnnqKF154gXnz5tGxY0cCAwOZPHmy66LwMwIDA8s8btOmDQC7d++mV69eZ73f7t27XQcqqsrX15fWrVtXaxtV4R6/0XLccsstHDt2jJkzZ5KRkUGnTp1YuXKl64LvlJQULJZfzkz26tWLJUuW8NBDD/Hggw/Spk0bPvjgAzp06OAac//995Ofn8/48ePJzs6md+/erFy5Ej8/vzrfv99qHH8xANGOY5TYivH2qV5jFxEROeNPf/oT9957L0uWLOHtt99mwoQJGIbB119/zU033cTIkSOB0rM8P/74I+3btz/v9gYMGEB4eDh/+9vfzipPH374IXv37mXevHm1tTu1yq3LE8DEiRPLPU33xRdfnLVu6NChDB06tNztGYbB7NmzmT17dk1FrDGRsS0ocvpgNWykHTlAXMvan8tCREQahqCgIG655RZmzJhBbm4uo0ePBkqPIL333nt88803NGrUiOeee46jR49esDwFBgby2muvMWzYMMaPH8/EiRMJCQlh9erV/OUvf2HcuHEMGjSoWplLSkrO+ja8YRhnfWu+prl9eWpILF5efOQ7kKOnDbqfshNndiAREfEoY8eO5c0332TQoEHExZV+yjz00EMcOHCAAQMGEBAQwPjx4xk8eDA5OTkX3N4f//hH1q5dyxNPPMGVV17pmgfxqaee4v7776923p07dxIbG1tmndVqrfW7ghjO813JJVWSm5tLaGgoOTk5NX7h2piFm1ibfIy5N3dkePdmNbptERGpnsLCQg4ePEjLli3rxeUe9U1hYSE33XQThw8fZt26dURGRpqSobzfUUU/v912qoKGqll46bcbfjpRYHISERGRyvHz8+O///0vt912G+vXrzc7TpXptJ2badbIShzHsaUXAbrmSURE3Iufnx/Tp083O0a1qDy5mS6FGxnrdw97U1sDN5sdR0REpMHRaTs3E9q0dLqCKHu6yUlEREQaJpUnNxPTrC0AoeSTk3XM5DQiIiINj8qTmwkICuU4YQBkpiSbG0ZERKQBUnlyQ8d9Sue0yE3ba3ISERGRhkflyQ2d8m8KQPHxAyYnERERaXhUntxQSWhzACzZh8wNIiIi0gCpPLmhoqa9ebXkBtYZl5kdRUREPMTo0aMxDOOsZeDAgXXy/o8++iidOnWqk/eqLs3z5IYCLr6ap9b6En/an+rfGUhERKTUwIEDWbhwYZl1VqvVpDT1l448uaEzt2hJyy7EZneYnEZERDyF1WolJiamzNKoUSO++OILfH19+fLLL11jn376aaKiojh69CgAK1eupHfv3oSFhdG4cWOuv/569u/fX2b7R44cYfjw4YSHhxMYGEi3bt3YuHEjixYtYtasWWzfvt11xGvRokV1ueuVoiNPbigq2Eq8dzax9nQyjnYhPi7G7EgiInI+xfnlP2d4gY9fBcdawMf/wmN9AyuX7wL69OnD5MmTufXWW9m+fTsHDhzg4YcfZtmyZURHRwOQn5/P1KlTSUxMJC8vj5kzZ/KHP/yBpKQkLBYLeXl5XH311TRp0oQPP/yQmJgYtm3bhsPh4JZbbmHHjh2sXLmSzz//HIDQ0NAa3YeapPLkhiwWg3/5zqW54zA/7GtDfNxNZkcSEZHzmRNX/nNt+sOIZb88fqY12Mq5+Xvz3jDm418ez+sIBSfOHvdoTpVirlixgqCgoDLrHnzwQR588EEef/xxVq1axfjx49mxYwejRo3ixhtvdI0bMmRImdctWLCAyMhIdu3aRYcOHViyZAnHjh1j8+bNhIeHA9C6dWvX+KCgILy9vYmJqf8HBFSe3FS2NY7mpw9TcHSf2VFERMRDXHPNNbz66qtl1p0pOr6+vixevJjExESaN2/O888/X2bc3r17mTlzJhs3buT48eM4HKWXlaSkpNChQweSkpLo3Lmza3vuTOXJTZ0OaganN+LI0lxPIiL13oNp5T9neJV9/Jfz/KPY+M2lypN/qHqmcwgMDCxzNOi3vvnmGwCysrLIysoiMPCX04M33HADzZs354033iAuLg6Hw0GHDh0oLi4GwN/f/5zbdEe6YNxdNWoBgPVUirk5RETkwnwDy19+fb3TBcf6V2xsLdi/fz9TpkzhjTfeoEePHowaNcp1dOnEiRMkJyfz0EMP0bdvX9q1a8fJkyfLvD4xMZGkpCSysrLOuX1fX1/sdnutZK9pKk9uyi/qIgBCTqeanERERDxFUVERGRkZZZbjx49jt9sZOXIkAwYMYMyYMSxcuJDvv/+ev/3tbwA0atSIxo0b8/rrr7Nv3z7WrFnD1KlTy2x7+PDhxMTEMHjwYL7++msOHDjA+++/z4YNGwBo0aIFBw8eJCkpiePHj1NUVFTn+19RKk9uKqxJGwCi7Bk4nU6T04iIiCdYuXIlsbGxZZbevXvzxBNP8NNPP/Haa68BEBsby+uvv85DDz3E9u3bsVgsLF26lK1bt9KhQwemTJnCM888U2bbvr6+fPbZZ0RFRTFo0CA6duzIk08+iZdX6WnLIUOGMHDgQK655hoiIyP597//Xef7X1GGU5+8NS43N5fQ0FBycnIICQmplfc4nX8K/2dK73GXM+lHQhtH18r7iIhIxRUWFnLw4EFatmyJn5/fhV8gde58v6OKfn7rgnE35R8YzGuWW/ipKIj/yykmtLHZiURERBoGnbZzY59FjmaJvS+H8rwuPFhERERqhMqTG2v+821aUrLKmUxNREREapxO27mx1iF2uhl7ICUHKH9eDhEREak5OvLkxi4r+pb3rLO5KvU1s6OIiMiv6LtY9VdN/G5UntxYUGzp0abw4vPMXCsiInXGx8cHgIICXU5RX5353Zz5XVWFTtu5scj4BACiHcewFRfh42s1OZGISMPm5eVFWFgYmZmZAAQEBGAYhsmpBEqPOBUUFJCZmUlYWJhrfqmqUHlyY41j4il0+uBn2EhP2UvT1h3MjiQi0uDFxMQAuAqU1C9hYWGu31FVqTy5McNiIcMrhhaOw5xM/VHlSUSkHjAMg9jYWKKiorDZbGbHkV/x8fGp1hGnM9y2PGVlZTFp0iQ++ugjLBYLQ4YM4YUXXiAoKKjc8Y888gifffYZKSkpREZGMnjwYB577DFCQ0Nd4851ePXf//43w4YNq7V9qY5sa1M4fZiCo/vNjiIiIr/i5eVVIx/UUv+4bXkaMWIE6enprFq1CpvNxpgxYxg/fjxLliw55/i0tDTS0tJ49tlnad++PT/99BN33XUXaWlpvPfee2XGLly4kIEDB7oeh4WF1eauVEthUDyc3oAz66DZUURERBoEtyxPu3fvZuXKlWzevJlu3boB8NJLLzFo0CCeffZZ4uLiznpNhw4deP/9912PL7roIp544glGjhxJSUkJ3t6//Chq4nxoXTnR/FoeSgvE3+dyLjc7jIiISAPgllMVbNiwgbCwMFdxAujXrx8Wi4WNGzdWeDtnbvz36+IEcPfddxMREUH37t1ZsGDBBeeEKCoqIjc3t8xSV/wuuoJ/2X/P13lN6uw9RUREGjK3PPKUkZFBVFRUmXXe3t6Eh4eTkZFRoW0cP36cxx57jPHjx5dZP3v2bH73u98REBDAZ599xp///Gfy8vK45557yt3W3LlzmTVrVuV3pAY0+/kWLYezCnA6nfpKrIiISC2rV0eepk+fjmEY51327NlT7ffJzc3luuuuo3379jz66KNlnnv44Ye54oor6Ny5Mw888AD3338/zzzzzHm3N2PGDHJyclzL4cOHq52xouLDA+hi/Eg/21qys0/W2fuKiIg0VPXqyNO0adMYPXr0ece0atWKmJiYs+bPKCkpISsr64LXKp06dYqBAwcSHBzM8uXLLzjDaI8ePXjssccoKirCaj33JJRWq7Xc52qbn48X860vEkUWPx4cSKNGfUzJISIi0lDUq/IUGRlJZGTkBcf17NmT7Oxstm7dSteuXQFYs2YNDoeDHj16lPu63NxcBgwYgNVq5cMPP8TPz++C75WUlESjRo1MK0cVccInlihbFrnpe4E+ZscRERHxaPWqPFVUu3btGDhwIOPGjWP+/PnYbDYmTpzIsGHDXN+0S01NpW/fvrz99tt0796d3Nxc+vfvT0FBAf/617/KXNgdGRmJl5cXH330EUePHuXyyy/Hz8+PVatWMWfOHO677z4zd/eCTgXEQ85OSo5pugIREZHa5pblCWDx4sVMnDiRvn37uibJfPHFF13P22w2kpOTXTcA3LZtm+ubeK1bty6zrYMHD9KiRQt8fHx45ZVXmDJlCk6nk9atW/Pcc88xbty4utuxKrCHNoMcsOQcMjuKiIiIxzOcF/oevlRabm4uoaGhrqkQatvm/77KZd9NZ6fvpVzy4Ppafz8RERFPVNHP73r1bTupmuC4NgCEF6eZnERERMTzqTx5gMbxFwMQ5TxOcVGhyWlEREQ8m8qTB4iIasqjjtu53XY/qdkqTyIiIrVJ5ckDGBYL3zQazDrHpaTk2MyOIyIi4tFUnjzEmdu0pGQVmJxERETEs6k8eYjEwBwGW77C68Bas6OIiIh4NJUnD9Hdtpl5vn+nXeoys6OIiIh4NJUnD+Ef3QqAkMJUk5OIiIh4NpUnDxHWpHS6gpiSdJwOh8lpREREPJfKk4eIbnYxDqdBoFFI9okMs+OIiIh4LJUnD+HnH8gxIxyAzJ/2mJxGRETEc6k8eZATPnEAnErfa3ISERERz6Xy5EHyAuMBsB0/YHISERERz+VtdgCpOYdaDefv33aghW8PepodRkRExEPpyJMH8W/ejS8cnfghN8DsKCIiIh5L5cmDtGgcCMBPJ3SLFhERkdqi03YepFm4PzdavqH56QzyTnUjKDjM7EgiIiIeR0eePEhogC+zfN9mms97HD240+w4IiIiHknlycNkepdOV5CT+qPJSURERDyTypOHORVQOl1BUeY+k5OIiIh4JpUnD2MLawmAV/ZBk5OIiIh4JpUnD+MdcREAgfkpJicRERHxTCpPHiY47mIAIorTTE4iIiLimVSePEx083al/+UEhQV5JqcRERHxPJrnycOENY7mz0wnuagxr+aUcLEmGxcREalROvLkYQyLhcONr2S/swmHsgrNjiMiIuJxVJ48UPPGpYebdJsWERGRmqfy5IG6+aXzZ68PCNv7vtlRREREPI7Kkwe6xNjP/T7vkpD5idlRREREPI7KkwcKjC2drqBxcarJSURERDyPypMHimr283QFjkyKi3TRuIiISE1y2/KUlZXFiBEjCAkJISwsjLFjx5KXd/55jfr06YNhGGWWu+66q8yYlJQUrrvuOgICAoiKiuIvf/kLJSUltbkrNa5xTDwFTitehpOMFN0gWEREpCa57TxPI0aMID09nVWrVmGz2RgzZgzjx49nyZIl533duHHjmD17tutxQMAvEyHZ7Xauu+46YmJi+Oabb0hPT+e2227Dx8eHOXPm1Nq+1DTDYuGoVywtHYc4eTiZZm0SzY4kIiLiMdzyyNPu3btZuXIl//jHP+jRowe9e/fmpZdeYunSpaSlnf+2JAEBAcTExLiWkJAQ13OfffYZu3bt4l//+hedOnXi2muv5bHHHuOVV16huLi4tnerRmX7NwXg9NG9JicRERHxLG5ZnjZs2EBYWBjdunVzrevXrx8Wi4WNGzee97WLFy8mIiKCDh06MGPGDAoKfpkLacOGDXTs2JHo6GjXugEDBpCbm8vOnTvL3WZRURG5ubllFrMVhTQv/UPWQXODiIiIeBi3PG2XkZFBVFRUmXXe3t6Eh4eTkZFR7uv+7//+j+bNmxMXF8f333/PAw88QHJyMv/5z39c2/11cQJcj8+33blz5zJr1qyq7k6tOJpwG/0OXUorv/ZcbnYYERERD1KvytP06dN56qmnzjtm9+7dVd7++PHjXX/u2LEjsbGx9O3bl/3793PRRRdVebszZsxg6tSprse5ubnEx8dXeXs1IbJJa/Y5T+A4aTc1h4iIiKepV+Vp2rRpjB49+rxjWrVqRUxMDJmZmWXWl5SUkJWVRUxMTIXfr0ePHgDs27ePiy66iJiYGDZt2lRmzNGjRwHOu12r1YrVaq3w+9aF5hGBABw+WUCJ3YG3l1ueoRUREal36lV5ioyMJDIy8oLjevbsSXZ2Nlu3bqVr164ArFmzBofD4SpEFZGUlARAbGysa7tPPPEEmZmZrtOCq1atIiQkhPbt21dyb8wVG+LHnT7/o6XzMJmpbYlrVvUjayIiIvILtzwc0a5dOwYOHMi4cePYtGkTX3/9NRMnTmTYsGHExcUBkJqaSkJCgutI0v79+3nsscfYunUrhw4d4sMPP+S2227jqquuIjGx9Kv8/fv3p3379tx6661s376dTz/9lIceeoi777673h1ZuhCLxeD/fNYyzPsLThz6wew4IiIiHsMtyxOUfmsuISGBvn37MmjQIHr37s3rr7/uet5ms5GcnOz6Np2vry+ff/45/fv3JyEhgWnTpjFkyBA++ugj12u8vLxYsWIFXl5e9OzZk5EjR3LbbbeVmRfKnWRbmwCQn6HpCkRERGpKvTptVxnh4eHnnRCzRYsWOJ1O1+P4+HjWrVt3we02b96cTz7xjBvqFgY3h9MbcZ44YHYUERERj+G2R57kwozwVgD4nfrJ5CQiIiKeQ+XJg/nHtAEgrPCwyUlEREQ8h8qTB2vcrPQbgrH2dOx2zfckIiJSE1SePFh0szYUO73wM2wcPaLbtIiIiNQElScP5uXtw51BL5FQuJB9RaFmxxEREfEIKk8ezju6LYVYOXg83+woIiIiHkHlycO1+vk2LSpPIiIiNcNt53mSiunke4Q53v8gZF8U8JrZcURERNyeypOHax5QxLXeazh8Ks7sKCIiIh5Bp+08XFTzSwCIdWRQXFRkchoRERH3p/Lk4RrHNqfAacXbcJD+0x6z44iIiLg9lScPZ1gsZHiXnrLLStltchoRERH3p/LUAGT7NwOgMCPZ5CQiIiLuT+WpASgOK71BsJG13+QkIiIi7k/lqQHwiWxd+oeCE+YGERER8QCaqqAB8Ol4M5dsiCHIN4yNZocRERFxczry1AA0j4kkH3+O5haRX1RidhwRERG3pvLUAIQG+BAe6AvoNi0iIiLVpfLUQNzjv5J/+swhb+enZkcRERFxaypPDURHrxSu9NqBPW272VFERETcmspTA1HSqHS6Au+Tmq5ARESkOlSeGgjfqIsBCM7/yeQkIiIi7k3lqYEIa5oAQHRJKk6n0+Q0IiIi7kvlqYGIaXkJAI3JIfukJssUERGpKpWnBsI/OIxjNAIg4+AOk9OIiIi4L5WnBuS4b1OOOUM4lplhdhQRERG3pfLUgCxNeIHLiuazwehkdhQRERG3pfLUgLSIDgdgf2aeyUlERETcl8pTA3JRZBAA+4+pPImIiFSVt9kBpO60DrHxls+TNM09js32PT4+PmZHEhERcTs68tSAxERE0dOyi4uMNNJS9podR0RExC25bXnKyspixIgRhISEEBYWxtixY8nLK/901KFDhzAM45zLsmXLXOPO9fzSpUvrYpdqncXbmzTvJgCcOPiDyWlERETck9uethsxYgTp6emsWrUKm83GmDFjGD9+PEuWLDnn+Pj4eNLT08use/3113nmmWe49tpry6xfuHAhAwcOdD0OCwur8fxmOenfghZ5P3E6fY/ZUURERNySW5an3bt3s3LlSjZv3ky3bt0AeOmllxg0aBDPPvsscXFxZ73Gy8uLmJiYMuuWL1/On/70J4KCgsqsDwsLO2vs+RQVFVFUVOR6nJubW5ndqVPFjVpD3josWfvMjiIiIuKW3PK03YYNGwgLC3MVJ4B+/fphsVjYuHFjhbaxdetWkpKSGDt27FnP3X333URERNC9e3cWLFhwwXvBzZ07l9DQUNcSHx9fuR2qQ77RbQEIzjtochIRERH35JblKSMjg6ioqDLrvL29CQ8PJyOjYrNnv/nmm7Rr145evXqVWT979mzeffddVq1axZAhQ/jzn//MSy+9dN5tzZgxg5ycHNdy+PDhyu1QHQpr1h6AGFuKbhAsIiJSBfXqtN306dN56qmnzjtm9+7d1X6f06dPs2TJEh5++OGznvv1us6dO5Ofn88zzzzDPffcU+72rFYrVqu12rnqQmyrjmQ7A/nJGYUzO5fIRqFmRxIREXEr1SpPNpuNjIwMCgoKiIyMJDw8vFphpk2bxujRo887plWrVsTExJCZmVlmfUlJCVlZWRW6Vum9996joKCA22677YJje/TowWOPPUZRUZHbFKTz8QsK4/cB/+TwyUKWniwhspHZiURERNxLpcvTqVOn+Ne//sXSpUvZtGkTxcXFOJ1ODMOgadOm9O/fn/Hjx3PZZZdVOkxkZCSRkZEXHNezZ0+ys7PZunUrXbt2BWDNmjU4HA569Ohxwde/+eab3HjjjRV6r6SkJBo1auQRxemMi6KCOXyykP3H8ri8VWOz44iIiLiVSl3z9Nxzz9GiRQsWLlxIv379+OCDD0hKSuLHH39kw4YNPPLII5SUlNC/f38GDhzI3r21MxFju3btGDhwIOPGjWPTpk18/fXXTJw4kWHDhrm+aZeamkpCQgKbNm0q89p9+/axfv167rjjjrO2+9FHH/GPf/yDHTt2sG/fPl599VXmzJnDpEmTamU/zOK6TctR3aZFRESksip15Gnz5s2sX7+eSy655JzPd+/endtvv5358+ezcOFCvvzyS9q0aVMjQX9r8eLFTJw4kb59+2KxWBgyZAgvvvii63mbzUZycjIFBQVlXrdgwQLXEbLf8vHx4ZVXXmHKlCk4nU5at27Nc889x7hx42plH8xylWMLI30f59jui+HGFWbHERERcSuGU1+5qnG5ubmEhoaSk5NDSEiI2XHOsvurD2j3+SgOGU1o8cgus+OIiIjUCxX9/K7yVAWjRo1i/fr1VX25mCimVSIATRwZnD5daHIaERER91Ll8pSTk0O/fv1o06YNc+bMITU1tSZzSS0Ki2lOAVZ8DDupB6s/9YOIiEhDUuXy9MEHH5CamsqECRN45513aNGiBddeey3vvfceNputJjNKDTMsXqR7l86CnvXTDpPTiIiIuJdqzTAeGRnJ1KlT2b59Oxs3bqR169bceuutxMXFMWXKlFr7tp1UX25gCwCKj+oGwSIiIpVRI7dnSU9PZ9WqVaxatQovLy8GDRrEDz/8QPv27Xn++edr4i2khpWEl34L0ls3CBYREamUKpcnm83G+++/z/XXX0/z5s1ZtmwZkydPJi0tjbfeeovPP/+cd999l9mzZ9dkXqkhPnGJbHe0Ym+xJskUERGpjCrfniU2NhaHw8Hw4cPZtGkTnTp1OmvMNddcQ1hYWDXiSW0J7XwT16wOxc9pYYTDicVimB1JRETELVS5PD3//PMMHToUPz+/cseEhYVx8ODBqr6F1KL4Rv74elkotDlIzT5NfHiA2ZFERETcQpVP2916663nLU5Sv3l7WWgVGYg3JexLPWZ2HBEREbdR5SNPU6dOPed6wzDw8/OjdevW3HTTTYSHh1c5nNSu6Sykl/W/bNo+FTo+ZHYcERERt1Dl8vTdd9+xbds27HY7bdu2BeDHH3/Ey8uLhIQE/v73vzNt2jS++uor2rdvX2OBpeYEBofim23HcjzZ7CgiIiJuo8qn7W666Sb69etHWloaW7duZevWrRw5coTf//73DB8+nNTUVK666iqmTJlSk3mlBvnGlt7gOTRP0xWIiIhUVJVvDNykSRNWrVp11lGlnTt30r9/f1JTU9m2bRv9+/fn+PHjNRLWXdT3GwOfcWT3Rpq+059sZyAhM49g8aqRab9ERETcUq3fGDgnJ4fMzMyz1h87dozc3Fyg9Nt2xcXFVX0LqWWxFyVidxqEGfmkpR4yO46IiIhbqNZpu9tvv53ly5dz5MgRjhw5wvLlyxk7diyDBw8GYNOmTVx88cU1lVVqmJevP+lesQAc3b/d5DQiIiLuocoXjL/22mtMmTKFYcOGUVJSUroxb29GjRrluiVLQkIC//jHP2omqdSKrIBWNM1LoyB1B/AHs+OIiIjUe1UuT0FBQbzxxhs8//zzHDhwAIBWrVoRFBTkGnOuWcelfjkZ04sVySWkF0ZwpdlhRERE3ECVTtvZbDb69u3L3r17CQoKIjExkcTExDLFSdxDYeexTLTdwwcFHcyOIiIi4haqVJ58fHz4/vvvazqLmODi6GAA9mXmYXdU6YuXIiIiDUqVLxgfOXIkb775Zk1mERM0Cw/Azxui7OkcOdqwppQQERGpiipf81RSUsKCBQv4/PPP6dq1K4GBgWWef+6556odTmqfl8XgE+uDtLIfYsvuRjSP1UXjIiIi51Pl8rRjxw66dOkClN6W5dcMw6heKqlTef5NIe8Qp/WNOxERkQuqcnlau3ZtTeYQExWHXwx5X2E5oXvciYiIXEi17sfx5ZdfMnLkSHr16kVqaioA//znP/nqq69qJJzUDevP97gLO7Xf5CQiIiL1X5XL0/vvv8+AAQPw9/dn27ZtFBUVAaW3bZkzZ06NBZTa17hlIgBNSn7CbneYnEZERKR+q3J5evzxx5k/fz5vvPEGPj4+rvVXXHEF27Ztq5FwUjdiWnV03eMu9cghs+OIiIjUa1UuT8nJyVx11VVnrQ8NDSU7O7s6maSOWXz9yXDd4y7J3DAiIiL1XJXLU0xMDPv27Ttr/VdffUWrVq2qFUrq3neNr+flkptILgg2O4qIiEi9VuXyNG7cOO699142btyIYRikpaWxePFi7rvvPiZMmFCTGaUOHL7kLp4tuYWNpyLMjiIiIlKvVXmqgunTp+NwOOjbty8FBQVcddVVWK1W7rvvPiZNmlSTGaUOJMSWHnHak55rchIREZH6rcpHngzD4K9//StZWVns2LGDb7/9lmPHjvHYY4/VZL5yPfHEE/Tq1YuAgADCwsIq9Bqn08nMmTOJjY3F39+ffv36sXfv3jJjsrKyGDFiBCEhIYSFhTF27Fjy8vJqYQ/ql3bRwURykiYnvqGw2GZ2HBERkXqrWvM8Afj6+tK+fXu6d+9OUFBQTWSqkOLiYoYOHVqpU4RPP/00L774IvPnz2fjxo0EBgYyYMAACgsLXWNGjBjBzp07WbVqFStWrGD9+vWMHz++NnahXokO9uYrv8ks8nmSlP27zI4jIiJSbxlOp9NZ1RevXr2a1atXk5mZicNRdn6gBQsWVDtcRSxatIjJkydf8Bt+TqeTuLg4pk2bxn333QeUzkkVHR3NokWLGDZsGLt376Z9+/Zs3ryZbt26AbBy5UoGDRrEkSNHiIuLq1Cm3NxcQkNDycnJISQkpFr7V5cOPNGVVrZ9fNP1eXrdcLvZcUREROpURT+/q3zkadasWfTv35/Vq1dz/PhxTp48WWapbw4ePEhGRgb9+vVzrQsNDaVHjx5s2LABgA0bNhAWFuYqTgD9+vXDYrGwcePGcrddVFREbm5umcUd5YS0BcCWtsPkJCIiIvVXlS8Ynz9/PosWLeLWW2+tyTy1JiMjA4Do6Ogy66Ojo13PZWRkEBUVVeZ5b29vwsPDXWPOZe7cucyaNauGE5sgugOc+Bj/k3vMTiIiIlJvVfnIU3FxMb169arJLEyfPh3DMM677NlT/z7YZ8yYQU5Ojms5fPiw2ZGqJLRFJwBiCvdRjbO5IiIiHq3KR57uuOMOlixZwsMPP1xjYaZNm8bo0aPPO6aqE3DGxMQAcPToUWJjY13rjx49SqdOnVxjMjMzy7yupKSErKws1+vPxWq1YrVaq5SrPolr2w0+gWYc5diJLCIjGpsdSUREpN6pcnkqLCzk9ddf5/PPPycxMbHM/e0AnnvuuUpvMzIyksjIyKpGOq+WLVsSExPD6tWrXWUpNzeXjRs3ur6x17NnT7Kzs9m6dStdu3YFYM2aNTgcDnr06FErueoTv9AojhvhRDizOJy8hciIAWZHEhERqXeqXJ6+//57VwnZsaPsBcaGYVQrVEWkpKSQlZVFSkoKdrudpKQkAFq3bu2aMiEhIYG5c+fyhz/8AcMwmDx5Mo8//jht2rShZcuWPPzww8TFxTF48GAA2rVrx8CBAxk3bhzz58/HZrMxceJEhg0bVuFv2rm7VZGj2JpaQIeCcLqYHUZERKQeqnJ5Wrt2bU3mqLSZM2fy1ltvuR537twZKM3Vp08foPTmxTk5Oa4x999/P/n5+YwfP57s7Gx69+7NypUr8fPzc41ZvHgxEydOpG/fvlgsFoYMGcKLL75YNztVD2S1G8l7KcnYTngz2uwwIiIi9VC15nn68ssvee211zhw4ADLli2jSZMm/POf/6Rly5b07t27JnO6FXed5wlgzZ6j3L5oC22jg/l0ylVmxxEREakztT7P0/vvv8+AAQPw9/dn27ZtFBUVAaUTT86ZM6eqmxWTJUQFcJmxhx4nllNkKzE7joiISL1T5fL0+OOPM3/+fN54440yF4tfccUVbNu2rUbCSd2LDfFlifUJZnsv4KcD9W9aCBEREbNVuTwlJydz1VVnn9YJDQ294K1SpP4yvK2kejcH4Pg+lWAREZHfqnJ5iomJYd++fWet/+qrr6o8F5PUDzkhFwNQnPqDyUlERETqnyqXp3HjxnHvvfeyceNGDMMgLS2NxYsXc99997nmTRL35Iy6BAD/k7tNTiIiIlL/VHmqgunTp+NwOOjbty8FBQVcddVVWK1W7rvvPiZNmlSTGaWOBbfoDHsg5vR+s6OIiIjUO9WaqgBK73G3b98+8vLyaN++vWuCyobMnacqADidlY7/iwk4nAbH7z1AVHi42ZFERERqXUU/v6t85OkMX19f2rdvX93NSD3iHx5LlhFKODkc3rOVqF6/NzuSiIhIvVGpa55SUlIqtfHU1NRKjZf64/3Y+xhS9AibC2IvPFhERKQBqVR5uuyyy7jzzjvZvHlzuWNycnJ444036NChA++//361A4o5nAnXsdXZlu+PFpkdRUREpF6p1Gm7Xbt28cQTT/D73/8ePz8/unbtSlxcHH5+fpw8eZJdu3axc+dOunTpwtNPP82gQYNqK7fUsg5xoQDsSM01OYmIiEj9UqULxk+fPs3HH3/MV199xU8//cTp06eJiIigc+fODBgwgA4dOtRGVrfh7heMA+ScKuCxJx/lEuMQNz+wiNDgALMjiYiI1KqKfn5X+9t2cjZPKE84nZyaFUcwBSRdt4JOl11pdiIREZFaVes3BhYPZxik+ZfONJ6zf4vJYUREROoPlScp1+nGpTONGxnbTU4iIiJSf6g8Sbl84zsDEJ6r27SIiIicofIk5YpNuByAVvaD5J3WlAUiIiKg8iTn0Si+PaexEmAUcTBZp+5ERESghspTVlYWDoejJjYl9YnFi1RrawCO799mchgREZH6ocrladeuXTz55JP06tWLyMhIoqKiuO2223j//ffJz8+vyYxiom8umcllhX9nhb2n2VFERETqhUqVp+TkZKZNm0abNm24/PLL2bx5M3fddRdHjx7lk08+oXnz5syePZuIiAiuvfZaXn311drKLXUkrnVnjhHGjtQcs6OIiIjUC5W6Pcs333xDfn4+L774In379sXX19f1XEREBN27d+exxx7j0KFD/Pe//+U///kPEyZMqPHQUnc6NCm9Tcu+Y3mcLrbj7+tlciIRERFzaYbxWuARM4z/yt8f+zPti3fQeOg8OiZ2MTuOiIhIrajo53eljjwBBAcH07lzZ7p27UqXLl3o0qUL7du3xzCMagWW+qu/dxKt7Tv5Ys/XoPIkIiINXKXL01NPPcXWrVtZs2YNL7/8Mg6HA39/fxITE8sUqksvvbQ28ooJ8iIuhdSdkKZv3ImIiFS6PP35z392/fn06dMEBgYyadIksrKy+Pbbb/nHP/5BcXExdru9RoOKefybXwapS4jM3WF2FBEREdNVujz9mr+/PwDDhw8nMTERgJKSEnbt2lX9ZFJvxHW4Ar6B1vaDZOXmER4SZHYkERER09T4DOPe3t6uIiWeITj2YnIJwmrYOLBzk9lxRERETKXbs8iFGQZpge0AyN230eQwIiIi5qp0ebrjjjt49dVX2bx5M0VFpTeL1TftPF9RVCdOOf05kXXc7CgiIiKmqvQ1T3v37mXZsmWcOnUKb+/Sl8+aNYs+ffrQpUsXOnXqREBAQI0HFXM5r5xK4u6rCc/1449OpwqziIg0WJU+8rRu3TpycnJITk7m7bff5r777iM7O5uZM2fSu3dvQkNDueSSS2ojaxlPPPEEvXr1IiAggLCwsAuOt9lsPPDAA3Ts2JHAwEDi4uK47bbbSEtLKzOuRYsWGIZRZnnyySdraS/cR0J8NN5eXpzIL+bIydNmxxERETFNlb9t16ZNG9q0acOwYcNc6w4ePMiWLVv47rvvaiTc+RQXFzN06FB69uzJm2++ecHxBQUFbNu2jYcffphLL72UkydPcu+993LjjTeyZcuWMmNnz57NuHHjXI+Dg4NrPL+78fPxIiEmhB9Sc/j+cDbx4Tq6KCIiDVOlylNGRgaNGjXCarWe8/mWLVvSsmVLhg4dCsCBAwdo1apV9VOew6xZswBYtGhRhcaHhoayatWqMutefvllunfvTkpKCs2aNXOtDw4OJiYmpsayeoo7/T6jve87HNj8R7j0CbPjiIiImKJSp+3ee+89wsPD+cMf/sDChQs5duzYWWM2btzIgw8+yCWXXFLvZxnPycnBMIyzTvs9+eSTNG7cmM6dO/PMM89QUlJy3u0UFRWRm5tbZvFEzUK8aGXJIOhY7R9ZFBERqa8qVZ4mTpzI9u3bufLKK1m0aBFNmzald+/ezJkzh3HjxhEbG8vgwYPJzMzkySefPGe5qi8KCwt54IEHGD58eJmb/91zzz0sXbqUtWvXcueddzJnzhzuv//+825r7ty5hIaGupb4+Pjajm+KiHZXAtCqcCfFNs0gLyIiDZPhdDqdVX3xiRMnWLFiBZ988gktWrTgpptuomfPnlX+Jtb06dN56qmnzjtm9+7dJCQkuB4vWrSIyZMnk52dXeH3sdlsDBkyhCNHjvDFF1+c987JCxYs4M477yQvL6/c05VFRUWuaRug9K7M8fHxF7wrs7txFhdQMqcpPtjZOfRLLrlEk6GKiIjnyM3NJTQ09IKf39W6PUvjxo0ZNWoUo0aNqs5mXKZNm8bo0aPPO6a611DZbDb+9Kc/8dNPP7FmzZoLlpsePXpQUlLCoUOHaNu27TnHWK3WcouVJzF8AzhsbUOroj1k7lJ5EhGRhqla5ammRUZGEhkZWWvbP1Oc9u7dy9q1a2ncuPEFX5OUlITFYiEqKqrWcrmTUxGdIXUPxpGNwN1mxxEREalzbnt7lpSUFJKSkkhJScFut5OUlERSUhJ5eXmuMQkJCSxfvhwoLU5//OMf2bJlC4sXL8Zut5ORkUFGRgbFxcUAbNiwgXnz5rF9+3YOHDjA4sWLmTJlCiNHjqRRo0am7Gd9E3BRLwBicr+nGmd8RURE3Fa9OvJUGTNnzuStt95yPe7cuTMAa9eupU+fPgAkJyeTk5MDQGpqKh9++CEAnTp1KrOtM6+xWq0sXbqURx99lKKiIlq2bMmUKVOYOnVq7e+Qm2ia2Ic9X8SzydGaoJMFNA0PNDuSiIhInarWBeNybhW94Mxd3fTyV2w/ksMLwzpxU6cmZscRERGpERX9/Hbb03Zini7NS09hbvvppMlJRERE6p7Kk1Ra1+aN8KGEowd3mB1FRESkzrntNU9inu7Bx/nBOpbCk74UFN1MgNXX7EgiIiJ1RkeepNKimrUDwyDMyCd55zaz44iIiNQplSepPC8fDvu3A+DErvUmhxEREalbKk9SJafjLgfAmvqtyUlERETqlsqTVEl4+z4AXFSQpJsEi4hIg6LyJFXSpMNV2PAizjhBcrK+dSciIg2HypNUiWENIsVaeqPkzB9Wm5xGRESk7miqAqmytNbDWJa0i6zcFvQ1O4yIiEgd0ZEnqbLwK0Yz334jH6cGUGJ3mB1HRESkTqg8SZUlxIQQ4udNfrGdnWm5ZscRERGpEypPUmVeFoN+TZ3caPmag0nrzI4jIiJSJ3TNk1TLaOMjEn3/xbofDwE3mR1HRESk1unIk1RLcNs+ADQ79R12h9PcMCIiInVA5UmqJb5TXxxOg5ak8eO+vWbHERERqXUqT1It3kHhpFjbAJC27X8mpxEREal9Kk9SbafirgDAN0U3CRYREc+n8iTVFp44AICL87dSWFxichoREZHapfIk1RbXsQ+F+BJtnGTnziSz44iIiNQqlSepNsPHn0XN5nBZ4d9ZlRFkdhwREZFapfIkNSKq07UcI4yv9x03O4qIiEitUnmSGtG7dQQAO9JyOJlfbHIaERGR2qPyJDUiKsSPKWFf8pb3XHZtWWN2HBERkVqj8iQ1pq//j1zl9QOnd31qdhQREZFao/IkNcbroj4ARGd+jdOpW7WIiIhnUnmSGtOix40AtHf8yIGUwyanERERqR0qT1Jj/CNbcNinBV6Gk0MbPzI7joiISK1QeZIald3kGgCsBz83OYmIiEjtUHmSGhXR+QYA2hds4lRBoclpREREap7Kk9So2A5Xc9xoxHbHRWzavd/sOCIiIjXObcvTE088Qa9evQgICCAsLKxCrxk9ejSGYZRZBg4cWGZMVlYWI0aMICQkhLCwMMaOHUteXl4t7IGH8vLm1c4fMsb2AJ8e1E2CRUTE87hteSouLmbo0KFMmDChUq8bOHAg6enpruXf//53medHjBjBzp07WbVqFStWrGD9+vWMHz++JqN7vGvaxQGwNvmYpiwQERGP4212gKqaNWsWAIsWLarU66xWKzExMed8bvfu3axcuZLNmzfTrVs3AF566SUGDRrEs88+S1xcXLUyNxSXtWxEgK8X3qfS2H3oCO1bxpsdSUREpMa47ZGnqvriiy+Iioqibdu2TJgwgRMnTrie27BhA2FhYa7iBNCvXz8sFgsbN24sd5tFRUXk5uaWWRoyq7cXb4a8wQa/SaR9vdTsOCIiIjWqQZWngQMH8vbbb7N69Wqeeuop1q1bx7XXXovdbgcgIyODqKioMq/x9vYmPDycjIyMcrc7d+5cQkNDXUt8vI60BDVpB0DIT7pVi4iIeJZ6VZ6mT59+1gXdv1327NlT5e0PGzaMG2+8kY4dOzJ48GBWrFjB5s2b+eKLL6qVe8aMGeTk5LiWw4c1u3azXn8C4NLi7ziSftTkNCIiIjWnXl3zNG3aNEaPHn3eMa1ataqx92vVqhURERHs27ePvn37EhMTQ2ZmZpkxJSUlZGVllXudFJReR2W1WmsslycIbdaRNK8mxNlT+fHr/9D0j5W7sF9ERKS+qlflKTIyksjIyDp7vyNHjnDixAliY2MB6NmzJ9nZ2WzdupWuXbsCsGbNGhwOBz169KizXB7BMDgeP4C4Qwvw2/cJoPIkIiKeoV6dtquMlJQUkpKSSElJwW63k5SURFJSUpk5mRISEli+fDkAeXl5/OUvf+Hbb7/l0KFDrF69mptuuonWrVszYMAAANq1a8fAgQMZN24cmzZt4uuvv2bixIkMGzZM37SrgpjL/whA4ulNHDuZY3IaERGRmuG25WnmzJl07tyZRx55hLy8PDp37kznzp3ZsmWLa0xycjI5OaUf2l5eXnz//ffceOONXHzxxYwdO5auXbvy5ZdfljnltnjxYhISEujbty+DBg2id+/evP7663W+f54g6uKeHLNEEGQUsuurD82OIyIiUiMMp2YxrHG5ubmEhoaSk5NDSEiI2XFM9fmS5/nPjizsF/XjtbFXmx1HRESkXBX9/HbbI0/iHlr0u4NPHJez9kABuYU2s+OIiIhUm8qT1KrWUcG0jgqi2O7gs52askBERNyfypPUumFtvZnk9R+81j1pdhQREZFqq1dTFYhnuq5pIbE+73Eqx58T2U/QOCzU7EgiIiJVpiNPUutiO17DMUsEwcZpfvhimdlxREREqkXlSWqfxUJa00EAWHcvNzmMiIhI9ag8SZ2Iu/JWALoUbiTtaOYFRouIiNRfKk9SJyJbX0aqV1Osho09X/zb7DgiIiJVpvIkdcMwON7yRgBC9+rUnYiIuC+VJ6kzLa8ZRZ7Tjx8Lw9hx5KTZcURERKpE5UnqTEiTBB5q8wEzSsbx3rY0s+OIiIhUicqT1Kk/dG8NwPLvUim02U1OIyIiUnkqT1KnereOIDbESnxhMt9u/MbsOCIiIpWm8iR1ysti8LfolaywPoTPN8+bHUdERKTSVJ6kzrW8/CYAuuavJz0jw+Q0IiIilaPyJHUutn1vDns3x8+wsXvVArPjiIiIVIrKk9Q9wyC73f8B0PzAEmwlunBcRETch8qTmKLtgDs5jZWLnIfZsu4js+OIiIhUmMqTmMI3qBE/Rl8HgGXz6yanERERqTiVJzFNk/73AhBb8CN7Dh81OY2IiEjFqDyJaSIu6sS8Js9zTfFzvLU50+w4IiIiFaLyJKbq2fcm7Hix/Lsj5BTYzI4jIiJyQSpPYqruLcNJiAnGbitmxdp1ZscRERG5IG+zA0jDZhgG919aRLuTkynZ7Ethvx/ws/qaHUtERKRcOvIkprvy8ssJMIqJJ4NNnywyO46IiMh5qTyJ6Xz8gznQaiQAMd+/SokmzRQRkXpM5UnqhYQb7+M0Vi52HmDzmv+YHUdERKRcKk9SL/iHRbIn7mYAAjfNw+l0mpxIRETk3FSepN5oeeN0ip3eJJbsYNOaD8yOIyIick4qT1JvhMW0YGds6dGnAxtXYHfo6JOIiNQ/Kk9Sr1z0x0cZyePMyL2Zj7anmR1HRETkLG5bnp544gl69epFQEAAYWFhFXqNYRjnXJ555hnXmBYtWpz1/JNPPllLeyG/FRLRhJ5XXwvAvM9/xGZ3mJxIRESkLLctT8XFxQwdOpQJEyZU+DXp6elllgULFmAYBkOGDCkzbvbs2WXGTZo0qabjy3mM7tWCxoG+nD5xhDWrV5odR0REpAy3nWF81qxZACxatKjCr4mJiSnz+L///S/XXHMNrVq1KrM+ODj4rLHnU1RURFFRketxbm5uhV8rZwu0evN4x2P87rspHP+mEXlXXEVQYJDZsURERAA3PvJUXUePHuXjjz9m7NixZz335JNP0rhxYzp37swzzzxDSUnJebc1d+5cQkNDXUt8fHxtxW4wftf/enIsITQhk61LHzc7joiIiEuDLU9vvfUWwcHB3HzzzWXW33PPPSxdupS1a9dy5513MmfOHO6///7zbmvGjBnk5OS4lsOHD9dm9AbBGhBCxmXTAeiWsoDUlAMmJxIRESlVr8rT9OnTy72o+8yyZ8+eGnmvBQsWMGLECPz8/Mqsnzp1Kn369CExMZG77rqLv/3tb7z00ktlTsv9ltVqJSQkpMwi1ddx4B386NuOQKOIw8seMDuOiIgIUM+ueZo2bRqjR48+75jfXp9UFV9++SXJycm88847Fxzbo0cPSkpKOHToEG3btq32e0vFGRYLvtc/Df+5gctPfcb3Gz4jsWd/s2OJiEgDV6/KU2RkJJGRkbX+Pm+++SZdu3bl0ksvveDYpKQkLBYLUVFRtZ5LztYi8Sq2fnEdXbM+JvizaRR23oSfn7/ZsUREpAGrV6ftKiMlJYWkpCRSUlKw2+0kJSWRlJREXl6ea0xCQgLLly8v87rc3FyWLVvGHXfccdY2N2zYwLx589i+fTsHDhxg8eLFTJkyhZEjR9KoUaNa3yc5t4tvfZ6jNOZDWzdeXrPP7DgiItLA1asjT5Uxc+ZM3nrrLdfjzp07A7B27Vr69OkDQHJyMjk5OWVet3TpUpxOJ8OHDz9rm1arlaVLl/Loo49SVFREy5YtmTJlClOnTq29HZELCm4Uzbc3r+H5JTvx/uow13VuTrtYXVcmIiLmMJy6fX2Ny83NJTQ0lJycHF08XoPu+udWVu7MoFsTf5bedSXePj5mRxIREQ9S0c9vtz1tJw3PrJsuobNfGo8du4eN/5ppdhwREWmgVJ7EbUSH+DGzi412lsN0P/Qau7esNTuSiIg0QCpP4lY63zCBbSG/w8ewE/zxXZzKyTI7koiINDAqT+JeDIPWt79BBpE0dWaw583xOB0Os1OJiEgDovIkbickLILsa1+mxGnhstxVbHznSbMjiYhIA6LyJG4pocdAtl48BYBue55h17crTU4kIiINhcqTuK3uwx9iS3BfvnO2ZsqqU2TkFJodSUREGgCVJ3FbhsVC+7veYlajJ0nOD2DMos2cKrSZHUtERDycypO4tYDAYF4d1ZOIICu703N5442XKS48bXYsERHxYCpP4vbiwwNYOPoypvj+l6knHmXH3/8PR0mJ2bFERMRDqTyJR+jYNJSrfzcQm9OLLrlr+O7vt+J02M2OJSIiHkjlSTxGpz43s7Xb09idBl2zPmHbK6NUoEREpMapPIlHufyGO9jU+anSAnXiI757ZRSOEl1ELiIiNUflSTxOz8F3srHTHOxOgy4nPuKHF27GVqIjUCIiUjNUnsQj9frDn9l82XMUOX14P6sld7y9lYJiXUQuIiLVp/IkHuvy629n242fscwyiHU/HmPIqxs4fCLP7FgiIuLmVJ7Eo/Xs2oXF43oQEeRLanoaeS9dSfK6d8yOJSIibkzlSTxel2aN+HBibx5q9DntOEDbteP57h93Y7cVmR1NRETckMqTNAhxYf7ceO9LrGs0BIDOR/5FytO9OP7TTpOTiYiIu1F5kgbDz8+Pq+55k6+6vUi2M4iWtn0ELbya75c+irOk2Ox4IiLiJlSepEExDIPe148ie/QXfOfTCT9sJO55nvfnTeHg8Xyz44mIiBtQeZIGqUXLNnR8YA1r281mr7Mps49fxYB563n202ROndZRKBERKZ/KkzRY3t5eXHPLvVgnbeTSNi0oLnHw8tq9bH9qANvf/gu2ghyzI4qISD1kOJ1Op9khPE1ubi6hoaHk5OQQEhJidhypAKfTyWe7jrLyo2U8X/gQANkEk9LmNtreOBVrcITJCUVEpLZV9PNb5akWqDy5L1uJna9XLKJl0rM0Jw2AAvzYG/9HWl1/H8HRLU1OKCIitUXlyUQqT+6voLCQjSsW0mTnfC52HgLA4TR4ufUbXN3n9yQ2DcUwDHNDiohIjVJ5MpHKk+cottnZuOodgra+SiPbUa4p/htOLFwSF8LkuD10Skwksk13UJESEXF7Kk8mUnnyPE6nk237jvDPrcf5ZEcGjpJiNln/TLiRR5pXE47HDyCq603EXHIlWLzMjisiIlWg8mQilSfPlpVfzOrNP9Dk20focvpb/Ayb67kcgjkc3hNnp5G0vvx6/H1VpERE3IXKk4lUnhqO9Mxj7Fn3Dr4HPqNDwRZCjdKJNueV3MwrzqF0bBLKlfHeDLBsoUnHqwlt2k5HpkRE6imVJxOpPDVMuQWn2blxNQU7P+Gf2Yl8kRcPQH/LZl73fR6A01hJtbYmL/wSfJt2JvLiy4ho0QHDx9/M6CIigoeXp0OHDvHYY4+xZs0aMjIyiIuLY+TIkfz1r3/F19e33NcVFhYybdo0li5dSlFREQMGDODvf/870dHRrjEpKSlMmDCBtWvXEhQUxKhRo5g7dy7e3t4VzqfyJE6nk8NZp9l0KIvc7z+m2+FFtLbvJ8AoOmvsZMdU9kf2pVVkIJf5Z3CpcxeB0a0Ji72IRnGtMHwDTNgDEZGGp6Kf3xVvBPXInj17cDgcvPbaa7Ru3ZodO3Ywbtw48vPzefbZZ8t93ZQpU/j4449ZtmwZoaGhTJw4kZtvvpmvv/4aALvdznXXXUdMTAzffPMN6enp3Hbbbfj4+DBnzpy62j3xAIZh0KxxAM0aB0DXO4E7yS0oJGnPdk7u3wLp22mUs4sWJQfYaYthb2oOP6TmEOP1ESN9/l1mWycJJcsnmnz/WLa0uhsj8mIaB1mJ4wQRllxCIuIIjYjDy8dqzs6KiDQwbnnk6VyeeeYZXn31VQ4cOHDO53NycoiMjGTJkiX88Y9/BEpLWLt27diwYQOXX345//vf/7j++utJS0tzHY2aP38+DzzwAMeOHSv3qFZRURFFRb8cUcjNzSU+Pl5HnuSCim12UrLy2X+8gP3H8gje9xEJmZ/QyJZBtOMYwcbpMuMHFc1hl7MFABO8PuQBn6Wu504RQJ4RRIFXMIVewSyPuYf80DYE+/lwkW0vzU/vwss/FB//ILysAfj4BeHtF4RvQBDejZrh7x+In48XVm8LFoumXhCRhsejjzydS05ODuHh4eU+v3XrVmw2G/369XOtS0hIoFmzZq7ytGHDBjp27FjmNN6AAQOYMGECO3fupHPnzufc9ty5c5k1a1bN7Yw0GL4+XrSODqF19M//J+0zBZgClBarI8eOkpW2n/yjByk+8RNXBHWl5WlfjucVEZblT2ZROI2cOfgYdoIpINhZACWZUAL3/XiU3U4/AP7s9RG3+Lxbbo6hRTPZ7EwAYKTXKu73fociw5cSfCgxflnshjcLQ+4ixa8d3l4GlxYncVX+ShwWX5wWHxwWX/DywjC8wOLNjqhBnAxohZdhEHl6P61Pfg0WC06Ld+mF80bpfw3DQmZED/ID4/GyGAQVHiUi53ssFguGYcEwDAyL5eeJSQ1OhbWjKDAWA/AtPknIyV2lzxlgYMFpsWBggGFwOrg5toAYDAO8bXkE5Oz7eWzptgyLpfS/hoXigCjsAZEYgMV+GmtuCj9vtjQDZ97DoMS/MY6A0tv2GCWF+Ob+VPaH+qu5v0qsjbAHRJY+cNiw5hwqM9RpGK7hDt8QSgKifn5Qgm9uyi+bpGyptfsGYT8z1unA5+cM55p2zOET+MtYwPfUT2cPOjPW29811sDA+9QR+PW/s3/1Bk4vXxyBv2zXOy8NnI5zb9jigz0w+rxjz2zaafHGHhjjWu+Vn4HhKPn1yF8yGBbsQXG/GnsUw2Hj3AxKgpv8MrYgE8Ne3s3Afzv2OIa9sJyxUBLUxLUDltMnsJScPs/YODAsP4/NwlJSUP7YwFjXF00shSex2PLPMzYGLN4/j83GYssrf2xAFHiVHhSwFOVgKT51nrGR4GX9eWwuluLccsfa/SNwepf+3WMU5+FVlF3+WL/GOH++5tOw5eNVePI8Y8Nx+vxyGUOz8AB8vc25Ra9HlKd9+/bx0ksvnfeUXUZGBr6+voSFhZVZHx0dTUZGhmvMr4vTmefPPFeeGTNmMHXqVNfjM0eeRKrD18eLpnFxNI2LA64E4OoyI3oC8ygpKeF41jFyT6STn5OFLe8EtoJsRoT2IqvEj9zTNuKOdmDbyQx8bafwshfi6yjE6ixd/CjEZvEHe+lWgzlNiFEA/PyXufPn5Wc/ZRznW8cJAFp47aK7z5py9+EfKdGscZS+eIhlPaN855c7dmLxJFY4egIwyPItf/d9sdyxf7GNZ5m9DwB9LN+xyPeZcsfOtI3ibfsAAC637GKp7+Pljn3SNoz59hsBSDT286H14XLHvlByM8+XlB7Fbm0c4XPr/eWOfa3kOuaWjACgCcf42u/ecsf+s6QfD5fcDkA4uWzzu6vcse/br2SabQIAfhSxx29MuWM/tnfnbttk1+NDfv9X7ti19ksZY3vA9XiXdcw5r9cD2OhI4Jbima7HW6x3EWGc+4P1e0dLbix+wvX4S997ibccO+fYvY4m/L74l9/rp77309Zy5JxjjzgjuKbol/+9fOD7EJ0s5z4LkeUMokvR667H//Z5nJ5eu8459rTTl3ZFi1yP3/R5hr5e351zLECLwsWcKXUv+7zA9V4byx3bvnABBZQWjGe85zPUe325Y7sWvsoJQgGY5b2QUd6ryh3bu2geR5ylZXa69xLu8l5R7tj+RU/xo7P0s+per/eZ4vN+uWNvKprNdmdrAMZ5reCvPkvKHTu8+K9scFwClP5j7HGfheWOvb34PtY4ugClf0f87Tx/R9xdfA8fOy53PV4z7WpaRQaVO7421avyNH36dJ566qnzjtm9ezcJCQmux6mpqQwcOJChQ4cybty42o54TlarFatV15uIOby9vYmIiiUiKrbM+h5lHrUHyv/A/gCwO5wU2uwU5nUnPftuigtPU1R0GoetCLutEEeJDYetkHHhXRjhHYbN7iDwpC9bjkVCSTFOezGGvRinowSnvQQcdrpHdKGFX0scTidNcrPZemIQhtOO4bSD04HFaQenHcPpoGXT1gywRmN3QIuCeJKzO4DTiYHz56MeToyf/9soLI4uvmE4gbiiSA7ktcLA6VrOjDVwEhQaQTtrCE6nk5iSUNLzo38eg2us5efX+QWF0tInEKfTSZQ9kKzC0HJ/Zl7WQGIDSz/8Gjv8OWkr/xC/l28gMQE/j3X6k2Mr/y98i28A0QGlf5+EOq3k2gLLHYuPP1F+pWOtTsgr+fWXC35zRYa3P5E/j3U6Ib/Ez/XUbw9UOb39iLBaXdsoKrG6xhi/2a7T4kvjwF8uabDZfSnk7EscnIDD4kv4r8aW2H05fY6xACUWXxoF+Lge2x3nGWv4EParsY7zjC02rL8Z61Pu2CLDt8xY53m2CxDm7+M68mRcYGyovze+hk+Fxob4+2D/eazXhcb6+RD281jv8+wbQPCvxvo4fSh0+pQ7NuhXY32dvucdG2D9Zaz1AtutzFi/X40FsJh4Z4d6dc3TsWPHOHHixHnHtGrVynXtUVpaGn369OHyyy9n0aJFWCzlH75bs2YNffv25eTJk2WOPjVv3pzJkyczZcoUZs6cyYcffkhSUpLr+YMHD9KqVSu2bdtW7mm739K37URERNyPW17zFBkZSWRkZIXGpqamcs0119C1a1cWLlx43uIE0LVrV3x8fFi9ejVDhgwBIDk5mZSUFHr2LD1V0LNnT5544gkyMzOJiio97Llq1SpCQkJo3759NfZMREREPIU5V1pVU2pqKn369KFZs2Y8++yzHDt2jIyMjDLXJaWmppKQkMCmTZsACA0NZezYsUydOpW1a9eydetWxowZQ8+ePbn88tJzqP3796d9+/bceuutbN++nU8//ZSHHnqIu+++W6flREREBKhnR54qatWqVezbt499+/bRtGnTMs+dOQtps9lITk6moOCXbzA8//zzWCwWhgwZUmaSzDO8vLxYsWIFEyZMoGfPngQGBjJq1Chmz55dNzsmIiIi9V69uubJU+iaJxEREfdT0c9vtzxtJyIiImIWlScRERGRSlB5EhEREakElScRERGRSlB5EhEREakElScRERGRSlB5EhEREakElScRERGRSlB5EhEREakElScRERGRSnDLe9vVd2fueJObm2tyEhEREamoM5/bF7pzncpTLTh16hQA8fHxJicRERGRyjp16hShoaHlPq8bA9cCh8NBWloawcHBGIZRY9vNzc0lPj6ew4cP64bDtUg/57qhn3Pd0M+5bujnXDdq++fsdDo5deoUcXFxWCzlX9mkI0+1wGKx0LRp01rbfkhIiP7PWQf0c64b+jnXDf2c64Z+znWjNn/O5zvidIYuGBcRERGpBJUnERERkUpQeXIjVquVRx55BKvVanYUj6afc93Qz7lu6OdcN/Rzrhv15eesC8ZFREREKkFHnkREREQqQeVJREREpBJUnkREREQqQeVJREREpBJUntzIK6+8QosWLfDz86NHjx5s2rTJ7EgeZf369dxwww3ExcVhGAYffPCB2ZE80ty5c7nssssIDg4mKiqKwYMHk5ycbHYsj/Pqq6+SmJjomkywZ8+e/O9//zM7lsd78sknMQyDyZMnmx3Fozz66KMYhlFmSUhIMC2PypObeOedd5g6dSqPPPII27Zt49JLL2XAgAFkZmaaHc1j5Ofnc+mll/LKK6+YHcWjrVu3jrvvvptvv/2WVatWYbPZ6N+/P/n5+WZH8yhNmzblySefZOvWrWzZsoXf/e533HTTTezcudPsaB5r8+bNvPbaayQmJpodxSNdcsklpKenu5avvvrKtCyaqsBN9OjRg8suu4yXX34ZKL1/Xnx8PJMmTWL69Okmp/M8hmGwfPlyBg8ebHYUj3fs2DGioqJYt24dV111ldlxPFp4eDjPPPMMY8eONTuKx8nLy6NLly78/e9/5/HHH6dTp07MmzfP7Fge49FHH+WDDz4gKSnJ7CiAjjy5heLiYrZu3Uq/fv1c6ywWC/369WPDhg0mJhOpvpycHKD0g11qh91uZ+nSpeTn59OzZ0+z43iku+++m+uuu67M39NSs/bu3UtcXBytWrVixIgRpKSkmJZFNwZ2A8ePH8dutxMdHV1mfXR0NHv27DEplUj1ORwOJk+ezBVXXEGHDh3MjuNxfvjhB3r27ElhYSFBQUEsX76c9u3bmx3L4yxdupRt27axefNms6N4rB49erBo0SLatm1Leno6s2bN4sorr2THjh0EBwfXeR6VJxExzd13382OHTtMvXbBk7Vt25akpCRycnJ47733GDVqFOvWrVOBqkGHDx/m3nvvZdWqVfj5+Zkdx2Nde+21rj8nJibSo0cPmjdvzrvvvmvKaWiVJzcQERGBl5cXR48eLbP+6NGjxMTEmJRKpHomTpzIihUrWL9+PU2bNjU7jkfy9fWldevWAHTt2pXNmzfzwgsv8Nprr5mczHNs3bqVzMxMunTp4lpnt9tZv349L7/8MkVFRXh5eZmY0DOFhYVx8cUXs2/fPlPeX9c8uQFfX1+6du3K6tWrXescDgerV6/W9QvidpxOJxMnTmT58uWsWbOGli1bmh2pwXA4HBQVFZkdw6P07duXH374gaSkJNfSrVs3RowYQVJSkopTLcnLy2P//v3Exsaa8v468uQmpk6dyqhRo+jWrRvdu3dn3rx55OfnM2bMGLOjeYy8vLwy/4o5ePAgSUlJhIeH06xZMxOTeZa7776bJUuW8N///pfg4GAyMjIACA0Nxd/f3+R0nmPGjBlce+21NGvWjFOnTrFkyRK++OILPv30U7OjeZTg4OCzrtcLDAykcePGuo6vBt13333ccMMNNG/enLS0NB555BG8vLwYPny4KXlUntzELbfcwrFjx5g5cyYZGRl06tSJlStXnnURuVTdli1buOaaa1yPp06dCsCoUaNYtGiRSak8z6uvvgpAnz59yqxfuHAho0ePrvtAHiozM5PbbruN9PR0QkNDSUxM5NNPP+X3v/+92dFEKu3IkSMMHz6cEydOEBkZSe/evfn222+JjIw0JY/meRIRERGpBF3zJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCLyG6NHj2bw4MFmxxCRekq3ZxGRBsUwjPM+/8gjj/DCCy+gmy+ISHlUnkSkQUlPT3f9+Z133mHmzJkkJye71gUFBREUFGRGNBFxEzptJyINSkxMjGsJDQ3FMIwy64KCgs46bdenTx8mTZrE5MmTadSoEdHR0bzxxhvk5+czZswYgoODad26Nf/73//KvNeOHTu49tprCQoKIjo6mltvvZXjx4/X8R6LSE1TeRIRqYC33nqLiIgINm3axKRJk5gwYQJDhw6lV69ebNu2jf79+3PrrbdSUFAAQHZ2Nr/73e/o3LkzW7ZsYeXKlRw9epQ//elPJu+JiFSXypOISAVceumlPPTQQ7Rp04YZM2bg5+dHREQE48aNo02bNsycOZMTJ07w/fffA/Dyyy/TuXNn5syZQ0JCAp07d2bBggWsXbuWH3/80eS9EZHq0DVPIiIVkJiY6Pqzl5cXjRs3pmPHjq510dHRAGRmZgKwfft21q5de87rp/bv38/FF19cy4lFpLaoPImIVICPj0+Zx4ZhlFl35lt8DocDgLy8PG644Qaeeuqps7YVGxtbi0lFpLapPImI1IIuXbrw/vvv06JFC7y99VetiCfRNU8iIrXg7rvvJisri+HDh7N582b279/Pp59+ypgxY7Db7WbHE5FqUHkSEakFcXFxfP3119jtdvr370/Hjh2ZPHkyYWFhWCz6q1fEnRlOTaMrIiIiUmH654+IiIhIJag8iYiIiFSCypOIiIhIJag8iYiIiFSCypOIiIhIJag8iYiIiFSCypOIiIhIJag8iYiIiFSCypOIiIhIJag8iYiIiFSCypOIiIhIJfw/nkjji/F7s6YAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -344,7 +344,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ground state energy -2.0097479079521197\n" + "Ground state energy -2.009747907952119\n" ] } ], @@ -384,7 +384,7 @@ "\n", "var_principle = ImaginaryMcLachlanPrinciple(qgt=ReverseQGT(), gradient=ReverseEstimatorGradient())\n", "evolution_problem = TimeEvolutionProblem(hamiltonian, time, aux_operators=aux_ops)\n", - "var_qite = VarQITE(ansatz, init_param_values, var_principle, Estimator())\n", + "var_qite = VarQITE(ansatz, init_param_values, var_principle, StatevectorEstimator())\n", "evolution_result_eff = var_qite.evolve(evolution_problem)" ] }, @@ -411,7 +411,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGwCAYAAACw64E/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABalUlEQVR4nO3deXwU9eHG8c9sjs2dEHJDuOQICJFLLlGhUEC8ULSVHyoggiKoHFbBKgoqeFWtJ2oFtAWxaLGKFkXAG8NlQK7IHcgJBBKSkGSzu78/IqsRAuSc7OZ5v17zIjv73dlnQss+zsx+x3A6nU5ERERE5LxYzA4gIiIi4k5UnkREREQqQeVJREREpBJUnkREREQqQeVJREREpBJUnkREREQqQeVJREREpBK8zQ7giRwOB+np6QQHB2MYhtlxRERE5Dw4nU5OnDhBXFwcFkvFx5dUnmpBeno68fHxZscQERGRKjh48CBNmzat8HmVp1oQHBwMlP3yQ0JCTE4jIiIi5yMvL4/4+HjX53hFVJ5qwalTdSEhISpPIiIibuZcl9zognERERGRSlB5EhEREakElScRERGRStA1TyIiIr/hcDgoKSkxO4bUAh8fH7y8vKq9HZUnERGRX5SUlLBv3z4cDofZUaSWhIWFERMTU615GFWeREREKJsgMSMjAy8vL+Lj4886SaK4H6fTSWFhIdnZ2QDExsZWeVsqTyIiIkBpaSmFhYXExcUREBBgdhypBf7+/gBkZ2cTFRVV5VN4qtUiIiKA3W4HwNfX1+QkUptOFWObzVblbag8iYiI/IbuSerZauLvV+VJREREpBLcvjy98sortGjRAj8/P3r27Mm6devOOn7p0qUkJCTg5+dHp06d+PTTT8s973Q6mTlzJrGxsfj7+zNw4EB27dpVm7sgIiIibsSty9N7773H1KlTeeSRR9i0aRMXXXQRgwcPdl1J/3vff/89I0aMYOzYsfz4448MGzaMYcOGsXXrVteYp59+mhdffJF58+aRlJREYGAggwcPpqioqK52S0REROoxty5Pzz33HOPGjWPMmDF06NCBefPmERAQwPz58884/u9//ztDhgzhL3/5C+3bt+exxx6ja9euvPzyy0DZUacXXniBhx56iGuvvZbExETeeecd0tPT+fDDD+twz86ssKSUlMwTFJfazY4iIiL1xNVXX82QIUPO+Nw333yDYRhs2bKlWu9x8OBBbrvtNuLi4vD19aV58+bce++9HD16tNy40aNHM2zYMKDs2qKzLY8++qjrNWd6vqJ9qg/ctjyVlJSwceNGBg4c6FpnsVgYOHAga9euPeNr1q5dW248wODBg13j9+3bR2ZmZrkxoaGh9OzZs8JtAhQXF5OXl1duqQ39nvqC2174gD0HM2tl+yIi4n7Gjh3LypUrOXTo0GnPLViwgO7du5OYmFjp7Z6aZX3v3r10796dXbt28e6777J7927mzZvHqlWr6N27Nzk5OWd8fUZGhmt54YUXCAkJKbfuvvvuc40dMmRIuecyMjJ49913K525rrhteTpy5Ah2u53o6Ohy66Ojo8nMPHO5yMzMPOv4U39WZpsAc+fOJTQ01LXEx8dXen/Ox9uWWXzndy9FKStrZfsiIuJ+rrrqKiIjI1m4cGG59fn5+SxdupSxY8cCsGLFCvr27UtYWBiNGzfmqquuYs+ePa7x/fr1Y9KkSUyePJmIiAgGDx4MwMSJE/H19eXzzz/n8ssvp1mzZlxxxRV88cUXpKWl8de//vWMuWJiYlxLaGgohmGUWxcUFOQaa7Vayz0XExNDo0aNavg3VXPctjzVJzNmzCA3N9e1HDx4sFbep8A/DoDiw3trZfsiIvIrp9NJYUmpKYvT6TzvnN7e3tx6660sXLiw3OuWLl2K3W5nxIgRABQUFDB16lQ2bNjAqlWrsFgsXHfddeVuRfP222/j6+vLd999x7x588jJyeGzzz7jrrvuck0weUpMTAwjR47kvffeq1ReT+C2M4xHRETg5eVFVlZWufVZWVnExMSc8TUxMTFnHX/qz6ysrHLTtmdlZdG5c+cKs1itVqxWa1V2o1JsIc0gDyzH99f6e4mINHQnbXY6zPzMlPfePnswAb7n/xF922238cwzz/DVV1/Rr18/oOyU3fDhwwkNDQVg+PDh5V4zf/58IiMj2b59Ox07dgSgTZs2PP30064xSUlJOJ1O2rdvf8b3bd++PceOHePw4cNERUVVZhfLWb58ebkjUQAPPvggDz744DlfO378eNavX88NN9zAgQMHXD9XdESsJrjtkSdfX1+6devGqlWrXOscDofrHOyZ9O7du9x4gJUrV7rGt2zZkpiYmHJj8vLySEpKqnCbdcmrcUsAAvJr58iWiIi4p4SEBPr06eP6wtTu3bv55ptvXKfsAHbt2sWIESNo1aoVISEhtGjRAoDU1FTXmG7dup1x++c6slTdWdn79+9PcnJyueXOO+885+u2bNlCamoqP/74I1dffbXr59osTuDGR54Apk6dyqhRo+jevTs9evTghRdeoKCggDFjxgBw66230qRJE+bOnQvAvffey+WXX87f/vY3rrzySpYsWcKGDRt44403gLJvBkyePJnHH3+cNm3a0LJlSx5++GHi4uJc3x4wU1BMG9gMjUrSzY4iIuLx/H282D57sGnvXVljx47l7rvv5pVXXmHBggVccMEFXH755a7nr776apo3b86bb75JXFwcDoeDjh07ui4MBwgMDCy3zdatW2MYBjt27OC666477T137NhBZGQkYWFhlc77W4GBgbRu3brC53ft2sXkyZPJzMwkMDCQ999/nyNHjnDFFVdgGAbh4eH4+/tjGAZ9+vTh+++/r1aec3Hr8vTnP/+Zw4cPM3PmTDIzM+ncuTMrVqxwXfCdmppa7q7Yffr0YfHixTz00EM8+OCDtGnThg8//NB1uBLg/vvvp6CggPHjx3P8+HH69u3LihUr8PPzq/P9+73G8W0BiHYcptRWgreP7r8kIlJbDMOo1Kkzs/3pT3/i3nvvZfHixbzzzjtMmDDBdSuSo0ePkpKSwptvvsmll14KwLfffnvObTZu3Jg//vGPvPrqq0yZMqXcdU+ZmZksWrSIiRMn1s4O/aK4uJi77rqLBQsW0LRpU+bNm8cbb7zBQw89xIgRI+jVqxc33HAD9913n+vn2uY+/6uowKRJk5g0adIZn/vyyy9PW3fjjTdy4403Vrg9wzCYPXs2s2fPrqmINSYytgXFTh+sho30Q3uJa5lgdiQREakngoKC+POf/8yMGTPIy8tj9OjRrucaNWpE48aNeeONN4iNjSU1NZXp06ef13Zffvll+vTpw+DBg3n88cdp2bIl27Zt4y9/+Qtt27Zl5syZ1c5eXFx82rfavb29iYiI4MMPP2Tbtm1cddVVrrGn9u2nn37i9ttvP+3n2ub25akhsXh58bHvELJOGvQ4YSfO7EAiIlKvjB07lrfeeouhQ4cSF/frp4TFYmHJkiXcc889dOzYkXbt2vHiiy+6Li4/mzZt2rB+/XoeffRR/vSnP5GdnY3T6eT666/nn//8JwEBAdXOvWLFinJf1AJo164dO3fu5KeffuJvf/ub61uDv7Vr1y7atGlz2s+1zXA2tO8X1oG8vDxCQ0PJzc0lJCSkRrc9ZsE61qQcZu71nRjRo1mNbltEpCErKipi3759tGzZsl5cqlGfPfLIIzz33HOsXLmSXr161ep7vfzyy2zYsME1j9WWLVtITEzkyJEjDBo0iE2bNpX7+VzO9vd8vp/fbvttu4aqWXhZwz9wtNDkJCIi0lDNmjWLF198kR9++KHcPFG1YcyYMRw/fpyEhAQuuugi/vWvfwFlp+lOXbP825/rgk7buZlmjazEcQRbRjGga55ERMQcp77ZXtsCAwPPeH/Z/v37079//9N+rgsqT26ma1ESY/3uYVdaa+B6s+OIiIg0ODpt52ZCm5ZNVxBlzzA5iYiISMOk8uRmYpq1AyCUAnJzDpucRkREpOFReXIzAUGhHCEMgOzUFHPDiIiINEAqT27oiE/ZXBh56btMTiIiItLwqDy5oRP+TQEoObLX5CQiIiINj8qTGyoNbQ6A5fh+c4OIiIg0QJqqwA0VN+3La/uyOGFcTE+zw4iIiDQwOvLkhgLaXs5TpSP4+GTdzaYqIiIiZVSe3NCpW7SkHy/CZq/dafFFRESkPJUnNxQVbCXe+zjdnNvJzMo2O46IiJho9OjRGIZx2jJkyJA6ef9HH32Uzp0718l71Re65skNWSwG//KdS3PHQX7a3Yb4uGvNjiQiIiYaMmQICxYsKLfOarWalMbz6ciTmzpujQOgMGu3yUlERDxcSUHFi62oEmNPnt/YKrBarcTExJRbGjVqxJdffomvry/ffPONa+zTTz9NVFQUWVlZAKxYsYK+ffsSFhZG48aNueqqq9izZ0+57R86dIgRI0YQHh5OYGAg3bt3JykpiYULFzJr1iw2b97sOuK1cOHCKu2DO9GRJzd1MqgZnEzCkaO5nkREatWcuIqfazMIRi799fEzrcFWeOaxzfvCmE9+ffxCJyg8evq4R3OrlvMM+vXrx+TJk7nlllvYvHkze/fu5eGHH2bp0qVER0cDUFBQwNSpU0lMTCQ/P5+ZM2dy3XXXkZycjMViIT8/n8svv5wmTZrw0UcfERMTw6ZNm3A4HPz5z39m69atrFixgi+++AKA0NDQGstfX6k8uatGLeAwWE+kmp1ERERMtnz5coKCgsqte/DBB3nwwQd5/PHHWblyJePHj2fr1q2MGjWKa665xjVu+PDh5V43f/58IiMj2b59Ox07dmTx4sUcPnyY9evXEx4eDkDr1q1d44OCgvD29iYmJqYW97B+UXlyU35RF8DPEHIyzewoIiKe7cH0ip8zvMo//stZLqUwfnelzOSfqp7pd/r3789rr71Wbt2pouPr68uiRYtITEykefPmPP/88+XG7dq1i5kzZ5KUlMSRI0dwOMq+xZ2amkrHjh1JTk6mS5curu2JypPbCmvSBoAoeyZOpxPDMExOJCLioXwDzR97DoGBgeWOBv3e999/D0BOTg45OTkEBv763ldffTXNmzfnzTffJC4uDofDQceOHSkpKQHA39+/xnJ6Cl0w7qaim7UDIIQC8nI0XYGIiJzZnj17mDJlCm+++SY9e/Zk1KhRrqNLR48eJSUlhYceeogBAwbQvn17jh07Vu71iYmJJCcnk5OTc8bt+/r6Yrfba30/6hOVJzflHxjM65Y/86BtLAdzS8yOIyIiJiouLiYzM7PccuTIEex2OzfffDODBw9mzJgxLFiwgC1btvC3v/0NgEaNGtG4cWPeeOMNdu/ezerVq5k6dWq5bY8YMYKYmBiGDRvGd999x969e/nggw9Yu3YtAC1atGDfvn0kJydz5MgRiouL63z/65rKkxv7PHI0i+0D2J/vde7BIiLisVasWEFsbGy5pW/fvjzxxBMcOHCA119/HYDY2FjeeOMNHnroITZv3ozFYmHJkiVs3LiRjh07MmXKFJ555ply2/b19eXzzz8nKiqKoUOH0qlTJ5588km8vMo+e4YPH86QIUPo378/kZGRvPvuu3W+/3XNcDqdTrNDeJq8vDxCQ0PJzc0lJCSk1t5n6nvJ/OfHNO4f0o67+lV8rltERM6tqKiIffv20bJlS/z8/MyOI7XkbH/P5/v5rQvG3VjrEDvdjZ2QmguoPImIiNQFnbZzYxcX/8D71tlclva62VFEREQaDJUnNxYUW3a0KbzkLHOQiIiISI1SeXJjkfEJAEQ7DmMr8fxvN4iIiNQHKk9urHFMPEVOH7wMJ1mpu8yOIyLiEfQ9Ks9WE3+/Kk9uzLBYyPQqu5fQsbSfTU4jIuLeTn31/tTM2uKZCgvLbtzs4+NT5W247bftcnJyuPvuu/n444+xWCwMHz6cv//976fdGPG34x955BE+//xzUlNTiYyMZNiwYTz22GPl7gB9ptucvPvuu9x00021ti/VcdzaFE4epDBrj9lRRETcmre3NwEBARw+fBgfHx8sFh1f8CROp5PCwkKys7MJCwtzleWqcNvyNHLkSDIyMli5ciU2m40xY8Ywfvx4Fi9efMbx6enppKen8+yzz9KhQwcOHDjAnXfeSXp6Ou+//365sQsWLGDIkCGux2FhYbW5K9VSFBQPJ9fizNlndhQREbdmGAaxsbHs27ePAwcOmB1HaklYWBgxMTHV2oZbTpK5Y8cOOnTowPr16+nevTtQNrvq0KFDOXToEHFxcee1naVLl3LzzTdTUFCAt3dZjzQMg2XLljFs2LAq56urSTIBPln+H9au/Rr/Vr3469j6eXRMRMSdOBwOnbrzUD4+Pmc94uTRk2SuXbuWsLAwV3ECGDhwIBaLhaSkJK677rrz2s6pX86p4nTKxIkTuf3222nVqhV33nknY8aMOePpvFOKi4vL3csnLy+vkntUdX4XXMK/vrXSIb92S5qISENhsVg0w7iclVuWp8zMTKKiosqt8/b2Jjw8nMzMzPPaxpEjR3jssccYP358ufWzZ8/mD3/4AwEBAXz++efcdddd5Ofnc88991S4rblz5zJr1qzK70gNaBYeAMDBnEKcTudZS56IiIhUX726Gm769OkYhnHWZefOndV+n7y8PK688ko6dOjAo48+Wu65hx9+mEsuuYQuXbrwwAMPcP/99592k8TfmzFjBrm5ua7l4MGD1c54vuLDA+hq/MxA2xqOHz9WZ+8rIiLSUNWrI0/Tpk1j9OjRZx3TqlUrYmJiyM7OLre+tLSUnJycc14EduLECYYMGUJwcDDLli0751cVe/bsyWOPPUZxcTFWq/WMY6xWa4XP1TY/Hy/mWV8kihx+3jeERo36mZJDRESkoahX5SkyMpLIyMhzjuvduzfHjx9n48aNdOvWDYDVq1fjcDjo2bNnha/Ly8tj8ODBWK1WPvroo/M6p52cnEyjRo1MK0fn46hPLFG2HPIydgH9zI4jIiLi0epVeTpf7du3Z8iQIYwbN4558+Zhs9mYNGkSN910k+ubdmlpaQwYMIB33nmHHj16kJeXx6BBgygsLORf//oXeXl5rgu7IyMj8fLy4uOPPyYrK4tevXrh5+fHypUrmTNnDvfdd5+Zu3tOJwLiIXcbpYc1XYGIiEhtc8vyBLBo0SImTZrEgAEDXJNkvvjii67nbTYbKSkprplEN23aRFJSEgCtW7cut619+/bRokULfHx8eOWVV5gyZQpOp5PWrVvz3HPPMW7cuLrbsSqwhzaDXLDk7jc7ioiIiMdzy3me6ru6nOcJYP1/X+PiH6ezzfciLnzw61p/PxEREU90vp/f9erbdlI1wXFtAAgvSTc5iYiIiOdTefIAjePbAhDlPEJJcZHJaURERDybypMHiIhqyqOO27jNdj9px1WeREREapPKkwcwLBa+bzSMrxwXkZprMzuOiIiIR1N58hCnbtOSmlNochIRERHPpvLkIRIDcxlm+RavvWvMjiIiIuLRVJ48RA/bel7wfZX2aUvNjiIiIuLRVJ48hH90KwBCitJMTiIiIuLZVJ48RFiTsukKYkozcDocJqcRERHxXCpPHiK6WVscToNAo4jjRzPNjiMiIuKxVJ48hJ9/IIeNcACyD+w0OY2IiIjnUnnyIEd94gA4kbHL5CQiIiKeS+XJg+QHxgNgO7LX5CQiIiKey9vsAFJz9rcawas/dKSFb096mx1GRETEQ+nIkwfxb96dLx2d+SkvwOwoIiIiHkvlyYO0aBwIwIGjukWLiIhIbdFpOw/SLNyfayzf0/xkJvknuhMUHGZ2JBEREY+jI08eJDTAl1m+7zDN532y9m0zO46IiIhHUnnyMNneZdMV5Kb9bHISERERz6Ty5GFOBJRNV1CcvdvkJCIiIp5J5cnD2MJaAuB1fJ/JSURERDyTypOH8Y64AIDAglSTk4iIiHgmlScPExzXFoCIknSTk4iIiHgmlScPE928fdmfHKWoMN/kNCIiIp5H8zx5mLDG0dzFdFKKG/NabiltNdm4iIhIjdKRJw9jWCwcbHwpe5xN2J9TZHYcERERj6Py5IGaNy473KTbtIiIiNQ8lScP1N0vg7u8PiRs1wdmRxEREfE4Kk8e6EJjD/f7/JuE7E/NjiIiIuJxVJ48UGBs2XQFjUvSTE4iIiLieVSePFBUs1+mK3BkU1Ksi8ZFRERqktuWp5ycHEaOHElISAhhYWGMHTuW/Pyzz2vUr18/DMMot9x5553lxqSmpnLllVcSEBBAVFQUf/nLXygtLa3NXalxjWPiKXRa8TKcZKbqBsEiIiI1yW3neRo5ciQZGRmsXLkSm83GmDFjGD9+PIsXLz7r68aNG8fs2bNdjwMCfp0IyW63c+WVVxITE8P3339PRkYGt956Kz4+PsyZM6fW9qWmGRYLWV6xtHTs59jBFJq1STQ7koiIiMdwyyNPO3bsYMWKFfzjH/+gZ8+e9O3bl5deeoklS5aQnn7225IEBAQQExPjWkJCQlzPff7552zfvp1//etfdO7cmSuuuILHHnuMV155hZKSktrerRp13L8pACezdpmcRERExLO4ZXlau3YtYWFhdO/e3bVu4MCBWCwWkpKSzvraRYsWERERQceOHZkxYwaFhb/OhbR27Vo6depEdHS0a93gwYPJy8tj27ZtFW6zuLiYvLy8covZikOal/2Qs8/cICIiIh7GLU/bZWZmEhUVVW6dt7c34eHhZGZmVvi6//u//6N58+bExcWxZcsWHnjgAVJSUvjPf/7j2u5vixPgeny27c6dO5dZs2ZVdXdqRVbCrQzcfxGt/DrQy+wwIiIiHqRelafp06fz1FNPnXXMjh07qrz98ePHu37u1KkTsbGxDBgwgD179nDBBRdUebszZsxg6tSprsd5eXnEx8dXeXs1IbJJa3Y7j+I4Zjc1h4iIiKepV+Vp2rRpjB49+qxjWrVqRUxMDNnZ2eXWl5aWkpOTQ0xMzHm/X8+ePQHYvXs3F1xwATExMaxbt67cmKysLICzbtdqtWK1Ws/7fetC84hAAA4eK6TU7sDbyy3P0IqIiNQ79ao8RUZGEhkZec5xvXv35vjx42zcuJFu3boBsHr1ahwOh6sQnY/k5GQAYmNjXdt94oknyM7Odp0WXLlyJSEhIXTo0KGSe2Ou2BA/7vD5Hy2dB8lOa0dcs6ofWRMREZFfueXhiPbt2zNkyBDGjRvHunXr+O6775g0aRI33XQTcXFxAKSlpZGQkOA6krRnzx4ee+wxNm7cyP79+/noo4+49dZbueyyy0hMLPsq/6BBg+jQoQO33HILmzdv5rPPPuOhhx5i4sSJ9e7I0rlYLAb/57OGm7y/5Oj+n8yOIyIi4jHcsjxB2bfmEhISGDBgAEOHDqVv37688cYbrudtNhspKSmub9P5+vryxRdfMGjQIBISEpg2bRrDhw/n448/dr3Gy8uL5cuX4+XlRe/evbn55pu59dZby80L5U6OW5sAUJCp6QpERERqSr06bVcZ4eHhZ50Qs0WLFjidTtfj+Ph4vvrqq3Nut3nz5nz6qWfcULcouDmcTMJ5dK/ZUURERDyG2x55knMzwlsB4HfigMlJREREPIfKkwfzj2kDQFjRQZOTiIiIeA6VJw/WuFnZNwRj7RnY7ZrvSUREpCaoPHmw6GZtKHF64WfYyDqk27SIiIjUBJUnD+bl7cMdQS+RULSA3cWhZscRERHxCCpPHs47uh1FWNl3pMDsKCIiIh5B5cnDtfrlNi0qTyIiIjXDbed5kvPT2fcQc7z/QcjuKOB1s+OIiIi4PZUnD9c8oJgrvFdz8ESc2VFEREQ8gk7bebio5hcCEOvIpKS42OQ0IiIi7k/lycM1jm1OodOKt+Eg48BOs+OIiIi4PZUnD2dYLGR6l52yy0ndYXIaERER96fy1AAc928GQFFmislJRERE3J/KUwNQElZ2g2AjZ4/JSURERNyfylMD4BPZuuyHwqPmBhEREfEAmqqgAfDpdD0Xro0hyDeMJLPDiIiIuDkdeWoAmsdEUoA/WXnFFBSXmh1HRETErak8NQChAT6EB/oCuk2LiIhIdak8NRD3+K/gnz5zyN/2mdlRRERE3JrKUwPRySuVS722Yk/fbHYUERERt6by1ECUNiqbrsD7mKYrEBERqQ6VpwbCN6otAMEFB0xOIiIi4t5UnhqIsKYJAESXpuF0Ok1OIyIi4r5UnhqImJYXAtCYXI4f02SZIiIiVaXy1ED4B4dxmEYAZO7banIaERER96Xy1IAc8W3KYWcIh7MzzY4iIiLitlSeGpAlCX/n4uJ5rDU6mx1FRETEbak8NSAtosMB2JOdb3ISERER96Xy1IBcEBkEwJ7DKk8iIiJV5W12AKk7rUNsvO3zJE3zjmCzbcHHx8fsSCIiIm5HR54akJiIKHpbtnOBkU566i6z44iIiLglty1POTk5jBw5kpCQEMLCwhg7diz5+RWfjtq/fz+GYZxxWbp0qWvcmZ5fsmRJXexSrbN4e5Pu3QSAo/t+MjmNiIiIe3Lb03YjR44kIyODlStXYrPZGDNmDOPHj2fx4sVnHB8fH09GRka5dW+88QbPPPMMV1xxRbn1CxYsYMiQIa7HYWFhNZ7fLMf8W9Ai/wAnM3aaHUVERMQtuWV52rFjBytWrGD9+vV0794dgJdeeomhQ4fy7LPPEhcXd9prvLy8iImJKbdu2bJl/OlPfyIoKKjc+rCwsNPGnk1xcTHFxcWux3l5eZXZnTpV0qg15H+FJWe32VFERETckluetlu7di1hYWGu4gQwcOBALBYLSUlJ57WNjRs3kpyczNixY097buLEiURERNCjRw/mz59/znvBzZ07l9DQUNcSHx9fuR2qQ77R7QAIzt9nchIRERH35JblKTMzk6ioqHLrvL29CQ8PJzPz/GbPfuutt2jfvj19+vQpt3727Nn8+9//ZuXKlQwfPpy77rqLl1566azbmjFjBrm5ua7l4MGDlduhOhTWrAMAMbZU3SBYRESkCurVabvp06fz1FNPnXXMjh07qv0+J0+eZPHixTz88MOnPffbdV26dKGgoIBnnnmGe+65p8LtWa1WrFZrtXPVhdhWnTjuDOSAMwrn8TwiG4WaHUlERMStVKs82Ww2MjMzKSwsJDIykvDw8GqFmTZtGqNHjz7rmFatWhETE0N2dna59aWlpeTk5JzXtUrvv/8+hYWF3Hrrrecc27NnTx577DGKi4vdpiCdjV9QGH8M+CcHjxWx5FgpkY3MTiQiIuJeKl2eTpw4wb/+9S+WLFnCunXrKCkpwel0YhgGTZs2ZdCgQYwfP56LL7640mEiIyOJjIw857jevXtz/PhxNm7cSLdu3QBYvXo1DoeDnj17nvP1b731Ftdcc815vVdycjKNGjXyiOJ0ygVRwRw8VsSew/n0atXY7DgiIiJupVLXPD333HO0aNGCBQsWMHDgQD788EOSk5P5+eefWbt2LY888gilpaUMGjSIIUOGsGtX7UzE2L59e4YMGcK4ceNYt24d3333HZMmTeKmm25yfdMuLS2NhIQE1q1bV+61u3fv5uuvv+b2228/bbsff/wx//jHP9i6dSu7d+/mtddeY86cOdx99921sh9mcd2mJUu3aREREamsSh15Wr9+PV9//TUXXnjhGZ/v0aMHt912G/PmzWPBggV88803tGnTpkaC/t6iRYuYNGkSAwYMwGKxMHz4cF588UXX8zabjZSUFAoLC8u9bv78+a4jZL/n4+PDK6+8wpQpU3A6nbRu3ZrnnnuOcePG1co+mOUyxwZu9n2cwzvawjXLzY4jIiLiVgynvnJV4/Ly8ggNDSU3N5eQkBCz45xmx7cf0v6LUew3mtDike1mxxEREakXzvfzu8pTFYwaNYqvv/66qi8XE8W0SgSgiSOTkyeLTE4jIiLiXqpcnnJzcxk4cCBt2rRhzpw5pKWl1WQuqUVhMc0pxIqPYSdtX/WnfhAREWlIqlyePvzwQ9LS0pgwYQLvvfceLVq04IorruD999/HZrPVZEapYYbFiwzvslnQcw5sNTmNiIiIe6nWDOORkZFMnTqVzZs3k5SUROvWrbnllluIi4tjypQptfZtO6m+vMAWAJRk6QbBIiIilVEjt2fJyMhg5cqVrFy5Ei8vL4YOHcpPP/1Ehw4deP7552viLaSGlYaXfQvSWzcIFhERqZQqlyebzcYHH3zAVVddRfPmzVm6dCmTJ08mPT2dt99+my+++IJ///vfzJ49uybzSg3xiUtks6MVu0o0SaaIiEhlVPn2LLGxsTgcDkaMGMG6devo3LnzaWP69+9PWFhYNeJJbQntci39V4Xi57Qw0uHEYjHMjiQiIuIWqlyenn/+eW688Ub8/PwqHBMWFsa+ffuq+hZSi+Ib+ePrZaHI5iDt+EniwwPMjiQiIuIWqnza7pZbbjlrcZL6zdvLQqvIQLwpZXfaYbPjiIiIuI0qH3maOnXqGdcbhoGfnx+tW7fm2muvJTw8vMrhpHZNZwF9rP9l3eap0Okhs+OIiIi4hSqXpx9//JFNmzZht9tp164dAD///DNeXl4kJCTw6quvMm3aNL799ls6dOhQY4Gl5gQGh+J73I7lSIrZUURERNxGlU/bXXvttQwcOJD09HQ2btzIxo0bOXToEH/84x8ZMWIEaWlpXHbZZUyZMqUm80oN8o0tu8FzaL6mKxARETlfVb4xcJMmTVi5cuVpR5W2bdvGoEGDSEtLY9OmTQwaNIgjR47USFh3Ud9vDHzKoR1JNH1vEMedgYTMPITFq0am/RIREXFLtX5j4NzcXLKzs09bf/jwYfLy8oCyb9uVlJRU9S2klsVekIjdaRBmFJCett/sOCIiIm6hWqftbrvtNpYtW8ahQ4c4dOgQy5YtY+zYsQwbNgyAdevW0bZt25rKKjXMy9efDK9YALL2bDY5jYiIiHuo8gXjr7/+OlOmTOGmm26itLS0bGPe3owaNcp1S5aEhAT+8Y9/1ExSqRU5Aa1omp9OYdpW4Dqz44iIiNR7VS5PQUFBvPnmmzz//PPs3bsXgFatWhEUFOQac6ZZx6V+ORbTh+UppWQURXCp2WFERETcQJVO29lsNgYMGMCuXbsICgoiMTGRxMTEcsVJ3ENRl7FMst3Dh4UdzY4iIiLiFqpUnnx8fNiyZUtNZxETtI0OBmB3dj52R5W+eCkiItKgVPmC8Ztvvpm33nqrJrOICZqFB+DnDVH2DA5lNawpJURERKqiytc8lZaWMn/+fL744gu6detGYGBgueefe+65aoeT2udlMfjU+iCt7PvZsKMRzWN10biIiMjZVLk8bd26la5duwJlt2X5LcMwqpdK6lS+f1PI389JfeNORETknKpcntasWVOTOcREJeFtIf9bLEd1jzsREZFzqdb9OL755htuvvlm+vTpQ1paGgD//Oc/+fbbb2sknNQN6y/3uAs7scfkJCIiIvVflcvTBx98wODBg/H392fTpk0UFxcDZbdtmTNnTo0FlNrXuGUiAE1KD2C3O0xOIyIiUr9VuTw9/vjjzJs3jzfffBMfHx/X+ksuuYRNmzbVSDipGzGtOrnucZd2aL/ZcUREROq1KpenlJQULrvsstPWh4aGcvz48epkkjpm8fUn03WPu2Rzw4iIiNRzVS5PMTEx7N69+7T13377La1atapWKKl7Pza+ipdLryWlMNjsKCIiIvValcvTuHHjuPfee0lKSsIwDNLT01m0aBH33XcfEyZMqMmMUgcOXngnz5b+maQTEWZHERERqdeqPFXB9OnTcTgcDBgwgMLCQi677DKsViv33Xcfd999d01mlDqQEFt2xGlnRp7JSUREROq3Kh95MgyDv/71r+Tk5LB161Z++OEHDh8+zGOPPVaT+Sr0xBNP0KdPHwICAggLCzuv1zidTmbOnElsbCz+/v4MHDiQXbt2lRuTk5PDyJEjCQkJISwsjLFjx5Kfn18Le1C/tI8OJpJjNDn6PUUlNrPjiIiI1FvVmucJwNfXlw4dOtCjRw+CgoJqItN5KSkp4cYbb6zUKcKnn36aF198kXnz5pGUlERgYCCDBw+mqKjINWbkyJFs27aNlStXsnz5cr7++mvGjx9fG7tQr0QHe/Ot32QW+jxJ6p7tZscRERGptwyn0+ms6otXrVrFqlWryM7OxuEoPz/Q/Pnzqx3ufCxcuJDJkyef8xt+TqeTuLg4pk2bxn333QeUzUkVHR3NwoULuemmm9ixYwcdOnRg/fr1dO/eHYAVK1YwdOhQDh06RFxc3HllysvLIzQ0lNzcXEJCQqq1f3Vp7xPdaGXbzffdnqfP1beZHUdERKROne/nd5WPPM2aNYtBgwaxatUqjhw5wrFjx8ot9c2+ffvIzMxk4MCBrnWhoaH07NmTtWvXArB27VrCwsJcxQlg4MCBWCwWkpKSKtx2cXExeXl55RZ3lBvSDgBb+laTk4iIiNRfVb5gfN68eSxcuJBbbrmlJvPUmszMTACio6PLrY+OjnY9l5mZSVRUVLnnvb29CQ8Pd405k7lz5zJr1qwaTmyC6I5w9BP8j+00O4mIiEi9VeUjTyUlJfTp06cmszB9+nQMwzjrsnNn/ftgnzFjBrm5ua7l4MGDZkeqktAWnQGIKdpNNc7mioiIeLQqH3m6/fbbWbx4MQ8//HCNhZk2bRqjR48+65iqTsAZExMDQFZWFrGxsa71WVlZdO7c2TUmOzu73OtKS0vJyclxvf5MrFYrVqu1Srnqk7h23eFTaEYWh4/mEBnR2OxIIiIi9U6Vy1NRURFvvPEGX3zxBYmJieXubwfw3HPPVXqbkZGRREZGVjXSWbVs2ZKYmBhWrVrlKkt5eXkkJSW5vrHXu3dvjh8/zsaNG+nWrRsAq1evxuFw0LNnz1rJVZ/4hUZxxAgnwpnDwZQNREYMNjuSiIhIvVPl8rRlyxZXCdm6tfwFxoZhVCvU+UhNTSUnJ4fU1FTsdjvJyckAtG7d2jVlQkJCAnPnzuW6667DMAwmT57M448/Tps2bWjZsiUPP/wwcXFxDBs2DID27dszZMgQxo0bx7x587DZbEyaNImbbrrpvL9p5+5WRo5iY1ohHQvD6Wp2GBERkXqoyuVpzZo1NZmj0mbOnMnbb7/tetylSxegLFe/fv2AspsX5+bmusbcf//9FBQUMH78eI4fP07fvn1ZsWIFfn5+rjGLFi1i0qRJDBgwAIvFwvDhw3nxxRfrZqfqgZz2N/N+agq2o96MNjuMiIhIPVSteZ6++eYbXn/9dfbu3cvSpUtp0qQJ//znP2nZsiV9+/atyZxuxV3neQJYvTOL2xZuoF10MJ9NuczsOCIiInWm1ud5+uCDDxg8eDD+/v5s2rSJ4uJioGziyTlz5lR1s2KyhKgALjZ20vPoMoptpWbHERERqXeqXJ4ef/xx5s2bx5tvvlnuYvFLLrmETZs21Ug4qXuxIb4stj7BbO/5HNhb/6aFEBERMVuVy1NKSgqXXXb6aZ3Q0NBz3ipF6i/D20qad3MAjuxWCRYREfm9KpenmJgYdu/efdr6b7/9tspzMUn9kBvSFoCStJ9MTiIiIlL/VLk8jRs3jnvvvZekpCQMwyA9PZ1FixZx3333ueZNEvfkjLoQAP9jO0xOIiIiUv9UeaqC6dOn43A4GDBgAIWFhVx22WVYrVbuu+8+7r777prMKHUsuEUX2AkxJ/eYHUVERKTeqdZUBVB2j7vdu3eTn59Phw4dXBNUNmTuPFUBwMmcDPxfTMDhNDhy716iwsPNjiQiIlLrzvfzu8pHnk7x9fWlQ4cO1d2M1CP+4bHkGKGEk8vBnRuJ6vNHsyOJiIjUG5W65ik1NbVSG09LS6vUeKk/Poi9j+HFj7C+MPbcg0VERBqQSpWniy++mDvuuIP169dXOCY3N5c333yTjh078sEHH1Q7oJjDmXAlG53t2JJVbHYUERGReqVSp+22b9/OE088wR//+Ef8/Pzo1q0bcXFx+Pn5cezYMbZv3862bdvo2rUrTz/9NEOHDq2t3FLLOsaFArA1Lc/kJCIiIvVLlS4YP3nyJJ988gnffvstBw4c4OTJk0RERNClSxcGDx5Mx44dayOr23D3C8YBck8U8tiTj3KhsZ/rH1hIaHCA2ZFERERq1fl+flf723ZyOk8oTzidnJgVRzCFJF+5nM4XX2p2IhERkVpV6zcGFg9nGKT7l800nrtng8lhRERE6g+VJ6nQycZlM40bmZtNTiIiIlJ/qDxJhXzjuwAQnqfbtIiIiJyi8iQVik3oBUAr+z7yT2rKAhEREVB5krNoFN+Bk1gJMIrZl6JTdyIiIlBD5SknJweHw1ETm5L6xOJFmrU1AEf2bDI5jIiISP1Q5fK0fft2nnzySfr06UNkZCRRUVHceuutfPDBBxQUFNRkRjHR9xfO5OKiV1lu7212FBERkXqhUuUpJSWFadOm0aZNG3r16sX69eu58847ycrK4tNPP6V58+bMnj2biIgIrrjiCl577bXayi11JK51Fw4Txta0XLOjiIiI1AuVuj3L999/T0FBAS+++CIDBgzA19fX9VxERAQ9evTgscceY//+/fz3v//lP//5DxMmTKjx0FJ3OjYpu03L7sP5nCyx4+/rZXIiERERc2mG8VrgETOM/8arj91Fh5KtNL7xBToldjU7joiISK0438/vSh15AggODqZLly5069aNrl270rVrVzp06IBhGNUKLPXXIO9kWtu38eXO70DlSUREGrhKl6ennnqKjRs3snr1al5++WUcDgf+/v4kJiaWK1QXXXRRbeQVE+RHXARp2yBd37gTERGpdHm66667XD+fPHmSwMBA7r77bnJycvjhhx/4xz/+QUlJCXa7vUaDinn8m18MaYuJzNtqdhQRERHTVbo8/Za/vz8AI0aMIDExEYDS0lK2b99e/WRSb8R1vAS+h9b2feTk5RMeEmR2JBEREdPU+Azj3t7eriIlniE4ti15BGE1bOzdts7sOCIiIqbS7Vnk3AyD9MD2AOTtTjI5jIiIiLkqXZ5uv/12XnvtNdavX09xcdnNYvVNO89XHNWZE05/juYcMTuKiIiIqSp9zdOuXbtYunQpJ06cwNu77OWzZs2iX79+dO3alc6dOxMQEFDjQcVczkunkrjjcsLz/LjB6VRhFhGRBqvSR56++uorcnNzSUlJ4Z133uG+++7j+PHjzJw5k759+xIaGsqFF15YG1nLeeKJJ+jTpw8BAQGEhYWdc7zNZuOBBx6gU6dOBAYGEhcXx6233kp6enq5cS1atMAwjHLLk08+WUt74T4S4qPx9vLiaEEJh46dNDuOiIiIaar8bbs2bdrQpk0bbrrpJte6ffv2sWHDBn788ccaCXc2JSUl3HjjjfTu3Zu33nrrnOMLCwvZtGkTDz/8MBdddBHHjh3j3nvv5ZprrmHDhg3lxs6ePZtx48a5HgcHB9d4fnfj5+NFQkwIP6XlsuXgceLDdXRRREQapkqVp8zMTBo1aoTVaj3j8y1btqRly5bceOONAOzdu5dWrVpVP+UZzJo1C4CFCxee1/jQ0FBWrlxZbt3LL79Mjx49SE1NpVmzZq71wcHBxMTE1FhWT3GH3+d08H2PvetvgIueMDuOiIiIKSp12u79998nPDyc6667jgULFnD48OHTxiQlJfHggw9y4YUX1vtZxnNzczEM47TTfk8++SSNGzemS5cuPPPMM5SWlp51O8XFxeTl5ZVbPFGzEC9aWTIJOlz7RxZFRETqq0qVp0mTJrF582YuvfRSFi5cSNOmTenbty9z5sxh3LhxxMbGMmzYMLKzs3nyySfPWK7qi6KiIh544AFGjBhR7uZ/99xzD0uWLGHNmjXccccdzJkzh/vvv/+s25o7dy6hoaGuJT4+vrbjmyKi/aUAtCraRolNM8iLiEjDZDidTmdVX3z06FGWL1/Op59+SosWLbj22mvp3bt3lb+JNX36dJ566qmzjtmxYwcJCQmuxwsXLmTy5MkcP378vN/HZrMxfPhwDh06xJdffnnWOyfPnz+fO+64g/z8/ApPVxYXF7umbYCyuzLHx8ef867M7sZZUkjpnKb4YGfbjd9w4YWaDFVERDxHXl4eoaGh5/z8rtbtWRo3bsyoUaMYNWpUdTbjMm3aNEaPHn3WMdW9hspms/GnP/2JAwcOsHr16nOWm549e1JaWsr+/ftp167dGcdYrdYKi5UnMXwDOGhtQ6vinWRvV3kSEZGGqVrlqaZFRkYSGRlZa9s/VZx27drFmjVraNy48Tlfk5ycjMViISoqqtZyuZMTEV0gbSfGoSRgotlxRERE6pzb3p4lNTWV5ORkUlNTsdvtJCcnk5ycTH5+vmtMQkICy5YtA8qK0w033MCGDRtYtGgRdrudzMxMMjMzKSkpAWDt2rW88MILbN68mb1797Jo0SKmTJnCzTffTKNGjUzZz/om4II+AMTkbaEaZ3xFRETcVr068lQZM2fO5O2333Y97tKlCwBr1qyhX79+AKSkpJCbmwtAWloaH330EQCdO3cut61Tr7FarSxZsoRHH32U4uJiWrZsyZQpU5g6dWrt75CbaJrYj51fxrPO0ZqgY4U0DQ80O5KIiEidqtYF43Jm53vBmbu69uVv2Xwol7/f1JlrOzcxO46IiEiNON/Pb7c9bSfm6dq87BTmpgPHTE4iIiJS91SepNK6NW+ED6Vk7dtqdhQREZE657bXPIl5egQf4SfrWIqO+VJYfD0BVl+zI4mIiNQZHXmSSotq1h4MgzCjgJRtm8yOIyIiUqdUnqTyvHw46N8egKPbvzY5jIiISN1SeZIqORnXCwBr2g8mJxEREalbKk9SJeEd+gFwQWGybhIsIiINisqTVEmTjpdhw4s44ygpKfrWnYiINBwqT1IlhjWIVGvZjZKzf1plchoREZG6o6kKpMrSW9/E0uTt5OS1YIDZYUREROqIjjxJlYVfMpp59mv4JC2AUrvD7DgiIiJ1QuVJqiwhJoQQP28KSuxsS88zO46IiEidUHmSKvOyGAxs6uQay3fsS/7K7DgiIiJ1Qtc8SbWMNj4m0fdffPXzfuBas+OIiIjUOh15kmoJbtcPgGYnfsTucJobRkREpA6oPEm1xHcegMNp0JJ0ft69y+w4IiIitU7lSarFOyicVGsbANI3/c/kNCIiIrVP5Umq7UTcJQD4puomwSIi4vlUnqTawhMHA9C2YCNFJaUmpxEREaldKk9SbXGd+lGEL9HGMbZtSzY7joiISK1SeZJqM3z8WdhsDhcXvcrKzCCz44iIiNQqlSepEVGdr+AwYXy3+4jZUURERGqVypPUiL6tIwDYmp7LsYISk9OIiIjUHpUnqRFRIX5MCfuGt73nsn3DarPjiIiI1BqVJ6kxA/x/5jKvnzi5/TOzo4iIiNQalSepMV4X9AMgOvs7nE7dqkVERDyTypPUmBY9rwGgg+Nn9qYeNDmNiIhI7VB5khrjH9mCgz4t8DKc7E/62Ow4IiIitULlSWrU8Sb9AbDu+8LkJCIiIrVD5UlqVESXqwHoULiOE4VFJqcRERGpeSpPUqNiO17OEaMRmx0XsG7HHrPjiIiI1Di3LU9PPPEEffr0ISAggLCwsPN6zejRozEMo9wyZMiQcmNycnIYOXIkISEhhIWFMXbsWPLz82thDzyUlzevdfmIMbYH+GyfbhIsIiKex23LU0lJCTfeeCMTJkyo1OuGDBlCRkaGa3n33XfLPT9y5Ei2bdvGypUrWb58OV9//TXjx4+vyeger3/7OADWpBzWlAUiIuJxvM0OUFWzZs0CYOHChZV6ndVqJSYm5ozP7dixgxUrVrB+/Xq6d+8OwEsvvcTQoUN59tlniYuLq1bmhuLilo0I8PXC+0Q6O/YfokPLeLMjiYiI1Bi3PfJUVV9++SVRUVG0a9eOCRMmcPToUddza9euJSwszFWcAAYOHIjFYiEpKanCbRYXF5OXl1duacis3l68FfIma/3uJv27JWbHERERqVENqjwNGTKEd955h1WrVvHUU0/x1VdfccUVV2C32wHIzMwkKiqq3Gu8vb0JDw8nMzOzwu3OnTuX0NBQ1xIfryMtQU3aAxByQLdqERERz1KvytP06dNPu6D798vOnTurvP2bbrqJa665hk6dOjFs2DCWL1/O+vXr+fLLL6uVe8aMGeTm5rqWgwc1u3azPn8C4KKSHzmUkWVyGhERkZpTr655mjZtGqNHjz7rmFatWtXY+7Vq1YqIiAh2797NgAEDiImJITs7u9yY0tJScnJyKrxOCsquo7JarTWWyxOENutEulcT4uxp/Pzdf2h6Q+Uu7BcREamv6lV5ioyMJDIyss7e79ChQxw9epTY2FgAevfuzfHjx9m4cSPdunUDYPXq1TgcDnr27FlnuTyCYXAkfjBx++fjt/tTQOVJREQ8Q706bVcZqampJCcnk5qait1uJzk5meTk5HJzMiUkJLBs2TIA8vPz+ctf/sIPP/zA/v37WbVqFddeey2tW7dm8ODBALRv354hQ4Ywbtw41q1bx3fffcekSZO46aab9E27KojpdQMAiSfXcfhYrslpREREaobblqeZM2fSpUsXHnnkEfLz8+nSpQtdunRhw4YNrjEpKSnk5pZ9aHt5ebFlyxauueYa2rZty9ixY+nWrRvffPNNuVNuixYtIiEhgQEDBjB06FD69u3LG2+8Uef75wmi2vbmsCWCIKOI7d9+ZHYcERGRGmE4NYthjcvLyyM0NJTc3FxCQkLMjmOqLxY/z3+25mC/YCCvj73c7DgiIiIVOt/Pb7c98iTuocXA2/nU0Ys1ewvJK7KZHUdERKTaVJ6kVrWOCqZ1VBAldgefb9OUBSIi4v5UnqTW3dTOm7u9/oPXV0+aHUVERKTa6tVUBeKZrmxaRKzP+5zI9efo8SdoHBZqdiQREZEq05EnqXWxnfpz2BJBsHGSn75canYcERGRalF5ktpnsZDedCgA1h3LTA4jIiJSPSpPUifiLr0FgK5FSaRnZZ9jtIiISP2l8iR1IrL1xaR5NcVq2Nj55btmxxEREakylSepG4bBkZbXABC6S6fuRETEfak8SZ1p2X8U+U4/fi4KY+uhY2bHERERqRKVJ6kzIU0SeKjNh8woHcf7m9LNjiMiIlIlKk9Sp67r0RqAZT+mUWSzm5xGRESk8lSepE71bR1BbIiV+KIUfkj63uw4IiIilabyJHXKy2Lwt+gVLLc+hM/3z5sdR0REpNJUnqTOtex1LQDdCr4mIzPT5DQiIiKVo/IkdS62Q18OejfHz7CxY+V8s+OIiIhUisqT1D3D4Hj7/wOg+d7F2Ep14biIiLgPlScxRbvBd3ASKxc4D7Lhq4/NjiMiInLeVJ7EFL5Bjfg5+koALOvfMDmNiIjI+VN5EtM0GXQvALGFP7PzYJbJaURERM6PypOYJuKCzrzQ5Hn6lzzH2+uzzY4jIiJyXlSexFS9B1yLHS+W/XiI3EKb2XFERETOSeVJTNWjZTgJMcHYbSUsX/OV2XFERETOydvsANKwGYbB/RcV0/7YZErX+1I08Cf8rL5mxxIREamQjjyJ6S7t1YsAo4R4Mln36UKz44iIiJyVypOYzsc/mL2tbgYgZstrlGrSTBERqcdUnqReSLjmPk5ipa1zL+tX/8fsOCIiIhVSeZJ6wT8skp1x1wMQuO4FnE6nyYlERETOTOVJ6o2W10ynxOlNYulW1q3+0Ow4IiIiZ6TyJPVGWEwLtsWWHX3am7Qcu0NHn0REpP5ReZJ65YIbHuVmHmdG3vV8vDnd7DgiIiKncdvy9MQTT9CnTx8CAgIICws7r9cYhnHG5ZlnnnGNadGixWnPP/nkk7W0F/J7IRFN6H35FQC88MXP2OwOkxOJiIiU57blqaSkhBtvvJEJEyac92syMjLKLfPnz8cwDIYPH15u3OzZs8uNu/vuu2s6vpzF6D4taBzoy8mjh1i9aoXZcURERMpx2xnGZ82aBcDChQvP+zUxMTHlHv/3v/+lf//+tGrVqtz64ODg08aeTXFxMcXFxa7HeXl55/1aOV2g1ZvHOx3mDz9O4cj3jci/5DKCAoPMjiUiIgK48ZGn6srKyuKTTz5h7Nixpz335JNP0rhxY7p06cIzzzxDaWnpWbc1d+5cQkNDXUt8fHxtxW4w/jDoKnItITQhm41LHjc7joiIiEuDLU9vv/02wcHBXH/99eXW33PPPSxZsoQ1a9Zwxx13MGfOHO6///6zbmvGjBnk5ua6loMHD9Zm9AbBGhBC5sXTAeieOp+01L0mJxIRESlTr8rT9OnTK7yo+9Syc+fOGnmv+fPnM3LkSPz8/Mqtnzp1Kv369SMxMZE777yTv/3tb7z00kvlTsv9ntVqJSQkpNwi1ddpyO387NueQKOYg0sfMDuOiIgIUM+ueZo2bRqjR48+65jfX59UFd988w0pKSm899575xzbs2dPSktL2b9/P+3atav2e8v5MywWfK96Gv5zNb1OfM6WtZ+T2HuQ2bFERKSBq1flKTIyksjIyFp/n7feeotu3bpx0UUXnXNscnIyFouFqKioWs8lp2uReBkbv7ySbjmfEPz5NIq6rMPPz9/sWCIi0oDVq9N2lZGamkpycjKpqanY7XaSk5NJTk4mPz/fNSYhIYFly5aVe11eXh5Lly7l9ttvP22ba9eu5YUXXmDz5s3s3buXRYsWMWXKFG6++WYaNWpU6/skZ9b2lufJojEf2brz8urdZscREZEGrl4deaqMmTNn8vbbb7sed+nSBYA1a9bQr18/AFJSUsjNzS33uiVLluB0OhkxYsRp27RarSxZsoRHH32U4uJiWrZsyZQpU5g6dWrt7YicU3CjaH64fjXPL96G97cHubJLc9rH6royERExh+HU7etrXF5eHqGhoeTm5uri8Rp05z83smJbJt2b+LPkzkvx9vExO5KIiHiQ8/38dtvTdtLwzLr2Qrr4pfPY4XtI+tdMs+OIiEgDpfIkbiM6xI+ZXW20txykx/7X2bFhjdmRRESkAVJ5ErfS5eoJbAr5Az6GneBP7uREbo7ZkUREpIFReRL3Yhi0vu1NMomkqTOTnW+Nx+lwmJ1KREQaEJUncTshYREcv+JlSp0WLs5bSdJ7T5odSUREGhCVJ3FLCT2HsLHtFAC673yG7T+sMDmRiIg0FCpP4rZ6jHiIDcED+NHZmikrT5CZW2R2JBERaQBUnsRtGRYLHe58m1mNniSlIIAxC9dzoshmdiwREfFwKk/i1gICg3ltVG8igqzsyMjjzTdfpqTopNmxRETEg6k8iduLDw9gweiLmeL7X6YefZStr/4fjtJSs2OJiIiHUnkSj9CpaSiX/2EINqcXXfNW8+Ort+B02M2OJSIiHkjlSTxG537Xs7H709idBt1yPmXTK6NUoEREpMapPIlH6XX17azr8lRZgTr6MT++MgpHqS4iFxGRmqPyJB6n97A7SOo8B7vToOvRj/np79djK9URKBERqRkqT+KR+lx3F+svfo5ipw8f5LTk9nc2Uliii8hFRKT6VJ7EY/W66jY2XfM5Sy1D+ernwwx/bS0Hj+abHUtERNycypN4tN7durJoXE8ignxJy0gn/6VLSfnqPbNjiYiIG1N5Eo/XtVkjPprUl4cafUF79tJuzXh+/MdE7LZis6OJiIgbUnmSBiEuzJ9r7n2JrxoNB6DLoX+R+nQfjhzYZnIyERFxNypP0mD4+flx2T1v8W33FznuDKKlbTdBCy5ny5JHcZaWmB1PRETchMqTNCiGYdD3qlEcH/0lP/p0xg8biTuf54MXprDvSIHZ8URExA2oPEmD1KJlGzo9sJo17Wezy9mU2UcuY/ALX/PsZymcOKmjUCIiUjGVJ2mwvL296P/ne7HencRFbVpQUurg5TW72PzUYDa/8xdshblmRxQRkXrIcDqdTrNDeJq8vDxCQ0PJzc0lJCTE7DhyHpxOJ59vz2LFx0t5vughAI4TTGqbW2l3zVSswREmJxQRkdp2vp/fKk+1QOXJfdlK7Xy3fCEtk5+lOekAFOLHrvgbaHXVfQRHtzQ5oYiI1BaVJxOpPLm/wqIikpYvoMm2ebR17gfA4TR4ufWbXN7vjyQ2DcUwDHNDiohIjVJ5MpHKk+cosdlJWvkeQRtfo5Eti/4lf8OJhQvjQpgct5POiYlEtukBKlIiIm5P5clEKk+ex+l0smn3If658Qifbs3EUVrCOutdhBv5pHs14Uj8YKK6XUvMhZeCxcvsuCIiUgUqTyZSefJsOQUlrFr/E01+eISuJ3/Az7C5nsslmIPhvXF2vpnWva7C31dFSkTEXag8mUjlqeHIyD7Mzq/ew3fv53Qs3ECoUTbR5gul1/OK80Y6NQnl0nhvBls20KTT5YQ2ba8jUyIi9ZTKk4lUnhqmvMKTbEtaReG2T/nn8US+zI8HYJBlPW/4Pg/ASaykWVuTH34hvk27ENn2YiJadMTw8TczuoiI4OHlaf/+/Tz22GOsXr2azMxM4uLiuPnmm/nrX/+Kr69vha8rKipi2rRpLFmyhOLiYgYPHsyrr75KdHS0a0xqaioTJkxgzZo1BAUFMWrUKObOnYu3t/d551N5EqfTycGck6zbn0Pelk/ofnAhre17CDCKTxs72TGVPZEDaBUZyMX+mVzk3E5gdGvCYi+gUVwrDN8AE/ZARKThOd/P7/NvBPXIzp07cTgcvP7667Ru3ZqtW7cybtw4CgoKePbZZyt83ZQpU/jkk09YunQpoaGhTJo0ieuvv57vvvsOALvdzpVXXklMTAzff/89GRkZ3Hrrrfj4+DBnzpy62j3xAIZh0KxxAM0aB0C3O4A7yCssInnnZo7t2QAZm2mUu50WpXvZZothV1ouP6XlEuP1MTf7vFtuW8cIJccnmgL/WDa0mogR2ZbGQVbiOEqEJY+QiDhCI+Lw8rGas7MiIg2MWx55OpNnnnmG1157jb17957x+dzcXCIjI1m8eDE33HADUFbC2rdvz9q1a+nVqxf/+9//uOqqq0hPT3cdjZo3bx4PPPAAhw8frvCoVnFxMcXFvx5RyMvLIz4+Xkee5JxKbHZScwrYc6SQPYfzCd79MQnZn9LIlkm04zDBxsly44cWz2G7swUAE7w+4gGfJa7nThBAvhFEoVcwRV7BLIu5h4LQNgT7+XCBbRfNT27Hyz8UH/8gvKwB+PgF4e0XhG9AEN6NmuHvH4ifjxdWbwsWi6ZeEJGGx6OPPJ1Jbm4u4eHhFT6/ceNGbDYbAwcOdK1LSEigWbNmrvK0du1aOnXqVO403uDBg5kwYQLbtm2jS5cuZ9z23LlzmTVrVs3tjDQYvj5etI4OoXX0L/8n7TcFmAKUFatDh7PISd9DQdY+So4e4JKgbrQ86cuR/GLCcvzJLg6nkTMXH8NOMIUEOwuhNBtK4b6fs9jh9APgLq+P+bPPvyvMcWPxTNY7EwC42Wsl93u/R7HhSyk+lBq/LnbDmwUhd5Lq1x5vL4OLSpK5rGAFDosvTosPDosveHlhGF5g8WZr1FCOBbTCyzCIPLmH1se+A4sFp8W77MJ5o+xPw7CQHdGTgsB4vCwGQUVZRORuwWKxYBgWDMPAsFh+mZjU4ERYe4oDYzEA35JjhBzbXvacAQYWnBYLBgYYBieDm2MLiMEwwNuWT0Du7l/Glm3LsFjK/jQslAREYQ+IxAAs9pNY81L5ZbNlGTj1Hgal/o1xBJTdtscoLcI370D5X+pv5v4qtTbCHhBZ9sBhw5q7v9xQp2G4hjt8QygNiPrlQSm+eam/bpLypdbuG4T91FinA59fMpxp2jGHT+CvYwHfEwdOH3RqrLe/a6yBgfeJQ/Db/87+zRs4vXxxBP66Xe/8dHA6zrxhiw/2wOizjj21aafFG3tgjGu9V0EmhqP0tyN/zWBYsAfF/WZsFobDxpkZlAY3+XVsYTaGvaKbgf9+7BEMe1EFY6E0qIlrBywnj2IpPXmWsXFgWH4Zm4OltLDisYGxri+aWIqOYbEVnGVsDFi8fxl7HIstv+KxAVHgVXZQwFKci6XkxFnGRoKX9ZexeVhK8ioca/ePwOld9m+PUZKPV/Hxisf6Ncb5yzWfhq0Ar6JjZxkbjtPn18sYmoUH4Ottzi16PaI87d69m5deeumsp+wyMzPx9fUlLCys3Pro6GgyMzNdY35bnE49f+q5isyYMYOpU6e6Hp868iRSHb4+XjSNi6NpXBxwKQCXlxvRG3iB0tJSjuQcJu9oBgW5Odjyj2IrPM7I0D7klPqRd9JGXFZHNh3LxNd2Ai97Eb6OIqzOssWPImwWf7CXbTWYk4QYhcAv/5g7f1l+cSDzCD84jgLQwms7PXxWV7gP/0iNZrWj7MXDLV8zyndehWMnldzNckdvAIZafuBV3xcrHPsX23iW2vsB0M/yIwt9n6lw7EzbKN6xDwagl2U7S3wfr3Dsk7abmGe/BoBEYw8fWR+ucOzfS6/n+dKyo9itjUN8Yb2/wrGvl17J3NKRADThMN/53Vvh2H+WDuTh0tsACCePTX53Vjj2A/ulTLNNAMCPYnb6jalw7Cf2Hky0TXY93u/3fxWOXWO/iDG2B1yPt1vHnPF6PYAkRwJ/LpnperzBeicRxpk/WLc4WnJNyROux9/43ku85fAZx+5yNOGPJb/+vX7mez/tLIfOOPaQM4L+xb/+7+VD34fobDnzWYgcZxBdi99wPX7X53F6e20/49iTTl/aFy90PX7L5xkGeP14xrEALYoWcarUvezzd67ySqpwbIei+RRSVjCe8Z7Hjd5fVzi2W9FrHCUUgFneCxjlvbLCsX2LX+CQs6zMTvdezJ3eyyscO6j4KX52ln1W3ev1AVN8Pqhw7LXFs9nsbA3AOK/l/NVncYVjR5T8lbWOC4Gy/xh73GdBhWNvK7mP1Y6uQNm/EX87y78RE0vu4RNHL9fj1dMup1VkUIXja1O9Kk/Tp0/nqaeeOuuYHTt2kJCQ4HqclpbGkCFDuPHGGxk3blxtRzwjq9WK1arrTcQc3t7eRETFEhEVW259z3KPOgAVf2B/CNgdTopsdorye5BxfCIlRScpLj6Jw1aM3VaEo9SGw1bEuPCujPQOw2Z3EHjMlw2HI6G0BKe9BMNegtNRitNeCg47PSK60sKvJQ6nkyZ5x9l4dCiG047htIPTgcVpB6cdw+mgZdPWDLZGY3dAi8J4Uo53BKcTA+cvRz2cGL/82Sgsjq6+YTiBuOJI9ua3wsDpWk6NNXASFBpBe2sITqeTmNJQMgqifxmDa6zll9f5BYXS0icQp9NJlD2QnKLQCn9nXtZAYgPLPvwaO/w5Zqv4EL+XbyAxAb+MdfqTa6v4H3yLbwDRAWX/noQ6reTZAisci48/UX5lY61OyC/97ZcLfndFhrc/kb+MdTqhoNTP9dTvD1Q5vf2IsFpd2ygutbrGGL/brtPiS+PAXy9psNl9KeL0SxycgMPiS/hvxpbafTl5hrEApRZfGgX4uB7bHWcZa/gQ9puxjrOMLTGsvxvrU+HYYsO33FjnWbYLEObv4zryZJxjbKi/N76Gz3mNDfH3wf7LWK9zjfXzIeyXsd5n2TeA4N+M9XH6UOT0qXBs0G/G+jp9zzo2wPrrWOs5tluZsX6/GQtgMfHODvXqmqfDhw9z9OjRs45p1aqV69qj9PR0+vXrR69evVi4cCEWS8WH71avXs2AAQM4duxYuaNPzZs3Z/LkyUyZMoWZM2fy0UcfkZyc7Hp+3759tGrVik2bNlV42u739G07ERER9+OW1zxFRkYSGRl5XmPT0tLo378/3bp1Y8GCBWctTgDdunXDx8eHVatWMXz4cABSUlJITU2ld++yUwW9e/fmiSeeIDs7m6iossOeK1euJCQkhA4dOlRjz0RERMRTmHOlVTWlpaXRr18/mjVrxrPPPsvhw4fJzMwsd11SWloaCQkJrFu3DoDQ0FDGjh3L1KlTWbNmDRs3bmTMmDH07t2bXr3KzqEOGjSIDh06cMstt7B582Y+++wzHnroISZOnKjTciIiIgLUsyNP52vlypXs3r2b3bt307Rp03LPnToLabPZSElJobDw128wPP/881gsFoYPH15uksxTvLy8WL58ORMmTKB3794EBgYyatQoZs+eXTc7JiIiIvVevbrmyVPomicRERH3c76f32552k5ERETELCpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpXglve2q+9O3fEmLy/P5CQiIiJyvk59bp/rznUqT7XgxIkTAMTHx5ucRERERCrrxIkThIaGVvi8bgxcCxwOB+np6QQHB2MYRo1tNy8vj/j4eA4ePKgbDtci/Z7rhn7PdUO/57qh33PdqO3fs9Pp5MSJE8TFxWGxVHxlk4481QKLxULTpk1rbfshISH6P2cd0O+5buj3XDf0e64b+j3Xjdr8PZ/tiNMpumBcREREpBJUnkREREQqQeXJjVitVh555BGsVqvZUTyafs91Q7/nuqHfc93Q77lu1Jffsy4YFxEREakEHXkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHlyI6+88gotWrTAz8+Pnj17sm7dOrMjeZSvv/6aq6++mri4OAzD4MMPPzQ7kkeaO3cuF198McHBwURFRTFs2DBSUlLMjuVxXnvtNRITE12TCfbu3Zv//e9/ZsfyeE8++SSGYTB58mSzo3iURx99FMMwyi0JCQmm5VF5chPvvfceU6dO5ZFHHmHTpk1cdNFFDB48mOzsbLOjeYyCggIuuugiXnnlFbOjeLSvvvqKiRMn8sMPP7By5UpsNhuDBg2ioKDA7GgepWnTpjz55JNs3LiRDRs28Ic//IFrr72Wbdu2mR3NY61fv57XX3+dxMREs6N4pAsvvJCMjAzX8u2335qWRVMVuImePXty8cUX8/LLLwNl98+Lj4/n7rvvZvr06San8zyGYbBs2TKGDRtmdhSPd/jwYaKiovjqq6+47LLLzI7j0cLDw3nmmWcYO3as2VE8Tn5+Pl27duXVV1/l8ccfp3Pnzrzwwgtmx/IYjz76KB9++CHJyclmRwF05MktlJSUsHHjRgYOHOhaZ7FYGDhwIGvXrjUxmUj15ebmAmUf7FI77HY7S5YsoaCggN69e5sdxyNNnDiRK6+8sty/01Kzdu3aRVxcHK1atWLkyJGkpqaalkU3BnYDR44cwW63Ex0dXW59dHQ0O3fuNCmVSPU5HA4mT57MJZdcQseOHc2O43F++uknevfuTVFREUFBQSxbtowOHTqYHcvjLFmyhE2bNrF+/Xqzo3isnj17snDhQtq1a0dGRgazZs3i0ksvZevWrQQHB9d5HpUnETHNxIkT2bp1q6nXLniydu3akZycTG5uLu+//z6jRo3iq6++UoGqQQcPHuTee+9l5cqV+Pn5mR3HY11xxRWunxMTE+nZsyfNmzfn3//+tymnoVWe3EBERAReXl5kZWWVW5+VlUVMTIxJqUSqZ9KkSSxfvpyvv/6apk2bmh3HI/n6+tK6dWsAunXrxvr16/n73//O66+/bnIyz7Fx40ays7Pp2rWra53dbufrr7/m5Zdfpri4GC8vLxMTeqawsDDatm3L7t27TXl/XfPkBnx9fenWrRurVq1yrXM4HKxatUrXL4jbcTqdTJo0iWXLlrF69WpatmxpdqQGw+FwUFxcbHYMjzJgwAB++uknkpOTXUv37t0ZOXIkycnJKk61JD8/nz179hAbG2vK++vIk5uYOnUqo0aNonv37vTo0YMXXniBgoICxowZY3Y0j5Gfn1/uv2L27dtHcnIy4eHhNGvWzMRknmXixIksXryY//73vwQHB5OZmQlAaGgo/v7+JqfzHDNmzOCKK66gWbNmnDhxgsWLF/Pll1/y2WefmR3NowQHB592vV5gYCCNGzfWdXw16L777uPqq6+mefPmpKen88gjj+Dl5cWIESNMyaPy5Cb+/Oc/c/jwYWbOnElmZiadO3dmxYoVp11ELlW3YcMG+vfv73o8depUAEaNGsXChQtNSuV5XnvtNQD69etXbv2CBQsYPXp03QfyUNnZ2dx6661kZGQQGhpKYmIin332GX/84x/NjiZSaYcOHWLEiBEcPXqUyMhI+vbtyw8//EBkZKQpeTTPk4iIiEgl6JonERERkUpQeRIRERGpBJUnERERkUpQeRIRERGpBJUnERERkUpQeRIRERGpBJUnERERkUpQeRIRERGpBJUnEZHfGT16NMOGDTM7hojUU7o9i4g0KIZhnPX5Rx55hL///e/o5gsiUhGVJxFpUDIyMlw/v/fee8ycOZOUlBTXuqCgIIKCgsyIJiJuQqftRKRBiYmJcS2hoaEYhlFuXVBQ0Gmn7fr168fdd9/N5MmTadSoEdHR0bz55psUFBQwZswYgoODad26Nf/73//KvdfWrVu54oorCAoKIjo6mltuuYUjR47U8R6LSE1TeRIROQ9vv/02ERERrFu3jrvvvpsJEyZw44030qdPHzZt2sSgQYO45ZZbKCwsBOD48eP84Q9/oEuXLmzYsIEVK1aQlZXFn/70J5P3RESqS+VJROQ8XHTRRTz00EO0adOGGTNm4OfnR0REBOPGjaNNmzbMnDmTo0ePsmXLFgBefvllunTpwpw5c0hISKBLly7Mnz+fNWvW8PPPP5u8NyJSHbrmSUTkPCQmJrp+9vLyonHjxnTq1Mm1Ljo6GoDs7GwANm/ezJo1a854/dSePXto27ZtLScWkdqi8iQich58fHzKPTYMo9y6U9/iczgcAOTn53P11Vfz1FNPnbat2NjYWkwqIrVN5UlEpBZ07dqVDz74gBYtWuDtrX9qRTyJrnkSEakFEydOJCcnhxEjRrB+/Xr27NnDZ599xpgxY7Db7WbHE5FqUHkSEakFcXFxfPfdd9jtdgYNGkSnTp2YPHkyYWFhWCz6p1fEnRlOTaMrIiIict70nz8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilaDyJCIiIlIJKk8iIiIilfD/2vz3ocdc5yMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAk8AAAGwCAYAAACw64E/AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWpVJREFUeJzt3Xl8FPXhxvHPbI7NnRByQ7jkCAiRSy5RoVBAvFC0lR8qIIIiqBxWwSoKKnhVrSdqBbQFsWixihZFwBvDZUCuyB3ICQQSkpBks7u/PyKrEQLknOzmeb9e8yI7+93ZZ0LLPs7MfsdwOp1OREREROS8WMwOICIiIuJOVJ5EREREKkHlSURERKQSVJ5EREREKkHlSURERKQSVJ5EREREKkHlSURERKQSvM0O4IkcDgfp6ekEBwdjGIbZcUREROQ8OJ1OTpw4QVxcHBZLxceXVJ5qQXp6OvHx8WbHEBERkSo4ePAgTZs2rfB5ladaEBwcDJT98kNCQkxOIyIiIucjLy+P+Ph41+d4RVSeasGpU3UhISEqTyIiIm7mXJfc6IJxERERkUpQeRIRERGpBJUnERERkUrQNU8iIiK/4XA4KCkpMTuG1AIfHx+8vLyqvR2VJxERkV+UlJSwb98+HA6H2VGkloSFhRETE1OteRhVnkRERCibIDEjIwMvLy/i4+PPOkmiuB+n00lhYSHZ2dkAxMbGVnlbKk8iIiJAaWkphYWFxMXFERAQYHYcqQX+/v4AZGdnExUVVeVTeKrVIiIigN1uB8DX19fkJFKbThVjm81W5W2oPImIiPyG7knq2Wri71flSURERKQS3L48vfLKK7Ro0QI/Pz969uzJunXrzjp+6dKlJCQk4OfnR6dOnfj000/LPe90Opk5cyaxsbH4+/szcOBAdu3aVZu7ICIiIm7ErcvTe++9x9SpU3nkkUfYtGkTF110EYMHD3ZdSf9733//PSNGjGDs2LH8+OOPDBs2jGHDhrF161bXmKeffpoXX3yRefPmkZSURGBgIIMHD6aoqKiudktERETqMbcuT8899xzjxo1jzJgxdOjQgXnz5hEQEMD8+fPPOP7vf/87Q4YM4S9/+Qvt27fnscceo2vXrrz88stA2VGnF154gYceeohrr72WxMRE3nnnHdLT0/nwww/rcM/OrLCklJTMExSX2s2OIiIi9cTVV1/NkCFDzvjcN998g2EYbNmypVrvcfDgQW677Tbi4uLw9fWlefPm3HvvvRw9erTcuNGjRzNs2DCg7Nqisy2PPvqo6zVner6ifaoP3LY8lZSUsHHjRgYOHOhaZ7FYGDhwIGvXrj3ja9auXVtuPMDgwYNd4/ft20dmZma5MaGhofTs2bPCbQIUFxeTl5dXbqkN/Z76gtte+IA9BzNrZfsiIuJ+xo4dy8qVKzl06NBpzy1YsIDu3buTmJhY6e2emmV97969dO/enV27dvHuu++ye/du5s2bx6pVq+jduzc5OTlnfH1GRoZreeGFFwgJCSm37r777nONHTJkSLnnMjIyePfddyudua64bXk6cuQIdrud6Ojocuujo6PJzDxzucjMzDzr+FN/VmabAHPnziU0NNS1xMfHV3p/zsfblll853cvRSkra2X7IiLifq666ioiIyNZuHBhufX5+fksXbqUsWPHArBixQr69u1LWFgYjRs35qqrrmLPnj2u8f369WPSpElMnjyZiIgIBg8eDMDEiRPx9fXl888/5/LLL6dZs2ZcccUVfPHFF6SlpfHXv/71jLliYmJcS2hoKIZhlFsXFBTkGmu1Wss9FxMTQ6NGjWr4N1Vz3LY81SczZswgNzfXtRw8eLBW3qfAPw6A4sN7a2X7IiLyK6fTSWFJqSmL0+k875ze3t7ceuutLFy4sNzrli5dit1uZ8SIEQAUFBQwdepUNmzYwKpVq7BYLFx33XXlbkXz9ttv4+vry3fffce8efPIycnhs88+46677nJNMHlKTEwMI0eO5L333qtUXk/gtjOMR0RE4OXlRVZWVrn1WVlZxMTEnPE1MTExZx1/6s+srKxy07ZnZWXRuXPnCrNYrVasVmtVdqNSbCHNIA8sx/fX+nuJiDR0J212Osz8zJT33j57MAG+5/8Rfdttt/HMM8/w1Vdf0a9fP6DslN3w4cMJDQ0FYPjw4eVeM3/+fCIjI9m+fTsdO3YEoE2bNjz99NOuMUlJSTidTtq3b3/G923fvj3Hjh3j8OHDREVFVWYXy1m+fHm5I1EADz74IA8++OA5Xzt+/HjWr1/PDTfcwIEDB1w/V3RErCa47ZEnX19funXrxqpVq1zrHA6H6xzsmfTu3bvceICVK1e6xrds2ZKYmJhyY/Ly8khKSqpwm3XJq3FLAALya+fIloiIuKeEhAT69Onj+sLU7t27+eabb1yn7AB27drFiBEjaNWqFSEhIbRo0QKA1NRU15hu3bqdcfvnOrJU3VnZ+/fvT3JycrnlzjvvPOfrtmzZQmpqKj/++CNXX3216+faLE7gxkeeAKZOncqoUaPo3r07PXr04IUXXqCgoIAxY8YAcOutt9KkSRPmzp0LwL333svll1/O3/72N6688kqWLFnChg0beOONN4CybwZMnjyZxx9/nDZt2tCyZUsefvhh4uLiXN8eMFNQTBvYDI1K0s2OIiLi8fx9vNg+e7Bp711ZY8eO5e677+aVV15hwYIFXHDBBVx++eWu56+++mqaN2/Om2++SVxcHA6Hg44dO7ouDAcIDAwst83WrVtjGAY7duzguuuuO+09d+zYQWRkJGFhYZXO+1uBgYG0bt26wud37drF5MmTyczMJDAwkPfff58jR45wxRVXYBgG4eHh+Pv7YxgGffr04fvvv69WnnNx6/L05z//mcOHDzNz5kwyMzPp3LkzK1ascF3wnZqaWu6u2H369GHx4sU89NBDPPjgg7Rp04YPP/zQdbgS4P7776egoIDx48dz/Phx+vbty4oVK/Dz86vz/fu9xvFtAYh2HKbUVoK3j+6/JCJSWwzDqNSpM7P96U9/4t5772Xx4sW88847TJgwwXUrkqNHj5KSksKbb77JpZdeCsC33357zm02btyYP/7xj7z66qtMmTKl3HVPmZmZLFq0iIkTJ9bODv2iuLiYu+66iwULFtC0aVPmzZvHG2+8wUMPPcSIESPo1asXN9xwA/fdd5/r59rmPv+rqMCkSZOYNGnSGZ/78ssvT1t34403cuONN1a4PcMwmD17NrNnz66piDUmMrYFxU4frIaN9EN7iWuZYHYkERGpJ4KCgvjzn//MjBkzyMvLY/To0a7nGjVqROPGjXnjjTeIjY0lNTWV6dOnn9d2X375Zfr06cPgwYN5/PHHadmyJdu2beMvf/kLbdu2ZebMmdXOXlxcfNq32r29vYmIiODDDz9k27ZtXHXVVa6xp/btp59+4vbbbz/t59rm9uWpIbF4efGx7xCyThr0OGEnzuxAIiJSr4wdO5a33nqLoUOHEhf366eExWJhyZIl3HPPPXTs2JF27drx4osvui4uP5s2bdqwfv16Hn30Uf70pz+RnZ2N0+nk+uuv55///CcBAQHVzr1ixYpyX9QCaNeuHTt37uSnn37ib3/7m+tbg7+1a9cu2rRpc9rPtc1wNrTvF9aBvLw8QkNDyc3NJSQkpEa3PWbBOtakHGbu9Z0Y0aNZjW5bRKQhKyoqYt++fbRs2bJeXKpRnz3yyCM899xzrFy5kl69etXqe7388sts2LDBNY/Vli1bSExM5MiRIwwaNIhNmzaV+/lczvb3fL6f3277bbuGqll4WcM/cLTQ5CQiItJQzZo1ixdffJEffvih3DxRtWHMmDEcP36chIQELrroIv71r38BZafpTl2z/Nuf64JO27mZZo2sxHEEW0YxoGueRETEHKe+2V7bAgMDz3h/2f79+9O/f//Tfq4LKk9upmtREmP97mFXWmvgerPjiIiINDg6bedmQpuWTVcQZc8wOYmIiEjDpPLkZmKatQMglAJycw6bnEZERKThUXlyMwFBoRwhDIDs1BRzw4iIiDRAKk9u6IhP2VwYeem7TE4iIiLS8Kg8uaET/k0BKDmy1+QkIiIiDY/KkxsqDW0OgOX4fnODiIiINECaqsANFTfty2v7sjhhXExPs8OIiIg0MDry5IYC2l7OU6Uj+Phk3c2mKiIiImVUntzQqVu0pB8vwmav3WnxRUREpDyVJzcUFWwl3vs43ZzbyczKNjuOiIiYaPTo0RiGcdoyZMiQOnn/Rx99lM6dO9fJe9UXuubJDVksBv/ynUtzx0F+2t2G+LhrzY4kIiImGjJkCAsWLCi3zmq1mpTG8+nIk5s6bo0DoDBrt8lJREQ8XElBxYutqBJjT57f2CqwWq3ExMSUWxo1asSXX36Jr68v33zzjWvs008/TVRUFFlZWQCsWLGCvn37EhYWRuPGjbnqqqvYs2dPue0fOnSIESNGEB4eTmBgIN27dycpKYmFCxcya9YsNm/e7DritXDhwirtgzvRkSc3dTKoGZxMwpGjuZ5ERGrVnLiKn2szCEYu/fXxM63BVnjmsc37wphPfn38QicoPHr6uEdzq5bzDPr168fkyZO55ZZb2Lx5M3v37uXhhx9m6dKlREdHA1BQUMDUqVNJTEwkPz+fmTNnct1115GcnIzFYiE/P5/LL7+cJk2a8NFHHxETE8OmTZtwOBz8+c9/ZuvWraxYsYIvvvgCgNDQ0BrLX1+pPLmrRi3gMFhPpJqdRERETLZ8+XKCgoLKrXvwwQd58MEHefzxx1m5ciXjx49n69atjBo1imuuucY1bvjw4eVeN3/+fCIjI9m+fTsdO3Zk8eLFHD58mPXr1xMeHg5A69atXeODgoLw9vYmJiamFvewflF5clN+URfAzxByMs3sKCIinu3B9IqfM7zKP/7LWS6lMH53pczkn6qe6Xf69+/Pa6+9Vm7dqaLj6+vLokWLSExMpHnz5jz//PPlxu3atYuZM2eSlJTEkSNHcDjKvsWdmppKx44dSU5OpkuXLq7ticqT2wpr0gaAKHsmTqcTwzBMTiQi4qF8A80few6BgYHljgb93vfffw9ATk4OOTk5BAb++t5XX301zZs358033yQuLg6Hw0HHjh0pKSkBwN/fv8ZyegpdMO6mopu1AyCEAvJyNF2BiIic2Z49e5gyZQpvvvkmPXv2ZNSoUa6jS0ePHiUlJYWHHnqIAQMG0L59e44dO1bu9YmJiSQnJ5OTk3PG7fv6+mK322t9P+oTlSc35R8YzOuWP/OgbSwHc0vMjiMiIiYqLi4mMzOz3HLkyBHsdjs333wzgwcPZsyYMSxYsIAtW7bwt7/9DYBGjRrRuHFj3njjDXbv3s3q1auZOnVquW2PGDGCmJgYhg0bxnfffcfevXv54IMPWLt2LQAtWrRg3759JCcnc+TIEYqLi+t8/+uaypMb+zxyNIvtA9if73XuwSIi4rFWrFhBbGxsuaVv37488cQTHDhwgNdffx2A2NhY3njjDR566CE2b96MxWJhyZIlbNy4kY4dOzJlyhSeeeaZctv29fXl888/JyoqiqFDh9KpUyeefPJJvLzKPnuGDx/OkCFD6N+/P5GRkbz77rt1vv91zXA6nU6zQ3iavLw8QkNDyc3NJSQkpNbeZ+p7yfznxzTuH9KOu/pVfK5bRETOraioiH379tGyZUv8/PzMjiO15Gx/z+f7+a0Lxt1Y6xA73Y2dkJoLqDyJiIjUBZ22c2MXF//A+9bZXJb2utlRREREGgyVJzcWFFt2tCm85CxzkIiIiEiNUnlyY5HxCQBEOw5jK/H8bzeIiIjUBypPbqxxTDxFTh+8DCdZqbvMjiMi4hH0PSrPVhN/vypPbsywWMj0KruX0LG0n01OIyLi3k599f7UzNrimQoLy27c7OPjU+VtuO237XJycrj77rv5+OOPsVgsDB8+nL///e+n3Rjxt+MfeeQRPv/8c1JTU4mMjGTYsGE89thj5e4AfabbnLz77rvcdNNNtbYv1XHc2hROHqQwa4/ZUURE3Jq3tzcBAQEcPnwYHx8fLBYdX/AkTqeTwsJCsrOzCQsLc5XlqnDb8jRy5EgyMjJYuXIlNpuNMWPGMH78eBYvXnzG8enp6aSnp/Pss8/SoUMHDhw4wJ133kl6ejrvv/9+ubELFixgyJAhrsdhYWG1uSvVUhQUDyfX4szZZ3YUERG3ZhgGsbGx7Nu3jwMHDpgdR2pJWFgYMTEx1dqGW06SuWPHDjp06MD69evp3r07UDa76tChQzl06BBxcXHntZ2lS5dy8803U1BQgLd3WY80DINly5YxbNiwKuerq0kyAT5Z/h/Wrv0a/1a9+OvY+nl0TETEnTgcDp2681A+Pj5nPeLk0ZNkrl27lrCwMFdxAhg4cCAWi4WkpCSuu+6689rOqV/OqeJ0ysSJE7n99ttp1aoVd955J2PGjDnj6bxTiouLy93LJy8vr5J7VHV+F1zCv7610iG/dkuaiEhDYbFYNMO4nJVblqfMzEyioqLKrfP29iY8PJzMzMzz2saRI0d47LHHGD9+fLn1s2fP5g9/+AMBAQF8/vnn3HXXXeTn53PPPfdUuK25c+cya9asyu9IDWgWHgDAwZxCnE7nWUueiIiIVF+9uhpu+vTpGIZx1mXnzp3Vfp+8vDyuvPJKOnTowKOPPlruuYcffphLLrmELl268MADD3D//fefdpPE35sxYwa5ubmu5eDBg9XOeL7iwwPoavzMQNsajh8/VmfvKyIi0lDVqyNP06ZNY/To0Wcd06pVK2JiYsjOzi63vrS0lJycnHNeBHbixAmGDBlCcHAwy5YtO+dXFXv27Mljjz1GcXExVqv1jGOsVmuFz9U2Px8v5llfJIocft43hEaN+pmSQ0REpKGoV+UpMjKSyMjIc47r3bs3x48fZ+PGjXTr1g2A1atX43A46NmzZ4Wvy8vLY/DgwVitVj766KPzOqednJxMo0aNTCtH5+OoTyxRthzyMnYB/cyOIyIi4tHqVXk6X+3bt2fIkCGMGzeOefPmYbPZmDRpEjfddJPrm3ZpaWkMGDCAd955hx49epCXl8egQYMoLCzkX//6F3l5ea4LuyMjI/Hy8uLjjz8mKyuLXr164efnx8qVK5kzZw733Xefmbt7TicC4iF3G6WHNV2BiIhIbXPL8gSwaNEiJk2axIABA1yTZL744ouu5202GykpKa6ZRDdt2kRSUhIArVu3Lretffv20aJFC3x8fHjllVeYMmUKTqeT1q1b89xzzzFu3Li627EqsIc2g1yw5O43O4qIiIjHc8t5nuq7upznCWD9f1/j4h+ns833Ii588Otafz8RERFPdL6f3/Xq23ZSNcFxbQAIL0k3OYmIiIjnU3nyAI3j2wIQ5TxCSXGRyWlEREQ8m8qTB4iIasqjjtu4zXY/acdVnkRERGqTypMHMCwWvm80jK8cF5GaazM7joiIiEdTefIQp27TkppTaHISERERz6by5CESA3MZZvkWr71rzI4iIiLi0VSePEQP23pe8H2V9mlLzY4iIiLi0VSePIR/dCsAQorSTE4iIiLi2VSePERYk7LpCmJKM3A6HCanERER8VwqTx4iullbHE6DQKOI40czzY4jIiLisVSePISffyCHjXAAsg/sNDmNiIiI51J58iBHfeIAOJGxy+QkIiIinkvlyYPkB8YDYDuy1+QkIiIinsvb7ABSc/a3GsGrP3SkhW9PepsdRkRExEPpyJMH8W/enS8dnfkpL8DsKCIiIh5L5cmDtGgcCMCBo7pFi4iISG3RaTsP0izcn2ss39P8ZCb5J7oTFBxmdiQRERGPoyNPHiQ0wJdZvu8wzed9svZtMzuOiIiIR1J58jDZ3mXTFeSm/WxyEhEREc+k8uRhTgSUTVdQnL3b5CQiIiKeSeXJw9jCWgLgdXyfyUlEREQ8k8qTh/GOuACAwIJUk5OIiIh4JpUnDxMc1xaAiJJ0k5OIiIh4JpUnDxPdvH3ZnxylqDDf5DQiIiKeR/M8eZiwxtHcxXRSihvzWm4pbTXZuIiISI3SkScPY1gsHGx8KXucTdifU2R2HBEREY+j8uSBmjcuO9yk27SIiIjUPJUnD9TdL4O7vD4kbNcHZkcRERHxOCpPHuhCYw/3+/ybhOxPzY4iIiLicVSePFBgbNl0BY1L0kxOIiIi4nlUnjxQVLNfpitwZFNSrIvGRUREapLblqecnBxGjhxJSEgIYWFhjB07lvz8s89r1K9fPwzDKLfceeed5cakpqZy5ZVXEhAQQFRUFH/5y18oLS2tzV2pcY1j4il0WvEynGSm6gbBIiIiNclt53kaOXIkGRkZrFy5EpvNxpgxYxg/fjyLFy8+6+vGjRvH7NmzXY8DAn6dCMlut3PllVcSExPD999/T0ZGBrfeeis+Pj7MmTOn1valphkWC1lesbR07OfYwRSatUk0O5KIiIjHcMsjTzt27GDFihX84x//oGfPnvTt25eXXnqJJUuWkJ5+9tuSBAQEEBMT41pCQkJcz33++eds376df/3rX3Tu3JkrrriCxx57jFdeeYWSkpLa3q0addy/KQAns3aZnERERMSzuGV5Wrt2LWFhYXTv3t21buDAgVgsFpKSks762kWLFhEREUHHjh2ZMWMGhYW/zoW0du1aOnXqRHR0tGvd4MGDycvLY9u2bRVus7i4mLy8vHKL2YpDmpf9kLPP3CAiIiIexi1P22VmZhIVFVVunbe3N+Hh4WRmZlb4uv/7v/+jefPmxMXFsWXLFh544AFSUlL4z3/+49rub4sT4Hp8tu3OnTuXWbNmVXV3akVWwq0M3H8Rrfw60MvsMCIiIh6kXpWn6dOn89RTT511zI4dO6q8/fHjx7t+7tSpE7GxsQwYMIA9e/ZwwQUXVHm7M2bMYOrUqa7HeXl5xMfHV3l7NSGySWt2O4/iOGY3NYeIiIinqVfladq0aYwePfqsY1q1akVMTAzZ2dnl1peWlpKTk0NMTMx5v1/Pnj0B2L17NxdccAExMTGsW7eu3JisrCyAs27XarVitVrP+33rQvOIQAAOHiuk1O7A28stz9CKiIjUO/WqPEVGRhIZGXnOcb179+b48eNs3LiRbt26AbB69WocDoerEJ2P5ORkAGJjY13bfeKJJ8jOznadFly5ciUhISF06NChkntjrtgQP+7w+R8tnQfJTmtHXLOqH1kTERGRX7nl4Yj27dszZMgQxo0bx7p16/juu++YNGkSN910E3FxcQCkpaWRkJDgOpK0Z88eHnvsMTZu3Mj+/fv56KOPuPXWW7nssstITCz7Kv+gQYPo0KEDt9xyC5s3b+azzz7joYceYuLEifXuyNK5WCwG/+ezhpu8v+To/p/MjiMiIuIx3LI8Qdm35hISEhgwYABDhw6lb9++vPHGG67nbTYbKSkprm/T+fr68sUXXzBo0CASEhKYNm0aw4cP5+OPP3a9xsvLi+XLl+Pl5UXv3r25+eabufXWW8vNC+VOjlubAFCQqekKREREakq9Om1XGeHh4WedELNFixY4nU7X4/j4eL766qtzbrd58+Z8+qln3FC3KLg5nEzCeXSv2VFEREQ8htseeZJzM8JbAeB34oDJSURERDyHypMH849pA0BY0UGTk4iIiHgOlScP1rhZ2TcEY+0Z2O2a70lERKQmqDx5sOhmbShxeuFn2Mg6pNu0iIiI1ASVJw/m5e3DHUEvkVC0gN3FoWbHERER8QgqTx7OO7odRVjZd6TA7CgiIiIeQeXJw7X65TYtKk8iIiI1w23neZLz09n3EHO8/0HI7ijgdbPjiIiIuD2VJw/XPKCYK7xXc/BEnNlRREREPIJO23m4qOYXAhDryKSkuNjkNCIiIu5P5cnDNY5tTqHTirfhIOPATrPjiIiIuD2VJw9nWCxkepedsstJ3WFyGhEREfen8tQAHPdvBkBRZorJSURERNyfylMDUBJWdoNgI2ePyUlERETcn8pTA+AT2brsh8Kj5gYRERHxAJqqoAHw6XQ9F66NIcg3jCSzw4iIiLg5HXlqAJrHRFKAP1l5xRQUl5odR0RExK2pPDUAoQE+hAf6ArpNi4iISHWpPDUQ9/iv4J8+c8jf9pnZUURERNyaylMD0ckrlUu9tmJP32x2FBEREbem8tRAlDYqm67A+5imKxAREakOlacGwjeqLQDBBQdMTiIiIuLeVJ4aiLCmCQBEl6bhdDpNTiMiIuK+VJ4aiJiWFwLQmFyOH9NkmSIiIlWl8tRA+AeHcZhGAGTu22pyGhEREfel8tSAHPFtymFnCIezM82OIiIi4rZUnhqQJQl/5+Lieaw1OpsdRURExG2pPDUgLaLDAdiTnW9yEhEREfel8tSAXBAZBMCewypPIiIiVeVtdgCpO61DbLzt8yRN845gs23Bx8fH7EgiIiJuR0eeGpCYiCh6W7ZzgZFOeuous+OIiIi4JbctTzk5OYwcOZKQkBDCwsIYO3Ys+fkVn47av38/hmGccVm6dKlr3JmeX7JkSV3sUq2zeHuT7t0EgKP7fjI5jYiIiHty29N2I0eOJCMjg5UrV2Kz2RgzZgzjx49n8eLFZxwfHx9PRkZGuXVvvPEGzzzzDFdccUW59QsWLGDIkCGux2FhYTWe3yzH/FvQIv8AJzN2mh1FRETELblledqxYwcrVqxg/fr1dO/eHYCXXnqJoUOH8uyzzxIXF3faa7y8vIiJiSm3btmyZfzpT38iKCio3PqwsLDTxp5NcXExxcXFrsd5eXmV2Z06VdKoNeR/hSVnt9lRRERE3JJbnrZbu3YtYWFhruIEMHDgQCwWC0lJSee1jY0bN5KcnMzYsWNPe27ixIlERETQo0cP5s+ff857wc2dO5fQ0FDXEh8fX7kdqkO+0e0ACM7fZ3ISERER9+SW5SkzM5OoqKhy67y9vQkPDycz8/xmz37rrbdo3749ffr0Kbd+9uzZ/Pvf/2blypUMHz6cu+66i5deeums25oxYwa5ubmu5eDBg5XboToU1qwDADG2VN0gWEREpArq1Wm76dOn89RTT511zI4dO6r9PidPnmTx4sU8/PDDpz3323VdunShoKCAZ555hnvuuafC7VmtVqxWa7Vz1YXYVp047gzkgDMK5/E8IhuFmh1JRETErVSrPNlsNjIzMyksLCQyMpLw8PBqhZk2bRqjR48+65hWrVoRExNDdnZ2ufWlpaXk5OSc17VK77//PoWFhdx6663nHNuzZ08ee+wxiouL3aYgnY1fUBh/DPgnB48VseRYKZGNzE4kIiLiXipdnk6cOMG//vUvlixZwrp16ygpKcHpdGIYBk2bNmXQoEGMHz+eiy++uNJhIiMjiYyMPOe43r17c/z4cTZu3Ei3bt0AWL16NQ6Hg549e57z9W+99RbXXHPNeb1XcnIyjRo18ojidMoFUcEcPFbEnsP59GrV2Ow4IiIibqVS1zw999xztGjRggULFjBw4EA+/PBDkpOT+fnnn1m7di2PPPIIpaWlDBo0iCFDhrBrV+1MxNi+fXuGDBnCuHHjWLduHd999x2TJk3ipptucn3TLi0tjYSEBNatW1futbt37+brr7/m9ttvP227H3/8Mf/4xz/YunUru3fv5rXXXmPOnDncfffdtbIfZnHdpiVLt2kRERGprEodeVq/fj1ff/01F1544Rmf79GjB7fddhvz5s1jwYIFfPPNN7Rp06ZGgv7eokWLmDRpEgMGDMBisTB8+HBefPFF1/M2m42UlBQKCwvLvW7+/PmuI2S/5+PjwyuvvMKUKVNwOp20bt2a5557jnHjxtXKPpjlMscGbvZ9nMM72sI1y82OIyIi4lYMp75yVePy8vIIDQ0lNzeXkJAQs+OcZse3H9L+i1HsN5rQ4pHtZscRERGpF87387vKUxWMGjWKr7/+uqovFxPFtEoEoIkjk5Mni0xOIyIi4l6qXJ5yc3MZOHAgbdq0Yc6cOaSlpdVkLqlFYTHNKcSKj2EnbV/1p34QERFpSKpcnj788EPS0tKYMGEC7733Hi1atOCKK67g/fffx2az1WRGqWGGxYsM77JZ0HMObDU5jYiIiHup1gzjkZGRTJ06lc2bN5OUlETr1q255ZZbiIuLY8qUKbX2bTupvrzAFgCUZOkGwSIiIpVRI7dnycjIYOXKlaxcuRIvLy+GDh3KTz/9RIcOHXj++edr4i2khpWGl30L0ls3CBYREamUKpcnm83GBx98wFVXXUXz5s1ZunQpkydPJj09nbfffpsvvviCf//738yePbsm80oN8YlLZLOjFbtKNEmmiIhIZVT59iyxsbE4HA5GjBjBunXr6Ny582lj+vfvT1hYWDXiSW0J7XIt/VeF4ue0MNLhxGIxzI4kIiLiFqpcnp5//nluvPFG/Pz8KhwTFhbGvn37qvoWUoviG/nj62WhyOYg7fhJ4sMDzI4kIiLiFqp82u6WW245a3GS+s3by0KryEC8KWV32mGz44iIiLiNKh95mjp16hnXG4aBn58frVu35tprryU8PLzK4aR2TWcBfaz/Zd3mqdDpIbPjiIiIuIUql6cff/yRTZs2YbfbadeuHQA///wzXl5eJCQk8OqrrzJt2jS+/fZbOnToUGOBpeYEBofie9yO5UiK2VFERETcRpVP21177bUMHDiQ9PR0Nm7cyMaNGzl06BB//OMfGTFiBGlpaVx22WVMmTKlJvNKDfKNLbvBc2i+pisQERE5X1W+MXCTJk1YuXLlaUeVtm3bxqBBg0hLS2PTpk0MGjSII0eO1EhYd1Hfbwx8yqEdSTR9bxDHnYGEzDyExatGpv0SERFxS7V+Y+Dc3Fyys7NPW3/48GHy8vKAsm/blZSUVPUtpJbFXpCI3WkQZhSQnrbf7DgiIiJuoVqn7W677TaWLVvGoUOHOHToEMuWLWPs2LEMGzYMgHXr1tG2bduayio1zMvXnwyvWACy9mw2OY2IiIh7qPIF46+//jpTpkzhpptuorS0tGxj3t6MGjXKdUuWhIQE/vGPf9RMUqkVOQGtaJqfTmHaVuA6s+OIiIjUe1UuT0FBQbz55ps8//zz7N27F4BWrVoRFBTkGnOmWcelfjkW04flKaVkFEVwqdlhRERE3ECVTtvZbDYGDBjArl27CAoKIjExkcTExHLFSdxDUZexTLLdw4eFHc2OIiIi4haqVJ58fHzYsmVLTWcRE7SNDgZgd3Y+dkeVvngpIiLSoFT5gvGbb76Zt956qyaziAmahQfg5w1R9gwOZTWsKSVERESqosrXPJWWljJ//ny++OILunXrRmBgYLnnn3vuuWqHk9rnZTH41Pogrez72bCjEc1jddG4iIjI2VS5PG3dupWuXbsCZbdl+S3DMKqXSupUvn9TyN/PSX3jTkRE5JyqXJ7WrFlTkznERCXhbSH/WyxHdY87ERGRc6nW/Ti++eYbbr75Zvr06UNaWhoA//znP/n2229rJJzUDesv97gLO7HH5CQiIiL1X5XL0wcffMDgwYPx9/dn06ZNFBcXA2W3bZkzZ06NBZTa17hlIgBNSg9gtztMTiMiIlK/Vbk8Pf7448ybN48333wTHx8f1/pLLrmETZs21Ug4qRsxrTq57nGXdmi/2XFERETqtSqXp5SUFC677LLT1oeGhnL8+PHqZJI6ZvH1J9N1j7tkc8OIiIjUc1UuTzExMezevfu09d9++y2tWrWqViipez82voqXS68lpTDY7CgiIiL1WpXL07hx47j33ntJSkrCMAzS09NZtGgR9913HxMmTKjJjFIHDl54J8+W/pmkExFmRxEREanXqjxVwfTp03E4HAwYMIDCwkIuu+wyrFYr9913H3fffXdNZpQ6kBBbdsRpZ0aeyUlERETqtyofeTIMg7/+9a/k5OSwdetWfvjhBw4fPsxjjz1Wk/kq9MQTT9CnTx8CAgIICws7r9c4nU5mzpxJbGws/v7+DBw4kF27dpUbk5OTw8iRIwkJCSEsLIyxY8eSn59fC3tQv7SPDiaSYzQ5+j1FJTaz44iIiNRb1ZrnCcDX15cOHTrQo0cPgoKCaiLTeSkpKeHGG2+s1CnCp59+mhdffJF58+aRlJREYGAggwcPpqioyDVm5MiRbNu2jZUrV7J8+XK+/vprxo8fXxu7UK9EB3vzrd9kFvo8Seqe7WbHERERqbcMp9PprOqLV61axapVq8jOzsbhKD8/0Pz586sd7nwsXLiQyZMnn/Mbfk6nk7i4OKZNm8Z9990HlM1JFR0dzcKFC7npppvYsWMHHTp0YP369XTv3h2AFStWMHToUA4dOkRcXNx5ZcrLyyM0NJTc3FxCQkKqtX91ae8T3Whl28333Z6nz9W3mR1HRESkTp3v53eVjzzNmjWLQYMGsWrVKo4cOcKxY8fKLfXNvn37yMzMZODAga51oaGh9OzZk7Vr1wKwdu1awsLCXMUJYODAgVgsFpKSkircdnFxMXl5eeUWd5Qb0g4AW/pWk5OIiIjUX1W+YHzevHksXLiQW265pSbz1JrMzEwAoqOjy62Pjo52PZeZmUlUVFS55729vQkPD3eNOZO5c+cya9asGk5sguiOcPQT/I/tNDuJiIhIvVXlI08lJSX06dOnJrMwffp0DMM467JzZ/37YJ8xYwa5ubmu5eDBg2ZHqpLQFp0BiCnaTTXO5oqIiHi0Kh95uv3221m8eDEPP/xwjYWZNm0ao0ePPuuYqk7AGRMTA0BWVhaxsbGu9VlZWXTu3Nk1Jjs7u9zrSktLycnJcb3+TKxWK1artUq56pO4dt3hU2hGFoeP5hAZ0djsSCIiIvVOlctTUVERb7zxBl988QWJiYnl7m8H8Nxzz1V6m5GRkURGRlY10lm1bNmSmJgYVq1a5SpLeXl5JCUlub6x17t3b44fP87GjRvp1q0bAKtXr8bhcNCzZ89ayVWf+IVGccQIJ8KZw8GUDURGDDY7koiISL1T5fK0ZcsWVwnZurX8BcaGYVQr1PlITU0lJyeH1NRU7HY7ycnJALRu3do1ZUJCQgJz587luuuuwzAMJk+ezOOPP06bNm1o2bIlDz/8MHFxcQwbNgyA9u3bM2TIEMaNG8e8efOw2WxMmjSJm2666by/aefuVkaOYmNaIR0Lw+lqdhgREZF6qMrlac2aNTWZo9JmzpzJ22+/7XrcpUsXoCxXv379gLKbF+fm5rrG3H///RQUFDB+/HiOHz9O3759WbFiBX5+fq4xixYtYtKkSQwYMACLxcLw4cN58cUX62an6oGc9jfzfmoKtqPejDY7jIiISD1UrXmevvnmG15//XX27t3L0qVLadKkCf/85z9p2bIlffv2rcmcbsVd53kCWL0zi9sWbqBddDCfTbnM7DgiIiJ1ptbnefrggw8YPHgw/v7+bNq0ieLiYqBs4sk5c+ZUdbNisoSoAC42dtLz6DKKbaVmxxEREal3qlyeHn/8cebNm8ebb75Z7mLxSy65hE2bNtVIOKl7sSG+LLY+wWzv+RzYW/+mhRARETFblctTSkoKl112+mmd0NDQc94qReovw9tKmndzAI7sVgkWERH5vSqXp5iYGHbv3n3a+m+//bbKczFJ/ZAb0haAkrSfTE4iIiJS/1S5PI0bN457772XpKQkDMMgPT2dRYsWcd9997nmTRL35Iy6EAD/YztMTiIiIlL/VHmqgunTp+NwOBgwYACFhYVcdtllWK1W7rvvPu6+++6azCh1LLhFF9gJMSf3mB1FRESk3qnWVAVQdo+73bt3k5+fT4cOHVwTVDZk7jxVAcDJnAz8X0zA4TQ4cu9eosLDzY4kIiJS687387vKR55O8fX1pUOHDtXdjNQj/uGx5BihhJPLwZ0bierzR7MjiYiI1BuVuuYpNTW1UhtPS0ur1HipPz6IvY/hxY+wvjD23INFREQakEqVp4svvpg77riD9evXVzgmNzeXN998k44dO/LBBx9UO6CYw5lwJRud7diSVWx2FBERkXqlUqfttm/fzhNPPMEf//hH/Pz86NatG3Fxcfj5+XHs2DG2b9/Otm3b6Nq1K08//TRDhw6trdxSyzrGhQKwNS3P5CQiIiL1S5UuGD958iSffPIJ3377LQcOHODkyZNERETQpUsXBg8eTMeOHWsjq9tw9wvGAXJPFPLYk49yobGf6x9YSGhwgNmRREREatX5fn5X+9t2cjpPKE84nZyYFUcwhSRfuZzOF19qdiIREZFaVes3BhYPZxik+5fNNJ67Z4PJYUREROoPlSep0MnGZTONG5mbTU4iIiJSf6g8SYV847sAEJ6n27SIiIicovIkFYpN6AVAK/s+8k9qygIRERFQeZKzaBTfgZNYCTCK2ZeiU3ciIiJQQ+UpJycHh8NRE5uS+sTiRZq1NQBH9mwyOYyIiEj9UOXytH37dp588kn69OlDZGQkUVFR3HrrrXzwwQcUFBTUZEYx0fcXzuTioldZbu9tdhQREZF6oVLlKSUlhWnTptGmTRt69erF+vXrufPOO8nKyuLTTz+lefPmzJ49m4iICK644gpee+212sotdSSudRcOE8bWtFyzo4iIiNQLlbo9y/fff09BQQEvvvgiAwYMwNfX1/VcREQEPXr04LHHHmP//v3897//5T//+Q8TJkyo8dBSdzo2KbtNy+7D+ZwssePv62VyIhEREXNphvFa4BEzjP/Gq4/dRYeSrTS+8QU6JXY1O46IiEitON/P70odeQIIDg6mS5cudOvWja5du9K1a1c6dOiAYRjVCiz11yDvZFrbt/Hlzu9A5UlERBq4Spenp556io0bN7J69WpefvllHA4H/v7+JCYmlitUF110UW3kFRPkR1wEadsgXd+4ExERqXR5uuuuu1w/nzx5ksDAQO6++25ycnL44Ycf+Mc//kFJSQl2u71Gg4p5/JtfDGmLiczbanYUERER01W6PP2Wv78/ACNGjCAxMRGA0tJStm/fXv1kUm/EdbwEvofW9n3k5OUTHhJkdiQRERHT1PgM497e3q4iJZ4hOLYteQRhNWzs3bbO7DgiIiKm0u1Z5NwMg/TA9gDk7U4yOYyIiIi5Kl2ebr/9dl577TXWr19PcXHZzWL1TTvPVxzVmRNOf47mHDE7ioiIiKkqfc3Trl27WLp0KSdOnMDbu+zls2bNol+/fnTt2pXOnTsTEBBQ40HFXM5Lp5K443LC8/y4welUYRYRkQar0keevvrqK3Jzc0lJSeGdd97hvvvu4/jx48ycOZO+ffsSGhrKhRdeWBtZy3niiSfo06cPAQEBhIWFnXO8zWbjgQceoFOnTgQGBhIXF8ett95Kenp6uXEtWrTAMIxyy5NPPllLe+E+EuKj8fby4mhBCYeOnTQ7joiIiGmq/G27Nm3a0KZNG2666SbXun379rFhwwZ+/PHHGgl3NiUlJdx444307t2bt95665zjCwsL2bRpEw8//DAXXXQRx44d49577+Waa65hw4YN5cbOnj2bcePGuR4HBwfXeH534+fjRUJMCD+l5bLl4HHiw3V0UUREGqZKlafMzEwaNWqE1Wo94/MtW7akZcuW3HjjjQDs3buXVq1aVT/lGcyaNQuAhQsXntf40NBQVq5cWW7dyy+/TI8ePUhNTaVZs2au9cHBwcTExNRYVk9xh9/ndPB9j73rb4CLnjA7joiIiCkqddru/fffJzw8nOuuu44FCxZw+PDh08YkJSXx4IMPcuGFF9b7WcZzc3MxDOO0035PPvkkjRs3pkuXLjzzzDOUlpaedTvFxcXk5eWVWzxRsxAvWlkyCTpc+0cWRURE6qtKladJkyaxefNmLr30UhYuXEjTpk3p27cvc+bMYdy4ccTGxjJs2DCys7N58sknz1iu6ouioiIeeOABRowYUe7mf/fccw9LlixhzZo13HHHHcyZM4f777//rNuaO3cuoaGhriU+Pr6245siov2lALQq2kaJTTPIi4hIw2Q4nU5nVV989OhRli9fzqeffkqLFi249tpr6d27d5W/iTV9+nSeeuqps47ZsWMHCQkJrscLFy5k8uTJHD9+/Lzfx2azMXz4cA4dOsSXX3551jsnz58/nzvuuIP8/PwKT1cWFxe7pm2Asrsyx8fHn/OuzO7GWVJI6Zym+GBn243fcOGFmgxVREQ8R15eHqGhoef8/K7W7VkaN27MqFGjGDVqVHU24zJt2jRGjx591jHVvYbKZrPxpz/9iQMHDrB69epzlpuePXtSWlrK/v37adeu3RnHWK3WCouVJzF8AzhobUOr4p1kb1d5EhGRhqla5ammRUZGEhkZWWvbP1Wcdu3axZo1a2jcuPE5X5OcnIzFYiEqKqrWcrmTExFdIG0nxqEkYKLZcUREROqc296eJTU1leTkZFJTU7Hb7SQnJ5OcnEx+fr5rTEJCAsuWLQPKitMNN9zAhg0bWLRoEXa7nczMTDIzMykpKQFg7dq1vPDCC2zevJm9e/eyaNEipkyZws0330yjRo1M2c/6JuCCPgDE5G2hGmd8RURE3Fa9OvJUGTNnzuTtt992Pe7SpQsAa9asoV+/fgCkpKSQm5sLQFpaGh999BEAnTt3LretU6+xWq0sWbKERx99lOLiYlq2bMmUKVOYOnVq7e+Qm2ia2I+dX8azztGaoGOFNA0PNDuSiIhInarWBeNyZud7wZm7uvblb9l8KJe/39SZazs3MTuOiIhIjTjfz2+3PW0n5unavOwU5qYDx0xOIiIiUvdUnqTSujVvhA+lZO3banYUERGROue21zyJeXoEH+En61iKjvlSWHw9AVZfsyOJiIjUGR15kkqLatYeDIMwo4CUbZvMjiMiIlKnVJ6k8rx8OOjfHoCj2782OYyIiEjdUnmSKjkZ1wsAa9oPJicRERGpWypPUiXhHfoBcEFhsm4SLCIiDYrKk1RJk46XYcOLOOMoKSn61p2IiDQcKk9SJYY1iFRr2Y2Ss39aZXIaERGRuqOpCqTK0lvfxNLk7eTktWCA2WFERETqiI48SZWFXzKaefZr+CQtgFK7w+w4IiIidULlSaosISaEED9vCkrsbEvPMzuOiIhInVB5kirzshgMbOrkGst37Ev+yuw4IiIidULXPEm1jDY+JtH3X3z1837gWrPjiIiI1DodeZJqCW7XD4BmJ37E7nCaG0ZERKQOqDxJtcR3HoDDadCSdH7evcvsOCIiIrVO5UmqxTsonFRrGwDSN/3P5DQiIiK1T+VJqu1E3CUA+KbqJsEiIuL5VJ6k2sITBwPQtmAjRSWlJqcRERGpXSpPUm1xnfpRhC/RxjG2bUs2O46IiEitUnmSajN8/FnYbA4XF73Kyswgs+OIiIjUKpUnqRFRna/gMGF8t/uI2VFERERqlcqT1Ii+rSMA2Jqey7GCEpPTiIiI1B6VJ6kRUSF+TAn7hre957J9w2qz44iIiNQalSepMQP8f+Yyr584uf0zs6OIiIjUGpUnqTFeF/QDIDr7O5xO3apFREQ8k8qT1JgWPa8BoIPjZ/amHjQ5jYiISO1QeZIa4x/ZgoM+LfAynOxP+tjsOCIiIrVC5Ulq1PEm/QGw7vvC5CQiIiK1Q+VJalREl6sB6FC4jhOFRSanERERqXkqT1KjYjtezhGjEZsdF7Buxx6z44iIiNQ4ty1PTzzxBH369CEgIICwsLDzes3o0aMxDKPcMmTIkHJjcnJyGDlyJCEhIYSFhTF27Fjy8/NrYQ88lJc3r3X5iDG2B/hsn24SLCIinsdty1NJSQk33ngjEyZMqNTrhgwZQkZGhmt59913yz0/cuRItm3bxsqVK1m+fDlff/0148ePr8noHq9/+zgA1qQc1pQFIiLicbzNDlBVs2bNAmDhwoWVep3VaiUmJuaMz+3YsYMVK1awfv16unfvDsBLL73E0KFDefbZZ4mLi6tW5obi4paNCPD1wvtEOjv2H6JDy3izI4mIiNQYtz3yVFVffvklUVFRtGvXjgkTJnD06FHXc2vXriUsLMxVnAAGDhyIxWIhKSmpwm0WFxeTl5dXbmnIrN5evBXyJmv97ib9uyVmxxEREalRDao8DRkyhHfeeYdVq1bx1FNP8dVXX3HFFVdgt9sByMzMJCoqqtxrvL29CQ8PJzMzs8Ltzp07l9DQUNcSH68jLUFN2gMQckC3ahEREc9Sr8rT9OnTT7ug+/fLzp07q7z9m266iWuuuYZOnToxbNgwli9fzvr16/nyyy+rlXvGjBnk5ua6loMHNbt2sz5/AuCikh85lJFlchoREZGaU6+ueZo2bRqjR48+65hWrVrV2Pu1atWKiIgIdu/ezYABA4iJiSE7O7vcmNLSUnJyciq8TgrKrqOyWq01lssThDbrRLpXE+Lsafz83X9oekPlLuwXERGpr+pVeYqMjCQyMrLO3u/QoUMcPXqU2NhYAHr37s3x48fZuHEj3bp1A2D16tU4HA569uxZZ7k8gmFwJH4wcfvn47f7U0DlSUREPEO9Om1XGampqSQnJ5Oamordbic5OZnk5ORyczIlJCSwbNkyAPLz8/nLX/7CDz/8wP79+1m1ahXXXnstrVu3ZvDgwQC0b9+eIUOGMG7cONatW8d3333HpEmTuOmmm/RNuyqI6XUDAIkn13H4WK7JaURERGqG25anmTNn0qVLFx555BHy8/Pp0qULXbp0YcOGDa4xKSkp5OaWfWh7eXmxZcsWrrnmGtq2bcvYsWPp1q0b33zzTblTbosWLSIhIYEBAwYwdOhQ+vbtyxtvvFHn++cJotr25rAlgiCjiO3ffmR2HBERkRphODWLYY3Ly8sjNDSU3NxcQkJCzI5jqi8WP89/tuZgv2Agr4+93Ow4IiIiFTrfz2+3PfIk7qHFwNv51NGLNXsLySuymR1HRESk2lSepFa1jgqmdVQQJXYHn2/TlAUiIuL+VJ6k1t3Uzpu7vf6D11dPmh1FRESk2urVVAXima5sWkSsz/ucyPXn6PEnaBwWanYkERGRKtORJ6l1sZ36c9gSQbBxkp++XGp2HBERkWpReZLaZ7GQ3nQoANYdy0wOIyIiUj0qT1In4i69BYCuRUmkZ2WfY7SIiEj9pfIkdSKy9cWkeTXFatjY+eW7ZscRERGpMpUnqRuGwZGW1wAQukun7kRExH2pPEmdadl/FPlOP34uCmProWNmxxEREakSlSepMyFNEniozYfMKB3H+5vSzY4jIiJSJSpPUqeu69EagGU/plFks5ucRkREpPJUnqRO9W0dQWyIlfiiFH5I+t7sOCIiIpWm8iR1ysti8LfoFSy3PoTP98+bHUdERKTSVJ6kzrXsdS0A3Qq+JiMz0+Q0IiIilaPyJHUutkNfDno3x8+wsWPlfLPjiIiIVIrKk9Q9w+B4+/8DoPnexdhKdeG4iIi4D5UnMUW7wXdwEisXOA+y4auPzY4jIiJy3lSexBS+QY34OfpKACzr3zA5jYiIyPlTeRLTNBl0LwCxhT+z82CWyWlERETOj8qTmCbigs680OR5+pc8x9vrs82OIyIicl5UnsRUvQdcix0vlv14iNxCm9lxREREzknlSUzVo2U4CTHB2G0lLF/zldlxREREzsnb7ADSsBmGwf0XFdP+2GRK1/tSNPAn/Ky+ZscSERGpkI48ieku7dWLAKOEeDJZ9+lCs+OIiIiclcqTmM7HP5i9rW4GIGbLa5Rq0kwREanHVJ6kXki45j5OYqWtcy/rV//H7DgiIiIVUnmSesE/LJKdcdcDELjuBZxOp8mJREREzkzlSeqNltdMp8TpTWLpVtat/tDsOCIiImek8iT1RlhMC7bFlh192pu0HLtDR59ERKT+UXmSeuWCGx7lZh5nRt71fLw53ew4IiIip3Hb8vTEE0/Qp08fAgICCAsLO6/XGIZxxuWZZ55xjWnRosVpzz/55JO1tBfyeyERTeh9+RUAvPDFz9jsDpMTiYiIlOe25amkpIQbb7yRCRMmnPdrMjIyyi3z58/HMAyGDx9ebtzs2bPLjbv77rtrOr6cxeg+LWgc6MvJo4dYvWqF2XFERETKcdsZxmfNmgXAwoULz/s1MTEx5R7/97//pX///rRq1arc+uDg4NPGnk1xcTHFxcWux3l5eef9WjldoNWbxzsd5g8/TuHI943Iv+QyggKDzI4lIiICuPGRp+rKysrik08+YezYsac99+STT9K4cWO6dOnCM888Q2lp6Vm3NXfuXEJDQ11LfHx8bcVuMP4w6CpyLSE0IZuNSx43O46IiIhLgy1Pb7/9NsHBwVx//fXl1t9zzz0sWbKENWvWcMcddzBnzhzuv//+s25rxowZ5ObmupaDBw/WZvQGwRoQQubF0wHonjqftNS9JicSEREpU6/K0/Tp0yu8qPvUsnPnzhp5r/nz5zNy5Ej8/PzKrZ86dSr9+vUjMTGRO++8k7/97W+89NJL5U7L/Z7VaiUkJKTcItXXacjt/OzbnkCjmINLHzA7joiICFDPrnmaNm0ao0ePPuuY31+fVBXffPMNKSkpvPfee+cc27NnT0pLS9m/fz/t2rWr9nvL+TMsFnyvehr+czW9TnzOlrWfk9h7kNmxRESkgatX5SkyMpLIyMhaf5+33nqLbt26cdFFF51zbHJyMhaLhaioqFrPJadrkXgZG7+8km45nxD8+TSKuqzDz8/f7FgiItKA1avTdpWRmppKcnIyqamp2O12kpOTSU5OJj8/3zUmISGBZcuWlXtdXl4eS5cu5fbbbz9tm2vXruWFF15g8+bN7N27l0WLFjFlyhRuvvlmGjVqVOv7JGfW9pbnyaIxH9m68/Lq3WbHERGRBq5eHXmqjJkzZ/L222+7Hnfp0gWANWvW0K9fPwBSUlLIzc0t97olS5bgdDoZMWLEadu0Wq0sWbKERx99lOLiYlq2bMmUKVOYOnVq7e2InFNwo2h+uH41zy/ehve3B7myS3Pax+q6MhERMYfh1O3ra1xeXh6hoaHk5ubq4vEadOc/N7JiWybdm/iz5M5L8fbxMTuSiIh4kPP9/Hbb03bS8My69kK6+KXz2OF7SPrXTLPjiIhIA6XyJG4jOsSPmV1ttLccpMf+19mxYY3ZkUREpAFSeRK30uXqCWwK+QM+hp3gT+7kRG6O2ZFERKSBUXkS92IYtL7tTTKJpKkzk51vjcfpcJidSkREGhCVJ3E7IWERHL/iZUqdFi7OW0nSe0+aHUlERBoQlSdxSwk9h7Cx7RQAuu98hu0/rDA5kYiINBQqT+K2eox4iA3BA/jR2ZopK0+QmVtkdiQREWkAVJ7EbRkWCx3ufJtZjZ4kpSCAMQvXc6LIZnYsERHxcCpP4tYCAoN5bVRvIoKs7MjI4803X6ak6KTZsURExIOpPInbiw8PYMHoi5ni+1+mHn2Ura/+H47SUrNjiYiIh1J5Eo/QqWkol/9hCDanF13zVvPjq7fgdNjNjiUiIh5I5Uk8Rud+17Ox+9PYnQbdcj5l0yujVKBERKTGqTyJR+l19e2s6/JUWYE6+jE/vjIKR6kuIhcRkZqj8iQep/ewO0jqPAe706Dr0Y/56e/XYyvVESgREakZKk/ikfpcdxfrL36OYqcPH+S05PZ3NlJYoovIRUSk+lSexGP1uuo2Nl3zOUstQ/nq58MMf20tB4/mmx1LRETcnMqTeLTe3bqyaFxPIoJ8SctIJ/+lS0n56j2zY4mIiBtTeRKP17VZIz6a1JeHGn1Be/bSbs14fvzHROy2YrOjiYiIG1J5kgYhLsyfa+59ia8aDQegy6F/kfp0H44c2GZyMhERcTcqT9Jg+Pn5cdk9b/Ft9xc57gyipW03QQsuZ8uSR3GWlpgdT0RE3ITKkzQohmHQ96pRHB/9JT/6dMYPG4k7n+eDF6aw70iB2fFERMQNqDxJg9SiZRs6PbCaNe1ns8vZlNlHLmPwC1/z7GcpnDipo1AiIlIxlSdpsLy9vej/53ux3p3ERW1aUFLq4OU1u9j81GA2v/MXbIW5ZkcUEZF6yHA6nU6zQ3iavLw8QkNDyc3NJSQkxOw4ch6cTiefb89ixcdLeb7oIQCOE0xqm1tpd81UrMERJicUEZHadr6f3ypPtUDlyX3ZSu18t3whLZOfpTnpABTix674G2h11X0ER7c0OaGIiNQWlScTqTy5v8KiIpKWL6DJtnm0de4HwOE0eLn1m1ze748kNg3FMAxzQ4qISI1SeTKRypPnKLHZSVr5HkEbX6ORLYv+JX/DiYUL40KYHLeTzomJRLbpASpSIiJuT+XJRCpPnsfpdLJp9yH+ufEIn27NxFFawjrrXYQb+aR7NeFI/GCiul1LzIWXgsXL7LgiIlIFKk8mUnnybDkFJaxa/xNNfniErid/wM+wuZ7LJZiD4b1xdr6Z1r2uwt9XRUpExF2oPJlI5anhyMg+zM6v3sN37+d0LNxAqFE20eYLpdfzivNGOjUJ5dJ4bwZbNtCk0+WENm2vI1MiIvWUypOJVJ4aprzCk2xLWkXhtk/55/FEvsyPB2CQZT1v+D4PwEmspFlbkx9+Ib5NuxDZ9mIiWnTE8PE3M7qIiODh5Wn//v089thjrF69mszMTOLi4rj55pv561//iq+vb4WvKyoqYtq0aSxZsoTi4mIGDx7Mq6++SnR0tGtMamoqEyZMYM2aNQQFBTFq1Cjmzp2Lt7f3eedTeRKn08nBnJOs259D3pZP6H5wIa3tewgwik8bO9kxlT2RA2gVGcjF/plc5NxOYHRrwmIvoFFcKwzfABP2QESk4Tnfz+/zbwT1yM6dO3E4HLz++uu0bt2arVu3Mm7cOAoKCnj22WcrfN2UKVP45JNPWLp0KaGhoUyaNInrr7+e7777DgC73c6VV15JTEwM33//PRkZGdx66634+PgwZ86cuto98QCGYdCscQDNGgdAtzuAO8grLCJ552aO7dkAGZtplLudFqV72WaLYVdaLj+l5RLj9TE3+7xbblvHCCXHJ5oC/1g2tJqIEdmWxkFW4jhKhCWPkIg4QiPi8PKxmrOzIiINjFseeTqTZ555htdee429e/ee8fnc3FwiIyNZvHgxN9xwA1BWwtq3b8/atWvp1asX//vf/7jqqqtIT093HY2aN28eDzzwAIcPH67wqFZxcTHFxb8eUcjLyyM+Pl5HnuScSmx2UnMK2HOkkD2H8wne/TEJ2Z/SyJZJtOMwwcbJcuOHFs9hu7MFABO8PuIBnyWu504QQL4RRKFXMEVewSyLuYeC0DYE+/lwgW0XzU9ux8s/FB//ILysAfj4BeHtF4RvQBDejZrh7x+In48XVm8LFoumXhCRhsejjzydSW5uLuHh4RU+v3HjRmw2GwMHDnStS0hIoFmzZq7ytHbtWjp16lTuNN7gwYOZMGEC27Zto0uXLmfc9ty5c5k1a1bN7Yw0GL4+XrSODqF19C//J+03BZgClBWrQ4ezyEnfQ0HWPkqOHuCSoG60POnLkfxiwnL8yS4Op5EzFx/DTjCFBDsLoTQbSuG+n7PY4fQD4C6vj/mzz78rzHFj8UzWOxMAuNlrJfd7v0ex4UspPpQavy52w5sFIXeS6tceby+Di0qSuaxgBQ6LL06LDw6LL3h5YRheYPFma9RQjgW0wsswiDy5h9bHvgOLBafFu+zCeaPsT8OwkB3Rk4LAeLwsBkFFWUTkbsFisWAYFgzDwLBYfpmY1OBEWHuKA2MxAN+SY4Qc2172nAEGFpwWCwYGGAYng5tjC4jBMMDblk9A7u5fxpZty7BYyv40LJQERGEPiMQALPaTWPNS+WWzZRk49R4Gpf6NcQSU3bbHKC3CN+9A+V/qb+b+KrU2wh4QWfbAYcOau7/cUKdhuIY7fEMoDYj65UEpvnmpv26S8qXW7huE/dRYpwOfXzKcadoxh0/gr2MB3xMHTh90aqy3v2usgYH3iUPw2//O/s0bOL18cQT+ul3v/HRwOs68YYsP9sDos449tWmnxRt7YIxrvVdBJoaj9Lcjf81gWLAHxf1mbBaGw8aZGZQGN/l1bGE2hr2im4H/fuwRDHtRBWOhNKiJawcsJ49iKT15lrFxYFh+GZuDpbSw4rGBsa4vmliKjmGxFZxlbAxYvH8ZexyLLb/isQFR4FV2UMBSnIul5MRZxkaCl/WXsXlYSvIqHGv3j8DpXfZvj1GSj1fx8YrH+jXG+cs1n4atAK+iY2cZG47T59fLGJqFB+Drbc4tej2iPO3evZuXXnrprKfsMjMz8fX1JSwsrNz66OhoMjMzXWN+W5xOPX/quYrMmDGDqVOnuh6fOvIkUh2+Pl40jYujaVwccCkAl5cb0Rt4gdLSUo7kHCbvaAYFuTnY8o9iKzzOyNA+5JT6kXfSRlxWRzYdy8TXdgIvexG+jiKszrLFjyJsFn+wl201mJOEGIXAL/+YO39ZfnEg8wg/OI4C0MJrOz18Vle4D/9IjWa1o+zFwy1fM8p3XoVjJ5XczXJHbwCGWn7gVd8XKxz7F9t4ltr7AdDP8iMLfZ+pcOxM2yjesQ8GoJdlO0t8H69w7JO2m5hnvwaARGMPH1kfrnDs30uv5/nSsqPYrY1DfGG9v8Kxr5deydzSkQA04TDf+d1b4dh/lg7k4dLbAAgnj01+d1Y49gP7pUyzTQDAj2J2+o2pcOwn9h5MtE12Pd7v938Vjl1jv4gxtgdcj7dbx5zxej2AJEcCfy6Z6Xq8wXonEcaZP1i3OFpyTckTrsff+N5LvOXwGcfucjThjyW//r1+5ns/7SyHzjj2kDOC/sW//u/lQ9+H6Gw581mIHGcQXYvfcD1+1+dxenttP+PYk05f2hcvdD1+y+cZBnj9eMaxAC2KFnGq1L3s83eu8kqqcGyHovkUUlYwnvGex43eX1c4tlvRaxwlFIBZ3gsY5b2ywrF9i1/gkLOszE73Xsyd3ssrHDuo+Cl+dpZ9Vt3r9QFTfD6ocOy1xbPZ7GwNwDiv5fzVZ3GFY0eU/JW1jguBsv8Ye9xnQYVjbyu5j9WOrkDZvxF/O8u/ERNL7uETRy/X49XTLqdVZFCF42tTvSpP06dP56mnnjrrmB07dpCQkOB6nJaWxpAhQ7jxxhsZN25cbUc8I6vVitWq603EHN7e3kRExRIRFVtufc9yjzoAFX9gfwjYHU6KbHaK8nuQcXwiJUUnKS4+icNWjN1WhKPUhsNWxLjwroz0DsNmdxB4zJcNhyOhtASnvQTDXoLTUYrTXgoOOz0iutLCryUOp5MmecfZeHQohtOO4bSD04HFaQenHcPpoGXT1gy2RmN3QIvCeFKOdwSnEwPnL0c9nBi//NkoLI6uvmE4gbjiSPbmt8LA6VpOjTVwEhQaQXtrCE6nk5jSUDIKon8Zg2us5ZfX+QWF0tInEKfTSZQ9kJyi0Ap/Z17WQGIDyz78Gjv8OWar+BC/l28gMQG/jHX6k2ur+B98i28A0QFl/56EOq3k2QIrHIuPP1F+ZWOtTsgv/e2XC353RYa3P5G/jHU6oaDUz/XU7w9UOb39iLBaXdsoLrW6xhi/267T4kvjwF8vabDZfSni9EscnIDD4kv4b8aW2n05eYaxAKUWXxoF+Lge2x1nGWv4EPabsY6zjC0xrL8b61Ph2GLDt9xY51m2CxDm7+M68mScY2yovze+hs95jQ3x98H+y1ivc4318yHsl7HeZ9k3gODfjPVx+lDk9KlwbNBvxvo6fc86NsD661jrObZbmbF+vxkLYDHxzg716pqnw4cPc/To0bOOadWqlevao/T0dPr160evXr1YuHAhFkvFh+9Wr17NgAEDOHbsWLmjT82bN2fy5MlMmTKFmTNn8tFHH5GcnOx6ft++fbRq1YpNmzZVeNru9/RtOxEREffjltc8RUZGEhkZeV5j09LS6N+/P926dWPBggVnLU4A3bp1w8fHh1WrVjF8+HAAUlJSSE1NpXfvslMFvXv35oknniA7O5uoqLLDnitXriQkJIQOHTpUY89ERETEU5hzpVU1paWl0a9fP5o1a8azzz7L4cOHyczMLHddUlpaGgkJCaxbtw6A0NBQxo4dy9SpU1mzZg0bN25kzJgx9O7dm169ys6hDho0iA4dOnDLLbewefNmPvvsMx566CEmTpyo03IiIiIC1LMjT+dr5cqV7N69m927d9O0adNyz506C2mz2UhJSaGw8NdvMDz//PNYLBaGDx9ebpLMU7y8vFi+fDkTJkygd+/eBAYGMmrUKGbPnl03OyYiIiL1Xr265slT6JonERER93O+n99uedpORERExCwqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKVoPIkIiIiUgkqTyIiIiKV4Jb3tqvvTt3xJi8vz+QkIiIicr5OfW6f6851Kk+14MSJEwDEx8ebnEREREQq68SJE4SGhlb4vG4MXAscDgfp6ekEBwdjGEaNbTcvL4/4+HgOHjyoGw7XIv2e64Z+z3VDv+e6od9z3ajt37PT6eTEiRPExcVhsVR8ZZOOPNUCi8VC06ZNa237ISEh+j9nHdDvuW7o91w39HuuG/o9143a/D2f7YjTKbpgXERERKQSVJ5EREREKkHlyY1YrVYeeeQRrFar2VE8mn7PdUO/57qh33Pd0O+5btSX37MuGBcRERGpBB15EhEREakElScRERGRSlB5EhEREakElScRERGRSlB5ciOvvPIKLVq0wM/Pj549e7Ju3TqzI3mUr7/+mquvvpq4uDgMw+DDDz80O5JHmjt3LhdffDHBwcFERUUxbNgwUlJSzI7lcV577TUSExNdkwn27t2b//3vf2bH8nhPPvkkhmEwefJks6N4lEcffRTDMMotCQkJpuVReXIT7733HlOnTuWRRx5h06ZNXHTRRQwePJjs7Gyzo3mMgoICLrroIl555RWzo3i0r776iokTJ/LDDz+wcuVKbDYbgwYNoqCgwOxoHqVp06Y8+eSTbNy4kQ0bNvCHP/yBa6+9lm3btpkdzWOtX7+e119/ncTERLOjeKQLL7yQjIwM1/Ltt9+alkVTFbiJnj17cvHFF/Pyyy8DZffPi4+P5+6772b69Okmp/M8hmGwbNkyhg0bZnYUj3f48GGioqL46quvuOyyy8yO49HCw8N55plnGDt2rNlRPE5+fj5du3bl1Vdf5fHHH6dz58688MILZsfyGI8++igffvghycnJZkcBdOTJLZSUlLBx40YGDhzoWmexWBg4cCBr1641MZlI9eXm5gJlH+xSO+x2O0uWLKGgoIDevXubHccjTZw4kSuvvLLcv9NSs3bt2kVcXBytWrVi5MiRpKammpZFNwZ2A0eOHMFutxMdHV1ufXR0NDt37jQplUj1ORwOJk+ezCWXXELHjh3NjuNxfvrpJ3r37k1RURFBQUEsW7aMDh06mB3L4yxZsoRNmzaxfv16s6N4rJ49e7Jw4ULatWtHRkYGs2bN4tJLL2Xr1q0EBwfXeR6VJxExzcSJE9m6daup1y54snbt2pGcnExubi7vv/8+o0aN4quvvlKBqkEHDx7k3nvvZeXKlfj5+Zkdx2NdccUVrp8TExPp2bMnzZs359///rcpp6FVntxAREQEXl5eZGVllVuflZVFTEyMSalEqmfSpEksX76cr7/+mqZNm5odxyP5+vrSunVrALp168b69ev5+9//zuuvv25yMs+xceNGsrOz6dq1q2ud3W7n66+/5uWXX6a4uBgvLy8TE3qmsLAw2rZty+7du015f13z5AZ8fX3p1q0bq1atcq1zOBysWrVK1y+I23E6nUyaNIlly5axevVqWrZsaXakBsPhcFBcXGx2DI8yYMAAfvrpJ5KTk11L9+7dGTlyJMnJySpOtSQ/P589e/YQGxtryvvryJObmDp1KqNGjaJ79+706NGDF154gYKCAsaMGWN2NI+Rn59f7r9i9u3bR3JyMuHh4TRr1szEZJ5l4sSJLF68mP/+978EBweTmZkJQGhoKP7+/ian8xwzZszgiiuuoFmzZpw4cYLFixfz5Zdf8tlnn5kdzaMEBwefdr1eYGAgjRs31nV8Nei+++7j6quvpnnz5qSnp/PII4/g5eXFiBEjTMmj8uQm/vznP3P48GFmzpxJZmYmnTt3ZsWKFaddRC5Vt2HDBvr37+96PHXqVABGjRrFwoULTUrleV577TUA+vXrV279ggULGD16dN0H8lDZ2dnceuutZGRkEBoaSmJiIp999hl//OMfzY4mUmmHDh1ixIgRHD16lMjISPr27csPP/xAZGSkKXk0z5OIiIhIJeiaJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxEREZFKUHkSERERqQSVJxGR3xk9ejTDhg0zO4aI1FO6PYuINCiGYZz1+UceeYS///3v6OYLIlIRlScRaVAyMjJcP7/33nvMnDmTlJQU17qgoCCCgoLMiCYibkKn7USkQYmJiXEtoaGhGIZRbl1QUNBpp+369evH3XffzeTJk2nUqBHR0dG8+eabFBQUMGbMGIKDg2ndujX/+9//yr3X1q1bueKKKwgKCiI6OppbbrmFI0eO1PEei0hNU3kSETkPb7/9NhEREaxbt467776bCRMmcOONN9KnTx82bdrEoEGDuOWWWygsLATg+PHj/OEPf6BLly5s2LCBFStWkJWVxZ/+9CeT90REqkvlSUTkPFx00UU89NBDtGnThhkzZuDn50dERATjxo2jTZs2zJw5k6NHj7JlyxYAXn75Zbp06cKcOXNISEigS5cuzJ8/nzVr1vDzzz+bvDciUh265klE5DwkJia6fvby8qJx48Z06tTJtS46OhqA7OxsADZv3syaNWvOeP3Unj17aNu2bS0nFpHaovIkInIefHx8yj02DKPculPf4nM4HADk5+dz9dVX89RTT522rdjY2FpMKiK1TeVJRKQWdO3alQ8++IAWLVrg7a1/akU8ia55EhGpBRMnTiQnJ4cRI0awfv169uzZw2effcaYMWOw2+1mxxORalB5EhGpBXFxcXz33XfY7XYGDRpEp06dmDx5MmFhYVgs+qdXxJ0ZTk2jKyIiInLe9J8/IiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpWg8iQiIiJSCSpPIiIiIpXw/9r896HHXOcjAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -490,7 +490,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGwCAYAAAAOvdliAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABuoUlEQVR4nO3deXgTdf4H8Pfk7pX0bloopUCh3DeliIpaLSzq1gtEVhBRXAV+YnVRWCzouuLCsosoirgK7KECHqyLiCKoKJRyy43cLdD0btKmbdIk8/sjEo20pUeSadr363nytJl8ZuadoOTDd2a+I4iiKIKIiIiIfEYmdQAiIiKi9oYNGBEREZGPsQEjIiIi8jE2YEREREQ+xgaMiIiIyMfYgBERERH5GBswIiIiIh9TSB2AruZwOHD58mWEhIRAEASp4xAREVEjiKKIiooKxMXFQSZreIyLDVgrdPnyZcTHx0sdg4iIiJohLy8PHTt2bLCGDVgrFBISAsD5B6jVaiVOQ0RERI1hMpkQHx/v+h5vCBuwVujKYUetVssGjIiIyM805vQhnoRPRERE5GNswIiIiIh8jA0YERERkY/59Tlgy5cvx+LFi2EwGNC/f3+89tprGDZsWL3169evx/PPP4/z588jKSkJf/nLX/Cb3/zG9booipg/fz7efvttlJeX47rrrsObb76JpKQkAMD58+fxpz/9Cdu2bYPBYEBcXBx+97vf4Y9//CNUKpWrJjEx8ap9Z2dnY/jw4R7+BIiIqDWy2+2ora2VOgZ5mFKphFwu98i2/LYBW7t2LTIzM7FixQqkpKRg6dKlSE9Px8mTJxEdHX1V/c6dOzFhwgQsXLgQt99+O9577z1kZGRg//796NOnDwBg0aJFWLZsGdasWYPExEQ8//zzSE9Px7Fjx6DRaHDixAk4HA689dZb6NatG44cOYJHH30UZrMZf/3rX93299VXX6F3796u5xEREd79QIiISHKiKMJgMKC8vFzqKOQloaGh0Ov1LZ6nUxBFUfRQJp9KSUnB0KFD8frrrwNwTl4aHx+PmTNn4rnnnruqfvz48TCbzdi4caNr2fDhwzFgwACsWLECoigiLi4OTz/9NJ555hkAgNFoRExMDFavXo3777+/zhyLFy/Gm2++ibNnzwL4eQTswIEDGDBgQLPem8lkgk6ng9Fo5FWQRER+JD8/H+Xl5YiOjkZgYCAn025DRFFEVVUVCgsLERoaitjY2KtqmvL97ZcjYFarFfv27cOcOXNcy2QyGdLS0pCdnV3nOtnZ2cjMzHRblp6ejg0bNgAAzp07B4PBgLS0NNfrOp0OKSkpyM7OrrcBMxqNCA8Pv2r5nXfeiZqaGnTv3h2zZ8/GnXfeWe/7sVgssFgsrucmk6neWiIiap3sdrur+eJRj7YpICAAAFBYWIjo6OgWHY70y5Pwi4uLYbfbERMT47Y8JiYGBoOhznUMBkOD9Vd+NmWbp0+fxmuvvYbHHnvMtSw4OBhLlizB+vXr8dlnn2HkyJHIyMjAp59+Wu/7WbhwIXQ6nevBWfCJiPzPlXO+AgMDJU5C3nTlz7el5/j55QhYa3Dp0iWMHj0a9913Hx599FHX8sjISLeRtqFDh+Ly5ctYvHhxvaNgc+bMcVvnyky6RETkf3jYsW3z1J+vX46ARUZGQi6Xo6CgwG15QUEB9Hp9nevo9foG66/8bMw2L1++jJtuugkjRozAypUrr5k3JSUFp0+frvd1tVrtmvWes98TERG1fX7ZgKlUKgwePBhbt251LXM4HNi6dStSU1PrXCc1NdWtHgC2bNniqk9MTIRer3erMZlMyMnJcdvmpUuXMGrUKAwePBirVq265t3OAeDgwYN1nqxHRERE7ZPfHoLMzMzE5MmTMWTIEAwbNgxLly6F2WzGlClTAACTJk1Chw4dsHDhQgDAk08+iRtvvBFLlizB2LFj8cEHH2Dv3r2uESxBEDBr1iy89NJLSEpKck1DERcXh4yMDAA/N18JCQn461//iqKiIleeK6Nka9asgUqlwsCBAwEAH3/8Md5991384x//8NVHQ0RERK2d6Mdee+01sVOnTqJKpRKHDRsm7tq1y/XajTfeKE6ePNmtft26dWL37t1FlUol9u7dW/zss8/cXnc4HOLzzz8vxsTEiGq1WrzlllvEkydPul5ftWqVCKDOxxWrV68We/bsKQYGBoparVYcNmyYuH79+ia9L6PRKAIQjUZjk9bzFzXVZrHw0jnRYbdLHYWIyGOqq6vFY8eOidXV1VJHabTbb79dTE9Pr/O17du3iwDEH374odnb37FjhzhmzBgxNDRUVKvVYp8+fcQlS5aINpvNrQ6A+MknnzT4PXvlce7cOXH+/Pl1vtajR49mZ22shv6cm/L97bfzgLVlbXkesAsn9iPgg3sQjVIc0gxFj1mfQq3hFUNE5P9qampw7tw5JCYmQqPRSB2nUTZs2IB77rkHFy5cQMeOHd1ee/jhh3H48GHs2bOnSdu0Wq1QqVT45JNPMG7cOEyZMgVPPPEEQkND8dVXX2H27Nm45ZZbsG7dOtcJ7YIg4JNPPkF6ejqMRqNrW3fffTf69OmDF1980bUsKioKf/rTn/Dhhx/iq6++ctu3QqFAZGRkUz+GJmnoz7nNzwNG/slWawXWTUI0SgEA/Wr2YNeqpzD88bckTkZE5HmiKKK61i7JvgOU8kZdrXf77bcjKioKq1evxrx581zLKysrsX79ejz33HOYMGECtm/fjrKyMnTt2hVz587FhAkTXLWjRo1Cnz59oFAo8O9//xt9+/bFxo0b8eijj+LOO+90u1jtkUceQUxMDO68806sW7cO48ePd88dEOCaawtwnvMdGBhY5wV2CoWi3gvv/AEbMPKZI998iAGOPJQhBKf6PoOLB7fg/ct98Y+qWugClVLHIyLyqOpaO3plfSHJvo+9mI5A1bW/4hUKBSZNmoTVq1fjj3/8o6tpW79+Pex2O373u99h/fr1ePbZZ6HVavHZZ5/hwQcfRNeuXd3uvbxmzRo8/vjj2LFjBwDgyy+/RElJievOMr90xx13oHv37nj//fevasDaE7+8CpL81P41AICT+jsx9O4nsTLiWeypTcS6vXkSByMiar8efvhhnDlzBt9++61r2apVq3DPPfcgISEBzzzzDAYMGIAuXbpg5syZGD16NNatW+e2jaSkJCxatAg9evRAjx498OOPPwIAevbsWec+k5OTXTXNdfjwYQQHB7s9fv/737dom77EETDyiUpTGXpX7QEEIPamaRAEAROHJ+D5DUew6Ug+Hr2hi9QRiYg8KkApx7EX0yXbd2MlJydjxIgRePfddzFq1CicPn0a3333HV588UXY7Xa8/PLLWLduHS5dugSr1QqLxXLVbP+DBw+uc9sNnWauUqkanbEuPXr0uOouM/503jQbMPKJvRer8Zp1HkYF52FmjwEAgLSe0dj43+O4+fIBlBZ2Rnh0B2lDEhF5kCAIjToM2BpMnToVM2fOxPLly7Fq1Sp07doVN954I/7yl7/g1VdfxdKlS9G3b18EBQVh1qxZsFqtbusHBQW5PU9KSgIAHD9+HCNGjLhqf8ePH8eAAQNalFmlUqFbt24t2oaUeAiSfGLHuXLsE3vgUvIU17JYXQBeDvw3HlNsxJns/0qYjoiofRs3bhxkMhnee+89/POf/8TDDz8MQRCwY8cO/Pa3v8Xvfvc79O/fH126dGnUocP09HSEh4djyZIlV7326aef4tSpU3jooYe88E78Bxsw8onssyUAgNSuEW7LC6OvBwCI577zeSYiInIKDg7G+PHjMWfOHOTn57uao6SkJGzZsgU7d+7E8ePH8dhjj111y766BAUF4a233sJ///tfTJs2DYcOHcL58+fxzjvv4KGHHsKjjz6K3/zmNy3KbLPZYDAY3B6NydZasAEjr6uprsLdhW/gLtl3GNLJ/fh8QFfn0HSM6ZAU0YiI6CdTp05FWVkZ0tPTERcXBwCYN28eBg0ahPT0dIwaNQp6vd51d5hruffee/H1118jNzcX119/PRITE/HII4/gueeea9R9lK/l6NGjiI2NdXskJCS0eLu+wolYW6G2NhHrqYPfIWnD7ShHMHRZeRB+cf/MsqJ8hC1PBgAYZ/4IXUSMVDGJiFrEHydi9aWamhr89re/RV5eHr799ltERUVJHalZPDURK0fAyOvKTjtnUc5TJ7k1XwAQFhWLPMH5L63zP3x71bpERNQ2aDQa/Pe//8WkSZOwfft2qeNIzj8uzyC/Jub/AAAwh/Wq83WDtg/ijZdRdX4vgHE+TEZERL6k0Wjw3HPPSR2jVeAIGHmdzuS8YkbRcUCdr9uj+wAAVCUnfBWJiIhIUhwBI68SHQ7E1l4AAIQl9KuzRt5vPG4+EgdHQCK+8WE2IiIiqXAEjLyqrDgfOpgBAHFdetdZ061LF5wV43C+zIKKmlpfxiMiIpIEGzDyqoJzRwAA+YhCQFBInTVhQSrE6pxXkpwwVPgsGxERkVR4CJK86pDQAw/XvIZbEmR4qYG6B0P2QV/1LaoOFQGdH/JVPCIiIklwBIy86mxxNfIRAUWHgQ3WDZKdxt3y76G+tMtHyYiIiKTDBoy86myx8/yvLlFBDRdGOm/cqjGd83YkIiIiyfEQJHnVrZfewEBFLbqpn2mwLjiuB3AMiKjJ9VEyIiIi6XAEjLxGdDjwm5pNeELxKToEOhqsjUp0zgUW6zCg1mrxRTwiIgJwxx13YPTo0XW+9t1330EQBBw61LL79ebl5eHhhx9GXFwcVCoVEhIS8OSTT6KkpMSt7qGHHnLda1IQhAYfCxYscK1T1+v1vafWgiNg5DXG0kKECtUAgJhOSQ3WRsd2RpWoRqBgQe754+jUfYAPEhIR0dSpU3HPPffg4sWL6Nixo9trq1atwpAhQ9CvX93zODbEarVCpVLh7NmzSE1NRffu3fH+++8jMTERR48exR/+8Ad8/vnn2LVrF8LDw69aPz8/3/X72rVrkZWVhZMnT7qWBQcHu34fPXo0Vq1a5ba+Wq1ucmZf4ggYeU1RnnMG/GKEQhMY3GCtIJPhssL5P35p7nGvZyMiIqfbb78dUVFRWL16tdvyyspKrF+/HlOnTgUAbN68GSNHjkRoaCgiIiJw++2348yZM676UaNGYcaMGZg1axYiIyORnp4OAJg+fTpUKhW+/PJL3HjjjejUqRPGjBmDr776CpcuXcIf//jHOnPp9XrXQ6fTQRAEt2W/bMDUarXba3q9HmFhYR7+pDyLDRh5jSnf+T9msSK2UfXGwE6wiwJMRXnejEVE5FtWc/2P2pom1FY3rraJFAoFJk2ahNWrV0MURdfy9evXw263Y8KECQAAs9mMzMxM7N27F1u3boVMJsNdd90Fh+PnU0zWrFkDlUqFHTt2YMWKFSgtLcUXX3yBJ554AgEBAW771ev1mDhxItauXeu23/aChyDJa2qLzwIAKgM7NKo+p+dc3L99Cu5RJeIGbwYjIvKll+Pqfy3pNmDi+p+fL+4G1FbVXZswEpjy2c/Pl/YFqkqurltgbHLEhx9+GIsXL8a3336LUaNGAXAefrznnnug0+kAAPfcc4/bOu+++y6ioqJw7Ngx9OnjPI83KSkJixYtctXk5ORAFEX07Nmzzv327NkTZWVlKCoqQnR0dJNzX7Fx40a3ETEAmDt3LubOnXvNdadNm4Y9e/bg3nvvxYULF1y/1zcy5ylswMhrBKPzisbakI7XqHTqENcBtShyTV1BRES+kZycjBEjRuDdd9/FqFGjcPr0aXz33Xd48cUXXTWnTp1CVlYWcnJyUFxc7Br5ys3NdTVggwcPrnP71xrhUqlULcp/00034c0333RbVtd5Zb926NAh5Obm4sCBAzh06BBmz56NAwcOtChLY7EBI69RVxcAAGSh8Y2qT4x0zhV2togNGBG1IXMv1/+aIHd//ofTDdT+6qyhWYebn6kOU6dOxcyZM7F8+XKsWrUKXbt2xY033uh6/Y477kBCQgLefvttxMXFweFwoE+fPrBara6aoCD3OR+7desGQRBw/Phx3HXXXVft8/jx44iKikJoaGiLsgcFBaFbt271vn7q1CnMmjULBoMBQUFB+PDDD1FcXIwxY8ZAEASEh4cjICAAgiBgxIgR2LlzZ4vyNAbPASOvyVI/i9Sa12DpcWej6hPDNVisWIEV1jkwldcxrE5E5I9UQfU/lJom1AY0rraZxo0bB5lMhvfeew///Oc/8fDDD0MQBABASUkJTp48iXnz5uGWW25xHTq8loiICNx666144403UF3tfg6bwWDAf/7zHzz00EPNztwYFosFTzzxBN566y3s27cPDzzwAFauXIlevXphwoQJWLp0KUpLS12/+6L5AtiAkRddMtmQjwhERuobVR8SqMHNih8wRPYjinJPXnsFIiLymODgYIwfPx5z5sxBfn6+W2MUFhaGiIgIrFy5EqdPn8a2bduQmZnZqO2+/vrrsFgsSE9Px/bt25GXl4fNmzfj1ltvRffu3ZGVldXi7BaLBQaDwe1RXFwMANiwYQOOHj2K22+/HQMGDMCrr74KpVIJADh8+LDr8Okvf/cFNmDkFTW1dpSYncPScaGaa1T/rEQRAwAwGc56JRcREdVv6tSpKCsrQ3p6OuLifr54QCaT4YMPPsC+ffvQp08fPPXUU1i8eHGjtpmUlIQ9e/agS5cuGDduHBISEjBmzBh0794dO3bsuOrk+ebYvHkzYmNj3R4jR44E4GyslixZgoMHD+LgwYM4fvw4nn32WQDOQ5NJSUlX/e4LPAeMvKL48jn8XbkclwQ9dAG/afR6FZo4oPJHWIp5T0giIl9LTU2t94T5tLQ0HDt2zG3ZL2u/+eaberfbuXNnt3nG5s+fj7/97W84dOgQhg8f7lr+67nIrnjooYfqPVS5evXqetcDnNNdfPHFF67pNA4dOoR+/fqhuLgYoaGhkMvlbr/7CkfAyCuMl37EXfId+K0823UOQWNYr1wxWc57QhIRtVUvvPACli1bhl27drnNI+YNU6ZMQXl5OZKTk9G/f3/8+9//BiDt4UeAI2DkJdXFzgbKpIxq0nqysAQgH1BXXvRGLCIiaiWmTJnik/0EBQVhw4YNVy2/6aabcNNNN131u69wBIy8orb8EgCgKiCmSetpohIBAFpL/jUqiYiI/BcbMPIKodI5B5gtsGkzG4fGdoVDFOCw27wRi4iIqFXgIUjyCmV1EQBACG7aCFh0Yl/0sKxBLRT4oboWugClN+IRERFJiiNg5BUai3MiVYWucXOAXRGgVkIXHAgAuFhWz/3QiIiI/BwbMPKKYFspAEAT2rQGDAA6hF1pwKqvUUlE1Ppc676H5N889efLBoy84m7HX5BS8zo0icOvXfwrD2Az1qpeRMDR972QjIjIO67Mrl5VxdH7tuzKn++VP+/m4jlg5HEWmx0lNQAQjsiw0CavnyAvQYrsBHYVH7t2MRFRKyGXyxEaGorCwkIAQGBgYJPmQaTWTRRFVFVVobCw0COTtrIBI48rqXTegkgpF5p1Er0QlgAYOBcYEfkfvd552sWVJozantDQUNefc0uwASOPM+Udxd+Ub6BQ1QmC0PjbEF2hiUoEjnMuMCLyP4IgIDY2FtHR0aitrZU6DnmYUqn02O2K2ICRx9UUnMLd8u9xSujWrPV1sV0AAFH2Ak/GIiLyGblc7tP7CpL/4Un45HHWcufIVZUyolnrR8Q5GzAtqmCuKPdULCIiolaDDRh5nL3COXJl0UQ2a/0QXTgqxQAAQPHl856KRURE1GqwASOPk5mdJ586Apt2I+5fKpJHwyCGoay0xFOxiIiIWg2/bsCWL1+Ozp07Q6PRICUlBbt3726wfv369UhOToZGo0Hfvn2xadMmt9dFUURWVhZiY2MREBCAtLQ0nDp1yvX6+fPnMXXqVCQmJiIgIABdu3bF/PnzYbVa3bZz6NAhXH/99dBoNIiPj8eiRYs896b9gLKm2PlLE29D9Evz497CcMtynFJ291AqIiKi1sNvG7C1a9ciMzMT8+fPx/79+9G/f3+kp6fXe+nvzp07MWHCBEydOhUHDhxARkYGMjIycOTIEVfNokWLsGzZMqxYsQI5OTkICgpCeno6ampqAAAnTpyAw+HAW2+9haNHj+Lvf/87VqxYgblz57q2YTKZcNtttyEhIQH79u3D4sWLsWDBAqxcudK7H0grEvDTbYiUuthmb0Mf6pwN32Cs8UgmIiKiVkX0U8OGDROnT5/uem6328W4uDhx4cKFddaPGzdOHDt2rNuylJQU8bHHHhNFURQdDoeo1+vFxYsXu14vLy8X1Wq1+P7779ebY9GiRWJiYqLr+RtvvCGGhYWJFovFtezZZ58Ve/To0ej3ZjQaRQCi0Whs9DqtSe6CZFGcrxWPZn/e7G0s+fKkmPDsRvG5jw55MBkREZH3NOX72y9HwKxWK/bt24e0tDTXMplMhrS0NGRnZ9e5TnZ2tls9AKSnp7vqz507B4PB4Faj0+mQkpJS7zYBwGg0Ijw83G0/N9xwA1Qqldt+Tp48ibKysjq3YbFYYDKZ3B7+7Hb7YqTUvI6AhCHN3sYA2yGsVb2I0Wf/7MFkRERErYNfNmDFxcWw2+2IiXE/xygmJgYGg6HOdQwGQ4P1V342ZZunT5/Ga6+9hscee+ya+/nlPn5t4cKF0Ol0rkd8fHyddf6gymqD0SqgAOGIDNM1ezuRGiBFdgLxVcc9mI6IiKh18MsGrDW4dOkSRo8ejfvuuw+PPvpoi7Y1Z84cGI1G1yMvL89DKX2vuMJ5QYJGKUOwuvnz/IbEJAAAwh3FHslFRETUmvjlTPiRkZGQy+UoKHCfKb2goKDe+zPp9foG66/8LCgoQGxsrFvNgAED3Na7fPkybrrpJowYMeKqk+vr288v9/FrarUaarW6ztf8TUXeIfxduRwF6kQIwphmbyc8NhEAEIpKVJsrEBAU4qmIREREkvPLETCVSoXBgwdj69atrmUOhwNbt25Fampqneukpqa61QPAli1bXPWJiYnQ6/VuNSaTCTk5OW7bvHTpEkaNGoXBgwdj1apVkMncP8LU1FRs377d7R5gW7ZsQY8ePRAWFtb8N+0nrIWncZd8B25Gw1OCXItWF44q0dmUFl0+54loRERErYZfNmAAkJmZibfffhtr1qzB8ePH8fjjj8NsNmPKlCkAgEmTJmHOnDmu+ieffBKbN2/GkiVLcOLECSxYsAB79+7FjBkzADhvoDpr1iy89NJL+PTTT3H48GFMmjQJcXFxyMjIAPBz89WpUyf89a9/RVFREQwGg9u5XQ888ABUKhWmTp2Ko0ePYu3atXj11VeRmZnpuw9HQrUVzkOG1crQFm1HkMlQJHdO5GoquNDSWERERK2KXx6CBIDx48ejqKgIWVlZMBgMGDBgADZv3uw64T03N9dtdGrEiBF47733MG/ePMydOxdJSUnYsGED+vTp46qZPXs2zGYzpk2bhvLycowcORKbN2+GRqMB4BzJOn36NE6fPo2OHTu65RFFEYDzyskvv/wS06dPx+DBgxEZGYmsrCxMmzbN2x9Jq2A3O+cAs6paPtpnUkYBlouoLvbfc+KIiIjqIohXOgdqNUwmE3Q6HYxGI7RardRxmmTXiicw3PAf7IqZgOGPr2jRtnKWPoBOZdk4ljwTt0xoHyOIRETkv5ry/e23hyCpdZLVOOc6EwPDr1F5bd/3zEKq5XVs09za4m0RERG1JmzAyKNUVmcDJg+KbPG29KEBAHg7IiIianvYgJFHaazlAABliAcaMK3z3LuCCjZgRETUtvjtSfjUOs1U/wnllQV4M3FUi7fVUSjCOtUL0JSKAPa0eHtEREStBRsw8qjCKhFGhCE0tPm3IboiIlSLHrKTsDsE2GqtUChV116JiIjID/AQJHmMze6Asdo5AW1oYMubpbDIONhEGeSCiLKiyy3eHhERUWvBBow8xlhWhL8rl+N5xb8Qqmn54KpcoUCpEAoAKC/IbfH2iIiIWgsegiSPqSi+hLvkO2BEEBQKuUe2aVREINpWCnPxRY9sj4iIqDXgCBh5TFV5IQDAJLT8/K8rKlXO2xFZyngIkoiI2g42YOQxNcYiAIBZ7rkGzBoQDQBwVOR7bJtERERSYwNGHmOrcDZgFqXnGjBbcAdcFsNhsgoe2yYREZHUeA4YeYzdXAwAsKpbfiPuK/J6/x4TT16HmzRRSPfYVomIiKTFETDyGKGqFABg17T8PpBXxFyZDd9k8dg2iYiIpMYGjDxGXuNswMTACI9tM1qrBgAUVrABIyKitoMNGHnMytCnMLTmDeR3G++xbeo1NqxTvYAPa59ArZVNGBERtQ1swMhjiqocKEIognUtvxH3FWG6UAwUTqOzUIDSQs4FRkREbQMbMPKYsiorACA8yHP3bJTJ5a7Z8I2FeR7bLhERkZR4FSR5zEzzMlQolIiQ9wPguRPxjYoIxNhKOBs+ERG1GWzAyCNqrRbci22AAigPWObRbZtVUYDtR1jLORs+ERG1DTwESR5hLHXehsghCggJ9dw5YABgDYxxbtvE2fCJiKhtYANGHmEud86CXyEEQq7w7MCqI8h5OyJ5pcGj2yUiIpIKGzDyiGpTCQCgUgj2+LZlofG4JEagzK72+LaJiIikwHPAyCNqKpwNWJVc6/FtV/cah+tyEtFToeXtiIiIqE3gCBh5RG2lcxb8GnmIx7d95XZEhaYaj2+biIhICmzAyCPsZmcDZlXpPL7tKw1YidkKq83h8e0TERH5Gg9BkkfsirgbM2q64J5ecRjs4W2HBSrxnurP6IhClOb3gD6+m4f3QERE5FscASOPKLeIKIYOCp3e49sWBAFdZIXoJCtCeUGux7dPRETka2zAyCPKf7oNkS5A6ZXtGxURAICqkkte2T4REZEv8RAkeUSq4T30V1xAB+sjALp6fPtV6kjABtSWswEjIiL/xxEw8ogBldsxRfEFohyFXtm+NcA5GavDxMlYiYjI/7EBI48IsFcAAFQhEV7ZviPYeTsiubnAK9snIiLyJTZg5BHBorMBC9SGe2X7Cm0sAEBTU+SV7RMREfkSGzBqMdHhgFasBAAEhkZ5ZR/K8HhcFCNR6PD8rY6IiIh8jSfhU4uZK40IFpwTpGq91YB1vwUjNy9DpFKFvV7ZAxERke9wBIxarKLMeeK9RVRCExDklX1Eh/w8G77NztnwiYjIv7EBoxYzG5034q4QgiDIvPOfVESQCnKZAFEEiiutXtkHERGRr7ABoxYr1HTF4Jo38VTwIq/tQyYT8I767/hO9SQqzu3x2n6IiIh8gQ0YtVi5xYES6FAdFO/V/XSQlSFeVgRzUZ5X90NERORtbMCoxYzVtQCA0EDv3IboCrMqEgBgLb/s1f0QERF5G6+CpBbT5m3DfMUmoHYkgKFe248lIAqo5mz4RETk/9iAUYuFF+/DWMUX2GUN9ep+HEExQCkgcDZ8IiLyczwESS0ms5QDAERNqHf3o9UDANScDZ+IiPwcGzBqMcVPDZgsMMyr+1GHxgEAgqzFXt0PERGRt7EBoxZT20wAALmXG7DASOftiC7bvbsfIiIib+M5YNRiAT81YMqQCK/uJ6TLEKRalkEhE/CjQ4RMJnh1f0RERN7i1yNgy5cvR+fOnaHRaJCSkoLdu3c3WL9+/XokJydDo9Ggb9++2LRpk9vroigiKysLsbGxCAgIQFpaGk6dOuVW8+c//xkjRoxAYGAgQkND69yPIAhXPT744IMWvdfWLNBeAQBQh4R7dT+RwWoIAmBziCit4mz4RETkv/y2AVu7di0yMzMxf/587N+/H/3790d6ejoKCwvrrN+5cycmTJiAqVOn4sCBA8jIyEBGRgaOHDniqlm0aBGWLVuGFStWICcnB0FBQUhPT0dNTY2rxmq14r777sPjjz/eYL5Vq1YhPz/f9cjIyPDI+26NgmAGAARqvTsCppTLEB6oAgAUmixe3RcREZE3CaIoilKHaI6UlBQMHToUr7/+OgDA4XAgPj4eM2fOxHPPPXdV/fjx42E2m7Fx40bXsuHDh2PAgAFYsWIFRFFEXFwcnn76aTzzzDMAAKPRiJiYGKxevRr333+/2/ZWr16NWbNmoby8/Kp9CYKATz75pNlNl8lkgk6ng9FohFarbdY2fMXhEJHyx/cRAjPWPns/okJDvLq/LX++C8mWwyi9ZTH633iXV/dFRETUFE35/vbLETCr1Yp9+/YhLS3NtUwmkyEtLQ3Z2dl1rpOdne1WDwDp6emu+nPnzsFgMLjV6HQ6pKSk1LvNhkyfPh2RkZEYNmwY3n33XTTU51osFphMJreHv6iw2FAk6nBWjENIUKDX9xcjNyFeVgRLKW9HRERE/ssvT8IvLi6G3W5HTEyM2/KYmBicOHGiznUMBkOd9QaDwfX6lWX11TTWiy++iJtvvhmBgYH48ssv8cQTT6CyshL/93//V2f9woUL8cILLzRpH62F6afbEKkVMmiUcq/vz6KJAmoAh5Gz4RMRkf/yywastXv++eddvw8cOBBmsxmLFy+utwGbM2cOMjMzXc9NJhPi4717Y2tPqS46h/mKNTCpYgCM8fr+bEExQDkgVOZ7fV9ERETe4peHICMjIyGXy1FQ4H5LmoKCAuj1+jrX0ev1DdZf+dmUbTZWSkoKLl68CIul7hPH1Wo1tFqt28Nf1JZcwBTFF8jANp/sTxbi/LNQVnM2fCIi8l9+2YCpVCoMHjwYW7dudS1zOBzYunUrUlNT61wnNTXVrR4AtmzZ4qpPTEyEXq93qzGZTMjJyal3m4118OBBhIWFQa1Wt2g7rZGlshQAUCML9sn+lKGxAIBAC2fDJyIi/+W3hyAzMzMxefJkDBkyBMOGDcPSpUthNpsxZcoUAMCkSZPQoUMHLFy4EADw5JNP4sYbb8SSJUswduxYfPDBB9i7dy9WrlwJwHnl4qxZs/DSSy8hKSkJiYmJeP755xEXF+d2NWNubi5KS0uRm5sLu92OgwcPAgC6deuG4OBg/O9//0NBQQGGDx8OjUaDLVu24OWXX3ZdWdnW2MzlAACLwrtXP14RGN4BAKC1l/hkf0RERN7gtw3Y+PHjUVRUhKysLBgMBgwYMACbN292nUSfm5sLmeznAb4RI0bgvffew7x58zB37lwkJSVhw4YN6NOnj6tm9uzZMJvNmDZtGsrLyzFy5Ehs3rwZGo3GVZOVlYU1a9a4ng8cOBAA8PXXX2PUqFFQKpVYvnw5nnrqKYiiiG7duuFvf/sbHn30UW9/JJJwVJcDAKxK3zRg2uhOyHNE4SKiECuKEATOhk9ERP7Hb+cBa8v8aR6w7Hf+gNS8lciJyEDKzDXXXqGFamrtSH5+MwDgh6zboAtUen2fREREjdHm5wGj1kOwGAEADpVvGkWNUg6txjlwW1hRc41qIiKi1okNGLWIzPLTpLEBOp/tM1rrPCRcWMHbERERkX9iA0Yt8p/QabjFshiXEu722T6fsb+D79X/B+Xxj322TyIiIk9iA0YtYrAG4IzYAarQls2V1hSR8ip0FIrhKL/os30SERF5EhswapGKGhsAuM7L8gVbYPRPO+ftiIiIyD/57TQU1DrcW/EvVCisCBe7AYj2zU5D9IABUFYX+mZ/REREHsYGjFrkXttGaBVmXBBm+Wyfip9mww/gbPhEROSneAiSms1htyNYrAIABOrCfbbfgDDnbPghtZwNn4iI/BMbMGq2yopyyATnPL4hugif7Vcb5WzAwh2lPtsnERGRJ7EBo2YzG52HAGtEJTQBQT7bb5g+AXmOKJwQ42E2m322XyIiIk/hOWDUbFWmMgBApRAEzTVqPSk4JBTD8DqqrHZ8XQ0k+q73IyIi8giOgFGz1VQ4DwGaZcE+33d0iBoAUGji7YiIiMj/sAGjZrNWOhuwakkaMN6OiIiI/BcbMGq287phuMWyGKujnvH5vh+2/hs71DMRcWyNz/dNRETUUmzAqNnKapU4I3ZAZUhXn+87VFGLDkIJZKY8n++biIiopdiAUbOZamoBANoApe93HhwDAFCYORs+ERH5HzZg1Gyxl7/CU4oP0av2qM/3Ldc5Z8PXWIp8vm8iIqKWYgNGzdaldDueVHyMrtWHfb5vzU+z4QdzNnwiIvJDbMCo2RRWEwBAFhDq832H/DQbfhhnwyciIj/EBoyaTWWrAADIg0J9vu+w6HgAgA5m1FRzNnwiIvIvbMCo2TT2SgCAKjDM5/vWhkXhrBiHvY7uKCnhYUgiIvIvvBURNVuA46cGLMT3DZggk+HBgOW4VF6Nj+wh6ODzBERERM3HETBqtmDReegvICRCkv1Ha523Iyqq4O2IiIjIv7ABo2Zx2O0IFqsAAEG6cEkyxPB2RERE5KfYgFGzVFrtuNW6CHdZXkBwWIwkGe6q/hA71TPQ7ehrkuyfiIiouXgOGDWLqcaGM2IHqBQyaNRqSTJoVSLihFJcqrwsyf6JiIiaiyNg1CymahsAQKuRrodXaJ2z4atrOBs+ERH5F46AUbNYCk/hKcWHqJbHA7hVkgyqsDgAQFBtsST7JyIiai6OgFHzFJ3Ak4qPcZd9s2QRgiOck0+E2jkbPhER+Rc2YNQsteZyAIBFESJZBt1Ps+GHiSbYaq2S5SAiImoqNmDULI6qcgCAVSldAxYeFQebKINMEFFaeEmyHERERE3Fc8CoWcQaIwDArtRKlkEml+OwLAlWu4gQYwWiOR0+ERH5CTZg1CyCxdmAOdTSNWAAMC/8bzh8yYh/IAbJkiYhIiJqPB6CpGaRWUzOXzQ6SXPE/HQ7Is6GT0RE/oQNGDWLstbZgAkBoZLmiHLdjoj3gyQiIv/BBoya5d2gabjL8gLKO0kzB9gVt5g/Q7Z6BlKOvyJpDiIioqbgOWDULGdt4TgqKqD+aTJUqWg1csQKpTBU50uag4iIqCk4AkbNYqqpBQBoNUpJc6hCnZc+Blt5OyIiIvIfHAGjZrm3aj1MchnCZAMAhEmWI/Cn2fB1thLJMhARETUVGzBqMofdjhni+5ArRRQrnpU0iy66IwAgTDTCYbdDJpdLmoeIiKgxeAiSmsxcaYRcEAEAwaERkmYJj+4IhyhAKdhRVszzwIiIyD+wAaMmMxudh/usogJqTaCkWZQqNcoF5+2QygsvSpqFiIiosXgIkpqsylQKAKgQghAhCBKnAX5U9IDMaoLMzLnAiIjIP3hkBKy0tBQOh8MTmyI/UFPhbMCqhCCJkzi9Gfcyxlnn46yiq9RRiIiIGqXZDdixY8fwyiuvYMSIEYiKikJ0dDQmTZqEjz76CGaz2ZMZqZWxVpYBAKrlwRIncYoOcd6OqIi3IyIiIj/RpAbs5MmTePrpp5GUlIThw4djz549+P3vf4+CggJs2rQJCQkJePHFFxEZGYkxY8bgzTff9FZuAMDy5cvRuXNnaDQapKSkYPfu3Q3Wr1+/HsnJydBoNOjbty82bdrk9rooisjKykJsbCwCAgKQlpaGU6dOudX8+c9/xogRIxAYGIjQ0NA695Obm4uxY8ciMDAQ0dHR+MMf/gCbzdai99qa1JqdDViNIkTiJE7RV+4HaeIhSCIi8g9NasB27twJs9mMZcuWobi4GB999BEmTZqEyMhIDBs2DH/605/www8/4Pjx4xg9ejQ+/vhjb+XG2rVrkZmZifnz52P//v3o378/0tPTUVhYWG/2CRMmYOrUqThw4AAyMjKQkZGBI0eOuGoWLVqEZcuWYcWKFcjJyUFQUBDS09NRU/PzF7vVasV9992Hxx9/vM792O12jB07FlarFTt37sSaNWuwevVqZGVlefYDkNAp3QjcZXkBn0X/XuooAIBh5m+wSz0dd5yaJ3UUIiKixhH91LBhw8Tp06e7ntvtdjEuLk5cuHBhnfXjxo0Tx44d67YsJSVFfOyxx0RRFEWHwyHq9Xpx8eLFrtfLy8tFtVotvv/++1dtb9WqVaJOp7tq+aZNm0SZTCYaDAbXsjfffFPUarWixWKpM1tNTY1oNBpdj7y8PBGAaDQa6/8AJLR0y49iwrMbxec+OiR1FFEURXHf56tEcb5WPP5SitRRiIioHTMajY3+/vbLaSisViv27duHtLQ01zKZTIa0tDRkZ2fXuU52drZbPQCkp6e76s+dOweDweBWo9PpkJKSUu8269tP3759ERMT47Yfk8mEo0eP1rnOwoULodPpXI/4+PhG708KrtsQBbSOi2gDw52z4Ws5Gz4REfmJJjdgISEhuOGGG/DUU0/hX//6F44ePQpRFL2RrV7FxcWw2+1uTQ4AxMTEwGAw1LmOwWBosP7Kz6Zssyn7+eU+fm3OnDkwGo2uR15eXqP3J4X4gm2YKt+ERNt5qaMAALRRzoY1wlEGkVfjEhGRH2jyEMZf/vIX7Nu3D9u2bcPrr78Oh8OBgIAA9OvXD4MHD8agQYMwaNAg9O/f3xt52yS1Wg21Wi11jEbrX/o5HlJ+j5zqBABjpI6DcL2zAVMLtTCWl0AXHiVxIiIiooY1uQF74oknXL9XV1cjKCgIM2fORGlpKXbt2oV//OMfsFqtsNvtHg36S5GRkZDL5SgoKHBbXlBQAL1eX+c6er2+wforPwsKChAbG+tWM2DAgEZn0+v1V12NeWW/9WXzN6raCgCAPDBU2iA/0QQEwYQgaGFGeUEuGzAiImr1WnQOWEBAAABgwoQJeOutt7Bnzx5UVFTgwIEDHglXH5VKhcGDB2Pr1q2uZQ6HA1u3bkVqamqd66SmprrVA8CWLVtc9YmJidDr9W41JpMJOTk59W6zvv0cPnzY7WrMLVu2QKvVolevXo3eTmumtlcCAJRBYRIn+VmZLBwAUFHM2xEREVHr5/GzqBUKBfr16+fpzV4lMzMTkydPxpAhQzBs2DAsXboUZrMZU6ZMAQBMmjQJHTp0wMKFCwEATz75JG688UYsWbIEY8eOxQcffIC9e/di5cqVAABBEDBr1iy89NJLSEpKQmJiIp5//nnExcUhIyPDtd/c3FyUlpYiNzcXdrsdBw8eBAB069YNwcHBuO2229CrVy88+OCDWLRoEQwGA+bNm4fp06f71WHGhgQ6nA2YOrj1NGAXNMkwVAbBUuPb8xGJiIiao3VcxtYM48ePR1FREbKysmAwGDBgwABs3rzZdcJ7bm4uZLKfB/hGjBiB9957D/PmzcPcuXORlJSEDRs2oE+fPq6a2bNnw2w2Y9q0aSgvL8fIkSOxefNmaDQaV01WVhbWrFnjej5w4EAAwNdff41Ro0ZBLpdj48aNePzxx5GamoqgoCBMnjwZL774orc/Ep8JEp0NmCYkXOIkP/skYR4+OXAJc1TJuEHqMERERNcgiE28hPGRRx7B4MGDMWTIEPTr1w8BAQH44Ycf0LdvX29lbHdMJhN0Oh2MRiO0Wq3Ucdw47HaIL0ZALogomnYIUXEJUkcCACzcdBxvbT+LqSMT8fztbeNQLxER+ZemfH83eQTs1KlTWL9+PSoqKqBQOFd/4YUXMGrUKAwaNAgDBgxAYGBg85JTq2euNCJEcPbswbrWMwIWFcLbERERkf9ocgP27bffAnA2Yvv27cP+/fuxf/9+ZGVloby8HHK5HN27d6930lHybyabApMsLyBcXoV/BARJHceld/Ve7FLPRtH5BADfSh2HiIioQc0+BywpKQlJSUm4//77XcvOnTuHvXv3ev0qSJKOyQocEJMQoVZBkLWeGylog4OhF8pQWxsgdRQiIqJralIDZjAYEBYWVu/VfImJiUhMTMR9990HADh79iy6dOnS8pTUalTU2AAA2gClxEncaaOctyMKd5RKnISIiOjamjSE8eGHHyI8PBx33XUXVq1ahaKioqtqcnJyMHfuXPTu3Zuz4bdBtoKTmCrfhJtl+6WO4iYsphMAIEiogbmiXNowRERE19CkBmzGjBn44YcfcP3112P16tXo2LEjRo4ciZdffhmPPvooYmNjkZGRgcLCQrzyyit1Nmjk35SGA3he+W9kWP4ndRQ3wdowVInOkdnSgtZ9L00iIqImnwPWrVs3ZGZmIjMzEyUlJdi4cSM2bdqEzp0746OPPkJqaioEQfBGVmoF7NVlAIBaZYjESa5WKgtHoJiPiqKLQDdOi0JERK1XiyZijYiIwOTJkzF58mS35UeOHHGb4JTaDrHaCACoVekkTnI1kzISsOajuvSS1FGIiIga5LHL2CoqKrBy5UoMGzasSTevJv8i1DgbMIe6dU0QCwCGwB7IcSSjyKqSOgoREVGDWtyAbd++HZMnT0ZsbCzmzZuH+Ph4NHFyffIjcquzAYMmVNIcdclOehrjrVnYqxwidRQiIqIGNasBMxgMeOWVV5CUlITf/OY3sNlsWLduHS5fvowXXnjB0xmpFVFYTQAAWUCotEHqoNc55wDL52z4RETUyjX5HLA77rgDW7duxU033YQFCxYgIyMDQUE/z4jOE/DbNpWtAgAgDwqTOMnV4nTOm6YXlFdJnISIiKhhTW7APvvsMzzwwAOYNWsWhgzhoZ725nX1o6iuzMNjHVOljnKVzo4L2KWeDnuRCsCPUschIiKqV5MPQe7cuRMBAQG4+eab0aNHD7z44os4c+aMN7JRK3SotiO+cQyAJixO6ihXiYiIhl4oQ7SjGHabTeo4RERE9WpyAzZ8+HC8/fbbyM/Px7PPPosvv/wS3bt3x/Dhw/Haa6+hoKDAGzmplTBV1wIAdK3sVkQAEKGPh10UoBTsKCvkVBRERNR6NfsqyKCgIDz88MP4/vvvcezYMdxwww14+eWXkZaW5sl81IrYbTbcZ/sf7pV/C62q9V3pKlcoUSI4z00rNZyXNgwREVEDPDIPWI8ePbBo0SJcvHgRH3/8McaOHeuJzVIrU2ksQZbyX/ir8i1oNa1vBAwAyhRRAIDKolyJkxAREdXPYxOxAoBcLkdGRgY+/fRTT26WWolKYykAoEpUQ6XWSJymbmZNDADAWsr7QRIRUevl0QaM2rbqihIAQKUQdI1K6VgDYwEAoonngBERUevFBowarcbkbMCqZMESJ6mfJTwZuxw9cdERKXUUIiKierXoZtzUvljNZQCAanmIxEnqZ+p5P2Ye7IFhsnDcJ3UYIiKienAEjBrNZi4HAFgUrbcBi/1pNvx8Y7XESYiIiOrHBowazVHtHAGzKVtvA6b/qQErMZrhsDskTkNERFQ3HoKkRvtBezNWWFUYHtsDrfUmVNFBSuxUz4AeZSgrOYqI6A5SRyIiIroKR8Co0S46IvCNYwCqIvpKHaVeKpUSKsEBmSCiLP+c1HGIiIjqxAaMGs1U47wNkbYV3obol1yTsRZyMlYiImqd2IBRo3Ut+Qb3yb+B3lEkdZQGVaqiAQAWTsZKREStFM8Bo0a7rXwtkpXHsb+mH4AUqePUyxqoB6oAh5GTsRIRUevEETBqtAB7JQBAFRwqbZBrcGidJ94rzPkSJyEiIqobGzBqtECHswELCAmXOEnDVGHOBiyw2iBxEiIiorqxAaNGCxbNAIAAbeu+zY86pjt2OXrisNhF6ihERER14jlg1Cg11VUIEKwAgCBdhMRpGqbtOhy3W5+HRpRhvChCEASpIxEREbnhCBg1SoWxGADgEAWEaMMkTtOwaK0aAFBT60B5Va3EaYiIiK7GBowapcpYCgCoFAIhk8slTtMwjVKOyGAVlLDhcolR6jhERERXYQNGjVKmiMBD1tlYqJopdZRGeVP4C06qJ8Ny4gupoxAREV2F54BRo5TZ1PjGMQC9g7VSR2kUmSoAsloR1uILUkchIiK6CkfAqFFM1T/dhkjTum9DdEVt8E834TZyNnwiImp92IBRo8gLjuA++TfoL5yWOkrjhMYDAFSVnA2fiIhaHzZg1CiR+d9isXIlbjZ/JnWURlFHJAAAQiycDZ+IiFofNmDUODXlAACHWidtjkbS6p2TsEbYCiROQkREdDU2YNQoMotzOgdR4x8NWGTHJABAOEyoNldKnIaIiMgdr4KkRlHUmgAAQkDrnoT1Cm1oBL4X+6PAEYKBJaXoEhQsdSQiIiIXNmDUKMraCgCAIjBU2iCNJMhk+FPoSzhZUIE1NQHgXSGJiKg14SFIahSNzdmAKYNDpQ3SBHGhGgDApbJqiZMQERG5YwNGjRLgcJ5HpQ5u3Tfi/qUOYQFQwoaS4kKpoxAREbnx6wZs+fLl6Ny5MzQaDVJSUrB79+4G69evX4/k5GRoNBr07dsXmzZtcntdFEVkZWUhNjYWAQEBSEtLw6lTp9xqSktLMXHiRGi1WoSGhmLq1KmorPz5JO/z589DEISrHrt27fLcG5fAi5iG/7NOhzKmh9RRGi298lOcVE9G6slXpI5CRETkxm8bsLVr1yIzMxPz58/H/v370b9/f6Snp6OwsO7Rjp07d2LChAmYOnUqDhw4gIyMDGRkZODIkSOumkWLFmHZsmVYsWIFcnJyEBQUhPT0dNTU1LhqJk6ciKNHj2LLli3YuHEjtm/fjmnTpl21v6+++gr5+fmux+DBgz3/IfiIKIr4qiYZnzquQ3BYtNRxGi0gLBoyQURgNecCIyKiVkb0U8OGDROnT5/uem6328W4uDhx4cKFddaPGzdOHDt2rNuylJQU8bHHHhNFURQdDoeo1+vFxYsXu14vLy8X1Wq1+P7774uiKIrHjh0TAYh79uxx1Xz++eeiIAjipUuXRFEUxXPnzokAxAMHDjT6vdTU1IhGo9H1yMvLEwGIRqOx0dvwJlO1VUx4dqOY8OxGscpikzpOox3fvUUU52vF/PldpY5CRETtgNFobPT3t1+OgFmtVuzbtw9paWmuZTKZDGlpacjOzq5znezsbLd6AEhPT3fVnzt3DgaDwa1Gp9MhJSXFVZOdnY3Q0FAMGTLEVZOWlgaZTIacnBy3bd95552Ijo7GyJEj8emnnzb4fhYuXAidTud6xMfHN+JT8B1TeTHuk3+D25QHoVH6z38yER26AQAixRLYaq0SpyEiIvqZ/3yb/kJxcTHsdjtiYmLclsfExMBgMNS5jsFgaLD+ys9r1URHux+CUygUCA8Pd9UEBwdjyZIlWL9+PT777DOMHDkSGRkZDTZhc+bMgdFodD3y8lrXDaSrC85isXIl/ix/G4IgSB2n0SJi4mEV5VAIDhRdPid1HCIiIhfOA+ZhkZGRyMzMdD0fOnQoLl++jMWLF+POO++scx21Wg21Wu2riE1WbSwGAFTKtIiSOEtTyORyFMki0UEsQNnls4hN8J8LCIiIqG3zyxGwyMhIyOVyFBS43+evoKAAer2+znX0en2D9Vd+Xqvm1yf522w2lJaW1rtfAEhJScHp06cb8c5aJ2ulswGrVmglTtJ05Urnn0tV0XlpgxAREf2CXzZgKpUKgwcPxtatW13LHA4Htm7ditTU1DrXSU1NdasHgC1btrjqExMTodfr3WpMJhNycnJcNampqSgvL8e+fftcNdu2bYPD4UBKSkq9eQ8ePIjY2Nimv9FWwlZZCgCw+GEDdj50OD62j0SeLVTqKERERC5+ewgyMzMTkydPxpAhQzBs2DAsXboUZrMZU6ZMAQBMmjQJHTp0wMKFCwEATz75JG688UYsWbIEY8eOxQcffIC9e/di5cqVAABBEDBr1iy89NJLSEpKQmJiIp5//nnExcUhIyMDANCzZ0+MHj0ajz76KFasWIHa2lrMmDED999/P+Li4gAAa9asgUqlwsCBAwEAH3/8Md5991384x//8PEn5DliVRkAwKYKlTZIM/yY9AhezT2FCYjHXVKHISIi+onfNmDjx49HUVERsrKyYDAYMGDAAGzevNl1En1ubi5ksp8H+EaMGIH33nsP8+bNw9y5c5GUlIQNGzagT58+rprZs2fDbDZj2rRpKC8vx8iRI7F582ZoNBpXzX/+8x/MmDEDt9xyC2QyGe655x4sW7bMLduf/vQnXLhwAQqFAsnJyVi7di3uvfdeL38i3iNWO0fA7JpQaYM0Q4ewAADARd6OiIiIWhFBFEVR6hDkzmQyQafTwWg0QquV/rDfnqX3Y2j558hOnIHUyX+WOk6T7DxTjElv78CQcCs+mH2f1HGIiKgNa8r3t9+OgJHvfB54J/5V2AXpHW6WOkqTJSrLcVI9GXazHHbbXZAr+J88ERFJzy9PwiffOuzojE8d10EW00vqKE0WHdcZdsigEmycC4yIiFoNNmB0TeVVtQAAXaBS4iRNJ1coUCBznhdYkvejxGmIiIic2IDRNQ2r3IZbZXsRprBJHaVZytTOK1TNhlMSJyEiInLiCTHUINHhwHz7a1Cp7DDIJkodp1mqgzsBNXthL+UhSCIiah04AkYNqjKboBLsAABdWPQ1qlsnMTQBAKAyXZA4CRERkRMbMGpQRZnz1ksWUQlNYLDEaZpHHd0NABBSfUniJERERE5swKhBlWVFAACTEAxB5p//uYR06otP7NfhM/swqaMQEREB4DlgdA01JueNuM2yEERJnKW5YhN7I612OlALPFxdC12A/13NSUREbYt/DmmQz1gqnLchqvLDG3FfEaRWIDJYBQDIK62SOA0REREbMLoGm7kEAGD14wYMADqHqREvFMBwOU/qKERERGzAqGE/Bg3G/1lnYHe0f99H8VnLMnynfgpBx9dKHYWIiIjngFHDcsUYfOoYgdjoLlJHaRGbLgEwAbLy81JHISIi4ggYNcyfb0P0S/IIZwMZZM6VOAkREREbMLqG2JJduE22B3rBKHWUFgmJdc4FFm7NlzgJERERGzC6hjEla7BS9Xd0rjokdZQWiYxPBgBEO4pQa7VInIaIiNo7NmDUoAC7CQCgComQOEnLROrjUS2qoBAcKLx4Wuo4RETUzrEBowaFOJwNWGBojMRJWkaQyWCQ6wEApXknJU5DRETtHa+CpHo57HaEiiZAALTheqnjtNie0NHYWFiIhNpw9JU6DBERtWscAaN6GUsLIRdEAIAu0v8bsOOJD2GJbRwOW6KljkJERO0cGzCql6nEecWgEUFQqtQSp2m5LpFBAIBzxWaJkxARUXvHQ5BUL3NZAQDAJOigkziLJ3SJDEQHFCHIcB7AUKnjUDsmOhyorbWiVpTD5gCsdgfsVaWwm8tht1lgr7XAbquFvdYK0eGAKNpREdYHNrkaoggoy89BU3EBouiA6LA7H6IDcNjhcDhQGJUKq1IHu0NEiPE4QsuPAVdqRPFKCgBAXvRNqFZHQQQQajqJmLL9EH9Vc2WdC1E3oUITCwAIqzyFDqW73Lcniq7n56JuQnlAAgAg1HwGnYu/gXClFCJE17aBcxE3oiTIOVVMaNUFdCveUu9ndyHsOhSF9AQAaGsuoXvh5/XW5oWmoEDrPOEgyFKAngX/q7f2sm4wLusGAgACrCXobfik3lqDtj8uhjr/DlHXmtA3f129tYUhvZEblgoAUNqr0P/Se/XWFgd1x/mIGwAAMocVgy7+s97assAuOB15s/OJ6MDQvHfrrS0P6IRTUbe5ng/JfRcCHHXWVqhjcSJmrOv5oIv/hNxhrbPWrIrCMf1vXc/7X3ofKnvd/8CtVobhSOw9rud9L6+Hxlb39EYWRQgOxY13Pe+d/wkCa0vqrLXJNDjQ8Xeu5z0L/odgS0GdtQ5BgX3xD7meD0kIw4hukXXW+gIbMKrXZUU83rTOQEKUFs9IHcYDumoqsEPzJGqr5Ki1PtImRvXIu2qqzag0lqBcFg5TTS1M1bVQXNwFZemPcFQbAUsFBFs1BFs1ZLZqyG01eCNsNkx2BWpq7RhvWoObar+BWrRAiVooRRsUsEMp2KECcH3N6yhAOABgvmINpii+qDfLTZYlOCc6m5+nFeswU7Gh3tqxlj/jqJgIAHhCvgGzlfU3CIsPyLFXdE7T8pB8MxYo6//Sf+OIDNsd/QEA4+Vf4y/Kt+utXXVChi8cwwAAd8p2YoJqeb21604BnzicDUGabB8eVK2ot3bjaSv+Y5cDAEbIjmByA7Vfna7AO3bn/+cDhVN4WF1/7ZLae/Ga3TlKnizk4pEGat+03YElNuc/SzsJBdjeQO0qWzqW2JxXkUehHHs09deutY3CEpvzdI9gVOFIA7X/sw/H32o7AgBkcOBsA7Vb7IPwt9rOrucn1W9DLdTWWbvD3ht/O5Tken5Q/Q5ChbqbqgOObvjb4Z6u5zvVqxAnlNZZe9wRj4eP/Hz27VbVP9FVVve8jBcc0Xjo6EDX842q/6CP7HydtUWiDg8eH+Z6vk71AYbJ6r7QqkIMwMQTI1zPnxjVlQ0YtU759hD8zzEC6ZH+fQXkFdFxnVElqhEoWJB34STik/pJHYkkIDocMJWXIK9ahYtlVSissCDqzMcILz0AVU0xAqyl0NpLEeYoR4BghQbAiJo1sMJ5N4glyrdwj/z7erd/oGQCSn4aM75HUYY4ReHPLwrutUrB7hpksghqVIlq2AQFaqGAHXLYBAUckEGEDB3Cg6CQB0MmCBBq43Da0hWiIED86XWH4PwpCjIkR8cgTBUJmUxAUFV3HDQPhyjIfg4hOIOIENAnPhFRaj0EAYg098R+042u167UAQJECOgVnoSwgDgAQLy5F/YYb4UAQPxF3ZWfyeG9EBLYEQKA+Ko+2F32m59eEn6u+2m9pLD+mBDUCQCgr7Zgd8kd9X6+CaEDMSHYWRtV48Du4vpr43RDMCHEWRtmkWN3Uf21kdqhmKB11mqtGuQU3llvbUhICibonLVBthDkGOqv1QQPwoRQZ63aHo6c/PprhaC+mBDmrFU4LMi5XH9tbUAyJkR0giAAgujA7ov111YHdMUDkZ1czw9cvB0y0V5nbbkmAQ9E/Vx75NJYqBw1ddaWqmLxQMzPtacuj0Geo7LOWpMyyq32vGE0im11N2tVch0eiP259nLBrTDXFtZZa5EF4YG4n2uLC29BjjW5zlqboMIDHX6u7R8fWmedrwjiz2PN1EqYTCbodDoYjUZotVrJcrz61Sn8/asfMWFYJyy8u21cN3jmTwPR1X4WB69/CwNuuV/qOORFpYWXkX/6ICrzDgPFP0JtvgRdTT6i7AUIQA16WNbA9tO/Qf+mfAN319NUOUQBNwsrYQuIhFajxH32zzDAdgg2ZQgcyiA4lEGAMgCCKhCCKgCXEzKgCtAiQCWDruYigm1GKDVBUKo1kCs1UChVUCiUkKs0UAXqoFDIoZAJEAShzv0Tkf9oyvc3R8CoXoEFe3Gb7CQSFUFSR/GY8oBOQOVZ1Bg4F1hb4bDbcensEeSfyMEmxwgcM1TgdGElXrD+FXfId129wk99Tq9gM2RhCdBrNaixj0G2oxdkwdFQ6vQIDNMjJDIOIeF6BIeE4hu5/BcbuL4J6drG6DEReR4bMKrXoPwP8KjqG+wyKwGMkjqOR1hDuwCV30AoOSN1FGomW60VZ374HmVHvkJQfjYSLCcRDzPiAWRaluKi6Jxm5KQ8HoMU51CkSUSNritkEYnQRCUiNK4bojt2w6eBwb/Y6mBJ3gsRtV9swKheGmsZAEAREiVxEs9RRHUHLgLBleekjkJNkG+sxpZjBRD2vou7ileih1Dt9nqNqMR5ZTc82FOHyG790T0mBF2jbkOgWokOEmUmImoIGzCqV5DN2YCptW3nMIouvidwAIiyXpQ6Cl3D5fMnceHbNfhPWW9sNIQCANJlMjyoqoYRQTgTNAi18dchoucNSOg5BMkqNeo+9ZaIqPVhA0b1CnE452gJCm87DVhMYj+8YbsTZ8VYLKipRbBGKXUk+gVzRTmObf03Ao+tRW/rIcQB2GvLwGfCOAzuFIZh3e/G6YhbkNgnFYMU/OuLiPwX/wajOrW1+0BeoQsLxzvqSSgxW/FQSRX6dGgLU8z6v8vnTyL387+hj+G/GPrT4UWHKOCYpj/6D7wRu29OQ1QI520joraDDRjVyVhaiLA2dB/IX+oSFYQSsxVniirZgEnsyCUj3t52HAtO34PhQiUgABeFWFxMuBudb3kYfeK7SR2RiMgr2IBRnUwl+QgDYEIQtCqN1HE8qm+4CEXuUVSeqQEG3HPtFcjjzp85iUW7KrHpsAEA0FtxI1KD8iEOn44+N9yFjm7TPhARtT1swKhORQjDYutMdAiRYY7UYTzsNtvXyFItxv6z1wNgA+ZLxYZcnP3gWQwu+xwl1nkQhJ74bf843HDDciTHhUkdj4jIZ9iAUZ0KazXY6EjFkNC296UY1LE38CMQUc2pKHzFbrNh74eL0ev4qxgmVAMCMCnmLF64fxqS9dLd7YGISCpswKhOJWYrACA8SCVxEs+L6ToA2AZ0sF+G1VIDlbptHWJtbS6c2A/rh9OQYjsFCMApRRLs6a9g7NA0qaMREUlGdu0Sao8Uhh+QLtuD7sq6b4Dqz6JiE1AhBkAhOHD57BGp47RZDoeIHWv/ipj3b0OS7RRMCEROrz+iy3O7kMzmi4jaOTZgVKcuFz/BW6q/47rKL6WO4nGCTIbLygQAQOm5QxKnaZvKq6x4eM0erP+hBBqhFoc0Q2CZlo2UcbMh5/xdREQ8BEl1U9SUAgCEoEiJk3iHMbgLUH4C1vxjUkdpc45dLMVj7x1EXmk11Irrcceg3rj59gcgyPjvPSKiK/g3ItUpwFIMAFDq2tYcYFc4InsAAFRlP0qcpG058MUaqN++DubSAsSHB+DjJ67DLXf+js0XEdGvcASM6qS1lQAAAsPb5q2Mhe634rnjFTChD96QOkwbkfPBQgw9/hfIBBHzo7/Djb9fitDAtncRBxGRJ7ABo6uIDgfCHaWAAIRExUsdxys6JA3EB/ZyKMsE2OwOKOQcoWku0eHArneeQuql1YAA5ERk4PbHl/FcLyKiBvBbh65SWVGOQMECAAjXt80GLE4XgECVHLV2EeeKzVLH8Vuiw4Gct55wNl8AshN+j2HTV7H5IiK6BjZgdJWyglwAQKUYgMDgtnmvRJlMwK2RJZgg34r847ukjuOXRIcDu96eieEF7wMAcnrNQ+qUv/B8LyKiRvDrvymXL1+Ozp07Q6PRICUlBbt3726wfv369UhOToZGo0Hfvn2xadMmt9dFUURWVhZiY2MREBCAtLQ0nDp1yq2mtLQUEydOhFarRWhoKKZOnYrKykq3mkOHDuH666+HRqNBfHw8Fi1a5Jk37CMGuw5PWP8PrwdMkzqKVz2AzViofAfKUxuljuKX3vjiAOIuOacpyen1R6SM+4PEiYiI/IffNmBr165FZmYm5s+fj/3796N///5IT09HYWHdE4fu3LkTEyZMwNSpU3HgwAFkZGQgIyMDR478PBHnokWLsGzZMqxYsQI5OTkICgpCeno6ampqXDUTJ07E0aNHsWXLFmzcuBHbt2/HtGk/Nyomkwm33XYbEhISsG/fPixevBgLFizAypUrvfdheFi+RYVNjuE4GD5G6ijeFdMbABBQekLiIP7n/d25WPytAeOtz+O73i8iZdxsqSMREfkX0U8NGzZMnD59uuu53W4X4+LixIULF9ZZP27cOHHs2LFuy1JSUsTHHntMFEVRdDgcol6vFxcvXux6vby8XFSr1eL7778viqIoHjt2TAQg7tmzx1Xz+eefi4IgiJcuXRJFURTfeOMNMSwsTLRYLK6aZ599VuzRo0ej35vRaBQBiEajsdHrNEaVxSaeKawQL5ZVNVi38tszYsKzG8WZ7+336P5bm6PZn4vifK2YP7+L1FH8yndHzopd5nwmJjy7UfzblyeljkNE1Go05fvbL0fArFYr9u3bh7S0n29nIpPJkJaWhuzs7DrXyc7OdqsHgPT0dFf9uXPnYDAY3Gp0Oh1SUlJcNdnZ2QgNDcWQIUNcNWlpaZDJZMjJyXHV3HDDDVCpVG77OXnyJMrKyurMZrFYYDKZ3B7e8PrWE7h/yQZ8sGVHg3WqyzkYLduN7qoSr+RoLTomDwUA6FEMY2mRxGn8w9kjOei97nrcge9w98AOmJWWJHUkIiK/5JcNWHFxMex2O2JiYtyWx8TEwGAw1LmOwWBosP7Kz2vVREdHu72uUCgQHh7uVlPXNn65j19buHAhdDqd6xEf750rD28wbcRuzXTcfO5vDdb1ubQWK1RLMaRmp1dytBba0AjkIwoAcPHkXonTtH7GsmKoPpqEMKECjwTvxCt394EgCFLHIiLyS37ZgLU1c+bMgdFodD3y8vK8sh9VmHNS1SBrw6M9QTUFzvrwtjkFxS8ZArsBACrOH5Q2SCsnOhw4+/YkdBQNyEcU4h9bB5WSU00QETWXXzZgkZGRkMvlKCgocFteUFAAvb7uW+fo9foG66/8vFbNr0/yt9lsKC0tdaupaxu/3MevqdVqaLVat4c3BEd1AgCE2RpuwMJqnXmDohK8kqM1qQnvCQCQFR65RmX7lvPeixhYtQNWUYHK374LXUTMtVciIqJ6+WUDplKpMHjwYGzdutW1zOFwYOvWrUhNTa1zndTUVLd6ANiyZYurPjExEXq93q3GZDIhJyfHVZOamory8nLs27fPVbNt2zY4HA6kpKS4arZv347a2lq3/fTo0QNhYWEtfOctExbjbKjCxXLYaq111thqrYgUnTfijojr6rNsUrH0vA8TrH/EMtnvpI7Sav24/xsMOfUqAOBA72eRNPAGiRMREfk/v2zAACAzMxNvv/021qxZg+PHj+Pxxx+H2WzGlClTAACTJk3CnDlzXPVPPvkkNm/ejCVLluDEiRNYsGAB9u7dixkzZgAABEHArFmz8NJLL+HTTz/F4cOHMWnSJMTFxSEjIwMA0LNnT4wePRqPPvoodu/ejR07dmDGjBm4//77ERcXBwB44IEHoFKpMHXqVBw9ehRr167Fq6++iszMTN9+QHUIi+4AmyiDXBBRUlD3Yc5iQy7kggirKEd4TEcfJ/S9Tt37IdvRG3sKAJvdIXWcVqemqhLqjdOhEBzYF3ITht37jNSRiIjaBL89iWP8+PEoKipCVlYWDAYDBgwYgM2bN7tOeM/NzYXsFzNyjxgxAu+99x7mzZuHuXPnIikpCRs2bECfPn1cNbNnz4bZbMa0adNQXl6OkSNHYvPmzdBoNK6a//znP5gxYwZuueUWyGQy3HPPPVi2bJnrdZ1Ohy+//BLTp0/H4MGDERkZiaysLLe5wqQiVyhQIIQhBiUoN1xATMerR7jK8s9BD6BYFoE4udz3IX2sc0QQgtUKVFpsOF1UiWS9dw7/+qu/bz2DQOtQjFfUoNtDb3GWeyIiDxFEURSlDkHuTCYTdDodjEajx88HO/nSMPSwncSB1GUYmD75qtf3fvY2hux5BsdUfdBrbsPTVbQVLy5bgZjC7UgecSdu/M39UsdpNfacL8W4t7IhisCqib1xU9/OUkciImrVmvL97bcjYNQ8h3Q349uCbtCL0RhYx+vHlH3xjvVJDOgYh14+TyeN25QHMVzxGXLOqgGwAQOAmpoaPLv+IEQRuHdwRzZfREQexuMJ7czRhAfxsm0ijjo61/n6CXMQPnekoLLTTb4NJiFFR2crGlp+TOIkrceBDxbgbxVP48agPDx/e3tpxYmIfIcjYO1Mp/BAAEBeWVWdr18oMQMAEiKCfJZJajHJw4F9QELtGdhqrVAoVddeqQ3Lv/AjBpx7BwEyK2YOEKALUEodiYiozeEIWDvTKSwAUSiDvOBwna8PKPgEt8n2ILEdnYveoUsfVIoB0Ai1yD15QOo4kstf9zQCBCuOqfpi8NhHpY5DRNQmcQSsnekmu4g9mumoMAZAdExyu6rNaqlBpvUtyFUiioOmSJjSt2RyOS6ou6G39TCKT+WgS58UqSNJ5vD2TzDIvB02UQbNnUt41SMRkZfwb9d2JqZTDwBAiFANU5n7jPgFuSchF0RUiWpE6Nv+bYh+qSLMOR2JeKn9joA57HYEf7MAALA3+p523YgSEXkbG7B2JiAoBEVwzshfmHvS7bXSiz8CAArkse1u5EPRaTAAQGk8L20QCe3//B0kOs7DhED0vP/PUschImrT2te3LAEAipWxAADT5R/dlldfPg4AKAtoX6NfAKAfdCdGWpZinPkZ1NTapY7jc7V2B6oOfAQAONp5Mu/1SETkZWzA2qHKIOc9Ia0F7iNg8iLnNAyWiJ4+zyS1DvpoWILjYXMAhy4apY7jc+v3XsRk8wzMlc1Cv3uekzoOEVGbxwasHbJHOed1Upccd1seVuEcEVN36OfzTFITBAGDOoUCAPbnlkkbxsdqau1YtvUURMiQdMtDCAoJlToSEVGbxwasHQru1B8AEF112rXMVmtFvC3XubxrXXPkt32jwy7hLeXf0Gvv81JH8anN27ahzGRCh9AAPJDSSeo4RETtAqehaIfikodh1RfpOCYmYIHFhiC1AudLq/GE9SX0U17EosT2dwgSAHpGBSBZvhfFFaEQHY52cSFCrdWClOzH8b3agt0DV0KtaPs3YCciag3a/jcMXSU8KhZvBkzDevsonCyoAAAcyDPhRzEeZ/VjIJO3zy/hzv2ug1WUIxLlyL/w47VXaAN++GI1YlEEmSDgluuvlzoOEVG7wQasnerbQQcA2HOuFACQfaYEAJDaNUKyTFLTBAThvLIrAODykW8lTuN9osOBsINvAgB+7PwANIHBEiciImo/2IC1Uzd0C8MA4TTEg+9BdDgw6uSLmCz/AiM7BUgdTVKl4c7z3+znd0qcxPsOf/sxutrPoUpUo/cdmVLHISJqV3gOWDt1c4wZk9VZsJYqcGLPMNzp2IrRCgUcCe17Ak51txuAwrXQl+2TOorXybNfBQAc0t+F4RHREqchImpfOALWTnXs2hcXhVioBBt6fj4OAHBYez00gSESJ5NWl8G3wiEKSHDkodiQJ3UcrzlzOAe9rYdQK8rR+fY/SB2HiKjdYQPWTgkyGQyDnnJbFnobJ+DURcTglCIJexzdceTUGanjeM3J7E8BAIdDRkIf303iNERE7Q8PQbZjg8c+ipxz3yPMdALlPSdiWN/hUkdqFdb2X4V3d17AxOIIjJI6jBdUWmz4w8XrsaQ2AX+9s7/UcYiI2iU2YO2YIJMh5f/+JXWMVmd410i8u/MCdp0tkTqKV2w4cAlmqx1iVHcMGDhM6jhERO0SD0ES/UpKYgQEASgqKkRhaanUcTxKdDjwv52HAAATUxIgCILEiYiI2ic2YES/ogtU4p2Qt3FQPQ25O9ZLHcejTu7din8bJ2OJ6i3cO7CD1HGIiNotNmBEdQiIiIdMECGe/krqKB5VsWMllIIdncIDoQtSSR2HiKjdYgNGVAdtn9EAgC7GHDjsdonTeIa5ohy9y50z/Idc94jEaYiI2jc2YER1SBpyC8yiBhEw4szhtjEr/vFt/0GgYEGeEIceg2+WOg4RUbvGBoyoDiq1Bj8GDQYAFB/8TOI0nqE+9iEA4GL8HRBk/F+fiEhK/FuYqB7WROcoUegl/78xd9Hl8+hVcwAA0GnUFInTEBERGzCienQadgcAoLv1OIwlBRKnaZkz21ZDLog4oeyFDl16Sh2HiKjd40SsRPWITeiB/6pux3fmDhh52oiMiBipIzXbq0WD8EXtgxg1cBCSpQ5DREQcASNqyNmh8/Gh/UZsPGGSOkqznTCYkF0gx7/xG/RL+53UcYiICGzAiBo0pq8eALD9VBEqLTaJ0zTP/364DAAY1SMaYZz7i4ioVWADRtSAHjEhSAmrxCTxfzj83X+ljtMsvfbOwwT5Vvy2l1bqKERE9BOeA0bUAEEQMCv0e6RW/wf7Dl4C0u6ROlKTXDixH2Nrt+BWhRw13f4odRwiIvoJR8CIriFi6L0AgJ4V2TBXlEsbponydznn/joeMAja0AiJ0xAR0RVswIiuIWnA9cgT4hAoWHBs67+ljtMkEXlfAAAsSWMlTkJERL/EBozoGgSZDBcTfgsACDy2TuI0jZd/4SSS7KdhFwV0HXmf1HGIiOgX2IARNULnm5yzx/e2/oD8CyclTtM4F3Y4m8UT6j6IiOkocRoiIvolNmBEjRCb0ANHVf0BAOe3vStxmsbRnt8MAKjoPEbiJERE9GtswIgaqarXeFhEJU5eLIbN7pA6ToP2ny9CaQ1QK8rReeQ4qeMQEdGvcBoKokbqm/4QxhyKwVlzAPTHCzG6j17qSHXKOVuCh1fvg9k6F7d3D8TrnZKkjkRERL/CETCiRtIEBGFMSh8AwOqd5yROU7cfdnyOGau+htlqx3XdIrDod9dLHYmIiOrABoyoCX43PAFymQDTuf04ffKw1HHcHNz6AZK/fBBvCQsxJikI70weikAVB7mJiFojNmBETRCrC8Ay/WZsUs9F+WcLpI7jsv/zVei9/QmohVoIIXq8+rvh0CjlUsciIqJ6sAEjaqIeN44HAAwybsWFE/slTgPs/mgp+u96CkrBjr0ht6Dvkx9DpdZIHYuIiBrABoyoibr1vw4HgkZCJogo/uxFSbNk/ysLww7Ph1wQsTv8Dgx8ch0UKrWkmYiI6Nr8sgErLS3FxIkTodVqERoaiqlTp6KysrLBdWpqajB9+nREREQgODgY99xzDwoKCtxqcnNzMXbsWAQGBiI6Ohp/+MMfYLPZ3Gq++eYbDBo0CGq1Gt26dcPq1avdXl+wYAEEQXB7JCcne+R9U+uhG5MFABho+gZnDu/y+f5FUcS2d/6I1DOvAgCy4yZh6Ix/Qq7gOV9ERP7ALxuwiRMn4ujRo9iyZQs2btyI7du3Y9q0aQ2u89RTT+F///sf1q9fj2+//RaXL1/G3Xff7Xrdbrdj7NixsFqt2LlzJ9asWYPVq1cjKyvLVXPu3DmMHTsWN910Ew4ePIhZs2bhkUcewRdffOG2r969eyM/P9/1+P777z37AZDkuvRJwb6QmyATRFg/zYTo8N28YDa7A3M/OYyXTndGsajFri7/h9Rpr0GQ+eX/zkRE7ZPoZ44dOyYCEPfs2eNa9vnnn4uCIIiXLl2qc53y8nJRqVSK69evdy07fvy4CEDMzs4WRVEUN23aJMpkMtFgMLhq3nzzTVGr1YoWi0UURVGcPXu22Lt3b7dtjx8/XkxPT3c9nz9/vti/f/8WvUej0SgCEI1GY4u2Q96Vn3tKrMyKEsX5WnH3J6/5ZJ8mc7U46Z0cMeHZjWLicxvFj7475JP9EhHRtTXl+9vv/smcnZ2N0NBQDBkyxLUsLS0NMpkMOTk5da6zb98+1NbWIi0tzbUsOTkZnTp1QnZ2tmu7ffv2RUxMjKsmPT0dJpMJR48eddX8chtXaq5s44pTp04hLi4OXbp0wcSJE5Gbm9vge7JYLDCZTG4Pav308d1wqOtjMIhheP+QEcWVFq/uL//CSRT8NRU4/RU0ShnemDgYd4/s69V9EhGRd/hdA2YwGBAdHe22TKFQIDw8HAaDod51VCoVQkND3ZbHxMS41jEYDG7N15XXr7zWUI3JZEJ1dTUAICUlBatXr8bmzZvx5ptv4ty5c7j++utRUVFR73tauHAhdDqd6xEfH3+NT4Fai8Hj/4jf61bg46oByFz3AxwO0Sv7Obl3G5SrbkM3x1m8qPoX1j06tNXOxE9ERNfWahqw55577qqT13/9OHHihNQxr2nMmDG477770K9fP6Snp2PTpk0oLy/HunXr6l1nzpw5MBqNrkdeXp4PE1NLqNQaLJp4HTRKGbb/WIR3tv3g0e2LDgd2vf9nJP7vXkSiHGdlnaGe+j/06xTp0f0QEZFvtZpLpp5++mk89NBDDdZ06dIFer0ehYWFbsttNhtKS0uh19c9IqDX62G1WlFeXu42ClZQUOBaR6/XY/fu3W7rXblK8pc1v75ysqCgAFqtFgEBAXXuOzQ0FN27d8fp06frfV9qtRpqNacO8FfdY0Kw4I7e2LHhLYz/7l3srV6AIXc81uLtGkuLcObdhzG8cjsgAPuDrkf3x/6FYG2YB1ITEZGUWs0IWFRUFJKTkxt8qFQqpKamory8HPv27XOtu23bNjgcDqSkpNS57cGDB0OpVGLr1q2uZSdPnkRubi5SU1MBAKmpqTh8+LBbc7dlyxZotVr06tXLVfPLbVypubKNulRWVuLMmTOIjY1t+odCfmP80Hj8Li4fWqEK/ffOwf4v/tWi7X21/0dYlw3FoMrtsIpy7OoxGwOf/pTNFxFRW+GDiwI8bvTo0eLAgQPFnJwc8fvvvxeTkpLECRMmuF6/ePGi2KNHDzEnJ8e17Pe//73YqVMncdu2beLevXvF1NRUMTU11fW6zWYT+/TpI952223iwYMHxc2bN4tRUVHinDlzXDVnz54VAwMDxT/84Q/i8ePHxeXLl4tyuVzcvHmzq+bpp58Wv/nmG/HcuXPijh07xLS0NDEyMlIsLCxs9PvjVZD+yW6ziXuW3COK87WiPUsn7lw9V3TY7U3axrmiSvGxf+4VE57dKP7nj78VL7zQUzyxZ6uXEhMRkSc15fvbLxuwkpISccKECWJwcLCo1WrFKVOmiBUVFa7Xz507JwIQv/76a9ey6upq8YknnhDDwsLEwMBA8a677hLz8/Pdtnv+/HlxzJgxYkBAgBgZGSk+/fTTYm1trVvN119/LQ4YMEBUqVRily5dxFWrVrm9Pn78eDE2NlZUqVRihw4dxPHjx4unT59u0vtjA+a/rJYacdeySaI4XyuK87XikT9fJ54+lH3N9c4e2SXmLH1AHD13hZjw7Eaxy5zPxKWf7ROrqyp9kJqIiDyhKd/fgiiK3rlsi5rNZDJBp9PBaDRCq9VKHYeaIWfdYvQ/+hdohFpYRTmm6ddiVL9u6BWnQ0xtHhy1NSi/dAqW3P2IzP8G3exnAABf2Ifggy4LMXt0MnrG8s+eiMifNOX7mw1YK8QGrG3Iv3ASl9fPRqmxAo/WPu1afkj9CLRClVutTZThUMhIBF4/E8kpt/k6KhEReUBTvr9bzVWQRG1NbEIPxD7zX1wurcDsQwXYe74MJw0VMNUEww45SuTRKA9KhCNxFLqOuAuDYjpKHZmIiHyEDRiRl8WFh+CJUSG/WHIKAMDrGYmI2q9WMw0FERERUXvBBoyIiIjIx9iAEREREfkYGzAiIiIiH2MDRkRERORjbMCIiIiIfIwNGBEREZGPsQEjIiIi8jE2YEREREQ+xgaMiIiIyMfYgBERERH5GBswIiIiIh9jA0ZERETkY2zAiIiIiHxMIXUAupooigAAk8kkcRIiIiJqrCvf21e+xxvCBqwVqqioAADEx8dLnISIiIiaqqKiAjqdrsEaQWxMm0Y+5XA4cPnyZYSEhEAQBI9u22QyIT4+Hnl5edBqtR7dNv2Mn7Nv8HP2DX7OvsHP2Te8+TmLooiKigrExcVBJmv4LC+OgLVCMpkMHTt29Oo+tFot/wf3AX7OvsHP2Tf4OfsGP2ff8NbnfK2Rryt4Ej4RERGRj7EBIyIiIvIxNmDtjFqtxvz586FWq6WO0qbxc/YNfs6+wc/ZN/g5+0Zr+Zx5Ej4RERGRj3EEjIiIiMjH2IARERER+RgbMCIiIiIfYwNGRERE5GNswNqR5cuXo3PnztBoNEhJScHu3buljtTmbN++HXfccQfi4uIgCAI2bNggdaQ2Z+HChRg6dChCQkIQHR2NjIwMnDx5UupYbc6bb76Jfv36uSarTE1Nxeeffy51rDbvlVdegSAImDVrltRR2pQFCxZAEAS3R3JysqSZ2IC1E2vXrkVmZibmz5+P/fv3o3///khPT0dhYaHU0doUs9mM/v37Y/ny5VJHabO+/fZbTJ8+Hbt27cKWLVtQW1uL2267DWazWepobUrHjh3xyiuvYN++fdi7dy9uvvlm/Pa3v8XRo0eljtZm7dmzB2+99Rb69esndZQ2qXfv3sjPz3c9vv/+e0nzcBqKdiIlJQVDhw7F66+/DsB5v8n4+HjMnDkTzz33nMTp2iZBEPDJJ58gIyND6ihtWlFREaKjo/Htt9/ihhtukDpOmxYeHo7Fixdj6tSpUkdpcyorKzFo0CC88cYbeOmllzBgwAAsXbpU6lhtxoIFC7BhwwYcPHhQ6iguHAFrB6xWK/bt24e0tDTXMplMhrS0NGRnZ0uYjKjljEYjAGdzQN5ht9vxwQcfwGw2IzU1Veo4bdL06dMxduxYt7+nybNOnTqFuLg4dOnSBRMnTkRubq6keXgz7naguLgYdrsdMTExbstjYmJw4sQJiVIRtZzD4cCsWbNw3XXXoU+fPlLHaXMOHz6M1NRU1NTUIDg4GJ988gl69eoldaw254MPPsD+/fuxZ88eqaO0WSkpKVi9ejV69OiB/Px8vPDCC7j++utx5MgRhISESJKJDRgR+a3p06fjyJEjkp/L0Vb16NEDBw8ehNFoxIcffojJkyfj22+/ZRPmQXl5eXjyySexZcsWaDQaqeO0WWPGjHH93q9fP6SkpCAhIQHr1q2T7JA6G7B2IDIyEnK5HAUFBW7LCwoKoNfrJUpF1DIzZszAxo0bsX37dnTs2FHqOG2SSqVCt27dAACDBw/Gnj178Oqrr+Ktt96SOFnbsW/fPhQWFmLQoEGuZXa7Hdu3b8frr78Oi8UCuVwuYcK2KTQ0FN27d8fp06cly8BzwNoBlUqFwYMHY+vWra5lDocDW7du5fkc5HdEUcSMGTPwySefYNu2bUhMTJQ6UrvhcDhgsVikjtGm3HLLLTh8+DAOHjzoegwZMgQTJ07EwYMH2Xx5SWVlJc6cOYPY2FjJMnAErJ3IzMzE5MmTMWTIEAwbNgxLly6F2WzGlClTpI7WplRWVrr9i+rcuXM4ePAgwsPD0alTJwmTtR3Tp0/He++9h//+978ICQmBwWAAAOh0OgQEBEicru2YM2cOxowZg06dOqGiogLvvfcevvnmG3zxxRdSR2tTQkJCrjp/MSgoCBERETyv0YOeeeYZ3HHHHUhISMDly5cxf/58yOVyTJgwQbJMbMDaifHjx6OoqAhZWVkwGAwYMGAANm/efNWJ+dQye/fuxU033eR6npmZCQCYPHkyVq9eLVGqtuXNN98EAIwaNcpt+apVq/DQQw/5PlAbVVhYiEmTJiE/Px86nQ79+vXDF198gVtvvVXqaERNdvHiRUyYMAElJSWIiorCyJEjsWvXLkRFRUmWifOAEREREfkYzwEjIiIi8jE2YEREREQ+xgaMiIiIyMfYgBERERH5GBswIiIiIh9jA0ZERETkY2zAiIiIiHyMDRgRERGRj7EBIyLysIceeggZGRlSxyCiVoy3IiIiagJBEBp8ff78+Xj11VfBm4wQUUPYgBERNUF+fr7r97Vr1yIrKwsnT550LQsODkZwcLAU0YjIj/AQJBFRE+j1etdDp9NBEAS3ZcHBwVcdghw1ahRmzpyJWbNmISwsDDExMXj77bdhNpsxZcoUhISEoFu3bvj888/d9nXkyBGMGTMGwcHBiImJwYMPPoji4mIfv2Mi8gY2YEREPrBmzRpERkZi9+7dmDlzJh5//HHcd999GDFiBPbv34/bbrsNDz74IKqqqgAA5eXluPnmmzFw4EDs3bsXmzdvRkFBAcaNGyfxOyEiT2ADRkTkA/3798e8efOQlJSEOXPmQKPRIDIyEo8++iiSkpKQlZWFkpISHDp0CADw+uuvY+DAgXj55ZeRnJyMgQMH4t1338XXX3+NH3/8UeJ3Q0QtxXPAiIh8oF+/fq7f5XI5IiIi0LdvX9eymJgYAEBhYSEA4IcffsDXX39d5/lkZ86cQffu3b2cmIi8iQ0YEZEPKJVKt+eCILgtu3J1pcPhAABUVlbijjvuwF/+8perthUbG+vFpETkC2zAiIhaoUGDBuGjjz5C586doVDwr2qitobngBERtULTp09HaWkpJkyYgD179uDMmTP44osvMGXKFNjtdqnjEVELsQEjImqF4uLisGPHDtjtdtx2223o27cvZs2ahdDQUMhk/KubyN8JIqdrJiIiIvIp/jOKiIiIyMfYgBERERH5GBswIiIiIh9jA0ZERETkY2zAiIiIiHyMDRgRERGRj7EBIyIiIvIxNmBEREREPsYGjIiIiMjH2IARERER+RgbMCIiIiIf+38DefqUY0Pb4QAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmAAAAGwCAYAAAAOvdliAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAbqFJREFUeJzt3Xl4E3X+B/D35O6V9G5aKKVAodw3pYiKWi0s6tYLRFYQUVwFfmJ1UVgs6LriwrKLKIq4CuyhAh6si4giqCiUcsuN3C3Q9G7Spm3SJPP7IxKNtKVHkmna9+t58rSZfGbmnaDkw3dmviOIoiiCiIiIiHxGJnUAIiIiovaGDRgRERGRj7EBIyIiIvIxNmBEREREPsYGjIiIiMjH2IARERER+RgbMCIiIiIfU0gdgK7mcDhw+fJlhISEQBAEqeMQERFRI4iiiIqKCsTFxUEma3iMiw1YK3T58mXEx8dLHYOIiIiaIS8vDx07dmywhg1YKxQSEgLA+Qeo1WolTkNERESNYTKZEB8f7/oebwgbsFboymFHrVbLBoyIiMjPNOb0IZ6ET0RERORjbMCIiIiIfIwNGBEREZGP+fU5YMuXL8fixYthMBjQv39/vPbaaxg2bFi99evXr8fzzz+P8+fPIykpCX/5y1/wm9/8xvW6KIqYP38+3n77bZSXl+O6667Dm2++iaSkJADA+fPn8ac//Qnbtm2DwWBAXFwcfve73+GPf/wjVCqVqyYxMfGqfWdnZ2P48OEe/gSIiKg1stvtqK2tlToGeZhSqYRcLvfItvy2AVu7di0yMzOxYsUKpKSkYOnSpUhPT8fJkycRHR19Vf3OnTsxYcIELFy4ELfffjvee+89ZGRkYP/+/ejTpw8AYNGiRVi2bBnWrFmDxMREPP/880hPT8exY8eg0Whw4sQJOBwOvPXWW+jWrRuOHDmCRx99FGazGX/961/d9vfVV1+hd+/erucRERHe/UCIiEhyoijCYDCgvLxc6ijkJaGhodDr9S2ep1MQRVH0UCafSklJwdChQ/H6668DcE5eGh8fj5kzZ+K55567qn78+PEwm83YuHGja9nw4cMxYMAArFixAqIoIi4uDk8//TSeeeYZAIDRaERMTAxWr16N+++/v84cixcvxptvvomzZ88C+HkE7MCBAxgwYECz3pvJZIJOp4PRaORVkEREfiQ/Px/l5eWIjo5GYGAgJ9NuQ0RRRFVVFQoLCxEaGorY2Nirapry/e2XI2BWqxX79u3DnDlzXMtkMhnS0tKQnZ1d5zrZ2dnIzMx0W5aeno4NGzYAAM6dOweDwYC0tDTX6zqdDikpKcjOzq63ATMajQgPD79q+Z133omamhp0794ds2fPxp133lnv+7FYLLBYLK7nJpOp3loiImqd7Ha7q/niUY+2KSAgAABQWFiI6OjoFh2O9MuT8IuLi2G32xETE+O2PCYmBgaDoc51DAZDg/VXfjZlm6dPn8Zrr72Gxx57zLUsODgYS5Yswfr16/HZZ59h5MiRyMjIwKefflrv+1m4cCF0Op3rwVnwiYj8z5VzvgIDAyVOQt505c+3pef4+eUIWGtw6dIljB49Gvfddx8effRR1/LIyEi3kbahQ4fi8uXLWLx4cb2jYHPmzHFb58pMukRE5H942LFt89Sfr1+OgEVGRkIul6OgoMBteUFBAfR6fZ3r6PX6Buuv/GzMNi9fvoybbroJI0aMwMqVK6+ZNyUlBadPn673dbVa7Zr1nrPfExERtX1+2YCpVCoMHjwYW7dudS1zOBzYunUrUlNT61wnNTXVrR4AtmzZ4qpPTEyEXq93qzGZTMjJyXHb5qVLlzBq1CgMHjwYq1atuubdzgHg4MGDdZ6sR0RERO2T3x6CzMzMxOTJkzFkyBAMGzYMS5cuhdlsxpQpUwAAkyZNQocOHbBw4UIAwJNPPokbb7wRS5YswdixY/HBBx9g7969rhEsQRAwa9YsvPTSS0hKSnJNQxEXF4eMjAwAPzdfCQkJ+Otf/4qioiJXniujZGvWrIFKpcLAgQMBAB9//DHeffdd/OMf//DVR0NEREStnejHXnvtNbFTp06iSqUShw0bJu7atcv12o033ihOnjzZrX7dunVi9+7dRZVKJfbu3Vv87LPP3F53OBzi888/L8bExIhqtVq85ZZbxJMnT7peX7VqlQigzscVq1evFnv27CkGBgaKWq1WHDZsmLh+/fomvS+j0SgCEI1GY5PW8xc11Wax8NI50WG3Sx2FiMhjqqurxWPHjonV1dVSR2m022+/XUxPT6/zte3bt4sAxB9++KHZ29+xY4c4ZswYMTQ0VFSr1WKfPn3EJUuWiDabza0OgPjJJ580+D175XHu3Dlx/vz5db7Wo0ePZmdtrIb+nJvy/e2384C1ZW15HrALJ/Yj4IN7EI1SHNIMRY9Zn0Kt4RVDROT/ampqcO7cOSQmJkKj0Ugdp1E2bNiAe+65BxcuXEDHjh3dXnv44Ydx+PBh7Nmzp0nbtFqtUKlU+OSTTzBu3DhMmTIFTzzxBEJDQ/HVV19h9uzZuOWWW7Bu3TrXCe2CIOCTTz5Beno6jEaja1t33303+vTpgxdffNG1LCoqCn/605/w4Ycf4quvvnLbt0KhQGRkZFM/hiZp6M+5zc8DRv7JVmsF1k1CNEoBAP1q9mDXqqcw/PG3JE5GROR5oiiiutYuyb4DlPJGXa13++23IyoqCqtXr8a8efNcyysrK7F+/Xo899xzmDBhArZv346ysjJ07doVc+fOxYQJE1y1o0aNQp8+faBQKPDvf/8bffv2xcaNG/Hoo4/izjvvdLtY7ZFHHkFMTAzuvPNOrFu3DuPHj3fPHRDgmmsLcJ7zHRgYWOcFdgqFot4L7/wBGzDymSPffIgBjjyUIQSn+j6Diwe34P3LffGPqlroApVSxyMi8qjqWjt6ZX0hyb6PvZiOQNW1v+IVCgUmTZqE1atX449//KOraVu/fj3sdjt+97vfYf369Xj22Weh1Wrx2Wef4cEHH0TXrl3d7r28Zs0aPP7449ixYwcA4Msvv0RJSYnrzjK/dMcdd6B79+54//33r2rA2hO/vAqS/NT+NQCAk/o7MfTuJ7Ey4lnsqU3Eur15EgcjImq/Hn74YZw5cwbffvuta9mqVatwzz33ICEhAc888wwGDBiALl26YObMmRg9ejTWrVvnto2kpCQsWrQIPXr0QI8ePfDjjz8CAHr27FnnPpOTk101zXX48GEEBwe7PX7/+9+3aJu+xBEw8olKUxl6V+0BBCD2pmkQBAEThyfg+Q1HsOlIPh69oYvUEYmIPCpAKcexF9Ml23djJScnY8SIEXj33XcxatQonD59Gt999x1efPFF2O12vPzyy1i3bh0uXboEq9UKi8Vy1Wz/gwcPrnPbDZ1mrlKpGp2xLj169LjqLjP+dN40GzDyib0Xq/GadR5GBedhZo8BAIC0ntHY+N/juPnyAZQWdkZ4dAdpQxIReZAgCI06DNgaTJ06FTNnzsTy5cuxatUqdO3aFTfeeCP+8pe/4NVXX8XSpUvRt29fBAUFYdasWbBarW7rBwUFuT1PSkoCABw/fhwjRoy4an/Hjx/HgAEDWpRZpVKhW7duLdqGlHgIknxix7ly7BN74FLyFNeyWF0AXg78Nx5TbMSZ7P9KmI6IqH0bN24cZDIZ3nvvPfzzn//Eww8/DEEQsGPHDvz2t7/F7373O/Tv3x9dunRp1KHD9PR0hIeHY8mSJVe99umnn+LUqVN46KGHvPBO/AcbMPKJ7LMlAIDUrhFuywujrwcAiOe+83kmIiJyCg4Oxvjx4zFnzhzk5+e7mqOkpCRs2bIFO3fuxPHjx/HYY49ddcu+ugQFBeGtt97Cf//7X0ybNg2HDh3C+fPn8c477+Chhx7Co48+it/85jctymyz2WAwGNwejcnWWrABI6+rqa7C3YVv4C7ZdxjSyf34fEBX59B0jOmQFNGIiOgnU6dORVlZGdLT0xEXFwcAmDdvHgYNGoT09HSMGjUKer3edXeYa7n33nvx9ddfIzc3F9dffz0SExPxyCOP4LnnnmvUfZSv5ejRo4iNjXV7JCQktHi7vsKJWFuhtjYR66mD3yFpw+0oRzB0WXkQfnH/zLKifIQtTwYAGGf+CF1EjFQxiYhaxB8nYvWlmpoa/Pa3v0VeXh6+/fZbREVFSR2pWTw1EStHwMjryk47Z1HOUye5NV8AEBYVizzB+S+t8z98e9W6RETUNmg0Gvz3v//FpEmTsH37dqnjSM4/Ls8gvybm/wAAMIf1qvN1g7YP4o2XUXV+L4BxPkxGRES+pNFo8Nxzz0kdo1XgCBh5nc7kvGJG0XFAna/bo/sAAFQlJ3wViYiISFIcASOvEh0OxNZeAACEJfSrs0bebzxuPhIHR0AivvFhNiIiIqlwBIy8qqw4HzqYAQBxXXrXWdOtSxecFeNwvsyCippaX8YjIiKSBBsw8qqCc0cAAPmIQkBQSJ01YUEqxOqcV5KcMFT4LBsREZFUeAiSvOqQ0AMP17yGWxJkeKmBugdD9kFf9S2qDhUBnR/yVTwiIiJJcASMvOpscTXyEQFFh4EN1g2Sncbd8u+hvrTLR8mIiIikwwaMvOpssfP8ry5RQQ0XRjpv3KoxnfN2JCIiIsnxECR51a2X3sBARS26qZ9psC44rgdwDIioyfVRMiIiIulwBIy8RnQ48JuaTXhC8Sk6BDoarI1KdM4FFuswoNZq8UU8IiICcMcdd2D06NF1vvbdd99BEAQcOtSy+/Xm5eXh4YcfRlxcHFQqFRISEvDkk0+ipKTEre6hhx5y3WtSEIQGHwsWLHCtU9fr9b2n1oIjYOQ1xtJChArVAICYTkkN1kbHdkaVqEagYEHu+ePo1H2ADxISEdHUqVNxzz334OLFi+jYsaPba6tWrcKQIUPQr1/d8zg2xGq1QqVS4ezZs0hNTUX37t3x/vvvIzExEUePHsUf/vAHfP7559i1axfCw8OvWj8/P9/1+9q1a5GVlYWTJ0+6lgUHB7t+Hz16NFatWuW2vlqtbnJmX+IIGHlNUZ5zBvxihEITGNxgrSCT4bLC+T9+ae5xr2cjIiKn22+/HVFRUVi9erXb8srKSqxfvx5Tp04FAGzevBkjR45EaGgoIiIicPvtt+PMmTOu+lGjRmHGjBmYNWsWIiMjkZ6eDgCYPn06VCoVvvzyS9x4443o1KkTxowZg6+++gqXLl3CH//4xzpz6fV610On00EQBLdlv2zA1Gq122t6vR5hYWEe/qQ8iw0YeY0p3/k/ZrEitlH1xsBOsIsCTEV53oxFRORbVnP9j9qaJtRWN662iRQKBSZNmoTVq1dDFEXX8vXr18Nut2PChAkAALPZjMzMTOzduxdbt26FTCbDXXfdBYfj51NM1qxZA5VKhR07dmDFihUoLS3FF198gSeeeAIBAQFu+9Xr9Zg4cSLWrl3rtt/2gocgyWtqi88CACoDOzSqPqfnXNy/fQruUSXiBm8GIyLypZfj6n8t6TZg4vqfny/uBtRW1V2bMBKY8tnPz5f2BapKrq5bYGxyxIcffhiLFy/Gt99+i1GjRgFwHn685557oNPpAAD33HOP2zrvvvsuoqKicOzYMfTp4zyPNykpCYsWLXLV5OTkQBRF9OzZs8799uzZE2VlZSgqKkJ0dHSTc1+xceNGtxExAJg7dy7mzp17zXWnTZuGPXv24N5778WFCxdcv9c3MucpbMDIawSj84rG2pCO16h06hDXAbUock1dQUREvpGcnIwRI0bg3XffxahRo3D69Gl89913ePHFF101p06dQlZWFnJyclBcXOwa+crNzXU1YIMHD65z+9ca4VKpVC3Kf9NNN+HNN990W1bXeWW/dujQIeTm5uLAgQM4dOgQZs+ejQMHDrQoS2OxASOvUVcXAABkofGNqk+MdM4VdraIDRgRtSFzL9f/miB3f/6H0w3U/uqsoVmHm5+pDlOnTsXMmTOxfPlyrFq1Cl27dsWNN97oev2OO+5AQkIC3n77bcTFxcHhcKBPnz6wWq2umqAg9zkfu3XrBkEQcPz4cdx1111X7fP48eOIiopCaGhoi7IHBQWhW7du9b5+6tQpzJo1CwaDAUFBQfjwww9RXFyMMWPGQBAEhIeHIyAgAIIgYMSIEdi5c2eL8jQGzwEjr8lSP4vUmtdg6XFno+oTwzVYrFiBFdY5MJXXMaxOROSPVEH1P5SaJtQGNK62mcaNGweZTIb33nsP//znP/Hwww9DEAQAQElJCU6ePIl58+bhlltucR06vJaIiAjceuuteOONN1Bd7X4Om8FgwH/+8x889NBDzc7cGBaLBU888QTeeust7Nu3Dw888ABWrlyJXr16YcKECVi6dClKS0tdv/ui+QLYgJEXXTLZkI8IREbqG1UfEqjBzYofMET2I4pyT157BSIi8pjg4GCMHz8ec+bMQX5+vltjFBYWhoiICKxcuRKnT5/Gtm3bkJmZ2ajtvv7667BYLEhPT8f27duRl5eHzZs349Zbb0X37t2RlZXV4uwWiwUGg8HtUVxcDADYsGEDjh49ittvvx0DBgzAq6++CqVSCQA4fPiw6/DpL3/3BTZg5BU1tXaUmJ3D0nGhmmtU/6xEEQMAMBnOeiUXERHVb+rUqSgrK0N6ejri4n6+eEAmk+GDDz7Avn370KdPHzz11FNYvHhxo7aZlJSEPXv2oEuXLhg3bhwSEhIwZswYdO/eHTt27Ljq5Pnm2Lx5M2JjY90eI0eOBOBsrJYsWYKDBw/i4MGDOH78OJ599lkAzkOTSUlJV/3uCzwHjLyi+PI5/F25HJcEPXQBv2n0ehWaOKDyR1iKeU9IIiJfS01NrfeE+bS0NBw7dsxt2S9rv/nmm3q327lzZ7d5xubPn4+//e1vOHToEIYPH+5a/uu5yK546KGH6j1UuXr16nrXA5zTXXzxxReu6TQOHTqEfv36obi4GKGhoZDL5W6/+wpHwMgrjJd+xF3yHfitPNt1DkFjWK9cMVnOe0ISEbVVL7zwApYtW4Zdu3a5zSPmDVOmTEF5eTmSk5PRv39//Pvf/wYg7eFHgCNg5CXVxc4GyqSMatJ6srAEIB9QV170RiwiImolpkyZ4pP9BAUFYcOGDVctv+mmm3DTTTdd9buvcASMvKK2/BIAoCogpknraaISAQBaS/41KomIiPwXGzDyCqHSOQeYLbBpMxuHxnaFQxTgsNu8EYuIiKhV4CFI8gpldREAQAhu2ghYdGJf9LCsQS0U+KG6FroApTfiERERSYojYOQVGotzIlWFrnFzgF0RoFZCFxwIALhYVs/90IiIiPwcGzDyimBbKQBAE9q0BgwAOoRdacCqr1FJRNT6XOu+h+TfPPXnywaMvOJux1+QUvM6NInDr138Kw9gM9aqXkTA0fe9kIyIyDuuzK5eVcXR+7bsyp/vlT/v5uI5YORxFpsdJTUAEI7IsNAmr58gL0GK7AR2FR+7djERUSshl8sRGhqKwsJCAEBgYGCT5kGk1k0URVRVVaGwsNAjk7ayASOPK6l03oJIKReadRK9EJYAGDgXGBH5H73eedrFlSaM2p7Q0FDXn3NLsAEjjzPlHcXflG+gUNUJgtD42xBdoYlKBI5zLjAi8j+CICA2NhbR0dGora2VOg55mFKp9NjtitiAkcfVFJzC3fLvcUro1qz1dbFdAABR9gJPxiIi8hm5XO7T+wqS/+FJ+ORx1nLnyFWVMqJZ60fEORswLapgrij3VCwiIqJWgw0YeZy9wjlyZdFENmv9EF04KsUAAEDx5fOeikVERNRqsAEjj5OZnSefOgKbdiPuXyqSR8MghqGstMRTsYiIiFoNv27Ali9fjs6dO0Oj0SAlJQW7d+9usH79+vVITk6GRqNB3759sWnTJrfXRVFEVlYWYmNjERAQgLS0NJw6dcr1+vnz5zF16lQkJiYiICAAXbt2xfz582G1Wt22c+jQIVx//fXQaDSIj4/HokWLPPem/YCyptj5SxNvQ/RL8+PewnDLcpxSdvdQKiIiotbDbxuwtWvXIjMzE/Pnz8f+/fvRv39/pKen13vp786dOzFhwgRMnToVBw4cQEZGBjIyMnDkyBFXzaJFi7Bs2TKsWLECOTk5CAoKQnp6OmpqagAAJ06cgMPhwFtvvYWjR4/i73//O1asWIG5c+e6tmEymXDbbbchISEB+/btw+LFi7FgwQKsXLnSux9IKxLw022IlLrYZm9DH+qcDd9grPFIJiIiolZF9FPDhg0Tp0+f7nput9vFuLg4ceHChXXWjxs3Thw7dqzbspSUFPGxxx4TRVEUHQ6HqNfrxcWLF7teLy8vF9Vqtfj+++/Xm2PRokViYmKi6/kbb7whhoWFiRaLxbXs2WefFXv06NHo92Y0GkUAotFobPQ6rUnugmRRnK8Vj2Z/3uxtLPnypJjw7EbxuY8OeTAZERGR9zTl+9svR8CsViv27duHtLQ01zKZTIa0tDRkZ2fXuU52drZbPQCkp6e76s+dOweDweBWo9PpkJKSUu82AcBoNCI8PNxtPzfccANUKpXbfk6ePImysrI6t2GxWGAymdwe/ux2+2Kk1LyOgIQhzd7GANshrFW9iNFn/+zBZERERK2DXzZgxcXFsNvtiIlxP8coJiYGBoOhznUMBkOD9Vd+NmWbp0+fxmuvvYbHHnvsmvv55T5+beHChdDpdK5HfHx8nXX+oMpqg9EqoADhiAzTNXs7kRogRXYC8VXHPZiOiIiodfDLBqw1uHTpEkaPHo377rsPjz76aIu2NWfOHBiNRtcjLy/PQyl9r7jCeUGCRilDsLr58/yGxCQAAMIdxR7JRURE1Jr45Uz4kZGRkMvlKChwnym9oKCg3vsz6fX6Buuv/CwoKEBsbKxbzYABA9zWu3z5Mm666SaMGDHiqpPr69vPL/fxa2q1Gmq1us7X/E1F3iH8XbkcBepECMKYZm8nPDYRABCKSlSbKxAQFOKpiERERJLzyxEwlUqFwYMHY+vWra5lDocDW7duRWpqap3rpKamutUDwJYtW1z1iYmJ0Ov1bjUmkwk5OTlu27x06RJGjRqFwYMHY9WqVZDJ3D/C1NRUbN++3e0eYFu2bEGPHj0QFhbW/DftJ6yFp3GXfAduRsNTglyLVheOKtHZlBZdPueJaERERK2GXzZgAJCZmYm3334ba9aswfHjx/H444/DbDZjypQpAIBJkyZhzpw5rvonn3wSmzdvxpIlS3DixAksWLAAe/fuxYwZMwA4b6A6a9YsvPTSS/j0009x+PBhTJo0CXFxccjIyADwc/PVqVMn/PWvf0VRUREMBoPbuV0PPPAAVCoVpk6diqNHj2Lt2rV49dVXkZmZ6bsPR0K1Fc5DhtXK0BZtR5DJUCR3TuRqKrjQ0lhEREStil8eggSA8ePHo6ioCFlZWTAYDBgwYAA2b97sOuE9NzfXbXRqxIgReO+99zBv3jzMnTsXSUlJ2LBhA/r06eOqmT17NsxmM6ZNm4by8nKMHDkSmzdvhkajAeAcyTp9+jROnz6Njh07uuURRRGA88rJL7/8EtOnT8fgwYMRGRmJrKwsTJs2zdsfSatgNzvnALOqWj7aZ1JGAZaLqC7233PiiIiI6iKIVzoHajVMJhN0Oh2MRiO0Wq3UcZpk14onMNzwH+yKmYDhj69o0bZylj6ATmXZOJY8E7dMaB8jiERE5L+a8v3tt4cgqXWS1TjnOhMDw69ReW3f98xCquV1bNPc2uJtERERtSZswMijVFZnAyYPimzxtvShAQB4OyIiImp72ICRR2ms5QAAZYgHGjCt89y7ggo2YERE1Lb47Un41DrNVP8J5ZUFeDNxVIu31VEowjrVC9CUigD2tHh7RERErQUbMPKowioRRoQhNLT5tyG6IiJUix6yk7A7BNhqrVAoVddeiYiIyA/wECR5jM3ugLHaOQFtaGDLm6WwyDjYRBnkgoiyosst3h4REVFrwQaMPMZYVoS/K5fjecW/EKpp+eCqXKFAqRAKACgvyG3x9oiIiFoLHoIkj6kovoS75DtgRBAUCrlHtmlURCDaVgpz8UWPbI+IiKg14AgYeUxVeSEAwCS0/PyvKypVztsRWcp4CJKIiNoONmDkMTXGIgCAWe65BswaEA0AcFTke2ybREREUmMDRh5jq3A2YBal5xowW3AHXBbDYbIKHtsmERGR1HgOGHmM3VwMALCqW34j7ivyev8eE09eh5s0UUj32FaJiIikxREw8hihqhQAYNe0/D6QV8RcmQ3fZPHYNomIiKTGBow8Rl7jbMDEwAiPbTNaqwYAFFawASMioraDDRh5zMrQpzC05g3kdxvvsW3qNTasU72AD2ufQK2VTRgREbUNbMDIY4qqHChCKIJ1Lb8R9xVhulAMFE6js1CA0kLOBUZERG0DGzDymLIqKwAgPMhz92yUyeWu2fCNhXke2y4REZGUeBUkecxM8zJUKJSIkPcD4LkT8Y2KCMTYSjgbPhERtRlswMgjaq0W3IttgAIoD1jm0W2bVVGA7UdYyzkbPhERtQ08BEkeYSx13obIIQoICfXcOWAAYA2McW7bxNnwiYiobWADRh5hLnfOgl8hBEKu8OzAqiPIeTsieaXBo9slIiKSChsw8ohqUwkAoFII9vi2ZaHxuCRGoMyu9vi2iYiIpMBzwMgjaiqcDViVXOvxbVf3GofrchLRU6Hl7YiIiKhN4AgYeURtpXMW/Bp5iMe3feV2RIWmGo9vm4iISApswMgj7GZnA2ZV6Ty+7SsNWInZCqvN4fHtExER+RoPQZJH7Iq4GzNquuCeXnEY7OFthwUq8Z7qz+iIQpTm94A+vpuH90BERORbHAEjjyi3iCiGDgqd3uPbFgQBXWSF6CQrQnlBrse3T0RE5GtswMgjyn+6DZEuQOmV7RsVEQCAqpJLXtk+ERGRL/EQJHlEquE99FdcQAfrIwC6enz7VepIwAbUlrMBIyIi/8cRMPKIAZXbMUXxBaIchV7ZvjXAORmrw8TJWImIyP+xASOPCLBXAABUIRFe2b4j2Hk7Irm5wCvbJyIi8iU2YOQRwaKzAQvUhntl+wptLABAU1Pkle0TERH5EhswajHR4YBWrAQABIZGeWUfyvB4XBQjUejw/K2OiIiIfI0n4VOLmSuNCBacE6RqvdWAdb8FIzcvQ6RShb1e2QMREZHvcASMWqyizHnivUVUQhMQ5JV9RIf8PBu+zc7Z8ImIyL+xAaMWMxudN+KuEIIgyLzzn1REkApymQBRBIorrV7ZBxERka+wAaMWK9R0xeCaN/FU8CKv7UMmE/CO+u/4TvUkKs7t8dp+iIiIfIENGLVYucWBEuhQHRTv1f10kJUhXlYEc1GeV/dDRETkbWzAqMWM1bUAgNBA79yG6AqzKhIAYC2/7NX9EBEReRuvgqQW0+Ztw3zFJqB2JIChXtuPJSAKqOZs+ERE5P/YgFGLhRfvw1jFF9hlDfXqfhxBMUApIHA2fCIi8nM8BEktJrOUAwBETah396PVAwDUnA2fiIj8HBswajHFTw2YLDDMq/tRh8YBAIKsxV7dDxERkbexAaMWU9tMAAC5lxuwwEjn7Ygu2727HyIiIm/jOWDUYgE/NWDKkAiv7iekyxCkWpZBIRPwo0OETCZ4dX9ERETe4tcjYMuXL0fnzp2h0WiQkpKC3bt3N1i/fv16JCcnQ6PRoG/fvti0aZPb66IoIisrC7GxsQgICEBaWhpOnTrlVvPnP/8ZI0aMQGBgIEJDQ+vcjyAIVz0++OCDFr3X1izQXgEAUIeEe3U/kcFqCAJgc4goreJs+ERE5L/8tgFbu3YtMjMzMX/+fOzfvx/9+/dHeno6CgsL66zfuXMnJkyYgKlTp+LAgQPIyMhARkYGjhw54qpZtGgRli1bhhUrViAnJwdBQUFIT09HTU2Nq8ZqteK+++7D448/3mC+VatWIT8/3/XIyMjwyPtujYJgBgAEar07AqaUyxAeqAIAFJosXt0XERGRNwmiKIpSh2iOlJQUDB06FK+//joAwOFwID4+HjNnzsRzzz13Vf348eNhNpuxceNG17Lhw4djwIABWLFiBURRRFxcHJ5++mk888wzAACj0YiYmBisXr0a999/v9v2Vq9ejVmzZqG8vPyqfQmCgE8++aTZTZfJZIJOp4PRaIRWq23WNnzF4RCR8sf3EQIz1j57P6JCQ7y6vy1/vgvJlsMovWUx+t94l1f3RURE1BRN+f72yxEwq9WKffv2IS0tzbVMJpMhLS0N2dnZda6TnZ3tVg8A6enprvpz587BYDC41eh0OqSkpNS7zYZMnz4dkZGRGDZsGN5991001OdaLBaYTCa3h7+osNhQJOpwVoxDSFCg1/cXIzchXlYESylvR0RERP7LL0/CLy4uht1uR0xMjNvymJgYnDhxos51DAZDnfUGg8H1+pVl9dU01osvvoibb74ZgYGB+PLLL/HEE0+gsrIS//d//1dn/cKFC/HCCy80aR+themn2xCpFTJolHKv78+iiQJqAIeRs+ETEZH/8ssGrLV7/vnnXb8PHDgQZrMZixcvrrcBmzNnDjIzM13PTSYT4uO9e2NrT6kuOof5ijUwqWIAjPH6/mxBMUA5IFTme31fRERE3uKXhyAjIyMhl8tRUOB+S5qCggLo9fo619Hr9Q3WX/nZlG02VkpKCi5evAiLpe4Tx9VqNbRardvDX9SWXMAUxRfIwDaf7E8W4vyzUFZzNnwiIvJfftmAqVQqDB48GFu3bnUtczgc2Lp1K1JTU+tcJzU11a0eALZs2eKqT0xMhF6vd6sxmUzIycmpd5uNdfDgQYSFhUGtVrdoO62RpbIUAFAjC/bJ/pShsQCAQAtnwyciIv/lt4cgMzMzMXnyZAwZMgTDhg3D0qVLYTabMWXKFADApEmT0KFDByxcuBAA8OSTT+LGG2/EkiVLMHbsWHzwwQfYu3cvVq5cCcB55eKsWbPw0ksvISkpCYmJiXj++ecRFxfndjVjbm4uSktLkZubC7vdjoMHDwIAunXrhuDgYPzvf/9DQUEBhg8fDo1Ggy1btuDll192XVnZ1tjM5QAAi8K7Vz9eERjeAQCgtZf4ZH9ERETe4LcN2Pjx41FUVISsrCwYDAYMGDAAmzdvdp1En5ubC5ns5wG+ESNG4L333sO8efMwd+5cJCUlYcOGDejTp4+rZvbs2TCbzZg2bRrKy8sxcuRIbN68GRqNxlWTlZWFNWvWuJ4PHDgQAPD1119j1KhRUCqVWL58OZ566imIoohu3brhb3/7Gx599FFvfySScFSXAwCsSt80YNroTshzROEiohArihAEzoZPRET+x2/nAWvL/GkesOx3/oDUvJXIichAysw1116hhWpq7Uh+fjMA4Ies26ALVHp9n0RERI3R5ucBo9ZDsBgBAA6VbxpFjVIOrcY5cFtYUXONaiIiotaJDRi1iMzy06SxATqf7TNa6zwkXFjB2xEREZF/YgNGLfKf0Gm4xbIYlxLu9tk+n7G/g+/V/wfl8Y99tk8iIiJPYgNGLWKwBuCM2AGq0JbNldYUkfIqdBSK4Si/6LN9EhEReRIbMGqRihobALjOy/IFW2D0Tzvn7YiIiMg/+e00FNQ63FvxL1QorAgXuwGI9s1OQ/SAAVBWF/pmf0RERB7GBoxa5F7bRmgVZlwQZvlsn4qfZsMP4Gz4RETkp3gIkprNYbcjWKwCAATqwn2234Aw52z4IbWcDZ+IiPwTGzBqtsqKcsgE5zy+IboIn+1XG+VswMIdpT7bJxERkSexAaNmMxudhwBrRCU0AUE+22+YPgF5jiicEONhNpt9tl8iIiJP4Tlg1GxVpjIAQKUQBM01aj0pOCQUw/A6qqx2fF0NJPqu9yMiIvIIjoBRs9VUOA8BmmXBPt93dIgaAFBo4u2IiIjI/7ABo2azVjobsGpJGjDejoiIiPwXGzBqtvO6YbjFshiro57x+b4ftv4bO9QzEXFsjc/3TURE1FJswKjZymqVOCN2QGVIV5/vO1RRiw5CCWSmPJ/vm4iIqKXYgFGzmWpqAQDaAKXvdx4cAwBQmDkbPhER+R82YNRssZe/wlOKD9Gr9qjP9y3XOWfD11iKfL5vIiKilmIDRs3WpXQ7nlR8jK7Vh32+b81Ps+EHczZ8IiLyQ2zAqNkUVhMAQBYQ6vN9h/w0G34YZ8MnIiI/xAaMmk1lqwAAyINCfb7vsOh4AIAOZtRUczZ8IiLyL2zAqNk09koAgCowzOf71oZF4awYh72O7igp4WFIIiLyL7wVETVbgOOnBizE9w2YIJPhwYDluFRejY/sIejg8wRERETNxxEwarZg0XnoLyAkQpL9R2udtyMqquDtiIiIyL+wAaNmcdjtCBarAABBunBJMsTwdkREROSn2IBRs1Ra7bjVugh3WV5AcFiMJBnuqv4QO9Uz0O3oa5Lsn4iIqLl4Dhg1i6nGhjNiB6gUMmjUakkyaFUi4oRSXKq8LMn+iYiImosjYNQspmobAECrka6HV2ids+GrazgbPhER+ReOgFGzWApP4SnFh6iWxwO4VZIMqrA4AEBQbbEk+yciImoujoBR8xSdwJOKj3GXfbNkEYIjnJNPhNo5Gz4REfkXNmDULLXmcgCARREiWQbdT7Phh4km2GqtkuUgIiJqKjZg1CyOqnIAgFUpXQMWHhUHmyiDTBBRWnhJshxERERNxXPAqFnEGiMAwK7USpZBJpfjsCwJVruIEGMFojkdPhER+Qk2YNQsgsXZgDnU0jVgADAv/G84fMmIfyAGyZImISIiajwegqRmkVlMzl80OklzxPx0OyLOhk9ERP6EDRg1i7LW2YAJAaGS5ohy3Y6I94MkIiL/wQaMmuXdoGm4y/ICyjtJMwfYFbeYP0O2egZSjr8iaQ4iIqKm4Dlg1CxnbeE4Kiqg/mkyVKloNXLECqUwVOdLmoOIiKgpOAJGzWKqqQUAaDVKSXOoQp2XPgZbeTsiIiLyHxwBo2a5t2o9THIZwmQDAIRJliPwp9nwdbYSyTIQERE1FRswajKH3Y4Z4vuQK0UUK56VNIsuuiMAIEw0wmG3QyaXS5qHiIioMXgIkprMXGmEXBABAMGhEZJmCY/uCIcoQCnYUVbM88CIiMg/sAGjJjMbnYf7rKICak2gpFmUKjXKBeftkMoLL0qahYiIqLF4CJKarMpUCgCoEIIQIQgSpwF+VPSAzGqCzMy5wIiIyD94ZASstLQUDofDE5siP1BT4WzAqoQgiZM4vRn3MsZZ5+OsoqvUUYiIiBql2Q3YsWPH8Morr2DEiBGIiopCdHQ0Jk2ahI8++ghms9mTGamVsVaWAQCq5cESJ3GKDnHejqiItyMiIiI/0aQG7OTJk3j66aeRlJSE4cOHY8+ePfj973+PgoICbNq0CQkJCXjxxRcRGRmJMWPG4M033/RWbgDA8uXL0blzZ2g0GqSkpGD37t0N1q9fvx7JycnQaDTo27cvNm3a5Pa6KIrIyspCbGwsAgICkJaWhlOnTrnV/PnPf8aIESMQGBiI0NDQOveTm5uLsWPHIjAwENHR0fjDH/4Am83WovfamtSanQ1YjSJE4iRO0VfuB2niIUgiIvIPTWrAdu7cCbPZjGXLlqG4uBgfffQRJk2ahMjISAwbNgx/+tOf8MMPP+D48eMYPXo0Pv74Y2/lxtq1a5GZmYn58+dj//796N+/P9LT01FYWFhv9gkTJmDq1Kk4cOAAMjIykJGRgSNHjrhqFi1ahGXLlmHFihXIyclBUFAQ0tPTUVPz8xe71WrFfffdh8cff7zO/djtdowdOxZWqxU7d+7EmjVrsHr1amRlZXn2A5DQKd0I3GV5AZ9F/17qKACAYeZvsEs9HXecmid1FCIiosYR/dSwYcPE6dOnu57b7XYxLi5OXLhwYZ3148aNE8eOHeu2LCUlRXzsscdEURRFh8Mh6vV6cfHixa7Xy8vLRbVaLb7//vtXbW/VqlWiTqe7avmmTZtEmUwmGgwG17I333xT1Gq1osViqTNbTU2NaDQaXY+8vDwRgGg0Guv/ACS0dMuPYsKzG8XnPjokdRRRFEVx3+erRHG+Vjz+UorUUYiIqB0zGo2N/v72y2korFYr9u3bh7S0NNcymUyGtLQ0ZGdn17lOdna2Wz0ApKenu+rPnTsHg8HgVqPT6ZCSklLvNuvbT9++fRETE+O2H5PJhKNHj9a5zsKFC6HT6VyP+Pj4Ru9PCq7bEAW0jotoA8Ods+FrORs+ERH5iSY3YCEhIbjhhhvw1FNP4V//+heOHj0KURS9ka1excXFsNvtbk0OAMTExMBgMNS5jsFgaLD+ys+mbLMp+/nlPn5tzpw5MBqNrkdeXl6j9yeF+IJtmCrfhETbeamjAAC0Uc6GNcJRBpFX4xIRkR9o8hDGX/7yF+zbtw/btm3D66+/DofDgYCAAPTr1w+DBw/GoEGDMGjQIPTv398bedsktVoNtVotdYxG61/6OR5Sfo+c6gQAY6SOg3C9swFTC7UwlpdAFx4lcSIiIqKGNbkBe+KJJ1y/V1dXIygoCDNnzkRpaSl27dqFf/zjH7BarbDb7R4N+kuRkZGQy+UoKChwW15QUAC9Xl/nOnq9vsH6Kz8LCgoQGxvrVjNgwIBGZ9Pr9VddjXllv/Vl8zeq2goAgDwwVNogP9EEBMGEIGhhRnlBLhswIiJq9Vp0DlhAQAAAYMKECXjrrbewZ88eVFRU4MCBAx4JVx+VSoXBgwdj69atrmUOhwNbt25Fampqneukpqa61QPAli1bXPWJiYnQ6/VuNSaTCTk5OfVus779HD582O1qzC1btkCr1aJXr16N3k5rprZXAgCUQWESJ/lZmSwcAFBRzNsRERFR6+fxs6gVCgX69evn6c1eJTMzE5MnT8aQIUMwbNgwLF26FGazGVOmTAEATJo0CR06dMDChQsBAE8++SRuvPFGLFmyBGPHjsUHH3yAvXv3YuXKlQAAQRAwa9YsvPTSS0hKSkJiYiKef/55xMXFISMjw7Xf3NxclJaWIjc3F3a7HQcPHgQAdOvWDcHBwbjtttvQq1cvPPjgg1i0aBEMBgPmzZuH6dOn+9VhxoYEOpwNmDq49TRgFzTJMFQGwVLj2/MRiYiImqN1XMbWDOPHj0dRURGysrJgMBgwYMAAbN682XXCe25uLmSynwf4RowYgffeew/z5s3D3LlzkZSUhA0bNqBPnz6umtmzZ8NsNmPatGkoLy/HyJEjsXnzZmg0GldNVlYW1qxZ43o+cOBAAMDXX3+NUaNGQS6XY+PGjXj88ceRmpqKoKAgTJ48GS+++KK3PxKfCRKdDZgmJFziJD/7JGEePjlwCXNUybhB6jBERETXIIhNvITxkUceweDBgzFkyBD069cPAQEB+OGHH9C3b19vZWx3TCYTdDodjEYjtFqt1HHcOOx2iC9GQC6IKJp2CFFxCVJHAgAs3HQcb20/i6kjE/H87W3jUC8REfmXpnx/N3kE7NSpU1i/fj0qKiqgUDhXf+GFFzBq1CgMGjQIAwYMQGBgYPOSU6tnrjQiRHD27MG61jMCFhXC2xEREZH/aHID9u233wJwNmL79u3D/v37sX//fmRlZaG8vBxyuRzdu3evd9JR8m8mmwKTLC8gXF6FfwQESR3HpXf1XuxSz0bR+QQA30odh4iIqEHNPgcsKSkJSUlJuP/++13Lzp07h71793r9KkiSjskKHBCTEKFWQZC1nhspaIODoRfKUFsbIHUUIiKia2pSA2YwGBAWFlbv1XyJiYlITEzEfffdBwA4e/YsunTp0vKU1GpU1NgAANoApcRJ3GmjnLcjCneUSpyEiIjo2po0hPHhhx8iPDwcd911F1atWoWioqKranJycjB37lz07t2bs+G3QbaCk5gq34SbZfuljuImLKYTACBIqIG5olzaMERERNfQpAZsxowZ+OGHH3D99ddj9erV6NixI0aOHImXX34Zjz76KGJjY5GRkYHCwkK88sordTZo5N+UhgN4XvlvZFj+J3UUN8HaMFSJzpHZ0oLWfS9NIiKiJp8D1q1bN2RmZiIzMxMlJSXYuHEjNm3ahM6dO+Ojjz5CamoqBEHwRlZqBezVZQCAWmWIxEmuVioLR6CYj4qii0A3TotCREStV4smYo2IiMDkyZMxefJkt+VHjhxxm+CU2g6x2ggAqFXpJE5yNZMyErDmo7r0ktRRiIiIGuSxy9gqKiqwcuVKDBs2rEk3ryb/ItQ4GzCHunVNEAsAhsAeyHEko8iqkjoKERFRg1rcgG3fvh2TJ09GbGws5s2bh/j4eDRxcn3yI3KrswGDJlTSHHXJTnoa461Z2KscInUUIiKiBjWrATMYDHjllVeQlJSE3/zmN7DZbFi3bh0uX76MF154wdMZqRVRWE0AAFlAqLRB6qDXOecAy+ds+ERE1Mo1+RywO+64A1u3bsVNN92EBQsWICMjA0FBP8+IzhPw2zaVrQIAIA8KkzjJ1eJ0zpumF5RXSZyEiIioYU1uwD777DM88MADmDVrFoYM4aGe9uZ19aOorszDYx1TpY5ylc6OC9ilng57kQrAj1LHISIiqleTD0Hu3LkTAQEBuPnmm9GjRw+8+OKLOHPmjDeyUSt0qLYjvnEMgCYsTuooV4mIiIZeKEO0oxh2m03qOERERPVqcgM2fPhwvP3228jPz8ezzz6LL7/8Et27d8fw4cPx2muvoaCgwBs5qZUwVdcCAHSt7FZEABChj4ddFKAU7Cgr5FQURETUejX7KsigoCA8/PDD+P7773Hs2DHccMMNePnll5GWlubJfNSK2G023Gf7H+6VfwutqvVd6SpXKFEiOM9NKzWclzYMERFRAzwyD1iPHj2waNEiXLx4ER9//DHGjh3ric1SK1NpLEGW8l/4q/ItaDWtbwQMAMoUUQCAyqJciZMQERHVz2MTsQKAXC5HRkYGPv30U09ullqJSmMpAKBKVEOl1kicpm5mTQwAwFrK+0ESEVHr5dEGjNq26ooSAEClEHSNSulYA2MBAKKJ54AREVHrxQaMGq3G5GzAqmTBEiepnyU8GbscPXHRESl1FCIionq16Gbc1L5YzWUAgGp5iMRJ6mfqeT9mHuyBYbJw3Cd1GCIionpwBIwazWYuBwBYFK23AYv9aTb8fGO1xEmIiIjqxwaMGs1R7RwBsylbbwOm/6kBKzGa4bA7JE5DRERUNx6CpEb7QXszVlhVGB7bA631JlTRQUrsVM+AHmUoKzmKiOgOUkciIiK6CkfAqNEuOiLwjWMAqiL6Sh2lXiqVEirBAZkgoiz/nNRxiIiI6sQGjBrNVOO8DZG2Fd6G6Jdck7EWcjJWIiJqndiAUaN1LfkG98m/gd5RJHWUBlWqogEAFk7GSkRErRTPAaNGu618LZKVx7G/ph+AFKnj1MsaqAeqAIeRk7ESEVHrxBEwarQAeyUAQBUcKm2Qa3BonSfeK8z5EichIiKqGxswarRAh7MBCwgJlzhJw1RhzgYssNogcRIiIqK6sQGjRgsWzQCAAG3rvs2POqY7djl64rDYReooREREdeI5YNQoNdVVCBCsAIAgXYTEaRqm7Toct1ufh0aUYbwoQhAEqSMRERG54QgYNUqFsRgA4BAFhGjDJE7TsGitGgBQU+tAeVWtxGmIiIiuxgaMGqXKWAoAqBQCIZPLJU7TMI1SjshgFZSw4XKJUeo4REREV2EDRo1SpojAQ9bZWKiaKXWURnlT+AtOqifDcuILqaMQERFdheeAUaOU2dT4xjEAvYO1UkdpFJkqALJaEdbiC1JHISIiugpHwKhRTNU/3YZI07pvQ3RFbfBPN+E2cjZ8IiJqfdiAUaPIC47gPvk36C+cljpK44TGAwBUlZwNn4iIWh82YNQokfnfYrFyJW42fyZ1lEZRRyQAAEIsnA2fiIhaHzZg1Dg15QAAh1onbY5G0uqdk7BG2AokTkJERHQ1NmDUKDKLczoHUeMfDVhkxyQAQDhMqDZXSpyGiIjIHa+CpEZR1JoAAEJA656E9QptaAS+F/ujwBGCgSWl6BIULHUkIiIiFzZg1CjK2goAgCIwVNogjSTIZPhT6Es4WVCBNTUB4F0hiYioNeEhSGoUjc3ZgCmDQ6UN0gRxoRoAwKWyaomTEBERuWMDRo0S4HCeR6UObt034v6lDmEBUMKGkuJCqaMQERG58esGbPny5ejcuTM0Gg1SUlKwe/fuBuvXr1+P5ORkaDQa9O3bF5s2bXJ7XRRFZGVlITY2FgEBAUhLS8OpU6fcakpLSzFx4kRotVqEhoZi6tSpqKz8+STv8+fPQxCEqx67du3y3BuXwIuYhv+zTocypofUURotvfJTnFRPRurJV6SOQkRE5MZvG7C1a9ciMzMT8+fPx/79+9G/f3+kp6ejsLDu0Y6dO3diwoQJmDp1Kg4cOICMjAxkZGTgyJEjrppFixZh2bJlWLFiBXJychAUFIT09HTU1NS4aiZOnIijR49iy5Yt2LhxI7Zv345p06Zdtb+vvvoK+fn5rsfgwYM9/yH4iCiK+KomGZ86rkNwWLTUcRotICwaMkFEYDXnAiMiolZG9FPDhg0Tp0+f7nput9vFuLg4ceHChXXWjxs3Thw7dqzbspSUFPGxxx4TRVEUHQ6HqNfrxcWLF7teLy8vF9Vqtfj++++LoiiKx44dEwGIe/bscdV8/vnnoiAI4qVLl0RRFMVz586JAMQDBw40+r3U1NSIRqPR9cjLyxMBiEajsdHb8CZTtVVMeHajmPDsRrHKYpM6TqMd371FFOdrxfz5XaWOQkRE7YDRaGz097dfjoBZrVbs27cPaWlprmUymQxpaWnIzs6uc53s7Gy3egBIT0931Z87dw4Gg8GtRqfTISUlxVWTnZ2N0NBQDBkyxFWTlpYGmUyGnJwct23feeediI6OxsiRI/Hpp582+H4WLlwInU7nesTHxzfiU/AdU3kx7pN/g9uUB6FR+s9/MhEdugEAIsUS2GqtEqchIiL6mf98m/5CcXEx7HY7YmJi3JbHxMTAYDDUuY7BYGiw/srPa9VER7sfglMoFAgPD3fVBAcHY8mSJVi/fj0+++wzjBw5EhkZGQ02YXPmzIHRaHQ98vJa1w2kqwvOYrFyJf4sfxuCIEgdp9EiYuJhFeVQCA4UXT4ndRwiIiIXzgPmYZGRkcjMzHQ9Hzp0KC5fvozFixfjzjvvrHMdtVoNtVrtq4hNVm0sBgBUyrSIkjhLU8jkchTJItFBLEDZ5bOITfCfCwiIiKht88sRsMjISMjlchQUuN/nr6CgAHq9vs519Hp9g/VXfl6r5tcn+dtsNpSWlta7XwBISUnB6dOnG/HOWidrpbMBq1ZoJU7SdOVK559LVdF5aYMQERH9gl82YCqVCoMHD8bWrVtdyxwOB7Zu3YrU1NQ610lNTXWrB4AtW7a46hMTE6HX691qTCYTcnJyXDWpqakoLy/Hvn37XDXbtm2Dw+FASkpKvXkPHjyI2NjYpr/RVsJWWQoAsPhhA3Y+dDg+to9Eni1U6ihEREQufnsIMjMzE5MnT8aQIUMwbNgwLF26FGazGVOmTAEATJo0CR06dMDChQsBAE8++SRuvPFGLFmyBGPHjsUHH3yAvXv3YuXKlQAAQRAwa9YsvPTSS0hKSkJiYiKef/55xMXFISMjAwDQs2dPjB49Go8++ihWrFiB2tpazJgxA/fffz/i4uIAAGvWrIFKpcLAgQMBAB9//DHeffdd/OMf//DxJ+Q5YlUZAMCmCpU2SDP8mPQIXs09hQmIx11ShyEiIvqJ3zZg48ePR1FREbKysmAwGDBgwABs3rzZdRJ9bm4uZLKfB/hGjBiB9957D/PmzcPcuXORlJSEDRs2oE+fPq6a2bNnw2w2Y9q0aSgvL8fIkSOxefNmaDQaV81//vMfzJgxA7fccgtkMhnuueceLFu2zC3bn/70J1y4cAEKhQLJyclYu3Yt7r33Xi9/It4jVjtHwOyaUGmDNEOHsAAAwEXejoiIiFoRQRRFUeoQ5M5kMkGn08FoNEKrlf6w356l92No+efITpyB1Ml/ljpOk+w8U4xJb+/AkHArPph9n9RxiIioDWvK97ffjoCR73weeCf+VdgF6R1uljpKkyUqy3FSPRl2sxx2212QK/ifPBERSc8vT8In3zrs6IxPHddBFtNL6ihNFh3XGXbIoBJsnAuMiIhaDTZgdE3lVbUAAF2gUuIkTSdXKFAgc54XWJL3o8RpiIiInNiA0TUNq9yGW2V7EaawSR2lWcrUzitUzYZTEichIiJy4gkx1CDR4cB8+2tQqewwyCZKHadZqoM7ATV7YS/lIUgiImodOAJGDaoym6AS7AAAXVj0NapbJzE0AQCgMl2QOAkREZETGzBqUEWZ89ZLFlEJTWCwxGmaRx3dDQAQUn1J4iRERERObMCoQZVlRQAAkxAMQeaf/7mEdOqLT+zX4TP7MKmjEBERAeA5YHQNNSbnjbjNshBESZyluWITeyOtdjpQCzxcXQtdgP9dzUlERG2Lfw5pkM9YKpy3IarywxtxXxGkViAyWAUAyCutkjgNERERGzC6Bpu5BABg9eMGDAA6h6kRLxTAcDlP6ihERERswKhhPwYNxv9ZZ2B3tH/fR/FZyzJ8p34KQcfXSh2FiIiI54BRw3LFGHzqGIHY6C5SR2kRmy4BMAGy8vNSRyEiIuIIGDXMn29D9EvyCGcDGWTOlTgJERERGzC6htiSXbhNtgd6wSh1lBYJiXXOBRZuzZc4CRERERswuoYxJWuwUvV3dK46JHWUFomMTwYARDuKUGu1SJyGiIjaOzZg1KAAuwkAoAqJkDhJy0Tq41EtqqAQHCi8eFrqOERE1M6xAaMGhTicDVhgaIzESVpGkMlgkOsBAKV5JyVOQ0RE7R2vgqR6Oex2hIomQAC04Xqp47TYntDR2FhYiITacPSVOgwREbVrHAGjehlLCyEXRACALtL/G7DjiQ9hiW0cDluipY5CRETtHBswqpepxHnFoBFBUKrUEqdpuS6RQQCAc8VmiZMQEVF7x0OQVC9zWQEAwCTooJM4iyd0iQxEBxQhyHAewFCp41A7JjocqK21olaUw+YArHYH7FWlsJvLYbdZYK+1wG6rhb3WCtHhgCjaURHWBza5GqIIKMvPQVNxAaLogOiwOx+iA3DY4XA4UBiVCqtSB7tDRIjxOELLjwFXakTxSgoAQF70TahWR0EEEGo6iZiy/RB/VXNlnQtRN6FCEwsACKs8hQ6lu9y3J4qu5+eibkJ5QAIAINR8Bp2Lv4FwpRQiRNe2gXMRN6IkyDlVTGjVBXQr3lLvZ3ch7DoUhfQEAGhrLqF74ef11uaFpqBA6zzhIMhSgJ4F/6u39rJuMC7rBgIAAqwl6G34pN5ag7Y/LoY6/w5R15rQN39dvbWFIb2RG5YKAFDaq9D/0nv11hYHdcf5iBsAADKHFYMu/rPe2rLALjgdebPziejA0Lx3660tD+iEU1G3uZ4PyX0XAhx11laoY3EiZqzr+aCL/4TcYa2z1qyKwjH9b13P+196Hyp73f/ArVaG4UjsPa7nfS+vh8ZW9/RGFkUIDsWNdz3vnf8JAmtL6qy1yTQ40PF3ruc9C/6HYEtBnbUOQYF98Q+5ng9JCMOIbpF11voCGzCq12VFPN60zkBClBbPSB3GA7pqKrBD8yRqq+SotT7SJkb1yLtqqs2oNJagXBYOU00tTNW1UFzcBWXpj3BUGwFLBQRbNQRbNWS2ashtNXgjbDZMdgVqau0Yb1qDm2q/gVq0QIlaKEUbFLBDKdihAnB9zesoQDgAYL5iDaYovqg3y02WJTgnOpufpxXrMFOxod7asZY/46iYCAB4Qr4Bs5X1NwiLD8ixV3RO0/KQfDMWKOv/0n/jiAzbHf0BAOPlX+MvyrfrrV11QoYvHMMAAHfKdmKCanm9tetOAZ84nA1BmmwfHlStqLd242kr/mOXAwBGyI5gcgO1X52uwDt25//nA4VTeFhdf+2S2nvxmt05Sp4s5OKRBmrftN2BJTbnP0s7CQXY3kDtKls6lticV5FHoRx7NPXXrrWNwhKb83SPYFThSAO1/7MPx99qOwIAZHDgbAO1W+yD8Lfazq7nJ9VvQy3U1lm7w94bfzuU5Hp+UP0OQoW6m6oDjm742+Geruc71asQJ5TWWXvcEY+Hj/x89u1W1T/RVVb3vIwXHNF46OhA1/ONqv+gj+x8nbVFog4PHh/mer5O9QGGyeq+0KpCDMDEEyNcz58Y1ZUNGLVO+fYQ/M8xAumR/n0F5BXRcZ1RJaoRKFiQd+Ek4pP6SR2JJCA6HDCVlyCvWoWLZVUorLAg6szHCC89AFVNMQKspdDaSxHmKEeAYIUGwIiaNbDCeTeIJcq3cI/8+3q3f6BkAkp+GjO+R1GGOEXhzy8K7rVKwe4aZLIIalSJatgEBWqhgB1y2AQFHJBBhAwdwoOgkAdDJggQauNw2tIVoiBA/Ol1h+D8KQoyJEfHIEwVCZlMQFBVdxw0D4coyH4OITiDiBDQJz4RUWo9BAGINPfEftONrteu1AECRAjoFZ6EsIA4AEC8uRf2GG+FAED8Rd2Vn8nhvRAS2BECgPiqPthd9pufXhJ+rvtpvaSw/pgQ1AkAoK+2YHfJHfV+vgmhAzEh2FkbVePA7uL6a+N0QzAhxFkbZpFjd1H9tZHaoZigddZqrRrkFN5Zb21ISAom6Jy1QbYQ5Bjqr9UED8KEUGet2h6OnPz6a4WgvpgQ5qxVOCzIuVx/bW1AMiZEdIIgAILowO6L9ddWB3TFA5GdXM8PXLwdMtFeZ225JgEPRP1ce+TSWKgcNXXWlqpi8UDMz7WnLo9BnqOyzlqTMsqt9rxhNIptdTdrVXIdHoj9ufZywa0w1xbWWWuRBeGBuJ9riwtvQY41uc5am6DCAx1+ru0fH1pnna8I4s9jzdRKmEwm6HQ6GI1GaLVayXK8+tUp/P2rHzFhWCcsvLttXDd45k8D0dV+FgevfwsDbrlf6jjkRaWFl5F/+iAq8w4DxT9Cbb4EXU0+ouwFCEANeljWwPbTv0H/pnwDd9fTVDlEATcLK2ELiIRWo8R99s8wwHYINmUIHMogOJRBgDIAgioQgioAlxMyoArQIkAlg67mIoJtRig1QVCqNZArNVAoVVAolJCrNFAF6qBQyKGQCRAEoc79E5H/aMr3N0fAqF6BBXtxm+wkEhVBUkfxmPKATkDlWdQYOBdYW+Gw23Hp7BHkn8jBJscIHDNU4HRhJV6w/hV3yHddvcJPfU6vYDNkYQnQazWosY9BtqMXZMHRUOr0CAzTIyQyDiHhegSHhOIbufwXG7i+CenaxugxEXkeGzCq16D8D/Co6hvsMisBjJI6jkdYQ7sAld9AKDkjdRRqJlutFWd++B5lR75CUH42EiwnEQ8z4gFkWpbiouicZuSkPB6DFOdQpElEja4rZBGJ0EQlIjSuG6I7dsOngcG/2OpgSd4LEbVfbMCoXhprGQBAERIlcRLPUUR1By4CwZXnpI5CTZBvrMaWYwUQ9r6Lu4pXoodQ7fZ6jajEeWU3PNhTh8hu/dE9JgRdo25DoFqJDhJlJiJqCBswqleQzdmAqbVt5zCKLr4ncACIsl6UOgpdw+XzJ3Hh2zX4T1lvbDSEAgDSZTI8qKqGEUE4EzQItfHXIaLnDUjoOQTJKjXqPvWWiKj1YQNG9QpxOOdoCQpvOw1YTGI/vGG7E2fFWCyoqUWwRil1JPoFc0U5jm39NwKPrUVv6yHEAdhry8BnwjgM7hSGYd3vxumIW5DYJxWDFPzri4j8F/8Gozq1tftAXqELC8c76kkoMVvxUEkV+nRoC1PM+r/L508i9/O/oY/hvxj60+FFhyjgmKY/+g+8EbtvTkNUCOdtI6K2gw0Y1clYWoiwNnQfyF/qEhWEErMVZ4oq2YBJ7MglI97edhwLTt+D4UIlIAAXhVhcTLgbnW95GH3iu0kdkYjIK9iAUZ1MJfkIA2BCELQqjdRxPKpvuAhF7lFUnqkBBtxz7RXI486fOYlFuyqx6bABANBbcSNSg/IhDp+OPjfchY5u0z4QEbU9bMCoTkUIw2LrTHQIkWGO1GE87Dbb18hSLcb+s9cDYAPmS8WGXJz94FkMLvscJdZ5EISe+G3/ONxww3Ikx4VJHY+IyGfYgFGdCms12OhIxZDQtvelGNSxN/AjEFHNqSh8xW6zYe+Hi9Hr+KsYJlQDAjAp5ixeuH8akvXS3e2BiEgqbMCoTiVmKwAgPEglcRLPi+k6ANgGdLBfhtVSA5W6bR1ibW0unNgP64fTkGI7BQjAKUUS7OmvYOzQNKmjERFJRnbtEmqPFIYfkC7bg+7Kum+A6s+iYhNQIQZAIThw+ewRqeO0WQ6HiB1r/4qY929Dku0UTAhETq8/ostzu5DM5ouI2jk2YFSnLhc/wVuqv+O6yi+ljuJxgkyGy8oEAEDpuUMSp2mbyquseHjNHqz/oQQaoRaHNENgmZaNlHGzIef8XUREPARJdVPUlAIAhKBIiZN4hzG4C1B+Atb8Y1JHaXOOXSzFY+8dRF5pNdSK63HHoN64+fYHIMj47z0ioiv4NyLVKcBSDABQ6trWHGBXOCJ7AABUZT9KnKRtOfDFGqjfvg7m0gLEhwfg4yeuwy13/o7NFxHRr3AEjOqktZUAAALD2+atjIXut+K54xUwoQ/ekDpMG5HzwUIMPf4XyAQR86O/w42/X4rQwLZ3EQcRkSewAaOriA4Hwh2lgACERMVLHccrOiQNxAf2cijLBNjsDijkHKFpLtHhwK53nkLqpdWAAOREZOD2x5fxXC8iogbwW4euUllRjkDBAgAI17fNBixOF4BAlRy1dhHnis1Sx/FbosOBnLeecDZfALITfo9h01ex+SIiugY2YHSVsoJcAEClGIDA4LZ5r0SZTMCtkSWYIN+K/OO7pI7jl0SHA7venonhBe8DAHJ6zUPqlL/wfC8iokbw678ply9fjs6dO0Oj0SAlJQW7d+9usH79+vVITk6GRqNB3759sWnTJrfXRVFEVlYWYmNjERAQgLS0NJw6dcqtprS0FBMnToRWq0VoaCimTp2KyspKt5pDhw7h+uuvh0ajQXx8PBYtWuSZN+wjBrsOT1j/D68HTJM6ilc9gM1YqHwHylMbpY7il9744gDiLjmnKcnp9UekjPuDxImIiPyH3zZga9euRWZmJubPn4/9+/ejf//+SE9PR2Fh3ROH7ty5ExMmTMDUqVNx4MABZGRkICMjA0eO/DwR56JFi7Bs2TKsWLECOTk5CAoKQnp6Ompqalw1EydOxNGjR7FlyxZs3LgR27dvx7RpPzcqJpMJt912GxISErBv3z4sXrwYCxYswMqVK733YXhYvkWFTY7hOBg+Ruoo3hXTGwAQUHpC4iD+5/3duVj8rQHjrc/ju94vImXcbKkjERH5F9FPDRs2TJw+fbrrud1uF+Pi4sSFCxfWWT9u3Dhx7NixbstSUlLExx57TBRFUXQ4HKJerxcXL17ser28vFxUq9Xi+++/L4qiKB47dkwEIO7Zs8dV8/nnn4uCIIiXLl0SRVEU33jjDTEsLEy0WCyummeffVbs0aNHo9+b0WgUAYhGo7HR6zRGlcUmnimsEC+WVTVYt/LbM2LCsxvFme/t9+j+W5uj2Z+L4nytmD+/i9RR/Mp3R86KXeZ8JiY8u1H825cnpY5DRNRqNOX72y9HwKxWK/bt24e0tJ9vZyKTyZCWlobs7Ow618nOznarB4D09HRX/blz52AwGNxqdDodUlJSXDXZ2dkIDQ3FkCFDXDVpaWmQyWTIyclx1dxwww1QqVRu+zl58iTKysrqzGaxWGAymdwe3vD61hO4f8kGfLBlR4N1qss5GC3bje6qEq/kaC06Jg8FAOhRDGNpkcRp/MPZIznove563IHvcPfADpiVliR1JCIiv+SXDVhxcTHsdjtiYmLclsfExMBgMNS5jsFgaLD+ys9r1URHR7u9rlAoEB4e7lZT1zZ+uY9fW7hwIXQ6nesRH++dKw9vMG3Ebs103Hzubw3W9bm0FitUSzGkZqdXcrQW2tAI5CMKAHDx5F6J07R+xrJiqD6ahDChAo8E78Qrd/eBIAhSxyIi8kt+2YC1NXPmzIHRaHQ98vLyvLIfVZhzUtUga8OjPUE1Bc768LY5BcUvGQK7AQAqzh+UNkgrJzocOPv2JHQUDchHFOIfWweVklNNEBE1l182YJGRkZDL5SgoKHBbXlBQAL2+7lvn6PX6Buuv/LxWza9P8rfZbCgtLXWrqWsbv9zHr6nVami1WreHNwRHdQIAhNkabsDCap15g6ISvJKjNakJ7wkAkBUeuUZl+5bz3osYWLUDVlGByt++C11EzLVXIiKievllA6ZSqTB48GBs3brVtczhcGDr1q1ITU2tc53U1FS3egDYsmWLqz4xMRF6vd6txmQyIScnx1WTmpqK8vJy7Nu3z1Wzbds2OBwOpKSkuGq2b9+O2tpat/306NEDYWFhLXznLRMW42yowsVy2GqtddbYaq2IFJ034o6I6+qzbFKx9LwPE6x/xDLZ76SO0mr9uP8bDDn1KgDgQO9nkTTwBokTERH5P79swAAgMzMTb7/9NtasWYPjx4/j8ccfh9lsxpQpUwAAkyZNwpw5c1z1Tz75JDZv3owlS5bgxIkTWLBgAfbu3YsZM2YAAARBwKxZs/DSSy/h008/xeHDhzFp0iTExcUhIyMDANCzZ0+MHj0ajz76KHbv3o0dO3ZgxowZuP/++xEXFwcAeOCBB6BSqTB16lQcPXoUa9euxauvvorMzEzffkB1CIvuAJsog1wQUVJQ92HOYkMu5IIIqyhHeExHHyf0vU7d+yHb0Rt7CgCb3SF1nFanpqoS6o3ToRAc2BdyE4bd+4zUkYiI2gS/PYlj/PjxKCoqQlZWFgwGAwYMGIDNmze7TnjPzc2F7Bczco8YMQLvvfce5s2bh7lz5yIpKQkbNmxAnz59XDWzZ8+G2WzGtGnTUF5ejpEjR2Lz5s3QaDSumv/85z+YMWMGbrnlFshkMtxzzz1YtmyZ63WdTocvv/wS06dPx+DBgxEZGYmsrCy3ucKkIlcoUCCEIQYlKDdcQEzHq0e4yvLPQQ+gWBaBOLnc9yF9rHNEEILVClRabDhdVIlkvXcO//qrv289g0DrUIxX1KDbQ29xlnsiIg8RRFEUpQ5B7kwmE3Q6HYxGo8fPBzv50jD0sJ3EgdRlGJg++arX9372NobseQbHVH3Qa27D01W0FS8uW4GYwu1IHnEnbvzN/VLHaTX2nC/FuLeyIYrAqom9cVPfzlJHIiJq1Zry/e23I2DUPId0N+Pbgm7Qi9EYWMfrx5R98Y71SQzoGIdePk8njduUBzFc8RlyzqoBsAEDgJqaGjy7/iBEEbh3cEc2X0REHsbjCe3M0YQH8bJtIo46Otf5+glzED53pKCy002+DSYhRUdnKxpafkziJK3HgQ8W4G8VT+PGoDw8f3t7acWJiHyHI2DtTKfwQABAXllVna9fKDEDABIignyWSWoxycOBfUBC7RnYaq1QKFXXXqkNy7/wIwacewcBMitmDhCgC1BKHYmIqM3hCFg70yksAFEog7zgcJ2vDyj4BLfJ9iCxHZ2L3qFLH1SKAdAItcg9eUDqOJLLX/c0AgQrjqn6YvDYR6WOQ0TUJnEErJ3pJruIPZrpqDAGQHRMcruqzWqpQab1LchVIoqDpkiY0rdkcjkuqLuht/Uwik/loEufFKkjSebw9k8wyLwdNlEGzZ1LeNUjEZGX8G/XdiamUw8AQIhQDVOZ+4z4BbknIRdEVIlqROjb/m2IfqkizDkdiXip/Y6AOex2BH+zAACwN/qedt2IEhF5GxuwdiYgKARFcM7IX5h70u210os/AgAK5LHtbuRD0WkwAEBpPC9tEAnt//wdJDrOw4RA9Lz/z1LHISJq09rXtywBAIqVsQAA0+Uf3ZZXXz4OACgLaF+jXwCgH3QnRlqWYpz5GdTU2qWO43O1dgeqDnwEADjaeTLv9UhE5GVswNqhyiDnPSGtBe4jYPIi5zQMloiePs8ktQ76aFiC42FzAIcuGqWO43Pr917EZPMMzJXNQr97npM6DhFRm8cGrB2yRznndVKXHHdbHlbhHBFTd+jn80xSEwQBgzqFAgD255ZJG8bHamrtWLb1FETIkHTLQwgKCZU6EhFRm8cGrB0K7tQfABBdddq1zFZrRbwt17m8a11z5Ld9o8Mu4S3l39Br7/NSR/Gpzdu2ocxkQofQADyQ0knqOERE7QKnoWiH4pKHYdUX6TgmJmCBxYYgtQLnS6vxhPUl9FNexKLE9ncIEgB6RgUgWb4XxRWhEB2OdnEhQq3VgpTsx/G92oLdA1dCrWj7N2AnImoN2v43DF0lPCoWbwZMw3r7KJwsqAAAHMgz4UcxHmf1YyCTt88v4c79roNVlCMS5ci/8OO1V2gDfvhiNWJRBJkg4Jbrr5c6DhFRu8EGrJ3q20EHANhzrhQAkH2mBACQ2jVCskxS0wQE4byyKwDg8pFvJU7jfaLDgbCDbwIAfuz8ADSBwRInIiJqP9iAtVM3dAvDAOE0xIPvQXQ4MOrki5gs/wIjOwVIHU1SpeHO89/s53dKnMT7Dn/7Mbraz6FKVKP3HZlSxyEiald4Dlg7dXOMGZPVWbCWKnBizzDc6diK0QoFHAntewJOdbcbgMK10JftkzqK18mzXwUAHNLfheER0RKnISJqXzgC1k517NoXF4VYqAQben4+DgBwWHs9NIEhEieTVpfBt8IhCkhw5KHYkCd1HK85czgHva2HUCvK0fn2P0gdh4io3WED1k4JMhkMg55yWxZ6Gyfg1EXE4JQiCXsc3XHk1Bmp43jNyexPAQCHQ0ZCH99N4jRERO0PD0G2Y4PHPoqcc98jzHQC5T0nYljf4VJHahXW9l+Fd3dewMTiCIySOowXVFps+MPF67GkNgF/vbO/1HGIiNolNmDtmCCTIeX//iV1jFZneNdIvLvzAnadLZE6ildsOHAJZqsdYlR3DBg4TOo4RETtEg9BEv1KSmIEBAEoKipEYWmp1HE8SnQ48L+dhwAAE1MSIAiCxImIiNonNmBEv6ILVOKdkLdxUD0NuTvWSx3Ho07u3Yp/Gydjieot3Duwg9RxiIjaLTZgRHUIiIiHTBAhnv5K6igeVbFjJZSCHZ3CA6ELUkkdh4io3WIDRlQHbZ/RAIAuxhw47HaJ03iGuaIcvcudM/yHXPeIxGmIiNo3NmBEdUgacgvMogYRMOLM4bYxK/7xbf9BoGBBnhCHHoNvljoOEVG7xgaMqA4qtQY/Bg0GABQf/EziNJ6hPvYhAOBi/B0QZPxfn4hISvxbmKge1kTnKFHoJf+/MXfR5fPoVXMAANBp1BSJ0xARERswonp0GnYHAKC79TiMJQUSp2mZM9tWQy6IOKHshQ5dekodh4io3eNErET1iE3ogf+qbsd35g4YedqIjIgYqSM126tFg/BF7YMYNXAQkqUOQ0REHAEjasjZofPxof1GbDxhkjpKs50wmJBdIMe/8Rv0S/ud1HGIiAhswIgaNKavHgCw/VQRKi02idM0z/9+uAwAGNUjGmGc+4uIqFVgA0bUgB4xIUgJq8Qk8X84/N1/pY7TLL32zsME+Vb8tpdW6ihERPQTngNG1ABBEDAr9HukVv8H+w5eAtLukTpSk1w4sR9ja7fgVoUcNd3+KHUcIiL6CUfAiK4hYui9AICeFdkwV5RLG6aJ8nc55/46HjAI2tAIidMQEdEVbMCIriFpwPXIE+IQKFhwbOu/pY7TJBF5XwAALEljJU5CRES/xAaM6BoEmQwXE34LAAg8tk7iNI2Xf+EkkuynYRcFdB15n9RxiIjoF9iAETVC55ucs8f3tv6A/AsnJU7TOBd2OJvFE+o+iIjpKHEaIiL6JTZgRI0Qm9ADR1X9AQDnt70rcZrG0Z7fDACo6DxG4iRERPRrbMCIGqmq13hYRCVOXiyGze6QOk6D9p8vQmkNUCvK0XnkOKnjEBHRr3AaCqJG6pv+EMYcisFZcwD0xwsxuo9e6kh1yjlbgodX74PZOhe3dw/E652SpI5ERES/whEwokbSBARhTEofAMDqneckTlO3H3Z8jhmrvobZasd13SKw6HfXSx2JiIjqwAaMqAl+NzwBcpkA07n9OH3ysNRx3Bzc+gGSv3wQbwkLMSYpCO9MHopAFQe5iYhaIzZgRE0QqwvAMv1mbFLPRflnC6SO47L/81Xovf0JqIVaCCF6vPq74dAo5VLHIiKierABI2qiHjeOBwAMMm7FhRP7JU4D7P5oKfrvegpKwY69Ibeg75MfQ6XWSB2LiIgawAaMqIm69b8OB4JGQiaIKP7sRUmzZP8rC8MOz4dcELE7/A4MfHIdFCq1pJmIiOja/LIBKy0txcSJE6HVahEaGoqpU6eisrKywXVqamowffp0REREIDg4GPfccw8KCgrcanJzczF27FgEBgYiOjoaf/jDH2Cz2dxqvvnmGwwaNAhqtRrdunXD6tWr3V5fsGABBEFweyQnJ3vkfVProRuTBQAYaPoGZw7v8vn+RVHEtnf+iNQzrwIAsuMmYeiMf0Ku4DlfRET+wC8bsIkTJ+Lo0aPYsmULNm7ciO3bt2PatGkNrvPUU0/hf//7H9avX49vv/0Wly9fxt133+163W63Y+zYsbBardi5cyfWrFmD1atXIysry1Vz7tw5jB07FjfddBMOHjyIWbNm4ZFHHsEXX3zhtq/evXsjPz/f9fj+++89+wGQ5Lr0ScG+kJsgE0RYP82E6PDdvGA2uwNzPzmMl053RrGoxa4u/4fUaa9BkPnl/85ERO2T6GeOHTsmAhD37NnjWvb555+LgiCIly5dqnOd8vJyUalUiuvXr3ctO378uAhAzM7OFkVRFDdt2iTKZDLRYDC4at58801Rq9WKFotFFEVRnD17tti7d2+3bY8fP15MT093PZ8/f77Yv3//Fr1Ho9EoAhCNRmOLtkPelZ97SqzMihLF+Vpx9yev+WSfJnO1OOmdHDHh2Y1i4nMbxY++O+ST/RIR0bU15fvb7/7JnJ2djdDQUAwZMsS1LC0tDTKZDDk5OXWus2/fPtTW1iItLc21LDk5GZ06dUJ2drZru3379kVMTIyrJj09HSaTCUePHnXV/HIbV2qubOOKU6dOIS4uDl26dMHEiRORm5vb4HuyWCwwmUxuD2r99PHdcKjrYzCIYXj/kBHFlRav7i//wkkU/DUVOP0VNEoZ3pg4GHeP7OvVfRIRkXf4XQNmMBgQHR3ttkyhUCA8PBwGg6HedVQqFUJDQ92Wx8TEuNYxGAxuzdeV16+81lCNyWRCdXU1ACAlJQWrV6/G5s2b8eabb+LcuXO4/vrrUVFRUe97WrhwIXQ6nesRHx9/jU+BWovB4/+I3+tW4OOqAchc9wMcDtEr+zm5dxuUq25DN8dZvKj6F9Y9OrTVzsRPRETX1moasOeee+6qk9d//Thx4oTUMa9pzJgxuO+++9CvXz+kp6dj06ZNKC8vx7p16+pdZ86cOTAaja5HXl6eDxNTS6jUGiyaeB00Shm2/1iEd7b94NHtiw4Hdr3/ZyT+715EohxnZZ2hnvo/9OsU6dH9EBGRb7WaS6aefvppPPTQQw3WdOnSBXq9HoWFhW7LbTYbSktLodfXPSKg1+thtVpRXl7uNgpWUFDgWkev12P37t1u6125SvKXNb++crKgoABarRYBAQF17js0NBTdu3fH6dOn631farUaajWnDvBX3WNCsOCO3tix4S2M/+5d7K1egCF3PNbi7RpLi3Dm3YcxvHI7IAD7g65H98f+hWBtmAdSExGRlFrNCFhUVBSSk5MbfKhUKqSmpqK8vBz79u1zrbtt2zY4HA6kpKTUue3BgwdDqVRi69atrmUnT55Ebm4uUlNTAQCpqak4fPiwW3O3ZcsWaLVa9OrVy1Xzy21cqbmyjbpUVlbizJkziI2NbfqHQn5j/NB4/C4uH1qhCv33zsH+L/7Vou19tf9HWJcNxaDK7bCKcuzqMRsDn/6UzRcRUVvhg4sCPG706NHiwIEDxZycHPH7778Xk5KSxAkTJrhev3jxotijRw8xJyfHtez3v/+92KlTJ3Hbtm3i3r17xdTUVDE1NdX1us1mE/v06SPedttt4sGDB8XNmzeLUVFR4pw5c1w1Z8+eFQMDA8U//OEP4vHjx8Xly5eLcrlc3Lx5s6vm6aefFr/55hvx3Llz4o4dO8S0tDQxMjJSLCwsbPT741WQ/slus4l7ltwjivO1oj1LJ+5cPVd02O1N2sa5okrxsX/uFROe3Sj+54+/FS+80FM8sWerlxITEZEnNeX72y8bsJKSEnHChAlicHCwqNVqxSlTpogVFRWu18+dOycCEL/++mvXsurqavGJJ54Qw8LCxMDAQPGuu+4S8/Pz3bZ7/vx5ccyYMWJAQIAYGRkpPv3002Jtba1bzddffy0OGDBAVKlUYpcuXcRVq1a5vT5+/HgxNjZWVKlUYocOHcTx48eLp0+fbtL7YwPmv6yWGnHXskmiOF8rivO14pE/XyeePpR9zfXOHtkl5ix9QBw9d4WY8OxGscucz8Sln+0Tq6sqfZCaiIg8oSnf34Ioit65bIuazWQyQafTwWg0QqvVSh2HmiFn3WL0P/oXaIRaWEU5punXYlS/bugVp0NMbR4ctTUov3QKltz9iMz/Bt3sZwAAX9iH4IMuCzF7dDJ6xvLPnojInzTl+5sNWCvEBqxtyL9wEpfXz0apsQKP1j7tWn5I/Qi0QpVbrU2U4VDISARePxPJKbf5OioREXlAU76/W81VkERtTWxCD8Q+819cLq3A7EMF2Hu+DCcNFTDVBMMOOUrk0SgPSoQjcRS6jrgLg2I6Sh2ZiIh8hA0YkZfFhYfgiVEhv1hyCgDA6xmJiNqvVjMNBREREVF7wQaMiIiIyMfYgBERERH5GBswIiIiIh9jA0ZERETkY2zAiIiIiHyMDRgRERGRj7EBIyIiIvIxNmBEREREPsYGjIiIiMjH2IARERER+RgbMCIiIiIfYwNGRERE5GNswIiIiIh8TCF1ALqaKIoAAJPJJHESIiIiaqwr39tXvscbwgasFaqoqAAAxMfHS5yEiIiImqqiogI6na7BGkFsTJtGPuVwOHD58mWEhIRAEASPbttkMiE+Ph55eXnQarUe3Tb9jJ+zb/Bz9g1+zr7Bz9k3vPk5i6KIiooKxMXFQSZr+CwvjoC1QjKZDB07dvTqPrRaLf8H9wF+zr7Bz9k3+Dn7Bj9n3/DW53ytka8reBI+ERERkY+xASMiIiLyMTZg7Yxarcb8+fOhVquljtKm8XP2DX7OvsHP2Tf4OftGa/mceRI+ERERkY9xBIyIiIjIx9iAEREREfkYGzAiIiIiH2MDRkRERORjbMDakeXLl6Nz587QaDRISUnB7t27pY7U5mzfvh133HEH4uLiIAgCNmzYIHWkNmfhwoUYOnQoQkJCEB0djYyMDJw8eVLqWG3Om2++iX79+rkmq0xNTcXnn38udaw275VXXoEgCJg1a5bUUdqUBQsWQBAEt0dycrKkmdiAtRNr165FZmYm5s+fj/3796N///5IT09HYWGh1NHaFLPZjP79+2P58uVSR2mzvv32W0yfPh27du3Cli1bUFtbi9tuuw1ms1nqaG1Kx44d8corr2Dfvn3Yu3cvbr75Zvz2t7/F0aNHpY7WZu3ZswdvvfUW+vXrJ3WUNql3797Iz893Pb7//ntJ83AainYiJSUFQ4cOxeuvvw7Aeb/J+Ph4zJw5E88995zE6domQRDwySefICMjQ+oobVpRURGio6Px7bff4oYbbpA6TpsWHh6OxYsXY+rUqVJHaXMqKysxaNAgvPHGG3jppZcwYMAALF26VOpYbcaCBQuwYcMGHDx4UOooLhwBawesViv27duHtLQ01zKZTIa0tDRkZ2dLmIyo5YxGIwBnc0DeYbfb8cEHH8BsNiM1NVXqOG3S9OnTMXbsWLe/p8mzTp06hbi4OHTp0gUTJ05Ebm6upHl4M+52oLi4GHa7HTExMW7LY2JicOLECYlSEbWcw+HArFmzcN1116FPnz5Sx2lzDh8+jNTUVNTU1CA4OBiffPIJevXqJXWsNueDDz7A/v37sWfPHqmjtFkpKSlYvXo1evTogfz8fLzwwgu4/vrrceTIEYSEhEiSiQ0YEfmt6dOn48iRI5Kfy9FW9ejRAwcPHoTRaMSHH36IyZMn49tvv2UT5kF5eXl48sknsWXLFmg0GqnjtFljxoxx/d6vXz+kpKQgISEB69atk+yQOhuwdiAyMhJyuRwFBQVuywsKCqDX6yVKRdQyM2bMwMaNG7F9+3Z07NhR6jhtkkqlQrdu3QAAgwcPxp49e/Dqq6/irbfekjhZ27Fv3z4UFhZi0KBBrmV2ux3bt2/H66+/DovFArlcLmHCtik0NBTdu3fH6dOnJcvAc8DaAZVKhcGDB2Pr1q2uZQ6HA1u3buX5HOR3RFHEjBkz8Mknn2Dbtm1ITEyUOlK74XA4YLFYpI7Rptxyyy04fPgwDh486HoMGTIEEydOxMGDB9l8eUllZSXOnDmD2NhYyTJwBKydyMzMxOTJkzFkyBAMGzYMS5cuhdlsxpQpU6SO1qZUVla6/Yvq3LlzOHjwIMLDw9GpUycJk7Ud06dPx3vvvYf//ve/CAkJgcFgAADodDoEBARInK7tmDNnDsaMGYNOnTqhoqIC7733Hr755ht88cUXUkdrU0JCQq46fzEoKAgRERE8r9GDnnnmGdxxxx1ISEjA5cuXMX/+fMjlckyYMEGyTGzA2onx48ejqKgIWVlZMBgMGDBgADZv3nzVifnUMnv37sVNN93kep6ZmQkAmDx5MlavXi1RqrblzTffBACMGjXKbfmqVavw0EMP+T5QG1VYWIhJkyYhPz8fOp0O/fr1wxdffIFbb71V6mhETXbx4kVMmDABJSUliIqKwsiRI7Fr1y5ERUVJlonzgBERERH5GM8BIyIiIvIxNmBEREREPsYGjIiIiMjH2IARERER+RgbMCIiIiIfYwNGRERE5GNswIiIiIh8jA0YERERkY+xASMi8rCHHnoIGRkZUscgolaMtyIiImoCQRAafH3+/Pl49dVXwZuMEFFD2IARETVBfn6+6/e1a9ciKysLJ0+edC0LDg5GcHCwFNGIyI/wECQRURPo9XrXQ6fTQRAEt2XBwcFXHYIcNWoUZs6ciVmzZiEsLAwxMTF4++23YTabMWXKFISEhKBbt274/PPP3fZ15MgRjBkzBsHBwYiJicGDDz6I4uJiH79jIvIGNmBERD6wZs0aREZGYvfu3Zg5cyYef/xx3HfffRgxYgT279+P2267DQ8++CCqqqoAAOXl5bj55psxcOBA7N27F5s3b0ZBQQHGjRsn8TshIk9gA0ZE5AP9+/fHvHnzkJSUhDlz5kCj0SAyMhKPPvookpKSkJWVhZKSEhw6dAgA8Prrr2PgwIF4+eWXkZycjIEDB+Ldd9/F119/jR9//FHid0NELcVzwIiIfKBfv36u3+VyOSIiItC3b1/XspiYGABAYWEhAOCHH37A119/Xef5ZGfOnEH37t29nJiIvIkNGBGRDyiVSrfngiC4LbtydaXD4QAAVFZW4o477sBf/vKXq7YVGxvrxaRE5AtswIiIWqFBgwbho48+QufOnaFQ8K9qoraG54AREbVC06dPR2lpKSZMmIA9e/bgzJkz+OKLLzBlyhTY7Xap4xFRC7EBIyJqheLi4rBjxw7Y7Xbcdttt6Nu3L2bNmoXQ0FDIZPyrm8jfCSKnayYiIiLyKf4zioiIiMjH2IARERER+RgbMCIiIiIfYwNGRERE5GNswIiIiIh8jA0YERERkY+xASMiIiLyMTZgRERERD7GBoyIiIjIx9iAEREREfkYGzAiIiIiH/t/A3n6lGND2+EAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -552,7 +552,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjAElEQVR4nO3deViU9f7/8ecM+yqrgiugIIgLplJqmXa0NE3NviRmtFytJ80Wk37ZMY91ytROlplWp7KvZWRHPbm2WGpSmslRE4FE2ZRlVARkHxhmvn/4EyNQGZyZ23t4P66r68g9n7nnPZx585q5574/H43JZDIhhBBCqJRW6QKEEEKIqyFBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqjkoXIJozmUwYavRKl2EWRzcXNBqNxfZnMkFtg8V2ZxOuDmDBX0G7p7Y+kB5QrgckyK5Bhho9a3req3QZZpme9RlO7q4W219tA9y0zWK7s4nk28FNOspi1NYH0gPK9YAcWhRCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomlz1YkeChkYzdsOCJtvqq2oozy4ia91uMj7ahqnBqFB11leRuovMv41qsk3r6oFL5wj8RybQccKTaBzkJW/PpAfaZw/Y3zMSZG9IJn/HAdBocAv0oVfczcQueIAO4V3YO+d9pcuzOt8R0+gw6HYwmagv1XF212ryP36W2vwMesz4QOnyhA1ID7SvHpAgs0NnU3PIXp/c+PPRT77lzuS3ibjnLxx4PQn92XIFq7M+97Dr8B95cUaIwNufIO2JSIq3f0jne1/FqUOggtUJW5AeaF89IN+RtQOGGj1nDhxDo9Xi3aOT0uXYnIOrBx69bwCTCb0uS+lyhAKkB+y7ByTI2gmvkPPNqy+rVLgSZVxoXkdPP4UrEUqRHrDfHpBDi3bI0c0ZFz+vxu8Het93K/79wjhz4Bjl2UVKl2d1Rn01hvLi87Onl+o488171GQfxD08FtcuEUqXJ2xAeqB99YDdB1lxcTGLFy9mw4YN5OfnExgYyJQpU3jttdeYNWsWH3/8Me+88w4zZ85UulSLGZgYz8DE+Cbbcrf+wr4XPlSoItsqSppPUdL8Jtt8hk6h+2PvKlTRteH3nDKyTpbT0GAiONCdQX0C0Grtc90Z6YH21QN2HWSHDh1i3Lhx6HQ6PDw86NOnD4WFhSxbtoysrCxKSkoAiImJUbZQCzv66Xfkbt6L1skR38ju9J0xGY9gfxr0dY1jbl75DGg1/PjYm43bnH08mbxrKSkvryZ7Q3JLu1aFgNsexXdYHKaGemryUtFtWERdcT4ap4tLbFSkJXP85XHN7msy1GEyNjDoPypbCOoSGhqMrP0mhxVfZvDzwVNNbgvv4c1f747i4SkReHk4K1ShdUgPtK8esNvvyIqLi7njjjvQ6XTMnj2boqIiDhw4gE6nY9GiRWzdupX9+/ej0Wjo37+/0uVaVHm2jqLkVAp2HOTIio38cP/rBMT0ZOiixxrH7H3hX3Qc0pvQycMbt93w2sOc/vV3VTcwgEtwON4xo+kwaBxBUxLp9eJmqo/v58TKxxvHeEXfxMC1lU3+i16RiaNXAJ3veUXB6i2nVm8g7rkdTH9hV7MQAziWV86zS/Zx4/1bKThVpUCF1iM90L56wG6DbNasWeTn5zNz5kzeeOMNvLy8Gm9LTExkwIABGAwGQkJC8Pb2VrBS6zuTcpSsdbsJnTycwMG9Aagrq2TP7JVc/+rDuHXypcf4GwgaFs3e5+3vGhvPqGH4jUyg9Ke1VGbsaXGMsV5P9utT8OxzI8Fxc21coeUZjSYS5v7If37Iu+LYw5kl3Pb4N5SVq2c1ZnNJD9h3D9hlkGVkZLB27VoCAgJYuHBhi2MGDRoEwIABA5psz8nJYeLEiXh5eeHr68t9993H2bNnrV6ztf22dB1GQwMD50xt3Faw8xC5m/cwYvksbnj9EfbMXom+1D7P6AqeOg+0DhR+/lKLt59Y8TjG+lpCnvrEtoVZybc/57Nue26rx6dllfH2mjTrFXQNkB6w3x6wyyBLSkrCaDQyffp0PD09Wxzj5uYGNA2yiooKRo0aRX5+PklJSXzwwQckJyczYcIEjEZ1T2tTkasjZ+PPdB7Rn47XRzVuT1mwGq/QIAp2HCT/hwMKVmhdrsG98LspnorDP1CR1vSw0enNyziXsoWeL3yF1sVdoQota8XaDLPv88H6o9TXq/t1fjnSA/bbA3YZZDt27ABg1KhRlxyTn58PNA2yDz74gIKCAr766ismTJhAXFwcn3/+Ob/88gubNm2ybtE2cPjt9Rgbmr4jNdToqcw7TWnGCQUrs42guBdBq23yjrTi8E7yVz9PWOK/cekUolxxFnT6bA1bk0+afb/C09X8sK/QChVdO6QH7LMHNCaTyaR0EZbWrVs38vPzOXjwYItnJBoMBoKDgykuLiYrK4uwsDDgYvDt3LmzyfiePXsycuRIPvroozbVM3jwYHQ6XavHO5m0zDfGtumx2mLs+gWc3P5f0t5re1gv0P5KvcZy7+Y1zm50euuYxfbXEv2pXH5/bgjB8fPpOP7qL7849XQ4proaC1R2deocgjjT4a9tuq9P1SY89P+1cEVtY8s+kB5QvgeCgoJISUlp033t8vT7qqrzZ2DV1LT8C127di3FxcV4eXkRGhrauD09PZ24uLhm46Ojo0lPT29zPTqdjoKCglaPd9Y4gMpm0SksKqTOZLnTdbUu7lb9FRj11WQtnEyH2IkWaWCAwsJCjPpqi+zrqrhqoEPb7lpWWkpZaetfq9aktj6QHlCuB+wyyIKCgigtLeXAgQMMHTq0yW1FRUXMmTMHgP79+6PRXLwgtLS0FB8fn2b78/Pz4+jRo1dVjzmcTFpQ2VcVnYM7W/zdqDWV7llPTc5v1BZkUvrT2ma3Ry9Pxzmwu1n77Ny58zXxiaxB44bOZASN+d8c+HfQ4OrexQpVmU9tfSA9cHU9YO7fyT+yyyAbPXo0GRkZLFq0iDFjxhARcX5Klv3795OQkEBxcTFguwuhzf24XF9dy5qe9155oIV8c9f8Kw+6gsxjmTi5u155YCvVGOCmbRbbXTP+oxLwH5Vg0X1mZh7D7RrpqEmztrNpl3nf+XTp6E7ugZ04Ol4bX53bsg+kByxDqR64Nl6xFpaYmIi/vz8nT54kOjqafv36ER4eTmxsLGFhYdxyyy1A81PvfX19KSsra7a/kpIS/Pzsb6JNYb+emBp15UF/8lhc5DUTYkKYwy5ftV27diU5OZnx48fj6upKbm4ufn5+vP/++2zdupXMzEygeZBFRUW1+F1Yeno6UVHm/2EQQiljhnYhfmxYq8f3j/DjqenRVqxICOu5Rg6EWF5UVBRbtmxptr2yspLc3Fy0Wi19+/ZtctuECROYO3cu+fn5dO3aFYB9+/aRlZXFkiVLbFK3EJag1Wr45B8jMJpMfPltzmXHDoz0Z+u7t+LtaV/zLYr2wy4/kV1OWloaJpOJ8PBw3N2bXvj36KOPEhwczKRJk9iyZQvr1q1j2rRpxMbGMmnSJIUqFqJtXJwdSFo0ii/fuIWRQ4Kb3d6npw/L5w4l+ZPxBAeq7yJYIS6w209kl5Kamgo0P6wI4O3tzY4dO3jqqaeIj4/H0dGRCRMmsHTpUrTadpf5wg5otRribg0l7tZQjuWdY+i9mzl7Tk+grytHNkxpctauEGolQfYnPXv2bPGQpBBqF96jA64uDgA4O2klxITdkCCzI759ejDsjcdx8nSjKv8Mu598B9+IboxeM5fyrEK+i3+F2rPlOLg5M/yfTxAQ0xOT0cSBhZ+Tt/UXAAbPSyBk0jBKUnPY8eBihZ+ReapzfiPv3Ucw1lTgHNiDkGc+pfZEGsdeHodrl96E//07nHw6UvDpXEr3bkDr5ILGwYnO975Kh+tuA+DUxqWc2fYuWjdP+rx1SNknJMzW2h64oEN4F+74djGZn23n15c+AaDPoxOIfOA2DFW1bBozR6Fn0jat7QGA09tWcGbrO+DgiEajJXLJPrTOruSvmkPJT2tx73kdveZ+pewTaqV2F2QX5mG0Rze+NZOfn3mXkrRcesXfwpCX7uP4Fzspzyps0pB9H5+Isa6eDcOexLNbR8ZvW4huzxH0pZWkvPIpZUdP0n2c7abIspTctx8gZNYq3MNiKP7+Y/JXPUfAXx7EtUvvJqHk2ecmgu+eh9bFjeqc3zg6dwT9VxXi4OpBp0nP4B42kJMfPa3Y8xBt19oeANA4OjBsyePkff1rk+3pH2yhJDWH2JcfsGHlltHaHijbt5GSH9cQufgXHDw6UH/uDBoHJwC6PrgE1+7RlO37Spkn0QbyxY+d8OsbiqG6lpK0XACyvtxFt1sHo3Vu/l4lZNJwjq7+DoDKk6fR7Umj+7jrbVmuxVVnH8TBzRP3sBgA/Efdz7lfN2Ey1DUb22HQOLQu52dNcOvRD0wmDOfO2LJcYQXm9ABAzLNx5G7eS0V2kQ2rtB5zekD3nyV0jp+Pg8f5ucycOgSicXCwZbkW1e4+kdkrz+4d8Y3szsTtFy8TcHRzwT2o+YXcnl0CqMy/+Ie78uRpPLoE2KROa9GfyqEmL5X0p2Matxn11dSdvfy8gWd/WIVLUBjOHXtYuUJhbeb0QMDAcAIHRfDd1JeJmX23Lcu0GnN6oPZkOlXHUyj8YgGmej3+o+6j4x2zbFitZUmQ2ZEzB4+xfdo/Gn+OP9K22frVyiP8esIXfNv4828JgZcdX/7bDxR+sYCIBdvlxAc70ZoecHBz5obXH2bXw/+0ZWk20doeMDUYqDuVQ+/XdtNQVcrRuTfjHBSGz5AJtirVoiTI7ERl3qkmn6qcPN1wdHelWlfSfGxBMZ5dA6k5XQaAZ7eOFP74m61KtQqXTmHUFV+cW7ChupyG2iqc/VueALfiyI/kLnuQXn/bjGvX3rYqU1hRa3vAq0cQnl0CGLv+7wA4e3uAVoNzB09+emq5LUu2KHN6wDmwO74jpqFxcMDRO4AOg26n6ugvqg0y+Y7MTpSk5WKsbyB4RH8AIh+4jZyNP2OsMzQbm7d5L73vuxU4H2JBw6I58c2vzcapiXtYDBoHJ8oPbQfgzLYV+N04FY1j89kqKtJ2k7M0gV4vbsQ91P7OXm2vWtsDZb+f4Iu+D7Eu9gnWxT5B+r+2cvyLHaoOMTCvB/xG3EP5gW8AMOprqDiyS9W9IEFmR3bPeJtBc6czZc87BA2LJuWVT1scd2TFRhxcnZmydzljkv7Gvrkfoi+psHG1lhf67BoKVr/Akcd6UXFkF10fbHlasbx3HsJUryd32YOkPx1D+tMx1OSm2rhaYQ2t7QF71doe6DTpWerLTpE2ow8ZswfT4bpx+A5vvhajWsihRTtS9vsJtox9/orjDDV6fnx8qQ0qsi23kH5EvXnlJXP6vmfdVXeFclrbA3906J9fWqka22ttD2idXQl9+n9tUJFtyCcyO9dQb8DF14uJ25fg6u99xfGD5yXQ78k70ZdV2qA669M4OmMoP0v60zHUl52+4vhTG5dy4r0ncPRS91mc4iJze6DPoxO44fWHqbWDoxRgfg/kr5qDbt1CHD18bVCdZWhMJpNJ6SJEU7ZeWNMSpmd9pqpFBa0h+XaumYU1L6Xr6CQKTlfTpaM7+d9PU7qcy1JbH0gPKNcD8olMCCGEqkmQCSGEUDU5tHgNMplMGGr0SpdhFkc3F4teVGwyQW2DxXZnE64OcK1fV62mQ4tq6wPpAeV64Bo/ot8+aTQaix5rVyON5tr/vklYV3vvA+mB1pNDi0IIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTdYfvQapbYl3kGXeQbll3u2V2vpAekC5HpAguwYZavSs6Xmv0mWYZXrWZxZdlr62AW7aZrHd2UTy7bI0vSWprQ+kB5TrATm0KIQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE3OsRLCjtXUGjicWcJ/04s5fKyUknPnT2cvLdezZNVhBvUJ4Loof3y8XRSuVIi2kyATwg79N72Yd79IJ+nrbGr1zS9Gqq5tIHHpfuD8dT+339SNJ6ZGMXZ4V7RauRhOqIsEmRB2JDP3HI++/BM/puhafR+TCbbuPsnW3ScJ7+HN+/OGMyq2sxWrFMKyJMjsSNDQaMZuWNBkW31VDeXZRWSt203GR9swNRgVqs76KlJ3kfm3UU22aV09cOkcgf/IBDpOeBKNg32+5I1GE2+vSWPuspQWP4G11rG8cm55+Gv+encki5+NxdPdyYJVWp/0QPvsAft7RoLsDcnk7zgAGg1ugT70iruZ2AUP0CG8C3vnvK90eVbnO2IaHQbdDiYT9aU6zu5aTf7Hz1Kbn0GPGR8oXZ7F1dcbue/FH/nim2yL7XPll7+zL/UM36y8jUA/N4vt11akB9pXD8hZi3bobGoO2euTyV63m7SVm9g6fi5VBcVE3PMXXPy9lS7P6tzDrsN/5L34j0ogaMocIhf/gpN/V4q3f0j9uTNKl2dRDQ1Gpr+wy6IhdsGBjLP85ZGvKS1Xz3yHF0gPtJ8eAAmydsFQo+fMgWNotFq8e3RSuhybc3D1wKP3DWAyoddlKV2ORc1bfoB/f5djtf2nHivl7ud2YDKZrPYYtiA9YL89ABJk7YZXyPnm1ZdVKlyJMi40r6Onn8KVWM6+w6dZtOqwWffZnzSRk9vj2Z80sdX3+f6XQt7/9+/mlnfNkR6wvx64oF0EWXFxMYmJifTq1QtXV1e6devGU089RVVVFQ899BAajYbly5crXabFOLo54+LnhYu/Nz6R3bn+tYfx7xfGmQPHKM8uUro8qzPqqzGUF1N/7gw1uamceG8GNdkHcQ+PxbVLhNLlWYS+roEHX0rGaDTvk1JQgDtdO3kQFOBu1v3mvLmfvMIKs+6jJOkB+++BP7L7kz0OHTrEuHHj0Ol0eHh40KdPHwoLC1m2bBlZWVmUlJQAEBMTo2yhFjQwMZ6BifFNtuVu/YV9L3yoUEW2VZQ0n6Kk+U22+QydQvfH3lWoIstbtz2HjOwymz1eZXU9Sz9N463nb7DZY14N6QH774E/susgKy4u5o477kCn0zF79mzmz5+Pl5cXAIsXL+b555/H0dERjUZD//79Fa7Wco5++h25m/eidXLEN7I7fWdMxiPYnwZ9XeOYm1c+A1oNPz72ZuM2Zx9PJu9aSsrLq8nekKxE6RYRcNuj+A6Lw9RQT01eKroNi6grzkfjdHGtqIq0ZI6/PK7ZfU2GOkzGBgb959pe0XDF2gybP+Ynm47x6pOD8FDBKfnSA/bfA39k14cWZ82aRX5+PjNnzuSNN95oDDGAxMREBgwYgMFgICQkBG9v+zmTqTxbR1FyKgU7DnJkxUZ+uP91AmJ6MnTRY41j9r7wLzoO6U3o5OGN22547WFO//q7qhsYwCU4HO+Y0XQYNI6gKYn0enEz1cf3c2Ll441jvKJvYuDayib/Ra/IxNErgM73vKJg9VeWmlnCnkOnbf645yrqrHJ2pDVID9h3D/yZ3QZZRkYGa9euJSAggIULF7Y4ZtCgQQAMGDCgcduF4IuNjcXFxbJLlyvlTMpRstbtJnTycAIH9wagrqySPbNXcv2rD+PWyZce428gaFg0e5+3v2tsPKOG4TcygdKf1lKZsafFMcZ6PdmvT8Gzz40Ex821cYXm2blfue94dqWo8/sl6QH76oE/s9sgS0pKwmg0Mn36dDw9PVsc4+Z2/kLPPwbZ8ePHWb9+PUFBQQwZMsQmtdrCb0vXYTQ0MHDO1MZtBTsPkbt5DyOWz+KG1x9hz+yV6Evt84yu4KnzQOtA4ecvtXj7iRWPY6yvJeSpT2xbWBv8N71Ywcc+q9hjXy3pAfvpgT+z2yDbsWMHAKNGjbrkmPz8fKBpkI0YMYKioiI2bdrE6NGjrVukDVXk6sjZ+DOdR/Sn4/VRjdtTFqzGKzSIgh0Hyf/hgIIVWpdrcC/8boqn4vAPVKQ1PWx0evMyzqVsoecLX6F1Me9sPiUc/F25MPk9p4yq6nrFHv9qSA/YTw/8md2e7JGXlwdAjx49WrzdYDDw888/A02DTKu1fLYPHjwYna71k7g6mbTMJ9bidRx+ez2hk4czcM5Uvv2fvwPnLxStzDtNacaJq9p3RHgE9RrLzWGncXaj01vHLLY/gKC4FylJTqLw85fo/epOACoO7yR/9fOEv/Q1Lp1Crmr/ERHhmOpqLFDp5RX5PAdarxZv25808bKn1gcFuDX+78nt8ZccpyuuZsi0Tc22m0zQM3IAjsZyM6s2nzX6QHrg2u2BoKAgUlJS2nRfuw2yqqoqAGpqWv6lrl27luLiYry8vAgNDbVqLTqdjoKCglaPd9Y4QBsmH9DtTeOT4P+55O3njhWwuuvUS95+NQqLCqkzWe4sJ62Lu9m/Aq9+Ixm08dLXVbl1i2pyJpb+VC7ZS+6m6wNL8Oo3sm2F/kFhYSFGffVV7+eKvLnksZQL14ldiaODtlXjWnJKdwbqrX94sy19ID3QTnrgT+w2yIKCgigtLeXAgQMMHTq0yW1FRUXMmTMHgP79+1v9hI6goCCzxjuZtKCyCbo7B3e2+LtRazLqq8laOJkOsRPpOH6mRfbZuXNn23wi05ou+fLQFV/+j0hQgBuODloMDUZ0xZeu9XL7CeoUgIPJ+gtxqq0PpAeurgfM/Tv5R3YbZKNHjyYjI4NFixYxZswYIiLOX82+f/9+EhISKC4+/47SFhdCm/txub66ljU977VSNdaReSwTJ3fXKw9spRoD3LTNYrtrpnTPempyfqO2IJPSn9Y2uz16eTrOgd3N2mdm5jHcbNBRQ+/dxC+HW574taXDgX90cns8XTt5oCuuoduYL8x+bBdnB05kp+HkZP2v19XWB9IDtuuBP7PbIEtMTOTzzz/n5MmTREdHExkZSW1tLcePH2fcuHGEhITw7bffNvl+rL365q75Vx5kZ/xHJeA/KkHpMtpkUJ+ASwaZtQ2I8LNJiNma9IC62d8r8v/r2rUrycnJjB8/HldXV3Jzc/Hz8+P9999n69atZGZmAkiQCdUZ1CdAwcf2V+yxhbgUu/1EBhAVFcWWLVuaba+srCQ3NxetVkvfvn0VqEyIths7vCuOjhoMBtsvrTLhZvMONQlhC3YdZJeSlpaGyWQiIiICd/fmpyqvW7cOgPT09CY/h4SEMHjwYNsVKkQLggPdufOWEKuuQ9aS0C5ejB3e1aaPKURrtMsgS01NBS59WDEuLq7Fn++//34++eQTq9YmRGs8MTXK5kH2eFwkWq36p2wT9keCrAVqXw1X2L+bBwdxx83d2fzj1V3E21o9u3kxIz7qygOFUIAEmR3x7dODYW88jpOnG1X5Z9j95Dv4RnRj9Jq5lGcV8l38K9SeLadX/C1EPzqeDuFdSXl5Nen/2tq4j8HzEgiZNIyS1Bx2PLhYwWdjvuqc38h79xGMNRU4B/Yg5JlPqT2RxrGXx+HapTfhf/8OJ5+OFHz6ImX7N6HROgAQNOX/4Tfi/CwX+avmUPLTWtx7XkevuV8p+GwuT6PR8P5Lw0merKOsou7Kd7hKHy+4SRXLt7S2B258awbBI/qjP3t+hpLC3YdJeeVToH30QNZrd6I/ffETfU3uYXq+8BU+10/k1MalnNn2Llo3T/q8dUi5J2OGdhlkF+ZhtDc3vjWTn595l5K0XHrF38KQl+7j+Bc7Kc8qZNOYOY3jzh7OYtdjb9LvySnN9pHyyqeUHT1J93GWnyLL2nLffoCQWatwD4uh+PuPyV/1HAF/eRDXLr2bNGSnO+fQJeFVAOrOFpA2IwrvmNE4egfQ9cEluHaPpmzfV8o8CTMEB7rz3rzhxCfubPV9LlzofKULp//oufv7MWJwsNn1KaG1PQCQtnJTkzdxF7SHHug59z+N/646lsKxBWPxvm4sAJ0mPYN72EBOfvS0jatvO7s9/b698esbiqG6lpK0XACyvtxFt1sHo3Vu/l6lND2Pc8cKwKiiaROuoDr7IA5unriHxQDgP+p+zv26CZOh+acVR0+fxn8bayrBZMKk0t/F1LFhvJV4favHD5m2iW5jvrjihdMXJEzoxaJn1LEKhDk9YI/M6YE/Kv7+I/xH3ovWydkGVVpH+/h/uB3w7N4R38juTNy+pHGbo5sL7kF+ClZlO/pTOdTkpZL+dEzjNqO+mrqzLc9xeXrzMk5ve5f6s/n0mPkhTj4dbVSp5T11b19cXRyZ8doeGhos9/3uX++O5J0XhqrmBA9zeyDq4dvpFX8LVQXFHFyU1BiAamVuD5y/vYbS5CR6v6buhUQlyOzImYPH2D7tH40/xx/5SMFqbM8j/HrCF3zb+PNvCYGXHNvxjll0vGMW1Tm/kbP0XrxjbsXRW70X+z4WF8mgPv48OC+ZI8dLr2pfgb6urPzbMO4aY93JtK2htT1w4PUkqk+VgslE93GxjF7zIhuGPYmhutZWpVqFOT0AULpnHS6dI3AL6Wft0qxKDi3aicq8U3h0uTjjg5OnG47urlTrShSsynZcOoVRV3zxDL6G6nIaaqtw9u9y2fu5hw7A2a8LFUd2WblC6xscHUjKF5N4ecZ1BPqaP+efq4sDj9zVm/Sv7lJliJnTA9W6kvNr0gAnvv6V+opqOvTqbLNaraEtPVD8/UcEjH7IFuVZlQSZnShJy8VY30DwiP4ARD5wGzkbf8ZYZ1C4MttwD4tB4+BE+aHtAJzZtgK/G6eicWx+3L/mRHrjv/VFWVRnH8S1Wx+b1WpNLs4OzHtsICe3x7Nm4UhuiQ3G8zJnGzo5ahkcHcCbc66n8IdpfDD/RgLaEILXAnN6wD344uHGwOvCcfHzojyn9WsGXovM6QGA2qLjVB9PwW/ENFuWaRVyaNGO7J7xNje+NQPn1x+hIlfH7pnL8O3dfEqhXnePZODz03D28aD72FiiH5/ID/e/TskR215ga2mhz64hd9mDnFj5V1yCexH67GfU5B1pNq7gfxPRn8pB4+iERutI98eW49bNvq6RcnF24J7xPblnfE+MRhOZeec4nFlCRVU9RqMJdzdHIkN96NvLFxdnB6XLtZjW9sCNb83ELbADpgYjhto6dj3yT+orbL+OlqW1tgcAzn7/MT5D78LB3dvGVVqeBJkdKfv9BFvGPn/Fcce/3MXxL3dZvyAbcwvpR9SbV14yp9e85vNv2jOtVkNkqA+RoT5Kl2J1re2B76a+bINqbK+1PQDQJeE1K1djO3Jo0c411Btw8fVi4vYluPpf+Z3X4HkJ9HvyTvRllTaozvo0js4Yys+S/nQM9WWnrzg+f9UcdOsW4ujha4PqhC1ID5jXA6c2LuXEe0/g6KXcKgvm0phkPqZrjtoWFASYnvWZqhYVtIbk21FkUUF7pbY+kB5QrgfkE5kQQghVkyATQgihanJo8RpkMpkw1OiVLsMsjm4uaDSWmwHCZILaBovtziZcHcCCv4J2T219ID2gXA9IkAkhhFA1ObQohBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1f4P43I/FYB900UAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIwBJREFUeJzt3XlYlPX+//HnDPsqq4IroCCIC6ZSapl2tDRNzb4kZrRcrSfNFpN+2TGPdcrUTpaZVqeyr2VkRz25tlhqUprJUROBRNmUZVQEZB8YZr5/+BMjUBmcmdt7eD+uq+vIPZ+55z2cefOauee+Px+NyWQyIYQQQqiUVukChBBCiKshQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihao5KFyCaM5lMGGr0SpdhFkc3FzQajcX2ZzJBbYPFdmcTrg5gwV9Bu6e2PpAeUK4HJMiuQYYaPWt63qt0GWaZnvUZTu6uFttfbQPctM1iu7OJ5NvBTTrKYtTWB9IDyvWAHFoUQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJpc9WJHgoZGM3bDgibb6qtqKM8uImvdbjI+2oapwahQddZXkbqLzL+NarJN6+qBS+cI/Ecm0HHCk2gc5CVvz6QH2mcP2N8zEmRvSCZ/xwHQaHAL9KFX3M3ELniADuFd2DvnfaXLszrfEdPoMOh2MJmoL9Vxdtdq8j9+ltr8DHrM+EDp8oQNSA+0rx6QILNDZ1NzyF6f3Pjz0U++5c7kt4m45y8ceD0J/dlyBauzPvew6/AfeXFGiMDbnyDtiUiKt39I53tfxalDoILVCVuQHmhfPSDfkbUDhho9Zw4cQ6PV4t2jk9Ll2JyDqwcevW8Akwm9LkvpcoQCpAfsuwckyNoJr5Dzzasvq1S4EmVcaF5HTz+FKxFKkR6w3x6QQ4t2yNHNGRc/r8bvB3rfdyv+/cI4c+AY5dlFSpdndUZ9NYby4vOzp5fqOPPNe9RkH8Q9PBbXLhFKlydsQHqgffWA3QdZcXExixcvZsOGDeTn5xMYGMiUKVN47bXXmDVrFh9//DHvvPMOM2fOVLpUixmYGM/AxPgm23K3/sK+Fz5UqCLbKkqaT1HS/CbbfIZOoftj7ypU0bXh95wysk6W09BgIjjQnUF9AtBq7XPdGemB9tUDdh1khw4dYty4ceh0Ojw8POjTpw+FhYUsW7aMrKwsSkpKAIiJiVG2UAs7+ul35G7ei9bJEd/I7vSdMRmPYH8a9HWNY25e+QxoNfz42JuN25x9PJm8aykpL68me0NyS7tWhYDbHsV3WBymhnpq8lLRbVhEXXE+GqeLS2xUpCVz/OVxze5rMtRhMjYw6D8qWwjqEhoajKz9JocVX2bw88FTTW4L7+HNX++O4uEpEXh5OCtUoXVID7SvHrDb78iKi4u544470Ol0zJ49m6KiIg4cOIBOp2PRokVs3bqV/fv3o9Fo6N+/v9LlWlR5to6i5FQKdhzkyIqN/HD/6wTE9GTooscax+x94V90HNKb0MnDG7fd8NrDnP71d1U3MIBLcDjeMaPpMGgcQVMS6fXiZqqP7+fEyscbx3hF38TAtZVN/otekYmjVwCd73lFweotp1ZvIO65HUx/YVezEAM4llfOs0v2ceP9Wyk4VaVAhdYjPdC+esBug2zWrFnk5+czc+ZM3njjDby8vBpvS0xMZMCAARgMBkJCQvD29lawUus7k3KUrHW7CZ08nMDBvQGoK6tkz+yVXP/qw7h18qXH+BsIGhbN3uft7xobz6hh+I1MoPSntVRm7GlxjLFeT/brU/DscyPBcXNtXKHlGY0mEub+yH9+yLvi2MOZJdz2+DeUlatnNWZzSQ/Ydw/YZZBlZGSwdu1aAgICWLhwYYtjBg0aBMCAAQOabM/JyWHixIl4eXnh6+vLfffdx9mzZ61es7X9tnQdRkMDA+dMbdxWsPMQuZv3MGL5LG54/RH2zF6JvtQ+z+gKnjoPtA4Ufv5Si7efWPE4xvpaQp76xLaFWcm3P+ezbntuq8enZZXx9po06xV0DZAesN8esMsgS0pKwmg0Mn36dDw9PVsc4+bmBjQNsoqKCkaNGkV+fj5JSUl88MEHJCcnM2HCBIxGdU9rU5GrI2fjz3Qe0Z+O10c1bk9ZsBqv0CAKdhwk/4cDClZoXa7BvfC7KZ6Kwz9Qkdb0sNHpzcs4l7KFni98hdbFXaEKLWvF2gyz7/PB+qPU16v7dX450gP22wN2GWQ7duwAYNSoUZcck5+fDzQNsg8++ICCggK++uorJkyYQFxcHJ9//jm//PILmzZtsm7RNnD47fUYG5q+IzXU6KnMO01pxgkFK7ONoLgXQatt8o604vBO8lc/T1jiv3HpFKJccRZ0+mwNW5NPmn2/wtPV/LCv0AoVXTukB+yzBzQmk8mkdBGW1q1bN/Lz8zl48GCLZyQaDAaCg4MpLi4mKyuLsLAw4GLw7dy5s8n4nj17MnLkSD766KM21TN48GB0Ol2rxzuZtMw3xrbpsdpi7PoFnNz+X9Lea3tYL9D+Sr3Gcu/mNc5udHrrmMX21xL9qVx+f24IwfHz6Tj+6i+/OPV0OKa6GgtUdnXqHII40+GvbbqvT9UmPPT/tXBFbWPLPpAeUL4HgoKCSElJadN97fL0+6qq82dg1dS0/Atdu3YtxcXFeHl5ERoa2rg9PT2duLi4ZuOjo6NJT09vcz06nY6CgoJWj3fWOIDKZtEpLCqkzmS503W1Lu5W/RUY9dVkLZxMh9iJFmlggMLCQoz6aovs66q4aqBD2+5aVlpKWWnrX6vWpLY+kB5QrgfsMsiCgoIoLS3lwIEDDB06tMltRUVFzJkzB4D+/fuj0Vy8ILS0tBQfH59m+/Pz8+Po0aNXVY85nExaUNlXFZ2DO1v83ag1le5ZT03Ob9QWZFL609pmt0cvT8c5sLtZ++zcufM18YmsQeOGzmQEjfnfHPh30ODq3sUKVZlPbX0gPXB1PWDu38k/sssgGz16NBkZGSxatIgxY8YQEXF+Spb9+/eTkJBAcXExYLsLoc39uFxfXcuanvdeeaCFfHPX/CsPuoLMY5k4ubteeWAr1Rjgpm0W210z/qMS8B+VYNF9ZmYew+0a6ahJs7azaZd53/l06ehO7oGdODpeG1+d27IPpAcsQ6keuDZesRaWmJiIv78/J0+eJDo6mn79+hEeHk5sbCxhYWHccsstQPNT7319fSkrK2u2v5KSEvz87G+iTWG/npgadeVBf/JYXOQ1E2JCmMMuX7Vdu3YlOTmZ8ePH4+rqSm5uLn5+frz//vts3bqVzMxMoHmQRUVFtfhdWHp6OlFR5v9hEEIpY4Z2IX5sWKvH94/w46np0VasSAjruUYOhFheVFQUW7Zsaba9srKS3NxctFotffv2bXLbhAkTmDt3Lvn5+XTt2hWAffv2kZWVxZIlS2xStxCWoNVq+OQfIzCaTHz5bc5lxw6M9Gfru7fi7Wlf8y2K9sMuP5FdTlpaGiaTifDwcNzdm1749+ijjxIcHMykSZPYsmUL69atY9q0acTGxjJp0iSFKhaibVycHUhaNIov37iFkUOCm93ep6cPy+cOJfmT8QQHqu8iWCEusNtPZJeSmpoKND+sCODt7c2OHTt46qmniI+Px9HRkQkTJrB06VK02naX+cIOaLUa4m4NJe7WUI7lnWPovZs5e05PoK8rRzZMaXLWrhBqJUH2Jz179mzxkKQQahfeowOuLg4AODtpJcSE3ZAgsyO+fXow7I3HcfJ0oyr/DLuffAffiG6MXjOX8qxCvot/hdqz5Ti4OTP8n08QENMTk9HEgYWfk7f1FwAGz0sgZNIwSlJz2PHgYoWfkXmqc34j791HMNZU4BzYg5BnPqX2RBrHXh6Ha5fehP/9O5x8OlLw6VxK925A6+SCxsGJzve+SofrbgPg1MalnNn2Llo3T/q8dUjZJyTM1toeuKBDeBfu+HYxmZ9t59eXPgGgz6MTiHzgNgxVtWwaM0ehZ9I2re0BgNPbVnBm6zvg4IhGoyVyyT60zq7kr5pDyU9rce95Hb3mfqXsE2qldhdkF+ZhtEc3vjWTn595l5K0XHrF38KQl+7j+Bc7Kc8qbNKQfR+fiLGung3DnsSzW0fGb1uIbs8R9KWVpLzyKWVHT9J9nO2myLKU3LcfIGTWKtzDYij+/mPyVz1HwF8exLVL7yah5NnnJoLvnofWxY3qnN84OncE/VcV4uDqQadJz+AeNpCTHz2t2PMQbdfaHgDQODowbMnj5H39a5Pt6R9soSQ1h9iXH7Bh5ZbR2h4o27eRkh/XELn4Fxw8OlB/7gwaBycAuj64BNfu0ZTt+0qZJ9EG8sWPnfDrG4qhupaStFwAsr7cRbdbB6N1bv5eJWTScI6u/g6AypOn0e1Jo/u4621ZrsVVZx/Ewc0T97AYAPxH3c+5XzdhMtQ1G9th0Di0LudnTXDr0Q9MJgznztiyXGEF5vQAQMyzceRu3ktFdpENq7Qec3pA958ldI6fj4PH+bnMnDoEonFwsGW5FtXuPpHZK8/uHfGN7M7E7RcvE3B0c8E9qPmF3J5dAqjMv/iHu/LkaTy6BNikTmvRn8qhJi+V9KdjGrcZ9dXUnb38vIFnf1iFS1AYzh17WLlCYW3m9EDAwHACB0Xw3dSXiZl9ty3LtBpzeqD2ZDpVx1Mo/GIBpno9/qPuo+Mds2xYrWVJkNmRMwePsX3aPxp/jj/Sttn61coj/HrCF3zb+PNvCYGXHV/+2w8UfrGAiAXb5cQHO9GaHnBwc+aG1x9m18P/tGVpNtHaHjA1GKg7lUPv13bTUFXK0bk34xwUhs+QCbYq1aIkyOxEZd6pJp+qnDzdcHR3pVpX0nxsQTGeXQOpOV0GgGe3jhT++JutSrUKl05h1BVfnFuwobqchtoqnP1bngC34siP5C57kF5/24xr1962KlNYUWt7wKtHEJ5dAhi7/u8AOHt7gFaDcwdPfnpquS1LtihzesA5sDu+I6ahcXDA0TuADoNup+roL6oNMvmOzE6UpOVirG8geER/ACIfuI2cjT9jrDM0G5u3eS+977sVOB9iQcOiOfHNr83GqYl7WAwaByfKD20H4My2FfjdOBWNY/PZKirSdpOzNIFeL27EPdT+zl5tr1rbA2W/n+CLvg+xLvYJ1sU+Qfq/tnL8ix2qDjEwrwf8RtxD+YFvADDqa6g4skvVvSBBZkd2z3ibQXOnM2XPOwQNiybllU9bHHdkxUYcXJ2Zsnc5Y5L+xr65H6IvqbBxtZYX+uwaCla/wJHHelFxZBddH2x5WrG8dx7CVK8nd9mDpD8dQ/rTMdTkptq4WmENre0Be9XaHug06Vnqy06RNqMPGbMH0+G6cfgOb74Wo1rIoUU7Uvb7CbaMff6K4ww1en58fKkNKrItt5B+RL155SVz+r5n3VV3hXJa2wN/dOifX1qpGttrbQ9onV0Jffp/bVCRbcgnMjvXUG/AxdeLiduX4OrvfcXxg+cl0O/JO9GXVdqgOuvTODpjKD9L+tMx1JedvuL4UxuXcuK9J3D0UvdZnOIic3ugz6MTuOH1h6m1g6MUYH4P5K+ag27dQhw9fG1QnWVoTCaTSekiRFO2XljTEqZnfaaqRQWtIfl2rpmFNS+l6+gkCk5X06WjO/nfT1O6nMtSWx9IDyjXA/KJTAghhKpJkAkhhFA1ObR4DTKZTBhq9EqXYRZHNxeLXlRsMkFtg8V2ZxOuDnCtX1etpkOLausD6QHleuAaP6LfPmk0Gosea1cjjeba/75JWFd77wPpgdaTQ4tCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE3WH70GqW2Jd5Bl3kG5Zd7tldr6QHpAuR6QILsGGWr0rOl5r9JlmGV61mcWXZa+tgFu2max3dlE8u2yNL0lqa0PpAeU6wE5tCiEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNzrESwo7V1Bo4nFnCf9OLOXyslJJz509nLy3Xs2TVYQb1CeC6KH98vF0UrlSItpMgE8IO/Te9mHe/SCfp62xq9c0vRqqubSBx6X7g/HU/t9/UjSemRjF2eFe0WrkYTqiLBJkQdiQz9xyPvvwTP6boWn0fkwm27j7J1t0nCe/hzfvzhjMqtrMVqxTCsiTI7EjQ0GjGbljQZFt9VQ3l2UVkrdtNxkfbMDUYFarO+ipSd5H5t1FNtmldPXDpHIH/yAQ6TngSjYN9vuSNRhNvr0lj7rKUFj+BtdaxvHJuefhr/np3JIufjcXT3cmCVVqf9ED77AH7e0aC7A3J5O84ABoNboE+9Iq7mdgFD9AhvAt757yvdHlW5ztiGh0G3Q4mE/WlOs7uWk3+x89Sm59BjxkfKF2exdXXG7nvxR/54ptsi+1z5Ze/sy/1DN+svI1APzeL7ddWpAfaVw/IWYt26GxqDtnrk8let5u0lZvYOn4uVQXFRNzzF1z8vZUuz+rcw67Df+S9+I9KIGjKHCIX/4KTf1eKt39I/bkzSpdnUQ0NRqa/sMuiIXbBgYyz/OWRryktV898hxdID7SfHgAJsnbBUKPnzIFjaLRavHt0Urocm3Nw9cCj9w1gMqHXZSldjkXNW36Af3+XY7X9px4r5e7ndmAymaz2GLYgPWC/PQASZO2GV8j55tWXVSpciTIuNK+jp5/ClVjOvsOnWbTqsFn32Z80kZPb49mfNLHV9/n+l0Le//fv5pZ3zZEesL8euKBdBFlxcTGJiYn06tULV1dXunXrxlNPPUVVVRUPPfQQGo2G5cuXK12mxTi6OePi54WLvzc+kd25/rWH8e8XxpkDxyjPLlK6PKsz6qsxlBdTf+4MNbmpnHhvBjXZB3EPj8W1S4TS5VmEvq6BB19Kxmg075NSUIA7XTt5EBTgbtb95ry5n7zCCrPuoyTpAfvvgT+y+5M9Dh06xLhx49DpdHh4eNCnTx8KCwtZtmwZWVlZlJSUABATE6NsoRY0MDGegYnxTbblbv2FfS98qFBFtlWUNJ+ipPlNtvkMnUL3x95VqCLLW7c9h4zsMps9XmV1PUs/TeOt52+w2WNeDekB+++BP7LrICsuLuaOO+5Ap9Mxe/Zs5s+fj5eXFwCLFy/m+eefx9HREY1GQ//+/RWu1nKOfvoduZv3onVyxDeyO31nTMYj2J8GfV3jmJtXPgNaDT8+9mbjNmcfTybvWkrKy6vJ3pCsROkWEXDbo/gOi8PUUE9NXiq6DYuoK85H43RxraiKtGSOvzyu2X1NhjpMxgYG/efaXtFwxdoMmz/mJ5uO8eqTg/BQwSn50gP23wN/ZNeHFmfNmkV+fj4zZ87kjTfeaAwxgMTERAYMGIDBYCAkJARvb/s5k6k8W0dRcioFOw5yZMVGfrj/dQJiejJ00WONY/a+8C86DulN6OThjdtueO1hTv/6u6obGMAlOBzvmNF0GDSOoCmJ9HpxM9XH93Ni5eONY7yib2Lg2som/0WvyMTRK4DO97yiYPVXlppZwp5Dp23+uOcq6qxydqQ1SA/Ydw/8md0GWUZGBmvXriUgIICFCxe2OGbQoEEADBgwoHHbheCLjY3FxcWyS5cr5UzKUbLW7SZ08nACB/cGoK6skj2zV3L9qw/j1smXHuNvIGhYNHuft79rbDyjhuE3MoHSn9ZSmbGnxTHGej3Zr0/Bs8+NBMfNtXGF5tm5X7nveHalqPP7JekB++qBP7PbIEtKSsJoNDJ9+nQ8PT1bHOPmdv5Czz8G2fHjx1m/fj1BQUEMGTLEJrXawm9L12E0NDBwztTGbQU7D5G7eQ8jls/ihtcfYc/slehL7fOMruCp80DrQOHnL7V4+4kVj2OsryXkqU9sW1gb/De9WMHHPqvYY18t6QH76YE/s9sg27FjBwCjRo265Jj8/HygaZCNGDGCoqIiNm3axOjRo61bpA1V5OrI2fgznUf0p+P1UY3bUxasxis0iIIdB8n/4YCCFVqXa3Av/G6Kp+LwD1SkNT1sdHrzMs6lbKHnC1+hdTHvbD4lHPxduTD5PaeMqup6xR7/akgP2E8P/JndnuyRl5cHQI8ePVq83WAw8PPPPwNNg0yrtXy2Dx48GJ2u9ZO4Opm0zCfW4nUcfns9oZOHM3DOVL79n78D5y8Urcw7TWnGiavad0R4BPUay81hp3F2o9Nbxyy2P4CguBcpSU6i8POX6P3qTgAqDu8kf/XzhL/0NS6dQq5q/xER4ZjqaixQ6eUV+TwHWq8Wb9ufNPGyp9YHBbg1/u/J7fGXHKcrrmbItE3NtptM0DNyAI7GcjOrNp81+kB64NrtgaCgIFJSUtp0X7sNsqqqKgBqalr+pa5du5bi4mK8vLwIDQ21ai06nY6CgoJWj3fWOEAbJh/Q7U3jk+D/ueTt544VsLrr1EvefjUKiwqpM1nuLCeti7vZvwKvfiMZtPHS11W5dYtqciaW/lQu2UvupusDS/DqN7Jthf5BYWEhRn31Ve/niry55LGUC9eJXYmjg7ZV41pySncG6q1/eLMtfSA90E564E/sNsiCgoIoLS3lwIEDDB06tMltRUVFzJkzB4D+/ftb/YSOoKAgs8Y7mbSgsgm6Owd3tvi7UWsy6qvJWjiZDrET6Th+pkX22blzZ9t8ItOaLvny0BVf/o9IUIAbjg5aDA1GdMWXrvVy+wnqFICDyfoLcaqtD6QHrq4HzP07+Ud2G2SjR48mIyODRYsWMWbMGCIizl/Nvn//fhISEiguPv+O0hYXQpv7cbm+upY1Pe+1UjXWkXksEyd31ysPbKUaA9y0zWK7a6Z0z3pqcn6jtiCT0p/WNrs9enk6zoHdzdpnZuYx3GzQUUPv3cQvh1ue+LWlw4F/dHJ7PF07eaArrqHbmC/MfmwXZwdOZKfh5GT9r9fV1gfSA7brgT+z2yBLTEzk888/5+TJk0RHRxMZGUltbS3Hjx9n3LhxhISE8O233zb5fqy9+uau+VceZGf8RyXgPypB6TLaZFCfgEsGmbUNiPCzSYjZmvSAutnfK/L/69q1K8nJyYwfPx5XV1dyc3Px8/Pj/fffZ+vWrWRmZgJIkAnVGdQnQMHH9lfssYW4FLv9RAYQFRXFli1bmm2vrKwkNzcXrVZL3759FahMiLYbO7wrjo4aDAbbL60y4WbzDjUJYQt2HWSXkpaWhslkIiIiAnf35qcqr1u3DoD09PQmP4eEhDB48GDbFSpEC4ID3bnzlhCrrkPWktAuXowd3tWmjylEa7TLIEtNTQUufVgxLi6uxZ/vv/9+PvnkE6vWJkRrPDE1yuZB9nhcJFqt+qdsE/ZHgqwFal8NV9i/mwcHccfN3dn849VdxNtaPbt5MSM+6soDhVCABJkd8e3Tg2FvPI6TpxtV+WfY/eQ7+EZ0Y/SauZRnFfJd/CvUni2nV/wtRD86ng7hXUl5eTXp/9rauI/B8xIImTSMktQcdjy4WMFnY77qnN/Ie/cRjDUVOAf2IOSZT6k9kcaxl8fh2qU34X//DiefjhR8+iJl+zeh0ToAEDTl/+E34vwsF/mr5lDy01rce15Hr7lfKfhsLk+j0fD+S8NJnqyjrKLuyne4Sh8vuEkVy7e0tgdufGsGwSP6oz97foaSwt2HSXnlU6B99EDWa3eiP33xE31N7mF6vvAVPtdP5NTGpZzZ9i5aN0/6vHVIuSdjhnYZZBfmYbQ3N741k5+feZeStFx6xd/CkJfu4/gXOynPKmTTmDmN484ezmLXY2/S78kpzfaR8sqnlB09Sfdxlp8iy9py336AkFmrcA+Lofj7j8lf9RwBf3kQ1y69mzRkpzvn0CXhVQDqzhaQNiMK75jROHoH0PXBJbh2j6Zs31fKPAkzBAe689684cQn7mz1fS5c6HylC6f/6Ln7+zFicLDZ9SmhtT0AkLZyU5M3cRe0hx7oOfc/jf+uOpbCsQVj8b5uLACdJj2De9hATn70tI2rbzu7Pf2+vfHrG4qhupaStFwAsr7cRbdbB6N1bv5epTQ9j3PHCsCoomkTrqA6+yAObp64h8UA4D/qfs79ugmTofmnFUdPn8Z/G2sqwWTCpNLfxdSxYbyVeH2rxw+ZtoluY7644oXTFyRM6MWiZ9SxCoQ5PWCPzOmBPyr+/iP8R96L1snZBlVaR/v4f7gd8OzeEd/I7kzcvqRxm6ObC+5BfgpWZTv6UznU5KWS/nRM4zajvpq6sy3PcXl68zJOb3uX+rP59Jj5IU4+HW1UqeU9dW9fXF0cmfHaHhoaLPf97l/vjuSdF4aq5gQPc3sg6uHb6RV/C1UFxRxclNQYgGplbg+cv72G0uQker+m7oVEJcjsyJmDx9g+7R+NP8cf+UjBamzPI/x6whd82/jzbwmBlxzb8Y5ZdLxjFtU5v5Gz9F68Y27F0Vu9F/s+FhfJoD7+PDgvmSPHS69qX4G+rqz82zDuGmPdybStobU9cOD1JKpPlYLJRPdxsYxe8yIbhj2JobrWVqVahTk9AFC6Zx0unSNwC+ln7dKsSg4t2onKvFN4dLk444OTpxuO7q5U60oUrMp2XDqFUVd88Qy+hupyGmqrcPbvctn7uYcOwNmvCxVHdlm5QusbHB1IyheTeHnGdQT6mj/nn6uLA4/c1Zv0r+5SZYiZ0wPVupLza9IAJ77+lfqKajr06myzWq2hLT1Q/P1HBIx+yBblWZUEmZ0oScvFWN9A8Ij+AEQ+cBs5G3/GWGdQuDLbcA+LQePgRPmh7QCc2bYCvxunonFsfty/5kR647/1RVlUZx/EtVsfm9VqTS7ODsx7bCAnt8ezZuFIbokNxvMyZxs6OWoZHB3Am3Oup/CHaXww/0YC2hCC1wJzesA9+OLhxsDrwnHx86I8p/VrBl6LzOkBgNqi41QfT8FvxDRblmkVcmjRjuye8TY3vjUD59cfoSJXx+6Zy/Dt3XxKoV53j2Tg89Nw9vGg+9hYoh+fyA/3v07JEdteYGtpoc+uIXfZg5xY+VdcgnsR+uxn1OQdaTau4H8T0Z/KQePohEbrSPfHluPWzb6ukXJxduCe8T25Z3xPjEYTmXnnOJxZQkVVPUajCXc3RyJDfejbyxcXZwely7WY1vbAjW/NxC2wA6YGI4baOnY98k/qK2y/jpaltbYHAM5+/zE+Q+/Cwd3bxlVangSZHSn7/QRbxj5/xXHHv9zF8S93Wb8gG3ML6UfUm1deMqfXvObzb9ozrVZDZKgPkaE+Spdida3tge+mvmyDamyvtT0A0CXhNStXYztyaNHONdQbcPH1YuL2Jbj6X/md1+B5CfR78k70ZZU2qM76NI7OGMrPkv50DPVlp684Pn/VHHTrFuLo4WuD6oQtSA+Y1wOnNi7lxHtP4Oil3CoL5tKYZD6ma47aFhQEmJ71maoWFbSG5NtRZFFBe6W2PpAeUK4H5BOZEEIIVZMgE0IIoWpyaPEaZDKZMNTolS7DLI5uLmg0lpsBwmSC2gaL7c4mXB3Agr+Cdk9tfSA9oFwPSJAJIYRQNTm0KIQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtX+D+NyPxWAfdNFAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -563,8 +563,8 @@ } ], "source": [ - "ansatz = EfficientSU2(hamiltonian.num_qubits, reps=1)\n", - "ansatz.decompose().draw(\"mpl\")" + "ansatz = efficient_su2(hamiltonian.num_qubits, reps=1)\n", + "ansatz.draw(\"mpl\")" ] }, { @@ -683,7 +683,7 @@ "\n", "time = 10.0\n", "evolution_problem = TimeEvolutionProblem(hamiltonian, time, aux_operators=aux_ops)\n", - "var_qrte = VarQRTE(ansatz, init_param_values, var_principle, Estimator())\n", + "var_qrte = VarQRTE(ansatz, init_param_values, var_principle, StatevectorEstimator())\n", "evolution_result_re = var_qrte.evolve(evolution_problem)" ] }, @@ -756,7 +756,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPXUlEQVR4nOzdd3hb9fX48feVZMl7b8fbiZ3tbBISCBBImAkbCgT4llF+pS2jUKCUttBCS1tWy16hZY+yKRBCQoCEhAxnL++997ak+/vjykqcaTu2r8Z5PY8e21dX9x6bYB1/xjmKqqoqQgghhBACg94BCCGEEEK4CkmMhBBCCCEcJDESQgghhHCQxEgIIYQQwkESIyGEEEIIB0mMhBBCCCEcJDESQgghhHAw6R2AO7Hb7ZSXlxMUFISiKHqHI4QQQoh+UFWVlpYW4uPjMRiOPiYkidEAlJeXk5iYqHcYQgghhBiEkpISRo0addRzJDEagKCgIED7wQYHB+scjRBCCCH6o7m5mcTEROf7+NFIYjQAvdNnwcHBkhgJIYQQbqY/y2Bk8bUQQgghhIMkRkIIIYQQDpIYCSGEEEI4yBojIYQQ4ihsNhs9PT16hyGOwWw2H3Mrfn9IYiSEEEIchqqqVFZW0tjYqHcooh8MBgOpqamYzebjuo4kRkIIIcRh9CZF0dHR+Pv7S2FfF9ZbgLmiooKkpKTj+m8liZEQQghxEJvN5kyKIiIi9A5H9ENUVBTl5eVYrVZ8fHwGfR1ZfC2EEEIcpHdNkb+/v86RiP7qnUKz2WzHdR1JjIQQQogjkOkz9zFU/60kMRJCCCGEcJDESAghhBDCQRIjIYQQQggHSYyEEEK4vR6bneqWTnpsdr1D0c25557LokWLDvvct99+i6IobN26ddDXX7NmDWeddRZhYWH4+voyceJEHnnkkUMWOyuK4nwEBwczY8YMPvzwQwDmz5/f5/mDH/PnzwcgJSXlsM//5S9/GXT8/SXb9YUQQritutYu/v7lHj7YXE5Hj40As5HzpyZwx8IsQvwGv2XbHf30pz/lwgsvpLS0lFGjRvV57uWXX2b69OlMmjRpQNfs7u7GbDbz/vvvc8kll3DttdeycuVKQkND+eqrr7jzzjtZu3Ytb7/9dp/Fzy+//DKLFi2iubmZp556iosuuohNmzbx3//+l+7ubgBKSkqYOXMmX331FePHjwfoU5zx/vvv5/rrr+8TT1BQ0IDiHwxJjIQQQril3OpWrn5pPWWNHc5jbd02Xv2hmG/21vD6dSeQGD402+1VVaWj5/i2gQ+Wn4+xXzuuzjnnHKKioli2bBn33nuv83hrayvvvPMOd911F5dffjmrV6+moaGB9PR07rnnHi6//HLnufPnz2fChAmYTCZeffVVJk6cyCeffML111/Peeedx3PPPec897rrriMmJobzzjuPt99+m0svvdT5XGhoKLGxscTGxvLAAw/w+OOPs3LlSn75y186z+ns7AQgIiKC2NjYQ76foKCgwx4fbpIYCSGEcDvVLZ3OpCgtMoCHLpjI9JRwfsiv467/bqWkvoMrXljHRzefSKj/8bWIAOjosTHuvi+GIPKB23n/QvzNx367NplMLF26lGXLlvHb3/7WmUy988472Gw2rrzySt555x1+85vfEBwczKeffspVV11Feno6M2fOdF7nlVde4aabbuL7778H4Msvv6Suro5f//rXh9zz3HPPZcyYMbzxxht9EqNeVquVF198EeC4W3WMFFljJIQQwq2oqsrd721zJkXv3jSHWWkRGA0KJ2ZE8t7P5pAY7kdxfTt3vjv4NTXu6P/+7//Iy8vjm2++cR57+eWXufDCC0lOTubXv/412dnZpKWl8Ytf/IJFixbx9ttv97nG6NGjefjhh8nMzCQzM5O9e/cCMHbs2MPeMysry3lOr8svv5zAwEAsFgu33norKSkpXHLJJQP6Xn7zm98QGBjY5/Htt98O6BqDISNGQggh3MoHOWWs2F2N2Wjg6SunER7QdyQiOtiXZ66cxuJ/fc+XO6tYvrOK08fFHNc9/XyM7Lx/4XFd43ju3V9ZWVnMmTOHl156ifnz55Obm8u3337L/fffj81m48EHH+Ttt9+mrKyM7u5uurq6DqnuPW3atMNeW1XVI9734NGgRx99lAULFpCfn8+tt97KE088QXh4eL+/D4A77riDa665ps+xhISEAV1jMCQxEkII4TY6e2w89NluAH55WgaZsYdfjDs+PoTrT0rj6VV5/OGjHcwbHYnvABKMgymK0q/pLFfw05/+lF/84hc8+eSTvPzyy6Snp3PyySfz17/+lccff5zHHnuMiRMnEhAQwC233OJcDN0rICCgz9ejR48GYNeuXcyZM+eQ++3atYvs7Ow+x2JjY8nIyCAjI4OXX36Zs846i507dxIdHd3v7yMyMpKMjIx+nz9UZCpNCCGE23j1hyKqW7pICPXj+pPSjnruL07NID7El7LGDt7ZUDJCEervkksuwWAw8Prrr/Pvf/+b//u//0NRFL7//nsWL17MlVdeyeTJk0lLSztkCuxwFi5cSHh4OP/4xz8Oee6jjz5i3759h4zsHGjmzJlMmzaNP//5z8fzbY0YSYyEEEK4hY5uG0+vygPgV6eNxmI6+giQv9nETfPTAXjmm3yvqXEUGBjIpZdeyt13301FRYUzaRk9ejTLly9nzZo17Nq1ixtvvJGqqqpjXi8gIIBnn32WDz/8kBtuuIGtW7dSWFjIiy++yDXXXMP111/PWWedddRr3HLLLTz77LOUlZX1+/toaWmhsrKyz6O5ubnfrx8sSYyEEEK4hY+2lFHX1k1iuB8XTO3fWpOLpycSFWShrLGDD3PKhzlC1/HTn/6UhoYGFi5cSHx8PAD33nsvU6dOZeHChcyfP5/Y2FiWLFnSr+tddNFFrFy5kuLiYubNm0dqairXXXcdd911V58t/EeyaNEiUlNTBzRqdN999xEXF9fnceedd/b79YOlqEdbTeXCVq9ezd/+9jc2btxIRUUF77///lH/A69atYpTTjnlkOMVFRX9rpPQ3NxMSEgITU1NBAcHDzZ0IYQQA6SqKmc/8R07K5r57VljjzmNdqCnVuXy8Od7yE4M5YOfn9iv13R2dlJQUEBqaiq+vr6DDdtjdXZ2snjxYkpKSvjmm2+IiorSO6Sj/jcbyPu3244YtbW1MXnyZJ588skBvW7Pnj1UVFQ4HwNZCCaEEEIfG4sa2FnRjMVk4OLpo479ggNcMj0RH6NCTkkjO8uHfyrGG/j6+vLhhx+ydOlSVq9erXc4Q8o9ltgfxplnnsmZZ5454NdFR0cTGho69AEJIYQYNu9sKAXgvMnxAy7YGBlo4YzxsXy6tYI31hfzwJIJwxGi1/H19eWuu+7SO4wh57YjRoOVnZ1NXFwcp59+urOq55F0dXXR3Nzc5yGEEGJkdVltfLa9AoALpw1stKjX5TOSAPgwp4xuq3cswhaD4zWJUVxcHM888wzvvfce7733HomJicyfP59NmzYd8TUPPfQQISEhzkdiYuIIRiyEEAJg5e4aWjqtxAb7MjNlYEUCe81OjyAqyEJzp5XvcmuGOELhSbwmMcrMzOTGG29k2rRpzqqgc+bM4dFHHz3ia+6++26ampqcj5IS76mDIYQQruKjLdoW7/Oy4zEYjt1M9XCMBoWzJ8YB8PGWiiGLTXger0mMDmfmzJnk5uYe8XmLxUJwcHCfhxBCiJHT3NnDV7uqAVicHX9c1zp3spYYLd9ZRWeP7bhjE57JqxOjnJwc4uLi9A5DCCHEEXyzp4Zuq520qADGxR3fH6dTEsOID/GltcvKmrzaIYpQeBq33ZXW2traZ7SnoKCAnJwcwsPDSUpK4u6776asrIx///vfADz22GOkpqYyfvx4Ojs7eeGFF/j666/58ssv9foWhBBCHMN3+7QE5tTMaBRlcNNovQwGhVPHRvPqD8Ws2FXNqVnH11hWeCa3TYw2bNjQp2DjbbfdBsDVV1/NsmXLqKiooLi42Pl8d3c3t99+O2VlZfj7+zNp0iS++uqrwxZ9FEIIoT9VVfl2n7ZQet6YoSkgeFpWDK/+UMzK3dWoqnrcyZbwPG47lTZ//nxUVT3ksWzZMgCWLVvGqlWrnOffeeed5Obm0tHRQV1dHStXrpSkSAghXFh+bRvlTZ2YjYZB70Y72Oz0CHx9DJQ3dbKnqmVIrulqrrnmGhRFOeSxaNGiEbn/H/7wB7Kzs0fkXsPBbUeMhBBCeLZv92qjRTNSw/AzH71hbH/5+hiZkx7J17ur+Xp3NVmxnrmpZtGiRbz88st9jlksFp2icS9uO2IkhBDCs32Xq60vmjf6MNNobXWw4SX44rfw7T+game/r3tKltYK6mvHbjdPZLFYiI2N7fMICwtj1apVmM1mvv32W+e5Dz/8MNHR0VRVVQHw+eefM3fuXEJDQ4mIiOCcc84hLy+vz/VLS0u5/PLLCQ8PJyAggOnTp7Nu3TqWLVvGH//4R7Zs2eIcqeqdyXEXMmIkhBDC5fTY7KzNqwNgbkZk3yc3vqIlRN0HTIWtuB+yr4Sz/gZm/6Ne+9SsaH4HbCpuoLmzh2Bfn/4H1t125OcUI/j49vNcA/j4Hftcc0D/Y+uH+fPnc8stt3DVVVexZcsW8vPz+d3vfsc777xDTIy2GL2trY3bbruNSZMm0drayn333cf5559PTk4OBoOB1tZWTj75ZBISEvjoo4+IjY1l06ZN2O12Lr30UrZv387nn3/OV199BUBISMiQfg/DTRIjIYQQLmd7WRNt3TbC/H0O3abf0aAlRTETIG0+1OXB3s8h51Wo3QtXf9w3QTlIQqgfqZEBFNS2sT6/ngXjBrA77cGj1FIafQZc8c7+r/+WAT3thz83eS5c++n+rx+bCO11h573h6b+x3aATz75hMDAwD7H7rnnHu655x7+9Kc/sXz5cm644Qa2b9/O1VdfzXnnnec878ILL+zzupdeeomoqCh27tzJhAkTeP3116mpqeHHH38kPFxb+5WRkeE8PzAwEJPJRGxs7KBi15skRkIIIVzO+oJ6AGakhB9a7frEX0FUJoxeCAbHipCCb+GtKyD1JDAdey3NCWkRFNS2sTa/bmCJkZs45ZRTePrpp/sc601izGYzr732GpMmTSI5OfmQDhD79u3jvvvuY926ddTW1mK3a73liouLmTBhAjk5OUyZMsV5PU8jiZEQQgiX05sYzUx1vPm2VoNfOBhNoCiQeWbfF6TOg/+3DoL7V7R3dnoEb6wvdk7X9ds95Ud+TjlogfgdR+6sgHLQEt9btg0sjmMICAjoM4pzsDVr1gBQX19PfX09AQH7p+zOPfdckpOTef7554mPj8dutzNhwgS6u7sB8PPzO+w1PYUsvhZCCOFSbHaV9YVaYjQrNQLsdnjjcnh5ETQUHfmFByZFdjt0Nh/x1BPStIRrZ0UzDW3d/Q/OHHDkx8HTd0c9169/5w6DvLw8br31Vp5//nlmzZrF1Vdf7RwVqqurY8+ePdx7772cdtppjB07loaGhj6vnzRpEjk5OdTX1x/2+mazGZvNfVuuSGIkhBDCpeypbKGl00qA2cjYuCDY8V8o2wDVu8HQj4mO6l3w4gL48OdHPCU6yJeMaG0NzrqCAY4auYGuri4qKyv7PGpra7HZbFx55ZUsXLiQa6+9lpdffpmtW7fyj3/8A4CwsDAiIiJ47rnnyM3N5euvv3YWUO51+eWXExsby5IlS/j+++/Jz8/nvffeY+3atQCkpKQ4u1HU1tbS1dU14t//8ZDESAghhEtZ70hUpqWEY1J7YMUftSfm/gpCEo59AdUO5Zth10dQseWIp81JjwAY+HSaG/j888+Ji4vr85g7dy5//vOfKSoq4tlnnwUgLi6O5557jnvvvZctW7ZgMBh488032bhxIxMmTODWW2/lb3/7W59rm81mvvzyS6KjoznrrLOYOHEif/nLXzAatanECy+8kEWLFnHKKacQFRXFG2+8MeLf//FQVFVV9Q7CXTQ3NxMSEkJTUxPBwZ5ZFEwIIfT2/17byGfbKrljYSY/D/4OPv4VBMXBLzYdcyu+03vXwbZ3IPNsuPz1w57yv20V3PTaJjJjgvji1pP6PNfZ2UlBQQGpqan4+h55h5twHUf7bzaQ928ZMRJCCOEyVFXdv/A6JRTW/Et7Ys4v+p8UAZx0J6DAnk+hasdhT5mWEgbA3uoWmjt7jiNq4UkkMRJCCOEy8mvbqG3txmwykN3xA9TtA0sITF06sAtFjYFxjto8658/7CnRQb4khfujqpBT3Hh8gQuPIYmREEIIl7GxUNsBlT0qFJ+d72sHp18DlqCBX2zmDdrHrW9D5+ELJU5L1kaNNhY1HPZ54X0kMRJCCOEyNpdoCcqU5FC44Dn4yTv7E5yBSj4RosZCT5uWHB3GVEditKlYEiOhkQKPQgghXMZmx5TWlMQwMBhhzBmDv5iiwBkPgLVTa9dxGNOStMQop7gRm13FeFCVbdmf5D6G6r+VJEZCCCFcQmuXlb1VLYDKlMQhajw6+vSjPp0ZG0SA2UhLl5V91S1kxWo7lnx8tMay7e3tHl/p2VP0VubuLRswWJIYCSGEcAlbSxuxq3BGUBExL06HKVfAKfcM6z2NBoXspFC+z61jY1GDMzEyGo2EhoZSXV0NgL+/P4qiHO1SQkd2u52amhr8/f0xmY4vtZHESAghhEvIKWkE4LKATdBYCvUFQ3PhzmZY+yQUfQ9Xf6xNsR1gWlIY3+fWsamokStmJTuP93aH702OhGszGAwkJSUddwIriZEQQgiXsLm4EQU7MztWawfGnz80FzaaYc0/tUXY5ZshYWqfpyeNCgVge1nfnWuKohAXF0d0dDQ9PVLnyNWZzWYMhuPfUyaJkRBCCN2pqkpOSSNTlFwCu6rBHATppw7NxX18YfQC2Pkh7P70kMRo4ihtPdO+6hbau634m/u+NRqNxuNetyLch2zXF0IIobuyxg5qWro41/SDdiDzzEO71R+PrHO0j7s/PeSpmGBfYoIt2FXYVdE8dPcUbkkSIyGEELrTtumrnOWzWTswbvHQ3mD0GWAwQc0uqMs75OmJCdqo0dbSwxeCFN5DEiMhhBC6yylpJF0pJ8Zepa0JSj9laG/gFwop87TPd39yyNMTE0IB2CaJkdeTxEgIIYTuNhc30I2J3NQrYNKlYA4Y+ptkna193PO/Q56a5FhntLVMEiNvJ4uvhRBC6Krbamd7eTPdagyGsx6GqMDhudHo08E/EsJSQVX7bNuf4JhKy6tppbXLSqBF3h69lfyXF0IIoau9VS10W+0E+5pIjRyGkaJeYSnw631wmC3dUUEW4kJ8qWjqZGd5MzNTw4cvDuHSZCpNCCGErraVNTFGKeGiyCIUu3V4b3aUOjf7F2A3Dm8MwqVJYiSEEEJX28qauNr4JffV3gFf/WH4b6iqUL37kMO9idE2WWfk1SQxEkIIoavtZU2cYNipfZF84vDezNYDj02Ep2ZBfX6fp3oLPcrONO8miZEQQgjddFvt1FcUkW6oQFUMkDxneG9o9IHQJO3zvK/7PDUuXmsgW1DXRke3bXjjEC5LEiMhhBC62VvVwlR1h/ZF7CSt3tBwS3PUSCr4ts/h6CBfIgPNqCrsqWoZ/jiES5LESAjhMlRVRVVVvcMQI2hbWROzHdNoSsrckblpimO6ruh7bb3RAbJitVEjaQ3ivWS7vhBCVza7yjsbSnjzxxJ2lDcRrjaSGBvNeTMyuHxmEj5G+fvNk20ra+KG3vVFqSeNzE0TpoHJF9pqoHYfRI1xPjU2LojvcmvZLYmR15LfOEII3ZQ2tHPps2u567/byClppMem8jfjU7xddxFj/ncZ9z36JMV17XqHKYZRZXEuKYYqVAyQNHtkbmqywKgZ2udF3/V5amxc74iRTKV5K0mMhBC6KK5r57Knv2N86ZuEWBR+e9ZYvrljPtNHx2NQVE4w7OKh1nv54V/XUlgtu4Q8UbfVzppqM+d1PUD9gkfAN3jkbt67yLtoTZ/DzsSoslmmdb2UTKUJIUZcQ1s3Vz7/Pbd1PM4FPt9x6+xYQk86S3ty6dvQWEzbqsfwy3mJS9TPWf7slQTe8jaRQX76Bi6G1N6qFjptUOSXRfiJp4/szccsAmsnZPS9b3pUID5GhZZOK6UNHSSG+49sXEJ3MmIkhBhRdrvKLW/lsLT1RS4wfodqMBGakNX3pNAkApY8Qst5L2LFyOm21fz4/C/lL3gP01tIcUJCMMoBfctGRMJUOP1+SJ3X57DZZCDd0attd6VMp3kjSYyEECPqlbWF+OV+ynUmrcO5csFzMOGCw54bMvVCqk99BICpTV/y3prtIxanGH75RYX82fQil5nXHPvkETQuTnameTOZShNCjJjyxg5e+mI9H/s8rx2Y80uYcOFRXxN/0jWsqmjk1s0x2JaXc1p2JmEB5hGIVgw3tXgdV5hW0FJbDNw28gF0NkPJerD3QOaZzsNZcUGwWRIjbyUjRkKIEfPnT3dxm/oKoUobauwkOO2+fr1u3sW/IjZuFM2dVh77au8wRylGQrfVTnTjFgCU3h1iIy1/Fbx2IXz95z6Hexdgy1Sad5LESAgxIraUNLJ7+wbON36PqhhQzn1ca8/QD0aDwu/OHguoVK9/l9J9W4Y3WDHs9la1MFnZB0BAxght0z9Yb0JWvQO69idBvYlRYV0bbV1WPSITOpLESAgxIh7+Yjd5agKPpD6HcubD2uLXAZiTEcnj0Z/xtM+jNHz8u2GKUoyUHSW1TFbyAFASZ+kTRHAchCSCaofyzc7DkYEWZ2uQ3OpWfWITupHESAgx7DYWNfB9bh0+RoWLzz0XZl4/qOtknLoUgPFNq6nOyxnCCMVIq8vbiK/SQ4cxGCJG6xfIqOnax5L1fQ6Pjg4CtJEt4V3cNjFavXo15557LvHx8SiKwgcffHDM16xatYqpU6disVjIyMhg2bJlwx6nEAKe/yaPMJpZkp1wXHVhxmefwDrfEzEoKlWfPjiEEYqR5lO+AYDmyMlg0PGtaNRM7WPphj6HR8doW/ZlxMj7uG1i1NbWxuTJk3nyySf7dX5BQQFnn302p5xyCjk5Odxyyy1cd911fPHFF8McqRDerbC2jbrd3/CD5Rfco7x03NdT5v0agLH1y+msKznu64mR12OzY24pAsCccoK+wfSuMypd36eh7OgYGTHyVm67Xf/MM8/kzDPPPPaJDs888wypqan84x//AGDs2LF89913PProoyxcuPCwr+nq6qKrq8v5dXOzbN0UYqBe/K6A642fYlF6sFiO/3rTZp/C5q/GMUXdyb7P/8XYK/56/BcVIyq3upXfdy/lJcuFrJx7ir7BxE0Coxna66ChAMLTABgTrY0Y7ZMRI6/jtiNGA7V27VoWLFjQ59jChQtZu3btEV/z0EMPERIS4nwkJiYOd5hCeJTWLisbN61ngWETKgrMvvm4r2k0KFSN1dYaxea9Bdbu476mGFnbHRWvY+MTMQRF6RuMyQIXvQw3rYXQZOfh3hGj0oYO2ZnmZbwmMaqsrCQmJqbPsZiYGJqbm+no6Djsa+6++26ampqcj5ISGbYXYiA+yinnQvuXGBQVxiyEyKFZZDvtjKuoVMOosfqzb69Uw3Y3vYnRxIQQnSNxGHsOxIwDg9F5KDzATGSgVkg0r0ZGjbyJ1yRGg2GxWAgODu7zEEL033vrc7nA+C0Ayozrhuy6UaGBPJb2Amd0P8zbBb5Ddl0xMlL3LePfPg9xhvKD3qEcVYZjOm1vlSRG3sRrEqPY2Fiqqqr6HKuqqiI4OBg/P+nYLcRQ21HeRHzFCsKUVmxB8ZB+6pBe/9TpEwCFj7aUY7NLc1l3YbOrJLds5CTjNlItLrKw2doFPzwDH/wcbPunzcY4ptP2yQJsr+I1idHs2bNZsWJFn2PLly9n9mydKq4K4eHe/rGEi43fAGCcelWfaYqhcHJmFMG+Jpqbm9iS8+OQXlsMn/yaVsaTD0D4aJ0KOx7M4ANf/wlyXoWa3c7DveuMZAG2d3HbxKi1tZWcnBxycnIAbTt+Tk4OxcXFgLY+aOnSpc7zf/azn5Gfn8+dd97J7t27eeqpp3j77be59dZb9QhfCI9mtdn5ZGsFt/fcRN7kX8OUK4f8HhaTkV+mlvGj5f8Rvfz4F3WLkZGbt49opREbBoxxk/QOR2MwQNxk7fOKHOfh0c6pNBkx8iZumxht2LCBKVOmMGXKFABuu+02pkyZwn33aU0pKyoqnEkSQGpqKp9++inLly9n8uTJ/OMf/+CFF1444lZ9IcTgfZ9XR11bN7aAaJLO+y2EJg3LfSZPn4eFHkZ17KG7as+w3EMMraY8bXSv1jcFzIMv9jnk4rO1j+U5zkNjDtiZ1t4tO9O8hdvWMZo/fz6qeuR1BYeraj1//nw2b9586MlCiCH1UU45AGdPjMPHOHx/f00bm8E6w0RmqzmUrnmbtPOlh5qrM1ZpDYA7IifqHMlB4rU/sg/smRYeYCYiwExdWze51a1MGhWqT2xiRLntiJEQwjV19tjI27Gef/s8xDXBw7v2x2BQqEo4HQDz3k+H9V7i+NntKjEtOwHwS5muczQHicvWPlZt77MAu7c1iOxM8x6SGAkhhtTK3dUssH3LScZtpFV9Oez3i5p+AXZVYVTHLuwNxcd+gdBNYV0bjXZfmlV/IkbP1DucvsLTwBwE1s4+C7CdO9OqZZ2Rt5DESAgxpD7fXsG5Bq2ivDLxomG/3/QJmWwiC4Dyde8N+/3E4G0vb+aXPb/g6uh3MCW6WGLkXICtQF2u83DvAux9MmLkNSQxEkIMmR6bnbI9P5JsqMZm9IUx/e9nOFgWk5HCaK1Gkrrjw2G/nxi83orXExJCtUTE1Sx5Cu4ugfFLnIcyorURo1zZsu813HbxtRDC9azLr2eu9QcwgSHjtBHbdRQ09UL+/EkD+fY5vDgidxSDsau0DoAJCS7aRSAs+ZBD6dEBAJQ2tNNltWExDW09LuF6XDBlF0K4q+U7KzndsBEAZew5I3bfE7In8ZJ6LivqwilrPHzvQ6EvVVW5vvxeVpt/xQl299kdHBVoIchiwq5CUV273uGIESCJkRBiSKiqytYd2xhvKEJVDDBm0YjdO8TPh+zEUABW760ZsfuK/iup7yBTLSDJUEN8dLTe4RzZl7+DlxZBXR4AiqKQFqWNGuXJdJpXkMRICDEktpc109VSzzp1HPbkeeAfPqL3PyU9mAsNq0n87jdgt4/ovcWx7SssIEZpBMAnfoK+wRxN4XdQvBYqtzoPpUVpC7Dza9v0ikqMIEmMhBBDYvnOSnaqKbyc8S+MS98f8fvPHR3J/T4vM7f5M6zlW4/9AjGiGvI3AVBrTgBLkM7RHEWsI2mr3O48lBbpGDGqkREjbyCJkRBiSKzYXQ3AgnExQ94wtj8mJsewXtGqKVdt+mjE7y+Ozl6hJRqtIVk6R3IMMY6K3FX7E6N0x5b9/BoZMfIGkhgJIY5bTUsXTRV5hNPMyWOidInBaFCoip4HgJq7QpcYxJEFNWlFEw3xLtI49kgON2IUtX/E6GitqIRnkMRICHHcvsut4TbTO2zwvYmoHS/pFkfwuAUAxDRvh27ZQeQqWjp7SO4pACA8barO0RxDzHjtY3MptNcDkBIRgKJAS6eV2tZuHYMTI0ESIyHEcft2TzXzDFsxoO5/Y9HBxIlTKFfD8cFKR/4a3eIQfe2ubGGDfQw7lQwCk6foHc7R+YZAaJL2edUO7ZCPkYRQPwDyZZ2Rx5PESAhxXOx2laq9PxKlNGMz+UPiCbrFkhgRwBaTNlVTs3W5bnGIvnZXNHOf9Vr+nvwMhCbqHc6xxUyEwFjobHIeSpedaV5DKl8LIY7LzopmJndtBB9QUk8Ck1nXeJpiZ0PZKpqri3SNQ+y3s0JrwJoV68K70Q508ctgsvQ5lBYVwDd7a2TEyAtIYiSEOC7f7K3hZOMWAAyjF+gcDVgmnc+UvGRSDEmMfNEAcTiVpYWYsTE2zkVbgRzsoKQI9tcyypOdaR5PptKEEMflx92FTFX2aV9k6J8YzRiTSAPBbC1torXLqnc4Xs9uV7m+7q/stFzL9PbVeoczcI5daOmOWkYyYuT5JDESQgxaa5cV39Lv8VFs9ISkQniq3iExKsyfxHA/bHaVDQW1eofj9Yrq2hhDESbFTtSo0XqH039vXw1/HwM1WpmB3hGjkoYOuq1SWd2TSWIkhBi0tXl1rLeN4S/mX+Az/w69w3FaHNfMW+b7Gf3xBXqH4vXyC/KIVJqxYcAUO07vcPqvpQJaq5z1jGKCLQSYjdjsKsX1Mp3mySQxEkIM2ve5tdQTTOu4S2HKFXqH45SVlswsw27i2nZCR6Pe4Xi1pgJHKxBLIvj46RzNAMQ4Cj1WbQN6m8lqo0a51ZIYeTJJjIQQg/ZDfh0As9MidY6krynjsyiwx2BApbPgB73D8Wp2x4hLW+hYnSMZoBjH6Fb1Lueh3grY+bWyzsiTSWIkhBiUutYuIqvX8FPjp8wJrdc7nD4SQv3YadLe2Gp2fqNzNN4tsElbmG+K06/w56BEORK56t3OQ2mR0jPNG0hiJIQYlHUF9VxoXM3vfF4jLNf1NsY3Rk0DwFAiI0Z6ae2yMsqq1ZOKSHXxHmkHi3YkRk3F0KXVYUqPlp1p3kASIyHEoKzNrWW2Yaf2Rco8fYM5DL+0OQBENu8Aq/S30sO+qhbet83lf8pJBCS7eI+0g/mHQ2CM9nnNHmD/iJHUMvJskhgJIQalJHcrsUoDNoMZEmfqHc4hMsZNpV4NxKJ2YS/fonc4XmlvVQsv2s7itYR79/cfcydJsyFpDthtAKRE+gPQ1NFDY7sk255KKl8LIQasuqWThMYN4AP2hBkYXXC30dj4ED5RpxFobyGzqRM3fFt2e3urtCmnMTFu0grkYJe80udLf7OJmGALVc1dFNS2MSVJ3/Y3YnjIiJEQYsB+yK93TqP5pJ+sczSH52M08Naou7m+59es6UjWOxyv1Fy6i1Slgsxo10ucByslQltnVFgn02meShIjIcSArc2t5YTe9UWpJ+kbzFFMSw4DYENRg86ReKcF1S+x0nI7c2ve1DuU49Pd7vzUmRjVth/pbOHmJDESQgxYQe5OgmjHZvSDhGl6h3NEWmKkUlKwFzqb9Q7HqzS195Dk2JEWluJmO9J6Wbvg8cnwYDx0aMl1SqSMGHk6SYyEEANS2dTJDw1BZHe/QMdVn4LJdddZTE0K43mff/BW+3W0bP1I73C8yr7KetKUCgD8EyboHM0gmSxgswKqs55RqmMBdmGtJEaeShIjIcSA/FioFXNMj48kMMV1R4sAQv3NNPkmANC4T+oZjaSKgp1YFCudii+EJOodzuBFZ2kfa7QK2MnONUYyleapJDESQgzIBkdiND05XOdI+qc9egoApopNOkfiXTpKtVYgdf5pYHDjt5rovhWwkyP2b9lvaJMt+57Ijf+1CiH0UJ63nU/M93BV60t6h9IvgWmzAIhs3autGREjwlCrFUXsDs/UOZLj5GwNom026N2yD7LOyFNJYiSE6Lfmzh7C6zYwwVBIYtsOvcPpl7TR46lTg/ChB9XR0FQMv9BWrUeaJW6czpEcp94Ro5r9PdNky75nk8RICNFvm4oamGHQRgLMjpYbrm5sfDDb1HQAGvet1Tka71DX2sUrXfN5zHoBYRMW6B3O8YlyjHi11UBbLQCpjp1pBbJl3yNJYiSE6LcNhQ1MV7TEiCT3SIwsJiPlgVpn97aCdTpH4x32VrXyrX0S/w1eil+Sm/VIO5g5ALLOgewrnVOxvQuwi2TEyCNJSxAhRL/ty9tHiqEKFQUlcYbe4fRbc8I8XtxVT4BlPpfpHYwX2FetdaMfExOocyRD5LLX+nwpW/Y9m4wYCSH6pdtqx7fiR+3zyHHgG6JzRP0XkTmXB6xX8d9WN1/v4ibqC7cx37CZqWGdeocyLPYXeZSpNE8kiZEQol+2lzeRrWq1XMyp7jGN1mtyYigA28uasNlVfYPxAomln7DM/DfOqnvl2Ce7C2s3NGiVvJPDtcRItux7JkmMhBD98mNBPS34UW+MRkl2r8QoPSqQKHMPE3u2U7r1G73D8WiqqhLWlgeAJWG8ztEMkaqd8OdYeP5UAPzMRmKDfQEokHVGHkcSIyFEv/xY2MAj1kt47+QvYNwSvcMZEKNB4eeha3nL8gA+ax7ROxyPVtPaRaq9GICIlMk6RzNEwpJBtUF7LbRrBU57Cz3KAmzPI4mREOKY7HaVjUWOitcpYW5ZydjgaHYbXL8VVJlOGy4F5XUkKdUAmOPdtEfawcwB+9ua1Gi7MmXLvudyv99uB3nyySdJSUnB19eXWbNmsX79+iOeu2zZMhRF6fPw9fUdwWiFcE/5ta2o7fX4+cD4ePdZdH2gqDEzsKoGAq0N0FKpdzgeq7Z4J0ZFpdUQBAFReoczdCLHaB8dFb2dC7BlZ5rHcevE6K233uK2227j97//PZs2bWLy5MksXLiQ6urqI74mODiYiooK56OoqGgEIxbCPf1Y2MAz5sdYb7oRc+HXeoczKBOSY8hVtYayPaXSN224dJRrC/Qb/FNAUfQNZij1Fnqs1Sp6p8hUmsdy68TokUce4frrr+faa69l3LhxPPPMM/j7+/PSS0fu4aQoCrGxsc5HTEzMEc/t6uqiubm5z0MIb7Qpv5JsJZcgtQVCkvQOZ1BGhfmx15AGQH3ujzpH47kM9Vri0BOarnMkQyxytPaxpu+IUUFtG6pMzQ6NXZ9AxVaw9egahtsmRt3d3WzcuJEFC/aXmzcYDCxYsIC1a49c9r+1tZXk5GQSExNZvHgxO3Ycud/TQw89REhIiPORmJg4pN+DEO6irXAjvkoP3Zaw/W8QbkZRFBpDtL5X1rLNOkfjud7qPIFbuv8fXeM9rJRmZO+IkZYY9W7Zb+600tiu7xu5R7B2wzvXwLPzoKVC11DcNjGqra3FZrMdMuITExNDZeXh1w9kZmby0ksv8eGHH/Lqq69it9uZM2cOpaWlhz3/7rvvpqmpyfkoKSkZ8u9DCFdX39ZNXMs2AJTEWe49PRKn7ZIKrN+pcyCeqbPHxvrmUD6wzyV64ql6hzO0osfCxEtg2jWgqrJlf6jV7AZ7j1Y4NkTfQQivagkye/ZsZs+e7fx6zpw5jB07lmeffZYHHnjgkPMtFgsWi2UkQxTC5WwubmCKIRcAn+RZOkdzfMIzpnPvtmuxhk/iL6rq3kmeC9KmlSDU34fwALPe4Qwt/3C48Pk+h1Ii/als7qSwto2pSWE6BeYhKrU/voidpPv/l247YhQZGYnRaKSqqqrP8aqqKmJjY/t1DR8fH6ZMmUJubu5whCiER9hc3MhUg7ZuhFHu0x/tcLKS4njVdjof1sRjk2UhQ664tISlxi84LzgXxQuSzpQI2Zk2ZJyJ0UR948CNEyOz2cy0adNYsWKF85jdbmfFihV9RoWOxmazsW3bNuLi4oYrTCHcXlHBXuKVeuwYIH6K3uEcl9TIQPx8jHT02CiQN7Mh1160ift9XuHn7U/rHcrwsFmhLs+5My3ZkRgV1Usto+NWtV37GKN/7Su3TYwAbrvtNp5//nleeeUVdu3axU033URbWxvXXnstAEuXLuXuu+92nn///ffz5Zdfkp+fz6ZNm7jyyispKiriuuuu0+tbEMKl2ewq2yra+Jd1MU1Zl4HFvbulGw0Kc6J7uMS4kpY1L+odjsexVe8FoD3Yw3ak9Vr/LPxzKnytLb3YX/1aEqPjoqpQuVX73AVGjNx6jdGll15KTU0N9913H5WVlWRnZ/P55587F2QXFxdjOKBCb0NDA9dffz2VlZWEhYUxbdo01qxZw7hx0nFbiMPZV91CYVcQT5t/wk2XLNQ7nCFxYmg9/1f3PA27EmDJr/QOx6P4Nmk90lQ33bl4TL1FHmu0BDApXEuMSmTE6Pg0lUBnExh8ICpL72jcOzECuPnmm7n55psP+9yqVav6fP3oo4/y6KOPjkBUQniGzcWNgNad3mjwjDUjIWlTIQ/CusqgowH8ZNHsUFBVlcjOIlAgMGGs3uEMj97EqC4XbFaSHCNGdW3dtHZZCbS4/VuqPvwj4Yr3oLkMTPov2nfrqTQhxPDaWljNfMNmZsd5RlIEkJmSRLFda1WhVmzVORrPUdncSQplAIQn679OZFiEJIKPv7atvKGQYF8fwvx9AKmAfVzM/jB6AUy7Wu9IAEmMxHCzdkH1Ltj7hVbVtKlM74jEADQX5bDM/Ddu3HqJxzReHR0TyE5SAWgq2KhzNJ6jsKySWKUBAFPUGJ2jGSYGA0RkaJ/XOqbTHAuwi2WdkceQcT8x9KxdsP092PE+FKwGa+f+5654F0K0flW01UJXC4Sn6hOnOKqmjh6iGreAD5AwXffaIkPFYjJS6Z8FnevpKNxIqN4BeYi6Iq2LQKMxnFC/UH2DGU6RY7SFwrV7gLNIDvdnS0mj7Ew7Hj88DYExMPp0sATpHY0kRmKI7fwIPr0N2mqch3pMgbT7J2Aw+9Plm0Rk7xPrn4PVf9eGT0/9nVZATbiMLSWNzsKO5hT3Lux4MGv0RCgGS+02vUPxGDmdsbzU9QcumxTMJXoHM5x6m8k6FmDLzrTjZO2CL34Lqo2Om7eys9JKRlQgIY4pSj1IYiSGjKqqbO2IYGJbHdVE8GrPqSy3T2NPZyK0OkYbnsxlTEwliybEcVNjIX6qDTa8BHs+h/OfgbST9f0mhNOm4gYuUDyjsOPBAlOnQTGEdhRDV6vblyFwBbvrbGxSx3D56El6hzK80k4BuxWSTgBkZ9pxq8sF1QaWYLY2BXDp82sYFebHd7/Rr6WMJEbi+Fi7UUvWsaJjDI9+tZcd5c1MVe5jq5qGwWgmLSaAEwO1XQbljZ0U17ezt6qVvVX7eNZ0PveMP5mrah7BUJ8L/14MZ/4VZt2o8zclAPIKCkgy1KCioCRM1TucIZWRmsply++lMSCdzyUpGhJ5Na0ApEd7+M8zcYb2cNhf5FEWXw9K9S7tY1QW+Y5Rt/Qoff8NSWIkBq+tls5XL8NUsYknuv7ADjUdXx8DY7JP47ZJ8cxMDcds6ru+v6m9h6/3VPHvtUVsLm7k91tC+XfIA7ye/l9i8t6B/90JrVXa1JqHrGlxR3a7iqFsAwBdYaPx9Q3ROaKhNTYumHXqONQWqGvtIiJQeiIej7YuK0ta36bJGEBGgGeNLh5L71RaeWMnPTY7PkbZ0zQgvYlR9Fjyqh3JtSRGwh2p1btofflCgjrKaFb9iTa28rMT07nxpDTCjtI8MsTfh/OnjGJJdgLf7K3h3g+2k9fQwezmJbw7IZap+/4Ja/4Fky7dP5cvRlxBXRuZ1t1gAnPKCXqHM+QCLCaSw/0prGtnd2ULJ2ZIYnQ8CqqbucX0LhbFCgYvKJrZVKa9oUeNITokEYvJQJfVTllDBymRAXpH515qdmsfo8eSv1sbdUuL0vdnKKmtGLD2gnW0P7OAoI4yiuzR/CH6ce679RbuOjPrqEnRgRRFYX5mNF/cchIXTE3AripcsG02/0u+A/XKdyUp0tmmogbetJ3C08G3YMi+XO9whsWciHZ+Y3qD4G/u0zsUt1dRvAeLYqUbs1brx9N9eju8diHs/QJFUZzrjGRn2iAcMJXmnI7VecRIEiMxIJXbV6G+spgAeyub7KP5bv5b/P2mi50VYAcqwGLiHxdP5jeLtDLwN+2Zwl93R6N6SM0cd7W5pJFiNYbGrMsgeY7e4QyLrAgDN5k+ZnTZf8Fu1zsct9ZashOAOt9ErdaPp4t01DKq03Zt9k6nFUuRx4Hp6YCGAgC6IjKdC9jTZcRIuIvtOesJfvcSAuhgozIew9UfcMWpUzEcZ6sIRVG4aX46DyzRquU+800eT3+TB5Xb4aVF0FI5FOGLAehtBTIlKVTXOIZTTOpEulQffO0d0FiodzhuTXV0m+/w1OaxB4tw9IJzfN9J4Y4ijzJiNDBGC9y8AS57neLOQOwqBFlMRAXpO7UtiZHol5V7qrnkvRo+t80gxyebUTd/Qnb6qCG9x1UnJHPv2VqPpYc/303T2zdB8Vr47/XyF/0Iau2yElG1hqXGL5geWKd3OMNmbEI4e1Wt2KitXOoZHQ+/Zq15rOKpFa8P1tskt05LjKSW0SAZDBCRDllnO3ekpUUFoOi88UYSI3FMH+aUcf0rG2jvgU9S7yXz1s+IiRieYozXzUtj6exkQOGy2muxm/y06tkbXhyW+4lDbS1t5Hzjt9zv8wqRBR/pHc6wGRXmxz4lBYCmws36BuPGbHaVyK5iAIJGjdM5mhHSO2LUWAI9Hc6lBDJiNHgFtdo0ZKoLLF6XxEgc1Xs/7GPLuw9ht9s4b3I8zyydhZ//8P7D/d0545iTHsGu7hie9lmqHfzyd1CXN6z3FZrNxY1M8dDCjgcyGBQag7QRjq4yaSY7WOWNHaRSDkBYkpckRgGR4BsCqFCXR3L4/sRI1kcOwJp/at0P6gsoqOlNjPSvgyWJkTii/24sxvLpzdxn+g/vxf2Hxy7NPqQu0XDwMRp4/LIpRASY+XvDPPKDpoG1Q9sJIr90ht3egkLSDI51XQnT9A1mmNljtHVtfvW7dI7EfeXVtLKo66/cHvAQxuixeoczMhRl/6hR3T5GhfmjKNDebaOmtUvf2NzJ+ufh6wegqXT/iJHOC69BEiNxBB9tKafy/d9yjvEHrIqJ7PNuPu5F1gMRFWTh7xdPRsXAtbVXYDeYIX8l7P5kxGLwRqqqopZqHec7Q9I8vn9dUFI2AObuJm2HjBiwvJo2agmhI34W+PjqHc7ImfMLWPIMjJqJ2WQgPsQPgGJZZ9Q/3W3QWKR9Hj2WfEdilCZTacIV/W9bBd+/8yj/z6StLzGc90+U1JNGPI5TsqL5yawkitRYXjMu0Q5uf2/E4/AmJfUdZHRrW699kj2rcezhpCUnMqfzCRb4/Bt8/PQOxy311p5Jc4EpkBE1fglkXw4h2gJ+Zy0jSYz6p2aP9jEgimZjCLWOkTZXKJApiZHoY/nOKl5/8z/8yagtdlbn3YFhyk90i+c3i7KICrLw55Yz+Wz0/XDhS7rF4g02FTcwRdFqsxiTZuoczfDLjA2inEjKm7toau/ROxy3NKrofe42vcYM0z69Q9FVsizAHpjeitdRWRQ6RouigywEWvRvyCGJkXBauaeaR177mCdNj+Kj2LBPuAjl1N/qGlOInw9/OHc8nVj41c7R5NbKL53htLmonokGreAaozw/MQr29WFUmDZStLuyWedo3NP4ptXcaPqUDJuXbY6w9UDeSvjxRVBV2Zk2UNXayDTR41xqRxpIYiQcNhU3cON/NhKjVuFrsKEmzsKw+EmXaOR61sRYTs2Kpsem8tBnu7S56dwVeoflkTaXNjGn65+smbsMvGQh7Snh9Tzl8xjRX/xM71DcTlNHD6NspQCEJ0/QOZoRptrh1Qvg09ugtZpkR5HHIql+3T/VvT3SssivcY0eab0kMRLUtnbx/17dRLfVjnHMGSg//QLlstddZiGloijce/ZYTAaFrbv30v3IJHj9Umgo0js0j9LZY2NneTPt+JI0bSEYjHqHNCLSooI4y7iehOrVYLfpHY5bKaisJ1mpAsAvzjsSaSeTBUKTtM/r9slU2kA5imMSNVZGjIRrsdrs/PK1jVibq0iPCuDxy6fgM2qKVqfDhaRFBXLFrCRqCGWHdRTYe2DVX/QOy6NsK2vCaleJCrKQEOo9C5FjUsbRqfpgVjuhoVDvcNxKddFuTIqdDsUPguL0DmfkHdAapHcqrba1m9Yuq45BuYmfr4eb1kB89gGJkWss4JfEyMv97cs9zCl5hs8td7HsDKNLLHw7kl+eNpogi4nft12oHdj6phR9HEKbixt43OdfPOT/OooX9afLTAhjj6p1hLdVSGuQgWgr1+o/1fkmu8S0+4hztgbJJdjXhzB/H0C27PeLyQIx41FNvjJiJFzH59srqP/uJW42fUik0kSiY62Aq4oItHDTKelsVdNZa5imzfF//7jeYXmM3QWlLDauYUHTe2Bw3QR5qKVEBLCXZACapTXIwNTuBaAz1Euaxx4sIkP76GwmK9NpA1XT2kVrlxWDsv/npzdJjLxUXk0rb7/zOg+aHD3ITrpDq8nh4q6Zk0JEgJl/dJytHdjyBjRX6BuUB1BVFWvJjwB0BiZBYJTOEY0co0Gh3tEapFtagwyIb4vWI80YlalzJDo5qJlsUoQ24lFcLwuwj+qHp+GDn0PBt86F14nh/iPSWaE/XCMKMaLauqw8uOwDHuPv2rb88RfCKfpuy+8vf7OJG05KY4OaxRbDOLB1w9p/6R2W26to6iS1Q9s+a0r2/G36h4gaD4ClYY/OgbgPq83OL9uvZVbnv/A94Vq9w9FH7xqjhiKwdjt7pkmRx2PY+wXkvAoNBS43jQaSGHkdVVX509ur+X3LHwhW2umOn4lhyVNutT7gqtnJhAeYebTzHO1Ae52+AXmAzcWNTDFohR1NSZ5f8fpggUkT6VJ9aLL7a/VpxDGVNHTQY4NmnyhiYhP1DkcfQbGw+Em49jNQDFLLqL+qHb0JXXBHGkhi5HVe+r6QiXueIMlQQ2dQEuYr3nCZbfn95W82cf28NFbZJ3OV/9PYFz+td0hub3NRHdmOxIjEGfoGo4PUpCTGdr3M1T5/A6OP3uG4hbxqrRVIamTAiPZRdCmKAlOuhKQTwGiSEaP+6GiAVsfmjqjM/TWMJDESevghv44HP9vFn6xXkRt3Nr5Xv+9y2/L7a+nsZEL8zHxbH8JXu6r0DsftVRfuIFRpw2awQIyXFeoDxsQGYcdAUX07Hd1Sy6g/WvLX8YzPo1xn+p/eobiMZMcao7LGDnpsdp2jcVG9hR1DEsE3mILa3gTbNbbqwxAkRvX19djt8g/A1VU2dXLz65uw2VXOyE4j/YbXIDJD77AGLcBi4ieztOJqz3+bD43FUClbrQej22qnsbqYKjWUnpjJXjliEhloISLAjKpCblWL3uG4BbU8h0XGH8m2btE7FH01FMKGl2Dbu0QHWbCYDNjsKhWNnXpH5pp6W4FEZWG12Z3TjqkuUvUaBpkY7dy5k7/85S/MmTOHqKgooqOjWbp0Ke+99x5tbbIa39V0WW188dzdXN7xJlkxgTx0wSQUN1pTdCTXzEnBx6gQV/wp6uOT4bM79A7JLe2qaGZ1zzgWGp7DcvV7eoejm8WhBfzPfBeRH1+ldyhuwdyoTb2qvQuQvVXZRvjkVlj3LAaD4txyXiQ70w6vZn8rEG1kTcViMhAX7DpLOvqdGO3Zs4fbb7+d0aNHc8IJJ/Djjz/ys5/9jKqqKj777DOSk5O5//77iYyM5Mwzz+Tpp2XdhytQVZXPXn6Qq9te4nafd3llfht+Zs9o9RAT7Mt5kxNYax+LXVWgeC2U5+gdltvZVNwAwJSkMBTfYJ2j0U9sZBhjDcUENWzXOxS3EN6uteTxjc/SORKdRRy0ZV/WGR1dh/b7hqix5B+w8NqV1qn1OzFas2YNbW1tPPHEE9TW1vLee++xdOlSIiMjmTlzJg888ABbtmxh165dLFq0iP/+97/DGbfop5VvP8H5ZX8HoGjsjcRMOUvniIbWdfNSqSGMT2yOnVTrntU3IDeUU1QPqExJCtM7FF2FJE3ErioE9tRDW63e4bi0+rZuklStIGxk8kSdo9FZhKO4ZUcDtNXJzrRjufAFuKccxp9PQY3r7UiDASRG1157Lc888wxnnnkmZrP5iOelpKTwq1/9iuXLlw9JgGLwNv7vZU7e+XsAdiReTvIlf9U5oqE3Ni6YeaMjedm6SDuw/V1or9c3KHdT9C0/Wm7i4spH9I5EVxmjoilWo7UvetdBiMMqrKghHq1MhiXWy0eMzAEQPEr7vG7fATvTZCrtiMwBYPZ3ya36MES70jZt2jQUlxFDKPerl5j8w20YFZXNEecw/lr3qlU0EP83N5UcNZ2dpGoFH7e8qXdIbqOmpYuE1h1EKc1Emrz7L9zRMUHsVbU3uI5SWch/NDVFOzEoKi2GYAiI0Dsc/UXubw3SuzNNptKOzaMTo5kzZ3Lbbbf1OfbZZ58NxaXFIGzbvoWUb2/HpNhZG3g6k256BQyeW5nh5NFRJIb783rPfO3AxmWgqnqG5DZyShqZatDWRvgkn6BzNPoK9vWhzJwKQGuJtAY5msaqYjpVHxr8kvUOxTUcsM6odyqtpL4dVX4P9ZXzOrx0Jvz4ArA/MUpzoR1pMESJ0cSJEwkODubaa/eXhb/33nuH4tJigHJKGvnJO5XcZ72WLwPOZcov38Bo8uyGoAaDwpWzkvnQdiKdWFCbSrUttOKYNhfVOyteM8r7CjserCPM0fNLptKOannPJMZ2vczaWU/pHYpr6O2ZVpvLqDA/FAXaum3UtXXrG5erKd0AxWugqZTOHhtljR2Aa9UwgiFKjBRF4Q9/+AOTJ0/moosuoqenRzLlkdbTwdpNOfzk+R9o6bKSm3Qx8371Cr5m76hJc/H0RLpMgVzddSfbLlsP4al6h+QWygp2EaG0YDOYIXaS3uHozhQ3gVx7PCWGJL1DcWl5NW2oGEhMiNc7FNeQdTZc8ymc+xgWk9G59Vym0w5yQCuQQscarBA/H8L8Xet9akgSo+BgbYvvLbfcwrnnnst5551HR0fHUFxa9EdjCfX/Oo3oDy/H1N3M3IxIXrpmhsdsy++P8AAz50yMY506llc2Su+0/rDZVXwrNwLQHTURTEfeVOEtIlImsaD77zzse7Peobisbuv+onzpUa71l75uQkZBylwI1Bbv79+ZJguwnVQVahyJUfTYPjvSXK2u3pAkRqtWrXJ+fvXVV3PDDTdQXV09FJcWx9C95R06njiB8KYdhNPM0iw7L10zg0CLZ0+fHc6Vs7X1Dh9vLaehtUt2px3DnsoWxtm1bvKWVO9eX9QrMzYI0H42Mup9eMV1LbxnupdnLP8k2iR/AB9OcrgswD5Ea7VW0kAxQOQYZw0jV+qR1mtQ757Nzc28/PLLVFZWkpqaSnZ2NhMmTMDfX8uSzz//fM4///whDVQcpKmMhg/uJKzgEwA22zPYPONv3Hb2KS5VKGskTUkMZVxcMPbK7difmQtBfnDjar3DclmbSxrIV+PZYx5PZvIcvcNxCRnRgSgKNLZ3UVdfT2SE7Lg6WGlRHvMNefRQhGIJ0jsc17H7Myj5AcYtJikiBJBaRn30rtsLSwUfX5fdkQaDTIwuuOACtmzZwowZM/j444/Zs0f7qzM9PZ3Jkyfz1ltvDWmQoq/Wr/6Gz5p/EGbvwKYqvGS4kHFX/In/y4zTOzRdKYrC5TMTeeTDUoJb86HVClU7IWac3qG5pM3FjbxrW0jw9J+TOTZT73Bcgq+PkRuDf+Dmzufo+Ph0uOZVvUNyOc0lOwCoMycQa/S+kekj2vY27HgfAqJIjrgQgGIZMdrP2QpkLHDAVn0X25EGg5xKW7t2LZ999hmfffYZ27dvp7W1lbVr1/LrX/+a6OjooY7xqJ588klSUlLw9fVl1qxZrF+//qjnv/POO2RlZeHr68vEiRPdqqzAvqoW7v1gGytXf43F3sGP9jE8mv4C59/+FCd6eVLU67zJCbSZQvnalq0d2PK6rvG4ss3OViCh+gbiYgLDoglUOjHW7tY7FJdkq94LQFtQms6RuJjeLfu1+w7olyaJkZOqQlDcoYmRp4wYTZo0CdMBW8AtFgvTp09n+vTpQxZYf7z11lvcdtttPPPMM8yaNYvHHnuMhQsXsmfPnsMmaGvWrOHyyy/noYce4pxzzuH1119nyZIlbNq0iQkTJoxo7Mdk7aK1KIfqbcsx53/FX+xL+aQ2BoC1yvnsizqROYtv5NfpUToH6lpC/H1YND6W97bNY6FxA2x9G077A8hftn00tffQUVNEIP5kJ3p3K5CD+cZPgEoIbisAWw8YXWvHjN58m/K0TyK9vHnswXp/HnW5zjVGNS1dtHdb8TfL7x9m/z/tYbfR2N5NvaOUQUqEhyRGDz/8MPfddx/vvvsuFotlqGPqt0ceeYTrr7/eWT/pmWee4dNPP+Wll17irrvuOuT8xx9/nEWLFnHHHVoX9gceeIDly5fzr3/9i2eeeeaQ87u6uujq6nJ+3dzcPCzfR0FtGy9+vJJLqh7DbGsjxFZPtL2KQFR693xMt0bxhfFaTh4TxU/nnsAJaeEut5LfVVwyPZFrt0yhgSDCWqsgfxWMXqB3WC4lp7SR3/v8m9ONGzHs6YCpS/UOyWXEJo+hdaMvgXRCXa7zL1yhNaUO69SaxwbEy8+lj4j91a9D/H0I8fOhqaOH4vp2smK9tznzIQxGCmq199LYYF8CXHCj0KCm0lJSUmhubmbcuHHcc889fPTRR5SUlAx1bEfV3d3Nxo0bWbBg/xuewWBgwYIFrF279rCvWbt2bZ/zARYuXHjE8x966CFCQkKcj8TExKH7Bg7Q1mXl+72VTOr8kayencTZKzGi0qT6861xBu/H/ILIhXew4ben88LVM5idHiFJ0VHMSY8gOjSID62ztQMynXaI3sKOBlSIHKN3OC4lMzbY2RpErZJCjweqbe0mRS0DIDxlvM7RuJjexKitGjoaSY7o7Zkm02kHdyJw5Wk0GOSI0YUXXkhVVRUnn3wya9as4emnn6a5uZnw8HCmTJnCl19+OdRxHqK2thabzUZMTEyf4zExMezeffi1AZWVlYc9v7Ky8rDn33333X1anTQ3Nw9LcjQqzI/rz5rD+to/Y/ANxBAQSdCoLOLjk5nnK8P4A2UwKFw0bRTvfX0S15i+hN2fQmcT+IboHZrLKCnYQ7TSiF0xYYibrHc4LiUlMoD3SGIqubSUbCV44oV6h+Qy8ivrCFP9iVBaMEfLgv0+fIMhMAZaq6Aul6Rwf7aWNlEi64wgdwV8dDOMPgPOe8KlF17DIBOj7du3s3btWiZP3v8LtbCwkM2bN7N1q+f0GLJYLCMyVRjqb+Yn88YBsntqqFw0bRRPfJ3KS9ZFnHvuT4jycc3/AfVgt6sYyzcA0Bk5Hn8fP50jci0+RgMNAenQ8TVdZdv1Dsel5Nb38Nvuv7EgM4IX/EL1Dsf1RIx2JkbJEdmAjBgBWmHHlgrtD1Rw6RpGMMjEaMaMGbS19a3omZKSQkpKyojVL4qMjMRoNFJVVdXneFVVFbGxsYd9TWxs7IDOF+4rMdyfE9OjuD93Kc0No7lFFl875de2Mda6G0xgSZmldzguqSMqm68KpuDvNwnZ3rBfXrXjL/1oWTNzWOc8CmZ/CIonqbsUkJ1pAFQftFW/xrWn0ga1xuhXv/oVf/jDH2hsbBzicPrPbDYzbdo0VqxY4Txmt9tZsWIFs2fPPuxrZs+e3ed8gOXLlx/xfOHeLpyWAMCHOeVSxfgAm4obnI1jjUmSGB2OJfUEruu5g3d9FusdikvJr20FIE1agRxe1BitPYjBQJJjZ1pxnbQFcRZ3jMpCVVXPXGN00UUXATB69GjOP/98Zs2axZQpU5gwYQJm88j1W7rtttu4+uqrmT59OjNnzuSxxx6jra3NuUtt6dKlJCQk8NBDDwFaQnfyySfzj3/8g7PPPps333yTDRs28Nxzz41YzGLknDEuFj+f7ah1uVS9/yWxqeNgypV6h6W7LfmVLFEKtS9GzdA1Flc1Olp7499T1aJzJK7l0tIHuc1ciKXrPkAa7R5N7+Lr0oYOrDY7JuOQdOByP3Y71GhFoIkeS1VzFx09NowGhURHvSdXM6jEqKCggC1btpCTk8OWLVt48MEHKSwsxGQykZmZOWLrjC699FJqamq47777qKysJDs7m88//9y5wLq4uBiDYf8/xjlz5vD6669z7733cs899zB69Gg++OAD16thJIZEgMXEwvEx+G/7ktitL0L1REmMgJziOu63LuXGrC4SQ+XN7XC0nmkqDdWl2JrKMYZIF/nOHhtpPfvINJTSHCrr0g6rux2+/TvU5xN7/guYTQa6rXYqmjpdNgkYdk0l0NMGRjOEp5FfqK0zSgr3x8dFk8VBJUbJyckkJydz3nnnOY+1tLSQk5Mz4ouvb775Zm6++fCdsA9sbtvr4osv5uKLLx7mqISrWDIlgVtyZvJHn2X4VG7T/nKJ8t7dNA1t3eyotbGD07n9gtNByj4cVmKYP/eY3+YGw4c0rfgpIRc8ondIuiusaSJV0XbwBo2SGkaHZbLAmn+BrQvDab8nMcyPvJo2iuvbvTcxqt6lfYwYDUYfl59GgwGsMaqsrOxT7PBgQUFBzJs3j5///OcA5OfnH390QhynuRmRmAIjWG2bpB3Y9q6+AelsY5HWBiQ9KoCwgJGb9nY3BoNCV3AyAD2Vu3SOxjVUFO7FoljpwowSIiONh2UwQkS69rljyz54+c40ow8knwhJJwCuv/AaBpAYvfvuu4SHh3P++efz8ssvU1NTc8g569at45577mH8+PF9tvILoReT0cC5k+P5yOZYYL/93UOKjXmTDYX1XGpcyTkxDdrcvzgie5RWPsOvYY/OkbiGllJtAW2dbxIYXHMKxCX0tgap3Uuyo91FUb0XL8DOOA2u/QzO0UZdPWrE6Oabb2bLli3MmzePZcuWMWrUKObOncuDDz7I9ddfT1xcHEuWLKG6upq//OUvh02chNDD+VMSWG6fTodqhvp8KN+sd0i6qcjfxl99nucX+TeCvUfvcFxacOJEAAJ66qCtVudo9Gd3LKBtD5bmsUd1mGayxd48YnSQAhevYQQD3K6fkZHBbbfdxjfffEN5eTnXX389W7ZsITw8nPfee4/y8nJeeOEFzj33XHx9fYcrZiEGZGJCCLFREXxln6od8NLptC6rjYCqHwHoicnW1kOII0obFUOR3dGMulpag/g3a8sjFGkhc3S9P5/afdIWxG6H7v2jZVabnWJHXacUF06MBl31LiIigquvvpqrr756KOMRYsgpisL52Ql8tGIOp5i2E+illZ63lzWTrWp/9fumzdE5GteXGRPENjWRZKrpqdyBT+pJeoekG1VVKer0I1+NJWCU9Eg7qkhHz7S6/YlRSX07qqp6X4/LhgL45zRtw8v/+0ErXWBX8fMxEhvsuoMnMlEsvMKSKQl8bZ/C1M6nqJx+h97h6GJjUT3TDHsBUJKlqOmxxARbKDBqC7Bbi7fpHI2+Kps7+XPXpZxhfZSIWZfpHY5r651K62xiVIC2jq+ly0pDuxdOXdfsBlRtq76iOKfRkiP8MRhcN0mUxEh4hcRwf6amRNKtmvgwp0zvcHSxJy+fdEOF9oUUdjwmRVEoC5vFi9Yz2RMyV+9wdJXv2EmUFOG6tWdchm8w3LIN7inHNyDEOTJS5I0VsHu36jtagTh7pLlo89he8i9ceI3F2Y4WIZvLoORHsHbrHNHIUVUVStYD0BE6BvzDdY7IPViTTuQB61WsZqreoegqv7oJUEmXViD9E5qkbd1HSyYB59oar9KbGEVlAVDgaCnjyjvSQBIj4UXOnhiHyaDwQP1t8OICyF+ld0gjprCunczuHQCYU2Uarb+yYoMA2OvlrUGCd73FFsv13NAu7ZMGKtmbaxnV9DaP1UpfFNZqP4PUSNdOsCUxEl4jLMDMyWOi2GZP1Q5sf0/fgEbQhsJ6/mk9nwdC/4Rx5k/1DsdtjIkJIpg2zOXroKFI73B0Y2rII0RpJ8TPR+9Q3EPJj/DOtfDlvd67M81mhVptTSPRvSNGvTWMXLsKuCRGwquclx3Px45ij+ruT6GnQ+eIRsbGogZa8MeUuQDipPhqf42JCeIBn5d5quu3dG15R+9wdBParm3Vt8Rm6RyJm+hsgh3/hX3LSXIUeSzxtqm0+nywdYNPAIQk0dljo6xR+30rI0ZCuJDTx8Ww2yeLMjUCpbsF9i3XO6QRscHRCmR6sqwtGoiwADOlPtoIY1uJd+5Ma+2yMspaCkBE8kSdo3ETvdWv6/JICtVa73hd9WuDUWvaPf58MBgodCw+D/HzIczftUceJTESXsXfbOL0cXF8YtP69njDdFpdaxfjaz/nLtMbzDQX6h2O2+kK1wr2Gby0yGNhRR2JitbJIHDUOJ2jcRMhiWDyBXsPqUatanpVcxedPTadAxtBEemw+ElY8iQAhY5ptJTIAJev5ySJkfA6i6ck7J9O2/sFdHn2wtr1BfUsNq7hZ6aPCanZqHc4bscnbgIAga0FYPO+WjTVhTswKCqtSiAEROkdjnswGCBCK/QY3FZAkK9WS9krd6Y55LtBK5BekhgJrzM3I5Jyv0wK7DEo1g7Y96XeIQ2r9fm1zsKOJM3SNxg3FJM4mlbVF5PaA3V5eocz4trKHM1j/VLAxf/SdymO6TSlLtc7F2DX5vYpiVJQ4/rNY3tJYiS8jo/RwNmT4vmT9UqeTHocxi3RO6RhVbVvIyFKO1aTP8TKwuuBGhMXwj51lPaFF06nFbSaWGWbTFOUFAUdEGfPtL0kh2vJgNeMGFm74alZ8GActFQCONcYSWIkhItaMiWeFfZpPFUYS4dV72iGT2N7N7GNGwCwJc4G46DbI3qt0dGB7LYnAtBR5n0LsD9pH8s1Pb+h4cTf6h2Ke4kYDQYT9HTuL/LoLdWv63LBbgUffwiMAQ7cqu/6iZH8lhReaWpSGKPC/Cht6OCrXVWcOzle75CGxfqCek5QtFEOS/o8naNxTwEWEz8EzGdnazIXRZ6ON425WW125xtauou3cXA5486D8UvA6EPS+mIAirxlxKjmgIrXikJTRw+1rdq0WoobJEYyYiS8kqIoLM6OJ4Ea/FfcA/+9Ue+QhsW6/FpmGhzVZ1MkMRqstvgT+Y/tDLZ0e2YCfSQl9W3421rw8zESH+KndzjuxWQBo7Ytvbf6dbG3rDFy9kjT6l717kiLDrIQaHH98RhJjITXWpydgFGxc1rz+6jb3oHWGr1DGnL5eXvowaitL5LCjoM2JkZrDbKn0rN3MB6srHAvW3xvYLXPzzGg6h2O2+qdSitpaMdm94Kfo7NHmtY8tnd9kTuMFoEkRsKLjYkJwj8mgy32NBTVBrs+1DukIdXc2cM3Vb7M6Hqahmu/d/71KgYuMzaILKWY+IL/QmOx3uGMmOYSrb9ejylQ24IuBua7x+C5U4gv+Qwfo0KPTaWiyQuq7Tt7pGkjRvk17rNVHyQxEl5uyQE1jdj+X32DGWIbCuuxq5ASEUBUQpre4bi1zNgg7jX9h583P4Ka/43e4YyYnuo9ALQFyb+fQWkqgfJNGKq2kRjmmE7z9HVGPZ1aOxBwNo91p4XXIImR8HLnTo7nU0cVbLVoDTSV6RzR0FmXVweozEqN0DsUt5cWGcg+tJ1pbaXeszPNr9FRt6m3xYUYmN4t+3W5JHrLOiN7D5x6L0y5yi13pIEkRsLLJYT6kZg6mvX2TBRU2PmB3iENmYp9G/nR8v+4qfkxvUNxe2aTgYYArZJxd/l2naMZGaqqEt5ZCEBAwnh9g3FXvQll7d79RR49fcTIEgTzbofF/wJFQVVV5+JrSYyEcBOLs+MPmE7zjN5prV1WImt/JEppIpY6vcPxCDbHQlLf+j06RzIy6tq6SVa1EdSIlAk6R+OmIhyJUX0ByaHaGj+PHzE6SG1rNy1dVhRl/yJ0VyeJkfB6Z02I40t1FqVqJA2R08Hu/o0e1+XXMcNRv8h39Ek6R+MZAkdpyYF/dy20eX6yWVBSSpTSDIAlJlPnaNxUcIJW5NDeQ5ZvAwBF9R5e5LHkR611juP3aO802qgwPywmo56R9ZskRsLrhQWYmZg5mrldj/Oi/0/B4B7/8x7Nd/uqmWVwbJmV+kVDIjUhlmK7o4mqF7QGKa5p4hXr6azznw+WQL3DcU8Gg9ZlHkihHND6pamqB2/Z/+918M+pUPQ9wAHTaO7zb0gSIyGA87ITAIUPt5R5xC+t8j0bCVdasRr9IX6K3uF4hMzYIPao2gJse5XnJ0Y7mnz5vfVavhr/kN6huLeosRCWSqSv9mVLp5Wmjh59Yxou3e3QUKR97ph6zu9NjNxkGg0kMRICgAVjo/E3Gymvb2Xf2o+gsUTvkAatqrmTpMZ1AKjJc6R+0RBJCvfnZfVclnb/htKEM/UOZ9jl1bQCkB7lPn/pu6QLnoNf5WCZfAHRQRZAGzXySLV7ABX8IyFQG10tqNX+HbnLwmuQxEgIAPzNJhaOj+URn6cZ8+VS2Pyq3iEN2nf7apln0LaU+4w+TedoPIfRoNAcM4PV9snsajbrHc6w66zcSyDtpEdLYnRcFMX5qcfvTKvuLew41nnIuVXfjRJsSYyEcDgvO56VtmwA1O3vgZtOqX2fW8tG+xgqAzIh/RS9w/Eova1B9np4a5CObht/7byf7b7XkdnlPXWbhltSuDZqUlznoQuwe9feRWkVr+12lULH6FhqhIwYCeF25mZEssn3BDpVH5S6fVDpfm8IqqryXW4tj9suJP/8z/r85SaOX2ZMEGca1jF6x2PQUqV3OMOmoLKWRKUagOB42ZF2XGxWePEM+GsKmcFah3mPnUrr7ZEWo1W8Lm/qoNtqx8eokBDmPk2IJTESwsHHaGD+5HS+tjsWK7thTaN91a1Ut3RhMRmYmhymdzgeZ0xsELeY3mNR/atQsUXvcIZNVdEujIpKmxLgrF4sBslo0irqdzSQ5aMl0x7bFqR3xOigViDJEQEYDcqRXuVyJDES4gAHFnu0u+F02nf7apmp7GJesh++Pu5fdsDVZB2wM81a6bkVsFtLtb/863yT+6yREYMUqVVN7y2Y6ZGJkarCwj/DSXc6R6rdrRVIL0mMhDjA1KQw9gbPplX1xdBUAqUb9A5pQLbs2cfblgd4tvwi6GjUOxyPExvsS6ExGYC2Evebau0vpVZbRNsZkq5zJB7C0TMt2tFipbK5k84e9y8k24eiwPjz4dTfgm8IIImREB5BURQWTUlluX2adiBvhb4BDUBnjw1T0bcA9IRlgF+ovgF5IEVRaA/R1tyoHlzkMag5FwBDjKxRGxJR2r8Z36Y8Ai0mVBVKGzxw1OggkhgJ4SGWZCfwlHUxi3sepHHGrXqH02/rCuqZad8KgCVTtukPF2Octn4isDlfW1jrYaw2O7HdWpG+kORJOkfjIRzFDpWa3SSFO7bse9oC7LyVsG85tNc7D0liJISHGB0ThCl2HFtsKXy23X12Hq3cVcXJRm1BsCLb9IdNdOIY2lQLJrUb6vP1DmfIFde38x/rAt62n0ZE2lS9w/EMju3rNBYzOkxbs+VxidG3/4DXLoK9nwPQbbVT2tABSGIkhEdYnB0PwIc5ZWC36xzNsamqSumudcQqDVobkOS5eofkscbEhrBPHaV9Ub1D32CGwd6qVl61nc5/om7DEJqgdzieISACYidBxmlkhGhrizxqAbaqQpXj/wXHjrSShnZsdhV/s9FZ8dtdSGIkxGGcNzmeEFq5uPRBrI9ng821exsV1LaR1bJW+yLtZPDx1TcgDzYmJpDf9vyUk7oepT3jbL3DGXK51VrxytFS8Xpo/exbuPI9ImJTASj0pCKPbTXQUQ8ozvVUBTX7p9EUN9vZKImREIcRH+rH2JQETjbkYGoqgvxv9A7pqFbuqeE042YATFme38dLTxGBFqoCMilWY9hX7UF/9Tu0FG9lvFJIVqT02BsOKZHaGqPervMeoXe0KDwNfLRCju66vggkMRLiiM6bksRntlnaF9ve1jeYY1i5u5pbe25i7ehfw5hFeofj8TJjtdGUPVWe1xpkTtnLfGq5h1OaPtA7FI+UGqKNnpQ0dNBjc/1p+n7prXh9YI+0OkmMRlx9fT1XXHEFwcHBhIaG8tOf/pTW1tajvmb+/PkoitLn8bOf/WyEIhbu5swJsXzMSQDYd34Inc06R3R4rV1W1hfUU6jGEX3GrRAklYqHW2a0Hzcb32f897dAt+eMGtnsKrHdhYDsSBty5Tnwt9HEvn46fj5GbHbVuTjZ7R1U8Rr6TqW5G7dNjK644gp27NjB8uXL+eSTT1i9ejU33HDDMV93/fXXU1FR4Xw8/PDDIxCtcEdhAWZCM05gnz0Bg7UTdryvd0iHtXJ3Nd02O6mRAaS54S8hdzQmJpRrTZ8zvuErqN2jdzhDpri2mVTKAYhMnahzNB4mKA7aqlEaCsgINwEeNJ12mBGj/FptoEISoxGya9cuPv/8c1544QVmzZrF3Llz+ec//8mbb75JeXn5UV/r7+9PbGys8xEcHHzEc7u6umhubu7zEN5l8ZRRvGPTRo3Uza/qHM3hLd9ewhM+/+TO6PUoLr5I3FOMiQtmj11rDeJ8U/AAZXnbMSs2OvDFEJqkdzieJTAafENBtTMrWKv1U+ApidG5j8P5z0KS1k6ppbOHquYuANKi3G8Rv1smRmvXriU0NJTp06c7jy1YsACDwcC6deuO+trXXnuNyMhIJkyYwN133017+5GHwR966CFCQkKcj8TExCH7HoR7WDA2hi9Mp2BVDSil66Fmr94h9dHZY6Nrz9ecZ1zLgornwGDSOySvMCZmf8+0zlLPaQ3SUqx9LzW+yWBwy7cH16UoznpGkyyVgAclRrETYPJlEBwH7P++IgMthPi53yJ+t/yXX1lZSXR0dJ9jJpOJ8PBwKisrj/i6n/zkJ7z66qusXLmSu+++m//85z9ceeWVRzz/7rvvpqmpyfkoKSkZsu9BuAc/s5G52eN43XYan0RcC36u1bH++9xaTrX/AIBp/GJ5MxshgRYT1X5pAHSWeU5iZK/RpgXbQ0brHImHcmxlT0drJutRW/YPkFejTaOlR7nfNBqAS/15edddd/HXv/71qOfs2jX4YesD1yBNnDiRuLg4TjvtNPLy8khPP7RZosViwWJxr8JUYuhdPjOJc9Zdi0+lwmyCidA7oAN8ua2U3xi1RrfK+MU6R+NdrJHjoAIsdZ7TMy2waR8AhphxxzhTDIpjxCiuuxA4yTNGjPZ9BfV5kHqSc41RvmPhtTtOo4GLJUa3334711xzzVHPSUtLIzY2lurq6j7HrVYr9fX1xMbG9vt+s2ZpW7Fzc3MPmxgJATAhIYTJo0LYUtrEuxtLufFk1/i3YrXZadi1inCllR5LOD5Jc/QOyasEJk3GVq7g110HLVVuvxvQZld5tuNU1qoJLB23QO9wPFPUGACCW/MAKG/soMtqw2Iy6hnV8dn6Jmx7B067z5kYyYjREIqKiiIqKuqY582ePZvGxkY2btzItGlaF/Svv/4au93uTHb6IycnB4C4uLhBxSu8x+Uzk9hVuonyNW+iKr4oJ92ud0isK6jnpJ7vwQTGceeA0aX+d/Z4o0dFU6DGkaxU41Of7/aJUXF9O2usmWw0jeWOMTP1DsczRY+DlHkYY8YTWGektctGSX07GdFBekc2eM4daftHGfOqtRGjdDetnu6WCxLGjh3LokWLuP7661m/fj3ff/89N998M5dddhnx8VqPq7KyMrKysli/fj0AeXl5PPDAA2zcuJHCwkI++ugjli5dykknncSkSVKvQxzduZPjGW+p4Y9dD8PKP0Nzhd4h8eGmYhY6ptEMMo024sbGBXNV991MsS7DOqr/f5C5qn2OYpUZ0YEYDe7VwsFtBMfDNZ+gnPlXUhzb2Atq3bgOlq0Hah0bUhyjRTa76izumB4pidGIeu2118jKyuK0007jrLPOYu7cuTz33HPO53t6etizZ49z15nZbOarr77ijDPOICsri9tvv50LL7yQjz/+WK9vQbiRAIuJcdknsN6eiaLaYNMrusbT2WNj/Y595KtxWC2hkHKSrvF4o+Rwf5rM0bRaDR6xiLa2YBtnGtZxQqiUJRkJKRG9idHRCxO7tPp8sHWDORBCtPIOZQ0ddFvtmE0GEsL8dA5wcNx27D08PJzXX3/9iM+npKSgqqrz68TERL75xrX7XQnXdvnMJJ778XRmmvdg2/Ayxnm3g1GfragrdlVT2BXIbaEP8e0tM8Bk1iUOb2YwKGTGBrG5uJGdFS3uPR0ChBZ+xtPml9jVdg7gec1xXUpXCxOCO/gENx8x6q14HZXl3BGb11vYMSLAbUce3XbESIiRNiEhhLL406lRgzG2VsKez3SL5f3N2nbfxdnxGHzd+w3ZnU2I8eVh07PM/HKJ27cGCWrSpkSMMWOPcaY4Lj++AA+N4uzyJwA3r35d1dsKZP+/mbxqx8LraPdceA2SGAkxIEvnjuZN26kA2Na/oEsMDW3dFO7dQgRNLJmSoEsMQjMmIZJTjJuJbdvj1hWwbXaVhO58AIKTp+gcjYdzTDlFdhQAbl7LqGqH9jFmvPNQviPRS3PT9UUgiZEQA3LWxDhW+J+JTVUwFq6GmpHvk/XptgruNLzGet+fM6bsgxG/v9hvXFwQu+zJ2hdV7lvosaiqlmS0DQVRGVN1jsbDOYo8+jblY8RGRVMnHd02nYMapPOfgf/7Asae5zwkI0ZCeBkfo4FFJ85ghX0qu4yZqDpMn3y2bhvzDTkYscOo6cd+gRg2mbHB7FS1xKizJEffYI5D+b4cjIpKsxKMMbj/teDEIIQkgk8Air2Hib61ABTVu+mokW8wJJ0AIftHrmXESAgvdPmMJO5RfsmZbfexpmNk++dtLW1kQvUnmBUb1tjsPnP7YuQFWkzUBGjtM7rLtugczeC1Fm8FoNo/XevpJYaPweD8/3ZOUBXg5uuMDtDU0UNNS2/zWBkxEsJrhPj7cPa0DEDhhW/zR/Teb/xQyOXGrwEwzfi/Eb23ODx79EQAfOt3g92uczSDY6zR1op0hWfpHImXcLRcmWzWNlHku2NitOsT+OxOyPvaeSjfUfE6OshCkK/7NY/tJYmREINw7YmpGBTYuKeAys/+Cl3DX4ukubOHyi3LSTVUYfUJggkXDvs9xbGFJY2jS/XBbGuHhgK9wxmUZ7sW8bPuW7BOuFTvULxDtLZYOUMtBtx0xGjv57D+WSj83nmot0daupv2SOsliZEQg5ASGcDi7AReMz9I7PoHYfN/hv2e724o5SK+BMA4+VKwuPcvH0+RFR/GLjWJUkM8tNfrHc6AtXVZ2dAYwOf2mYwaL/32RkTSLJhyFU0piwAodMdaRlXbtY+xE5yHenukufM0GkhiJMSg3XxqBm/aTgOgZ/Wj0NMxbPey2uy88e1O5hq0X0bK9GuH7V5iYMbGBXNh9x84pesfdMdN0zucAdvjaAUSHWQhItCiczReIn4KLP4Xpqk/AXC20HAbdtv+8hQxE52HZcRICC+XHhVI5/hLKVUj8Wmv0gq3DZNPt1WwrwkWG5+i+7xn+vyVJvQ1KswPf18LPTbV+RezO6ncu5GbjB+xONQ9pwHdWW+/tJqWLlq7rDpHMwB1eWDtBB9/CE91HpYRIyEENy0YzxPWCwCwrn4EulqG/B6qqvK8Y5H3BSdOwDz18iG/hxg8RVEYGxsMwK7yJp2jGThDwSp+4/MmF1o/0TsU72LtIrhhF9n+dYCbrTPqrdkVPQ4MRkAb1S6q06YEZcRICC+WER2IOuky8uxxmDrrUX94esjvsXJPNTVlhfj6KFx1QvKQX18cv/Gxfrxlvp+zPpvlduuMLPVakVJ71DidI/EyXz8Az87jRl9t3aBbjTZWHrq+qLShg26bHYvJQEKoezaP7SWJkRDH6fZF43mSiwGwfvs4tFQN2bXtdpWnPtvAcsudrAj+E2G22iG7thg6mfHhxFGHr60NKt2nAraqqkR35AIQmDRJ52i8TIyWVGQq2s60vBo3GjFq1GLu/R4A8nubx0YGYHDT5rG9JDES4jjFhviSOPcKcuxpfKnOpMM2dL8UPt5azoL61wlW2on1VyEwZsiuLYbOuPhgdqgpAKgV7lPosaqxnXS1BIDYMe63cNytRWsjdPFdBYCbrU+76EX49T6YeLHzUG5vKxA3n0YDSYyEGBI3zs/gFt8H+XnbdTzy/dCM6nT22Hjl8++5xvgFAMbT/+CczxeuZUxMEDvVNAA6ijbqHE3/FeZuw1fpoRMz5sh0vcPxLlGZoBjxtTYTS72zx5jbCIwGv1Dnl/uqtPhHx0hiJIQA/M0mfn+B9hf3i98VsKW4AWw9x3XNJ1fmcnXby/gqPdgSZ8PoM4YiVDEMfH2M1IdqIwBqeY6+wQxAS8EmAKp80yTpHmkmC0Rq7WSyDCUU1LZhs6s6BzV4+xyJ3ejoIJ0jOX6SGAkxRE7JimZJdjyRagNdr5xP9xe/H/S19la1sGP1eyw2rkHFgPHMh6SHlYvzGTUFgIDWQuh0j91pimM9VEvYeJ0j8VIx2s99vLGELqud8sbhq4U2ZDb9B169CLa+7TykqqpzKk1GjIQQfdx37njmBZYx07YZ0/qnUPNWDfganT027nntW+43vqgdmHWjVhBOuLT05GRK1UjtCzdZZ/SI9ULO7HqI1inX6x2Kd3KsM5rqWwFArjusMypaA7nLoX5/n8jK5k5au6yYDAopEe5dwwgkMRJiSIUHmLn8yut503YqBlS63liqFUPrJ1VV+ePHO6iorqZVCcIamoJy6m+HMWIxVCYkhLDaNonvmIJqMOkdzjF1dNvYXdPFLjWZtCxJvHWRsQBO+z05MUsA3GOdUW/SH7u/4nXv+qKUyADMJvdPK9z/OxDCxUxPCadzwYPk2NPxtTbR8tIF0FbXr9c+/U0eb6wvoVyJouqSjzEt/QAs7j9n7w3GxgXzO/v1XNl5B5Whrp9o7K5sxq5CZKCF6GBfvcPxTvHZMO82SNJ61Ln8lv2eDqjZrX0el+08vNfRVmZ0tPtPo4EkRkIMi6tPyuLrKY9TpkYQ1FZI/VOnozaXH/F8VVV5bPkeVn/5PgC/P2ccJ49L7FNuX7g2Xx+j841hW6nrrzGq3v41D5ue5f9CN+kditfr3eLu8lv2q3aAagP/SAiOdx52ri+SxEgIcSSKonDL4rm8P/6fVKphhLflseOpKympP7SLdlljBz9/eTXR3/yGN81/YtnYDVxzoiRE7mhCQggA+QV50NOpczRHZyz6jktM33CSslnvULxbUylTWr9hvFJIvqsnRuWOfyvx2X02g/TuSMuI8YzRbdefCBfCTRkMCj+/+CzeDf0PY777Fbc1XUbB31Yyb3QU8yJb8bO1UFJVh6X0e+4zriDW1ADA/DGROkcuBmtiQgiXb/sp0zbsg/EfQ+pJeod0RIH1OwEwxk3WORIvt+afJK97hvONZ/Kn1hQa27sJ9TfrHdXhVeRoHw+YRlNVlX0eNpUmiZEQw0hRFC4+Yx57Jq4i/rNd5O2r5Zu9NVxU8ATnGn/QTnL8X9gdnIx5yROQNl+3eMXxmZAQQpUapn1RvtllE6Mem52k7n2gQHjGDL3D8W6OxHSqTzFYtXVG05JdNDFSDGAOcsYMUNPSRXOnFYMCaVHuvyMNJDESYkRkxgXzn5/OYl9VC6v31ZL5g52mrigMRh+IHkfQ9Esxjz0PfGQRrDsbFxfM12oqZ7GezuKN+J6od0SHl19UTKaibQiIHjNd52i8XKzWoy6LAhTs5NW0Mi05TOegjuC8f8I5j4Nqdx7qnUZLiQjAYvKMIqGSGAkxgkbHBDE6JgjmLtc7FDEM/MxG6oPHQTvYy3L0DueIKvesIxOoNMYR6xuidzjeLSoTjBb8be0kKdWuvwDbYODA5cm902gZHjKNBrL4WgghhpTRUQHbv7UIOhp0jubwuktyAKgPHqtvIAKMPs4K2BOUQvKqXXTLvt1+2MP7PKjidS9JjIQQYgilJydRYI/RvihzzYayPY1lAKiOaRyhM8eanfEGF96Z9ult8MRU2PZun8PO5rEe0COtlyRGQggxhCYmhLBZ1ZqDUrpB32AOw25XuaP1J0zofAHf2dIKxCXEaQnqBKWAovp2uq2HH53RVfkmqM+DA6q6q6rK3mrHjjQZMRJCCHE44+KD+co+nZetC6mPdL2FzYV1bbR127D6BJIyKkHvcARAxumoF7/Cn5QbsNlViutdbDrN2g1VWnkH4rOdh+vaumls70FR9hep9ASSGAkhxBDyN5soiF7AH61Xsx7X61q/vbwZ0FqYGA3KMc4WIyI0EWX8Enyj04D9laRdRvVOsPeAbyiEJjsP906jJYX74+vjGTvSQBIjIYQYclOSQgHYXNKoaxyH47vhGd4y388Vvj/oHYo4SIZj1KU34XAZzsKOk/tUvM6t9qzCjr0kMRJCiCGWnRiKhW7ac7+D6l16h9NHaPV6Zhl2MyawQ+9QxIGqdnBJ17ucaVjHHscWeJfRu1YuYVqfw3sdCVyGBy28BkmMhBBiyE1NCuV20zs8UPdr7Oue0zscpx6bneROrTt6eOYcnaMRfRR8ywn5/+QC43euN2LUmxiN6rtmbnelNi2bFSuJkRBCiKNIiwxktykTgK7C9TpHs19+/j5ilAasGIjPnKl3OOJAji37EwwF5NW0us7ONFWFpBMgejwkTD/gsMruSm1kKyvOsxIjqXwthBBDzGBQsMZNgwqw1O+C7jYw699Hqmrnd2QCZT4pJPt61roQtxc7EVUxEEc94fZ6CuvaGOMK3eoVBc597JDD5U2dtHRa8TEqpEV61r8lGTESQohhkJI2hgo1HINqg/IcvcMBwFaiTYk0hklhR5djCUSJHgfAFEMue11tndFBdldo02jpUYGYTZ6VSnjWdyOEEC5iSmIom+0Z2helP+objENYw3YATEkzdI5EHJZjcXO2IZe9lS6SGNXna3WMDuKcRvOw9UUgiZEQQgyL7AMSo+6idTpHA61dVoq6A6lVg4kdKwuvXZJjcXO2kucaO9NUFV5aBA+NgsrtfZ7av74oWI/IhpUkRkIIMQzCAsxUBDumrIrXam8yOtpW2sSvem7mPMvLRKRN0TUWcQSOxc1jDCXsc4URo6YSaK0C1QYR6X2e6p1Ky5QRIyGEEP3llzydP/VcwbuZj+qeGOU4ik1mJ4f1KdInXEhUJvU/+YITup6ksL6dzh6bvvH0btOPmQA+fs7DXVYb+bVa25KxsTJiJIQQop8mJUfxgu1s/tcQDwZ9f93uKSgCVCaPCtU1DnEUBiNho2cR4O+HXXWB1iBlG7WPB9Uvyq1uxWZXCfX3ISbYokNgw8stE6M///nPzJkzB39/f0JDQ/v1GlVVue+++4iLi8PPz48FCxawb9++4Q1UCOHVpiWHA7CpqAGrTb+6NKqqckfRjay1/IK5wVW6xSGOTVEU5zb9fdU6T6eVONbGjeq7WH93hRZXZkwQigeOPrplYtTd3c3FF1/MTTfd1O/XPPzwwzzxxBM888wzrFu3joCAABYuXEhnZ+cwRiqE8GaZsUFE+do4w7qKhvfv1G06rahwHwlUE00DGWPG6RKD6KfGYu7s+hdP+jzGnkodR4y626F8s/Z50uw+T/VWvB7rgQuvwU0Toz/+8Y/ceuutTJw4sV/nq6rKY489xr333svixYuZNGkS//73vykvL+eDDz4Y3mCFEF7LaFCYlhTGwz7PEbX9eWgs1iWO8q0rASj0ycASEKpLDKKfDD5Mr/+ERYYfKaqo1i+Osg1gt0JQPIQm9XnKk7fqg5smRgNVUFBAZWUlCxYscB4LCQlh1qxZrF279oiv6+rqorm5uc9DCCEGIjs9nm1qqvZF0RpdYrAXar/nGiKn6nJ/MQDBcXT5x2FUVHwqN+kXR1gKLPgDnPCzQxbr9yZGnrgjDbwkMaqsrAQgJiamz/GYmBjnc4fz0EMPERIS4nwkJiYOa5xCCM8zMzWc9faxAKhF3+sSQ2yTNiXimzFXl/uLgVGStamr1LattHZZ9QkiNAnm3gon/qrP4brWLmpaulAUXKNlyTBwmcTorrvuQlGUoz527949ojHdfffdNDU1OR8lJSUjen8hhPubEB9CjqKt6+nJ/3bE719TXUWarQiApMmnjvj9xcCZ07QEdqZhN3sqXWumone0KCncnwCLZ7ZbdZnv6vbbb+eaa6456jlpaWmDunZsbCwAVVVVxMXFOY9XVVWRnZ19xNdZLBYsFs/biiiEGDlmkwFb4kxsZQrmpkJoKoWQUSN2/4KcVUQpKmWGOBKiRu6+4jgka5XJpxr28d/SOufuxhFTX6Bt1U+aDSEJfZ7aXtYEwPh4z1x4DS6UGEVFRREVFTUs105NTSU2NpYVK1Y4E6Hm5mbWrVs3oJ1tQggxGOPTkthSms5UJRfyVsLUq0bs3j82BLDNeiapo+JJOPbpwhVEZtJhCsbP2kxT/gY4cfTI3n/PZ/DFPTB6IVzxdp+ndpRrI1jj40NGNqYR5DJTaQNRXFxMTk4OxcXF2Gw2cnJyyMnJobV1/9bGrKws3n//fUCrC3HLLbfwpz/9iY8++oht27axdOlS4uPjWbJkiU7fhRDCW8xMDedbu7aLVq3ZM6L3/l91CA9Yr6J19q9H9L7iOBgMNEXNIM8eR3WNDnWnejcJJM8+5Knt5dqI0YQEz02MXGbEaCDuu+8+XnnlFefXU6ZofX9WrlzJ/PnzAdizZw9NTU3Oc+68807a2tq44YYbaGxsZO7cuXz++ef4+vqOaOxCCO8zNSmM29WFvNq5gDemLCFjhO7b1N7j/At/ZsoIT8eI49Kx5EVOe3QNlnoD99rsmIwjNI5ht2u9/QCS+jYbbu2yUuBoBeLJU2luOWK0bNkyVFU95NGbFIFWu+jANUuKonD//fdTWVlJZ2cnX331FWPGjBn54IUQXsfXx0haaio1hPHtvpoRu++2Td8zW9nO2CgzsSHyR6A7SY4Kxd9spMtqdyYjI6J6B7TXgU8AxPdtNryrohlVhbgQXyIDPXf9rVsmRkII4W7mjdbWUH63r3bEKmCbN7/E6+YHuc/3rRG5nxg6BoPC2LhgjNjYXTqChR7zV2kfU04Ek7nPU/sXXnvuNBpIYiSEECNi3uhIxisF/LTgVuyvXTwi90yo13pd+Y6Rbfru6Ffqa2y1XIdly6sjd9PexCj15EOe2l6mTctOSPDcaTSQxEgIIUbE2NhgzH5BzFG2Qf43Wi+qYVRVtIcEtRKraiB95qJhvZcYHiGhEQQoXURUH7lDw5Cy9UCR415p8w95ekfvwmsZMRJCCHG8DAaFpNETKVUjMdi7oWD1sN6v9MePANjnk0lwiCy8dkd+WVobq8zOHFRr9/Df0OgDv9wMF74I0X2bDXf22NhXre389uQdaSCJkRBCjJh5Y6L52uZY0Lrns2G9l2/BVwDUxJ8yrPcRwydp/AnUq4EE0kH93h9G5qZBMTDxIjD0TQ92V7Zgs6tEBpqJCfbchdcgiZEQQoyYuRmRLLdPA8C+53/a1uhhYOtsJaNtIwChk88dlnuI4edrMbPVJxuAph2f6xrLgQuvlYOaynoaSYyEEGKExIb4Uh85k2bVD0NbtdZ2YRjkbfgSCz2UEcW4ybOG5R5iZFRGakUWfYuHd+qV1hpYdg6s+ddhd01uLW0EPH/hNUhiJIQQI2r++AS+sU/Wvtjz6bDc47/NY1nU9Rc+GnUHJpNxWO4hRoYxQ5sKjW3ZAR2Nw3ej3OVQ+C1sexsOMyKUU6LdOzsxbPhicBGSGAkhxAg6fVwsn9lm8b06iZ7oCcNyj6/3VLNbTSJ++jnDcn0xctLHjOMD2xz+qfwElWGsf7XXMVU35tAdjC2dPc6F19mJocMXg4twy5YgQgjhriYlhLAp8CT+1zyLZZYZzB/i65fUt7O3qhWjQWH+mOghvroYaePigrnE9gusPSoXdFhI9BuGm1i7Ifdr7fMxCw95emtpE6oKo8L8iAry7IXXICNGQggxogwGhdPHxQDw5c6hbxDa8NE9PO7zLy6OryXE32fIry9Glq+Pkay4IEBLUIZF8RroboGAaIibcsjT+6fRQofn/i5GEiMhhBhhp4+LBWDTjt3Y1784dLvTbFaSit9nsXEN8xOG5pJCf5NGhRJCK7acN6By+9DfYLejdMTo0w/Zpg+wubgRkMRICCHEMJmdFkG4L7zV80sMn90GJeuG5Lq1O1YQam+kXg0k++Tzh+SaQn/Zo0K5x/Q65+X/ETb/Z2gvbrfBzg+0z8ctPuRpVVWdI0ZTkkKH9t4uShIjIYQYYWaTgYWTEllun64d2Pb2kFy3du1rAGwMOInY8KAhuabQ36TEEL6yTwVA3f3p0DYh7miEhOkQGANphxYDLWvsoLa1C5NB8fjmsb0kMRJCCB0syU7gA9uJAKjb3zv+3mndbSRWLgfAPuGi4w1PuJDR0UFsNGXTrlpQmkqGtv5VQARc/jrcsh1M5kOe7p1GGxsXjK+Pd5R+kMRICCF0MCMlnMKg6RTbo1A6m2DHf4/rejU/vE6A2k6hGsv0eWcNUZTCFRgNChnx0XzRO8K49a2hv8lhkiLwvoXXIImREELowmBQOG/KKF63naYd+PGF47qedd2LAPwQdi4RQcOxp1voadKoEN63zdW+2P4e2HqO/6I1e6E296inbC5uACQxEkIIMQIumJrA27b5dKkmKN8MJesHdZ2enh7e7JjJbnsiUfOuHeIohSuYlhzG9/YJ1Cuh0F4HuSuO/6KrHoR/TdPagBxGR7eNbY4eaTNSwo//fm5CEiMhhNBJRnQQmWmpfGg7kR7FAtW7BnWd5btrebx9IVdZHuOk7LFDHKVwBdNSwrBh5P2e2agoULn1+C7YVge7PtE+Tz3psKdsLmmgx6YSG+xLYrj3jEJKYiSEEDq6ek4yf7dewpnKk3ROunJQ11i2phCAS6aPwscov9Y9UXSQLykR/jxnPZu1530DJ995fBfc+ibYeyAuG+ImHfaU9QX1AMxMDUc5TP80TyX/BwkhhI4WjI3BFBJHbrs/724sHfDrq976FaOKPsBsVLnqhJShD1C4jOkp4VQRznfVx9mWw26D9c9pn0+7+oin/VioJUYzUr1nGg0kMRJCCF2ZjAZuOCkNgKdW5tKT/x0U97PgY9FaYnYt428+z3LjWBuxIb7DGKnQ24wUrbP9hkJtQTQNhYNbhL37E+21fuEw6bLDntJttbOxSLvPLEmMhBBCjKTLZiYRHWRhTusX+Pz7bPjw58eua2Ttpv3D2wB4y34K5y88bQQiFXqa7lgAnVPaiO3DX8Dj2bDljYFdRFXh+ye0z2dcB2b/w562vbyJzh47Yf4+ZEQFHkfU7kcSIyGE0Jmvj5Gfn5LBl7ZpVBMGdfvgi7uP+hp1xf341++kQQ0kb8ItpHnZm5c3SosMICLATLfVTrkpEVBh9d/A2t3/i7RUQHMZmHxh5g1HPO1Hx/qi6SnhGAzes74IJDESQgiXcMWsJOJj47il+ybsKLBxGax96vAnb30HZe0/Afid+jNuPGvWyAUqdKMoCtMd02mfWc6EgGhoLIZNr/T/IsHx8ItNcMU7EBh1xNO+y60FvG8aDSQxEkIIl2AyGnhgyQTW2CfwSI+jpccXd8PXfwZr1/4TN7+K+v6NALxgPZMpZ1xJdJCsLfIWJ2ZEAvBNQRucdId28OsHoLW6/xcx+x9xiz5AZ4/NuSNt3ugjJ0+eShIjIYRwETNSwvn5Ken8y7aEZ+znawdXPwzvXOM8p0EJRlFtvGE9hW9Tb+HaOSm6xCr00ZsYbShsoGPy1RA3GTqb4LM7jt5cti4P1j0Hdvsx77GxqIEuq53oIAtjYrxvilYSIyGEcCG3nZ7JSWOi+Uv3xdxu/yVtlmhs4enY7Sqr9lRz1mf+XNd9O08H/ZK/XzLF69Z/eLu0yADiQnzpttnZUNIM5zwGihF2fgBrD1/Bmq4WeOdq+N8d8PX9x7zH6n01AMwdHelV9Yt6SWIkhBAuxGhQePbKaczPjOK97hPIbvo7c7+byOT7v+Sal3+kormL/IiTeO36E4gKOs56NsLtKIriHDX6LrcWEqbCwgfBNxRiJhz6gvZ6eO1iqNwGAVEw/afHvMd3+7T1RSd54TQagEnvAIQQQvTlZzby0tUzeGVtIU+vyqOixQQ9VgLMRi6bmcQtC0YT5Oujd5hCJ3MzInl3YynfOxZIM+tGmHABBEZrX9vtsGkZNJVpC7PbasASApe/BaGJR712XWsXO8qbgf3Tdt5GEiMhhHBBBoPCtSemcvXsFArr2uixqaRE+mMxGfUOTehsTkYEADvKm6lv6yY8wLw/KQIoXA2f3Lr/66gsuOgliBl/zGv37kbLig3y2hFJSYyEEMKFGQyK1CgSfUQH+ZIVG8TuyhZW7anmgqmj+p7Q1QJZ54A5ENJPhfFLwNS/JOfLnVUAnJIVfYwzPZckRkIIIYSbOX1cDLsrW1i+s+rQxGjsudpjgLqsNlbt1rb9LxwfOxRhuiVZfC2EEEK4mdPHxQDwzd4aOntsQ3LNNXl1tHXbiAm2MCkhZEiu6Y4kMRJCCCHczMSEEGKDfWnvtrE2r25IrvnlDm0a7fRxMV5dBkISIyGEEMLNKIrCgnHaOqDedUHHw25XWe64zhnjvHcaDSQxEkIIIdzS6Y4E5qtdVdjsR6l63Q8/FtZT29pFkK+JE9IihiI8tyWJkRBCCOGGZqdFEOLnQ01L13FPp72/uQyAMyfEYjZ5d2rg3d+9EEII4abMJgNnT4oD9ic2g9HZY+PTbRUAnD9l1DHO9nySGAkhhBBu6oIpCQB8vr2Cju7B7U5bsaualk4r8SG+zEoNH8rw3JIkRkIIIYSbmpYcRmK4H23d+0d9Bur19UUALJmS4NW70XpJYiSEEEK4KUVRuGxGEgD/XluIqg5sEXZudQvf59ZhUOAns5KGI0S345aJ0Z///GfmzJmDv78/oaGh/XrNNddcg6IofR6LFi0a3kCFEEKIYXbZjETMJgNbS5vYXNI4oNf+e602WrRgbAyjwvyHITr345aJUXd3NxdffDE33XTTgF63aNEiKioqnI833nhjmCIUQgghRkZEoIVzJ8UD8OK3Bf1+XXVLJ29vKAHg6jkpwxGaW3LLXml//OMfAVi2bNmAXmexWIiN9e7CVUIIITzPdfNSeW9TKZ9uq+Dn5c2Miw8+5mueXpVHZ4+d7MRQ5qR7d+2iA7nliNFgrVq1iujoaDIzM7npppuoqzt63Yeuri6am5v7PIQQQghXMzYumHMcW/f/8eWeY55f2tDOa+uKAbj9jDEoiiy67uU1idGiRYv497//zYoVK/jrX//KN998w5lnnonNduTtjQ899BAhISHOR2Ji4ghGLIQQQvTfbaePwWhQWLG7mi92VB7xPFVVufu/2+i22pmdFsHcjMgRjNL1uUxidNdddx2yOPrgx+7duwd9/csuu4zzzjuPiRMnsmTJEj755BN+/PFHVq1adcTX3H333TQ1NTkfJSUlg76/EEIIMZzSogK5fl4aAL99fxt1rV2HPe/NH0v4dl8tZpOBP58/QUaLDuIya4xuv/12rrnmmqOek5aWNmT3S0tLIzIyktzcXE477bTDnmOxWLBYLEN2TyGEEGI43bJgNCt2VbGvupXr/72BV/5vJkG+Ps7nV++t4b4PtwNw64IxpEUF6hWqy3KZxCgqKoqoqKgRu19paSl1dXXExcWN2D2FEEKI4eTrY+TpK6dy4dNr2VTcyPlPreHOhZkkhvvzv20VPP1NHj02lbMmxnLjSUM32OBJXGYqbSCKi4vJycmhuLgYm81GTk4OOTk5tLa2Os/Jysri/fffB6C1tZU77riDH374gcLCQlasWMHixYvJyMhg4cKFen0bQgghxJDLiA7iPz+dSXSQhdzqVm74z0bOfPxbnvg6lx6byrmT43n00mypcn0ELjNiNBD33Xcfr7zyivPrKVOmALBy5Urmz58PwJ49e2hqagLAaDSydetWXnnlFRobG4mPj+eMM87ggQcekKkyIYQQHmfSqFA+v+UknlqZy/JdVTS295AZG8TS2cmcPTFO1hUdhaIOtH64F2tubiYkJISmpiaCg49dI0IIIYQQ+hvI+7dbTqUJIYQQQgwHSYyEEEIIIRwkMRJCCCGEcJDESAghhBDCQRIjIYQQQggHSYyEEEIIIRwkMRJCCCGEcJDESAghhBDCQRIjIYQQQggHSYyEEEIIIRwkMRJCCCGEcJDESAghhBDCQRIjIYQQQggHSYyEEEIIIRxMegfgTlRVBaC5uVnnSIQQQgjRX73v273v40cjidEAtLS0AJCYmKhzJEIIIYQYqJaWFkJCQo56jqL2J30SANjtdsrLywkKCkJRlCG9dnNzM4mJiZSUlBAcHDyk1xb7yc95ZMjPeWTIz3lkyM95ZAznz1lVVVpaWoiPj8dgOPoqIhkxGgCDwcCoUaOG9R7BwcHyP94IkJ/zyJCf88iQn/PIkJ/zyBiun/OxRop6yeJrIYQQQggHSYyEEEIIIRwkMXIRFouF3//+91gsFr1D8Wjycx4Z8nMeGfJzHhnycx4ZrvJzlsXXQgghhBAOMmIkhBBCCOEgiZEQQgghhIMkRkIIIYQQDpIYCSGEEEI4SGLkAp588klSUlLw9fVl1qxZrF+/Xu+QPM5DDz3EjBkzCAoKIjo6miVLlrBnzx69w/Jof/nLX1AUhVtuuUXvUDxSWVkZV155JREREfj5+TFx4kQ2bNigd1gexWaz8bvf/Y7U1FT8/PxIT0/ngQce6Fe/rf/f3r2GNPU/YAB/5rzixJ8X2hxhGRmWN2bDSIMiRRERIlAKEVPoRUxzCpFd1DepaBSlhqZQ9CLLIOwGFmLDMFKXNku6WCbUi3RYmTnpwnZ+L/5rMOofxC/94vH5wIGd7wF9jsj5Puzc6P+7d+8esrKyoNVqoVAocO3aNbftkiShsrISYWFh8PPzQ2pqKl6+fLlo+ViMBOvo6EBZWRmqqqowPDyM+Ph4pKenw2q1io4mK729vTAYDOjv70d3dze+f/+OtLQ02Gw20dFkyWw24+zZs4iLixMdRZY+fvyI5ORkeHl5oaurC0+fPsWJEycQFBQkOpqs1NXVobm5GU1NTXj27Bnq6upQX1+PxsZG0dGWNJvNhvj4eJw5c+aX2+vr69HQ0ICWlhYMDAzA398f6enp+PLly+IElEioxMREyWAwuNbtdruk1Wql2tpagankz2q1SgCk3t5e0VFk5/Pnz1JkZKTU3d0tbd26VSopKREdSXYOHjwobdmyRXQM2cvMzJQKCwvdxnbu3Cnl5uYKSiQ/AKTOzk7XusPhkDQajXT8+HHX2MzMjOTj4yNdunRpUTLxGyOBvn37hqGhIaSmprrGPDw8kJqaigcPHghMJn+fPn0CAAQHBwtOIj8GgwGZmZlu/9f0d924cQN6vR7Z2dlYsWIFdDod2traRMeSnaSkJPT09GBsbAwAMDIygr6+PmRkZAhOJl8TExOYnJx0O34EBgZi06ZNizYv8iWyAk1PT8Nut0OtVruNq9VqPH/+XFAq+XM4HDAajUhOTkZMTIzoOLJy+fJlDA8Pw2w2i44ia69fv0ZzczPKyspw+PBhmM1m7N+/H97e3sjPzxcdTzbKy8sxOzuLqKgoKJVK2O12VFdXIzc3V3Q02ZqcnASAX86LP7YtNBYjWnYMBgNGR0fR19cnOoqsvH37FiUlJeju7oavr6/oOLLmcDig1+tRU1MDANDpdBgdHUVLSwuL0V905coVXLx4Ee3t7YiOjobFYoHRaIRWq+XfWcZ4Kk2g0NBQKJVKTE1NuY1PTU1Bo9EISiVvRUVFuHXrFkwmE1auXCk6jqwMDQ3BarUiISEBnp6e8PT0RG9vLxoaGuDp6Qm73S46omyEhYVhw4YNbmPr16/HmzdvBCWSpwMHDqC8vBy7du1CbGws8vLyUFpaitraWtHRZOvH3CdyXmQxEsjb2xsbN25ET0+Pa8zhcKCnpwebN28WmEx+JElCUVEROjs7cffuXURERIiOJDspKSl48uQJLBaLa9Hr9cjNzYXFYoFSqRQdUTaSk5N/etzE2NgYVq1aJSiRPM3Pz8PDw32aVCqVcDgcghLJX0REBDQajdu8ODs7i4GBgUWbF3kqTbCysjLk5+dDr9cjMTERp06dgs1mQ0FBgehosmIwGNDe3o7r168jICDAda46MDAQfn5+gtPJQ0BAwE/XbPn7+yMkJITXcv1lpaWlSEpKQk1NDXJycjA4OIjW1la0traKjiYrWVlZqK6uRnh4OKKjo/Ho0SOcPHkShYWFoqMtaXNzc3j16pVrfWJiAhaLBcHBwQgPD4fRaMSxY8cQGRmJiIgIVFRUQKvVYseOHYsTcFHufaPfamxslMLDwyVvb28pMTFR6u/vFx1JdgD8cjl//rzoaLLG2/UXzs2bN6WYmBjJx8dHioqKklpbW0VHkp3Z2VmppKRECg8Pl3x9faU1a9ZIR44ckb5+/So62pJmMpl+eTzOz8+XJOl/t+xXVFRIarVa8vHxkVJSUqQXL14sWj6FJPERnkREREQArzEiIiIicmExIiIiInJiMSIiIiJyYjEiIiIicmIxIiIiInJiMSIiIiJyYjEiIiIicmIxIiIiInJiMSKiZWPPnj2L91oBIlqS+K40IpIFhULx2+1VVVU4ffo0+LB/IvodFiMikoV37965Pnd0dKCystLtDfQqlQoqlUpENCJaQngqjYhkQaPRuJbAwEAoFAq3MZVK9dOptG3btqG4uBhGoxFBQUFQq9Voa2uDzWZDQUEBAgICsHbtWnR1dbn9rtHRUWRkZEClUkGtViMvLw/T09OLvMdEtBBYjIhoWbtw4QJCQ0MxODiI4uJi7Nu3D9nZ2UhKSsLw8DDS0tKQl5eH+fl5AMDMzAy2b98OnU6Hhw8f4vbt25iamkJOTo7gPSGiv4HFiIiWtfj4eBw9ehSRkZE4dOgQfH19ERoair179yIyMhKVlZV4//49Hj9+DABoamqCTqdDTU0NoqKioNPpcO7cOZhMJoyNjQneGyL6r3iNEREta3Fxca7PSqUSISEhiI2NdY2p1WoAgNVqBQCMjIzAZDL98nql8fFxrFu3boETE9FCYjEiomXNy8vLbV2hULiN/bjbzeFwAADm5uaQlZWFurq6n35WWFjYAiYlosXAYkRE9AcSEhJw9epVrF69Gp6ePIQSyQ2vMSIi+gMGgwEfPnzA7t27YTabMT4+jjt37qCgoAB2u110PCL6j1iMiIj+gFarxf3792G325GWlobY2FgYjUb8888/8PDgIZVoqVNIfAwsEREREQB+Y0RERETkwmJERERE5MRiREREROTEYkRERETkxGJERERE5MRiREREROTEYkRERETkxGJERERE5MRiREREROTEYkRERETkxGJERERE5PQvj8WSIjAhXMMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAj1xJREFUeJzs3Xd4W/XVwPHvlWTJe2/H24mz42wSEggQSJgJGwoEKKu8pS2jUKCUtlCgpS2rZa/QsvcuEEJCgISEDGcv7733tqT7/nFlJc60HdtX43yeR4/tq6t7j02wjn/jHEVVVRUhhBBCCIFB7wCEEEIIIVyFJEZCCCGEEA6SGAkhhBBCOEhiJIQQQgjhIImREEIIIYSDJEZCCCGEEA6SGAkhhBBCOJj0DsCd2O12ysrKCAoKQlEUvcMRQgghRB+oqkpzczPx8fEYDEceE5LEqB/KyspITEzUOwwhhBBCDEBxcTEjRow44jmSGPVDUFAQoP1gg4ODdY5GCCGEEH3R1NREYmKi8338SCQx6oee6bPg4GBJjIQQQgg305dlMLL4WgghhBDCQRIjIYQQQggHSYyEEEIIIRxkjZEQQghxBDabje7ubr3DEEdhNpuPuhW/LyQxEkIIIQ5BVVUqKipoaGjQOxTRBwaDgdTUVMxm8zFdRxIjIYQQ4hB6kqLo6Gj8/f2lsK8L6ynAXF5eTlJS0jH9t5LESAghhDiAzWZzJkURERF6hyP6ICoqirKyMqxWKz4+PgO+jiy+FkIIIQ7Qs6bI399f50hEX/VModlstmO6jiRGQgghxGHI9Jn7GKz/VpIYCSGEEEI4SGIkhBBCCOEgiZEQQgghhIMkRkIIIdxet81OVXMH3Ta73qHo5uyzz2bhwoWHfO67775DURS2bNky4OuvXr2aM844g7CwMHx9fZkwYQKPPPLIQYudFUVxPoKDg5k+fTofffQRAPPmzev1/IGPefPmAZCSknLI5//6178OOP6+ku36Qggh3FZtSyf/+Go3H24qo73bRoDZyLlTErh9wWhC/Aa+ZdsdXXPNNZx//vmUlJQwYsSIXs+9/PLLTJs2jYkTJ/brml1dXZjNZj744AMuuugirr76alasWEFoaChff/01d9xxB2vWrOHtt9/utfj55ZdfZuHChTQ1NfHUU09xwQUXsHHjRt5//326uroAKC4uZsaMGXz99deMGzcOoFdxxvvuu4/rrruuVzxBQUH9in8gJDESQgjhlnKqWrjypXWUNrQ7j7V22Xj1xyK+3VPN69ceR2L44Gy3V1WV9u5j2wY+UH4+xj7tuDrrrLOIiopi6dKl3HPPPc7jLS0tvPPOO9x5551ceumlrFq1ivr6etLT07n77ru59NJLnefOmzeP8ePHYzKZePXVV5kwYQKffvop1113Heeccw7PPfec89xrr72WmJgYzjnnHN5++20uvvhi53OhoaHExsYSGxvL/fffz+OPP86KFSv49a9/7Tyno6MDgIiICGJjYw/6foKCgg55fKhJYiSEEMLtVDV3OJOitMgAHjpvAtNSwvkxr5Y7399CcV07l72wlo9vOp5Q/2NrEQHQ3m1j7L1fDkLk/bfjvgX4m4/+dm0ymViyZAlLly7l97//vTOZeuedd7DZbFx++eW88847/O53vyM4OJjPPvuMK664gvT0dGbMmOG8ziuvvMKNN97IDz/8AMBXX31FbW0tv/3tbw+659lnn82oUaN44403eiVGPaxWKy+++CLAMbfqGC6yxkgIIYRbUVWVu97b6kyK3r1xNjPTIjAaFI7PiOS9X8wmMdyPoro27nh34Gtq3NHPf/5zcnNz+fbbb53HXn75Zc4//3ySk5P57W9/S1ZWFmlpafzqV79i4cKFvP32272uMXLkSB5++GEyMzPJzMxkz549AIwZM+aQ9xw9erTznB6XXnopgYGBWCwWbrnlFlJSUrjooov69b387ne/IzAwsNfju+++69c1BkJGjIQQQriVD7NLWb6rCrPRwNOXTyU8oPdIRHSwL89cPpVF//6Br3ZUsmxHJaeOjTmme/r5GNlx34Jjusax3LuvRo8ezezZs3nppZeYN28eOTk5fPfdd9x3333YbDYefPBB3n77bUpLS+nq6qKzs/Og6t5Tp0495LVVVT3sfQ8cDXr00UeZP38+eXl53HLLLTzxxBOEh4f3+fsAuP3227nqqqt6HUtISOjXNQZCEiMhhBBuo6PbxkOf7wLg16dkkBl76MW44+JDuO6ENJ5emcufPt7O3JGR+PYjwTiQoih9ms5yBddccw2/+tWvePLJJ3n55ZdJT0/nxBNP5G9/+xuPP/44jz32GBMmTCAgIICbb77ZuRi6R0BAQK+vR44cCcDOnTuZPXv2QffbuXMnWVlZvY7FxsaSkZFBRkYGL7/8MmeccQY7duwgOjq6z99HZGQkGRkZfT5/sMhUmhBCCLfx6o+FVDV3khDqx3UnpB3x3F+dnEF8iC+lDe28s754mCLU30UXXYTBYOD111/nP//5Dz//+c9RFIUffviBRYsWcfnllzNp0iTS0tIOmgI7lAULFhAeHs4///nPg577+OOP2bt370EjO/ubMWMGU6dO5YEHHjiWb2vYSGIkhBDCLbR32Xh6ZS4AvzllJBbTkUeA/M0mbpyXDsAz3+Z5TY2jwMBALr74Yu666y7Ky8udScvIkSNZtmwZq1evZufOndxwww1UVlYe9XoBAQE8++yzfPTRR1x//fVs2bKFgoICXnzxRa666iquu+46zjjjjCNe4+abb+bZZ5+ltLS0z99Hc3MzFRUVvR5NTU19fv1ASWIkhBDCLXy8uZTa1i4Sw/04b0rf1ppcOC2RqCALpQ3tfJRdNsQRuo5rrrmG+vp6FixYQHx8PAD33HMPU6ZMYcGCBcybN4/Y2FgWL17cp+tdcMEFrFixgqKiIubOnUtqairXXnstd955Z68t/IezcOFCUlNT+zVqdO+99xIXF9frcccdd/T59QOlqEdaTeXCVq1axd///nc2bNhAeXk5H3zwwRH/A69cuZKTTjrpoOPl5eV9rpPQ1NRESEgIjY2NBAcHDzR0IYQQ/aSqKmc+8T07ypv4/RljjjqNtr+nVubw8Be7yUoM5cNfHt+n13R0dJCfn09qaiq+vr4DDdtjdXR0sGjRIoqLi/n222+JiorSO6Qj/jfrz/u3244Ytba2MmnSJJ588sl+vW737t2Ul5c7H/1ZCCaEEEIfGwrr2VHehMVk4MJpI47+gv1cNC0RH6NCdnEDO8qGfirGG/j6+vLRRx+xZMkSVq1apXc4g8o9ltgfwumnn87pp5/e79dFR0cTGho6+AEJIYQYMu+sLwHgnEnx/S7YGBlo4bRxsXy2pZw31hVx/+LxQxGi1/H19eXOO+/UO4xB57YjRgOVlZVFXFwcp556qrOq5+F0dnbS1NTU6yGEEGJ4dVptfL6tHIDzp/ZvtKjHpdOTAPgou5Quq3cswhYD4zWJUVxcHM888wzvvfce7733HomJicybN4+NGzce9jUPPfQQISEhzkdiYuIwRiyEEAJgxa5qmjusxAb7MiOlf0UCe8xKjyAqyEJTh5Xvc6oHOULhSbwmMcrMzOSGG25g6tSpzqqgs2fP5tFHHz3sa+666y4aGxudj+Ji76mDIYQQruLjzdoW73Oy4jEYjt5M9VCMBoUzJ8QB8Mnm8kGLTXger0mMDmXGjBnk5OQc9nmLxUJwcHCvhxBCiOHT1NHN1zurAFiUFX9M1zp7kpYYLdtRSUe37ZhjE57JqxOj7Oxs4uLi9A5DCCHEYXy7u5ouq520qADGxh3bH6eTE8OID/GlpdPK6tyaQYpQeBq33ZXW0tLSa7QnPz+f7OxswsPDSUpK4q677qK0tJT//Oc/ADz22GOkpqYybtw4Ojo6eOGFF/jmm2/46quv9PoWhBBCHMX3e7UE5uTMaBRlYNNoPQwGhZPHRPPqj0Us31nFyaOPrbGs8ExumxitX7++V8HGW2+9FYArr7ySpUuXUl5eTlFRkfP5rq4ubrvtNkpLS/H392fixIl8/fXXhyz6KIQQQn+qqvLdXm2h9NxRg1NA8JTRMbz6YxErdlWhquoxJ1vC87jtVNq8efNQVfWgx9KlSwFYunQpK1eudJ5/xx13kJOTQ3t7O7W1taxYsUKSIiGEcGF5Na2UNXZgNhoGvBvtQLPSI/D1MVDW2MHuyuZBuaarueqqq1AU5aDHwoULh+X+f/rTn8jKyhqWew0Ftx0xEkII4dm+26ONFk1PDcPPfOSGsX3l62Nkdnok3+yq4ptdVYyO9cxNNQsXLuTll1/udcxisegUjXtx2xEjIYQQnu37HG190dyRh5hGa62F9S/Bl7+H7/4JlTv6fN2TRmutoL5x7HbzRBaLhdjY2F6PsLAwVq5cidls5rvvvnOe+/DDDxMdHU1lZSUAX3zxBXPmzCE0NJSIiAjOOusscnNze12/pKSESy+9lPDwcAICApg2bRpr165l6dKl/PnPf2bz5s3OkaqemRx3ISNGQgghXE63zc6a3FoA5mRE9n5ywytaQtS131TY8vsg63I44+9g9j/itU8eHc0fgI1F9TR1dBPs69P3wLpaD/+cYgQf3z6eawAfv6Ofaw7oe2x9MG/ePG6++WauuOIKNm/eTF5eHn/4wx945513iInRFqO3trZy6623MnHiRFpaWrj33ns599xzyc7OxmAw0NLSwoknnkhCQgIff/wxsbGxbNy4EbvdzsUXX8y2bdv44osv+PrrrwEICQkZ1O9hqEliJIQQwuVsK22ktctGmL/Pwdv02+u1pChmPKTNg9pc2PMFZL8KNXvgyk96JygHSAj1IzUygPyaVtbl1TF/bD92pz14hFpKI0+Dy97Z9/XfM6C77dDnJs+Bqz/b9/VjE6Ct9uDz/tTY99j28+mnnxIYGNjr2N13383dd9/NX/7yF5YtW8b111/Ptm3buPLKKznnnHOc551//vm9XvfSSy8RFRXFjh07GD9+PK+//jrV1dX89NNPhIdra78yMjKc5wcGBmIymYiNjR1Q7HqTxEgIIYTLWZdfB8D0lPCDq10f/xuIyoSRC8DgWBGS/x28dRmkngCmo6+lOS4tgvyaVtbk1fYvMXITJ510Ek8//XSvYz1JjNls5rXXXmPixIkkJycf1AFi79693Hvvvaxdu5aamhrsdq23XFFREePHjyc7O5vJkyc7r+dpJDESQgjhcnoSoxmpjjfflirwCwejCRQFMk/v/YLUufB/ayG4b0V7Z6VH8Ma6Iud0XZ/dXXb455QDFojffvjOCigHLPG9eWv/4jiKgICAXqM4B1q9ejUAdXV11NXVERCwb8ru7LPPJjk5meeff574+Hjsdjvjx4+nq6sLAD8/v0Ne01PI4mshhBAuxWZXWVegJUYzUyPAboc3LoWXF0J94eFfuH9SZLdDR9NhTz0uTUu4dpQ3Ud/a1ffgzAGHfxw4fXfEc/36du4QyM3N5ZZbbuH5559n5syZXHnllc5RodraWnbv3s0999zDKaecwpgxY6ivr+/1+okTJ5KdnU1dXd0hr282m7HZ3LfliiRGQgghXMruimaaO6wEmI2MiQuC7e9D6Xqo2gWGPkx0VO2EF+fDR7887CnRQb5kRGtrcNbm93PUyA10dnZSUVHR61FTU4PNZuPyyy9nwYIFXH311bz88sts2bKFf/7znwCEhYURERHBc889R05ODt98842zgHKPSy+9lNjYWBYvXswPP/xAXl4e7733HmvWrAEgJSXF2Y2ipqaGzs7OYf/+j4UkRkIIIVzKOkeiMjUlHJPaDcv/rD0x5zcQknD0C6h2KNsEOz+G8s2HPW12egRA/6fT3MAXX3xBXFxcr8ecOXN44IEHKCws5NlnnwUgLi6O5557jnvuuYfNmzdjMBh488032bBhA+PHj+eWW27h73//e69rm81mvvrqK6KjoznjjDOYMGECf/3rXzEatanE888/n4ULF3LSSScRFRXFG2+8Mezf/7FQVFVV9Q7CXTQ1NRESEkJjYyPBwZ5ZFEwIIfT2f69t4POtFdy+IJNfBn8Pn/wGguLgVxuPuhXf6b1rYes7kHkmXPr6IU/539ZybnxtI5kxQXx5ywm9nuvo6CA/P5/U1FR8fQ+/w024jiP9N+vP+7eMGAkhhHAZqqruW3idEgqr/609MftXfU+KAE64A1Bg92dQuf2Qp0xNCQNgT1UzTR3dxxC18CSSGAkhhHAZeTWt1LR0YTYZyGr/EWr3giUEpizp34WiRsFYR22edc8f8pToIF+Swv1RVcguaji2wIXHkMRICCGEy9hQoO2AyhoRis+OD7SD064CS1D/Lzbjeu3jlreh49CFEqcma6NGGwrrD/m88D6SGAkhhHAZm4q1BGVyciic9xz87J19CU5/JR8PUWOgu1VLjg5hiiMx2lgkiZHQSIFHIYQQLmOTY0prcmIYGIww6rSBX0xR4LT7wdqhtes4hKlJWmKUXdSAza5iPKDKtuxPch+D9d9KEiMhhBAuoaXTyp7KZkBlcuIgNR4deeoRn86MDSLAbKS508reqmZGx2o7lnx8tMaybW1tHl/p2VP0VObuKRswUJIYCSGEcAlbShqwq3BaUCExL06DyZfBSXcP6T2NBoWspFB+yKllQ2G9MzEyGo2EhoZSVVUFgL+/P4qiHOlSQkd2u53q6mr8/f0xmY4ttZHESAghhEvILm4A4JKAjdBQAnX5g3PhjiZY8yQU/gBXfqJNse1nalIYP+TUsrGwgctmJjuP93SH70mOhGszGAwkJSUdcwIriZEQQgiXsKmoAQU7M9pXaQfGnTs4FzaaYfW/tEXYZZsgYUqvpyeOCAVgW2nvnWuKohAXF0d0dDTd3VLnyNWZzWYMhmPfUyaJkRBCCN2pqkp2cQOTlRwCO6vAHATpJw/OxX18YeR82PER7PrsoMRowghtPdPeqmbauqz4m3u/NRqNxmNetyLch2zXF0IIobvShnaqmzs52/SjdiDz9IO71R+L0WdpH3d9dtBTMcG+xARbsKuws7xp8O4p3JIkRkIIIXSnbdNXOcNnk3Zg7KLBvcHI08BgguqdUJt70NMTErRRoy0lhy4EKbyHJEZCCCF0l13cQLpSRoy9UlsTlH7S4N7ALxRS5mqf7/r0oKcnJIQCsFUSI68niZEQQgjdbSqqpwsTOamXwcSLwRww+DcZfab2cff/DnpqomOd0ZZSSYy8nSy+FkIIoasuq51tZU10qTEYzngYogKH5kYjTwX/SAhLBVXttW1/vGMqLbe6hZZOK4EWeXv0VvJfXgghhK72VDbTZbUT7GsiNXIIRop6hKXAb/fCIbZ0RwVZiAvxpbyxgx1lTcxIDR+6OIRLk6k0IYQQutpa2sgopZgLIgtR7NahvdkR6tzsW4DdMLQxCJcmiZEQQghdbS1t5ErjV9xbczt8/aehv6GqQtWugw73JEZbZZ2RV5PESAghhK62lTZynGGH9kXy8UN7M1s3PDYBnpoJdXm9nuop9Cg707ybJEZCCCF002W1U1deSLqhHFUxQPLsob2h0QdCk7TPc7/p9dTYeK2BbH5tK+1dtqGNQ7gsSYyEEELoZk9lM1PU7doXsRO1ekNDLc1RIyn/u16Ho4N8iQw0o6qwu7J56OMQLkkSIyGEy1BVFVVV9Q5DDKOtpY3MckyjKSlzhuemKY7pusIftPVG+xkdq40aSWsQ7yXb9YUQurLZVd5ZX8ybPxWzvayRcLWBxNhozpmewaUzkvAxyt9vnmxraSPX96wvSj1heG6aMBVMvtBaDTV7IWqU86kxcUF8n1PDLkmMvJb8xhFC6Kakvo2Ln13Dne9vJbu4gW6byt+NT/F27QWM+t8l3PvokxTVtukdphhCFUU5pBgqUTFA0qzhuanJAiOma58Xft/rqTFxPSNGMpXmrSQxEkLooqi2jUue/p5xJW8SYlH4/Rlj+Pb2eUwbGY9BUTnOsJOHWu7hx39fTUGV7BLyRF1WO6urzJzTeT918x8B3+Dhu3nPIu/C1b0OOxOjiiaZ1vVSMpUmhBh29a1dXP78D9za/jjn+XzPLbNiCT3hDO3JJW9DQxGtKx/DL/slLlK/YNmzlxN489tEBvnpG7gYVHsqm+mwQaHfaMKPP3V4bz5qIVg7IKP3fdOjAvExKjR3WCmpbycx3H944xK6kxEjIcSwsttVbn4rmyUtL3Ke8XtUg4nQhNG9TwpNImDxIzSf8yJWjJxqW8VPz/9a/oL3MD2FFMcnBKPs17dsWCRMgVPvg9S5vQ6bTQbSHb3adlXIdJo3ksRICDGsXllTgF/OZ1xr0jqcK+c9B+PPO+S5IVPOp+rkRwCY0vgV763eNmxxiqGXV1jAA6YXucS8+ugnD6OxcbIzzZvJVJoQYtiUNbTz0pfr+MTnee3A7F/D+POP+Jr4E65iZXkDt2yKwbasjFOyMgkLMA9DtGKoqUVrucy0nOaaIuDW4Q+gowmK14G9GzJPdx4eHRcEmyQx8lYyYiSEGDYPfLaTW9VXCFVaUWMnwin39ul1cy/8DbFxI2jqsPLY13uGOEoxHLqsdqIbNgOg9OwQG255K+G18+GbB3od7lmALVNp3kkSIyHEsNhc3MCubes51/gDqmJAOftxrT1DHxgNCn84cwygUrXuXUr2bh7aYMWQ21PZzCRlLwABGcO0Tf9APQlZ1Xbo3JcE9SRGBbWttHZa9YhM6EgSIyHEsHj4y13kqgk8kvocyukPa4tf+2F2RiSPR3/O0z6PUv/JH4YoSjFcthfXMEnJBUBJnKlPEMFxEJIIqh3KNjkPRwZanK1Bcqpa9IlN6EYSIyHEkNtQWM8PObX4GBUuPPtsmHHdgK6TcfISAMY1rqIqN3sQIxTDrTZ3A75KN+3GYIgYqV8gI6ZpH4vX9To8MjoI0Ea2hHdx28Ro1apVnH322cTHx6MoCh9++OFRX7Ny5UqmTJmCxWIhIyODpUuXDnmcQgh4/ttcwmhicVbCMdWFGZd1HGt9j8egqFR+9uAgRiiGm0/ZegCaIieBQce3ohEztI8l63sdHhmjbdmXESPv47aJUWtrK5MmTeLJJ5/s0/n5+fmceeaZnHTSSWRnZ3PzzTdz7bXX8uWXXw5xpEJ4t4KaVmp3fcuPll9xt/LSMV9PmftbAMbULaOjtviYryeGX7fNjrm5EABzynH6BtOzzqhkXa+GsiNjZMTIW7ntdv3TTz+d008//egnOjzzzDOkpqbyz3/+E4AxY8bw/fff8+ijj7JgwYJDvqazs5POzk7n101NsnVTiP568ft8rjN+hkXpxmI59utNnXUSm74ey2R1B3u/+DdjLvvbsV9UDKucqhb+2LWElyzns2LOSfoGEzcRjGZoq4X6fAhPA2BUtDZitFdGjLyO244Y9deaNWuYP39+r2MLFixgzZo1h33NQw89REhIiPORmJg41GEK4VFaOq1s2LiO+YaNqCgw66ZjvqbRoFA5RltrFJv7Fli7jvmaYnhtc1S8jo1PxBAUpW8wJgtc8DLcuAZCk52He0aMSurbZWeal/GaxKiiooKYmJhex2JiYmhqaqK9vf2Qr7nrrrtobGx0PoqLZdheiP74OLuM8+1fYVBUGLUAIgdnke3U066gQg2j2urP3j1SDdvd9CRGExJCdI7EYcxZEDMWDEbnofAAM5GBWiHR3GoZNfImXpMYDYTFYiE4OLjXQwjRd++ty+E843cAKNOvHbTrRoUG8ljaC5zW9TBv5/sO2nXF8Ejdu5T/+DzEacqPeodyRBmO6bQ9lZIYeROvSYxiY2OprKzsdayyspLg4GD8/KRjtxCDbXtZI/HlywlTWrAFxUP6yYN6/ZOnjQcUPt5chs0uzWXdhc2ukty8gROMW0m1uMjCZmsn/PgMfPhLsO2bNhvlmE7bKwuwvYrXJEazZs1i+fLlvY4tW7aMWbN0qrgqhId7+6diLjR+C4BxyhW9pikGw4mZUQT7mmhqamRz9k+Dem0xdPKqWxhHHgDhI3Uq7Hgggw988xfIfhWqdzkP96wzkgXY3sVtE6OWlhays7PJzs4GtO342dnZFBUVAdr6oCVLljjP/8UvfkFeXh533HEHu3bt4qmnnuLtt9/mlltu0SN8ITya1Wbn0y3l3NZ9I7mTfguTLx/0e1hMRn6dWspPlv8jetmxL+oWwyMndy/RSgM2DBjjJuodjsZggLhJ2ufl2c7DI51TaTJi5E3cNjFav349kydPZvLkyQDceuutTJ48mXvv1ZpSlpeXO5MkgNTUVD777DOWLVvGpEmT+Oc//8kLL7xw2K36QoiB+yG3ltrWLmwB0SSd83sITRqS+0yaNhcL3Yxo301X5e4huYcYXI252uhejW8KmAde7HPQxWdpH8uynYdG7bczra1LdqZ5C7etYzRv3jxU9fDrCg5V1XrevHls2rTp4JOFEIPq4+wyAM6cEIePcej+/po6JoO1hgnMUrMpWf02aedKDzVXZ6zUGgC3R07QOZIDxGt/ZO/fMy08wExEgJna1i5yqlqYOCJUn9jEsHLbESMhhGvq6LaRu30d//F5iKuCh3btj8GgUJlwKgDmPZ8N6b3EsbPbVWKadwDglzJN52gOEJelfazc1msBdk9rENmZ5j0kMRJCDKoVu6qYb/uOE4xbSav8asjvFzXtPOyqwoj2ndjri47+AqGbgtpWGuy+NKn+RIycoXc4vYWngTkIrB29FmA7d6ZVyTojbyGJkRBiUH2xrZyzDVpFeWXCBUN+v2njM9nIaADK1r435PcTA7etrIlfd/+KK6PfwZToYomRcwG2ArU5zsM9C7D3yoiR15DESAgxaLptdkp3/0SyoQqb0RdG9b2f4UBZTEYKorUaSer2j4b8fmLgeipej08I1RIRV7P4KbirGMYtdh7KiNZGjHJky77XcNvF10II17M2r4451h/BBIaMU4Zt11HQlPN54NN68uyzeXFY7igGYmdJLQDjE1y0i0BY8kGH0qMDACipb6PTasNiGtx6XML1uGDKLoRwV8t2VHCqYQMAypizhu2+x2VN5CX1bJbXhlPacOjeh0JfqqpyXdk9rDL/huPs7rM7OCrQQpDFhF2Fwto2vcMRw0ASIyHEoFBVlS3btzLOUIiqGGDUwmG7d4ifD1mJoQCs2lM9bPcVfVdc106mmk+SoZr46Gi9wzm8r/4ALy2E2lwAFEUhLUobNcqV6TSvIImREGJQbCttorO5jrXqWOzJc8E/fFjvf1J6MOcbVpH4/e/Abh/We4uj21uQT4zSAIBP/Hh9gzmSgu+haA1UbHEeSovSFmDn1bTqFZUYRpIYCSEGxbIdFexQU3g5498Yl3ww7PefMzKS+3xeZk7T51jLthz9BWJY1edtBKDGnACWIJ2jOYJYR9JWsc15KC3SMWJULSNG3kASIyHEoFi+qwqA+WNjBr1hbF9MSI5hnaJVU67c+PGw318cmb1cSzRaQkbrHMlRxDgqclfuS4zSHVv286plxMgbSGIkhDhm1c2dNJbnEk4TJ46K0iUGo0GhMnouAGrOcl1iEIcX1KgVTTTEu0jj2MM51IhR1L4RoyO1ohKeQRIjIcQx+z6nmltN77De90aitr+kWxzBY+cDENO0DbpkB5GraO7oJrk7H4DwtCk6R3MUMeO0j00l0FYHQEpEAIoCzR1Walq6dAxODAdJjIQQx+y73VXMNWzBgLrvjUUHEyZMpkwNxwcr7XmrdYtD9Laropn19lHsUDIITJ6sdzhH5hsCoUna55XbtUM+RhJC/QDIk3VGHk8SIyHEMbHbVSr3/ESU0oTN5A+Jx+kWS2JEAJtN2lRN9ZZlusUhettV3sS91qv5R/IzEJqodzhHFzMBAmOho9F5KF12pnkNqXwthDgmO8qbmNS5AXxAST0BTGZd42mMnQWlK2mqKtQ1DrHPjnKtAevoWBfejba/C18Gk6XXobSoAL7dUy0jRl5AEiMhxDH5dk81Jxo3A2AYOV/naMAy8Vwm5yaTYkhi+IsGiEOpKCnAjI0xcS7aCuRAByRFsK+WUa7sTPN4MpUmhDgmP+0qYIqyV/siQ//EaPqoROoJZktJIy2dVr3D8Xp2u8p1tX9jh+VqprWt0juc/nPsQkt31DKSESPPJ4mREGLAWjqt+Jb8gI9iozskFcJT9Q6JEWH+JIb7YbOrrM+v0Tscr1dY28ooCjEpdqJGjNQ7nL57+0r4xyio1soM9IwYFde302WVyuqeTBIjIcSArcmtZZ1tFH81/wqfebfrHY7Torgm3jLfx8hPztM7FK+Xl59LpNKEDQOm2LF6h9N3zeXQUumsZxQTbCHAbMRmVymqk+k0TyaJkRBiwH7IqaGOYFrGXgyTL9M7HKfRacnMNOwirnUHtDfoHY5Xa8x3tAKxJIKPn87R9EOMo9Bj5Vagp5msNmqUUyWJkSeTxEgIMWA/5tUCMCstUudIeps8bjT59hgMqHTk/6h3OF7N7hhxaQ0do3Mk/RTjGN2q2uk81FMBO69G1hl5MkmMhBADUtvSSWTVaq4xfsbs0Dq9w+klIdSPHSbtja16x7c6R+PdAhu1hfmmOP0Kfw5IlCORq9rlPJQWKT3TvIEkRkKIAVmbX8f5xlX8wec1wnJcb2N8Q9RUAAzFMmKkl5ZOKyOsWj2piFQX75F2oGhHYtRYBJ1aHab0aNmZ5g0kMRJCDMianBpmGXZoX6TM1TeYQ/BLmw1AZNN2sEp/Kz3srWzmA9sc/qecQECyi/dIO5B/OATGaJ9X7wb2jRhJLSPPJomREGJAinO2EKvUYzOYIXGG3uEcJGPsFOrUQCxqJ/ayzXqH45X2VDbzou0MXku4Z1//MXeSNAuSZoPdBkBKpD8Aje3dNLRJsu2ppPK1EKLfqpo7SGhYDz5gT5iO0QV3G42JD+FTdSqB9mYyGztww7dlt7enUptyGhXjJq1ADnTRK72+9DebiAm2UNnUSX5NK5OT9G1/I4aGjBgJIfrtx7w65zSaT/qJOkdzaD5GA2+NuIvrun/L6vZkvcPxSk0lO0lVysmMdr3EeaBSIrR1RgW1Mp3mqSQxEkL025qcGo7rWV+UeoK+wRzB1OQwANYX1usciXeaX/USKyy3Maf6Tb1DOTZdbc5PnYlRTdvhzhZuThIjIUS/5efsIIg2bEY/SJiqdziHpSVGKsX5e6CjSe9wvEpjWzdJjh1pYSlutiOth7UTHp8ED8ZDu5Zcp0TKiJGnk8RICNEvFY0d/FgfRFbXC7Rf8RmYXHedxZSkMJ73+SdvtV1L85aP9Q7Hq+ytqCNNKQfAP2G8ztEMkMkCNiugOusZpToWYBfUSGLkqSQxEkL0y08FWjHH9PhIAlNcd7QIINTfTKNvAgANe6We0XAqz9+BRbHSofhCSKLe4Qxc9GjtY7VWATvZucZIptI8lSRGQoh+We9IjKYlh+scSd+0RU8GwFS+UedIvEt7idYKpNY/DQxu/FYT3bsCdnLEvi379a2yZd8TufG/ViGEHspyt/Gp+W6uaHlJ71D6JDBtJgCRLXu0NSNiWBhqtKKIXeGZOkdyjJytQbTNBj1b9kHWGXkqSYyEEH3W1NFNeO16xhsKSGzdrnc4fZI2chy1ahA+dKM6GpqKoRfaovVIs8SN1TmSY9QzYlS9r2eabNn3bJIYCSH6bGNhPdMN2kiA2dFyw9WNiQ9mq5oOQMPeNTpH4x1qWzp5pXMej1nPI2z8fL3DOTZRjhGv1mporQEg1bEzLV+27HskSYyEEH22vqCeaYqWGJHkHomRxWSkLFDr7N6av1bnaLzDnsoWvrNP5P3gJfgluVmPtAOZA2D0WZB1uXMqtmcBdqGMGHkkaQkihOizvbl7STFUoqKgJE7XO5w+a0qYy4s76wiwzOMSvYPxAnurtG70o2ICdY5kkFzyWq8vZcu+Z5MRIyFEn3RZ7fiW/6R9HjkWfEN0jqjvIjLncL/1Ct5vcfP1Lm6irmAr8wybmBLWoXcoQ2JfkUeZSvNEkhgJIfpkW1kjWapWy8Wc6h7TaD0mJYYCsK20EZtd1TcYL5BY8ilLzX/njNpXjn6yu7B2Qb1WyTs5XEuMZMu+Z5LESAjRJz/l19GMH3XGaJRk90qM0qMCiTJ3M6F7GyVbvtU7HI+mqiphrbkAWBLG6RzNIKncAQ/EwvMnA+BnNhIb7AtAvqwz8jiSGAkh+uSngnoesV7Eeyd+CWMX6x1OvxgNCr8MXcNblvvxWf2I3uF4tOqWTlLtRQBEpEzSOZpBEpYMqg3aaqBNK3DaU+hRFmB7HkmMhBBHZberbCh0VLxOCXPLSsYGR7Pb4LotoMp02lDJL6slSakCwBzvpj3SDmQO2NfWpFrblSlb9j2X+/12O8CTTz5JSkoKvr6+zJw5k3Xr1h323KVLl6IoSq+Hr6/vMEYrhHvKq2lBbavDzwfGxbvPouv9RY2ajlU1EGith+YKvcPxWDVFOzAqKi2GIAiI0jucwRM5SvvoqOjtXIAtO9M8jlsnRm+99Ra33norf/zjH9m4cSOTJk1iwYIFVFVVHfY1wcHBlJeXOx+FhYXDGLEQ7umngnqeMT/GOtMNmAu+0TucARmfHEOOqjWU7S6RvmlDpb1MW6Bf758CiqJvMIOpp9BjjVbRO0Wm0jyWWydGjzzyCNdddx1XX301Y8eO5ZlnnsHf35+XXjp8DydFUYiNjXU+YmJiDntuZ2cnTU1NvR5CeKONeRVkKTkEqc0QkqR3OAMyIsyPPYY0AOpyftI5Gs9lqNMSh+7QdJ0jGWSRI7WP1b1HjPJrWlFlanZw7PwUyreArVvXMNw2Merq6mLDhg3Mn7+v3LzBYGD+/PmsWXP4sv8tLS0kJyeTmJjIokWL2L798P2eHnroIUJCQpyPxMTEQf0ehHAXrQUb8FW66bKE7XuDcDOKotAQovW9spZu0jkaz/VWx3Hc3PV/dI7zsFKakT0jRlpi1LNlv6nDSkObvm/kHsHaBe9cBc/OheZyXUNx28SopqYGm8120IhPTEwMFRWHXj+QmZnJSy+9xEcffcSrr76K3W5n9uzZlJSUHPL8u+66i8bGRuejuLh40L8PIVxdXWsXcc1bAVASZ7r39EictksqsG6HzoF4po5uG+uaQvnQPofoCSfrHc7gih4DEy6CqVeBqsqW/cFWvQvs3Vrh2BB9ByG8qiXIrFmzmDVrlvPr2bNnM2bMGJ599lnuv//+g863WCxYLJbhDFEIl7OpqJ7JhhwAfJJn6hzNsQnPmMY9W6/GGj6Rv6qqeyd5LkibVoJQfx/CA8x6hzO4/MPh/Od7HUqJ9KeiqYOCmlamJIXpFJiHqND++CJ2ou7/X7rtiFFkZCRGo5HKyspexysrK4mNje3TNXx8fJg8eTI5OTlDEaIQHmFTUQNTDNq6EUa4T3+0QxmdFMertlP5qDoemywLGXRFJcUsMX7JOcE5KF6QdKZEyM60QeNMjCboGwdunBiZzWamTp3K8uXLncfsdjvLly/vNSp0JDabja1btxIXFzdUYQrh9grz9xCv1GHHAPGT9Q7nmKRGBuLnY6S920a+vJkNurbCjdzn8wq/bHta71CGhs0KtbnOnWnJjsSosE5qGR2zym3axxj9a1+5bWIEcOutt/L888/zyiuvsHPnTm688UZaW1u5+uqrAViyZAl33XWX8/z77ruPr776iry8PDZu3Mjll19OYWEh1157rV7fghAuzWZX2Vreyr+ti2gcfQlY3LtbutGgMDu6m4uMK2he/aLe4XgcW9UeANqCPWxHWo91z8K/psA32tKLfdWvJTE6JqoKFVu0z11gxMit1xhdfPHFVFdXc++991JRUUFWVhZffPGFc0F2UVERhv0q9NbX13PddddRUVFBWFgYU6dOZfXq1YwdKx23hTiUvVXNFHQG8bT5Z9x40QK9wxkUx4fW8fPa56nfmQCLf6N3OB7Ft1Hrkaa66c7Fo+op8litJYBJ4VpiVCwjRsemsRg6GsHgA1Gj9Y7GvRMjgJtuuombbrrpkM+tXLmy19ePPvoojz766DBEJYRn2FTUAGjd6Y0Gz1gzEpI2BXIhrLMU2uvBTxbNDgZVVYnsKAQFAhPG6B3O0OhJjGpzwGYlyTFiVNvaRUunlUCL27+l6sM/Ei57D5pKwaT/on23nkoTQgytLQVVzDNsYlacZyRFAJkpSRTZtVYVavkWnaPxHBVNHaRQCkB4sv7rRIZESCL4+GvbyusLCPb1IczfB5AK2MfE7A8j58PUK/WOBJDESAw1aydU7YQ9X2pVTRtL9Y5I9ENTYTZLzX/nhi0XeUzj1ZExgewgFYDG/A06R+M5CkoriFXqATBFjdI5miFiMEBEhvZ5jWM6zbEAu0jWGXkMGfcTg8/aCdveg+0fQP4qsHbse+6ydyFE61dFaw10NkN4qj5xiiNqbO8mqmEz+AAJ03SvLTJYLCYjFf6joWMd7QUbCNU7IA9RW6h1EWgwhhPqF6pvMEMpcpS2ULhmN3AGyeH+bC5ukJ1px+LHpyEwBkaeCpYgvaORxEgMsh0fw2e3Qmu181C3KZA2/wQMZn86fZOI7Hli3XOw6h/a8OnJf9AKqAmXsbm4wVnY0Zzi3oUdD2SNngBFYKnZqncoHiO7I5aXOv/EJRODuUjvYIZSTzNZxwJs2Zl2jKyd8OXvQbXRftMWdlRYyYgKJMQxRakHSYzEoFFVlS3tEUxoraWKCF7tPpll9qns7kiEFsdow5M5jIqpYOH4OG5sKMBPtcH6l2D3F3DuM5B2or7fhHDaWFTPeYpnFHY8UGDqVCiC0PYi6Gxx+zIErmBXrY2N6iguHTlR71CGVtpJYLdC0nGA7Ew7ZrU5oNrAEsyWxgAufn41I8L8+P53+rWUkcRIHBtrF2rxWpa3j+LRr/ewvayJKcq9bFHTMBjNpMUEcHygtsugrKGDoro29lS2sKdyL8+azuXucSdyRfUjGOpy4D+L4PS/wcwbdP6mBEBufj5JhmpUFJSEKXqHM6gyUlO5ZNk9NASk84UkRYMit7oFgPRoD/95Jk7XHg77ijzK4usBqdqpfYwaTZ5j1C09St9/Q5IYiYFrraHj1UswlW/kic4/sV1Nx9fHwKisU7h1YjwzUsMxm3qv729s6+ab3ZX8Z00hm4oa+OPmUP4Tcj+vp79PTO478L87oKVSm1rzkDUt7shuVzGUrgegM2wkvr4hOkc0uMbEBbNWHYvaDLUtnUQESk/EY9HaaWVxy9s0GgPICPCs0cWj6ZlKK2vooNtmx8coe5r6pScxih5DbpUjuZbESLgjtWonLS+fT1B7KU2qP9HGFn5xfDo3nJBG2BGaR4b4+3Du5BEszkrg2z3V3PPhNnLr25nVtJh3x8cyZe+/YPW/YeLF++byxbDLr20l07oLTGBOOU7vcAZdgMVEcrg/BbVt7Kpo5vgMSYyORX5VEzeb3sWiWMHgBUUzG0u1N/SoUUSHJGIxGei02imtbyclMkDv6NxL9S7tY/QY8nZpo25pUfr+DCW1Ff3Wlr+WtmfmE9ReSqE9mj9FP869t9zMnaePPmJStD9FUZiXGc2XN5/AeVMSsKsK522dxf+Sb0e9/F1JinS2sbCeN20n8XTwzRiyLtU7nCExO6KN35neIPjbe/UOxe2VF+3GoljpwqzV+vF0n90Gr50Pe75EURTnOiPZmTYA+02lOadjdR4xksRI9EvFtpWorywiwN7CRvtIvp/3Fv+48UJnBdj+CrCY+OeFk/jdQq0M/I27J/O3XdGoHlIzx11tKm6gSI2hYfQlkDxb73CGxOgIAzeaPmFk6ftgt+sdjltrKd4BQK1volbrx9NFOmoZ1Wq7Nnum04qkyGP/dLdDfT4AnRGZzgXs6TJiJNzFtux1BL97EQG0s0EZh+HKD7ns5CkYjrFVhKIo3DgvnfsXa9Vyn/k2l6e/zYWKbfDSQmiuGIzwRT/0tAKZnBSqaxxDKSZ1Ap2qD772dmgo0Dsct6Y6us23e2rz2ANFOHrBOb7vpHBHkUcZMeofowVuWg+XvE5RRyB2FYIsJqKC9J3alsRI9MmK3VVc9F41X9imk+2TxYibPiUrfcSg3uOK45K550ytx9LDX+yi8e0boWgNvH+d/EU/jFo6rURUrmaJ8UumBdbqHc6QGZMQzh5VKzZqK5N6RsfCr0lrHqt4asXrA/U0ya3VEiOpZTRABgNEpMPoM5070tKiAlB03ngjiZE4qo+yS7nulfW0dcOnqfeQecvnxEQMTTHGa+emsWRWMqBwSc3V2E1+WvXs9S8Oyf3EwbaUNHCu8Tvu83mFyPyP9Q5nyIwI82OvkgJAY8EmfYNxYza7SmRnEQBBI8bqHM0w6RkxaiiG7nbnUgIZMRq4/BptGjLVBRavS2Ikjui9H/ey+d2HsNttnDMpnmeWzMTPf2j/4f7hrLHMTo9gZ1cMT/ss0Q5+9QeozR3S+wrNpqIGJntoYcf9GQwKDUHaCEdnqTSTHaiyhnZSKQMgLMlLEqOASPANAVSozSU5fF9iJOsj+2H1v7TuB3X55Ff3JEb618GSxEgc1vsbirB8dhP3mv7Le3H/5bGLsw6qSzQUfIwGHr9kMhEBZv5RP5e8oKlgbdd2gsgvnSG3J7+ANINjXVfCVH2DGWL2GG1dm1/dTp0jcV+51S0s7PwbtwU8hDF6jN7hDA9F2TdqVLuXEWH+KAq0ddmobunUNzZ3su55+OZ+aCzZN2Kk88JrkMRIHMbHm8uo+OD3nGX8EatiIuucm455kXV/RAVZ+MeFk1AxcHXNZdgNZshbAbs+HbYYvJGqqqglWsf5jpA0j+9fF5SUBYC5q1HbISP6Lbe6lRpCaI+fCT6+eoczfGb/ChY/AyNmYDYZiA/xA6BI1hn1TVcrNBRqn0ePIc+RGKXJVJpwRf/bWs4P7zzK/5m09SWGc/6FknrCsMdx0uhofjYziUI1lteMi7WD294b9ji8SXFdOxld2tZrn2TPahx7KGnJiczueIL5Pv8BHz+9w3FLPbVn0lxgCmRYjVsMWZdCiLaA31nLSBKjvqnerX0MiKLJGEKNY6TNFQpkSmIkelm2o5LX3/wvfzFqi53VubdjmPwz3eL53cLRRAVZeKD5dD4feR+c/5JusXiDjUX1TFa02izGpBk6RzP0MmODKCOSsqZOGtu69Q7HLY0o/IC7TK8x3bRX71B0lSwLsPunp+J11GgKHKNF0UEWAi36N+SQxEg4rdhdxSOvfcKTpkfxUWzYx1+AcvLvdY0pxM+HP509jg4s/GbHSHJq5JfOUNpUWMcEg1ZwjRGenxgF+/owIkwbKdpV0aRzNO5pXOMqbjB9RobNyzZH2LohdwX89CKoquxM668qbWSa6LEutSMNJDESDhuL6rnhvxuIUSvxNdhQE2diWPSkSzRyPWNCLCePjqbbpvLQ5zu1uemc5XqH5ZE2lTQyu/NfrJ6zFLxkIe1J4XU85fMY0V/+Qu9Q3E5jezcjbCUAhCeP1zmaYaba4dXz4LNboaWKZEeRx0Kpft03VT090kaTV+0aPdJ6SGIkqGnp5P9e3UiX1Y5x1Gko13yJcsnrLrOQUlEU7jlzDCaDwpZde+h6ZCK8fjHUF+odmkfp6Laxo6yJNnxJmroADEa9QxoWaVFBnGFcR0LVKrDb9A7HreRX1JGsVALgF+cdibSTyQKhSdrntXtlKq2/HMUxiRojI0bCtVhtdn792gasTZWkRwXw+KWT8RkxWavT4ULSogK5bGYS1YSy3ToC7N2w8q96h+VRtpY2YrWrRAVZSAj1noXIMSlj6VB9MKsdUF+gdzhupapwFybFTrviB0Fxeocz/PZrDdIzlVbT0kVLp1XHoNzEL9fBjashPmu/xMg1FvBLYuTl/v7VbmYXP8MXljtZeprRJRa+Hc6vTxlJkMXEH1vP1w5seVOKPg6iTUX1PO7zbx7yfx3Fi/rTZSaEsVvVOsLbyqU1SH+0lmn1n2p9k11i2n3YOVuD5BDs60OYvw8gW/b7xGSBmHGoJl8ZMRKu44tt5dR9/xI3mT4iUmkk0bFWwFVFBFq48aR0tqjprDFM1eb4f3hc77A8xq78EhYZVzO/8T0wuG6CPNhSIgLYQzIATdIapH9q9gDQEeolzWMPFJGhfXQ2k5XptP6qbumkpdOKQdn389ObJEZeKre6hbffeZ0HTY4eZCfcrtXkcHFXzU4hIsDMP9vP1A5sfgOayvUNygOoqoq1+CcAOgKTIDBK54iGj9GgUOdoDdIlrUH6xbdZ65FmjMrUORKdHNBMNilCG/EoqpMF2Ef049Pw4S8h/zvnwuvEcP9h6azQF64RhRhWrZ1WHlz6IY/xD21b/rjz4SR9t+X3lb/ZxPUnpLFeHc1mw1iwdcGaf+sdltsrb+wgtV3bPmtK9vxt+geJGgeApX63zoG4D6vNzq/brmZmx7/xPe5qvcPRR88ao/pCsHY5e6ZJkcej2PMlZL8K9fkuN40Gkhh5HVVV+cvbq/hj858IVtroip+BYfFTbrU+4IpZyYQHmHm04yztQFutvgF5gE1FDUw2aIUdTUmeX/H6QIFJE+hUfWi0+2v1acRRFde3022DJp8oYmIT9Q5HH0GxsOhJuPpzUAxSy6ivqhy9CV1wRxpIYuR1XvqhgAm7nyDJUE1HUBLmy95wmW35feVvNnHd3DRW2idxhf/T2Bc9rXdIbm9TYS1ZjsSIxOn6BqOD1KQkxnS+zJU+fwejj97huIXcKq0VSGpkwLD2UXQpigKTL4ek48BokhGjvmivhxbH5o6ozH01jCQxEnr4Ma+WBz/fyV+sV5ATdya+V37gctvy+2rJrGRC/Mx8VxfC1zsr9Q7H7VUVbCdUacVmsECMlxXqA0bFBmHHQGFdG+1dUsuoL5rz1vKMz6Nca/qf3qG4jGTHGqPShna6bXado3FRPYUdQxLBN5j8mp4E2zW26sMgJEZ1dXXY7fIPwNVVNHZw0+sbsdlVTstKI/361yAyQ++wBizAYuJnM7Xias9/lwcNRVAhW60Hostqp6GqiEo1lO6YSV45YhIZaCEiwIyqQk5ls97huAW1LJuFxp/Ism7WOxR91RfA+pdg67tEB1mwmAzY7CrlDR16R+aaelqBRI3GarM7px1TXaTqNQwwMdqxYwd//etfmT17NlFRUURHR7NkyRLee+89WltlNb6r6bTa+PK5u7i0/U1GxwTy0HkTUdxoTdHhXDU7BR+jQlzRZ6iPT4LPb9c7JLe0s7yJVd1jWWB4DsuV7+kdjm4WhebzP/OdRH5yhd6huAVzgzb1qvYsQPZWpRvg01tg7bMYDIpzy3mh7Ew7tOp9rUC0kTUVi8lAXLDrLOnoc2K0e/dubrvtNkaOHMlxxx3HTz/9xC9+8QsqKyv5/PPPSU5O5r777iMyMpLTTz+dp5+WdR+uQFVVPn/5Qa5sfYnbfN7llXmt+Jk9o9VDTLAv50xKYI19DHZVgaI1UJatd1huZ2NRPQCTk8JQfIN1jkY/sZFhjDEUEVS/Te9Q3EJ4m9aSxzd+tM6R6CzigC37ss7oyNq13zdEjSFvv4XXrrROrc+J0erVq2ltbeWJJ56gpqaG9957jyVLlhAZGcmMGTO4//772bx5Mzt37mThwoW8//77Qxm36KMVbz/BuaX/AKBwzA3ETD5D54gG17VzU6kmjE9tjp1Ua5/VNyA3lF1YB6hMTgrTOxRdhSRNwK4qBHbXQWuN3uG4tLrWLpJUrSBsZPIEnaPRWYSjuGV7PbTWys60ozn/Bbi7DMadS3616+1Ig34kRldffTXPPPMMp59+Omaz+bDnpaSk8Jvf/IZly5YNSoBi4Db872VO3PFHALYnXkryRX/TOaLBNyYumLkjI3nZulA7sO1daKvTNyh3U/gdP1lu5MKKR/SORFcZI6IpUqO1L3rWQYhDKiivJh6tTIYl1stHjMwBEDxC+7x2734702Qq7bDMAWD2d8mt+jBIu9I2btw4GJcRgyjn65eY9OOtGBWVTRFnMe5q96pV1B8/n5NKtprODlK1go+b39Q7JLdR3dxJQst2opQmIk3e/RfuyJgg9qjaG1x7iSzkP5Lqwh0YFJVmQzAEROgdjv4i97UG6dmZJlNpR+fRidGMGTO49dZbex37/PPPB+PSYgC2bttMyne3YVLsrAk8lYk3vgIGz63McOLIKBLD/Xm9e552YMNSUFU9Q3Ib2cUNTDFoayN8ko/TORp9Bfv6UGpOBaClWFqDHElDZREdqg/1fsl6h+Ia9ltn1DOVVlzXhiq/h3rLfh1eOh1+egHYlxiludCONBikxGjChAkEBwdz9dX7ysLfc889g3Fp0U/ZxQ387J0K7rVezVcBZzP5129gNHl2Q1CDQeHymcl8ZDueDiyojSXaFlpxVJsK65wVrxnhfYUdD9Qe5uj5JVNpR7SseyJjOl9mzcyn9A7FNfT0TKvJYUSYH4oCrV02alu79I3L1ZSsh6LV0FhCR7eN0oZ2wLVqGMEgJUaKovCnP/2JSZMmccEFF9Dd3S2Z8nDrbmfNxmx+9vyPNHdayUm6kLm/eQVfs3fUpLlwWiKdpkCu7LyDrZesg/BUvUNyC6X5O4lQmrEZzBA7Ue9wdGeKG0+OPZ5iQ5Leobi03OpWVAwkJsTrHYprGH0mXPUZnP0YFpPRufVcptMOsF8rkALHGqwQPx/C/F3rfWpQEqPgYG2L780338zZZ5/NOeecQ3t7+2BcWvRFQzF1/z6F6I8uxdTVxJyMSF66arrHbMvvi/AAM2dNiGOtOoZXNkjvtL6w2VV8KzYA0BU1AUyH31ThLSJSJjK/6x887HuT3qG4rC7rvqJ86VGu9Ze+bkJGQMocCNQW7+/bmSYLsJ1UFaodiVH0mF470lytrt6gJEYrV650fn7llVdy/fXXU1VVNRiXFkfRtfkd2p84jvDG7YTTxJLRdl66ajqBFs+ePjuUy2dp6x0+2VJGfUun7E47it0VzYy1a93kLanevb6oR2ZsEKD9bGTU+9CKapt5z3QPz1j+RbRJ/gA+lORwWYB9kJYqraSBYoDIUc4aRq7UI63HgN49m5qaePnll6moqCA1NZWsrCzGjx+Pv7+WJZ977rmce+65gxqoOEBjKfUf3kFY/qcAbLJnsGn637n1zJNcqlDWcJqcGMrYuGDsFduwPzMHgvzghlV6h+WyNhXXk6fGs9s8jszk2XqH4xIyogNRFGho66S2ro7ICNlxdaCSwlzmGXLpphDFEqR3OK5j1+dQ/COMXURSRAggtYx66Vm3F5YKPr4uuyMNBpgYnXfeeWzevJnp06fzySefsHu39ldneno6kyZN4q233hrUIEVvLV//HZ/V/yTM3o5NVXjJcD5jL/sLP8+M0zs0XSmKwqUzEnnkoxKCW/KgxQqVOyBmrN6huaRNRQ28a1tA8LRfkjkmU+9wXIKvj5Ebgn/kpo7naP/kVLjqVb1DcjlNxdsBqDUnEGv0vpHpw9r6Nmz/AAKiSI44H4AiGTHax9kKZAyw31Z9F9uRBgOcSluzZg2ff/45n3/+Odu2baOlpYU1a9bw29/+lujo6MGO8YiefPJJUlJS8PX1ZebMmaxbt+6I57/zzjuMHj0aX19fJkyY4FZlBfZWNnPPh1tZseobLPZ2frKP4tH0Fzj3tqc43suToh7nTEqg1RTKN7Ys7cDm13WNx5VtcrYCCdU3EBcTGBZNoNKBsWaX3qG4JFvVHgBag9J0jsTF9GzZr9m7X780SYycVBWC4g5OjDxlxGjixImY9tsCbrFYmDZtGtOmTRu0wPrirbfe4tZbb+WZZ55h5syZPPbYYyxYsIDdu3cfMkFbvXo1l156KQ899BBnnXUWr7/+OosXL2bjxo2MHz9+WGM/KmsnLYXZVG1dhjnva/5qX8KnNTEArFHOZW/U8cxedAO/TY/SOVDXEuLvw8Jxsby3dS4LjOthy9twyp9A/rLtpbGtm/bqQgLxJyvRu1uBHMg3fjxUQHBrPti6wehaO2b05tuYq30S6eXNYw/U8/OozXGuMapu7qSty4q/WX7/MOv/tIfdRkNbF3WOUgYpER6SGD388MPce++9vPvuu1gslsGOqc8eeeQRrrvuOmf9pGeeeYbPPvuMl156iTvvvPOg8x9//HEWLlzI7bdrXdjvv/9+li1bxr///W+eeeaZg87v7Oyks7PT+XVTU9OQfB/5Na28+MkKLqp8DLOtlRBbHdH2SgJR6dnzMc0axZfGqzlxVBTXzDmO49LCXW4lv6u4aFoiV2+eTD1BhLVUQt5KGDlf77BcSnZJA3/0+Q+nGjdg2N0OU5boHZLLiE0eRcsGXwLpgNoc51+4QmtKHdahNY8NiJefSy8R+6pfh/j7EOLnQ2N7N0V1bYyO9d7mzAcxGMmv0d5LY4N9CXDBjUIDmkpLSUmhqamJsWPHcvfdd/Pxxx9TXFw82LEdUVdXFxs2bGD+/H1veAaDgfnz57NmzZpDvmbNmjW9zgdYsGDBYc9/6KGHCAkJcT4SExMH7xvYT2unlR/2VDCx4ydGd+8gzl6BEZVG1Z/vjNP5IOZXRC64nfW/P5UXrpzOrPQISYqOYHZ6BNGhQXxknaUdkOm0g/QUdjSgQuQovcNxKZmxwc7WIGqlFHrcX01LFylqKQDhKeN0jsbF9CRGrVXQ3kByRE/PNJlOO7ATgStPo8EAR4zOP/98KisrOfHEE1m9ejVPP/00TU1NhIeHM3nyZL766qvBjvMgNTU12Gw2YmJieh2PiYlh165Drw2oqKg45PkVFRWHPP+uu+7q1eqkqalpSJKjEWF+XHfGbNbVPIDBNxBDQCRBI0YTH5/MXF8Zxu8vg0HhgqkjeO+bE7jK9BXs+gw6GsE3RO/QXEZx/m6ilQbsiglD3CS9w3EpKZEBvEcSU8ihuXgLwRPO1zskl5FXUUuY6k+E0ow5Whbs9+IbDIEx0FIJtTkkhfuzpaSRYllnBDnL4eObYORpcM4TLr3wGgaYGG3bto01a9YwadK+X6gFBQVs2rSJLVs8p8eQxWIZlqnCUH8zP5s7FpDdU4PlgqkjeOKbVF6yLuTss39GlI9r/g+oB7tdxVi2HoCOyHH4+/jpHJFr8TEaqA9Ih/Zv6Czdpnc4LiWnrpvfd/2d+ZkRvOAXqnc4ridipDMxSo7IAmTECNAKOzaXa3+ggkvXMIIBJkbTp0+ntbV3Rc+UlBRSUlKGrX5RZGQkRqORysrKXscrKyuJjY095GtiY2P7db5wX4nh/hyfHsV9OUtoqh/JzbL42imvppUx1l1gAkvKTL3DcUntUVl8nT8Zf7+JyPaGfXKrHH/pR8uamUM661Ew+0NQPEldJYDsTAOg6oCt+tWuPZU2oDVGv/nNb/jTn/5EQ0PDIIfTd2azmalTp7J8+XLnMbvdzvLly5k1a9YhXzNr1qxe5wMsW7bssOcL93b+1AQAPsoukyrG+9lYVO9sHGtMksToUCypx3Ft9+2867NI71BcSl5NCwBp0grk0KJGae1BDAaSHDvTimqlLYizuGPUaFRV9cw1RhdccAEAI0eO5Nxzz2XmzJlMnjyZ8ePHYzYPX7+lW2+9lSuvvJJp06YxY8YMHnvsMVpbW5271JYsWUJCQgIPPfQQoCV0J554Iv/85z8588wzefPNN1m/fj3PPffcsMUshs9pY2Px89mGWptD5QdfEZs6FiZfrndYutucV8FipUD7YsR0XWNxVSOjtTf+3ZXNOkfiWi4ueZBbzQVYOu8FpNHukfQsvi6pb8dqs2MyDkoHLvdjt0O1VgSa6DFUNnXS3m3DaFBIdNR7cjUDSozy8/PZvHkz2dnZbN68mQcffJCCggJMJhOZmZnDts7o4osvprq6mnvvvZeKigqysrL44osvnAusi4qKMBj2/WOcPXs2r7/+Ovfccw933303I0eO5MMPP3S9GkZiUARYTCwYF4P/1q+I3fIiVE2QxAjILqrlPusSbhjdSWKovLkditYzTaW+qgRbYxnGEOki39FtI617L5mGEppCZV3aIXW1wXf/gLo8Ys99AbPJQJfVTnljh8smAUOusRi6W8FohvA08gq0dUZJ4f74uGiyOKDEKDk5meTkZM455xznsebmZrKzs4d98fVNN93ETTcduhP2/s1te1x44YVceOGFQxyVcBWLJydwc/YM/uyzFJ+KrdpfLlHeu5umvrWL7TU2tnMqt513KkjZh0NKDPPnbvPbXG/4iMbl1xBy3iN6h6S7gupGUhVtB2/QCKlhdEgmC6z+N9g6MZzyRxLD/MitbqWors17E6OqndrHiJFg9HH5aTToxxqjioqKXsUODxQUFMTcuXP55S9/CUBeXt6xRyfEMZqTEYkpMIJVtonaga3v6huQzjYUam1A0qMCCAsYvmlvd2MwKHQGJwPQXbFT52hcQ3nBHiyKlU7MKCEy0nhIBiNEpGufO7bsg5fvTDP6QPLxkHQc4PoLr6EfidG7775LeHg45557Li+//DLV1dUHnbN27Vruvvtuxo0b12srvxB6MRkNnD0pno9tjgX22949qNiYN1lfUMfFxhWcFVOvzf2Lw7JHaeUz/Op36xyJa2gu0RbQ1vomgcE1p0BcQk9rkJo9JDvaXRTWefEC7IxT4OrP4Sxt1NWjRoxuuukmNm/ezNy5c1m6dCkjRoxgzpw5PPjgg1x33XXExcWxePFiqqqq+Otf/3rIxEkIPZw7OYFl9mm0q2aoy4OyTXqHpJvyvK38zed5fpV3A9i79Q7HpQUnTgAgoLsWWmt0jkZ/dscC2rZgaR57RIdoJlvkzSNGB8h38RpG0M/t+hkZGdx66618++23lJWVcd1117F582bCw8N57733KCsr44UXXuDss8/G19d3qGIWol8mJIQQGxXB1/Yp2gEvnU7rtNoIqPwJgO6YLG09hDistBExFNodzairpDWIf5O2PEKRFjJH1vPzqdkrbUHsdujaN1pmtdkpctR1SnHhxGjAVe8iIiK48sorufLKKwczHiEGnaIonJuVwMfLZ3OSaRuBXlrpeVtpE1mq9le/b9psnaNxfZkxQWxVE0mmiu6K7fiknqB3SLpRVZXCDj/y1FgCRkiPtCOKdPRMq92XGBXXtaGqqvf1uKzPh39N1Ta8/N+PWukCu4qfj5HYYNcdPJGJYuEVFk9O4Bv7ZKZ0PEXFtNv1DkcXGwrrmGrYA4CSLEVNjyYm2EK+UVuA3VK0Vedo9FXR1MEDnRdzmvVRImZeonc4rq1nKq2jkREB2jq+5k4r9W1eOHVdvQtQta36iuKcRkuO8MdgcN0kURIj4RUSw/2ZkhJJl2rio+xSvcPRxe7cPNIN5doXUtjxqBRFoTRsJi9aT2d3yBy9w9FVnmMnUVKE69aecRm+wXDzVri7DN+AEOfISKE3VsDu2arvaAXi7JHmos1je8i/cOE1FmU5WoRsKoXin8DapXNEw0dVVSheB0B76CjwD9c5IvdgTTqe+61XsIopeoeiq7yqRkAlXVqB9E1okrZ1Hy2ZBJxra7xKT2IUNRqAfEdLGVfekQaSGAkvcuaEOEwGhfvrboUX50PeSr1DGjYFtW1kdm0HwJwq02h9NTo2CIA9Xt4aJHjnW2y2XMf1bdI+qb+SvbmWUXVP81it9EVBjfYzSI107QRbEiPhNcICzJw4Koqt9lTtwLb39A1oGK0vqONf1nO5P/QvGGdco3c4bmNUTBDBtGIuWwv1hXqHoxtTfS4hShshfj56h+Iein+Cd66Gr+7x3p1pNivUaGsaie4ZMeqpYeTaVcAlMRJe5ZyseD5xFHtUd30G3e06RzQ8NhTW04w/psz5ECfFV/tqVEwQ9/u8zFOdv6dz8zt6h6Ob0DZtq74ldrTOkbiJjkbY/j7sXUaSo8hjsbdNpdXlga0LfAIgJImObhulDdrvWxkxEsKFnDo2hl0+oylVI1C6mmHvMr1DGhbrHa1ApiXL2qL+CAswU+KjjTC2FnvnzrSWTisjrCUARCRP0DkaN9FT/bo2l6RQrfWO11W/Nhi1pt3jzgWDgQLH4vMQPx/C/F175FESI+FV/M0mTh0bx6c2rW+PN0yn1bZ0Mq7mC+40vcEMc4He4bidznCtYJ/BS4s8FpTXkqhonQwCR4zVORo3EZIIJl+wd5Nq1KqmVzZ10tFt0zmwYRSRDouehMVPAlDgmEZLiQxw+XpOkhgJr7NocsK+6bQ9X0KnZy+sXZdfxyLjan5h+oSQ6g16h+N2fOLGAxDYkg8276tFU1WwHYOi0qIEQkCU3uG4B4MBIrRCj8Gt+QT5arWUvXJnmkOeG7QC6SGJkfA6czIiKfPLJN8eg2Jth71f6R3SkFqXV+Ms7EjSTH2DcUMxiSNpUX0xqd1Qm6t3OMOutdTRPNYvBVz8L32X4phOU2pzvHMBdk1Or5Io+dWu3zy2hyRGwuv4GA2cOTGev1gv58mkx2HsYr1DGlKVezcQorRhNflDrCy87q9RcSHsVUdoX3jhdFp+i4mVtkk0RklR0H5x9kzbQ3K4lgx4zYiRtQuemgkPxkFzBYBzjZEkRkK4qMWT41lun8pTBbG0W/WOZug0tHUR27AeAFviLDAOuD2i1xoZHcgueyIA7aXetwD707YxXNX9O+qP/73eobiXiJFgMEF3x74ij95S/bo2B+xW8PGHwBhg/636rp8YyW9J4ZWmJIUxIsyPkvp2vt5ZydmT4vUOaUisy6/jOEUb5bCkz9U5GvcUYDHxY8A8drQkc0HkqXjTmJvVZne+oaW7eBsHlzP2HBi3GIw+JK0rAqDQW0aMqvereK0oNLZ3U9OiTauluEFiJCNGwispisKirHgSqMZ/+d3w/g16hzQk1ubVMMPgqD6bIonRQLXGH89/baexucszE+jDKa5rxd/WjJ+PkfgQP73DcS8mCxi1bek91a+LvGWNkbNHmlb3qmdHWnSQhUCL64/HSGIkvNairASMip1Tmj5A3foOtFTrHdKgy8vdTTdGbX2RFHYcsFExWmuQ3RWevYPxQKUFe9jsez2rfH6JAVXvcNxWz1RacX0bNrsX/BydPdK05rE964vcYbQIJDESXmxUTBD+MRlstqehqDbY+ZHeIQ2qpo5uvq30ZXrn09Rf/YPzr1fRf5mxQYxWiojPfx8aivQOZ9g0FWv99bpNgdoWdNE/3z8Gz51EfPHn+BgVum0q5Y1eUG3f2SNNGzHKq3afrfogiZHwcov3q2nEtvf1DWaQrS+ow65CSkQAUQlpeofj1jJjg7jH9F9+2fQIat63eoczbLqrdgPQGiT/fgaksRjKNmKo3EpimGM6zdPXGXV3aO1AwNk81p0WXoMkRsLLnT0pns8cVbDVwtXQWKpzRINnbW4toDIzNULvUNxeWmQge9F2prWWeM/ONL8GR92mnhYXon96tuzX5pDoLeuM7N1w8j0w+Qq33JEGkhgJL5cQ6kdi6kjW2TNRUGHHh3qHNGjK927gJ8v/cWPTY3qH4vbMJgP1AVol466ybTpHMzxUVSW8owCAgIRx+gbjrnoSypo9+4o8evqIkSUI5t4Gi/4NioKqqs7F15IYCeEmFmXF7zed5hm901o6rUTW/ESU0kgstXqH4xFsjoWkvnW7dY5keNS2dpGsaiOoESnjdY7GTUU4EqO6fJJDtTV+Hj9idICali6aO60oyr5F6K5OEiPh9c4YH8dX6kxK1EjqI6eB3f0bPa7Nq2W6o36R78gTdI7GMwSO0JID/64aaPX8ZDO/uIQopQkAS0ymztG4qeAErcihvZvRvvUAFNZ5eJHH4p+01jmO36M902gjwvywmIx6RtZnkhgJrxcWYGZC5kjmdD7Oi/7XgME9/uc9ku/3VjHT4NgyK/WLBkVqQixFdkcTVS9oDVJU3cgr1lNZ6z8PLIF6h+OeDAatyzyQQhmg9UtTVQ/esv/+tfCvKVD4A8B+02ju829IEiMhgHOyEgCFjzaXesQvrbLdGwhXWrAa/SF+st7heITM2CB2q9oCbHul5ydG2xt9+aP1ar4e95Deobi3qDEQlkqkr/Zlc4eVxvZufWMaKl1tUF+ofe6Yes7rSYzcZBoNJDESAoD5Y6LxNxspq2th75qPoaFY75AGrLKpg6SGtQCoybOlftEgSQr352X1bJZ0/Y6ShNP1DmfI5Va3AJAe5T5/6buk856D32RjmXQe0UEWQBs18kg1uwEV/CMhUBtdza/R/h25y8JrkMRICAD8zSYWjIvlEZ+nGfXVEtj0qt4hDdj3e2uYa9C2lPuMPEXnaDyH0aDQFDOdVfZJ7Gwy6x3OkOuo2EMgbaRHS2J0TBTF+anH70yr6insOMZ5yLlV340SbEmMhHA4JyueFbYsANRt74GbTqn9kFPDBvsoKgIyIf0kvcPxKD2tQfZ4eGuQ9i4bf+u4j22+15LZ6T11m4ZaUrg2alJU66ELsHvW3kVpFa/tdpUCx+hYaoSMGAnhduZkRLLR9zg6VB+U2r1Q4X5vCKqq8n1ODY/bzifv3M97/eUmjl1mTBCnG9Yycvtj0FypdzhDJr+ihkSlCoDgeNmRdkxsVnjxNPhbCpnBWod5j51K6+mRFqNVvC5rbKfLasfHqJAQ5j5NiCUxEsLBx2hg3qR0vrE7Fiu7YU2jvVUtVDV3YjEZmJIcpnc4HmdUbBA3m95jYd2rUL5Z73CGTGXhToyKSqsS4KxeLAbIaNIq6rfXM9pHS6Y9ti1Iz4jRAa1AkiMCMBqUw73K5UhiJMR+9i/2aHfD6bTv99YwQ9nJ3GQ/fH3cv+yAqxm93840a4XnVsBuKdH+8q/1Te61RkYMUKRWNb2nYKZHJkaqCgsegBPucI5Uu1srkB6SGAmxnylJYewJnkWL6ouhsRhK1usdUr9s3r2Xty3382zZBdDeoHc4Hic22JcCYzIArcXuN9XaV0qNtoi2IyRd50g8hKNnWrSjxUpFUwcd3e5fSLYXRYFx58LJvwffEEASIyE8gqIoLJycyjL7VO1A7nJ9A+qHjm4bpsLvAOgOywC/UH0D8kCKotAWoq25UT24yGNQUw4AhhhZozYoorR/M76NuQRaTKgqlNR74KjRASQxEsJDLM5K4CnrIhZ1P0jD9Fv0DqfP1ubXMcO+BQBLpmzTHyrGOG39RGBTnraw1sNYbXZiu7QifSHJE3WOxkM4ih0q1btICnds2fe0Bdi5K2DvMmircx6SxEgIDzEyJghT7Fg221L4fJv77DxasbOSE43agmBFtukPmejEUbSqFkxqF9Tl6R3OoCuqa+O/1vm8bT+FiLQpeofjGRzb12koYmSYtmbL4xKj7/4Jr10Ae74AoMtqp6S+HZDESAiPsCgrHoCPskvBbtc5mqNTVZWSnWuJVeq1NiDJc/QOyWONig1hrzpC+6Jqu77BDIE9lS28ajuV/0bdiiE0Qe9wPENABMROhIxTyAjR1hZ51AJsVYVKx/8Ljh1pxfVt2Owq/majs+K3u5DESIhDOGdSPCG0cGHJg1gfzwKba/c2yq9pZUzzau2LtBPBx1ffgDzYqJhAft99DSd0Pkpbxpl6hzPocqq04pUjpeL14PrFd3D5e0TEpgJQ4ElFHlurob0OUJzrqfKr902jKW62s1ESIyEOIT7UjzEpCZxoyMbUWAh53+od0hGt2F3NKcZNAJhGe34fLz1FBFqoDMikSI1hb5UH/dXv0Fy0hXFKAaMjpcfeUEiJ1NYY9XSd9wg9o0XhaeCjFXJ01/VFIImREId1zuQkPrfN1L7Y+ra+wRzFil1V3Nz9f6wZ+VsYtVDvcDxeZqw2mrK70vNag8wufZnPLHdzUuOHeofikVJDtNGT4vp2um2uP03fJz0Vr/fvkVYridGwq6ur47LLLiM4OJjQ0FCuueYaWlpajviaefPmoShKr8cvfvGLYYpYuJvTx8fyCScAYN/xEXQ06RzRobV0WlmXX0eBGkf0abdAkFQqHmqZ0X7cZPyAcT/cDF2eM2pks6vEdhUAsiNt0JVlw99HEvv6qfj5GLHZVefiZLd3QMVr6D2V5m7cNjG67LLL2L59O8uWLePTTz9l1apVXH/99Ud93XXXXUd5ebnz8fDDDw9DtMIdhQWYCc04jr32BAzWDtj+gd4hHdKKXVV02eykRgaQ5oa/hNzRqJhQrjZ9wbj6r6Fmt97hDJqimiZSKQMgMnWCztF4mKA4aK1Cqc8nI9wEeNB02iFGjPJqtIEKSYyGyc6dO/niiy944YUXmDlzJnPmzOFf//oXb775JmVlZUd8rb+/P7Gxsc5HcHDwYc/t7Oykqamp10N4l0WTR/COTRs1Uje9qnM0h7ZsWzFP+PyLO6LXobj4InFPMSoumN12rTWI803BA5TmbsOs2GjHF0Nokt7heJbAaPANBdXOzGCt1k++pyRGZz8O5z4LSVo7peaObiqbOgFIi3K/RfxumRitWbOG0NBQpk2b5jw2f/58DAYDa9euPeJrX3vtNSIjIxk/fjx33XUXbW2HHwZ/6KGHCAkJcT4SExMH7XsQ7mH+mBi+NJ2EVTWglKyD6j16h9RLR7eNzt3fcI5xDfPLnwODSe+QvMKomH090zpKPKc1SHOR9r1U+yaDwS3fHlyXojjrGU20VAAelBjFjodJl0BwHLDv+4oMtBDi536L+N3yX35FRQXR0dG9jplMJsLDw6moqDjs6372s5/x6quvsmLFCu666y7++9//cvnllx/2/LvuuovGxkbno7i4eNC+B+Ee/MxG5mSN5XXbKXwacTX4uVbH+h9yajjZ/iMApnGL5M1smARaTFT5pQHQUeo5iZG9WpsWbAsZqXMkHsqxlT0drZmsR23Z309utTaNlh7lftNoAC715+Wdd97J3/72tyOes3PnwIet91+DNGHCBOLi4jjllFPIzc0lPf3gZokWiwWLxb0KU4nBd+mMJM5aezU+FQqzCCZC74D289XWEn5n1BrdKuMW6RyNd7FGjoVysNR6Ts+0wMa9ABhixh7lTDEgjhGjuK4C4ATPGDHa+zXU5ULqCc41RnmOhdfuOI0GLpYY3XbbbVx11VVHPCctLY3Y2Fiqqqp6HbdardTV1REbG9vn+82cqW3FzsnJOWRiJATA+IQQJo0IYXNJI+9uKOGGE13j34rVZqd+50rClRa6LeH4JM3WOySvEpg0CVuZgl9XLTRXuv1uQJtd5dn2k1mjJrBk7Hy9w/FMUaMACG7JBaCsoZ1Oqw2LyahnVMdmy5uw9R045V5nYiQjRoMoKiqKqKioo543a9YsGhoa2LBhA1Onal3Qv/nmG+x2uzPZ6Yvs7GwA4uLiBhSv8B6XzkhiZ8lGyla/iar4opxwm94hsTa/jhO6fwATGMeeBUaX+t/Z440cEU2+GkeyUoVPXZ7bJ0ZFdW2stmaywTSG20fN0DsczxQ9FlLmYowZR2CtkZZOG8V1bWREB+kd2cA5d6TtG2XMrdJGjNLdtHq6Wy5IGDNmDAsXLuS6665j3bp1/PDDD9x0001ccsklxMdrPa5KS0sZPXo069atAyA3N5f777+fDRs2UFBQwMcff8ySJUs44YQTmDhR6nWIIzt7UjzjLNX8ufNhWPEANJXrHRIfbSxigWMazSDTaMNuTFwwV3TdxWTrUqwj+v4Hmava6yhWmREdiNHgXi0c3EZwPFz1KcrpfyPFsY09v8aN62DZuqHGsSHFMVpks6vO4o7pkZIYDavXXnuN0aNHc8opp3DGGWcwZ84cnnvuOefz3d3d7N6927nrzGw28/XXX3PaaacxevRobrvtNs4//3w++eQTvb4F4UYCLCbGZh3HOnsmimqDja/oGk9Ht4112/eSp8ZhtYRCygm6xuONksP9aTRH02I1eMQi2pr8rZxuWMtxoVKWZDikRPQkRkcuTOzS6vLA1gXmQAjRyjuU1rfTZbVjNhlICPPTOcCBcdux9/DwcF5//fXDPp+SkoKqqs6vExMT+fZb1+53JVzbpTOSeO6nU5lh3o1t/csY594GRn22oi7fWUVBZyC3hj7EdzdPB5NZlzi8mcGgkBkbxKaiBnaUN7v3dAgQWvA5T5tfYmfrWYDnNcd1KZ3NjA9u51PcfMSop+J11GjnjtjcnsKOEQFuO/LotiNGQgy38QkhlMafSrUajLGlAnZ/rlssH2zStvsuyorH4Oveb8jubHyMLw+bnmXGV4vdvjVIUKM2JWKMGXOUM8Ux+ekFeGgEZ5Y9Abh59evKnlYg+/7N5FY5Fl5Hu+fCa5DESIh+WTJnJG/aTgbAtu4FXWKob+2iYM9mImhk8eQEXWIQmlEJkZxk3ERs6263roBts6skdOUBEJw8WedoPJxjyimyPR9w81pGldu1jzHjnIfyHIlempuuLwJJjITolzMmxLHc/3RsqoKxYBVUD3+frM+2lnOH4TXW+f6SUaUfDvv9xT5j44LYaU/Wvqh030KPhZU1JKNtKIjKmKJzNB7OUeTRtzEPIzbKGzto77LpHNQAnfsM/PxLGHOO85CMGAnhZXyMBhYeP53l9insNGai6jB98vnarcwzZGPEDiOmHf0FYshkxgazQ9USo47ibH2DOQZle7MxKipNSjDG4L7XghMDEJIIPgEo9m4m+NYAUFjnpqNGvsGQdByE7Bu5lhEjIbzQpdOTuFv5Nae33svq9uHtn7elpIHxVZ9iVmxYY7N6ze2L4RdoMVEdoLXP6CrdrHM0A9dStAWAKv90raeXGDoGg/P/29lBlYCbrzPaT2N7N9XNPc1jZcRICK8R4u/DmVMzAIUXvssb1nu/8WMBlxq/AcA0/efDem9xaPboCQD41u0Cu13naAbGWK2tFekMH61zJF7C0XJlklnbRJHnjonRzk/h8zsg9xvnoTxHxevoIAtBvu7XPLaHJEZCDMDVx6diUGDD7nwqPv8bdA59LZKmjm4qNi8j1VCJ1ScIxp8/5PcURxeWNJZO1QezrQ3q8/UOZ0Ce7VzIL7puxjr+Yr1D8Q7R2mLlDLUIcNMRoz1fwLpnoeAH56GeHmnpbtojrYckRkIMQEpkAIuyEnjN/CCx6x6ETf8d8nu+u76EC/gKAOOki8Hi3r98PMXo+DB2qkmUGOKhrU7vcPqttdPK+oYAvrDPYMQ46bc3LJJmwuQraExZCECBO9YyqtymfYwd7zzU0yPNnafRQBIjIQbsppMzeNN2CgDdqx6F7vYhu5fVZueN73Ywx6D9MlKmXT1k9xL9MyYumPO7/sRJnf+kK26q3uH0225HK5DoIAsRgRado/ES8ZNh0b8xTfkZgLOFhtuw2/aVp4iZ4DwsI0ZCeLn0qEA6xl1MiRqJT1ulVrhtiHy2tZy9jbDI+BRd5zzT6680oa8RYX74+1rotqnOv5jdScWeDdxo/JhFoe45DejOevqlVTd30tJp1TmafqjNBWsH+PhDeKrzsIwYCSG4cf44nrCeB4B11SPQ2Tzo91BVlecdi7zPO3485imXDvo9xMApisKY2GAAdpY16hxN/xnyV/I7nzc53/qp3qF4F2snwfU7yfKvBdxsnVFPza7osWAwAtqodmGtNiUoI0ZCeLGM6EDUiZeQa4/D1FGH+uPTg36PFburqC4twNdH4Yrjkgf9+uLYjYv14y3zfZzx+Uy3W2dkqdOKlNqjxuociZf55n54di43+GrrBt1qtLHi4PVFJfXtdNnsWEwGEkLds3lsD0mMhDhGty0cx5NcCID1u8ehuXLQrm23qzz1+XqWWe5gefBfCLPVDNq1xeDJjA8njlp8ba1Q4T4VsFVVJbo9B4DApIk6R+NlYrSkIlPRdqblVrvRiFGDFnPP9wCQ19M8NjIAg5s2j+0hiZEQxyg2xJfEOZeRbU/jK3UG7bbB+6XwyZYy5te9TrDSRqy/CoExg3ZtMXjGxgezXU0BQC13n0KPlQ1tpKvFAMSOcr+F424tWhuhi+/MB9xsfdoFL8Jv98KEC52Hcnpagbj5NBpIYiTEoLhhXgY3+z7IL1uv5ZEfBmdUp6Pbxitf/MBVxi8BMJ76J+d8vnAto2KC2KGmAdBeuEHnaPquIGcrvko3HZgxR6brHY53icoExYivtYlY6pw9xtxGYDT4hTq/3FupxT8yRhIjIQTgbzbxx/O0v7hf/D6fzUX1YOs+pms+uSKHK1tfxlfpxpY4C0aeNhihiiHg62OkLlQbAVDLsvUNph+a8zcCUOmbJkn3cDNZIFJrJzPaUEx+TSs2u6pzUAO315HYjYwO0jmSYyeJkRCD5KTR0SzOiidSrafzlXPp+vKPA77Wnspmtq96j0XG1agYMJ7+kPSwcnE+IyYDENBSAB3usTtNcayHag4bp3MkXipG+7mPMxbTabVT1jB0tdAGzcb/wqsXwJa3nYdUVXVOpcmIkRCil3vPHsfcwFJm2DZhWvcUau7Kfl+jo9vG3a99x33GF7UDM2/QCsIJl5aenEyJGql94SbrjB6xns/pnQ/RMvk6vUPxTo51RlN8ywHIcYd1RoWrIWcZ1O3rE1nR1EFLpxWTQSElwr1rGIEkRkIMqvAAM5defh1v2k7GgErnG0u0Ymh9pKoqf/5kO+VVVbQoQVhDU1BO/v0QRiwGy/iEEFbZJvI9k1ENJr3DOar2Lhu7qjvZqSaTNloSb11kzIdT/kh2zGIA91hn1JP0x+6reN2zviglMgCzyf3TCvf/DoRwMdNSwumY/yDZ9nR8rY00v3QetNb26bVPf5vLG+uKKVOiqLzoE0xLPgSL+8/Ze4MxccH8wX4dl3fcTkWo6ycauyqasKsQGWghOthX73C8U3wWzL0VkrQedS6/Zb+7Hap3aZ/HZTkP73G0lRkZ7f7TaCCJkRBD4soTRvPN5McpVSMIai2g7qlTUZvKDnu+qqo8tmw3q776AIA/njWWE8cm9iq3L1ybr4/R+cawtcT11xhVbfuGh03P8vPQjXqH4vV6tri7/Jb9yu2g2sA/EoLjnYed64skMRJCHI6iKNy8aA4fjPsXFWoY4a25bH/qcorrDu6iXdrQzi9fXkX0t7/jTfNfWDpmPVcdLwmROxqfEAJAXn4udHfoHM2RGQu/5yLTt5ygbNI7FO/WWMLklm8ZpxSQ5+qJUZnj30p8Vq/NID070jJiPGN02/UnwoVwUwaDwi8vPIN3Q//LqO9/w62Nl5D/9xXMHRnF3MgW/GzNFFfWYin5gXuNy4k11QMwb1SkzpGLgZqQEMKlW69h6vq9MO4TSD1B75AOK7BuBwDGuEk6R+LlVv+L5LXPcK7xdP7SkkJDWxeh/ma9ozq08mzt437TaKqqstfDptIkMRJiCCmKwoWnzWX3hJXEf76T3L01fLunmgvyn+Bs44/aSY7/C7uCkzEvfgLS5ukWrzg24xNCqFTDtC/KNrlsYtRts5PUtRcUCM+Yrnc43s2RmE7xKQKrts5oarKLJkaKAcxBzpgBqps7aeqwYlAgLcr9d6SBJEZCDIvMuGD+e81M9lY2s2pvDZk/2mnsjMJg9IHosQRNuxjzmHPARxbBurOxccF8o6ZyBuvoKNqA7/F6R3RoeYVFZCrahoDoUdN0jsbLxWo96kaTj4Kd3OoWpiaH6RzUYZzzLzjrcVDtzkM902gpEQFYTJ5RJFQSIyGG0ciYIEbGBMGcZXqHIoaAn9lIXfBYaAN7abbe4RxWxe61ZAIVxjhifUP0Dse7RWWC0YK/rY0kpcr1F2AbDOy/PLlnGi3DQ6bRQBZfCyHEoDI6KmD7txRCe73O0RxaV3E2AHXBY/QNRIDRx1kBe7xSQG6Vi27Zt9sPeXivB1W87iGJkRBCDKL05CTy7THaF6Wu2VC2u6EUANUxjSN05lizM87gwjvTPrsVnpgCW9/tddjZPNYDeqT1kMRICCEG0YSEEDapWnNQStbrG8wh2O0qt7f8jPEdL+A7S1qBuIQ4LUEdr+RTWNdGl/XQozO6KtsIdbmwX1V3VVXZU+XYkSYjRkIIIQ5lbHwwX9un8bJ1AXWRrrewuaC2ldYuG1afQFJGJOgdjgDIOBX1wlf4i3I9NrtKUZ2LTadZu6BSK+9AfJbzcG1rFw1t3SjKviKVnkASIyGEGET+ZhP50fP5s/VK1uF6Xeu3lTUBWgsTo0E5ytliWIQmooxbjG90GrCvkrTLqNoB9m7wDYXQZOfhnmm0pHB/fH08Y0caSGIkhBCDbnJSKACbiht0jeNQfNc/w1vm+7jM90e9QxEHyHCMuvQkHC7DWdhxUq+K1zlVnlXYsYckRkIIMciyEkOx0EVbzvdQtVPvcHoJrVrHTMMuRgW26x2K2F/ldi7qfJfTDWvZ7dgC7zJ61solTO11eI8jgcvwoIXXIImREEIMuilJodxmeof7a3+Lfe1zeofj1G2zk9yhdUcPz5ytczSil/zvOC7vX5xn/N71Rox6EqMRvdfM7arQpmVHx0piJIQQ4gjSIgPZZcoEoLNgnc7R7JOXt5cYpR4rBuIzZ+gdjtifY8v+eEM+udUtrrMzTVUh6TiIHgcJ0/Y7rLKrQhvZGh3nWYmRVL4WQohBZjAoWOOmQjlY6nZCVyuY9e8jVbnjezKBUp8Ukn09a12I24udgKoYiKOOcHsdBbWtjHKFbvWKAmc/dtDhssYOmjus+BgV0iI969+SjBgJIcQQSEkbRbkajkG1QVm23uEAYCvWpkQawqSwo8uxBKJEjwVgsiGHPa62zugAu8q1abT0qEDMJs9KJTzruxFCCBcxOTGUTfYM7YuSn/QNxiGsfhsApqTpOkciDsmxuDnLkMOeChdJjOrytDpGB3BOo3nY+iKQxEgIIYZE1n6JUVfhWp2jgZZOK4VdgdSowcSOkYXXLsmxuDlLyXWNnWmqCi8thIdGQMW2Xk/tW18UrEdkQ0oSIyGEGAJhAWbKgx1TVkVrtDcZHW0taeQ33TdxjuVlItIm6xqLOAzH4uZRhmL2usKIUWMxtFSCaoOI9F5P9UylZcqIkRBCiL7yS57GX7ov493MR3VPjLIdxSazksN6FekTLiQqk7qffclxnU9SUNdGR7dN33h6tunHjAcfP+fhTquNvBqtbcmYWBkxEkII0UcTk6N4wXYm/6uPB4O+v2535xcCKpNGhOoahzgCg5GwkTMJ8PfDrrpAa5DSDdrHA+oX5VS1YLOrhPr7EBNs0SGwoeWWidEDDzzA7Nmz8ff3JzQ0tE+vUVWVe++9l7i4OPz8/Jg/fz579+4d2kCFEF5tanI4ABsL67Ha9KtLo6oqtxfewBrLr5gTXKlbHOLoFEVxbtPfW6XzdFqxY23ciN6L9XeVa3FlxgSheODoo1smRl1dXVx44YXceOONfX7Nww8/zBNPPMEzzzzD2rVrCQgIYMGCBXR0dAxhpEIIb5YZG0SUr43TrCup/+AO3abTCgv2kkAV0dSTMWqsLjGIPmoo4o7Of/Okz2PsrtBxxKirDco2aZ8nzer1VE/F6zEeuPAa3DQx+vOf/8wtt9zChAkT+nS+qqo89thj3HPPPSxatIiJEyfyn//8h7KyMj788MOhDVYI4bWMBoWpSWE87PMcUdueh4YiXeIo27ICgAKfDCwBobrEIPrI4MO0uk9ZaPiJwvIq/eIoXQ92KwTFQ2hSr6c8eas+uGli1F/5+flUVFQwf/5857GQkBBmzpzJmjVrDvu6zs5Ompqaej2EEKI/stLj2aqmal8UrtYlBnuB9nuuPnKKLvcX/RAcR6d/HEZFxadio35xhKXA/D/Bcb84aLF+T2LkiTvSwEsSo4qKCgBiYmJ6HY+JiXE+dygPPfQQISEhzkdiYuKQximE8DwzUsNZZx8DgFr4gy4xxDZqUyK+GXN0ub/oHyVZm7pKbd1CS6dVnyBCk2DOLXD8b3odrm3ppLq5E0XBNVqWDAGXSYzuvPNOFEU54mPXrl3DGtNdd91FY2Oj81FcXDys9xdCuL/x8SFkK9q6nu6874b9/tVVlaTZCgFImnTysN9f9J85TUtgZxh2sbvCtWYqekaLksL9CbB4ZrtVl/mubrvtNq666qojnpOWljaga8fGxgJQWVlJXFyc83hlZSVZWVmHfZ3FYsFi8bytiEKI4WM2GbAlzsBWqmBuLIDGEggZMWz3z89eSZSiUmqIIyFq+O4rjkGyVpl8imEv75fUOnc3Dpu6fG2rftIsCEno9dS20kYAxsV75sJrcKHEKCoqiqioqCG5dmpqKrGxsSxfvtyZCDU1NbF27dp+7WwTQoiBGJeWxOaSdKYoOZC7AqZcMWz3/qk+gK3W00kdEU/C0U8XriAyk3ZTMH7WJhrz1sPxI4f3/rs/hy/vhpEL4LK3ez21vUwbwRoXHzK8MQ0jl5lK64+ioiKys7MpKirCZrORnZ1NdnY2LS37tjaOHj2aDz74ANDqQtx888385S9/4eOPP2br1q0sWbKE+Ph4Fi9erNN3IYTwFjNSw/nOru2iVat3D+u9/1cVwv3WK2iZ9dthva84BgYDjVHTybXHUVWtQ92pnk0CybMOempbmTZiND7BcxMjlxkx6o97772XV155xfn15Mla358VK1Ywb948AHbv3k1jY6PznDvuuIPW1lauv/56GhoamDNnDl988QW+vr7DGrsQwvtMSQrjNnUBr3bM543Ji8kYpvs2tnU7/8KfkTLM0zHimLQvfpFTHl2Npc7APTY7JuMwjWPY7VpvP4Ck3s2GWzqt5DtagXjyVJpbjhgtXboUVVUPevQkRaDVLtp/zZKiKNx3331UVFTQ0dHB119/zahRo4Y/eCGE1/H1MZKWmko1YXy3t3rY7rt14w/MUrYxJspMbIj8EehOkqNC8Tcb6bTancnIsKjaDm214BMA8b2bDe8sb0JVIS7El8hAz11/65aJkRBCuJu5I7U1lN/vrRm2CtjmTS/xuvlB7vV9a1juJwaPwaAwJi4YIzZ2lQxjoce8ldrHlOPBZO711L6F1547jQaSGAkhxLCYOzKScUo+1+Tfgv21C4flngl1Wq8r31GyTd8d/UZ9jS2Wa7FsfnX4btqTGKWeeNBT20q1adnxCZ47jQaSGAkhxLAYExuM2S+I2cpWyPtW60U1hCoLd5OgVmBVDaTPWDik9xJDIyQ0ggClk4iqw3doGFS2bih03Ctt3kFPb+9ZeC0jRkIIIY6VwaCQNHICJWokBnsX5K8a0vuV/PQxAHt9MgkOkYXX7shvtNbGKrMjG9XaNfQ3NPrArzfB+S9CdO9mwx3dNvZWaTu/PXlHGkhiJIQQw2buqGi+sTkWtO7+fEjv5Zv/NQDV8ScN6X3E0Ekadxx1aiCBtFO358fhuWlQDEy4AAy904NdFc3Y7CqRgWZigj134TVIYiSEEMNmTkYky+xTAbDv/p+2NXoI2DpayGjdAEDopLOH5B5i6PlazGzxyQKgcfsXusay/8Jr5YCmsp5GEiMhhBgmsSG+1EXOoEn1w9BapbVdGAK567/CQjelRDF20swhuYcYHhWRWpFF36KhnXqlpRqWngWr/33IXZNbShoAz194DZIYCSHEsJo3LoFv7ZO0L3Z/NiT3eL9pDAs7/8rHI27HZDIOyT3E8DBmaFOhsc3bob1h6G6UswwKvoOtb8MhRoSyi7V7ZyWGDV0MLkISIyGEGEanjo3lc9tMflAn0h09fkju8c3uKnapScRPO2tIri+GT/qosXxom82/lJ+hMoT1r/Y4pupGHbyDsbmj27nwOisxdOhicBFu2RJECCHc1cSEEDYGnsD/mmay1DKdeYN8/eK6NvZUtmA0KMwbFT3IVxfDbWxcMBfZfoW1W+W8dguJfkNwE2sX5HyjfT5qwUFPbylpRFVhRJgfUUGevfAaZMRICCGGlcGgcOrYGAC+2jH4DULrP76bx33+zYXxNYT4+wz69cXw8vUxMjouCNASlCFRtBq6miEgGuImH/T0vmm00KG5v4uRxEgIIYbZqWNjAdi4fRf2dS8O3u40m5Wkog9YZFzNvITBuaTQ38QRoYTQgi37DajYNvg32OUoHTHy1IO26QNsKmoAJDESQggxRGalRRDuC291/xrD57dC8dpBuW7N9uWE2huoUwPJOvHcQbmm0F/WiFDuNr3OOXl/hk3/HdyL222w40Pt87GLDnpaVVXniNHkpNDBvbeLksRICCGGmdlkYMHERJbZp2kHtr49KNetWfMaABsCTiA2PGhQrin0NzExhK/tUwBQd302uE2I2xsgYRoExkDawcVASxvaqWnpxGRQPL55bA9JjIQQQgeLsxL40HY8AOq29469d1pXK4kVywCwj7/gWMMTLmRkdBAbTFm0qRaUxuLBrX8VEAGXvg43bwOT+aCne6bRxsQF4+vjHaUfJDESQggdTE8JpyBoGkX2KJSORtj+/jFdr/rH1wlQ2yhQY5k294xBilK4AqNBISM+mi97Rhi3vDX4NzlEUgTet/AaJDESQghdGAwK50weweu2U7QDP71wTNezrn0RgB/DziYiaCj2dAs9TRwRwge2OdoX294DW/exX7R6D9TkHPGUTUX1gCRGQgghhsF5UxJ42zaPTtUEZZugeN2ArtPd3c2b7TPYZU8kau7VgxylcAVTk8P4wT6eOiUU2mohZ/mxX3Tlg/DvqVobkENo77Kx1dEjbXpK+LHfz01IYiSEEDrJiA4iMy2Vj2zH061YoGrngK6zbFcNj7ct4ArLY5yQNWaQoxSuYGpKGDaMfNA9CxUFKrYc2wVba2Hnp9rnqScc8pRNxfV021Rig31JDPeeUUhJjIQQQkdXzk7mH9aLOF15ko6Jlw/oGktXFwBw0bQR+Bjl17onig7yJSXCn+esZ7LmnG/hxDuO7YJb3gR7N8RlQdzEQ56yLr8OgBmp4SiH6J/mqeT/ICGE0NH8MTGYQuLIafPn3Q0l/X595Vu/YUThh5iNKlcclzL4AQqXMS0lnErC+b7qGNty2G2w7jnt86lXHva0nwq0xGh6qvdMo4EkRkIIoSuT0cD1J6QB8NSKHLrzvoeiPhZ8LFxDzM6l/N3nWW4YYyM2xHcIIxV6m56idbZfX6AtiKa+YGCLsHd9qr3WLxwmXnLIU7qsdjYUaveZKYmREEKI4XTJjCSigyzMbvkSn/+cCR/98uh1jaxdtH10KwBv2U/i3AWnDEOkQk/THAugs0sasH30K3g8Cza/0b+LqCr88IT2+fRrwex/yNO2lTXS0W0nzN+HjKjAY4ja/UhiJIQQOvP1MfLLkzL4yjaVKsKgdi98edcRX6Muvw//uh3Uq4Hkjr+ZNC978/JGaZEBRASY6bLaKTMlAiqs+jtYu/p+keZyaCoFky/MuP6wp/3kWF80LSUcg8F71heBJEZCCOESLpuZRHxsHDd33YgdBTYshTVPHfrkLe+grPkXAH9Qf8ENZ8wcvkCFbhRFYZpjOu1zy+kQEA0NRbDxlb5fJDgefrURLnsHAqMOe9r3OTWA902jgSRGQgjhEkxGA/cvHs9q+3ge6Xa09PjyLvjmAbB27jtx06uoH9wAwAvW05l82uVEB8naIm9xfEYkAN/mt8IJt2sHv7kfWqr6fhGz/2G36AN0dNucO9Lmjjx88uSpJDESQggXMT0lnF+elM6/bYt5xn6udnDVw/DOVc5z6pVgFNXGG9aT+C71Zq6enaJLrEIfPYnR+oJ62iddCXGToKMRPr/9yM1la3Nh7XNgtx/1HhsK6+m02okOsjAqxvumaCUxEkIIF3LrqZmcMCqav3ZdyG32X9NqicYWno7drrJydxVnfO7PtV238XTQr/nHRZO9bv2Ht0uLDCAuxJcum531xU1w1mOgGGHHh7Dm0BWs6WyGd66E/90O39x31Hus2lsNwJyRkV5Vv6iHJEZCCOFCjAaFZy+fyrzMKN7rOo6sxn8w5/sJTLrvK656+SfKmzrJiziB1647jqigY6xnI9yOoijOUaPvc2ogYQoseBB8QyFm/MEvaKuD1y6Eiq0QEAXTrjnqPb7fq60vOsELp9EATHoHIIQQojc/s5GXrpzOK2sKeHplLuXNJui2EmA2csmMJG6eP5IgXx+9wxQ6mZMRybsbSvjBsUCamTfA+PMgMFr72m6HjUuhsVRbmN1aDZYQuPQtCE084rVrWzrZXtYE7Ju28zaSGAkhhAsyGBSuPj6VK2elUFDbSrdNJSXSH4vJqHdoQmezMyIA2F7WRF1rF+EB5n1JEUDBKvj0ln1fR42GC16CmHFHvXbPbrTRsUFeOyIpiZEQQrgwg0GRGkWil+ggX0bHBrGropmVu6s4b8qI3id0NsPos8AcCOknw7jFYOpbkvPVjkoAThodfZQzPZckRkIIIYSbOXVsDLsqmlm2o/LgxGjM2dqjnzqtNlbu0rb9LxgXOxhhuiVZfC2EEEK4mVPHxgDw7Z5qOrptg3LN1bm1tHbZiAm2MDEhZFCu6Y4kMRJCCCHczISEEGKDfWnrsrEmt3ZQrvnVdm0a7dSxMV5dBkISIyGEEMLNKIrC/LHaOqCedUHHwm5XWea4zmljvXcaDSQxEkIIIdzSqY4E5uudldjsR6h63Qc/FdRR09JJkK+J49IiBiM8tyWJkRBCCOGGZqVFEOLnQ3Vz5zFPp32wqRSA08fHYjZ5d2rg3d+9EEII4abMJgNnTowD9iU2A9HRbeOzreUAnDt5xFHO9nySGAkhhBBu6rzJCQB8sa2c9q6B7U5bvrOK5g4r8SG+zEwNH8zw3JIkRkIIIYSbmpocRmK4H61d+0Z9+uv1dYUALJ6c4NW70XpIYiSEEEK4KUVRuGR6EgD/WVOAqvZvEXZOVTM/5NRiUOBnM5OGIkS345aJ0QMPPMDs2bPx9/cnNDS0T6+56qqrUBSl12PhwoVDG6gQQggxxC6ZnojZZGBLSSObihv69dr/rNFGi+aPiWFEmP8QROd+3DIx6urq4sILL+TGG2/s1+sWLlxIeXm58/HGG28MUYRCCCHE8IgItHD2xHgAXvwuv8+vq2ru4O31xQBcOTtlKEJzS27ZK+3Pf/4zAEuXLu3X6ywWC7Gx3l24SgghhOe5dm4q720s4bOt5fyyrImx8cFHfc3TK3Pp6LaTlRjK7HTvrl20P7ccMRqolStXEh0dTWZmJjfeeCO1tUeu+9DZ2UlTU1OvhxBCCOFqxsQFc5Zj6/4/v9p91PNL6tt4bW0RALedNgpFkUXXPbwmMVq4cCH/+c9/WL58OX/729/49ttvOf3007HZDr+98aGHHiIkJMT5SExMHMaIhRBCiL679dRRGA0Ky3dV8eX2isOep6oqd72/lS6rnVlpEczJiBzGKF2fyyRGd95550GLow987Nq1a8DXv+SSSzjnnHOYMGECixcv5tNPP+Wnn35i5cqVh33NXXfdRWNjo/NRXFw84PsLIYQQQyktKpDr5qYB8PsPtlLb0nnI8978qZjv9tZgNhl44NzxMlp0AJdZY3Tbbbdx1VVXHfGctLS0QbtfWloakZGR5OTkcMoppxzyHIvFgsViGbR7CiGEEEPp5vkjWb6zkr1VLVz3n/W88vMZBPn6OJ9ftaeaez/aBsAt80eRFhWoV6guy2USo6ioKKKioobtfiUlJdTW1hIXFzds9xRCCCGGkq+Pkacvn8L5T69hY1ED5z61mjsWZJIY7s//tpbz9Le5dNtUzpgQyw0nDN5ggydxmam0/igqKiI7O5uioiJsNhvZ2dlkZ2fT0tLiPGf06NF88MEHALS0tHD77bfz448/UlBQwPLly1m0aBEZGRksWLBAr29DCCGEGHQZ0UH895oZRAdZyKlq4fr/buD0x7/jiW9y6LapnD0pnkcvzpIq14fhMiNG/XHvvffyyiuvOL+ePHkyACtWrGDevHkA7N69m8bGRgCMRiNbtmzhlVdeoaGhgfj4eE477TTuv/9+mSoTQgjhcSaOCOWLm0/gqRU5LNtZSUNbN5mxQSyZlcyZE+JkXdERKGp/64d7saamJkJCQmhsbCQ4+Og1IoQQQgihv/68f7vlVJoQQgghxFCQxEgIIYQQwkESIyGEEEIIB0mMhBBCCCEcJDESQgghhHCQxEgIIYQQwkESIyGEEEIIB0mMhBBCCCEcJDESQgghhHCQxEgIIYQQwkESIyGEEEIIB0mMhBBCCCEcJDESQgghhHCQxEgIIYQQwsGkdwDuRFVVAJqamnSORAghhBB91fO+3fM+fiSSGPVDc3MzAImJiTpHIoQQQoj+am5uJiQk5IjnKGpf0icBgN1up6ysjKCgIBRFGdRrNzU1kZiYSHFxMcHBwYN6bbGP/JyHh/ych4f8nIeH/JyHx1D+nFVVpbm5mfj4eAyGI68ikhGjfjAYDIwYMWJI7xEcHCz/4w0D+TkPD/k5Dw/5OQ8P+TkPj6H6OR9tpKiHLL4WQgghhHCQxEgIIYQQwkESIxdhsVj44x//iMVi0TsUjyY/5+EhP+fhIT/n4SE/5+HhKj9nWXwthBBCCOEgI0ZCCCGEEA6SGAkhhBBCOEhiJIQQQgjhIImREEIIIYSDJEYu4MknnyQlJQVfX19mzpzJunXr9A7J4zz00ENMnz6doKAgoqOjWbx4Mbt379Y7LI/217/+FUVRuPnmm/UOxSOVlpZy+eWXExERgZ+fHxMmTGD9+vV6h+VRbDYbf/jDH0hNTcXPz4/09HTuv//+PvXb+v/27jWkqf8BA/gz5xUn/rzQ5gjLyLC8MRtGGhQpiogQgVKImEIvYppTiOyivklFoyg1NIWiF1kGYTewEBuGkbq0WdLFMqFepMPKzEkXtvN78V+DUf8gfukXj88HDux8D+hzRM73YedG/9+9e/eQlZUFrVYLhUKBa9euuW2XJAmVlZUICwuDn58fUlNT8fLly0XLx2IkWEdHB8rKylBVVYXh4WHEx8cjPT0dVqtVdDRZ6e3thcFgQH9/P7q7u/H9+3ekpaXBZrOJjiZLZrMZZ8+eRVxcnOgosvTx40ckJyfDy8sLXV1dePr0KU6cOIGgoCDR0WSlrq4Ozc3NaGpqwrNnz1BXV4f6+no0NjaKjrak2Ww2xMfH48yZM7/cXl9fj4aGBrS0tGBgYAD+/v5IT0/Hly9fFiegREIlJiZKBoPBtW632yWtVivV1tYKTCV/VqtVAiD19vaKjiI7nz9/liIjI6Xu7m5p69atUklJiehIsnPw4EFpy5YtomPIXmZmplRYWOg2tnPnTik3N1dQIvkBIHV2drrWHQ6HpNFopOPHj7vGZmZmJB8fH+nSpUuLkonfGAn07ds3DA0NITU11TXm4eGB1NRUPHjwQGAy+fv06RMAIDg4WHAS+TEYDMjMzHT7v6a/68aNG9Dr9cjOzsaKFSug0+nQ1tYmOpbsJCUloaenB2NjYwCAkZER9PX1ISMjQ3Ay+ZqYmMDk5KTb8SMwMBCbNm1atHmRL5EVaHp6Gna7HWq12m1crVbj+fPnglLJn8PhgNFoRHJyMmJiYkTHkZXLly9jeHgYZrNZdBRZe/36NZqbm1FWVobDhw/DbDZj//798Pb2Rn5+vuh4slFeXo7Z2VlERUVBqVTCbrejuroaubm5oqPJ1uTkJAD8cl78sW2hsRjRsmMwGDA6Ooq+vj7RUWTl7du3KCkpQXd3N3x9fUXHkTWHwwG9Xo+amhoAgE6nw+joKFpaWliM/qIrV67g4sWLaG9vR3R0NCwWC4xGI7RaLf/OMsZTaQKFhoZCqVRiamrKbXxqagoajUZQKnkrKirCrVu3YDKZsHLlStFxZGVoaAhWqxUJCQnw9PSEp6cnent70dDQAE9PT9jtdtERZSMsLAwbNmxwG1u/fj3evHkjKJE8HThwAOXl5di1axdiY2ORl5eH0tJS1NbWio4mWz/mPpHzIouRQN7e3ti4cSN6enpcYw6HAz09Pdi8ebPAZPIjSRKKiorQ2dmJu3fvIiIiQnQk2UlJScGTJ09gsVhci16vR25uLiwWC5RKpeiIspGcnPzT4ybGxsawatUqQYnkaX5+Hh4e7tOkUqmEw+EQlEj+IiIioNFo3ObF2dlZDAwMLNq8yFNpgpWVlSE/Px96vR6JiYk4deoUbDYbCgoKREeTFYPBgPb2dly/fh0BAQGuc9WBgYHw8/MTnE4eAgICfrpmy9/fHyEhIbyW6y8rLS1FUlISampqkJOTg8HBQbS2tqK1tVV0NFnJyspCdXU1wsPDER0djUePHuHkyZMoLCwUHW1Jm5ubw6tXr1zrExMTsFgsCA4ORnh4OIxGI44dO4bIyEhERESgoqICWq0WO3bsWJyAi3LvG/1WY2OjFB4eLnl7e0uJiYlSf3+/6EiyA+CXy/nz50VHkzXerr9wbt68KcXExEg+Pj5SVFSU1NraKjqS7MzOzkolJSVSeHi45OvrK61Zs0Y6cuSI9PXrV9HRljSTyfTL43F+fr4kSf+7Zb+iokJSq9WSj4+PlJKSIr148WLR8ikkiY/wJCIiIgJ4jRERERGRC4sRERERkROLEREREZETixERERGRE4sRERERkROLEREREZETixERERGRE4sRERERkROLEREtG3v27Fm81woQ0ZLEd6URkSwoFIrfbq+qqsLp06fBh/0T0e+wGBGRLLx79871uaOjA5WVlW5voFepVFCpVCKiEdESwlNpRCQLGo3GtQQGBkKhULiNqVSqn06lbdu2DcXFxTAajQgKCoJarUZbWxtsNhsKCgoQEBCAtWvXoqury+13jY6OIiMjAyqVCmq1Gnl5eZienl7kPSaihcBiRETL2oULFxAaGorBwUEUFxdj3759yM7ORlJSEoaHh5GWloa8vDzMz88DAGZmZrB9+3bodDo8fPgQt2/fxtTUFHJycgTvCRH9DSxGRLSsxcfH4+jRo4iMjMShQ4fg6+uL0NBQ7N27F5GRkaisrMT79+/x+PFjAEBTUxN0Oh1qamoQFRUFnU6Hc+fOwWQyYWxsTPDeENF/xWuMiGhZi4uLc31WKpUICQlBbGysa0ytVgMArFYrAGBkZAQmk+mX1yuNj49j3bp1C5yYiBYSixERLWteXl5u6wqFwm3sx91uDocDADA3N4esrCzU1dX99LPCwsIWMCkRLQYWIyKiP5CQkICrV69i9erV8PTkIZRIbniNERHRHzAYDPjw4QN2794Ns9mM8fFx3LlzBwUFBbDb7aLjEdF/xGJERPQHtFot7t+/D7vdjrS0NMTGxsJoNOKff/6BhwcPqURLnULiY2CJiIiIAPAbIyIiIiIXFiMiIiIiJxYjIiIiIicWIyIiIiInFiMiIiIiJxYjIiIiIicWIyIiIiInFiMiIiIiJxYjIiIiIicWIyIiIiInFiMiIiIip38Bj8WSIv76i0YAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -802,7 +802,7 @@ ")\n", "time = 10.0\n", "evolution_problem = TimeEvolutionProblem(hamiltonian, time, aux_operators=aux_ops)\n", - "var_qrte = VarQRTE(ansatz, init_param_values, var_principle, Estimator())\n", + "var_qrte = VarQRTE(ansatz, init_param_values, var_principle, StatevectorEstimator())\n", "evolution_result_re_eff = var_qrte.evolve(evolution_problem)" ] }, @@ -823,7 +823,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACPoUlEQVR4nOzdd3zU9f3A8df37nKXvXfIZG8CCIKoWFHACeKsFrRWW6ttFaut1h9ttdXWtq66t6171FG1KOIWZIc9sgfZe19yd9/fH9/LQSBAAsl9b7yfj8c9kvve977fdyIm73zG+62oqqoihBBCCCEw6B2AEEIIIYSnkMRICCGEEMJJEiMhhBBCCCdJjIQQQgghnCQxEkIIIYRwksRICCGEEMJJEiMhhBBCCCeT3gF4E4fDQXl5OWFhYSiKonc4QgghhOgHVVVpaWkhOTkZg+HoY0KSGA1AeXk5qampeochhBBCiONQWlrKsGHDjnqOJEYDEBYWBmjf2PDwcJ2jEUIIIUR/NDc3k5qa6vo9fjSSGA1Az/RZeHi4JEZCCCGEl+nPMhhZfC2EEEII4SSJkRBCCCGEkyRGQgghhBBOssZICCGEz3E4HHR1dekdhnAjs9l8zK34/SGJkRBCCJ/S1dVFYWEhDodD71CEGxkMBjIzMzGbzSd0HUmMhBBC+AxVVamoqMBoNJKamjooIwjC8/UUYK6oqCAtLe2EijBLYiSEEMJn2Gw22tvbSU5OJjg4WO9whBvFxcVRXl6OzWYjICDguK8jqbQQQgifYbfbAU54OkV4n57/5j3/Bo6XJEZCCCF8jvSz9D+D9d9cEiMhhBBCCCdJjIQQQgghnCQxEkIIIYRwksRICCGE1+u2O6hu6aTb7p21i84//3wWLFjQ52vffPMNiqKwbdu2E7pHaWkpP/7xj0lOTsZsNpOens6vfvUr6urqep139dVXoygKiqIQEBBAZmYmt99+O52dna5zel4/0uMPf/hDr+sc/DjS1+kpZLu+EEIIr1XXauXvn+7lvS3ldHTbGRFt5p4z47F5WXHHa6+9liVLllBWVsawYcN6vfbCCy8wffp0Jk2aNODrdnV1YTabKSgoYNasWYwaNYrXXnuNzMxMdu7cyW233cb//vc/vv/+e6Kjo13vW7BgAS+88ALd3d1s2rSJZcuWoSgKf/3rXwGoqKhwnfvGG2+wYsUK9u7d6zoWGhrKTTfd5LrOwSwWy4C/DneSESMhhBBeKa+6lQse/Y7X1pfS0a1t0e7ottNqtVNS106X7cS2bbvTeeedR1xcHC+++GKv462trbz11ltce+21AKxcuZI5c+YQGRlJTEwM5513Hvn5+a7z586dy0033cTNN99MbGws8+fPB+DGG2/EbDbz6aefcvrpp5OWlsbChQv57LPP2L9/P7/73e963ddisZCYmEhqaiqLFi1i3rx5rFq1yvV6YmKi6xEREYGiKL2OhYaG9rrOwY+oqKih+BYOGkmMhBBCeJ3qlk6WPb+e/Y0dZMWG8Mb1J5N/7zn87eLJmAwK3XYHBbVtdNvstHfZdHmoqtrvr8dkMrF06VJefPHFXu976623sNvtXHHFFQC0tbWxfPlyNm7cyOrVqzEYDCxevLhX+5OXXnoJs9nMd999x5NPPkl9fT2ffPIJP//5zwkKCup138TERK688kreeOONI8a7Y8cO1qxZ4ze1oWQqTQghhFdRVZU73tnuSorevmE20SHaL+2p6VHk2RowGA102RzkVbex8JFvdIlz193zCTb3/9fsj3/8Y/72t7/x1VdfMXfuXECbRluyZAkREREALFmypNd7nn/+eeLi4ti1axcTJkwAYOTIkdx///2uc9atW4eqqowdO7bP+44dO5aGhgZqamqIj48H4MMPPyQ0NBSbzYbVasVgMPDoo4/2+2vp0XOdg915553ceeedx3zv9ddfz4YNG7j44ov53e9+d9jzoSKJkRBCCK/yXs5+Vu+pxmw08MRV01xJUQ+jQSEpIpDSZjst1m6dohy4MWPGMHv2bJ5//nnmzp1LXl4e33zzDXfffbfrnNzcXFasWMG6deuora11jRSVlJS4EqNp06b1ef1jjWAdPCJ0xhln8MQTT9DW1saDDz6IyWQ6LCnrj57rHOzgtUxHsm3bNkpKStiyZUufz4eSJEZCCCG8Rme3nfs+3gPAL88cwejEsD7PCzSbiA0zUt3s4L2fz2ZEfCgGg3urYQcFGAf8nmuvvZZf/OIXPPbYY7zwwgsMHz6c008/3fX6+eefT3p6Os888wzJyck4HA4mTJhAV1eX65yQkJBe1xwxYgSKorB7924WL1582D13795NXFwckZGRva4xYsQIQBuVmjx5Ms8995xrrVN/HXydvuTm5nLzzTdTWVlJSEgIb7/9NrW1tSxcuBBFUZg9ezbPPvtsr+dr1qwZUAwDJWuMhBBCeI2Xvy+musVKSmQQ152WddRz48MCMZuMGAwKVpuDYLPJrY/jaVFx6aWXYjAYePXVV/nXv/7Fj3/8Y9d16urq2Lt3L3fddRdnnnmmawrsWGJiYjjrrLN4/PHH6ejo6PVaZWUlr7zyCldfffUR328wGLjzzju56667Dnv/ibBarfz85z/nqaeeYtOmTfzwhz/k6aefZty4cVxxxRU89NBDrFmz5rDnQ00SIyGEEF6ho8vOE19qO7B+deZILKajj8gYDQrxYdrW8JoWK44BLIbWS2hoKJdddhl33HEHFRUVvRKWqKgoYmJiePrpp8nLy+Pzzz9n+fLl/bruo48+itVqZf78+Xz99deUlpaycuVKzjrrLEaNGsWKFSuO+v5LLrkEo9HIY489NqCvx2q1UllZ2etRW1sLwHvvvcfOnTs577zzmDJlCg8//DABAQEAbN++3TU12NfzoSSJkRBCCK/wwdb91LV1kRodxEVTU/r1nqhgMyajgS67g8Z271hvdO2119LQ0MD8+fNJTk52HTcYDLz++uts2rSJCRMmcMstt/C3v/2tX9ccOXIkGzZsICsri0svvZT09HQWLlzIqFGj+O677w5bIH0ok8nETTfdxP33309bW1u/v5aVK1eSlJTU6zFnzhxAS3b+8Y9/kJOTQ05ODrt37+Y3v/kNoE2xjRw50nWdQ58PKdVLffXVV+p5552nJiUlqYD67rvvHvX8L774QgUOe1RUVPT7nk1NTSqgNjU1nWD0QgghBsLhcKgLH/paTf/Nh+rTX+Uf8byOjg51165dakdHh+tYVXOHurW0Qc2tanFHqF5jxYoVamhoqLp27Vpd7v/Pf/5TXbZsmev51q1bVVVV1ZqaGjU7O9t1/NDnR9LXf/seA/n97bUjRm1tbUyePHnAw3p79+6loqLC9ejZmiiEEMJzbSpuYFdFMxaTgUumDzv2Gw4SFWxGURTau2x0dHlP0ceh9sc//pFHHnmE77//vlcdJHe55ppraGxsZMyYMUyePJmXX34Z0HcaDbx4V9rChQtZuHDhgN8XHx/fa+W9EEIIz/fWxjIALpicTGTwwAoNBhgNhAeaaOropr6tixRz0LHf5CeuueYa3e4dEhLCe++9d9jxM844gzPOOOOIz4ea144YHa8pU6aQlJTEWWedxXfffXfUc61WK83Nzb0eQggh3Mtqs/PxDq0315JpAxst6tFT66ixo8srFmEL/fhNYpSUlMSTTz7JO++8wzvvvENqaipz585l8+bNR3zPfffdR0REhOuRmprqxoiFEEIAfLGnhpZOG4nhgczIOHZxwL6EWkyYjAbsDpXWTtsgRyh8iddOpQ3U6NGjGT16tOv57Nmzyc/P58EHH+Tf//53n++54447em2FbG5uluRICCHc7IOt+wG4YErycRdpVBSFyKAAalutNHV0Ex4UMJghCh/iN4lRX2bMmMG33357xNctFgsWi8WNEQkhhDhYc2c3n+2uBuDCKcnHOPvoIpyJUXNHNw6H6vZK2MI7+M1UWl9ycnJISkrSOwwhhBBH8NXeGrpsDrLiQhiXFH5C1wo2GwkwGrCrKq1WmU4TffPaEaPW1lby8vJczwsLC8nJySE6Opq0tDTuuOMO9u/fz7/+9S8AHnroITIzMxk/fjydnZ08++yzfP7553z66ad6fQlCCCGO4dtcrUryD0bHH1eLjYMpikJ4oIm6ti5aOmU6TfTNaxOjjRs39tq+17MWaNmyZbz44otUVFRQUlLier2rq4tbb72V/fv3ExwczKRJk/jss8/cugVQCCFE/6mqyje5NQCcOipuUK4ZFhhAXVsXzZ02klX1hJMt4Xu8NjGaO3cu6lG2XL744ou9nt9+++3cfvvtQxyVEEKIwVJQ20Z5Uydmo+G4d6MdKtRiwqAodNsddNocBAUcvd+a8D9+vcZICCGE5/pmnzZadFJmFEHmwUlgDAaFUIs2JtDS6R2904R7ee2IkRBCCN/2bZ62vujUkX1Mo7XVwe73oS4fgqNh1EJIGNev64YFmmju7Kalw0Z82GBGLHyBjBgJIYTwON12B2vz6wCYMyK294ubXoKHJ8OHt8DaR2H13fDELHjvRujqOOa1wwK1RdftXTbsOvQI68vVV1+NoiiHPRYsWOCW+//hD39gypQpbrmXp5MRIyGEEB5nx/4m2rrsRAUHHL5Nv6MBulogYQJkzdVGjfathJyXoaUBpt111GubTQYsJiNWm502q53wIM8YI1iwYAEvvPBCr2NSS8/9PONfgxBCCHGQ9YX1AJyUEX14IcZTfgVXvA4//Qbm/xl++Dos+y8ERsCw6dDXTrOutl6PUIMVpbudttYm6O486rm9Ht0d/Tv3OFgsFhITE3s9oqKi+PLLLzGbzXzzzTeuc++//37i4+OpqqoCYOXKlcyZM4fIyEhiYmI477zzyM/P73X9srIyrrjiCqKjowkJCWH69OmsW7eOF198kT/+8Y9s3brVNVJ16AYmfyIjRkIIITxOT2I0I9O5G621GoKiwWjSEp/RC3u/IfNU+Pk6MEdBYeHhF7y3d9XsFOcDgJFnw5VvHXjxbyOgu73vwNLnwDUfHXj+0ERorzv8vD80HfFrG6i5c+dy880386Mf/YitW7dSUFDA//3f//HWW2+RkJAAQFtbG8uXL2fSpEm0trayYsUKFi9eTE5ODgaDgdbWVk4//XRSUlL44IMPSExMZPPmzTgcDi677DJ27NjBypUr+eyzzwCIiIgYtPi9jSRGQgghPIrdobK+SEuMZmbGgMMBr12hJURLnoOo9L7fGJ4Enc7RH1UFhx0Mx97N5lBVj5g++fDDDwkNDe117M477+TOO+/kT3/6E6tWreL6669nx44dLFu2jAsuuMB13pIlS3q97/nnnycuLo5du3YxYcIEXn31VWpqatiwYQPR0VqyOWLECNf5oaGhmEwmEhMTh/Ar9A6SGAkhhPAoeytbaOm0EWI2MjYpDHb+B/ZvBHMYGPrxa8veDQ1FEGiB6Czt2J3lh522r6oVq81OWmwovcZHbss77FwX5ZAU6ubtx46nn8444wyeeOKJXsd6khiz2cwrr7zCpEmTSE9P58EHH+x1Xm5uLitWrGDdunXU1tbicC4qLykpYcKECeTk5JCdne26njgySYyEEEJ4lPWF2tTUtIxoTGo3rP6j9sKcX0FEylHeeRBbhzZ61NUO5mAwhxx2SkiYgc5WK632gN6JUR/nHtFAzj2GkJCQXqM4h1qzZg0A9fX11NfXExJy4N7nn38+6enpPPPMMyQnJ+NwOJgwYQJdXV0ABAUFDVqcvs4TRg+FEEIIlwPTaNGw9TVoLIGwJDj5xv5dwBgAFmeq01J5xNNCnUUj27ygoWx+fj633HILzzzzDDNnzmTZsmWuUaG6ujr27t3LXXfdxZlnnsnYsWNpaGjo9f5JkyaRk5NDfX19n9c3m83Y7fYh/zq8gSRGQgghPIaqqgcWXmdEwppHtRdm/0Ib+emvYGftI2vT4TvJek5xVsDu7LZ7RD0jq9VKZWVlr0dtbS12u52rrrqK+fPnc8011/DCCy+wbds2/vGPfwAQFRVFTEwMTz/9NHl5eXz++eeu/qE9rrjiChITE1m0aBHfffcdBQUFvPPOO6xduxaAjIwMVzP22tparFar279+TyGJkRBCCI9RUNtGbWsXZpOBKR3fQ12uNvozdenALhRggcBI7fO2mr5PMRowm7Rfg+1d+o+WrFy5kqSkpF6POXPm8Oc//5ni4mKeeuopAJKSknj66ae566672Lp1KwaDgddff51NmzYxYcIEbrnlFv72t7/1urbZbObTTz8lPj6ec845h4kTJ/KXv/wFo1EbNVuyZAkLFizgjDPOIC4ujtdee83tX7+nUNSjdWIVvTQ3NxMREUFTUxPh4eHHfoMQQogBeXNDKbe/s40ZGdG8Gfss7Hhbq1t01t39en9nZyeFhYVkZmYSqHRDXZ62YDphfJ8Lt0vr22lo7yIhPJCE8MDB/nKEG/X6bx/Y+7/lQH5/y+JrIYQQHmNLqbY2Jjs9EuY/DZMu63cPtMOYQ8EUCLZOrVp2yOE914LNRhravWOdkXAPSYyEEEJ4jC0ljQBkp0ZpNYhGnX38F1MUCE8B1QGBfY8SBJu1X4MdXXZUVUXpq2q28CuSGAkhhPAIrVYb+6paAJXs1EGqvHyEhMj1coABg6JgV1U6bQ6CAo5dEFL4Nll8LYQQwiNsK2vEocLZYcUkPDcdvrh3yO+pKArBzm377TKdJpDESAghhIfIKW0E4PKQzdBcBvV99Dzrp177ihx2aK6A2lytVcgheqbTPGFnmjh+g7WXTBIjIYQQHmFLSSMKDmZ0fK0dGL94wNfo2X7eU/FZo0BbNXS19tkctmfEqKNbEiNv1vPfvOffwPGSNUZCCCF0p6oqOaWNZCt5hFqrtb5ow38w4OuYTCaCg4OpqakhICAAg8H5978SAt3N0FwHob1/cSoOB6qti04btLWbMBpkAba3cTgc1NTUEBwcjMl0YqmNJEZCCCF0t7+xg5oWKz8P+F47MHohBAy8rpCiKCQlJVFYWEhxcfGBF7raoL0OjI0Q1nbY++qaOrE7VNQWi6voo/AuBoOBtLS0E95ZKImREEII3Wnb9FXOCdgCDmDchcd9LbPZzMiRI3tPp3U2w3M/AdUGV/4HotJ6vee5d7eztqCOG88YwUVThx33vYV+zGbzgRHCEyCJkRBCCN3llDYyXCknwVEFRjMMP+OErmcwGHpXPw4MhLgMKPgCCv6nVdM+SGpcJG9vrWZjaSs/nC0VsP2ZjBcKIYTQ3ZaSBrowkZd5pVbt2hwy+DcZc672ce//Dntp0jCtbtK2/U2Df1/hVWTESAghhK66bA52lDfTpSZgOOd+iAsdmhuNPAuCYyEqU9u2f9BalAkpWmKUX9NKq9VGqEV+Pfor+S8vhBBCV/uqWuiyOQgPNJEZOwQjRT2iMuDXudDHOpS4MAtJEYFUNHWyq7yZGZnRQxeH8GgylSaEEEJX2/c3MUop5eLYYhTHEFefPsri3InOUaNtZY1DG4PwaJIYCSGE0NX2/U0sM37Kitrb4LM/DP0NVRWq9xx2uCcx2i7rjPyaJEZCCCF0tWN/EycbdmlP0k8Z2pvZu+GhifD4TKgv6PXSROcC7O1lkhj5M0mMhBBC6KbL5qC+opjhhgpUxQDps4f2hsYAiHTWMMr/vNdL45LDASisa6ND+qb5LUmMhBBC6GZfVQtT1Z3ak8RJEBQ59DfNctZIKvym1+H4sEBiQ82oKuytahn6OIRHksRICOExVFUdtA7Zwjts39/ELOc0mpIxxz03zXBO1xV/p603OsiYRG3UaHdFs3tiER5HtusLIXRld6i8tbGU1zeUsrO8iWi1kdTEeC44aQRXzEgjwCh/v/my7fubuL5nfVHmae65aco0MAVCWw3U5kLcKNdLY5PC+Davlj2SGPkt+YkjhNBNWUM7lz21lt/+Zzs5pY1021X+ZnycN+suZtT/LmfFg49RUteud5hiCFWW5JFhqELFAGmz3HNTkwWGnaR9Xvxtr5fGJvWMGMlUmr+SxEgIoYuSunYuf+Jbxpe9ToRF4XfnjOWr2+YyfWQyBkXlZMNu7mu9i+8fvYaiatkl5Iu6bA7WVJu5wHoP9fMegMBw9928Z5F38Zpeh12JUWWzTOv6KZlKE0K4XUNbF1c98x3LOx7mooBvuWVWIpGnnaO9uPRNaCyh7cuHCMp5nkvVlax66ipCb36T2LAgfQMXg2pfVQuddigOGkP0KWe59+ajFoCtE0b0vu/wuFACjAotnTbKGjpIjQ52b1xCdzJiJIRwK4dD5eY3clja+hwXGb9FNZiITBnT+6TINEIWPUDLBc9hw8hZ9q/Z8Mwv5S94H9NTSHFCSjjKQX3L3CJlKpx1N2Se2uuw2WRguLNX255KmU7zR5IYCSHc6qW1RQTlfcRPTFqHc+Wip2HCRX2eGzF1CdU/eACAqU2f8s6aHW6LUwy9guIi/mx6jsvNa459shuNS5Kdaf5MptKEEG5T3tjB85+s578Bz2gHZv8SJiw56nuST7uaLysauWVLAvZV5Zw5ZTRRIWY3RCuGmlqyjitNq2mpLQGWuz+AzmYoXQ+Obhi90HV4TFIYbJHEyF/JiJEQwm3+/NFulqsvEam0oSZOgjNX9Ot9p17yKxKThtHcaeOhz/YNcZTCHbpsDuIbtwKg9OwQc7eCL+GVJfD5n3sd7lmALVNp/kkSIyGEW2wtbWTPjo0sNn6HqhhQzn9Ya8/QD0aDwv+dOxZQqV7/NmW5W4c2WDHk9lW1MFnJBSBkhJu26R+qJyGr3gnWA0lQT2JUVNdGm9WmR2RCR5IYCSHc4v5P9pCvpvBA5tMoC+/XFr8OwOwRsTwc/zFPBDxIw3//b4iiFO6ys7SWyUo+AErqTH2CCE+CiFRQHVC+xXU4NtTiag2SV92qT2xCN5IYCSGG3KbiBr7LqyPAqHDJ+efDjOuO6zojfrAUgPFNX1OdnzOIEQp3q8vfRKDSTYcxHGJG6hfIsOnax9L1vQ6PjA8DtJEt4V+8NjH6+uuvOf/880lOTkZRFN57771jvufLL79k6tSpWCwWRowYwYsvvjjkcQoh4Jmv8omimUVTUk6oLsz4KSezLvAUDIpK1Uf3DmKEwt0CyjcC0Bw7GQw6/ioaNkP7WLax1+GRCdqWfRkx8j9emxi1tbUxefJkHnvssX6dX1hYyLnnnssZZ5xBTk4ON998Mz/5yU/45JNPhjhSIfxbUW0bdXu+4nvLL7hTef6Er6ec+msAxtavorOu9ISvJ9yv2+7A3FIMgDnjZH2D6VlnVLa+V0PZkQkyYuSvvHa7/sKFC1m4cOGxT3R68sknyczM5B//+AcAY8eO5dtvv+XBBx9k/vz5fb7HarVitVpdz5ubZeumEAP13LeFXGf8CIvSjcVy4tebNusMtnw2jmx1F7krH2XslX898YsKt8qrbuX3XUt53rKEL+acoW8wSZPAaIb2OmgohOgsAEbFayNGuTJi5He8dsRooNauXcu8efN6HZs/fz5r16494nvuu+8+IiIiXI/U1NShDlMIn9JqtbFp83rmGTajosCsm074mkaDQtVYba1RYv4bYOs64WsK99rhrHidmJyKISxO32BMFrj4BbhhLUSmuw73jBiVNXTIzjQ/4zeJUWVlJQkJCb2OJSQk0NzcTEdHR5/vueOOO2hqanI9Sktl2F6Igfggp5wljk8xKCqMmg+xg7PIdtrZP6JSjaLGFkzuPqmG7W16EqOJKRE6R+I09jxIGAcGo+tQdIiZ2FCtkGh+jYwa+RO/SYyOh8ViITw8vNdDCNF/76zP4yLjNwAoJ/1k0K4bFxnKQ1nPcnbX/bxZGDho1xXukZn7Iv8KuI+zle/1DuWoRjin0/ZVSWLkT/wmMUpMTKSqqqrXsaqqKsLDwwkKko7dQgy2neVNJFesJkppxR6WDMN/MKjX/8H0CYDCB1vLsTukuay3sDtU0ls2cZpxO5kWD1nYbLPC90/CezeC/cC02SjndFquLMD2K36TGM2aNYvVq1f3OrZq1SpmzdKp4qoQPu7NDaVcYvwKAOPUH/WaphgMp4+OIzzQRHNzE1tzNgzqtcXQKahpZTwFAESP1Kmw46EMAfD5nyDnZajZ4zrcs85IFmD7F69NjFpbW8nJySEnJwfQtuPn5ORQUlICaOuDli5d6jr/Zz/7GQUFBdx+++3s2bOHxx9/nDfffJNbbrlFj/CF8Gk2u4MPt1Vwa/cN5E/+NWRfNej3sJiM/DJzPxssPyd+1Ykv6hbukZefS7zSiB0DxqRJeoejMRggabL2eUWO6/BI11SajBj5E69NjDZu3Eh2djbZ2dkALF++nOzsbFas0JpSVlRUuJIkgMzMTD766CNWrVrF5MmT+cc//sGzzz57xK36Qojj911+HXVtXdhD4km74HcQmTYk95k8/VQsdDOsYy9dVXuH5B5icDXla6N7tYEZYD7+Yp+DLnmK9rE8x3Vo1EE709q7ZGeav/DaOkZz585FVY+8rqCvqtZz585ly5Yth58shBhUH+SUA3DuxCQCjEP399e0sSNYZ5jILDWHsjVvkrVYeqh5OmOV1gC4I3aizpEcIln7I/vgnmnRIWZiQszUtXWRV93KpGGR+sQm3MprR4yEEJ6ps9tO/s71/CvgPq4OH9q1PwaDQlXKWQCY9300pPcSJ87hUElo2QVAUMZ0naM5RNIU7WPVjl4LsHtag8jONP8hiZEQYlB9saeaefZvOM24nayqT4f8fnHTL8KhKgzr2I2joeTYbxC6Kapro9ERSLMaTMzIGXqH01t0FpjDwNbZawG2a2datawz8heSGAkhBtXKHRWcb9AqyisTLx7y+02fMJrNjAGgfN07Q34/cfx2lDfzy+5fsCz+LUypHpYYuRZgK1CX5zrcswA7V0aM/IYkRkKIQdNtd7B/7wbSDdXYjYEwqv/9DI+XxWSkKF6rkaTufH/I7yeOX0/F6wkpkVoi4mkWPQ53lML4Ra5DI+K1EaM82bLvN7x28bUQwvOsK6hnju17MIFhxJlu23UUNnUJf/6wgQLHbJ5zyx3F8dhdVgfAhBQP7SIQlX7YoeHxIQCUNbRjtdmxmAa3HpfwPB6YsgshvNWqXZWcZdgEgDL2PLfd9+Qpk3hePZ/VddHsb+y796HQl6qqXFd+F1+bf8XJDu/ZHRwXaiHMYsKhQnFdu97hCDeQxEgIMShUVWXbzu2MNxSjKgYYtcBt944ICmBKaiQAX++rcdt9Rf+V1ncwWi0kzVBDcny83uEc2af/B88vgLp8ABRFIStOGzXKl+k0vyCJkRBiUOzY34y1pZ516jgc6adCcLRb73/G8HCWGL4m9dvfgMPh1nuLY8stKiRBaQQgIHmCvsEcTdG3ULIWKre5DmXFaQuwC2rb9IpKuJEkRkKIQbFqVyW71AxeGPEoxqXvuv3+c0bGcnfAC8xp/hhb+bZjv0G4VUPBZgBqzSlgCdM5mqNIdCZtlTtch7JinSNGNTJi5A8kMRJCDIrVe6oBmDcuYdAbxvbHxPQE1itaNeWqzR+4/f7i6BwVWqLRGjFG50iOIcFZkbvqQGI03Lllv6BGRoz8gSRGQogTVtNipakin2iaOX1UnC4xGA0KVfGnAqDmrdYlBnFkYU1a0URDsoc0jj2SvkaM4g6MGB2tFZXwDZIYCSFO2Ld5NSw3vcXGwBuI2/m8bnGEj5sHQELzDuiSHUSeoqWzm/TuQgCis6bqHM0xJIzXPjaXQXs9ABkxISgKtHTaqG3t0jE44Q6SGAkhTtg3e6s51bANA+qBXyw6mDgxm3I1mgBsdBSs0S0O0dueyhY2OkaxSxlBaHq23uEcXWAERKZpn1ft1A4FGEmJDAKgQNYZ+TxJjIQQJ8ThUKnat4E4pRm7KRhST9YtltSYELaatKmamm2rdItD9LanopkVtmv4e/qTEJmqdzjHljARQhOhs8l1aLjsTPMbUvlaCHFCdlU0M9m6CQJAyTwNTGZd42lKnAX7v6S5uljXOMQBuyq0BqxjEj14N9rBLnkBTJZeh7LiQvhqX42MGPkBSYyEECfkq301nG7cCoBh5DydowHLpMVk56eTYUjD/UUDRF8qy4owY2dskoe2AjnUIUkRHKhllC8703yeTKUJIU7Ihj1FTFVytScj9E+MThqVSgPhbCtrotVq0zscv+dwqFxX91d2Wa5hevvXeoczcM5daMOdtYxkxMj3SWIkhDhurVYbgWXfEaDY6Y7IhOhMvUNiWFQwqdFB2B0qGwtr9Q7H7xXXtTGKYkyKg7hhI/UOp//eXAZ/HwU1WpmBnhGj0oYOumxSWd2XSWIkhDhua/PrWG8fxV/MvyBg7m16h+NyYVIzb5jvZuR/L9I7FL9XUJhPrNKMHQOmxHF6h9N/LRXQWuWqZ5QQbiHEbMTuUCmpl+k0XyaJkRDiuH2XV0s94bSOuwyyr9Q7HJcxWenMNOwhqW0XdDTqHY5fayp0tgKxpEJAkM7RDECCs9Bj1Xagp5msNmqUVy2JkS+TxEgIcdy+L6gDYFZWrM6R9JY9fgyFjgQMqHQWfq93OH7N4RxxaYscq3MkA5TgHN2q3u061FMBu6BW1hn5MkmMhBDHpa7VSmz1Gq41fsTsyHq9w+klJTKIXSbtF1vNrq90jsa/hTZpC/NNSfoV/jwucc5ErnqP61BWrPRM8weSGAkhjsu6wnqWGL/m/wJeISrP8zbGN8ZNA8BQKiNGemm12hhm0+pJxWR6eI+0Q8U7E6OmErBqdZiGx8vONH8giZEQ4riszatllmGX9iTjVH2D6UNQ1mwAYpt3gk36W+kht6qFd+1z+J9yGiHpHt4j7VDB0RCaoH1esxc4MGIktYx8myRGQojjUpq3jUSlAbvBDKkz9A7nMCPGTaVeDcWiWnGUb9U7HL+0r6qF5+zn8ErKXQf6j3mTtFmQNhscdgAyYoMBaOroprFdkm1fJZWvhRADVt3SSUrjRggAR8pJGD1wt9HY5Ag+VKcR6mhhdFMnXvhr2evtq9KmnEYleEkrkENd+lKvp8FmEwnhFqqarRTWtpGdpm/7GzE0ZMRICDFg3xfUu6bRAoafrnM0fQswGnhj2B1c1/1r1nSk6x2OX2ou202mUsHoeM9LnI9XRoy2zqioTqbTfJUkRkKIAVubV8vJPeuLMk/TN5ijmJYeBcDG4gadI/FP86qf5wvLrcypeV3vUE5MV7vrU1diVNt+pLOFl5PESAgxYIV5uwijHbsxCFKm6R3OEWmJkUpp4T7obNY7HL/S1N5NmnNHWlSGl+1I62GzwsOT4d5k6NCS64xYGTHydZIYCSEGpLKpk+8bwpjS9SwdP/oITJ67zmJqWhTPBPyDN9p/Qsu2D/QOx6/kVtaTpVQAEJwyQedojpPJAnYboLrqGWU6F2AX1Upi5KskMRJCDMiGIq2Y4/DkWEIzPHe0CCAy2ExTYAoAjblSz8idKgp3YVFsdCqBEJGqdzjHL36M9rFGq4Cd7lpjJFNpvkoSIyHEgGx0JkbT06N1jqR/2uOzATBVbNY5Ev/SUaa1AqkLzgKDF/+qie9dATs95sCW/YY22bLvi7z4X6sQQg/l+Tv40HwnP2p9Xu9Q+iU0ayYAsa37tDUjwi0MtVpRxK7o0TpHcoJcrUG0zQY9W/ZB1hn5KkmMhBD91tzZTXTdRiYYikht26l3OP2SNXI8dWoYAXSjOhuaiqEX2ar1SLMkjdM5khPUM2JUc6BnmmzZ922SGAkh+m1zcQMnGbSRALOz5YanG5scznZ1OACNuWt1jsY/1LVaeck6l4dsFxE1YZ7e4ZyYOOeIV1sNtNUCkOncmVYoW/Z9kiRGQoh+21jUwHRFS4xI847EyGIyUh6qdXZvK1ynczT+YV9VK984JvGf8KUEpXlZj7RDmUNgzHkw5SrXVGzPAuxiGTHySdISRAjRb7n5uWQYqlBRUFJP0jucfmtOOZXndtcTYpnL5XoH4wdyq7Vu9KMSQnWOZJBc/kqvp7Jl37fJiJEQol+6bA4CKzZon8eOg8AInSPqv5jRc7jH9iP+0+rl6128RH3RduYatjA1qlPvUIbEgSKPMpXmiyQxEkL0y47yJqaoWi0Xc6Z3TKP1mJwaCcCO/U3YHaq+wfiB1LIPedH8N86pe+nYJ3sLWxc0aJW806O1xEi27PsmSYyEEP2yobCeFoKoN8ajpHtXYjQ8LpQ4czcTu3dQtu0rvcPxaaqqEtWWD4AlZbzO0QySql3w50R45gcABJmNJIYHAlAo64x8jiRGQoh+2VDUwAO2S3nn9E9g3CK9wxkQo0Hhxsi1vGG5h4A1D+gdjk+rabWS6SgBICZjss7RDJKodFDt0F4L7VqB055Cj7IA2/dIYiSEOCaHQ2VTsbPidUaUV1YyNjib3YbXbwNVptOGSmF5HWlKNQDmZC/tkXYoc8iBtiY12q5M2bLvu7zvp9shHnvsMTIyMggMDGTmzJmsX7/+iOe++OKLKIrS6xEYGOjGaIXwTgW1rajt9QQFwPhk71l0fbC4USdhUw2E2hqgpVLvcHxWbckujIpKqyEMQuL0DmfwxI7SPjorersWYMvONJ/j1YnRG2+8wfLly/n973/P5s2bmTx5MvPnz6e6uvqI7wkPD6eiosL1KC4udmPEQninDUUNPGl+iPWmn2Iu+lzvcI7LhPQE8lStoWx3mfRNGyod5doC/YbgDFAUfYMZTD2FHmu1it4ZMpXms7w6MXrggQe47rrruOaaaxg3bhxPPvkkwcHBPP/8kXs4KYpCYmKi65GQkHDEc61WK83Nzb0eQvijzQWVTFHyCFNbICJN73COy7CoIPYZsgCoz9ugczS+y1CvJQ7dkcN1jmSQxY7UPtb0HjEqrG1DlanZwbH7Q6jYBvZuXcPw2sSoq6uLTZs2MW/egXLzBoOBefPmsXbtkcv+t7a2kp6eTmpqKhdeeCE7dx6539N9991HRESE65GamjqoX4MQ3qKtaBOBSjddlqgDvyC8jKIoNEZofa9s+7foHI3veqPzZG7u+jnW8T5WSjO2Z8RIS4x6tuw3d9pobNf3F7lPsHXBW1fDU6dCS4WuoXhtYlRbW4vdbj9sxCchIYHKyr7XD4wePZrnn3+e999/n5dffhmHw8Hs2bMpKyvr8/w77riDpqYm16O0tHTQvw4hPF19WxdJLdsBUFJnevf0SJK2Syq0fpfOgfimzm4765sjec8xh/iJP9A7nMEVPxYmXgrTrgZVlS37g61mDzi6tcKxEfoOQvhVS5BZs2Yxa9Ys1/PZs2czduxYnnrqKe65557DzrdYLFgsFneGKITH2VLSQLYhD4CA9Jk6R3NiokdM567t12CLnsRfVNW7kzwPpE0rQWRwANEhZr3DGVzB0bDkmV6HMmKDqWzupKi2jalpUToF5iMqtT++SJyk+/+XXjtiFBsbi9FopKqqqtfxqqoqEhMT+3WNgIAAsrOzycvLG4oQhfAJW0oamWrQ1o0wzHv6o/VlTFoSL9vP4v2aZOyyLGTQlZSVstT4CReE56H4QdKZESM70waNKzGaqG8ceHFiZDabmTZtGqtXr3YdczgcrF69uteo0NHY7Xa2b99OUlLSUIUphNcrLtxHslKPAwMkZ+sdzgnJjA0lKMBIR7edQvllNujaizdzd8BL3Nj+hN6hDA27DeryXTvT0p2JUXG91DI6YVU7tI8J+te+8trECGD58uU888wzvPTSS+zevZsbbriBtrY2rrnmGgCWLl3KHXfc4Tr/7rvv5tNPP6WgoIDNmzdz1VVXUVxczE9+8hO9vgQhPJrdobK9oo1HbRfSNOZysHh3t3SjQWF2fDeXGr+gZc1zeofjc+zV+wBoD/exHWk91j8F/5wKn2tLLw5Uv5bE6ISoKlRu0z73gBEjr15jdNlll1FTU8OKFSuorKxkypQprFy50rUgu6SkBMNBFXobGhq47rrrqKysJCoqimnTprFmzRrGjZOO20L0Jbe6hSJrGE+Yf8gNl87XO5xBcUpkPT+ue4aG3Smw6Fd6h+NTApu0Hmmql+5cPKaeIo81WgKYFq0lRqUyYnRimkqhswkMARA3Ru9ovDsxArjpppu46aab+nztyy+/7PX8wQcf5MEHH3RDVEL4hi0ljYDWnd5o8I01IxFZUyEfoqz7oaMBgmTR7GBQVZXYzmJQIDRlrN7hDI2exKguD+w20pwjRnVtXbRabYRavP5Xqj6CY+HKd6B5P5j0X7Tv1VNpQoihta2omrmGLcxK8o2kCGB0RholDq1VhVqxTedofEdlcycZ7AcgOl3/dSJDIiIVAoK1beUNRYQHBhAVHABIBewTYg6GkfNg2jK9IwEkMRJDzWaF6t2w7xOtqmnTfr0jEgPQXJzDi+a/8dNtl/pM49WRCaHsIhOApsJNOkfjO4r2V5KoNABgihulczRDxGCAmBHa57XO6TTnAuwSWWfkM2TcTww+mxV2vAM734XCr8HWeeC1K9+GCK1fFW21YG2B6Ex94hRH1dTRTVzjVggAUqbrXltksFhMRiqDx0DnejqKNhGpd0A+oq5Y6yLQaIwmMihS32CGUuwobaFw7V7gHNKjg9la2ig7007E909AaAKMPAssYXpHI4mRGGS7PoCPlkNbjetQtymU9uAUDOZgrIFpxPa8sP5p+Prv2vDpD/5PK6AmPMbW0kZXYUdzhncXdjyULX4ilICldrveofiMnM5Enrf+gcsnhXOp3sEMpZ5mss4F2LIz7QTZrPDJ70C103HTNnZV2hgRF0qEc4pSD5IYiUGjqirbOmKY2FZHNTG83P0DVjmmsbczFVqdow2P5TEqoZIFE5K4obGIINUOG5+HvSth8ZOQdbq+X4Rw2VzSwEWKbxR2PFRo5jQogciOErC2en0ZAk+wp87OZnUUV4ycpHcoQyvrDHDYIO1kQHamnbC6PFDtYAlnW1MIlz2zhmFRQXz7G/1aykhiJE6MrQu1dB2rO0bx4Gf72FnezFRlBdvULAxGM1kJIZwSqu0yKG/spKS+nX1VreyryuUp02LuHH86P6p5AEN9HvzrQlj4V5j5U52/KAGQX1hImqEGFQUlZare4QyqEZmZXL7qLhpDhrNSkqJBkV/TCsDweB//fqaepD2cDhR5lMXXx6V6t/YxbgwFzlG34XH6/huSxEgcv7ZaOl++HFPFZh6x/oGd6nACAwyMmnImyyclMyMzGrOp9/r+pvZuPt9bxb/WFrOlpJHfb43kXxH38Orw/5CQ/xb873ZordKm1nxkTYs3cjhUDPs3AmCNGklgYITOEQ2usUnhrFPHobZAXauVmFDpiXgi2qw2FrW+SZMxhBEhvjW6eCw9U2nljZ102x0EGGVP04D0JEbxY8mvdibXkhgJb6RW76b1hSWEdeynWQ0m3tjKz04Zzk9PyyLqKM0jI4IDWJw9jEVTUvhqXw13vbeD/IYOZjUv4u0JiUzN/SeseRQmXXZgLl+4XWFdG6Nte8AE5oyT9Q5n0IVYTKRHB1NU186eyhZOGSGJ0YkorG7mZtPbWBQbGPygaGbTfu0Xetwo4iNSsZgMWG0O9jd0kBEbond03qVmj/YxfiwFe7RRt6w4fb+HktqKAWsvXEf7k/MI69hPsSOeP8Q/zIpbbua3C8ccNSk6mKIozB0dzyc3n8ZFU1NwqAoXbZ/F/9JvQ73qbUmKdLa5uIHX7WfwRPjNGKZcoXc4Q2J2TDu/Mb1G+Fcr9A7F61WU7MWi2OjCrNX68XUf3QqvLIF9n6AoimudkexMOw4HTaW5pmN1HjGSxEgMSOWOL1FfupAQRyubHSP5du4b/P2GS1wVYAcqxGLiH5dM5jcLtDLwN+zN5q974lF9pGaOt9pS2kiJmkDjmMshfbbe4QyJMTEGbjD9l5H7/wMOh97heLXW0l0A1AWmarV+fF2ss5ZRnbZrs2c6rUSKPA5Mdwc0FAJgjRntWsA+XEaMhLfYkbOe8LcvJYQONinjMSx7jyt/MBXDCbaKUBSFG+YO555FWrXcJ7/K54mv8qFyBzy/AFoqByN8MQA9rUCy0yJ1jWMoJWROxKoGEOjogMYivcPxaqqz23yHrzaPPVSMsxec8+tOi3YWeZQRo4ExWuCmjXD5q5R0huJQIcxiIi5M36ltSYxEv3yxt5pL36lhpf0kcgKmMOymD5kyfNig3uNHJ6dz17laj6X7V+6h6c0boGQt/Oc6+YvejVqtNmKq1rDU+AnTQ+v0DmfIjE2JZp+qFRu1l0s9oxMR1Kw1j1V8teL1oXqa5NZpiZHUMjpOBgPEDIcx57p2pGXFhaDovPFGEiNxTO/n7Oe6lzbS3g0fZt7F6Fs+JiFmaIox/uTULJbOSgcULq+9BocpSKuevfG5IbmfONy2skYWG7/h7oCXiC38QO9whsywqCBylQwAmoq26BuMF7M7VGKtJQCEDRunczRu0jNi1FgK3R2upQQyYnT8Cmu1achMD1i8LomROKp3vs9l69v34XDYuWByMk8unUlQ8ND+w/2/88Yxe3gMu7sSeCJgqXbw0/+Duvwhva/QbClpJNtHCzsezGBQaAzTRjis+6WZ7PEqb+wgk3IAotL8JDEKiYXACECFunzSow8kRrI+cgDW/FPrflBfSGFNT2Kkfx0sSYzEEf1nUwmWj25ihenfvJP0bx66bMphdYmGQoDRwMOXZxMTYubvDadSEDYNbB3aThD5oTPk9hUWkWVwrutKmaZvMEPMkaCtawuq361zJN4rv6aVBda/cmvIfRjjx+odjnsoyoFRo7pchkUFoyjQ3mWnptWqb2zeZP0z8Pk90FR2YMRI54XXIImROIIPtpZT+e7vOM/4PTbFxJQLbjrhRdYDERdm4e+XTEbFwDW1V+IwmKHgC9jzodti8EeqqqKWaR3nOyOyfL5/XVjaFADMXU3aDhkxYPk1bdQSQUfyTAgI1Dsc95n9C1j0JAybgdlkIDkiCIASWWfUP11t0FisfR4/lgJnYpQlU2nCE/1vewXfvfUgPzdp60sMF/wTJfM0t8dxxph4fjgzjWI1kVeMi7SDO95xexz+pLS+gxFd2tbrgHTfahzbl6z0VGZ3PsK8gH9BQJDe4XilntozWR4wBeJW4xfBlCsgQlvA76plJIlR/9Ts1T6GxNFsjKDWOdLmCQUyJTESvazaVcWrr/+bPxm1xc7qqbdhyP6hbvH8ZsEY4sIs/LllIR+PvBuWPK9bLP5gc0kD2YpWm8WYNkPnaIbe6MQwyomlvNlKU3u33uF4pWHF73KH6RVOMuXqHYqu0mUB9sD0VLyOG0ORc7QoPsxCqEX/hhySGAmXL/ZW88Ar/+Ux04MEKHYcEy5G+cHvdI0pIiiAP5w/nk4s/GrXSPJq5YfOUNpSXM9Eg1ZwjWG+nxiFBwYwLEobKdpT2axzNN5pfNPX/NT0ESPsfrY5wt4N+V/AhudAVWVn2kBVayPTxI/zqB1pIImRcNpc0sBP/72JBLWKQIMdNXUmhgsf84hGrudMTOQHY+Lptqvc9/FubW46b7XeYfmkLWVNzLb+kzVzXgQ/WUh7RnQ9jwc8RPwnP9M7FK/T1NHNMHsZANHpE3SOxs1UB7x8EXy0HFqrSXcWeSyW6tf9U93TI20MBTWe0SOthyRGgtpWKz9/eTNdNgfGUWejXPsJyuWvesxCSkVRuOvcsZgMCtv27KPrgUnw6mXQUKx3aD6ls9vOrvJm2gkkbdp8MBj1DsktsuLCOMe4npTqr8Fh1zscr1JYWU+6UgVAUJJ/JNIuJgtEpmmf1+XKVNpAOYtjEjdWRoyEZ7HZHfzylU3YmqsYHhfCw1dkEzAsW6vT4UGy4kK5cmYaNUSy0zYMHN3w5V/0DsunbN/fhM2hEhdmISXSfxYiJ2SMo1MNwKx2QkOR3uF4leriPZgUBx1KEIQl6R2O+x3UGqRnKq22tYtWq03HoLzEjevhhjWQPOWgxMgzFvBLYuTn/vbpXmaXPslKy2958WyjRyx8O5JfnjmSMIuJ37ct0Q5se12KPg6iLSUNPBzwKPcFv4riR/3pRqdEsVfVOsLbK6Q1yEC0lWv1n+oC0z1i2t3tXK1B8ggPDCAqOACQLfv9YrJAwnhUU6CMGAnPsXJHBfXfPs9NpveJVZpIda4V8FQxoRZuOGM429ThrDVM0+b4v3tY77B8xp7CMi40rmFe0ztg8NwEebBlxISwj3QAmqU1yMDU7gOgM9JPmsceKmaE9tHVTFam0waqptVKq9WGQTnw/dObJEZ+Kr+mlTffepV7Tc4eZKfdptXk8HBXz84gJsTMPzrO1Q5sfQ2aK/QNygeoqoqtdAMAnaFpEBqnc0TuYzQo1Dtbg3RJa5ABCWzReqQZ40brHIlODmkmmxajjXiU1MsC7KP6/gl470Yo/Ma18Do1OtgtnRX6wzOiEG7VZrVx74vv8RB/17blj18CZ+i7Lb+/gs0mrj8ti43qGLYaxoG9C9Y+qndYXq+iqZPMDm37rCnd97fpHyZuPACWhr06B+I9bHYHv2y/hpmdjxJ48jV6h6OPnjVGDcVg63L1TJMij8ew7xPIeRkaCj1uGg0kMfI7qqrypze/5vctfyBcaacreQaGRY971fqAH81KJzrEzIOd52kH2uv0DcgHbClpJNugFXY0pfl+xetDhaZNxKoG0OQI1urTiGMqbeig2w7NAXEkJKbqHY4+whLhwsfgmo9BMUgto/6qdvYm9MAdaSCJkd95/rsiJu59hDRDDZ1haZivfM1jtuX3V7DZxHWnZvGlYzI/Cn4Cx4VP6B2S19tSXMcUZ2JE6kn6BqODzLQ0xlpfYFnA38AYoHc4XiG/WmsFkhkb4tY+ih5FUSD7Kkg7GYwmGTHqj44GaHVu7ogbfaCGkSRGQg/fF9Rx78e7+ZPtR+QlnUvgsnc9blt+fy2dlU5EkJlv6iP4bHeV3uF4veqinUQqbdgNFkjws0J9wKjEMBwYKK5vp6NLahn1R0vBOp4MeJCfmP6ndygeI925xmh/YwfddofO0XionsKOEakQGE5hbU+C7Rlb9WEQEqP6+nocDvkH4Okqmzq56dXN2B0qZ0/JYvj1r0DsCL3DOm4hFhM/nKkVV3vmmwJoLIFK2Wp9PLpsDhqrS6hSI+lOmOyXIyaxoRZiQsyoKuRVtegdjldQy3NYYNzAFNtWvUPRV0MRbHwetr9NfJgFi8mA3aFS0dipd2SeqacVSNwYbHaHa9ox00OqXsNxJka7du3iL3/5C7NnzyYuLo74+HiWLl3KO++8Q1ubrMb3NFabnU+evoMrOl5nTEIo9100CcWL1hQdydWzMwgwKiSVfIT68GT4+Da9Q/JKuyua+bp7HPMNT2NZ9o7e4ejmwshC/mf+LbH//ZHeoXgFc6M29ar2LED2V/s3wYe3wLqnMBgU15bzYtmZ1reaA61AtJE1FYvJQFK45yzp6HditHfvXm699VZGjhzJySefzIYNG/jZz35GVVUVH3/8Menp6dx9993ExsaycOFCnnhC1n14AlVV+fiFe1nW9jy3BrzNS3PbCDL7RquHhPBALpicwlrHWByqAiVroTxH77C8zuaSBgCy06JQAsN1jkY/ibFRjDWUENawQ+9QvEJ0u9aSJzB5jM6R6CzmkC37ss7o6Dq0nzfEjaXgoIXXnrROrd+J0Zo1a2hra+ORRx6htraWd955h6VLlxIbG8uMGTO455572Lp1K7t372bBggX85z//Gcq4RT998eYjLN7/dwCKx/6UhOxzdI5ocP3k1ExqiOJDu3Mn1bqn9A3IC+UU1wMq2WlReoeiq4i0iThUhdDuemir1Tscj1bf1kWaqhWEjU2fqHM0OotxFrfsaIC2OtmZdixLnoU7y2H8YgprPG9HGgwgMbrmmmt48sknWbhwIWaz+YjnZWRk8Ktf/YpVq1YNSoDi+G363wucvuv3AOxMvYL0S/+qc0SDb2xSOKeOjOUF2wLtwI63ob1e36C8TfE3bLDcwCWVD+gdia5GDIunRI3XnvSsgxB9KqqoIRmtTIYl0c9HjMwhED5M+7wu96CdaTKVdkTmEDAHe+RWfRikXWmbN28ejMuIQZT32fNM/n45RkVlS8x5jL/Gu2oVDcSP52SSow5nF5lawcetr+sdkteoabGS0rqTOKWZWJN//4U7MiGMfar2C66jTBbyH01N8S4MikqLIRxCYvQOR3+xB1qD9OxMk6m0Y/PpxGjGjBksX76817GPP/54MC4tjsP2HVvJ+OZWTIqDtaFnMemGl8Dgu5UZTh8ZR2p0MK92z9UObHoRVFXPkLxGTmkjUw3a2oiA9JN1jkZf4YEB7DdnAtBaKq1BjqaxqoRONYCGoHS9Q/EMB60z6plKK61vR5WfQ73lvArPL4QNzwIHEqMsD9qRBoOUGE2cOJHw8HCuueZAWfi77rprMC4tBiintJEfvlXJCts1fBpyPtm/fA2jybcbghoMClfNTOd9+yl0YkFtKtO20Ipj2lJc76p4zTD/K+x4qI4oZ88vmUo7qlXdkxhrfYG1Mx/XOxTP0NMzrTaPYVFBKAq0ddmpa+vSNy5PU7YRStZAUxmd3Xb2N3YAnlXDCAYpMVIUhT/84Q9MnjyZiy++mO7ubsmU3a27g7Wbc/jhM9/TYrWRl3YJp/7qJQLN/lGT5pLpqVhNoSyz3s72y9dDdKbeIXmF/YW7iVFasBvMkDhJ73B0Z0qaQJ4jmVJDmt6heLT8mjZUDKSmJOsdimcYcy5c/RGc/xAWk9G19Vym0w5xUCuQIucarIigAKKCPev31KAkRuHh2hbfm2++mfPPP58LLriAjo6Owbi06I/GUuofPZP496/A1NXMnBGxPH/1ST6zLb8/okPMnDcxiXXqWF7aJL3T+sPuUAms3ARAV9xEMB15U4W/iMmYxLyuv3N/4E16h+KxumwHivINj/Osv/R1EzEMMuZAqLZ4/8DONFmA7aKqUONMjOLH9tqR5ml19QYlMfryyy9dny9btozrr7+e6urqwbi0OIaurW/R8cjJRDftJJpmlo5x8PzVJxFq8e3ps75cNUtb7/DfbeU0tFpld9ox7K1sYZxD6yZvyfTv9UU9RieGAdr3Rka9+1ZS18I7prt40vJP4k3yB3Bf0qNlAfZhWqu1kgaKAWJHuWoYeVKPtB7H9duzubmZF154gcrKSjIzM5kyZQoTJkwgOFjLkhcvXszixYsHNVBxiKb9NLx3O1GFHwKwxTGCLSf9jeXnnuFRhbLcKTs1knFJ4Tgqd+B4cg6EBcFPv9Y7LI+1pbSBAjWZvebxjE6frXc4HmFEfCiKAo3tVurq64mNkR1XhyorzmeuIZ9uilEsYXqH4zn2fAyl38O4C0mLiQCkllEvPev2ojIhINBjd6TBcSZGF110EVu3buWkk07iv//9L3v3an91Dh8+nMmTJ/PGG28MapCit9bP/kbAmn8Q5ejArio8b1jCuCv/xI9HJ+kdmq4UReGKGak88H4Z4a0F0GqDql2QME7v0DzSlpJG3rbPJ3z6jYweO1rvcDxCYICRn4Z/z02dT9Px37Pg6pf1DsnjNJfuBKDOnEKi0f9Gpo9o+5uw810IiSM9ZgkAJTJidICrFchY4KCt+h62Iw2Ocypt7dq1fPzxx3z88cfs2LGD1tZW1q5dy69//Wvi4+MHO8ajeuyxx8jIyCAwMJCZM2eyfv36o57/1ltvMWbMGAIDA5k4caJXlRXIrWrhrve288XXn2NxdLDBMYoHhz/L4lsf5xQ/T4p6XDA5hTZTJJ/bp2gHtr6qazyebIurFUikvoF4mNCoeEKVToy1e/QOxSPZq/cB0BaWpXMkHqZny35t7kH90iQxclFVCEs6PDHylRGjSZMmYTpoC7jFYmH69OlMnz590ALrjzfeeIPly5fz5JNPMnPmTB566CHmz5/P3r17+0zQ1qxZwxVXXMF9993Heeedx6uvvsqiRYvYvHkzEyZMcGvsx2Sz0lqcQ/X2VZgLPuMvjqV8WJsAwFplMblxpzD7wp/y6+FxOgfqWSKCA1gwPpF3tp/KfONG2PYmnPkHkL9se2lq76ajpphQgpmS6t+tQA4VmDwBKiG8rRDs3WD0rB0zegtsytc+ifXz5rGH6vl+1OW51hjVtFhp77IRbJafP8z6ufZw2Gls76LeWcogI8ZHEqP777+fFStW8Pbbb2OxWAY7pn574IEHuO6661z1k5588kk++ugjnn/+eX77298edv7DDz/MggULuO02rQv7Pffcw6pVq3j00Ud58sknDzvfarVitVpdz5ubm4fk6yisbeO5/37BpVUPYba3EWGvJ95RRSgqPXs+ptvi+MR4DaePiuPaOSdzcla0x63k9xSXTk/lmq3ZNBBGVGsVFHwJI+fpHZZHySlr5PcB/+Is4yYMeztg6lK9Q/IYiemjaN0USCidUJfn+gtXaE2pozq15rEhyfJ96SXmQPXriOAAIoICaOropqS+nTGJ/tuc+TAGI4W12u/SxPBAQjxwo9BxTaVlZGTQ3NzMuHHjuPPOO/nggw8oLS0d7NiOqquri02bNjFv3oFfeAaDgXnz5rF27do+37N27dpe5wPMnz//iOffd999REREuB6pqamD9wUcpM1q47t9lUzq3MCY7l0kOSoxotKkBvON8STeTfgFsfNvY+PvzuLZZScxa3iMJEVHMXt4DPGRYbxvm6UdkOm0w/QUdjSgQuwovcPxKKMTw12tQdQqKfR4sNrWLjLU/QBEZ4zXORoP05MYtVVDRyPpMT0902Q67dBOBJ48jQbHOWK0ZMkSqqqqOP3001mzZg1PPPEEzc3NREdHk52dzaeffjrYcR6mtrYWu91OQkJCr+MJCQns2dP32oDKyso+z6+srOzz/DvuuKNXq5Pm5uYhSY6GRQVx3TmzWV/7ZwyBoRhCYgkbNobk5HRODZRh/IEyGBQunjaMdz4/jatNn8Kej6CzCQIj9A7NY5QW7iVeacShmDAkTdY7HI+SERvCO6QxlTxaSrcRPnGJ3iF5jILKOqLUYGKUFszxsmC/l8BwCE2A1iqoyyMtOphtZU2UyjojyFsNH9wEI8+GCx7x6IXXcJyJ0Y4dO1i7di2TJx/4gVpUVMSWLVvYts13egxZLBa3TBVGBpv54anjANk9NVgunjaMRz7P5HnbAs4//4fEBXjm/4B6cDhUjOUbAeiMHU9wQJDOEXmWAKOBhpDh0PE51v079A7Ho+TVd/O7rr8xb3QMzwZF6h2O54kZ6UqM0mOmADJiBGiFHVsqtD9QwaNrGMFxJkYnnXQSbW29K3pmZGSQkZHhtvpFsbGxGI1Gqqqqeh2vqqoiMTGxz/ckJiYO6HzhvVKjgzlleBx35y2luWEkN8via5eC2jbG2vaACSwZM/UOxyN1xE3hs8JsgoMmIdsbDsivdv6lHy9rZvp03oNgDoawZNK6ygDZmQZA9SFb9Ws8eyrtuNYY/epXv+IPf/gDjY2NgxxO/5nNZqZNm8bq1atdxxwOB6tXr2bWrFl9vmfWrFm9zgdYtWrVEc8X3m3JtBQA3s8plyrGB9lc0uBqHGtMk8SoL5bMk/lJ9228HXCh3qF4lILaVgCypBVI3+JGae1BDAbSnDvTSuqkLYiruGPcGFRV9c01RhdffDEAI0eOZPHixcycOZPs7GwmTJiA2ey+fkvLly9n2bJlTJ8+nRkzZvDQQw/R1tbm2qW2dOlSUlJSuO+++wAtoTv99NP5xz/+wbnnnsvrr7/Oxo0befrpp90Ws3Cfs8clEhSwA7Uuj6p3PyUxcxxkX6V3WLrbWlDJIqVIezLsJF1j8VQj47Vf/HurWnSOxLNcVnYvy81FWKwrAGm0ezQ9i6/LGjqw2R2YjIPSgcv7OBxQoxWBJn4sVc1WOrrtGA0Kqc56T57muBKjwsJCtm7dSk5ODlu3buXee++lqKgIk8nE6NGj3bbO6LLLLqOmpoYVK1ZQWVnJlClTWLlypWuBdUlJCQbDgX+Ms2fP5tVXX+Wuu+7izjvvZOTIkbz33nueV8NIDIoQi4n54xMI3v4pidueg+qJkhgBOSV13G1byk/HWEmNlF9ufdF6pqk0VJdhbyrHGCFd5Du77WR15zLaUEZzpKxL61NXO3zzd6gvIHHxs5hNBrpsDiqaOj02CRhyTaXQ3QZGM0RnUVCkrTNKiw4mwEOTxeNKjNLT00lPT+eCCy5wHWtpaSEnJ8fti69vuukmbrqp707YBze37XHJJZdwySWXDHFUwlMsyk7h5pwZ/DHgRQIqt2t/ucT5726ahrYudtba2clZ3HrRWSBlH/qUGhXMneY3ud7wPk2rryXiogf0Dkl3RTVNZCraDt6wYVLDqE8mC6x5FOxWDGf+ntSoIPJr2iipb/ffxKh6t/YxZiQYAzx+Gg0GsMaosrKyV7HDQ4WFhXHqqady4403AlBQUHDi0QlxguaMiMUUGsPX9knage1v6xuQzjYVa21AhseFEBXivmlvb2MwKFjD0wHortytczSeoaJoHxbFhhUzSoSMNPbJYISY4drnzi374Oc704wBkH4KpJ0MeP7CaxhAYvT2228THR3N4sWLeeGFF6ipqTnsnHXr1nHnnXcyfvz4Xlv5hdCLyWjg/MnJfGB3LrDf8fZhxcb8ycaiei4zfsF5CQ3a3L84IkecVj4jqGGvzpF4hpYybQFtXWAaGDxzCsQj9LQGqd1HurPdRXG9Hy/AHnEmXPMxnKeNuvrUiNFNN93E1q1bOfXUU3nxxRcZNmwYc+bM4d577+W6664jKSmJRYsWUV1dzV/+8pc+Eych9LA4O4VVjul0qGaoL4DyLXqHpJuKgu38NeAZflHwU3B06x2ORwtPnQhASHcdtNXqHI3+HM4FtO3h0jz2qPpoJlvizyNGhyj08BpGMMDt+iNGjGD58uV89dVXlJeXc91117F161aio6N55513KC8v59lnn+X8888nMDBwqGIWYkAmpkSQGBfDZ46p2gE/nU6z2uyEVG0AoDthirYeQhxR1rAEih3OZtTV0hokuFlbHqFIC5mj6/n+1OZKWxCHA7oOjJbZ7A5KnHWdMjw4MTruqncxMTEsW7aMZcuWDWY8Qgw6RVFYPCWFD1bP5gzTDkL9tNLzjv3NTFG1v/oDs2brHI3nG50QxnY1lXSq6a7cSUDmaXqHpBtVVSnuDKJATSRkmPRIO6pYZ8+0ugOJUWl9O6qq+l+Py4ZC+Oc0bcPLz7/XShc4VIICjCSGe+7giUwUC7+wKDuFzx3ZTO18nMrpt+kdji42FdczzbAPACVdipoeS0K4hUKjtgC7tWS7ztHoq7K5kz9bL+Ns24PEzLxc73A8W89UWmcTw0K0dXwtVhsN7X44dV2zB1C1rfqK4ppGS48JxmDw3CRREiPhF1Kjg5maEUuXauL9nP16h6OLvfkFDDdUaE+ksOMxKYrC/qiZPGdbyN6IOXqHo6sC506itBjPrT3jMQLD4ebtcGc5gSERrpGRYn+sgN2zVd/ZCsTVI81Dm8f2kH/hwm9cOMXZImTLfijdALYunSNyH1VVoXQ9AB2RoyA4WueIvIMt7RTusf2Ir5mqdyi6KqhuAlSGSyuQ/olM07buoyWTgGttjV/pSYzixgBQ6Gwp48k70kASI+FHzp2YhMmgcE/9cnhuHhR8qXdIblNU187orp0AmDNlGq2/xiSGAbDPz1uDhO9+g62W67i+XdonDVS6P9cyqulpHquVviiq1b4HmbGenWBLYiT8RlSImdNHxbHdkakd2PGOvgG50caiev5pW8w9kX/COONavcPxGqMSwginDXP5Omgo1jsc3Zga8olQ2okICtA7FO9QugHeugY+vct/d6bZbVCrrWkkvmfEqKeGkWdXAZfESPiVC6Yk819nsUd1z0fQ3aFzRO6xqbiBFoIxjZ4HSVJ8tb9GJYRxT8ALPG79Hdatb+kdjm4i27Wt+pbEMTpH4iU6m2DnfyB3FWnOIo+l/jaVVl8A9i4ICIGINDq77exv1H7eyoiREB7krHEJ7AkYw341BqWrBXJX6R2SW2x0tgKZni5riwYiKsRMWYA2wthW6p8701qtNobZygCISZ+oczReoqf6dV0+aZFa6x2/q35tMGpNu8cvBoOBIufi84igAKKCPXvkURIj4VeCzSbOGpfEh3atb48/TKfVtVoZX7uS35peY4a5SO9wvI41WivYZ/DTIo9FFXWkKlong9Bh43SOxktEpIIpEBzdZBq1qulVzVY6u+06B+ZGMcPhwsdg0WMAFDmn0TJiQzy+npMkRsLvXJidcmA6bd8nYPXthbXrC+u50LiGn5n+S0TNJr3D8ToBSRMACG0tBLv/1aKpLtqJQVFpVUIhJE7vcLyDwQAxWqHH8LZCwgK1Wsp+uTPNqcALWoH0kMRI+J05I2IpDxpNoSMBxdYBuZ/qHdKQWl9Q6yrsSNpMfYPxQgmpI2lVAzGp3VCXr3c4bte239k8NigDPPwvfY/inE5T6vL8cwF2bV6vkiiFNZ7fPLaHJEbC7wQYDZw7KZk/2a7isbSHYdwivUMaUlW5m4hQ2rGZgiFRFl4P1KikCHLVYdoTP5xOK2w18aV9Mk1xUhR0QFw90/aRHq0lA34zYmTrgsdnwr1J0FIJ4FpjJImREB5qUXYyqx3TeLwokQ6b3tEMncb2LhIbNwJgT50FxuNuj+i3RsaHsseRCkDHfv9bgP1h+1iu7v4NDaf8Tu9QvEvMSDCYoLvzQJFHf6l+XZcHDhsEBENoAnDwVn3PT4zkp6TwS1PTohgWFURZQwef7a7i/MnJeoc0JNYX1nOyoo1yWIafqnM03inEYuL7kLnsak3n4tiz8KcxN5vd4fqFNtzD2zh4nHEXwPhFYAwgbX0JAMX+MmJUc1DFa0WhqaOb2lZtWi3DCxIjGTESfklRFC6ckkwKNQSvvhP+81O9QxoS6wpqmWFwVp/NkMToeLUln8K/7Weztcs3E+gjKa1vI9jeQlCAkeSIIL3D8S4mCxi1bek91a9L/GWNkatHmlb3qmdHWnyYhVCL54/HSGIk/NaFU1IwKg7ObH4Xdftb0Fqjd0iDriB/L90YtfVFUtjxuI1K0FqD7K307R2Mh9pftI+tgdfzdcCNGFD1Dsdr9UyllTa0Y3f4wffR1SNNax7bs77IG0aLQBIj4cdGJYQRnDCCrY4sFNUOu9/XO6RB1dzZzVdVgZxkfYKGa75z/fUqBm50YhhjlBKSC/8DjSV6h+M2zaVaf71uU6i2BV0MzLcPwdNnkFz6MQFGhW67SkWTH1Tbd/VI00aMCmq8Z6s+SGIk/Nyig2oaseM/+gYzyDYW1eNQISMmhLiULL3D8WqjE8O4y/Rvbmx+ALXgK73DcZvu6r0AtIXJv5/j0lQK5ZsxVG0nNco5nebr64y6O7V2IOBqHutNC69BEiPh586fnMxHzirYavEaaNqvc0SDZ11+HaAyMzNG71C8XlZsKLloO9PayvxnZ1pQo7NuU0+LCzEwPVv26/JI9Zd1Ro5u+MFdkP0jr9yRBpIYCT+XEhlEauZI1jtGo6DCrvf0DmnQVORuYoPl59zQ/JDeoXg9s8lAQ4hWybirfIfO0biHqqpEdxYBEJIyXt9gvFVPQlm770CRR18fMbKEwam3woWPgqKgqqpr8bUkRkJ4iQunJB80neYbvdNarTZiazcQpzSRSJ3e4fgEu3MhaWD9Xp0jcY+6ti7SVW0ENSZjgs7ReKkYZ2JUX0h6pLbGz+dHjA5R29pFi9WGohxYhO7pJDESfu+cCUl8qs6kTI2lIXY6OLy/0eO6gjpOctYvChx5ms7R+IbQYVpyENxVC22+n2wWlpYRpzQDYEkYrXM0Xio8RSty6OhmTGADAMX1Pl7ksXSD1jrH+XO0ZxptWFQQFpNRz8j6TRIj4feiQsxMHD2SOdaHeS74WjB4x/+8R/NtbjUzDc4ts1K/aFBkpiRS4nA2UfWD1iAlNU28ZDuLdcFzwRKqdzjeyWDQuswDGZQDWr80VfXhLfv/+Qn8cyoUfwdw0DSa9/wbksRICOCCKSmAwvtb9/vED63yvZuIVlqxGYMhOVvvcHzC6MQw9qraAmxHle8nRjubAvm97Ro+G3+f3qF4t7ixEJVJbKD2tKXTRlNHt74xDZWudmgo1j53Tj0X9CRGXjKNBpIYCQHAvLHxBJuNlNe3krv2A2gs1Tuk41bV3Ela4zoA1PTZUr9okKRFB/OCej5Lu35DWcpCvcMZcvk1rQAMj/Oev/Q90kVPw69ysEy+iPgwC6CNGvmk2r2ACsGxEKqNrhbWav+OvGXhNUhiJAQAwWYT88cn8kDAE4z6dClseVnvkI7bt7m1nGrQtpQHjDxT52h8h9Gg0JxwEl87JrO72ax3OEOus3IfobQzPF4SoxOiKK5PfX5nWnVPYcexrkOurfpelGBLYiSE0wVTkvnCPgUAdcc74KVTat/l1bLJMYrKkNEw/Ay9w/EpPa1B9vl4a5COLjt/7bybHYE/YbTVf+o2DbW0aG3UpKTORxdg96y9i9MqXjscKkXO0bHMGBkxEsLrzBkRy+bAk+lUA1DqcqHS+34hqKrKt3m1PGxfQsHij3v95SZO3OiEMBYa1jFy50PQUqV3OEOmsLKWVKUagPBk2ZF2Quw2eO5s+GsGo8O1DvM+O5XW0yMtQat4Xd7UQZfNQYBRISXKe5oQS2IkhFOA0cDcycP53OFcrOyFNY1yq1upbrFiMRmYmh6ldzg+Z1RiGDeb3mFB/ctQsVXvcIZMVfFujIpKmxLiql4sjpPRpFXU72hgTICWTPtsW5CeEaNDWoGkx4RgNChHepfHkcRIiIMcXOzR4YXTad/m1jJD2c2p6UEEBnh/2QFPM+agnWm2St+tgN1apv3lXxeY3muNjDhOsVrV9J6CmT6ZGKkqzP8znHa7a6Ta21qB9JDESIiDTE2LYl/4LFrVQAxNpVC2Ue+QBmTr3lzetNzDU+UXQ0ej3uH4nMTwQIqM6QC0lXrfVGt/KbXaItrOiOE6R+IjnD3T4p0tViqbO+ns9v5Csr0oCoxfDD/4HQRGAJIYCeETFEVhQXYmqxzTtAP5q/UNaAA6u+2Yir8BoDtqBARF6huQD1IUhfYIbc2N6sNFHsOa8wAwJMgatUERp/2bCWzKJ9RiQlWhrMEHR40OIYmRED5i0ZQUHrddyIXd99J40i16h9Nv6wrrmeHYBoBltGzTHyrGJG39RGhzgbaw1sfY7A4Su7QifRHpk3SOxkc4ix0qNXtIi3Zu2fe1Bdj5X0DuKmivdx2SxEgIHzEyIQxT4ji22jP4eIf37Dz6YncVpxu1BcGKbNMfMvGpo2hTLZjULqgv0DucQVdS386/bfN403EmMVlT9Q7HNzi3r9NYwsgobc2WzyVG3/wDXrkY9q0EoMvmoKyhA5DESAifcOGUZADez9kPDofO0RybqqqU7V5HotKgtQFJn6N3SD5rVGIEueow7Un1Tn2DGQL7qlp52X4W/45bjiEyRe9wfENIDCROghFnMiJCW1vkUwuwVRWqnP8vOHeklTa0Y3eoBJuNrorf3kISIyH6cMHkZCJo5ZKye7E9PAXsnt3bqLC2jTEta7UnWadDQKC+AfmwUQmh/K77Wk6zPkj7iHP1DmfQ5VVrxStHSsXrwfWzb+Cqd4hJzASgyJeKPLbVQEc9oLjWUxXWHJhGU7xsZ6MkRkL0ITkyiLEZKZxuyMHUVAwFX+kd0lF9sbeGM41bADCN8f0+XnqKCbVQFTKaEjWB3Gof+qvfqaVkG+OVIsbESo+9oZARq60x6uk67xN6RouisyBAK+ToreuLQBIjIY7oguw0PrbP1J5sf1PfYI7hiz3V3NJ9A2tH/hpGLdA7HJ83OlEbTdlb5XutQWbvf4GPLHdyRtN7eofikzIjtNGT0oYOuu2eP03fLz0Vrw/ukVYniZHb1dfXc+WVVxIeHk5kZCTXXnstra2tR33P3LlzURSl1+NnP/uZmyIW3mbhhET+y2kAOHa9D53NOkfUt1arjfWF9RSpScSffQuESaXioTY6PoibjO8y/ruboct3Ro3sDpXEriJAdqQNuvIc+NtIEl89i6AAI3aH6lqc7PUOqXgNvafSvI3XJkZXXnklO3fuZNWqVXz44Yd8/fXXXH/99cd833XXXUdFRYXrcf/997shWuGNokLMRI44mVxHCgZbJ+x8V++Q+vTFnmq67A4yY0PI8sIfQt5oVEIk15hWMr7hM6jdq3c4g6aktplMygGIzZyoczQ+JiwJ2qpRGgoZEW0CfGg6rY8Ro4JabaBCEiM32b17NytXruTZZ59l5syZzJkzh3/+85+8/vrrlJeXH/W9wcHBJCYmuh7h4eFHPNdqtdLc3NzrIfzLhdnDeMuujRqpW17WOZq+rdpRyiMB/+T2+PUoHr5I3FeMSgpnr0NrDeL6peAD9ufvwKzY6SAQQ2Sa3uH4ltB4CIwE1cHMcK3WT6GvJEbnPwyLn4I0rZ1SS2c3Vc1WALLivG8Rv1cmRmvXriUyMpLp06e7js2bNw+DwcC6deuO+t5XXnmF2NhYJkyYwB133EF7+5GHwe+77z4iIiJcj9TU1EH7GoR3mDc2gU9MZ2BTDShl66Fmn94h9dLZbce693MuMK5lXsXTYDDpHZJfGJVwoGdaZ5nvtAZpKdG+lprAdDB45a8Hz6UornpGkyyVgA8lRokTYPLlEJ4EHPi6YkMtRAR53yJ+r/yXX1lZSXx8fK9jJpOJ6OhoKisrj/i+H/7wh7z88st88cUX3HHHHfz73//mqquuOuL5d9xxB01NTa5HaWnpoH0NwjsEmY3MmTKOV+1n8mHMNRDkWR3rv8ur5QeO7wEwjb9Qfpm5SajFRHVQFgCd+30nMXLUaNOC7REjdY7ERzm3sg9HaybrU1v2D5Jfo02jDY/zvmk0AI/68/K3v/0tf/3rX496zu7dxz9sffAapIkTJ5KUlMSZZ55Jfn4+w4cf3izRYrFgsXhXYSox+K6YkcZ5664hoFJhFuHE6B3QQT7dXsZvjFqjW2X8hTpH419sseOgAix1vtMzLbQpFwBDwrhjnCmOi3PEKKmrCDjNN0aMcj+D+nzIPM21xqjAufDaG6fRwMMSo1tvvZWrr776qOdkZWWRmJhIdXV1r+M2m436+noSExP7fb+ZM7Wt2Hl5eX0mRkIATEiJYPKwCLaWNfH2pjJ+erpn/Fux2R007P6SaKWVbks0AWmz9Q7Jr4SmTcZerhDUVQctVV6/G9DuUHmq4wesVVNYOm6e3uH4prhRAIS35gNQ3tiB1WbHYjLqGdWJ2fY6bH8LzlzhSoxkxGgQxcXFERcXd8zzZs2aRWNjI5s2bWLaNK0L+ueff47D4XAlO/2Rk5MDQFJS0nHFK/zHFTPS2F22mfI1r6MqgSin3ap3SKwrrOe07u/ABMZx54HRo/539nkjh8VTqCaRrlQTUF/g9YlRSX07a2yj2WQay22jZugdjm+KHwcZp2JMGE9onZFWq53S+nZGxIfpHdnxc+1IOzDKmF+tjRgN99Lq6V65IGHs2LEsWLCA6667jvXr1/Pdd99x0003cfnll5OcrPW42r9/P2PGjGH9+vUA5Ofnc88997Bp0yaKior44IMPWLp0KaeddhqTJkm9DnF0509OZrylhj9a74cv/gzNFXqHxPubS5jvnEYzyDSa241NCudHXXeQbXsR27D+/0HmqXKdxSpHxIdiNHhXCwevEZ4MV3+IsvCvZDi3sRfWenEdLHs31Do3pDhHi+wO1VXccXisJEZu9corrzBmzBjOPPNMzjnnHObMmcPTTz/ter27u5u9e/e6dp2ZzWY+++wzzj77bMaMGcOtt97KkiVL+O9//6vXlyC8SIjFxLgpJ7PeMRpFtcPml3SNp7PbzvqduRSoSdgskZBxmq7x+KP06GCazPG02gw+sYi2tnA7Cw3rODlSypK4Q0ZMT2J09MLEHq2+AOxdYA6FCK28w/6GDrpsDswmAylRQToHeHy8duw9OjqaV1999YivZ2RkoKqq63lqaipffeXZ/a6EZ7tiRhpPbziLGea92De+gPHUW8Goz1bU1burKbKGsjzyPr65+SQwmXWJw58ZDAqjE8PYUtLIrooW754OASKLPuYJ8/PsbjsP8L3muB7F2sKE8A4+xMtHjHoqXseNce2Ize8p7BgT4rUjj147YiSEu01IiWB/8lnUqOEYWyth78e6xfLuFm2774VTkjEEevcvZG82ISGQ+01PMePTRV7fGiSsSZsSMSaMPcaZ4oRseBbuG8a55Y8AXl79uqqnFciBfzP51c6F1/HeufAaJDESYkCWzhnJ6/YfAGBf/6wuMTS0dVG0bysxNLEoO0WXGIRmVEosZxi3kNi216srYNsdKildBQCEp2frHI2Pc045xXYUAl5ey6hqp/YxYbzrUIEz0cvy0vVFIImREANyzsQkVgcvxK4qGIu+hhr398n6aHsFtxteYX3gjYza/57b7y8OGJcUxm5HuvakynsLPRZX1ZKOtqEgbsRUnaPxcc4ij4FNBRixU9HUSUeXXeegjtPiJ+HHn8DYC1yHZMRICD8TYDSw4JSTWO2Yym7jaFQdpk8+XreduYYcjDhg2PRjv0EMmdGJ4exStcSoszRH32BOQHluDkZFpVkJxxje/1pw4jhEpEJACIqjm4mBtQAU13vpqFFgOKSdDBEHRq5lxEgIP3TFSWncqfyShW0rWNPh3v5528oamVD9IWbFji1xSq+5feF+oRYTNSFa+4yu/Vt1jub4tZZsA6A6eLjW00sMHYPB9f/t7LAqwMvXGR2kqaObmpae5rEyYiSE34gIDuDcaSMAhWe/KXDrvV/7vogrjJ8DYDrpx269t+ibI34iAIH1e8Dh0Dma42Os0daKWKPH6ByJn3C2XJls1jZRFHhjYrT7Q/j4dsj/3HWowFnxOj7MQlig9zWP7SGJkRDH4ZpTMjEosGlvIZUf/xWsQ1+LpLmzm8qtq8g0VGELCIMJS4b8nuLYotLGYVUDMNvboaFQ73COy1PWBfys62ZsEy7TOxT/EK8tVh6hlgBeOmK0byWsfwqKvnMd6umRNtxLe6T1kMRIiOOQERvChVNSeMV8L4nr74Ut/x7ye769sYyL+RQA4+TLwOLdP3x8xZjkKHaraZQZkqG9Xu9wBqzNamNjYwgrHTMYNl767blF2kzI/hFNGQsAKPLGWkZVO7SPiRNch3p6pHnzNBpIYiTEcbvpByN43X4mAN1fPwjdHUN2L5vdwWvf7GKOQfthpEy/ZsjuJQZmbFI4S7r+wBnWf9CVNE3vcAZsr7MVSHyYhZhQi87R+InkbLjwUUxTfwjgaqHhNRz2A+UpEia6DsuIkRB+bnhcKJ3jL6NMjSWgvUor3DZEPtpeQW4TXGh8nK4Lnuz1V5rQ17CoIIIDLXTbVddfzN6kct8mbjB+wIWR3jkN6M16+qXVtFhptdp0jmYA6vLB1gkBwRCd6TosI0ZCCG6YN55HbBcBYPv6AbC2DPo9VFXlGeci74tOmYB56hWDfg9x/BRFYWxiOAC7y5t0jmbgDIVf8puA11li+1DvUPyLzUp4w26mBNcBXrbOqKdmV/w4MBgBbVS7uE6bEpQRIyH82Ij4UNRJl5PvSMLUWY/6/RODfo8v9lZTs7+IwACFH52cPujXFydufGIQb5jv5pyPZ3rdOiNLvVak1BE3TudI/Mzn98BTp/LTQG3doFeNNlYevr6orKGDLrsDi8lASqR3No/tIYmRECfo1gXjeYxLALB98zC0VA3atR0Olcc/3sgqy+2sDv8TUfbaQbu2GDyjk6NJoo5AextUek8FbFVVie/IAyA0bZLO0fiZBC2pGK1oO9Pya7xoxKhRi7nnawAo6GkeGxuCwUubx/aQxEiIE5QYEUjqnCvJcWTxqTqDDvvg/VD477Zy5tW/SrjSTmKwCqEJg3ZtMXjGJYezU80AQK3wnkKPVY3tDFdLAUgc5X0Lx71avDZCl2wtBLxsfdrFz8Gvc2HiJa5DeT2tQLx8Gg0kMRJiUPx07ghuDryXG9t+wgPfDc6oTme3nZdWfsfVxk8AMJ71B9d8vvAsoxLC2KVmAdBRvEnnaPqvKG87gUo3nZgxxw7XOxz/EjcaFCOBtmYSqXf1GPMaofEQFOl6mlulxT8yQRIjIQQQbDbx+4u0v7if+7aQrSUNYO8+oWs+9kUey9peIFDpxp46C0aePRihiiEQGGCkPlIbAVDLc/QNZgBaCjcDUBWYJUm3u5ksEKu1kxljKKWwtg27Q9U5qOOX60zsRsaH6RzJiZPESIhBcsaYeBZNSSZWbcD60mK6Pvn9cV9rX1ULO79+hwuNa1AxYFx4n/Sw8nABw7IBCGktgk7v2J2mONdDtUSN1zkSP5Wgfd/HG0ux2hyUNw5dLbRBs/nf8PLFsO1N1yFVVV1TaTJiJIToZcX54zk1dD8z7FswrX8cNf/LAV+js9vOna98w93G57QDM3+qFYQTHm14ejplaqz2xEvWGT1gW8JC6320Zl+ndyj+ybnOaGpgBQB53rDOqHgN5K2C+gN9IiubO2m12jAZFDJivLuGEUhiJMSgig4xc8VV1/G6/QcYULG+tlQrhtZPqqryx//upKK6mlYlDFtkBsoPfjeEEYvBMiElgq/tk/iWbFSDSe9wjqmjy86eGiu71XSyxkjirYsR8+DM35OTsAjAO9YZ9ST9iQcqXvesL8qIDcFs8v60wvu/AiE8zPSMaDrn3UuOYziBtiZanr8I2ur69d4nvsrntfWllCtxVF36X0xL3wOL98/Z+4OxSeH8n+M6ruq8jcpIz0809lQ241AhNtRCfHig3uH4p+QpcOpySNN61Hn8lv3uDqjZo32eNMV1eJ+zrczIeO+fRgNJjIQYEstOG8Pn2Q+zX40hrK2I+sfPQm0uP+L5qqry0Kq9fP3puwD8/rxxnD4utVe5feHZAgOMrl8M28s8f41R9Y7Pud/0FD+O3Kx3KH6vZ4u7x2/Zr9oJqh2CYyE82XXYtb5IEiMhxJEoisLNF87h3fH/pFKNIrotn52PX0Vp/eFdtPc3dnDjC18T/9VveN38J14cu5GrT5GEyBtNSIkAoKAwH7o7dY7m6IzF33Kp6StOU7boHYp/ayoju/UrxitFFHh6YlTu/LeSPKXXZpCeHWkjEnxjdNvzJ8KF8FIGg8KNl5zD25H/ZtS3v2J50+UU/u0LTh0Zx6mxrQTZWyitqsNS9h0rjKtJNDUAMHdUrM6Ri+M1MSWCK7Zfy7SNuTD+v5B5mt4hHVFo/S4AjEmTdY7Ez635J+nrnmSxcSF/as2gsb2LyGCz3lH1rSJH+3jQNJqqquT62FSaJEZCDCFFUbjk7FPZO/FLkj/eTX5uLV/tq+Hiwkc43/i9dpLz/8Ku8HTMix6BrLm6xStOzISUCKrUKO1J+RaPTYy67Q7SunJBgegRJ+kdjn9zJqZTA0rApq0zmpbuoYmRYgBzmCtmgJoWK82dNgwKZMV5/440kMRICLcYnRTOv6+dSW5VC1/n1jL6ewdN1jgMxgCIH0fY9Mswj70AAmQRrDcblxTO52om57CezpJNBJ6id0R9KyguYbSibQiIHzVd52j8XKLWo24MhSg4yK9pZVp6lM5BHcEF/4TzHgbV4TrUM42WEROCxeQbRUIlMRLCjUYmhDEyIQzmrNI7FDEEgsxG6sPHQTs49ufoHc4RVe5dx2ig0phEYmCE3uH4t7jRYLQQbG8nTan2/AXYBgMHL0/umUYb4SPTaCCLr4UQYlAZnRWwg1uLoaNB52j61lWaA0B9+Fh9AxFgDHBVwJ6gFJFf7aFb9h2OPg/n+lDF6x6SGAkhxCAanp5GoSNBe7LfMxvKdjfuB0B1TuMInTnX7Iw3ePDOtI+WwyNTYfvbvQ67msf6QI+0HpIYCSHEIJqYEsEWVWsOStlGfYPpg8OhclvrD5nQ+SyBs6QViEdI0hLUCUohxfXtdNn6Hp3RVflmqM+Hg6q6q6rKvmrnjjQZMRJCCNGXccnhfOaYzgu2+dTHet7C5qK6Ntq67NgCQskYlqJ3OAJgxFmol7zEn5TrsTtUSuo9bDrN1gVVWnkHkqe4Dte1ddHY3o2iHChS6QskMRJCiEEUbDZRGD+PP9qWsR7P61q/o7wZ0FqYGA3KMc4WbhGZijJ+EYHxWcCBStIeo3oXOLohMBIi012He6bR0qKDCQzwjR1pIImREEIMuuy0SAC2lDbqGkdfAjc+yRvmu7ky8Hu9QxGHGOEcdelJODyGq7Dj5F4Vr/OqfauwYw9JjIQQYpBNSY3EQhfted9C9W69w+klsno9Mw17GBXaoXco4mBVO7nU+jYLDevY69wC7zF61sqlTOt1eJ8zgRvhQwuvQRIjIYQYdFPTIrnV9Bb31P0ax7qn9Q7HpdvuIL1T644ePXq2ztGIXgq/4eSCf3KR8VvPGzHqSYyG9V4zt6dSm5YdkyiJkRBCiKPIig1lj2k0ANai9TpHc0BBQS4JSgM2DCSPnqF3OOJgzi37EwyF5Ne0es7ONFWFtJMhfjykTD/osMqeSm1ka0ySbyVGUvlaCCEGmcGgYEuaBhVgqd8NXW1g1r+PVNWubxkN7A/IID3Qt9aFeL3EiaiKgSTqiXbUU1TXxihP6FavKHD+Q4cdLm/qpKXTRoBRISvWt/4tyYiREEIMgYysUVSo0RhUO5Tn6B0OAPZSbUqkMUoKO3ocSyhK/DgAsg157PO0dUaH2FOhTaMNjwvFbPKtVMK3vhohhPAQ2amRbHGM0J6UbdA3GKeohh0AmNJO0jkS0Sfn4uYphjz2VXpIYlRfoNUxOoRrGs3H1heBJEZCCDEkphyUGHUVr9M5Gmi12ijuCqVWDSdxrCy89kjOxc1TlHzP2JmmqvD8ArhvGFTu6PXSgfVF4XpENqQkMRJCiCEQFWKmItw5ZVWyVvslo6PtZU38qvsmLrC8QExWtq6xiCNwLm4eZSgl1xNGjJpKobUKVDvEDO/1Us9U2mgZMRJCCNFfQenT+VP3lbw9+kHdE6McZ7HJKelRvYr0CQ8SN5r6H37CydbHKKpvp7Pbrm88Pdv0EyZAQJDrsNVmp6BWa1syNlFGjIQQQvTTpPQ4nrWfy/8aksGg74/bvYXFgMrkYZG6xiGOwmAkauRMQoKDcKge0Bpk/ybt4yH1i/KqW7E7VCKDA0gIt+gQ2NDyysToz3/+M7NnzyY4OJjIyMh+vUdVVVasWEFSUhJBQUHMmzeP3NzcoQ1UCOHXpqVHA7C5uAGbXb+6NKqqclvxT1lr+QVzwqt0i0Mcm6Iorm36udU6T6eVOtfGDeu9WH9PhRbX6IQwFB8cffTKxKirq4tLLrmEG264od/vuf/++3nkkUd48sknWbduHSEhIcyfP5/Ozs4hjFQI4c9GJ4YRF2jnbNuXNLx7u27TacVFuaRQTTwNjBg1TpcYRD81lnC79VEeC3iIvZU6jhh1tUP5Fu3ztFm9XuqpeD3WBxdeg5cmRn/84x+55ZZbmDhxYr/OV1WVhx56iLvuuosLL7yQSZMm8a9//Yvy8nLee++9oQ1WCOG3jAaFaWlR3B/wNHE7noHGEl3iKN/2BQBFASOwhETqEoPoJ0MA0+s/ZIFhA8UV1frFsX8jOGwQlgyRab1e8uWt+uClidFAFRYWUllZybx581zHIiIimDlzJmvXrj3i+6xWK83Nzb0eQggxEFOGJ7NdzdSeFK/RJQZHkfZzriF2qi73FwMQnoQ1OAmjohJQuVm/OKIyYN4f4OSfHbZYvycx8sUdaeAniVFlZSUACQkJvY4nJCS4XuvLfffdR0REhOuRmpo6pHEKIXzPjMxo1jvGAqAWf6dLDIlN2pRI4Ig5utxfDIySrk1dZbZto9Vq0yeIyDSYcwuc8qteh+tardS0WFEUPKNlyRDwmMTot7/9LYqiHPWxZ88et8Z0xx130NTU5HqUlpa69f5CCO83ITmCHEVb19Nd8I3b719TXUWWvRiAtMk/cPv9xcCZs7QEdoZhD3srPWumome0KC06mBCLb7Zb9Ziv6tZbb+Xqq68+6jlZWVnHde3ExEQAqqqqSEpKch2vqqpiypQpR3yfxWLBYvG9rYhCCPcxmwzYU2dg369gbiqCpjKIGOa2+xfmfEmcorLfkERKnPvuK05AulaZfKohl/+U1bl2N7pNfaG2VT9tFkSk9Hppx/4mAMYn++bCa/CgxCguLo64uLghuXZmZiaJiYmsXr3alQg1Nzezbt26Ae1sE0KI4zE+K42tZcOZquRB/hcw9Uduu/eGhhC22xaSOSyZlGOfLjxB7Gg6TOEE2ZppKtgIp4x07/33fgyf3Akj58OVb/Z6aWe5NoI1PjnCvTG5kcdMpQ1ESUkJOTk5lJSUYLfbycnJIScnh9bWA1sbx4wZw7vvvgtodSFuvvlm/vSnP/HBBx+wfft2li5dSnJyMosWLdLpqxBC+IsZmdF849B20ao1e9167/9VR3CP7Ue0zvq1W+8rToDBQFPcSeQ7kqiu0aHuVM8mgfRZh720o1wbMZqQ4ruJkceMGA3EihUreOmll1zPs7O1vj9ffPEFc+fOBWDv3r00NTW5zrn99ttpa2vj+uuvp7GxkTlz5rBy5UoCAwPdGrsQwv9MTYviVnU+L3fO47XsRYxw032b2rtdf+HPyHDzdIw4IR2LnuPMB9dgqTdwl92ByeimcQyHQ+vtB5DWu9lwq9VGobMViC9PpXnliNGLL76IqqqHPXqSItBqFx28ZklRFO6++24qKyvp7Ozks88+Y9SoUe4PXgjhdwIDjGRlZlJDFN/k1rjtvts3f8csZQdj48wkRsgfgd4kPS6SYLMRq83hSkbconontNdBQAgk9242vLuiGVWFpIhAYkN9d/2tVyZGQgjhbU4dqa2h/Da31m0VsM1bnudV872sCHzDLfcTg8dgUBibFI4RO3vK3FjoseBL7WPGKWAy93rpwMJr351GA0mMhBDCLU4dGct4pZBrC2/B8colbrlnSr3W6ypwlGzT90a/Ul9hm+UnWLa+7L6b9iRGmacf9tKO/dq07IQU351GA0mMhBDCLcYmhmMOCmO2sh0KvtJ6UQ2hquK9pKiV2FQDw2csGNJ7iaERERlDiGIlpvrIHRoGlb0bip33ypp72Ms7exZey4iREEKIE2UwKKSNnEiZGovB0QWFXw/p/co2fABAbsBowiNk4bU3ChqjtbEa3ZmDausa+hsaA+CXW2DJcxDfu9lwZ7ed3Gpt57cv70gDSYyEEMJtTh0Vz+d254LWvR8P6b0CCz8DoCb5jCG9jxg6aeNPpl4NJZQO6vd9756bhiXAxIvB0Ds92FPZgt2hEhtqJiHcdxdegyRGQgjhNnNGxLLKMQ0Ax97/aVujh4C9s5URbZsAiJx8/pDcQwy9QIuZbQFTAGjauVLXWA5eeK0c0lTW10hiJIQQbpIYEUh97Aya1SAMbdVa24UhkL/xUyx0s584xk2eOST3EO5RGasVWQwsGdqpV1pr4MXzYM2jfe6a3FbWCPj+wmuQxEgIIdxq7vgUvnJM1p7s/WhI7vGf5rEssP6FD4bdhslkHJJ7CPcwjtCmQhNbdkJH49DdKG8VFH0D29+EPkaEckq1e09JjRq6GDyEJEZCCOFGZ41L5GP7TL5TJ9EdP2FI7vH53mr2qGkkTz9vSK4v3Gf4qHG8Z5/NP5UfojKE9a/2OafqRh2+g7Gls9u18HpKauTQxeAhvLIliBBCeKtJKRFsDj2N/zXP5EXLScwd5OuX1rezr6oVo0Fh7qj4Qb66cLdxSeFcav8Ftm6VizospAYNwU1sXZD3ufb5qPmHvbytrAlVhWFRQcSF+fbCa5ARIyGEcCuDQeGscQkAfLpr8BuENnxwJw8HPMolybVEBAcM+vWFewUGGBmTFAZoCcqQKFkDXS0QEg9J2Ye9fGAaLXJo7u9hJDESQgg3O2tcIgCbd+7Bsf65wdudZreRVvIuFxrXMDdlcC4p9DdpWCQRtGLPeQ0qdwz+DfY4S0eMPOuwbfoAW0oaAUmMhBBCDJFZWTFEB8Ib3b/E8PFyKF03KNet3bmaSEcj9WooU05fPCjXFPqbMiySO02vckHBH2HLvwf34g477HpP+3zchYe9rKqqa8QoOy1ycO/toSQxEkIINzObDMyflMoqx3TtwPY3B+W6tWtfAWBTyGkkRocNyjWF/ialRvCZYyoA6p6PBrcJcUcjpEyH0ATIOrwY6P7GDmpbrZgMis83j+0hiZEQQuhg0ZQU3rOfAoC6450T753W1UZq5SoAHBMuPtHwhAcZGR/GJtMU2lULSlPp4Na/ComBK16Fm3eAyXzYyz3TaGOTwgkM8I/SD5IYCSGEDk7KiKYobDoljjiUzibY+Z8Tul7N968SorZTpCYy/dRzBilK4QmMBoURyfF80jPCuO2Nwb9JH0kR+N/Ca5DESAghdGEwKFyQPYxX7WdqBzY8e0LXs617DoDvo84nJmwo9nQLPU0aFsG79jnakx3vgL37xC9asw9q8456ypaSBkASIyGEEG5w0dQU3rTPxaqaoHwLlK4/rut0d3fzescM9jhSiTv1mkGOUniCaelRfOeYQL0SCe11kLf6xC/65b3w6DStDUgfOrrsbHf2SDspI/rE7+clJDESQgidjIgPY3RWJu/bT6FbsUD17uO6zqo9tTzcPp8fWR7itCljBzlK4QmmZURhx8i73bNQUaBy24ldsK0Odn+ofZ55Wp+nbCltoNuukhgeSGq0/4xCSmIkhBA6WjY7nb/bLmWh8hidk646rmu8uKYIgEunDyPAKD/WfVF8WCAZMcE8bTuXtRd8BafffmIX3PY6OLohaQokTerzlPWF9QDMyIxG6aN/mq+S/4OEEEJH88YmYIpIIq89mLc3lQ34/VVv/Iphxe9hNqr86OSMwQ9QeIzpGdFUEc231SfYlsNhh/VPa59PW3bE0zYUaYnRSZn+M40GkhgJIYSuTEYD15+WBcDjX+TRXfAtlPSz4GPxWhJ2v8jfAp7ip2PtJEYEDmGkQm8nZWid7TcWaQuiaSg6vkXYez7U3hsUDZMu7/OULpuDTcXafWZKYiSEEMKdLp+RRnyYhdmtnxDwr3Ph/RuPXdfI1kX7+8sBeMNxBovnn+mGSIWepjsXQOeUNWJ//xfw8BTY+trALqKq8N0j2ucn/QTMwX2etqO8ic5uB1HBAYyICz2BqL2PJEZCCKGzwAAjN54xgk/t06gmCupy4ZM7jvoedfXdBNfvokENJX/CzWT52S8vf5QVG0JMiJkum4NyUyqgwtd/A1tX/y/SUgHN+8EUCDOuP+JpG5zri6ZnRGMw+M/6IpDESAghPMKVM9NITkzi5q4bcKDAphdh7eN9n7ztLZS1/wTg/9Sf8dNzZrovUKEbRVGY7pxO+9iyEELiobEENr/U/4uEJ8MvNsOVb0Fo3BFP+zavFvC/aTSQxEgIITyCyWjgnkUTWOOYwAPdzpYen9wBn/8ZbNYDJ255GfXdnwLwrG0h2WdfRXyYrC3yF6eMiAXgq8I2OO027eDn90Brdf8vYg4+4hZ9gM5uu2tH2qkjj5w8+SpJjIQQwkOclBHNjWcM51H7Ip50LNYOfn0/vHW165wGJRxFtfOa7Qy+ybyZa2Zn6BKr0EdPYrSxqIGOycsgaTJ0NsHHtx29uWxdPqx7GhyOY95jU3EDVpuD+DALoxL8b4pWEiMhhPAgy88azWmj4vlL1yXc6vglbZZ47NHDcThUvtxbzTkfB/OTrlt5IuyX/P3SbL9b/+HvsmJDSIoIpMvuYGNpM5z3EChG2PUerO27gjXWFnhrGfzvNvj87mPe4+vcGgDmjIz1q/pFPSQxEkIID2I0KDx11TTmjo7jna6TmdL0d+Z8O5HJd3/K1S9soKLZSkHMabxy3cnEhZ1gPRvhdRRFcY0afZtXCylTYf69EBgJCRMOf0N7PbxyCVRuh5A4mH7tMe/xba62vug0P5xGAzDpHYAQQojegsxGnl92Ei+tLeKJL/OpaDFBt40Qs5HLZ6Rx87yRhAUG6B2m0MmcEbG8vamM75wLpJn5U5hwEYTGa88dDtj8IjTt1xZmt9WAJQKueAMiU4967bpWKzvLm4ED03b+RhIjIYTwQAaDwjWnZLJsVgZFdW1021UyYoOxmIx6hyZ0NntEDAA7y5upb+siOsR8ICkCKPoaPrzlwPO4MXDx85Aw/pjX7tmNNiYxzG9HJCUxEkIID2YwKFKjSPQSHxbImMQw9lS28OXeai6aOqz3CdYWGHMemENh+A9g/CIw9S/J+XRXFQBnjIk/xpm+SxIjIYQQwsucNS6BPZUtrNpVdXhiNPZ87TFAVpudL/do2/7nj08cjDC9kiy+FkIIIbzMWeMSAPhqXw2d3fZBueaa/DrauuwkhFuYlBIxKNf0RpIYCSGEEF5mYkoEieGBtHfZWZtfNyjX/HSnNo121rgEvy4DIYmREEII4WUURWHeOG0dUM+6oBPhcKiscl7n7HH+O40GkhgJIYQQXuksZwLz2e4q7I6jVL3uhw1F9dS2WgkLNHFyVsxghOe1JDESQgghvNCsrBgiggKoabGe8HTau1v2A7BwQiJmk3+nBv791QshhBBeymwycO6kJOBAYnM8OrvtfLS9AoDF2cOOcbbvk8RICCGE8FIXZacAsHJHBR1dx7c7bfXualo6bSRHBDIzM3oww/NKkhgJIYQQXmpaehSp0UG0dR0Y9RmoV9cXA7AoO8Wvd6P1kMRICCGE8FKKonD5SWkA/GttEao6sEXYedUtfJdXh0GBH85MG4oQvY5XJkZ//vOfmT17NsHBwURGRvbrPVdffTWKovR6LFiwYGgDFUIIIYbY5SelYjYZ2FbWxJbSxgG9919rtdGieWMTGBYVPATReR+vTIy6urq45JJLuOGGGwb0vgULFlBRUeF6vPbaa0MUoRBCCOEeMaEWzp+UDMBz3xT2+33VLZ28ubEUgGWzM4YiNK/klb3S/vjHPwLw4osvDuh9FouFxET/LlwlhBDC9/zk1Eze2VzGR9sruLG8mXHJ4cd8zxNf5tPZ7WBKaiSzh/t37aKDeeWI0fH68ssviY+PZ/To0dxwww3U1R297oPVaqW5ubnXQwghhPA0Y5PCOc+5df8fn+495vllDe28sq4EgFvPHoWiyKLrHn6TGC1YsIB//etfrF69mr/+9a989dVXLFy4ELv9yNsb77vvPiIiIlyP1NRUN0YshBBC9N/ys0ZhNCis3lPNJzsrj3ieqqrc8Z/tdNkczMqKYc6IWDdG6fk8JjH67W9/e9ji6EMfe/bsOe7rX3755VxwwQVMnDiRRYsW8eGHH7Jhwwa+/PLLI77njjvuoKmpyfUoLS097vsLIYQQQykrLpTrTs0C4Hfvbqeu1drnea9vKOWb3FrMJgN/XjxBRosO4TFrjG699Vauvvrqo56TlZU1aPfLysoiNjaWvLw8zjzzzD7PsVgsWCyWQbunEEIIMZRunjeS1buryK1u5bp/beSlH88gLDDA9frX+2pY8f4OAG6ZN4qsuFC9QvVYHpMYxcXFERcX57b7lZWVUVdXR1JSktvuKYQQQgylwAAjT1w1lSVPrGVzSSOLH1/D7fNHkxodzP+2V/DEV/l021XOmZjIT08bvMEGX+IxU2kDUVJSQk5ODiUlJdjtdnJycsjJyaG1tdV1zpgxY3j33XcBaG1t5bbbbuP777+nqKiI1atXc+GFFzJixAjmz5+v15chhBBCDLoR8WH8+9oZxIdZyKtu5fp/b2Lhw9/wyOd5dNtVzp+czIOXTZEq10fgMSNGA7FixQpeeukl1/Ps7GwAvvjiC+bOnQvA3r17aWpqAsBoNLJt2zZeeuklGhsbSU5O5uyzz+aee+6RqTIhhBA+Z9KwSFbefBqPf5HHqt1VNLZ3MzoxjKWz0jl3YpKsKzoKRR1o/XA/1tzcTEREBE1NTYSHH7tGhBBCCCH0N5Df3145lSaEEEIIMRQkMRJCCCGEcJLESAghhBDCSRIjIYQQQggnSYyEEEIIIZwkMRJCCCGEcJLESAghhBDCSRIjIYQQQggnSYyEEEIIIZwkMRJCCCGEcJLESAghhBDCSRIjIYQQQggnSYyEEEIIIZwkMRJCCCGEcDLpHYA3UVUVgObmZp0jEUIIIUR/9fze7vk9fjSSGA1AS0sLAKmpqTpHIoQQQoiBamlpISIi4qjnKGp/0icBgMPhoLy8nLCwMBRFGdRrNzc3k5qaSmlpKeHh4YN6bXGAfJ/dQ77P7iHfZ/eQ77N7DOX3WVVVWlpaSE5OxmA4+ioiGTEaAIPBwLBhw4b0HuHh4fI/nhvI99k95PvsHvJ9dg/5PrvHUH2fjzVS1EMWXwshhBBCOEliJIQQQgjhJImRh7BYLPz+97/HYrHoHYpPk++ze8j32T3k++we8n12D0/5PsviayGEEEIIJxkxEkIIIYRwksRICCGEEMJJEiMhhBBCCCdJjIQQQgghnCQx8gCPPfYYGRkZBAYGMnPmzP9v795ConoXKICvcbwNKv694IxDWFYTljfGzEiDIkURESRQChNT6CFGcxQiu6gPpaZRlBqaQtFDlkHYDSzExDDynpZUWiYUkYqVmUoXZvZ5ONPAUCdO/NMPt+sHG2Z/G3Rtkf0tZt/Q1dUlOpLslJaWYsOGDXBzc4OPjw+SkpIwNDQkOpasHT9+HAqFAkajUXQUWXr79i127doFLy8vqFQqBAcHo6enR3QsWTGZTCgoKIC/vz9UKhVWrVqFo0eP/l/v26L/7f79+0hMTIRWq4VCocD169dttkuShMLCQvj6+kKlUiEmJgYvXrxYsHwsRoI1NDQgLy8PRUVF6OvrQ2hoKOLi4jAxMSE6mqy0tbXBYDCgo6MDzc3N+P79O2JjYzE7Oys6mix1d3fj3LlzCAkJER1Flj5+/IioqCg4ODigqakJT58+xcmTJ+Hh4SE6mqyUlZWhuroaVVVVePbsGcrKylBeXo7KykrR0Ra12dlZhIaG4uzZs7/cXl5ejoqKCtTU1KCzsxMuLi6Ii4vDly9fFiagREJFRERIBoPBum4ymSStViuVlpYKTCV/ExMTEgCpra1NdBTZ+fz5s6TT6aTm5mZpy5YtUk5OjuhIsnPgwAFp8+bNomPIXkJCgpSZmWkztn37dik1NVVQIvkBIDU2NlrXzWazpNFopBMnTljHpqamJCcnJ+ny5csLkonfGAn07ds39Pb2IiYmxjpmZ2eHmJgYPHz4UGAy+fv06RMAwNPTU3AS+TEYDEhISLD5v6a/6+bNmwgPD0dycjJ8fHyg1+tRV1cnOpbsREZGoqWlBcPDwwCAgYEBtLe3Iz4+XnAy+RodHcXY2JjN8cPd3R0bN25csHmRL5EVaHJyEiaTCWq12mZcrVbj+fPnglLJn9lshtFoRFRUFIKCgkTHkZUrV66gr68P3d3doqPI2qtXr1BdXY28vDwcOnQI3d3d2LdvHxwdHZGeni46nmzk5+djenoaAQEBUCqVMJlMKC4uRmpqquhosjU2NgYAv5wXf2ybbyxGtOQYDAYMDg6ivb1ddBRZefPmDXJyctDc3AxnZ2fRcWTNbDYjPDwcJSUlAAC9Xo/BwUHU1NSwGP1FV69exaVLl1BfX4/AwED09/fDaDRCq9Xy7yxjPJUmkLe3N5RKJcbHx23Gx8fHodFoBKWSt6ysLNy+fRutra1YtmyZ6Diy0tvbi4mJCYSFhcHe3h729vZoa2tDRUUF7O3tYTKZREeUDV9fX6xbt85mbO3atXj9+rWgRPK0f/9+5OfnY8eOHQgODkZaWhpyc3NRWloqOpps/Zj7RM6LLEYCOTo6Yv369WhpabGOmc1mtLS0YNOmTQKTyY8kScjKykJjYyPu3bsHf39/0ZFkJzo6Gk+ePEF/f791CQ8PR2pqKvr7+6FUKkVHlI2oqKifHjcxPDyM5cuXC0okT3Nzc7Czs50mlUolzGazoETy5+/vD41GYzMvTk9Po7Ozc8HmRZ5KEywvLw/p6ekIDw9HREQETp8+jdnZWWRkZIiOJisGgwH19fW4ceMG3NzcrOeq3d3doVKpBKeTBzc3t5+u2XJxcYGXlxev5frLcnNzERkZiZKSEqSkpKCrqwu1tbWora0VHU1WEhMTUVxcDD8/PwQGBuLRo0c4deoUMjMzRUdb1GZmZvDy5Uvr+ujoKPr7++Hp6Qk/Pz8YjUYcO3YMOp0O/v7+KCgogFarRVJS0sIEXJB73+i3KisrJT8/P8nR0VGKiIiQOjo6REeSHQC/XC5cuCA6mqzxdv35c+vWLSkoKEhycnKSAgICpNraWtGRZGd6elrKycmR/Pz8JGdnZ2nlypXS4cOHpa9fv4qOtqi1trb+8nicnp4uSdJ/b9kvKCiQ1Gq15OTkJEVHR0tDQ0MLlk8hSXyEJxERERHAa4yIiIiIrFiMiIiIiCxYjIiIiIgsWIyIiIiILFiMiIiIiCxYjIiIiIgsWIyIiIiILFiMiIiIiCxYjIhoydi9e/fCvVaAiBYlviuNiGRBoVD8dntRURHOnDkDPuyfiH6HxYiIZOHdu3fWzw0NDSgsLLR5A72rqytcXV1FRCOiRYSn0ohIFjQajXVxd3eHQqGwGXN1df3pVNrWrVuRnZ0No9EIDw8PqNVq1NXVYXZ2FhkZGXBzc8Pq1avR1NRk87sGBwcRHx8PV1dXqNVqpKWlYXJycoH3mIjmA4sRES1pFy9ehLe3N7q6upCdnY29e/ciOTkZkZGR6OvrQ2xsLNLS0jA3NwcAmJqawrZt26DX69HT04M7d+5gfHwcKSkpgveEiP4GFiMiWtJCQ0Nx5MgR6HQ6HDx4EM7OzvD29saePXug0+lQWFiI9+/f4/HjxwCAqqoq6PV6lJSUICAgAHq9HufPn0drayuGh4cF7w0R/Vu8xoiIlrSQkBDrZ6VSCS8vLwQHB1vH1Go1AGBiYgIAMDAwgNbW1l9erzQyMoI1a9bMc2Iimk8sRkS0pDk4ONisKxQKm7Efd7uZzWYAwMzMDBITE1FWVvbTz/L19Z3HpES0EFiMiIj+QFhYGK5du4YVK1bA3p6HUCK54TVGRER/wGAw4MOHD9i5cye6u7sxMjKCu3fvIiMjAyaTSXQ8IvqXWIyIiP6AVqvFgwcPYDKZEBsbi+DgYBiNRvzzzz+ws+MhlWixU0h8DCwRERERAH5jRERERGTFYkRERERkwWJEREREZMFiRERERGTBYkRERERkwWJEREREZMFiRERERGTBYkRERERkwWJEREREZMFiRERERGTBYkRERERk8R9FHRsQ5gBvVwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAj6FJREFUeJzs3Xd81PX9wPHX9+5yl713yGRvAgiCqFhRwAnirBa0VlurbRWrrdYfbbXV1rauurete9RRtSjiFmSHPbIH2Xtfcnff3x/fy0EgQALJfW+8n4/HPZL73ve+33ciJu98xvutqKqqIoQQQgghMOgdgBBCCCGEp5DESAghhBDCSRIjIYQQQggnSYyEEEIIIZwkMRJCCCGEcJLESAghhBDCSRIjIYQQQggnk94BeBOHw0F5eTlhYWEoiqJ3OEIIIYToB1VVaWlpITk5GYPh6GNCkhgNQHl5OampqXqHIYQQQojjUFpayrBhw456jiRGAxAWFgZo39jw8HCdoxFCCCFEfzQ3N5Oamur6PX40khgNQM/0WXh4uCRGQgghhJfpzzIYWXwthBBCCOEkiZEQQgghhJMkRkIIIYQQTrLGSAghhM9xOBx0dXXpHYZwI7PZfMyt+P0hiZEQQgif0tXVRWFhIQ6HQ+9QhBsZDAYyMzMxm80ndB1JjIQQQvgMVVWpqKjAaDSSmpo6KCMIwvP1FGCuqKggLS3thIowS2IkhBDCZ9hsNtrb20lOTiY4OFjvcIQbxcXFUV5ejs1mIyAg4LivI6m0EEIIn2G32wFOeDpFeJ+e/+Y9/waOlyRGQgghfI70s/Q/g/XfXBIjIYQQQggnSYyEEEIIIZwkMRJCCCGEcJLESAghhNfrtjuobumk2+6dtYvOP/98FixY0Odr33zzDYqisG3bthO6R2lpKT/+8Y9JTk7GbDaTnp7Or371K+rq6nqdd/XVV6MoCoqiEBAQQGZmJrfffjudnZ2uc3peP9LjD3/4Q6/rHPw40tfpKWS7vhBCCK9V12rl75/u5b0t5XR02xkRbeaeM+OxeVlxx2uvvZYlS5ZQVlbGsGHDer32wgsvMH36dCZNmjTg63Z1dWE2mykoKGDWrFmMGjWK1157jczMTHbu3Mltt93G//73P77//nuio6Nd71uwYAEvvPAC3d3dbNq0iWXLlqEoCn/9618BqKiocJ37xhtvsGLFCvbu3es6Fhoayk033eS6zsEsFsuAvw53khEjIYQQXimvupULHv2O19aX0tGtbdHu6LbTarVTUtdOl+3Etm2703nnnUdcXBwvvvhir+Otra289dZbXHvttQCsXLmSOXPmEBkZSUxMDOeddx75+fmu8+fOnctNN93EzTffTGxsLPPnzwfgxhtvxGw28+mnn3L66aeTlpbGwoUL+eyzz9i/fz+/+93vet3XYrGQmJhIamoqixYtYt68eaxatcr1emJiousRERGBoii9joWGhva6zsGPqKioofgWDhpJjIQQQnid6pZOlj2/nv2NHWTFhvDG9SeTf+85/O3iyZgMCt12BwW1bXTb7LR32XR5qKra76/HZDKxdOlSXnzxxV7ve+utt7Db7VxxxRUAtLW1sXz5cjZu3Mjq1asxGAwsXry4V/uTl156CbPZzHfffceTTz5JfX09n3zyCT//+c8JCgrqdd/ExESuvPJK3njjjSPGu2PHDtasWeM3taFkKk0IIYRXUVWVO97Z7kqK3r5hNtEh2i/tqelR5NkaMBgNdNkc5FW3sfCRb3SJc9fd8wk29//X7I9//GP+9re/8dVXXzF37lxAm0ZbsmQJERERACxZsqTXe55//nni4uLYtWsXEyZMAGDkyJHcf//9rnPWrVuHqqqMHTu2z/uOHTuWhoYGampqiI+PB+DDDz8kNDQUm82G1WrFYDDw6KOP9vtr6dFznYPdeeed3Hnnncd87/XXX8+GDRu4+OKL+d3vfnfY86EiiZEQQgiv8l7OflbvqcZsNPDEVdNcSVEPo0EhKSKQ0mY7LdZunaIcuDFjxjB79myef/555s6dS15eHt988w13332365zc3FxWrFjBunXrqK2tdY0UlZSUuBKjadOm9Xn9Y41gHTwidMYZZ/DEE0/Q1tbGgw8+iMlkOiwp64+e6xzs4LVMR7Jt2zZKSkrYsmVLn8+HkiRGQgghvEZnt537Pt4DwC/PHMHoxLA+zws0m4gNM1Ld7OC9n89mRHwoBoN7q2EHBRgH/J5rr72WX/ziFzz22GO88MILDB8+nNNPP931+vnnn096ejrPPPMMycnJOBwOJkyYQFdXl+uckJCQXtccMWIEiqKwe/duFi9efNg9d+/eTVxcHJGRkb2uMWLECEAblZo8eTLPPfeca61Tfx18nb7k5uZy8803U1lZSUhICG+//Ta1tbUsXLgQRVGYPXs2zz77bK/na9asGVAMAyVrjIQQQniNl78vprrFSkpkENedlnXUc+PDAjGbjBgMClabg2Czya2P42lRcemll2IwGHj11Vf517/+xY9//GPXderq6ti7dy933XUXZ555pmsK7FhiYmI466yzePzxx+no6Oj1WmVlJa+88gpXX331Ed9vMBi48847ueuuuw57/4mwWq38/Oc/56mnnmLTpk388Ic/5Omnn2bcuHFcccUVPPTQQ6xZs+aw50NNEiMhhBBeoaPLzhNfajuwfnXmSCymo4/IGA0K8WHa1vCaFiuOASyG1ktoaCiXXXYZd9xxBxUVFb0SlqioKGJiYnj66afJy8vj888/Z/ny5f267qOPPorVamX+/Pl8/fXXlJaWsnLlSs466yxGjRrFihUrjvr+Sy65BKPRyGOPPTagr8dqtVJZWdnrUVtbC8B7773Hzp07Oe+885gyZQoPP/wwAQEBAGzfvt01NdjX86EkiZEQQgiv8MHW/dS1dZEaHcRFU1P69Z6oYDMmo4Euu4PGdu9Yb3TttdfS0NDA/PnzSU5Odh03GAy8/vrrbNq0iQkTJnDLLbfwt7/9rV/XHDlyJBs2bCArK4tLL72U9PR0Fi5cyKhRo/juu+8OWyB9KJPJxE033cT9999PW1tbv7+WlStXkpSU1OsxZ84cQEt2/vGPf5CTk0NOTg67d+/mN7/5DaBNsY0cOdJ1nUOfDynVS3311VfqeeedpyYlJamA+u677x71/C+++EIFDntUVFT0+55NTU0qoDY1NZ1g9EIIIQbC4XCoCx/6Wk3/zYfq01/lH/G8jo4OddeuXWpHR4frWFVzh7q1tEHNrWpxR6heY8WKFWpoaKi6du1aXe7/z3/+U122bJnr+datW1VVVdWamho1OzvbdfzQ50fS13/7HgP5/e21I0ZtbW1Mnjx5wMN6e/fupaKiwvXo2ZoohBDCc20qbmBXRTMWk4FLpg879hsOEhVsRlEU2rtsdHR5T9HHofbHP/6RRx55hO+//75XHSR3ueaaa2hsbGTMmDFMnjyZl19+GdB3Gg28eFfawoULWbhw4YDfFx8f32vlvRBCCM/31sYyAC6YnExk8MAKDQYYDYQHmmjq6Ka+rYsUc9Cx3+QnrrnmGt3uHRISwnvvvXfY8TPOOIMzzjjjiM+HmteOGB2vKVOmkJSUxFlnncV333131HOtVivNzc29HkIIIdzLarPz8Q6tN9eSaQMbLerRU+uosaPLKxZhC/34TWKUlJTEk08+yTvvvMM777xDamoqc+fOZfPmzUd8z3333UdERITrkZqa6saIhRBCAHyxp4aWThuJ4YHMyDh2ccC+hFpMmIwG7A6V1k7bIEcofInXTqUN1OjRoxk9erTr+ezZs8nPz+fBBx/k3//+d5/vueOOO3pthWxubpbkSAgh3OyDrfsBuGBK8nEXaVQUhcigAGpbrTR1dBMeFDCYIQof4jeJUV9mzJjBt99+e8TXLRYLFovFjREJIYQ4WHNnN5/trgbgwinJxzj76CKciVFzRzcOh+r2StjCO/jNVFpfcnJySEpK0jsMIYQQR/DV3hq6bA6y4kIYlxR+QtcKNhsJMBqwqyqtVplOE33z2hGj1tZW8vLyXM8LCwvJyckhOjqatLQ07rjjDvbv38+//vUvAB566CEyMzMZP348nZ2dPPvss3z++ed8+umnen0JQgghjuHbXK1K8g9Gxx9Xi42DKYpCeKCJurYuWjplOk30zWsTo40bN/bavtezFmjZsmW8+OKLVFRUUFJS4nq9q6uLW2+9lf379xMcHMykSZP47LPP3LoFUAghRP+pqso3uTUAnDoqblCuGRYYQF1bF82dNpJV9YSTLeF7vDYxmjt3LupRtly++OKLvZ7ffvvt3H777UMclRBCiMFSUNtGeVMnZqPhuHejHSrUYsKgKHTbHXTaHAQFHL3fmvA/fr3GSAghhOf6Zp82WnRSZhRB5sFJYAwGhVCLNibQ0ukdvdOEe3ntiJEQQgjf9m2etr7o1JF9TKO11cHu96EuH4KjYdRCSBjXr+uGBZpo7uympcNGfNhgRix8gYwYCSGE8Djddgdr8+sAmDMitveLm16ChyfDh7fA2kdh9d3wxCx470bo6jjmtcMCtUXX7V027Dr0COvL1VdfjaIohz0WLFjglvv/4Q9/YMqUKW65l6eTESMhhBAeZ8f+Jtq67EQFBxy+Tb+jAbpaIGECZM3VRo32rYScl6GlAabdddRrm00GLCYjVpudNqud8CDPGCNYsGABL7zwQq9jUkvP/TzjX4MQQghxkPWF9QCclBF9eCHGU34FV7wOP/0G5v8Zfvg6LPsvBEbAsOnQ106zrrZej1CDFaW7nbbWJujuPOq5vR7dHf079zhYLBYSExN7PaKiovjyyy8xm8188803rnPvv/9+4uPjqaqqAmDlypXMmTOHyMhIYmJiOO+888jPz+91/bKyMq644gqio6MJCQlh+vTprFu3jhdffJE//vGPbN261TVSdegGJn8iI0ZCCCE8Tk9iNCPTuRuttRqCosFo0hKf0Qt7vyHzVPj5OjBHQWHh4Re8t3fV7BTnA4CRZ8OVbx148W8joLu978DS58A1Hx14/tBEaK87/Lw/NB3xaxuouXPncvPNN/OjH/2IrVu3UlBQwP/93//x1ltvkZCQAEBbWxvLly9n0qRJtLa2smLFChYvXkxOTg4Gg4HW1lZOP/10UlJS+OCDD0hMTGTz5s04HA4uu+wyduzYwcqVK/nss88AiIiIGLT4vY0kRkIIITyK3aGyvkhLjGZmxoDDAa9doSVES56DqPS+3xieBJ3O0R9VBYcdDMfezeZQVY+YPvnwww8JDQ3tdezOO+/kzjvv5E9/+hOrVq3i+uuvZ8eOHSxbtowLLrjAdd6SJUt6ve/5558nLi6OXbt2MWHCBF599VVqamrYsGED0dFasjlixAjX+aGhoZhMJhITE4fwK/QOkhgJIYTwKHsrW2jptBFiNjI2KQx2/gf2bwRzGBj68WvL3g0NRRBogegs7did5Yedtq+qFavNTlpsKL3GR27LO+xcF+WQFOrm7ceOp5/OOOMMnnjiiV7HepIYs9nMK6+8wqRJk0hPT+fBBx/sdV5ubi4rVqxg3bp11NbW4nAuKi8pKWHChAnk5OSQnZ3tup44MkmMhBBCeJT1hdrU1LSMaExqN6z+o/bCnF9BRMpR3nkQW4c2etTVDuZgMIccdkpImIHOViut9oDeiVEf5x7RQM49hpCQkF6jOIdas2YNAPX19dTX1xMScuDe559/Punp6TzzzDMkJyfjcDiYMGECXV1dAAQFBQ1anL7OE0YPhRBCCJcD02jRsPU1aCyBsCQ4+cb+XcAYABZnqtNSecTTQp1FI9u8oKFsfn4+t9xyC8888wwzZ85k2bJlrlGhuro69u7dy1133cWZZ57J2LFjaWho6PX+SZMmkZOTQ319fZ/XN5vN2O32If86vIEkRkIIITyGqqoHFl5nRMKaR7UXZv9CG/npr2Bn7SNr0+E7yXpOcVbA7uy2e0Q9I6vVSmVlZa9HbW0tdrudq666ivnz53PNNdfwwgsvsG3bNv7xj38AEBUVRUxMDE8//TR5eXl8/vnnrv6hPa644goSExNZtGgR3333HQUFBbzzzjusXbsWgIyMDFcz9traWqxWq9u/fk8hiZEQQgiPUVDbRm1rF2aTgSkd30Ndrjb6M3XpwC4UYIHASO3ztpq+TzEaMJu0X4PtXfqPlqxcuZKkpKRejzlz5vDnP/+Z4uJinnrqKQCSkpJ4+umnueuuu9i6dSsGg4HXX3+dTZs2MWHCBG655Rb+9re/9bq22Wzm008/JT4+nnPOOYeJEyfyl7/8BaNRGzVbsmQJCxYs4IwzziAuLo7XXnvN7V+/p1DUo3ViFb00NzcTERFBU1MT4eHhx36DEEKIAXlzQym3v7ONGRnRvBn7LOx4W6tbdNbd/Xp/Z2cnhYWFZGZmEqh0Q12etmA6YXyfC7dL69tpaO8iITyQhPDAwf5yhBv1+m8f2Pu/5UB+f8viayGEEB5jS6m2NiY7PRLmPw2TLut3D7TDmEPBFAi2Tq1adsjhPdeCzUYa2r1jnZFwD0mMhBBCeIwtJY0AZKdGaTWIRp19/BdTFAhPAdUBgX2PEgSbtV+DHV12VFVF6atqtvArkhgJIYTwCK1WG/uqWgCV7NRBqrx8hITI9XKAAYOiYFdVOm0OggKOXRBS+DZZfC2EEMIjbCtrxKHC2WHFJDw3Hb64d8jvqSgKwc5t++0ynSaQxEgIIYSHyCltBODykM3QXAb1ffQ866de+4ocdmiugNpcrVXIIXqm0zxhZ5o4foO1l0wSIyGEEB5hS0kjCg5mdHytHRi/eMDX6Nl+3lPxWaNAWzV0tfbZHLZnxKijWxIjb9bz37zn38DxkjVGQgghdKeqKjmljWQreYRaq7W+aMN/MODrmEwmgoODqampISAgAIPB+fe/EgLdzdBcB6G9f3EqDgeqrYtOG7S1mzAaZAG2t3E4HNTU1BAcHIzJdGKpjSRGQgghdLe/sYOaFis/D/heOzB6IQQMvK6QoigkJSVRWFhIcXHxgRe62qC9DoyNENZ22PvqmjqxO1TUFour6KPwLgaDgbS0tBPeWSiJkRBCCN1p2/RVzgnYAg5g3IXHfS2z2czIkSN7T6d1NsNzPwHVBlf+B6LSer3nuXe3s7agjhvPGMFFU4cd972Ffsxm84ERwhMgiZEQQgjd5ZQ2MlwpJ8FRBUYzDD/jhK5nMBh6Vz8ODIS4DCj4Agr+p1XTPkhqXCRvb61mY2krP5wtFbD9mYwXCiGE0N2Wkga6MJGXeaVW7docMvg3GXOu9nHv/w57adIwrW7Stv1Ng39f4VVkxEgIIYSuumwOdpQ306UmYDjnfogLHZobjTwLgmMhKlPbtn/QWpQJKVpilF/TSqvVRqhFfj36K/kvL4QQQlf7qlrosjkIDzSRGTsEI0U9ojLg17nQxzqUuDALSRGBVDR1squ8mRmZ0UMXh/BoMpUmhBBCV9v3NzFKKeXi2GIUxxBXnz7K4tyJzlGjbWWNQxuD8GiSGAkhhNDV9v1NLDN+yora2+CzPwz9DVUVqvccdrgnMdou64z8miRGQgghdLVjfxMnG3ZpT9JPGdqb2bvhoYnw+EyoL+j10kTnAuztZZIY+TNJjIQQQuimy+agvqKY4YYKVMUA6bOH9obGAIh01jDK/7zXS+OSwwEorGujQ/qm+S1JjIQQQuhmX1ULU9Wd2pPESRAUOfQ3zXLWSCr8ptfh+LBAYkPNqCrsrWoZ+jiER5LESAjhMVRVHbQO2cI7bN/fxCznNJqSMcc9N81wTtcVf6etNzrImERt1Gh3RbN7YhEeR7brCyF0ZXeovLWxlNc3lLKzvIlotZHUxHguOGkEV8xII8Aof7/5su37m7i+Z31R5mnuuWnKNDAFQlsN1OZC3CjXS2OTwvg2r5Y9khj5LfmJI4TQTVlDO5c9tZbf/mc7OaWNdNtV/mZ8nDfrLmbU/y5nxYOPUVLXrneYYghVluSRYahCxQBps9xzU5MFhp2kfV78ba+Xxib1jBjJVJq/ksRICKGLkrp2Ln/iW8aXvU6EReF354zlq9vmMn1kMgZF5WTDbu5rvYvvH72GomrZJeSLumwO1lSbucB6D/XzHoDAcPfdvGeRd/GaXoddiVFls0zr+imZShNCuF1DWxdXPfMdyzse5qKAb7llViKRp52jvbj0TWgsoe3LhwjKeZ5L1ZWseuoqQm9+k9iwIH0DF4NqX1ULnXYoDhpD9ClnuffmoxaArRNG9L7v8LhQAowKLZ02yho6SI0Odm9cQncyYiSEcCuHQ+XmN3JY2vocFxm/RTWYiEwZ0/ukyDRCFj1AywXPYcPIWfav2fDML+UveB/TU0hxQko4ykF9y9wiZSqcdTdkntrrsNlkYLizV9ueSplO80eSGAkh3OqltUUE5X3ET0xah3PloqdhwkV9nhsxdQnVP3gAgKlNn/LOmh1ui1MMvYLiIv5seo7LzWuOfbIbjUuSnWn+TKbShBBuU97YwfOfrOe/Ac9oB2b/EiYsOep7kk+7mi8rGrllSwL2VeWcOWU0USFmN0Qrhppaso4rTatpqS0Blrs/gM5mKF0Pjm4YvdB1eExSGGyRxMhfyYiREMJt/vzRbparLxGptKEmToIzV/Trfade8isSk4bR3Gnjoc/2DXGUwh26bA7iG7cCoPTsEHO3gi/hlSXw+Z97He5ZgC1Taf5JEiMhhFtsLW1kz46NLDZ+h6oYUM5/WGvP0A9Gg8L/nTsWUKle/zZluVuHNlgx5PZVtTBZyQUgZISbtukfqichq94J1gNJUE9iVFTXRpvVpkdkQkeSGAkh3OL+T/aQr6bwQObTKAvv1xa/DsDsEbE8HP8xTwQ8SMN//2+IohTusrO0lslKPgBK6kx9gghPgohUUB1QvsV1ODbU4moNklfdqk9sQjeSGAkhhtym4ga+y6sjwKhwyfnnw4zrjus6I36wFIDxTV9TnZ8ziBEKd6vL30Sg0k2HMRxiRuoXyLDp2sfS9b0Oj4wPA7SRLeFfvDYx+vrrrzn//PNJTk5GURTee++9Y77nyy+/ZOrUqVgsFkaMGMGLL7445HEKIeCZr/KJoplFU1JOqC7M+Cknsy7wFAyKStVH9w5ihMLdAso3AtAcOxkMOv4qGjZD+1i2sdfhkQnaln0ZMfI/XpsYtbW1MXnyZB577LF+nV9YWMi5557LGWecQU5ODjfffDM/+clP+OSTT4Y4UiH8W1FtG3V7vuJ7yy+4U3n+hK+nnPprAMbWr6KzrvSEryfcr9vuwNxSDIA542R9g+lZZ1S2vldD2ZEJMmLkr7x2u/7ChQtZuHDhsU90evLJJ8nMzOQf//gHAGPHjuXbb7/lwQcfZP78+X2+x2q1YrVaXc+bm2XrphAD9dy3hVxn/AiL0o3FcuLXmzbrDLZ8No5sdRe5Kx9l7JV/PfGLCrfKq27l911Led6yhC/mnKFvMEmTwGiG9jpoKIToLABGxWsjRrkyYuR3vHbEaKDWrl3LvHnzeh2bP38+a9euPeJ77rvvPiIiIlyP1NTUoQ5TCJ/SarWxafN65hk2o6LArJtO+JpGg0LVWG2tUWL+G2DrOuFrCvfa4ax4nZiciiEsTt9gTBa4+AW4YS1EprsO94wYlTV0yM40P+M3iVFlZSUJCQm9jiUkJNDc3ExHR0ef77njjjtoampyPUpLZdheiIH4IKecJY5PMSgqjJoPsYOzyHba2T+iUo2ixhZM7j6phu1tehKjiSkROkfiNPY8SBgHBqPrUHSImdhQrZBofo2MGvkTv0mMjofFYiE8PLzXQwjRf++sz+Mi4zcAKCf9ZNCuGxcZykNZz3J21/28WRg4aNcV7pGZ+yL/CriPs5Xv9Q7lqEY4p9P2VUli5E/8JjFKTEykqqqq17GqqirCw8MJCpKO3UIMtp3lTSRXrCZKacUelgzDfzCo1//B9AmAwgdby7E7pLmst7A7VNJbNnGacTuZFg9Z2GyzwvdPwns3gv3AtNko53RarizA9it+kxjNmjWL1atX9zq2atUqZs3SqeKqED7uzQ2lXGL8CgDj1B/1mqYYDKePjiM80ERzcxNbczYM6rXF0CmoaWU8BQBEj9SpsOOhDAHw+Z8g52Wo2eM63LPOSBZg+xevTYxaW1vJyckhJycH0Lbj5+TkUFJSAmjrg5YuXeo6/2c/+xkFBQXcfvvt7Nmzh8cff5w333yTW265RY/whfBpNruDD7dVcGv3DeRP/jVkXzXo97CYjPwycz8bLD8nftWJL+oW7pGXn0u80ogdA8akSXqHozEYIGmy9nlFjuvwSNdUmowY+ROvTYw2btxIdnY22dnZACxfvpzs7GxWrNCaUlZUVLiSJIDMzEw++ugjVq1axeTJk/nHP/7Bs88+e8St+kKI4/ddfh11bV3YQ+JJu+B3EJk2JPeZPP1ULHQzrGMvXVV7h+QeYnA15Wuje7WBGWA+/mKfgy55ivaxPMd1aNRBO9Pau2Rnmr/w2jpGc+fORVWPvK6gr6rWc+fOZcuWLYefLIQYVB/klANw7sQkAoxD9/fXtLEjWGeYyCw1h7I1b5K1WHqoeTpjldYAuCN2os6RHCJZ+yP74J5p0SFmYkLM1LV1kVfdyqRhkfrEJtzKa0eMhBCeqbPbTv7O9fwr4D6uDh/atT8Gg0JVylkAmPd9NKT3EifO4VBJaNkFQFDGdJ2jOUTSFO1j1Y5eC7B7WoPIzjT/IYmREGJQfbGnmnn2bzjNuJ2sqk+H/H5x0y/CoSoM69iNo6Hk2G8Quimqa6PREUizGkzMyBl6h9NbdBaYw8DW2WsBtmtnWrWsM/IXkhgJIQbVyh0VnG/QKsorEy8e8vtNnzCazYwBoHzdO0N+P3H8dpQ388vuX7As/i1MqR6WGLkWYCtQl+c63LMAO1dGjPyGJEZCiEHTbXewf+8G0g3V2I2BMKr//QyPl8VkpCheq5Gk7nx/yO8njl9PxesJKZFaIuJpFj0Od5TC+EWuQyPitRGjPNmy7ze8dvG1EMLzrCuoZ47tezCBYcSZbtt1FDZ1CX/+sIECx2yec8sdxfHYXVYHwIQUD+0iEJV+2KHh8SEAlDW0Y7XZsZgGtx6X8DwemLILIbzVql2VnGXYBIAy9jy33ffkKZN4Xj2f1XXR7G/su/eh0JeqqlxXfhdfm3/FyQ7v2R0cF2ohzGLCoUJxXbve4Qg3kMRICDEoVFVl287tjDcUoyoGGLXAbfeOCApgSmokAF/vq3HbfUX/ldZ3MFotJM1QQ3J8vN7hHNmn/wfPL4C6fAAURSErThs1ypfpNL8giZEQYlDs2N+MtaWedeo4HOmnQnC0W+9/xvBwlhi+JvXb34DD4dZ7i2PLLSokQWkEICB5gr7BHE3Rt1CyFiq3uQ5lxWkLsAtq2/SKSriRJEZCiEGxalclu9QMXhjxKMal77r9/nNGxnJ3wAvMaf4YW/m2Y79BuFVDwWYAas0pYAnTOZqjSHQmbZU7XIeyYp0jRjUyYuQPJDESQgyK1XuqAZg3LmHQG8b2x8T0BNYrWjXlqs0fuP3+4ugcFVqi0RoxRudIjiHBWZG76kBiNNy5Zb+gRkaM/IEkRkKIE1bTYqWpIp9omjl9VJwuMRgNClXxpwKg5q3WJQZxZGFNWtFEQ7KHNI49kr5GjOIOjBgdrRWV8A2SGAkhTti3eTUsN73FxsAbiNv5vG5xhI+bB0BC8w7okh1EnqKls5v07kIAorOm6hzNMSSM1z42l0F7PQAZMSEoCrR02qht7dIxOOEOkhgJIU7YN3urOdWwDQPqgV8sOpg4MZtyNZoAbHQUrNEtDtHbnsoWNjpGsUsZQWh6tt7hHF1gBESmaZ9X7dQOBRhJiQwCoEDWGfk8SYyEECfE4VCp2reBOKUZuykYUk/WLZbUmBC2mrSpmpptq3SLQ/S2p6KZFbZr+Hv6kxCZqnc4x5YwEUITobPJdWi47EzzG1L5WghxQnZVNDPZugkCQMk8DUxmXeNpSpwF+7+kubpY1zjEAbsqtAasYxI9eDfawS55AUyWXoey4kL4al+NjBj5AUmMhBAn5Kt9NZxu3AqAYeQ8naMBy6TFZOenk2FIw/1FA0RfKsuKMGNnbJKHtgI51CFJERyoZZQvO9N8nkylCSFOyIY9RUxVcrUnI/RPjE4alUoD4Wwra6LVatM7HL/ncKhcV/dXdlmuYXr713qHM3DOXWjDnbWMZMTI90liJIQ4bq1WG4Fl3xGg2OmOyIToTL1DYlhUMKnRQdgdKhsLa/UOx+8V17UximJMioO4YSP1Dqf/3lwGfx8FNVqZgZ4Ro9KGDrpsUlndl0liJIQ4bmvz61hvH8VfzL8gYO5teofjcmFSM2+Y72bkfy/SOxS/V1CYT6zSjB0DpsRxeofTfy0V0FrlqmeUEG4hxGzE7lApqZfpNF8miZEQ4rh9l1dLPeG0jrsMsq/UOxyXMVnpzDTsIaltF3Q06h2OX2sqdLYCsaRCQJDO0QxAgrPQY9V2oKeZrDZqlFctiZEvk8RICHHcvi+oA2BWVqzOkfSWPX4MhY4EDKh0Fn6vdzh+zeEccWmLHKtzJAOU4Bzdqt7tOtRTAbugVtYZ+TJJjIQQx6Wu1Ups9RquNX7E7Mh6vcPpJSUyiF0m7Rdbza6vdI7Gv4U2aQvzTUn6Ff48LnHORK56j+tQVqz0TPMHkhgJIY7LusJ6lhi/5v8CXiEqz/M2xjfGTQPAUCojRnpptdoYZtPqScVkeniPtEPFOxOjphKwanWYhsfLzjR/IImREOK4rM2rZZZhl/Yk41R9g+lDUNZsAGKbd4JN+lvpIbeqhXftc/ifchoh6R7eI+1QwdEQmqB9XrMXODBiJLWMfJskRkKI41Kat41EpQG7wQypM/QO5zAjxk2lXg3FolpxlG/VOxy/tK+qhefs5/BKyl0H+o95k7RZkDYbHHYAMmKDAWjq6KaxXZJtXyWVr4UQA1bd0klK40YIAEfKSRg9cLfR2OQIPlSnEepoYXRTJ174a9nr7avSppxGJXhJK5BDXfpSr6fBZhMJ4Raqmq0U1raRnaZv+xsxNGTESAgxYN8X1Lum0QKGn65zNH0LMBp4Y9gdXNf9a9Z0pOsdjl9qLttNplLB6HjPS5yPV0aMts6oqE6m03yVJEZCiAFbm1fLyT3rizJP0zeYo5iWHgXAxuIGnSPxT/Oqn+cLy63MqXld71BOTFe761NXYlTbfqSzhZeTxEgIMWCFebsIox27MQhSpukdzhFpiZFKaeE+6GzWOxy/0tTeTZpzR1pUhpftSOths8LDk+HeZOjQkuuMWBkx8nWSGAkhBqSyqZPvG8KY0vUsHT/6CEyeu85ialoUzwT8gzfaf0LLtg/0Dsev5FbWk6VUABCcMkHnaI6TyQJ2G6C66hllOhdgF9VKYuSrJDESQgzIhiKtmOPw5FhCMzx3tAggMthMU2AKAI25Us/InSoKd2FRbHQqgRCRqnc4xy9+jPaxRquAne5aYyRTab5KEiMhxIBsdCZG09OjdY6kf9rjswEwVWzWORL/0lGmtQKpC84Cgxf/qonvXQE7PebAlv2GNtmy74u8+F+rEEIP5fk7+NB8Jz9qfV7vUPolNGsmALGt+7Q1I8ItDLVaUcSu6NE6R3KCXK1BtM0GPVv2QdYZ+SpJjIQQ/dbc2U103UYmGIpIbdupdzj9kjVyPHVqGAF0ozobmoqhF9mq9UizJI3TOZIT1DNiVHOgZ5ps2fdtkhgJIfptc3EDJxm0kQCzs+WGpxubHM52dTgAjblrdY7GP9S1WnnJOpeHbBcRNWGe3uGcmDjniFdbDbTVApDp3JlWKFv2fZIkRkKIfttY1MB0RUuMSPOOxMhiMlIeqnV2bytcp3M0/mFfVSvfOCbxn/ClBKV5WY+0Q5lDYMx5MOUq11RszwLsYhkx8knSEkQI0W+5+blkGKpQUVBST9I7nH5rTjmV53bXE2KZy+V6B+MHcqu1bvSjEkJ1jmSQXP5Kr6eyZd+3yYiREKJfumwOAis2aJ/HjoPACJ0j6r+Y0XO4x/Yj/tPq5etdvER90XbmGrYwNapT71CGxIEijzKV5oskMRJC9MuO8iamqFotF3Omd0yj9ZicGgnAjv1N2B2qvsH4gdSyD3nR/DfOqXvp2Cd7C1sXNGiVvNOjtcRItuz7JkmMhBD9sqGwnhaCqDfGo6R7V2I0PC6UOHM3E7t3ULbtK73D8WmqqhLVlg+AJWW8ztEMkqpd8OdEeOYHAASZjSSGBwJQKOuMfI4kRkKIftlQ1MADtkt55/RPYNwivcMZEKNB4cbItbxhuYeANQ/oHY5Pq2m1kukoASAmY7LO0QySqHRQ7dBeC+1agdOeQo+yANv3SGIkhDgmh0NlU7Gz4nVGlFdWMjY4m92G128DVabThkpheR1pSjUA5mQv7ZF2KHPIgbYmNdquTNmy77u876fbIR577DEyMjIIDAxk5syZrF+//ojnvvjiiyiK0usRGBjoxmiF8E4Fta2o7fUEBcD4ZO9ZdH2wuFEnYVMNhNoaoKVS73B8Vm3JLoyKSqshDELi9A5n8MSO0j46K3q7FmDLzjSf49WJ0RtvvMHy5cv5/e9/z+bNm5k8eTLz58+nurr6iO8JDw+noqLC9SguLnZjxEJ4pw1FDTxpfoj1pp9iLvpc73COy4T0BPJUraFsd5n0TRsqHeXaAv2G4AxQFH2DGUw9hR5rtYreGTKV5rO8OjF64IEHuO6667jmmmsYN24cTz75JMHBwTz//JF7OCmKQmJiouuRkJBwxHOtVivNzc29HkL4o80FlUxR8ghTWyAiTe9wjsuwqCD2GbIAqM/boHM0vstQryUO3ZHDdY5kkMWO1D7W9B4xKqxtQ5Wp2cGx+0Oo2Ab2bl3D8NrEqKuri02bNjFv3oFy8waDgXnz5rF27ZHL/re2tpKenk5qaioXXnghO3ceud/TfffdR0REhOuRmpo6qF+DEN6irWgTgUo3XZaoA78gvIyiKDRGaH2vbPu36ByN73qj82Ru7vo51vE+VkoztmfESEuMerbsN3faaGzX9xe5T7B1wVtXw1OnQkuFrqF4bWJUW1uL3W4/bMQnISGBysq+1w+MHj2a559/nvfff5+XX34Zh8PB7NmzKSsr6/P8O+64g6amJtejtLR00L8OITxdfVsXSS3bAVBSZ3r39EiStksqtH6XzoH4ps5uO+ubI3nPMYf4iT/QO5zBFT8WJl4K064GVZUt+4OtZg84urXCsRH6DkL4VUuQWbNmMWvWLNfz2bNnM3bsWJ566inuueeew863WCxYLBZ3hiiEx9lS0kC2IQ+AgPSZOkdzYqJHTOeu7ddgi57EX1TVu5M8D6RNK0FkcADRIWa9wxlcwdGw5JlehzJig6ls7qSoto2paVE6BeYjKrU/vkicpPv/l147YhQbG4vRaKSqqqrX8aqqKhITE/t1jYCAALKzs8nLyxuKEIXwCVtKGplq0NaNMMx7+qP1ZUxaEi/bz+L9mmTssixk0JWUlbLU+AkXhOeh+EHSmREjO9MGjSsxmqhvHHhxYmQ2m5k2bRqrV692HXM4HKxevbrXqNDR2O12tm/fTlJS0lCFKYTXKy7cR7JSjwMDJGfrHc4JyYwNJSjASEe3nUL5ZTbo2os3c3fAS9zY/oTeoQwNuw3q8l0709KdiVFxvdQyOmFVO7SPCfrXvvLaxAhg+fLlPPPMM7z00kvs3r2bG264gba2Nq655hoAli5dyh133OE6/+677+bTTz+loKCAzZs3c9VVV1FcXMxPfvITvb4EITya3aGyvaKNR20X0jTmcrB4d7d0o0Fhdnw3lxq/oGXNc3qH43Ps1fsAaA/3sR1pPdY/Bf+cCp9rSy8OVL+WxOiEqCpUbtM+94ARI69eY3TZZZdRU1PDihUrqKysZMqUKaxcudK1ILukpATDQRV6GxoauO6666isrCQqKopp06axZs0axo2TjttC9CW3uoUiaxhPmH/IDZfO1zucQXFKZD0/rnuGht0psOhXeofjUwKbtB5pqpfuXDymniKPNVoCmBatJUalMmJ0YppKobMJDAEQN0bvaLw7MQK46aabuOmmm/p87csvv+z1/MEHH+TBBx90Q1RC+IYtJY2A1p3eaPCNNSMRWVMhH6Ks+6GjAYJk0exgUFWV2M5iUCA0Zaze4QyNnsSoLg/sNtKcI0Z1bV20Wm2EWrz+V6o+gmPhynegeT+Y9F+079VTaUKIobWtqJq5hi3MSvKNpAhgdEYaJQ6tVYVasU3naHxHZXMnGewHIDpd/3UiQyIiFQKCtW3lDUWEBwYQFRwASAXsE2IOhpHzYNoyvSMBJDESQ81mherdsO8Trapp0369IxID0Fycw4vmv/HTbZf6TOPVkQmh7CITgKbCTTpH4zuK9leSqDQAYIobpXM0Q8RggJgR2ue1zuk05wLsElln5DNk3E8MPpsVdrwDO9+Fwq/B1nngtSvfhgitXxVttWBtgehMfeIUR9XU0U1c41YIAFKm615bZLBYTEYqg8dA53o6ijYRqXdAPqKuWOsi0GiMJjIoUt9ghlLsKG2hcO1e4BzSo4PZWtooO9NOxPdPQGgCjDwLLGF6RyOJkRhkuz6Aj5ZDW43rULcplPbgFAzmYKyBacT2vLD+afj679rw6Q/+TyugJjzG1tJGV2FHc4Z3F3Y8lC1+IpSApXa73qH4jJzORJ63/oHLJ4Vzqd7BDKWeZrLOBdiyM+0E2azwye9AtdNx0zZ2VdoYERdKhHOKUg+SGIlBo6oq2zpimNhWRzUxvNz9A1Y5prG3MxVanaMNj+UxKqGSBROSuKGxiCDVDhufh70rYfGTkHW6vl+EcNlc0sBFim8UdjxUaOY0KIHIjhKwtnp9GQJPsKfOzmZ1FFeMnKR3KEMr6wxw2CDtZEB2pp2wujxQ7WAJZ1tTCJc9s4ZhUUF8+xv9WspIYiROjK0LtXQdqztG8eBn+9hZ3sxUZQXb1CwMRjNZCSGcEqrtMihv7KSkvp19Va3sq8rlKdNi7hx/Oj+qeQBDfR7860JY+FeY+VOdvygBkF9YSJqhBhUFJWWq3uEMqhGZmVy+6i4aQ4azUpKiQZFf0wrA8Hgf/36mnqQ9nA4UeZTF18elerf2MW4MBc5Rt+Fx+v4bksRIHL+2WjpfvhxTxWYesf6BnepwAgMMjJpyJssnJTMjMxqzqff6/qb2bj7fW8W/1hazpaSR32+N5F8R9/Dq8P+QkP8W/O92aK3SptZ8ZE2LN3I4VAz7NwJgjRpJYGCEzhENrrFJ4axTx6G2QF2rlZhQ6Yl4ItqsNha1vkmTMYQRIb41ungsPVNp5Y2ddNsdBBhlT9OA9CRG8WPJr3Ym15IYCW+kVu+m9YUlhHXsp1kNJt7Yys9OGc5PT8si6ijNIyOCA1icPYxFU1L4al8Nd723g/yGDmY1L+LtCYlMzf0nrHkUJl12YC5fuF1hXRujbXvABOaMk/UOZ9CFWEykRwdTVNfOnsoWThkhidGJKKxu5mbT21gUGxj8oGhm037tF3rcKOIjUrGYDFhtDvY3dJARG6J3dN6lZo/2MX4sBXu0UbesOH2/h5LaigFrL1xH+5PzCOvYT7Ejnj/EP8yKW27mtwvHHDUpOpiiKMwdHc8nN5/GRVNTcKgKF22fxf/Sb0O96m1JinS2ubiB1+1n8ET4zRimXKF3OENidkw7vzG9RvhXK/QOxetVlOzFotjowqzV+vF1H90KryyBfZ+gKIprnZHsTDsOB02luaZjdR4xksRIDEjlji9RX7qQEEcrmx0j+XbuG/z9hktcFWAHKsRi4h+XTOY3C7Qy8Dfszeave+JRfaRmjrfaUtpIiZpA45jLIX223uEMiTExBm4w/ZeR+/8DDofe4Xi11tJdANQFpmq1fnxdrLOWUZ22a7NnOq1EijwOTHcHNBQCYI0Z7VrAPlxGjIS32JGznvC3LyWEDjYp4zEse48rfzAVwwm2ilAUhRvmDueeRVq13Ce/yueJr/Khcgc8vwBaKgcjfDEAPa1AstMidY1jKCVkTsSqBhDo6IDGIr3D8Wqqs9t8h682jz1UjLMXnPPrTot2FnmUEaOBMVrgpo1w+auUdIbiUCHMYiIuTN+pbUmMRL98sbeaS9+pYaX9JHICpjDspg+ZMnzYoN7jRyenc9e5Wo+l+1fuoenNG6BkLfznOvmL3o1arTZiqtaw1PgJ00Pr9A5nyIxNiWafqhUbtZdLPaMTEdSsNY9VfLXi9aF6muTWaYmR1DI6TgYDxAyHMee6dqRlxYWg6LzxRhIjcUzv5+znupc20t4NH2bexehbPiYhZmiKMf7k1CyWzkoHFC6vvQaHKUirnr3xuSG5nzjctrJGFhu/4e6Al4gt/EDvcIbMsKggcpUMAJqKtugbjBezO1RirSUAhA0bp3M0btIzYtRYCt0drqUEMmJ0/AprtWnITA9YvC6JkTiqd77PZevb9+Fw2LlgcjJPLp1JUPDQ/sP9v/PGMXt4DLu7EngiYKl28NP/g7r8Ib2v0GwpaSTbRws7HsxgUGgM00Y4rPulmezxKm/sIJNyAKLS/CQxComFwAhAhbp80qMPJEayPnIA1vxT635QX0hhTU9ipH8dLEmMxBH9Z1MJlo9uYoXp37yT9G8eumzKYXWJhkKA0cDDl2cTE2Lm7w2nUhA2DWwd2k4Q+aEz5PYVFpFlcK7rSpmmbzBDzJGgrWsLqt+tcyTeK7+mlQXWv3JryH0Y48fqHY57KMqBUaO6XIZFBaMo0N5lp6bVqm9s3mT9M/D5PdBUdmDESOeF1yCJkTiCD7aWU/nu7zjP+D02xcSUC2464UXWAxEXZuHvl0xGxcA1tVfiMJih4AvY86HbYvBHqqqilmkd5zsjsny+f11Y2hQAzF1N2g4ZMWD5NW3UEkFH8kwICNQ7HPeZ/QtY9CQMm4HZZCA5IgiAElln1D9dbdBYrH0eP5YCZ2KUJVNpwhP9b3sF3731ID83aetLDBf8EyXzNLfHccaYeH44M41iNZFXjIu0gzvecXsc/qS0voMRXdrW64B032oc25es9FRmdz7CvIB/QUCQ3uF4pZ7aM1keMAXiVuMXwZQrIEJbwO+qZSSJUf/U7NU+hsTRbIyg1jnS5gkFMiUxEr2s2lXFq6//mz8ZtcXO6qm3Ycj+oW7x/GbBGOLCLPy5ZSEfj7wbljyvWyz+YHNJA9mKVpvFmDZD52iG3ujEMMqJpbzZSlN7t97heKVhxe9yh+kVTjLl6h2KrtJlAfbA9FS8jhtDkXO0KD7MQqhF/4YckhgJly/2VvPAK//lMdODBCh2HBMuRvnB73SNKSIogD+cP55OLPxq10jyauWHzlDaUlzPRINWcI1hvp8YhQcGMCxKGynaU9msczTeaXzT1/zU9BEj7H62OcLeDflfwIbnQFVlZ9pAVWsj08SP86gdaSCJkXDaXNLAT/+9iQS1ikCDHTV1JoYLH/OIRq7nTEzkB2Pi6bar3Pfxbm1uOm+13mH5pC1lTcy2/pM1c14EP1lIe0Z0PY8HPET8Jz/TOxSv09TRzTB7GQDR6RN0jsbNVAe8fBF8tBxaq0l3FnkslurX/VPd0yNtDAU1ntEjrYckRoLaVis/f3kzXTYHxlFno1z7Ccrlr3rMQkpFUbjr3LGYDArb9uyj64FJ8Opl0FCsd2g+pbPbzq7yZtoJJG3afDAY9Q7JLbLiwjjHuJ6U6q/BYdc7HK9SWFlPulIFQFCSfyTSLiYLRKZpn9flylTaQDmLYxI3VkaMhGex2R388pVN2JqrGB4XwsNXZBMwLFur0+FBsuJCuXJmGjVEstM2DBzd8OVf9A7Lp2zf34TNoRIXZiEl0n8WIidkjKNTDcCsdkJDkd7heJXq4j2YFAcdShCEJekdjvsd1BqkZyqttrWLVqtNx6C8xI3r4YY1kDzloMTIMxbwS2Lk5/726V5mlz7JSstvefFso0csfDuSX545kjCLid+3LdEObHtdij4Ooi0lDTwc8Cj3Bb+K4kf96UanRLFX1TrC2yukNchAtJVr9Z/qAtM9Ytrd7VytQfIIDwwgKjgAkC37/WKyQMJ4VFOgjBgJz7FyRwX13z7PTab3iVWaSHWuFfBUMaEWbjhjONvU4aw1TNPm+L97WO+wfMaewjIuNK5hXtM7YPDcBHmwZcSEsI90AJqlNcjA1O4DoDPST5rHHipmhPbR1UxWptMGqqbVSqvVhkE58P3TmyRGfiq/ppU333qVe03OHmSn3abV5PBwV8/OICbEzD86ztUObH0Nmiv0DcoHqKqKrXQDAJ2haRAap3NE7mM0KNQ7W4N0SWuQAQls0XqkGeNG6xyJTg5pJpsWo414lNTLAuyj+v4JeO9GKPzGtfA6NTrYLZ0V+sMzohBu1Wa1ce+L7/EQf9e25Y9fAmfouy2/v4LNJq4/LYuN6hi2GsaBvQvWPqp3WF6voqmTzA5t+6wp3fe36R8mbjwAloa9OgfiPWx2B79sv4aZnY8SePI1eoejj541Rg3FYOty9UyTIo/HsO8TyHkZGgo9bhoNJDHyO6qq8qc3v+b3LX8gXGmnK3kGhkWPe9X6gB/NSic6xMyDnedpB9rr9A3IB2wpaSTboBV2NKX5fsXrQ4WmTcSqBtDkCNbq04hjKm3ooNsOzQFxJCSm6h2OPsIS4cLH4JqPQTFILaP+qnb2JvTAHWkgiZHfef67IibufYQ0Qw2dYWmYr3zNY7bl91ew2cR1p2bxpWMyPwp+AseFT+gdktfbUlzHFGdiROpJ+gajg8y0NMZaX2BZwN/AGKB3OF4hv1prBZIZG+LWPooeRVEg+ypIOxmMJhkx6o+OBmh1bu6IG32ghpEkRkIP3xfUce/Hu/mT7UfkJZ1L4LJ3PW5bfn8tnZVORJCZb+oj+Gx3ld7heL3qop1EKm3YDRZI8LNCfcCoxDAcGCiub6ejS2oZ9UdLwTqeDHiQn5j+p3coHiPducZof2MH3XaHztF4qJ7CjhGpEBhOYW1Pgu0ZW/VhEBKj+vp6HA75B+DpKps6uenVzdgdKmdPyWL49a9A7Ai9wzpuIRYTP5ypFVd75psCaCyBStlqfTy6bA4aq0uoUiPpTpjslyMmsaEWYkLMqCrkVbXoHY5XUMtzWGDcwBTbVr1D0VdDEWx8Hra/TXyYBYvJgN2hUtHYqXdknqmnFUjcGGx2h2vaMdNDql7DcSZGu3bt4i9/+QuzZ88mLi6O+Ph4li5dyjvvvENbm6zG9zRWm51Pnr6DKzpeZ0xCKPddNAnFi9YUHcnVszMIMCoklXyE+vBk+Pg2vUPySrsrmvm6exzzDU9jWfaO3uHo5sLIQv5n/i2x//2R3qF4BXOjNvWq9ixA9lf7N8GHt8C6pzAYFNeW82LZmda3mgOtQLSRNRWLyUBSuOcs6eh3YrR3715uvfVWRo4cycknn8yGDRv42c9+RlVVFR9//DHp6encfffdxMbGsnDhQp54QtZ9eAJVVfn4hXtZ1vY8twa8zUtz2wgy+0arh4TwQC6YnMJax1gcqgIla6E8R++wvM7mkgYAstOiUALDdY5GP4mxUYw1lBDWsEPvULxCdLvWkicweYzOkegs5pAt+7LO6Og6tJ83xI2l4KCF1560Tq3fidGaNWtoa2vjkUceoba2lnfeeYelS5cSGxvLjBkzuOeee9i6dSu7d+9mwYIF/Oc//xnKuEU/ffHmIyze/3cAisf+lITsc3SOaHD95NRMaojiQ7tzJ9W6p/QNyAvlFNcDKtlpUXqHoquItIk4VIXQ7npoq9U7HI9W39ZFmqoVhI1Nn6hzNDqLcRa37GiAtjrZmXYsS56FO8th/GIKazxvRxoMIDG65pprePLJJ1m4cCFms/mI52VkZPCrX/2KVatWDUqA4vht+t8LnL7r9wDsTL2C9Ev/qnNEg29sUjinjozlBdsC7cCOt6G9Xt+gvE3xN2yw3MAllQ/oHYmuRgyLp0SN1570rIMQfSqqqCEZrUyGJdHPR4zMIRA+TPu8LvegnWkylXZE5hAwB3vkVn0YpF1pmzdvHozLiEGU99nzTP5+OUZFZUvMeYy/xrtqFQ3Ej+dkkqMOZxeZWsHHra/rHZLXqGmxktK6kzilmViTf/+FOzIhjH2q9guuo0wW8h9NTfEuDIpKiyEcQmL0Dkd/sQdag/TsTJOptGPz6cRoxowZLF++vNexjz/+eDAuLY7D9h1byfjmVkyKg7WhZzHphpfA4LuVGU4fGUdqdDCvds/VDmx6EVRVz5C8Rk5pI1MN2tqIgPSTdY5GX+GBAew3ZwLQWiqtQY6msaqETjWAhqB0vUPxDAetM+qZSiutb0eVn0O95bwKzy+EDc8CBxKjLA/akQaDlBhNnDiR8PBwrrnmQFn4u+66azAuLQYop7SRH75VyQrbNXwacj7Zv3wNo8m3G4IaDApXzUznffspdGJBbSrTttCKY9pSXO+qeM0w/yvseKiOKGfPL5lKO6pV3ZMYa32BtTMf1zsUz9DTM602j2FRQSgKtHXZqWvr0jcuT1O2EUrWQFMZnd129jd2AJ5VwwgGKTFSFIU//OEPTJ48mYsvvpju7m7JlN2tu4O1m3P44TPf02K1kZd2Caf+6iUCzf5Rk+aS6alYTaEss97O9svXQ3Sm3iF5hf2Fu4lRWrAbzJA4Se9wdGdKmkCeI5lSQ5reoXi0/Jo2VAykpiTrHYpnGHMuXP0RnP8QFpPRtfVcptMOcVArkCLnGqyIoACigj3r99SgJEbh4doW35tvvpnzzz+fCy64gI6OjsG4tOiPxlLqHz2T+PevwNTVzJwRsTx/9Uk+sy2/P6JDzJw3MYl16lhe2iS90/rD7lAJrNwEQFfcRDAdeVOFv4jJmMS8rr9zf+BNeofisbpsB4ryDY/zrL/0dRMxDDLmQKi2eP/AzjRZgO2iqlDjTIzix/bakeZpdfUGJTH68ssvXZ8vW7aM66+/nurq6sG4tDiGrq1v0fHIyUQ37SSaZpaOcfD81ScRavHt6bO+XDVLW+/w323lNLRaZXfaMeytbGGcQ+smb8n07/VFPUYnhgHa90ZGvftWUtfCO6a7eNLyT+JN8gdwX9KjZQH2YVqrtZIGigFiR7lqGHlSj7Qex/Xbs7m5mRdeeIHKykoyMzOZMmUKEyZMIDhYy5IXL17M4sWLBzVQcYim/TS8dztRhR8CsMUxgi0n/Y3l557hUYWy3Ck7NZJxSeE4KnfgeHIOhAXBT7/WOyyPtaW0gQI1mb3m8YxOn613OB5hRHwoigKN7Vbq6uuJjZEdV4cqK85nriGfbopRLGF6h+M59nwMpd/DuAtJi4kApJZRLz3r9qIyISDQY3ekwXEmRhdddBFbt27lpJNO4r///S9792p/dQ4fPpzJkyfzxhtvDGqQorfWz/5GwJp/EOXowK4qPG9Ywrgr/8SPRyfpHZquFEXhihmpPPB+GeGtBdBqg6pdkDBO79A80paSRt62zyd8+o2MHjta73A8QmCAkZ+Gf89NnU/T8d+z4OqX9Q7J4zSX7gSgzpxCotH/RqaPaPubsPNdCIkjPWYJACUyYnSAqxXIWOCgrfoetiMNjnMqbe3atXz88cd8/PHH7Nixg9bWVtauXcuvf/1r4uPjBzvGo3rsscfIyMggMDCQmTNnsn79+qOe/9ZbbzFmzBgCAwOZOHGiV5UVyK1q4a73tvPF159jcXSwwTGKB4c/y+JbH+cUP0+KelwwOYU2UySf26doB7a+qms8nmyLqxVIpL6BeJjQqHhClU6MtXv0DsUj2av3AdAWlqVzJB6mZ8t+be5B/dIkMXJRVQhLOjwx8pURo0mTJmE6aAu4xWJh+vTpTJ8+fdAC64833niD5cuX8+STTzJz5kweeugh5s+fz969e/tM0NasWcMVV1zBfffdx3nnncerr77KokWL2Lx5MxMmTHBr7Mdks9JanEP19lWYCz7jL46lfFibAMBaZTG5cacw+8Kf8uvhcToH6lkiggNYMD6Rd7afynzjRtj2Jpz5B5C/bHtpau+mo6aYUIKZkurfrUAOFZg8ASohvK0Q7N1g9KwdM3oLbMrXPon18+axh+r5ftTludYY1bRYae+yEWyWnz/M+rn2cNhpbO+i3lnKICPGRxKj+++/nxUrVvD2229jsVgGO6Z+e+CBB7juuutc9ZOefPJJPvroI55//nl++9vfHnb+ww8/zIIFC7jtNq0L+z333MOqVat49NFHefLJJw8732q1YrVaXc+bm5uH5OsorG3juf9+waVVD2G2txFhryfeUUUoKj17Pqbb4vjEeA2nj4rj2jknc3JWtMet5PcUl05P5Zqt2TQQRlRrFRR8CSPn6R2WR8kpa+T3Af/iLOMmDHs7YOpSvUPyGInpo2jdFEgonVCX5/oLV2hNqaM6teaxIcnyfekl5kD164jgACKCAmjq6Kakvp0xif7bnPkwBiOFtdrv0sTwQEI8cKPQcU2lZWRk0NzczLhx47jzzjv54IMPKC0tHezYjqqrq4tNmzYxb96BX3gGg4F58+axdu3aPt+zdu3aXucDzJ8//4jn33fffURERLgeqampg/cFHKTNauO7fZVM6tzAmO5dJDkqMaLSpAbzjfEk3k34BbHzb2Pj787i2WUnMWt4jCRFRzF7eAzxkWG8b5ulHZDptMP0FHY0oELsKL3D8SijE8NdrUHUKin0eLDa1i4y1P0ARGeM1zkaD9OTGLVVQ0cj6TE9PdNkOu3QTgSePI0GxzlitGTJEqqqqjj99NNZs2YNTzzxBM3NzURHR5Odnc2nn3462HEepra2FrvdTkJCQq/jCQkJ7NnT99qAysrKPs+vrKzs8/w77rijV6uT5ubmIUmOhkUFcd05s1lf+2cMgaEYQmIJGzaG5OR0Tg2UYfyBMhgULp42jHc+P42rTZ/Cno+gswkCI/QOzWOUFu4lXmnEoZgwJE3WOxyPkhEbwjukMZU8Wkq3ET5xid4heYyCyjqi1GBilBbM8bJgv5fAcAhNgNYqqMsjLTqYbWVNlMo6I8hbDR/cBCPPhgse8eiF13CcidGOHTtYu3Ytkycf+IFaVFTEli1b2LbNd3oMWSwWt0wVRgab+eGp4wDZPTVYLp42jEc+z+R52wLOP/+HxAV45v+AenA4VIzlGwHojB1PcECQzhF5lgCjgYaQ4dDxOdb9O/QOx6Pk1Xfzu66/MW90DM8GReodjueJGelKjNJjpgAyYgRohR1bKrQ/UMGjaxjBcSZGJ510Em1tvSt6ZmRkkJGR4bb6RbGxsRiNRqqqqnodr6qqIjExsc/3JCYmDuh84b1So4M5ZXgcd+ctpblhJDfL4muXgto2xtr2gAksGTP1DscjdcRN4bPCbIKDJiHbGw7Ir3b+pR8va2b6dN6DYA6GsGTSusoA2ZkGQPUhW/VrPHsq7bjWGP3qV7/iD3/4A42NjYMcTv+ZzWamTZvG6tWrXcccDgerV69m1qxZfb5n1qxZvc4HWLVq1RHPF95tybQUAN7PKZcqxgfZXNLgahxrTJPEqC+WzJP5SfdtvB1wod6heJSC2lYAsqQVSN/iRmntQQwG0pw700rqpC2Iq7hj3BhUVfXNNUYXX3wxACNHjmTx4sXMnDmT7OxsJkyYgNnsvn5Ly5cvZ9myZUyfPp0ZM2bw0EMP0dbW5tqltnTpUlJSUrjvvvsALaE7/fTT+cc//sG5557L66+/zsaNG3n66afdFrNwn7PHJRIUsAO1Lo+qdz8lMXMcZF+ld1i621pQySKlSHsy7CRdY/FUI+O1X/x7q1p0jsSzXFZ2L8vNRVisKwBptHs0PYuvyxo6sNkdmIyD0oHL+zgcUKMVgSZ+LFXNVjq67RgNCqnOek+e5rgSo8LCQrZu3UpOTg5bt27l3nvvpaioCJPJxOjRo922zuiyyy6jpqaGFStWUFlZyZQpU1i5cqVrgXVJSQkGw4F/jLNnz+bVV1/lrrvu4s4772TkyJG89957nlfDSAyKEIuJ+eMTCN7+KYnbnoPqiZIYATklddxtW8pPx1hJjZRfbn3ReqapNFSXYW8qxxghXeQ7u+1kdecy2lBGc6SsS+tTVzt883eoLyBx8bOYTQa6bA4qmjo9NgkYck2l0N0GRjNEZ1FQpK0zSosOJsBDk8XjSozS09NJT0/nggsucB1raWkhJyfH7Yuvb7rpJm66qe9O2Ac3t+1xySWXcMkllwxxVMJTLMpO4eacGfwx4EUCKrdrf7nE+e9umoa2LnbW2tnJWdx60VkgZR/6lBoVzJ3mN7ne8D5Nq68l4qIH9A5Jd0U1TWQq2g7esGFSw6hPJguseRTsVgxn/p7UqCDya9ooqW/338Soerf2MWYkGAM8fhoNBrDGqLKyslexw0OFhYVx6qmncuONNwJQUFBw4tEJcYLmjIjFFBrD1/ZJ2oHtb+sbkM42FWttQIbHhRAV4r5pb29jMChYw9MB6K7crXM0nqGiaB8WxYYVM0qEjDT2yWCEmOHa584t++DnO9OMAZB+CqSdDHj+wmsYQGL09ttvEx0dzeLFi3nhhReoqak57Jx169Zx5513Mn78+F5b+YXQi8lo4PzJyXxgdy6w3/H2YcXG/MnGonouM37BeQkN2ty/OCJHnFY+I6hhr86ReIaWMm0BbV1gGhg8cwrEI/S0BqndR7qz3UVxvR8vwB5xJlzzMZynjbr61IjRTTfdxNatWzn11FN58cUXGTZsGHPmzOHee+/luuuuIykpiUWLFlFdXc1f/vKXPhMnIfSwODuFVY7pdKhmqC+A8i16h6SbioLt/DXgGX5R8FNwdOsdjkcLT50IQEh3HbTV6hyN/hzOBbTt4dI89qj6aCZb4s8jRoco9PAaRjDA7fojRoxg+fLlfPXVV5SXl3PdddexdetWoqOjeeeddygvL+fZZ5/l/PPPJzAwcKhiFmJAJqZEkBgXw2eOqdoBP51Os9rshFRtAKA7YYq2HkIcUdawBIodzmbU1dIaJLhZWx6hSAuZo+v5/tTmSlsQhwO6DoyW2ewOSpx1nTI8ODE67qp3MTExLFu2jGXLlg1mPEIMOkVRWDwlhQ9Wz+YM0w5C/bTS8479zUxRtb/6A7Nm6xyN5xudEMZ2NZV0qumu3ElA5ml6h6QbVVUp7gyiQE0kZJj0SDuqWGfPtLoDiVFpfTuqqvpfj8uGQvjnNG3Dy8+/10oXOFSCAowkhnvu4IlMFAu/sCg7hc8d2UztfJzK6bfpHY4uNhXXM82wDwAlXYqaHktCuIVCo7YAu7Vku87R6KuyuZM/Wy/jbNuDxMy8XO9wPFvPVFpnE8NCtHV8LVYbDe1+OHVdswdQta36iuKaRkuPCcZg8NwkURIj4RdSo4OZmhFLl2ri/Zz9eoeji735BQw3VGhPpLDjMSmKwv6omTxnW8jeiDl6h6OrAudOorQYz6094zECw+Hm7XBnOYEhEa6RkWJ/rIDds1Xf2QrE1SPNQ5vH9pB/4cJvXDjF2SJky34o3QC2Lp0jch9VVaF0PQAdkaMgOFrniLyDLe0U7rH9iK+ZqncouiqobgJUhksrkP6JTNO27qMlk4BrbY1f6UmM4sYAUOhsKePJO9JAEiPhR86dmITJoHBP/XJ4bh4UfKl3SG5TVNfO6K6dAJgzZRqtv8YkhgGwz89bg4TvfoOtluu4vl3aJw1Uuj/XMqrpaR6rlb4oqtW+B5mxnp1gS2Ik/EZUiJnTR8Wx3ZGpHdjxjr4BudHGonr+aVvMPZF/wjjjWr3D8RqjEsIIpw1z+TpoKNY7HN2YGvKJUNqJCArQOxTvULoB3roGPr3Lf3em2W1Qq61pJL5nxKinhpFnVwGXxEj4lQumJPNfZ7FHdc9H0N2hc0Tusam4gRaCMY2eB0lSfLW/RiWEcU/ACzxu/R3WrW/pHY5uItu1rfqWxDE6R+IlOptg538gdxVpziKPpf42lVZfAPYuCAiBiDQ6u+3sb9R+3sqIkRAe5KxxCewJGMN+NQalqwVyV+kdkltsdLYCmZ4ua4sGIirETFmANsLYVuqfO9NarTaG2coAiEmfqHM0XqKn+nVdPmmRWusdv6t+bTBqTbvHLwaDgSLn4vOIoACigj175FESI+FXgs0mzhqXxId2rW+PP0yn1bVaGV+7kt+aXmOGuUjvcLyONVor2Gfw0yKPRRV1pCpaJ4PQYeN0jsZLRKSCKRAc3WQatarpVc1WOrvtOgfmRjHD4cLHYNFjABQ5p9EyYkM8vp6TJEbC71yYnXJgOm3fJ2D17YW16wvrudC4hp+Z/ktEzSa9w/E6AUkTAAhtLQS7/9WiqS7aiUFRaVVCISRO73C8g8EAMVqhx/C2QsICtVrKfrkzzanAC1qB9JDESPidOSNiKQ8aTaEjAcXWAbmf6h3SkFpfUOsq7EjaTH2D8UIJqSNpVQMxqd1Ql693OG7Xtt/ZPDYoAzz8L32P4pxOU+ry/HMBdm1er5IohTWe3zy2hyRGwu8EGA2cOymZP9mu4rG0h2HcIr1DGlJVuZuIUNqxmYIhURZeD9SopAhy1WHaEz+cTitsNfGlfTJNcVIUdEBcPdP2kR6tJQN+M2Jk64LHZ8K9SdBSCeBaYySJkRAealF2Mqsd03i8KJEOm97RDJ3G9i4SGzcCYE+dBcbjbo/ot0bGh7LHkQpAx37/W4D9YftYru7+DQ2n/E7vULxLzEgwmKC780CRR3+pfl2XBw4bBARDaAJw8FZ9z0+M5Kek8EtT06IYFhVEWUMHn+2u4vzJyXqHNCTWF9ZzsqKNcliGn6pzNN4pxGLi+5C57GpN5+LYs/CnMTeb3eH6hTbcw9s4eJxxF8D4RWAMIG19CQDF/jJiVHNQxWtFoamjm9pWbVotwwsSIxkxEn5JURQunJJMCjUEr74T/vNTvUMaEusKaplhcFafzZDE6Hi1JZ/Cv+1ns7XLNxPoIymtbyPY3kJQgJHkiCC9w/EuJgsYtW3pPdWvS/xljZGrR5pW96pnR1p8mIVQi+ePx0hiJPzWhVNSMCoOzmx+F3X7W9Bao3dIg64gfy/dGLX1RVLY8biNStBag+yt9O0djIfaX7SPrYHX83XAjRhQ9Q7Ha/VMpZU2tGN3+MH30dUjTWse27O+yBtGi0ASI+HHRiWEEZwwgq2OLBTVDrvf1zukQdXc2c1XVYGcZH2Chmu+c/31KgZudGIYY5QSkgv/A40leofjNs2lWn+9blOotgVdDMy3D8HTZ5Bc+jEBRoVuu0pFkx9U23f1SNNGjApqvGerPkhiJPzcooNqGrHjP/oGM8g2FtXjUCEjJoS4lCy9w/FqoxPDuMv0b25sfgC14Cu9w3Gb7uq9ALSFyb+f49JUCuWbMVRtJzXKOZ3m6+uMuju1diDgah7rTQuvQRIj4efOn5zMR84q2GrxGmjar3NEg2ddfh2gMjMzRu9QvF5WbCi5aDvT2sr8Z2daUKOzblNPiwsxMD1b9uvySPWXdUaObvjBXZD9I6/ckQaSGAk/lxIZRGrmSNY7RqOgwq739A5p0FTkbmKD5efc0PyQ3qF4PbPJQEOIVsm4q3yHztG4h6qqRHcWARCSMl7fYLxVT0JZu+9AkUdfHzGyhMGpt8KFj4KioKqqa/G1JEZCeIkLpyQfNJ3mG73TWq02Yms3EKc0kUid3uH4BLtzIWlg/V6dI3GPurYu0lVtBDUmY4LO0XipGGdiVF9IeqS2xs/nR4wOUdvaRYvVhqIcWITu6SQxEn7vnAlJfKrOpEyNpSF2Oji8v9HjuoI6TnLWLwoceZrO0fiG0GFachDcVQttvp9sFpaWEac0A2BJGK1zNF4qPEUrcujoZkxgAwDF9T5e5LF0g9Y6x/lztGcabVhUEBaTUc/I+k0SI+H3okLMTBw9kjnWh3ku+FoweMf/vEfzbW41Mw3OLbNSv2hQZKYkUuJwNlH1g9YgJTVNvGQ7i3XBc8ESqnc43slg0LrMAxmUA1q/NFX14S37//kJ/HMqFH8HcNA0mvf8G5LESAjggikpgML7W/f7xA+t8r2biFZasRmDITlb73B8wujEMPaq2gJsR5XvJ0Y7mwL5ve0aPht/n96heLe4sRCVSWyg9rSl00ZTR7e+MQ2VrnZoKNY+d049F/QkRl4yjQaSGAkBwLyx8QSbjZTXt5K79gNoLNU7pONW1dxJWuM6ANT02VK/aJCkRQfzgno+S7t+Q1nKQr3DGXL5Na0ADI/znr/0PdJFT8OvcrBMvoj4MAugjRr5pNq9gArBsRCqja4W1mr/jrxl4TVIYiQEAMFmE/PHJ/JAwBOM+nQpbHlZ75CO27e5tZxq0LaUB4w8U+dofIfRoNCccBJfOyazu9msdzhDrrNyH6G0MzxeEqMToiiuT31+Z1p1T2HHsa5Drq36XpRgS2IkhNMFU5L5wj4FAHXHO+ClU2rf5dWyyTGKypDRMPwMvcPxKT2tQfb5eGuQji47f+28mx2BP2G01X/qNg21tGht1KSkzkcXYPesvYvTKl47HCpFztGxzBgZMRLC68wZEcvmwJPpVANQ6nKh0vt+Iaiqyrd5tTxsX0LB4o97/eUmTtzohDAWGtYxcudD0FKldzhDprCyllSlGoDwZNmRdkLsNnjubPhrBqPDtQ7zPjuV1tMjLUGreF3e1EGXzUGAUSElynuaEEtiJIRTgNHA3MnD+dzhXKzshTWNcqtbqW6xYjEZmJoepXc4PmdUYhg3m95hQf3LULFV73CGTFXxboyKSpsS4qpeLI6T0aRV1O9oYEyAlkz7bFuQnhGjQ1qBpMeEYDQoR3qXx5HESIiDHFzs0eGF02nf5tYyQ9nNqelBBAZ4f9kBTzPmoJ1ptkrfrYDdWqb95V8XmN5rjYw4TrFa1fSegpk+mRipKsz/M5x2u2uk2ttagfSQxEiIg0xNi2Jf+Cxa1UAMTaVQtlHvkAZk695c3rTcw1PlF0NHo97h+JzE8ECKjOkAtJV631Rrfym12iLazojhOkfiI5w90+KdLVYqmzvp7Pb+QrK9KAqMXww/+B0ERgCSGAnhExRFYUF2Jqsc07QD+av1DWgAOrvtmIq/AaA7agQEReobkA9SFIX2CG3NjerDRR7DmvMAMCTIGrVBEaf9mwlsyifUYkJVoazBB0eNDiGJkRA+YtGUFB63XciF3ffSeNIteofTb+sK65nh2AaAZbRs0x8qxiRt/URoc4G2sNbH2OwOEru0In0R6ZN0jsZHOIsdKjV7SIt2btn3tQXY+V9A7ipor3cdksRICB8xMiEMU+I4ttoz+HiH9+w8+mJ3FacbtQXBimzTHzLxqaNoUy2Y1C6oL9A7nEFXUt/Ov23zeNNxJjFZU/UOxzc4t6/TWMLIKG3Nls8lRt/8A165GPatBKDL5qCsoQOQxEgIn3DhlGQA3s/ZDw6HztEcm6qqlO1eR6LSoLUBSZ+jd0g+a1RiBLnqMO1J9U59gxkC+6paedl+Fv+OW44hMkXvcHxDSAwkToIRZzIiQltb5FMLsFUVqpz/Lzh3pJU2tGN3qASbja6K395CEiMh+nDB5GQiaOWSsnuxPTwF7J7d26iwto0xLWu1J1mnQ0CgvgH5sFEJofyu+1pOsz5I+4hz9Q5n0OVVa8UrR0rF68H1s2/gqneIScwEoMiXijy21UBHPaC41lMV1hyYRlO8bGejJEZC9CE5MoixGSmcbsjB1FQMBV/pHdJRfbG3hjONWwAwjfH9Pl56igm1UBUymhI1gdxqH/qr36mlZBvjlSLGxEqPvaGQEautMerpOu8TekaLorMgQCvk6K3ri0ASIyGO6ILsND62z9SebH9T32CO4Ys91dzSfQNrR/4aRi3QOxyfNzpRG03ZW+V7rUFm73+Bjyx3ckbTe3qH4pMyI7TRk9KGDrrtnj9N3y89Fa8P7pFWJ4mR29XX13PllVcSHh5OZGQk1157La2trUd9z9y5c1EUpdfjZz/7mZsiFt5m4YRE/stpADh2vQ+dzTpH1LdWq431hfUUqUnEn30LhEml4qE2Oj6Im4zvMv67m6HLd0aN7A6VxK4iQHakDbryHPjbSBJfPYugACN2h+panOz1Dql4Db2n0ryN1yZGV155JTt37mTVqlV8+OGHfP3111x//fXHfN91111HRUWF63H//fe7IVrhjaJCzESOOJlcRwoGWyfsfFfvkPr0xZ5quuwOMmNDyPLCH0LeaFRCJNeYVjK+4TOo3at3OIOmpLaZTMoBiM2cqHM0PiYsCdqqURoKGRFtAnxoOq2PEaOCWm2gQhIjN9m9ezcrV67k2WefZebMmcyZM4d//vOfvP7665SXlx/1vcHBwSQmJroe4eHhRzzXarXS3Nzc6yH8y4XZw3jLro0aqVte1jmavq3aUcojAf/k9vj1KB6+SNxXjEoKZ69Daw3i+qXgA/bn78Cs2OkgEENkmt7h+JbQeAiMBNXBzHCt1k+hryRG5z8Mi5+CNK2dUktnN1XNVgCy4rxvEb9XJkZr164lMjKS6dOnu47NmzcPg8HAunXrjvreV155hdjYWCZMmMAdd9xBe/uRh8Hvu+8+IiIiXI/U1NRB+xqEd5g3NoFPTGdgUw0oZeuhZp/eIfXS2W3HuvdzLjCuZV7F02Aw6R2SXxiVcKBnWmeZ77QGaSnRvpaawHQweOWvB8+lKK56RpMslYAPJUaJE2Dy5RCeBBz4umJDLUQEed8ifq/8l19ZWUl8fHyvYyaTiejoaCorK4/4vh/+8Ie8/PLLfPHFF9xxxx38+9//5qqrrjri+XfccQdNTU2uR2lp6aB9DcI7BJmNzJkyjlftZ/JhzDUQ5Fkd67/Lq+UHju8BMI2/UH6ZuUmoxUR1UBYAnft9JzFy1GjTgu0RI3WOxEc5t7IPR2sm61Nb9g+SX6NNow2P875pNACP+vPyt7/9LX/961+Pes7u3cc/bH3wGqSJEyeSlJTEmWeeSX5+PsOHH94s0WKxYLF4V2EqMfiumJHGeeuuIaBSYRbhxOgd0EE+3V7Gb4xao1tl/IU6R+NfbLHjoAIsdb7TMy20KRcAQ8K4Y5wpjotzxCipqwg4zTdGjHI/g/p8yDzNtcaowLnw2hun0cDDEqNbb72Vq6+++qjnZGVlkZiYSHV1da/jNpuN+vp6EhMT+32/mTO1rdh5eXl9JkZCAExIiWDysAi2ljXx9qYyfnq6Z/xbsdkdNOz+kmillW5LNAFps/UOya+Epk3GXq4Q1FUHLVVevxvQ7lB5quMHrFVTWDpunt7h+Ka4UQCEt+YDUN7YgdVmx2Iy6hnVidn2Omx/C85c4UqMZMRoEMXFxREXF3fM82bNmkVjYyObNm1i2jStC/rnn3+Ow+FwJTv9kZOTA0BSUtJxxSv8xxUz0thdtpnyNa+jKoEop92qd0isK6zntO7vwATGceeB0aP+d/Z5I4fFU6gmka5UE1Bf4PWJUUl9O2tso9lkGstto2boHY5vih8HGadiTBhPaJ2RVqud0vp2RsSH6R3Z8XPtSDswyphfrY0YDffS6uleuSBh7NixLFiwgOuuu47169fz3XffcdNNN3H55ZeTnKz1uNq/fz9jxoxh/fr1AOTn53PPPfewadMmioqK+OCDD1i6dCmnnXYakyZJvQ5xdOdPTma8pYY/Wu+HL/4MzRV6h8T7m0uY75xGM8g0mtuNTQrnR113kG17Eduw/v9B5qlyncUqR8SHYjR4VwsHrxGeDFd/iLLwr2Q4t7EX1npxHSx7N9Q6N6Q4R4vsDtVV3HF4rCRGbvXKK68wZswYzjzzTM455xzmzJnD008/7Xq9u7ubvXv3unadmc1mPvvsM84++2zGjBnDrbfeypIlS/jvf/+r15cgvEiIxcS4KSez3jEaRbXD5pd0jaez2876nbkUqEnYLJGQcZqu8fij9OhgmszxtNoMPrGItrZwOwsN6zg5UsqSuENGTE9idPTCxB6tvgDsXWAOhQitvMP+hg66bA7MJgMpUUE6B3h8vHbsPTo6mldfffWIr2dkZKCqqut5amoqX33l2f2uhGe7YkYaT284ixnmvdg3voDx1FvBqM9W1NW7qymyhrI88j6+ufkkMJl1icOfGQwKoxPD2FLSyK6KFu+eDgEiiz7mCfPz7G47D/C95rgexdrChPAOPsTLR4x6Kl7HjXHtiM3vKewYE+K1I49eO2IkhLtNSIlgf/JZ1KjhGFsrYe/HusXy7hZtu++FU5IxBHr3L2RvNiEhkPtNTzHj00Ve3xokrEmbEjEmjD3GmeKEbHgW7hvGueWPAF5e/bqqpxXIgX8z+dXOhdfx3rnwGiQxEmJAls4Zyev2HwBgX/+sLjE0tHVRtG8rMTSxKDtFlxiEZlRKLGcYt5DYtterK2DbHSopXQUAhKdn6xyNj3NOOcV2FAJeXsuoaqf2MWG861CBM9HL8tL1RSCJkRADcs7EJFYHL8SuKhiLvoYa9/fJ+mh7BbcbXmF94I2M2v+e2+8vDhiXFMZuR7r2pMp7Cz0WV9WSjrahIG7EVJ2j8XHOIo+BTQUYsVPR1ElHl13noI7T4ifhx5/A2Atch2TESAg/E2A0sOCUk1jtmMpu42hUHaZPPl63nbmGHIw4YNj0Y79BDJnRieHsUrXEqLM0R99gTkB5bg5GRaVZCccY3v9acOI4RKRCQAiKo5uJgbUAFNd76ahRYDiknQwRB0auZcRICD90xUlp3Kn8koVtK1jT4d7+edvKGplQ/SFmxY4tcUqvuX3hfqEWEzUhWvuMrv1bdY7m+LWWbAOgOni41tNLDB2DwfX/7eywKsDL1xkdpKmjm5qWnuaxMmIkhN+ICA7g3GkjAIVnvylw671f+76IK4yfA2A66cduvbfomyN+IgCB9XvA4dA5muNjrNHWilijx+gciZ9wtlyZbNY2URR4Y2K0+0P4+HbI/9x1qMBZ8To+zEJYoPc1j+0hiZEQx+GaUzIxKLBpbyGVH/8VrENfi6S5s5vKravINFRhCwiDCUuG/J7i2KLSxmFVAzDb26GhUO9wjstT1gX8rOtmbBMu0zsU/xCvLVYeoZYAXjpitG8lrH8Kir5zHerpkTbcS3uk9ZDESIjjkBEbwoVTUnjFfC+J6++FLf8e8nu+vbGMi/kUAOPky8Di3T98fMWY5Ch2q2mUGZKhvV7vcAaszWpjY2MIKx0zGDZe+u25RdpMyP4RTRkLACjyxlpGVTu0j4kTXId6eqR58zQaSGIkxHG76QcjeN1+JgDdXz8I3R1Ddi+b3cFr3+xijkH7YaRMv2bI7iUGZmxSOEu6/sAZ1n/QlTRN73AGbK+zFUh8mIWYUIvO0fiJ5Gy48FFMU38I4Gqh4TUc9gPlKRImug7LiJEQfm54XCid4y+jTI0loL1KK9w2RD7aXkFuE1xofJyuC57s9Vea0NewqCCCAy1021XXX8zepHLfJm4wfsCFkd45DejNevql1bRYabXadI5mAOrywdYJAcEQnek6LCNGQghumDeeR2wXAWD7+gGwtgz6PVRV5RnnIu+LTpmAeeoVg34PcfwURWFsYjgAu8ubdI5m4AyFX/KbgNdZYvtQ71D8i81KeMNupgTXAV62zqinZlf8ODAYAW1Uu7hOmxKUESMh/NiI+FDUSZeT70jC1FmP+v0Tg36PL/ZWU7O/iMAAhR+dnD7o1xcnbnxiEG+Y7+acj2d63TojS71WpNQRN07nSPzM5/fAU6fy00Bt3aBXjTZWHr6+qKyhgy67A4vJQEqkdzaP7SGJkRAn6NYF43mMSwCwffMwtFQN2rUdDpXHP97IKsvtrA7/E1H22kG7thg8o5OjSaKOQHsbVHpPBWxVVYnvyAMgNG2SztH4mQQtqRitaDvT8mu8aMSoUYu552sAKOhpHhsbgsFLm8f2kMRIiBOUGBFI6pwryXFk8ak6gw774P1Q+O+2cubVv0q40k5isAqhCYN2bTF4xiWHs1PNAECt8J5Cj1WN7QxXSwFIHOV9C8e9Wrw2QpdsLQS8bH3axc/Br3Nh4iWuQ3k9rUC8fBoNJDESYlD8dO4Ibg68lxvbfsID3w3OqE5nt52XVn7H1cZPADCe9QfXfL7wLKMSwtilZgHQUbxJ52j6ryhvO4FKN52YMccO1zsc/xI3GhQjgbZmEql39RjzGqHxEBTpeppbpcU/MkESIyEEEGw28fuLtL+4n/u2kK0lDWDvPqFrPvZFHsvaXiBQ6caeOgtGnj0YoYohEBhgpD5SGwFQy3P0DWYAWgo3A1AVmCVJt7uZLBCrtZMZYyilsLYNu0PVOajjl+tM7EbGh+kcyYmTxEiIQXLGmHgWTUkmVm3A+tJiuj75/XFfa19VCzu/focLjWtQMWBceJ/0sPJwAcOyAQhpLYJO79idpjjXQ7VEjdc5Ej+VoH3fxxtLsdoclDcOXS20QbP53/DyxbDtTdchVVVdU2kyYiSE6GXF+eM5NXQ/M+xbMK1/HDX/ywFfo7Pbzp2vfMPdxue0AzN/qhWEEx5teHo6ZWqs9sRL1hk9YFvCQut9tGZfp3co/sm5zmhqYAUAed6wzqh4DeStgvoDfSIrmztptdowGRQyYry7hhFIYiTEoIoOMXPFVdfxuv0HGFCxvrZUK4bWT6qq8sf/7qSiuppWJQxbZAbKD343hBGLwTIhJYKv7ZP4lmxUg0nvcI6po8vOnhoru9V0ssZI4q2LEfPgzN+Tk7AIwDvWGfUk/YkHKl73rC/KiA3BbPL+tML7vwIhPMz0jGg6591LjmM4gbYmWp6/CNrq+vXeJ77K57X1pZQrcVRd+l9MS98Di/fP2fuDsUnh/J/jOq7qvI3KSM9PNPZUNuNQITbUQnx4oN7h+KfkKXDqckjTetR5/Jb97g6o2aN9njTFdXifs63MyHjvn0YDSYyEGBLLThvD59kPs1+NIaytiPrHz0JtLj/i+aqq8tCqvXz96bsA/P68cZw+LrVXuX3h2QIDjK5fDNvLPH+NUfWOz7nf9BQ/jtysdyh+r2eLu8dv2a/aCaodgmMhPNl12LW+SBIjIcSRKIrCzRfO4d3x/6RSjSK6LZ+dj19Faf3hXbT3N3Zw4wtfE//Vb3jd/CdeHLuRq0+RhMgbTUiJAKCgMB+6O3WO5uiMxd9yqekrTlO26B2Kf2sqI7v1K8YrRRR4emJU7vy3kjyl12aQnh1pIxJ8Y3Tb8yfChfBSBoPCjZecw9uR/2bUt79iedPlFP7tC04dGcepsa0E2VsorarDUvYdK4yrSTQ1ADB3VKzOkYvjNTElgiu2X8u0jbkw/r+QeZreIR1RaP0uAIxJk3WOxM+t+Sfp655ksXEhf2rNoLG9i8hgs95R9a0iR/t40DSaqqrk+thUmiRGQgwhRVG45OxT2TvxS5I/3k1+bi1f7avh4sJHON/4vXaS8//CrvB0zIsegay5usUrTsyElAiq1CjtSfkWj02Muu0O0rpyQYHoESfpHY5/cyamUwNKwKatM5qW7qGJkWIAc5grZoCaFivNnTYMCmTFef+ONJDESAi3GJ0Uzr+vnUluVQtf59Yy+nsHTdY4DMYAiB9H2PTLMI+9AAJkEaw3G5cUzudqJuewns6STQSeondEfSsoLmG0om0IiB81Xedo/Fyi1qNuDIUoOMivaWVaepTOQR3BBf+E8x4G1eE61DONlhETgsXkG0VCJTESwo1GJoQxMiEM5qzSOxQxBILMRurDx0E7OPbn6B3OEVXuXcdooNKYRGJghN7h+Le40WC0EGxvJ02p9vwF2AYDBy9P7plGG+Ej02ggi6+FEGJQGZ0VsINbi6GjQedo+tZVmgNAffhYfQMRYAxwVcCeoBSRX+2hW/Ydjj4P5/pQxesekhgJIcQgGp6eRqEjQXuy3zMbynY37gdAdU7jCJ051+yMN3jwzrSPlsMjU2H7270Ou5rH+kCPtB6SGAkhxCCamBLBFlVrDkrZRn2D6YPDoXJb6w+Z0PksgbOkFYhHSNIS1AlKIcX17XTZ+h6d0VX5ZqjPh4Oququqyr5q5440GTESQgjRl3HJ4XzmmM4LtvnUx3rewuaiujbauuzYAkLJGJaidzgCYMRZqJe8xJ+U67E7VErqPWw6zdYFVVp5B5KnuA7XtXXR2N6NohwoUukLJDESQohBFGw2URg/jz/alrEez+tav6O8GdBamBgNyjHOFm4RmYoyfhGB8VnAgUrSHqN6Fzi6ITASItNdh3um0dKigwkM8I0daSCJkRBCDLrstEgAtpQ26hpHXwI3Pskb5ru5MvB7vUMRhxjhHHXpSTg8hquw4+ReFa/zqn2rsGMPSYyEEGKQTUmNxEIX7XnfQvVuvcPpJbJ6PTMNexgV2qF3KOJgVTu51Po2Cw3r2OvcAu8xetbKpUzrdXifM4Eb4UMLr0ESIyGEGHRT0yK51fQW99T9Gse6p/UOx6Xb7iC9U+uOHj16ts7RiF4Kv+Hkgn9ykfFbzxsx6kmMhvVeM7enUpuWHZMoiZEQQoijyIoNZY9pNADWovU6R3NAQUEuCUoDNgwkj56hdzjiYM4t+xMMheTXtHrOzjRVhbSTIX48pEw/6LDKnkptZGtMkm8lRlL5WgghBpnBoGBLmgYVYKnfDV1tYNa/j1TVrm8ZDewPyCA90LfWhXi9xImoioEk6ol21FNU18YoT+hWryhw/kOHHS5v6qSl00aAUSEr1rf+LcmIkRBCDIGMrFFUqNEYVDuU5+gdDgD2Um1KpDFKCjt6HEsoSvw4ALINeezztHVGh9hToU2jDY8LxWzyrVTCt74aIYTwENmpkWxxjNCelG3QNxinqIYdAJjSTtI5EtEn5+LmKYY89lV6SGJUX6DVMTqEaxrNx9YXgSRGQggxJKYclBh1Fa/TORpotdoo7gqlVg0ncawsvPZIzsXNU5R8z9iZpqrw/AK4bxhU7uj10oH1ReF6RDakJDESQoghEBVipiLcOWVVslb7JaOj7WVN/Kr7Ji6wvEBMVrausYgjcC5uHmUoJdcTRoyaSqG1ClQ7xAzv9VLPVNpoGTESQgjRX0Hp0/lT95W8PfpB3ROjHGexySnpUb2K9AkPEjea+h9+wsnWxyiqb6ez265vPD3b9BMmQECQ67DVZqegVmtbMjZRRoyEEEL006T0OJ61n8v/GpLBoO+P272FxYDK5GGRusYhjsJgJGrkTEKCg3CoHtAaZP8m7eMh9YvyqluxO1QigwNICLfoENjQ8srE6M9//jOzZ88mODiYyMjIfr1HVVVWrFhBUlISQUFBzJs3j9zc3KENVAjh16alRwOwubgBm12/ujSqqnJb8U9Za/kFc8KrdItDHJuiKK5t+rnVOk+nlTrXxg3rvVh/T4UW1+iEMBQfHH30ysSoq6uLSy65hBtuuKHf77n//vt55JFHePLJJ1m3bh0hISHMnz+fzs7OIYxUCOHPRieGERdo52zblzS8e7tu02nFRbmkUE08DYwYNU6XGEQ/NZZwu/VRHgt4iL2VOo4YdbVD+Rbt87RZvV7qqXg91gcXXoOXJkZ//OMfueWWW5g4cWK/zldVlYceeoi77rqLCy+8kEmTJvGvf/2L8vJy3nvvvaENVgjht4wGhWlpUdwf8DRxO56BxhJd4ijf9gUARQEjsIRE6hKD6CdDANPrP2SBYQPFFdX6xbF/IzhsEJYMkWm9XvLlrfrgpYnRQBUWFlJZWcm8efNcxyIiIpg5cyZr16494vusVivNzc29HkIIMRBThiezXc3UnhSv0SUGR5H2c64hdqou9xcDEJ6ENTgJo6ISULlZvziiMmDeH+Dknx22WL8nMfLFHWngJ4lRZWUlAAkJCb2OJyQkuF7ry3333UdERITrkZqaOqRxCiF8z4zMaNY7xgKgFn+nSwyJTdqUSOCIObrcXwyMkq5NXWW2baPVatMniMg0mHMLnPKrXofrWq3UtFhRFDyjZckQ8JjE6Le//S2Kohz1sWfPHrfGdMcdd9DU1OR6lJaWuvX+QgjvNyE5ghxFW9fTXfCN2+9fU11Flr0YgLTJP3D7/cXAmbO0BHaGYQ97Kz1rpqJntCgtOpgQi2+2W/WYr+rWW2/l6quvPuo5WVlZx3XtxMREAKqqqkhKSnIdr6qqYsqUKUd8n8ViwWLxva2IQgj3MZsM2FNnYN+vYG4qgqYyiBjmtvsX5nxJnKKy35BESpz77itOQLpWmXyqIZf/lNW5dje6TX2htlU/bRZEpPR6acf+JgDGJ/vmwmvwoMQoLi6OuLi4Ibl2ZmYmiYmJrF692pUINTc3s27dugHtbBNCiOMxPiuNrWXDmarkQf4XMPVHbrv3hoYQttsWkjksmZRjny48QexoOkzhBNmaaSrYCKeMdO/9934Mn9wJI+fDlW/2emlnuTaCNT45wr0xuZHHTKUNRElJCTk5OZSUlGC328nJySEnJ4fW1gNbG8eMGcO7774LaHUhbr75Zv70pz/xwQcfsH37dpYuXUpycjKLFi3S6asQQviLGZnRfOPQdtGqNXvdeu//VUdwj+1HtM76tVvvK06AwUBT3EnkO5KortGh7lTPJoH0WYe9tKNcGzGakOK7iZHHjBgNxIoVK3jppZdcz7Oztb4/X3zxBXPnzgVg7969NDU1uc65/fbbaWtr4/rrr6exsZE5c+awcuVKAgMD3Rq7EML/TE2L4lZ1Pi93zuO17EWMcNN9m9q7XX/hz8hw83SMOCEdi57jzAfXYKk3cJfdgcnopnEMh0Pr7QeQ1rvZcKvVRqGzFYgvT6V55YjRiy++iKqqhz16kiLQahcdvGZJURTuvvtuKisr6ezs5LPPPmPUqFHuD14I4XcCA4xkZWZSQxTf5Na47b7bN3/HLGUHY+PMJEbIH4HeJD0ukmCzEavN4UpG3KJ6J7TXQUAIJPduNry7ohlVhaSIQGJDfXf9rVcmRkII4W1OHamtofw2t9ZtFbDNW57nVfO9rAh8wy33E4PHYFAYmxSOETt7ytxY6LHgS+1jxilgMvd66cDCa9+dRgNJjIQQwi1OHRnLeKWQawtvwfHKJW65Z0q91usqcJRs0/dGv1JfYZvlJ1i2vuy+m/YkRpmnH/bSjv3atOyEFN+dRgNJjIQQwi3GJoZjDgpjtrIdCr7SelENoarivaSoldhUA8NnLBjSe4mhEREZQ4hiJab6yB0aBpW9G4qd98qae9jLO3sWXsuIkRBCiBNlMCikjZxImRqLwdEFhV8P6f3KNnwAQG7AaMIjZOG1Nwoao7WxGt2Zg2rrGvobGgPgl1tgyXMQ37vZcGe3ndxqbee3L+9IA0mMhBDCbU4dFc/ndueC1r0fD+m9Ags/A6Am+YwhvY8YOmnjT6ZeDSWUDur3fe+em4YlwMSLwdA7PdhT2YLdoRIbaiYh3HcXXoMkRkII4TZzRsSyyjENAMfe/2lbo4eAvbOVEW2bAIicfP6Q3EMMvUCLmW0BUwBo2rlS11gOXnitHNJU1tdIYiSEEG6SGBFIfewMmtUgDG3VWtuFIZC/8VMsdLOfOMZNnjkk9xDuURmrFVkMLBnaqVdaa+DF82DNo33umtxW1gj4/sJrkMRICCHcau74FL5yTNae7P1oSO7xn+axLLD+hQ+G3YbJZBySewj3MI7QpkITW3ZCR+PQ3ShvFRR9A9vfhD5GhHJKtXtPSY0auhg8hCRGQgjhRmeNS+Rj+0y+UyfRHT9hSO7x+d5q9qhpJE8/b0iuL9xn+KhxvGefzT+VH6IyhPWv9jmn6kYdvoOxpbPbtfB6Smrk0MXgIbyyJYgQQnirSSkRbA49jf81z+RFy0nMHeTrl9a3s6+qFaNBYe6o+EG+unC3cUnhXGr/BbZulYs6LKQGDcFNbF2Q97n2+aj5h728rawJVYVhUUHEhfn2wmuQESMhhHArg0HhrHEJAHy6a/AbhDZ8cCcPBzzKJcm1RAQHDPr1hXsFBhgZkxQGaAnKkChZA10tEBIPSdmHvXxgGi1yaO7vYSQxEkIINztrXCIAm3fuwbH+ucHbnWa3kVbyLhca1zA3ZXAuKfQ3aVgkEbRiz3kNKncM/g32OEtHjDzrsG36AFtKGgFJjIQQQgyRWVkxRAfCG92/xPDxcihdNyjXrd25mkhHI/VqKFNOXzwo1xT6mzIskjtNr3JBwR9hy78H9+IOO+x6T/t83IWHvayqqmvEKDstcnDv7aEkMRJCCDczmwzMn5TKKsd07cD2NwflurVrXwFgU8hpJEaHDco1hf4mpUbwmWMqAOqejwa3CXFHI6RMh9AEyDq8GOj+xg5qW62YDIrPN4/tIYmREELoYNGUFN6znwKAuuOdE++d1tVGauUqABwTLj7R8IQHGRkfxibTFNpVC0pT6eDWvwqJgStehZt3gMl82Ms902hjk8IJDPCP0g+SGAkhhA5OyoimKGw6JY44lM4m2PmfE7pezfevEqK2U6QmMv3UcwYpSuEJjAaFEcnxfNIzwrjtjcG/SR9JEfjfwmuQxEgIIXRhMChckD2MV+1nagc2PHtC17Otew6A76POJyZsKPZ0Cz1NGhbBu/Y52pMd74C9+8QvWrMPavOOesqWkgZAEiMhhBBucNHUFN60z8WqmqB8C5SuP67rdHd383rHDPY4Uok79ZpBjlJ4gmnpUXznmEC9EgntdZC3+sQv+uW98Og0rQ1IHzq67Gx39kg7KSP6xO/nJSQxEkIInYyID2N0Vibv20+hW7FA9e7jus6qPbU83D6fH1ke4rQpYwc5SuEJpmVEYcfIu92zUFGgctuJXbCtDnZ/qH2eeVqfp2wpbaDbrpIYHkhqtP+MQkpiJIQQOlo2O52/2y5lofIYnZOuOq5rvLimCIBLpw8jwCg/1n1RfFggGTHBPG07l7UXfAWn335iF9z2Oji6IWkKJE3q85T1hfUAzMiMRumjf5qvkv+DhBBCR/PGJmCKSCKvPZi3N5UN+P1Vb/yKYcXvYTaq/OjkjMEPUHiM6RnRVBHNt9Un2JbDYYf1T2ufT1t2xNM2FGmJ0UmZ/jONBpIYCSGErkxGA9eflgXA41/k0V3wLZT0s+Bj8VoSdr/I3wKe4qdj7SRGBA5hpEJvJ2Vone03FmkLomkoOr5F2Hs+1N4bFA2TLu/zlC6bg03F2n1mSmIkhBDCnS6fkUZ8mIXZrZ8Q8K9z4f0bj13XyNZF+/vLAXjDcQaL55/phkiFnqY7F0DnlDVif/8X8PAU2PrawC6iqvDdI9rnJ/0EzMF9nrajvInObgdRwQGMiAs9gai9jyRGQgihs8AAIzeeMYJP7dOoJgrqcuGTO476HnX13QTX76JBDSV/ws1k+dkvL3+UFRtCTIiZLpuDclMqoMLXfwNbV/8v0lIBzfvBFAgzrj/iaRuc64umZ0RjMPjP+iKQxEgIITzClTPTSE5M4uauG3CgwKYXYe3jfZ+87S2Utf8E4P/Un/HTc2a6L1ChG0VRmO6cTvvYshBC4qGxBDa/1P+LhCfDLzbDlW9BaNwRT/s2rxbwv2k0kMRICCE8gslo4J5FE1jjmMAD3c6WHp/cAZ//GWzWAydueRn13Z8C8KxtIdlnX0V8mKwt8henjIgF4KvCNjjtNu3g5/dAa3X/L2IOPuIWfYDObrtrR9qpI4+cPPkqSYyEEMJDnJQRzY1nDOdR+yKedCzWDn59P7x1teucBiUcRbXzmu0Mvsm8mWtmZ+gSq9BHT2K0saiBjsnLIGkydDbBx7cdvblsXT6sexocjmPeY1NxA1abg/gwC6MS/G+KVhIjIYTwIMvPGs1po+L5S9cl3Or4JW2WeOzRw3E4VL7cW805Hwfzk65beSLsl/z90my/W//h77JiQ0iKCKTL7mBjaTOc9xAoRtj1Hqztu4I11hZ4axn87zb4/O5j3uPr3BoA5oyM9av6RT0kMRJCCA9iNCg8ddU05o6O452uk5nS9HfmfDuRyXd/ytUvbKCi2UpBzGm8ct3JxIWdYD0b4XUURXGNGn2bVwspU2H+vRAYCQkTDn9Dez28cglUboeQOJh+7THv8W2utr7oND+cRgMw6R2AEEKI3oLMRp5fdhIvrS3iiS/zqWgxQbeNELORy2ekcfO8kYQFBugdptDJnBGxvL2pjO+cC6SZ+VOYcBGExmvPHQ7Y/CI07dcWZrfVgCUCrngDIlOPeu26Vis7y5uBA9N2/kYSIyGE8EAGg8I1p2SybFYGRXVtdNtVMmKDsZiMeocmdDZ7RAwAO8ubqW/rIjrEfCApAij6Gj685cDzuDFw8fOQMP6Y1+7ZjTYmMcxvRyQlMRJCCA9mMChSo0j0Eh8WyJjEMPZUtvDl3moumjqs9wnWFhhzHphDYfgPYPwiMPUvyfl0VxUAZ4yJP8aZvksSIyGEEMLLnDUugT2VLazaVXV4YjT2fO0xQFabnS/3aNv+549PHIwwvZIsvhZCCCG8zFnjEgD4al8Nnd32Qbnmmvw62rrsJIRbmJQSMSjX9EaSGAkhhBBeZmJKBInhgbR32VmbXzco1/x0pzaNdta4BL8uAyGJkRBCCOFlFEVh3jhtHVDPuqAT4XCorHJe5+xx/juNBpIYCSGEEF7pLGcC89nuKuyOo1S97ocNRfXUtloJCzRxclbMYITntSQxEkIIIbzQrKwYIoICqGmxnvB02rtb9gOwcEIiZpN/pwb+/dULIYQQXspsMnDupCTgQGJzPDq77Xy0vQKAxdnDjnG275PESAghhPBSF2WnALByRwUdXce3O2317mpaOm0kRwQyMzN6MMPzSpIYCSGEEF5qWnoUqdFBtHUdGPUZqFfXFwOwKDvFr3ej9ZDESAghhPBSiqJw+UlpAPxrbRGqOrBF2HnVLXyXV4dBgR/OTBuKEL2OVyZGf/7zn5k9ezbBwcFERkb26z1XX301iqL0eixYsGBoAxVCCCGG2OUnpWI2GdhW1sSW0sYBvfdfa7XRonljExgWFTwE0Xkfr0yMurq6uOSSS7jhhhsG9L4FCxZQUVHherz22mtDFKEQQgjhHjGhFs6flAzAc98U9vt91S2dvLmxFIBlszOGIjSv5JW90v74xz8C8OKLLw7ofRaLhcRE/y5cJYQQwvf85NRM3tlcxkfbK7ixvJlxyeHHfM8TX+bT2e1gSmoks4f7d+2ig3nliNHx+vLLL4mPj2f06NHccMMN1NUdve6D1Wqlubm510MIIYTwNGOTwjnPuXX/H5/uPeb5ZQ3tvLKuBIBbzx6Fosii6x5+kxgtWLCAf/3rX6xevZq//vWvfPXVVyxcuBC7/cjbG++77z4iIiJcj9TUVDdGLIQQQvTf8rNGYTQorN5TzSc7K494nqqq3PGf7XTZHMzKimHOiFg3Run5PCYx+u1vf3vY4uhDH3v27Dnu619++eVccMEFTJw4kUWLFvHhhx+yYcMGvvzyyyO+54477qCpqcn1KC0tPe77CyGEEEMpKy6U607NAuB3726nrtXa53mvbyjlm9xazCYDf148QUaLDuExa4xuvfVWrr766qOek5WVNWj3y8rKIjY2lry8PM4888w+z7FYLFgslkG7pxBCCDGUbp43ktW7q8itbuW6f23kpR/PICwwwPX61/tqWPH+DgBumTeKrLhQvUL1WB6TGMXFxREXF+e2+5WVlVFXV0dSUpLb7imEEEIMpcAAI09cNZUlT6xlc0kjix9fw+3zR5MaHcz/tlfwxFf5dNtVzpmYyE9PG7zBBl/iMVNpA1FSUkJOTg4lJSXY7XZycnLIycmhtbXVdc6YMWN49913AWhtbeW2227j+++/p6ioiNWrV3PhhRcyYsQI5s+fr9eXIYQQQgy6EfFh/PvaGcSHWcirbuX6f29i4cPf8MjneXTbVc6fnMyDl02RKtdH4DEjRgOxYsUKXnrpJdfz7OxsAL744gvmzp0LwN69e2lqagLAaDSybds2XnrpJRobG0lOTubss8/mnnvukakyIYQQPmfSsEhW3nwaj3+Rx6rdVTS2dzM6MYyls9I5d2KSrCs6CkUdaP1wP9bc3ExERARNTU2Ehx+7RoQQQggh9DeQ399eOZUmhBBCCDEUJDESQgghhHCSxEgIIYQQwkkSIyGEEEIIJ0mMhBBCCCGcJDESQgghhHCSxEgIIYQQwkkSIyGEEEIIJ0mMhBBCCCGcJDESQgghhHCSxEgIIYQQwkkSIyGEEEIIJ0mMhBBCCCGcJDESQgghhHAy6R2AN1FVFYDm5madIxFCCCFEf/X83u75PX40khgNQEtLCwCpqak6RyKEEEKIgWppaSEiIuKo5yhqf9InAYDD4aC8vJywsDAURRnUazc3N5OamkppaSnh4eGDem1xgHyf3UO+z+4h32f3kO+zewzl91lVVVpaWkhOTsZgOPoqIhkxGgCDwcCwYcOG9B7h4eHyP54byPfZPeT77B7yfXYP+T67x1B9n481UtRDFl8LIYQQQjhJYiSEEEII4SSJkYewWCz8/ve/x2Kx6B2KT5Pvs3vI99k95PvsHvJ9dg9P+T7L4mshhBBCCCcZMRJCCCGEcJLESAghhBDCSRIjIYQQQggnSYyEEEIIIZwkMfIAjz32GBkZGQQGBjJz5sz/b+/eQqJ6FyiAr3G8DSr+veCMQ1hWE5Y3xsxIgyJFEREkUAoTU+ghRnMUIruoD6WmUZQamkLRQ5ZB2A0sxMQw8p6WVFomFJGKlZlKF2b2eTjTwFAnTvzTD7frBxtmfxt0bZH9LWbf0NXVJTqS7JSWlmLDhg1wc3ODj48PkpKSMDQ0JDqWrB0/fhwKhQJGo1F0FFl6+/Ytdu3aBS8vL6hUKgQHB6Onp0d0LFkxmUwoKCiAv78/VCoVVq1ahaNHj/5f79ui/+3+/ftITEyEVquFQqHA9evXbbZLkoTCwkL4+vpCpVIhJiYGL168WLB8LEaCNTQ0IC8vD0VFRejr60NoaCji4uIwMTEhOpqstLW1wWAwoKOjA83Nzfj+/TtiY2MxOzsrOposdXd349y5cwgJCREdRZY+fvyIqKgoODg4oKmpCU+fPsXJkyfh4eEhOpqslJWVobq6GlVVVXj27BnKyspQXl6OyspK0dEWtdnZWYSGhuLs2bO/3F5eXo6KigrU1NSgs7MTLi4uiIuLw5cvXxYmoERCRURESAaDwbpuMpkkrVYrlZaWCkwlfxMTExIAqa2tTXQU2fn8+bOk0+mk5uZmacuWLVJOTo7oSLJz4MABafPmzaJjyF5CQoKUmZlpM7Z9+3YpNTVVUCL5ASA1NjZa181ms6TRaKQTJ05Yx6ampiQnJyfp8uXLC5KJ3xgJ9O3bN/T29iImJsY6Zmdnh5iYGDx8+FBgMvn79OkTAMDT01NwEvkxGAxISEiw+b+mv+vmzZsIDw9HcnIyfHx8oNfrUVdXJzqW7ERGRqKlpQXDw8MAgIGBAbS3tyM+Pl5wMvkaHR3F2NiYzfHD3d0dGzduXLB5kS+RFWhychImkwlqtdpmXK1W4/nz54JSyZ/ZbIbRaERUVBSCgoJEx5GVK1euoK+vD93d3aKjyNqrV69QXV2NvLw8HDp0CN3d3di3bx8cHR2Rnp4uOp5s5OfnY3p6GgEBAVAqlTCZTCguLkZqaqroaLI1NjYGAL+cF39sm28sRrTkGAwGDA4Oor29XXQUWXnz5g1ycnLQ3NwMZ2dn0XFkzWw2Izw8HCUlJQAAvV6PwcFB1NTUsBj9RVevXsWlS5dQX1+PwMBA9Pf3w2g0QqvV8u8sYzyVJpC3tzeUSiXGx8dtxsfHx6HRaASlkresrCzcvn0bra2tWLZsmeg4stLb24uJiQmEhYXB3t4e9vb2aGtrQ0VFBezt7WEymURHlA1fX1+sW7fOZmzt2rV4/fq1oETytH//fuTn52PHjh0IDg5GWloacnNzUVpaKjqabP2Y+0TOiyxGAjk6OmL9+vVoaWmxjpnNZrS0tGDTpk0Ck8mPJEnIyspCY2Mj7t27B39/f9GRZCc6OhpPnjxBf3+/dQkPD0dqair6+/uhVCpFR5SNqKionx43MTw8jOXLlwtKJE9zc3Ows7OdJpVKJcxms6BE8ufv7w+NRmMzL05PT6Ozs3PB5kWeShMsLy8P6enpCA8PR0REBE6fPo3Z2VlkZGSIjiYrBoMB9fX1uHHjBtzc3Kznqt3d3aFSqQSnkwc3N7efrtlycXGBl5cXr+X6y3JzcxEZGYmSkhKkpKSgq6sLtbW1qK2tFR1NVhITE1FcXAw/Pz8EBgbi0aNHOHXqFDIzM0VHW9RmZmbw8uVL6/ro6Cj6+/vh6ekJPz8/GI1GHDt2DDqdDv7+/igoKIBWq0VSUtLCBFyQe9/otyorKyU/Pz/J0dFRioiIkDo6OkRHkh0Av1wuXLggOpqs8Xb9+XPr1i0pKChIcnJykgICAqTa2lrRkWRnenpaysnJkfz8/CRnZ2dp5cqV0uHDh6WvX7+Kjraotba2/vJ4nJ6eLknSf2/ZLygokNRqteTk5CRFR0dLQ0NDC5ZPIUl8hCcRERERwGuMiIiIiKxYjIiIiIgsWIyIiIiILFiMiIiIiCxYjIiIiIgsWIyIiIiILFiMiIiIiCxYjIiIiIgsWIyIaMnYvXv3wr1WgIgWJb4rjYhkQaFQ/HZ7UVERzpw5Az7sn4h+h8WIiGTh3bt31s8NDQ0oLCy0eQO9q6srXF1dRUQjokWEp9KISBY0Go11cXd3h0KhsBlzdXX96VTa1q1bkZ2dDaPRCA8PD6jVatTV1WF2dhYZGRlwc3PD6tWr0dTUZPO7BgcHER8fD1dXV6jVaqSlpWFycnKB95iI5gOLEREtaRcvXoS3tze6urqQnZ2NvXv3Ijk5GZGRkejr60NsbCzS0tIwNzcHAJiamsK2bdug1+vR09ODO3fuYHx8HCkpKYL3hIj+BhYjIlrSQkNDceTIEeh0Ohw8eBDOzs7w9vbGnj17oNPpUFhYiPfv3+Px48cAgKqqKuj1epSUlCAgIAB6vR7nz59Ha2srhoeHBe8NEf1bvMaIiJa0kJAQ62elUgkvLy8EBwdbx9RqNQBgYmICADAwMIDW1tZfXq80MjKCNWvWzHNiIppPLEZEtKQ5ODjYrCsUCpuxH3e7mc1mAMDMzAwSExNRVlb208/y9fWdx6REtBBYjIiI/kBYWBiuXbuGFStWwN6eh1AiueE1RkREf8BgMODDhw/YuXMnuru7MTIygrt37yIjIwMmk0l0PCL6l1iMiIj+gFarxYMHD2AymRAbG4vg4GAYjUb8888/sLPjIZVosVNIfAwsEREREQB+Y0RERERkxWJEREREZMFiRERERGTBYkRERERkwWJEREREZMFiRERERGTBYkRERERkwWJEREREZMFiRERERGTBYkRERERkwWJEREREZPEfRR0bEOYAb1cAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -864,7 +864,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABlXUlEQVR4nO3dd3hUVf7H8ffMJDPpvRFISIBA6C0QwAKrCAjWtS8qIOr+VlFZXFdRF1ddxb6sFbGg7tp7WUUREVQQkCotdBJCCiGkJ5NM+f0RyBopEkhyZyaf1/PM8zh37pz7mUnM/XLuueeY3G63GxERERHBbHQAEREREU+hwkhERETkIBVGIiIiIgepMBIRERE5SIWRiIiIyEEqjEREREQOUmEkIiIicpCf0QG8icvlYu/evYSGhmIymYyOIyIiIsfB7XZTXl5OYmIiZvOx+4RUGDXB3r17SUpKMjqGiIiInICcnBw6dOhwzH1UGDVBaGgoUP/FhoWFGZxGREREjkdZWRlJSUkN5/FjUWHUBIcun4WFhakwEhER8TLHMwxGg69FREREDlJhJCIiInKQ1xdGzzzzDCkpKQQEBJCZmcny5cuPuu8HH3xARkYGERERBAcH069fP/7973+3YloRERHxZF49xujtt99m2rRpzJ49m8zMTGbNmsXo0aPJysoiLi7usP2joqK46667SE9Px2q18tlnnzFp0iTi4uIYPXq0AZ9ARERagsvlora21ugY0oqsVutv3op/PExut9vdDHkMkZmZyaBBg3j66aeB+v8RkpKSuOmmm7jjjjuOq40BAwYwbtw47r///t/ct6ysjPDwcEpLSzX4WkTEQ9XW1rJz505cLpfRUaQVmc1mUlNTsVqth73WlPO31/YY1dbWsnLlSqZPn96wzWw2M3LkSJYuXfqb73e73XzzzTdkZWXx8MMPH3Efu92O3W5veF5WVnbywUVEpMW43W7y8vKwWCwkJSU1Sw+CeL5DEzDn5eWRnJx8UpMwe21hVFRUhNPpJD4+vtH2+Ph4Nm/efNT3lZaW0r59e+x2OxaLhWeffZazzjrriPvOnDmTe++9t1lzi4hIy3E4HFRVVZGYmEhQUJDRcaQVxcbGsnfvXhwOB/7+/ifcTpsrpUNDQ1mzZg0rVqzggQceYNq0aXz77bdH3Hf69OmUlpY2PHJyclo3rIiINInT6QQ44uUU8W2HfuaHfgdOlNf2GMXExGCxWCgoKGi0vaCggISEhKO+z2w206VLFwD69evHpk2bmDlzJiNGjDhsX5vNhs1ma9bcIiLS8rSeZdvTXD9zr+0xslqtDBw4kAULFjRsc7lcLFiwgKFDhx53Oy6Xq9E4IhEREWm7vLbHCGDatGlMmDCBjIwMBg8ezKxZs6isrGTSpEkAXH311bRv356ZM2cC9WOGMjIy6Ny5M3a7nc8//5x///vfPPfcc0Z+DBEREfEQXl0YXXbZZezbt48ZM2aQn59Pv379mDdvXsOA7Ozs7EZ3JFRWVnLDDTewZ88eAgMDSU9P5z//+Q+XXXaZUR9BREREPIjXXko7ZMqUKezevRu73c6yZcvIzMxseO3bb7/llVdeaXj+j3/8g61bt1JdXU1xcTFLlixRUSQiIgC4XS7q6uy4XCc3eLepzj33XMaMGXPE17777jtMJhPr1q074faXLFnC2LFjiYyMJCAggN69e/PEE08cNkjZZDI1PMLCwhg0aBAff/wxACNGjGj0+q8fh8bppqSkHPH1hx566ITztzav7jESERE5WQ5HHTXFuQQ6SvHHhdsNVeZgzOGJBASFtPjxJ0+ezEUXXcSePXvo0KFDo9fmzp1LRkYGffr0aVKbtbW1WK1WPvzwQy699FImTZrEwoULiYiI4Ouvv+avf/0rS5cu5Z133mk0aHnu3LmMGTOGsrIynn32WS6++GJWrVrFBx980DCTeE5ODoMHD+brr7+mZ8+eQOO7AO+77z6uu+66RnlCQ0OblN9IXt9jJCIicjRut5uqWsdRHwdKy6jM3Yi5ej/2OgdVdS6qHS7c9nK2FZax90D1Md9/rMfxLixxzjnnEBsb2+gKB0BFRQXvvvsuF1xwAVdccQXt27cnKCiI3r178+abbzbad8SIEUyZMoWpU6cSExPD6NGjqays5LrrruO8885jzpw59OvXj5SUFK699lpeffVV3nvvPd55551G7URERJCQkEDXrl25//77cTgcLFy4kKioKBISEkhISCA2NhaA6Ojohm1RUVENbYSGhjZsP/QIDg4+gZ+eMdRjJCIiPqu6zkmPGV+e4LvzT+rYG+8bTZD1t0+zfn5+XH311bzyyivcddddDT047777Lk6nkyuvvJJ3332X22+/nbCwMP773/9y1VVX0blzZwYPHtzQzquvvsqf/vQnfvjhBwC++uor9u/fz1/+8pfDjnnuuefStWtX3nzzzSMOKXE4HLz00ktA25sTSj1GIiIiBrvmmmvYvn07ixYtatg2d+5cLrroIjp27Mhf/vIX+vXrR6dOnbjpppsYM2bMYb09aWlpPPLII3Tr1o1u3bqxZcsWALp3737EY6anpzfsc8gVV1xBSEgINpuNP//5z6SkpHDppZc26bPcfvvthISENHp89913TWrDSOoxEhERnxXob2HjfaMP215QZmdfeQ1+ZhOdogOxWg9fQsLtdpNfVExMXR4Okz8BCV2bNIlgoL/luPdNT09n2LBhvPzyy4wYMYJt27bx3Xffcd999+F0OnnwwQd55513yM3Npba2FrvdftiSJwMHDjxi28e6pPfr3qB//vOfjBw5kh07dvDnP/+ZJ598stFlsuNx2223MXHixEbb2rdv36Q2jKTCSEREfJbJZDrsclZNbS0V9joC/C10jAoiPOjol4qSY8Mx78vHYqqlorKI4Kh2LZZ18uTJ3HTTTTzzzDPMnTuXzp07M3z4cB5++GH+9a9/MWvWLHr37k1wcDBTp05tGAx9yK/H8aSlpQGwadMmhg0bdtjxNm3aRL9+/RptS0hIoEuXLnTp0oW5c+cyduxYNm7cSFxc3HF/jpiYmIYVJryRLqWJiEib4ireRQr5RNogLPDYi436WwOoDqwvCgJq9uF0Olos16WXXorZbOaNN97gtdde45prrsFkMvHDDz9w/vnnc+WVV9K3b186dep02CWwIxk9ejRRUVE8/vjjh732ySefsHXr1sN6dn5p8ODBDBw4kAceeOBkPpbXUWEkIiJtRk1VOUGuSkKoJi7UelyXxoIi4qnFHz+cVB8o+M39T1RISAiXXXYZ06dPJy8vr6FoSUtLY/78+SxZsoRNmzbxxz/+8bB1Qo8kODiY559/no8//pjrr7+edevWsWvXLl566SUmTpzIddddx9ixY4/ZxtSpU3n++efJzc097s9RXl5Ofn5+o0dZWdlxv99oKoxERKTNcJXmAVDlF4YtIOg39q5nNpupO9RrVFuE6yRXbz+WyZMnc+DAAUaPHk1iYiIAd999NwMGDGD06NGMGDGChIQELrjgguNq7+KLL2bhwoVkZ2dz2mmnkZqayrXXXssdd9zBnDlzfvP9Y8aMITU1tUm9RjNmzKBdu3aNHn/961+P+/1GM7mPd6IFoaysjPDwcEpLSwkLCzM6joiI/EpNTQ07d+4kNTWVgICARq/Za6qwFWfhdkNddDesx1kYwcFZsfM3YMVBZUA7gqMSmjt6q6ipqeH8888nJyeHRYsWNcxJ5AuO9bNvyvlbPUYiItIm1JUVAlBtDm5SUQRgMpuptUUDUGuvOu7JGz1NQEAAH3/8MVdffTWLFy82Oo5H0l1pIiLi85xOB4F1pWACQk6slyQgPI4tBVZqXH5Ya50E27zzFBoQEMAdd9xhdAyPpR4jERHxeTVl+7GYXNjxJzAk4oTa8PPzIyiwvqepuLL2N/YWb6XCSEREfN6+ukD2uGOoCYhr0iSNvxYZXD/nUWV1TYsOwhbjqDASERGfVutwUVbrotgdSmBYzEm1FWS1kGTeTzd2U11e3EwJxZOoMBIREZ9WUl1/2SvY5ofV7+ROeyaTCX9/KyYTmKpVGPkiFUYiIuKz3G43ARU5xJjKiAo8/rXLjsU/tP7utABXFU5Hy82ELcZQYSQiIj6rtqaKMHcFCRQTGtA8d5HZAoKw44/ZBDUVB5qlTfEcKoxERMRn1VXWFy415kD8/I69LlqT2vU/OElgTWmztSmeQYWRiIj4LL/acgBctvDmbTcoAoAAZyUul+5O8yUqjERExCfV1doJoAYAW0hks7ZtCwqlDgsWk4uaipPvNTr33HMZM2bMEV/77rvvMJlMrFu37qSOkZOTwzXXXENiYiJWq5WOHTtyyy23sH///kb7TZw4EZPJdHCguT+pqan89a9/paampmGfQ68f7fH3v/+9UTu/fBztc3oK75y2U0RE5DfYKw7gD9QQQIDV1qxtm0wmKv1jqKh1YnH407QFRg43efJkLrroIvbs2UOHDh0avTZ37lwyMjLo06dPk9utra3FarWyY8cOhg4dSteuXXnzzTdJTU1lw4YN3HbbbXzxxRf8+OOPREVFNbxvzJgxzJ07l7q6OlauXMmECRMwmUw8/PDDAOTl5TXs+/bbbzNjxgyysrIatoWEhDBlypSGdn7JZmven0VzU4+RiIj4JLO9vifHYQ1tmfZDYil2h1Jae/Lrpp1zzjnExsbyyiuvNNpeUVHBu+++y+TJkwGYN28ep556KhEREURHR3POOeewffv2hv1HjBjBlClTmDp1KjExMYwePRqAG2+8EavVyldffcXw4cNJTk7m7LPP5uuvvyY3N5e77rqr0XFtNhsJCQkkJSVxwQUXMHLkSObPn9/wekJCQsMjPDwck8nUaFtISEijdn75iIxs3t675qbCSEREfI7L5abOBS63Cf/gSKitPPqjrqbxm4+5b3XDbsE2P8yOauqqK7BXlTXer4n8/Py4+uqreeWVVxotUPvuu+/idDq54oorAKisrGTatGn89NNPLFiwALPZzIUXXojL5Wp4z6uvvorVauWHH35g9uzZFBcX8+WXX3LDDTcQGBjY6LgJCQmMHz+et99++6gL465fv54lS5ZgtVqb/Lm8kS6liYiIz6muc5DrjsdqMdEtIAjujTj6zmmjYPy7/3v+aBeoqzryvh1PhUn/BcBiNtH9rWFYao4w0ePfmz7u6JprruHRRx9l0aJFjBgxAqi/jHbRRRcRHl4/ePyiiy5q9J6XX36Z2NhYNm7cSK9eveo/TloajzzySMM+y5Ytw+1207179yMet3v37hw4cIB9+/YRFxcHwGeffUZISAgOhwO73Y7ZbObpp59u8mc61M4v3Xnnndx5552/+d7rr7+eFStWcPHFF3PXXXcd9rylqDASERGfU1lbf6dYsM3/pNZG+y1mTv4y2iHp6ekMGzaMl19+mREjRrBt2za+++477rvvvoZ9tm7dyowZM1i2bBlFRUUNPUXZ2dkNhdHAgQOP2P7ReoQO+WWP0O9+9zuee+45Kisr+ec//4mfn99hRdnxONTOL/1yLNPRrFu3juzsbFavXn3E5y1JhZGIiPgcu70WsP5vUsc79x59Z9OvZsS+bdsx9m08AsX+x2UElG3HiRlzfE9M5pMboTJ58mRuuukmnnnmGebOnUvnzp0ZPnx4w+vnnnsuHTt25IUXXiAxMRGXy0WvXr2ora1t2Cc4OLhRm126dMFkMrFp0yYuvPDCw465adMmYmNjiYiIaNRGly5dgPpeqb59+/LSSy81jHU6Xr9s50i2bt3K1KlTyc/PJzg4mPfee4+ioiLOPvtsTCYTw4YN48UXX2z0fMmSJU3K0FQaYyQiIj7F6XSQ5NpDV9Megq0HT3PW4KM//AMaN3DMfRuP0bFFxOHwD8bib6PG6f7ffifo0ksvxWw288Ybb/Daa69xzTXXNPR47d+/n6ysLO6++27OPPPMhktgvyU6OpqzzjqLZ599lurq6kav5efn8/rrrzNx4sSjvt9sNnPnnXdy9913H/b+k2G327nhhht4/vnnWblyJX/4wx+YM2cOPXr04IorrmDWrFksWbLksOctTYWRiIj4FIf94MnbZMbfr2UvjJhMJuzm+pv1ndVlJ91eSEgIl112GdOnTycvL69RwRIZGUl0dDRz5sxh27ZtfPPNN0ybNu242n366aex2+2MHj2axYsXk5OTw7x58zjrrLPo2rUrM2bMOOb7L7nkEiwWC88880yTPo/dbic/P7/Ro6ioCICPPvqIDRs2cM4559CvXz/+9a9/4e9fPzv5zz//3HBp8EjPW5IKIxER8S2O+rvMHP4n3nPTFG5r/eBic13T70Y7ksmTJ3PgwAFGjx5NYmJiw3az2cxbb73FypUr6dWrF3/+85959NFHj6vNtLQ0VqxYQadOnbj00kvp2LEjZ599Nl27duWHH344bID0r/n5+TFlyhQeeeQRKiuP/3POmzePdu3aNXqceuqpQH2x8/jjj7NmzRrWrFnDpk2buP3224H6S2xpaWkN7fz6eUsyuX9rNJY0KCsrIzw8nNLSUsLCwoyOIyIiv1JTU8O21d/TpX0UrshUgkJbfs4ce3UFtgNbcbpNmNv1OelxRq3lnnvu4YknnmD+/PkMGTKk1Y//9NNP89NPPzXM3bRu3Tr69OlDUVERo0aNYtWqVQCHPT+ampoadu7cSWpqKgEBjS+PNuX87R0/PRERkeNQlJ+NBSdud/2yHa3BGhBcP/gaN/aa5huD09LuvfdennzySX788cdG8yC1lkmTJlFSUkJ6ejp9+/blP//5D2DsZTRQj1GTqMdIRMSz/fTFqwRHJJDYvj3hya13Mt27bz/FdhPx4cHEhnr2khe+Sj1GIiIiv+LMrZ/nxmEJ/I09m5d/QDAuzFTaHa16XGl+KoxERMRnLKzuSiUBmGzHHkzc3IKt9Xe/VdY6fnMiRfFsKoxERMQnFFfW8mlZJw64Q7EGts74okMCrBYSTCWkunOprTnKciLiFVQYiYiIT1ixq37NMn+LCT9L657ezCYToeYagkx2HDUVrXpsaV4qjERExCcUrP2aNLKx+ZkNuZzl9Ds4rqm2eeYzkqZprp+5CiMREfEJQ7f/kxdMDxDormm0dlhrMR2c6NHP6T237PuSQz9zi8XyG3semxaRFRERr1ddWU6qYwcWpxtbUBD79u3D398fcytOtugy+VPjcON226msrMBi0Sm2tbhcLvbt20dQUBB+J7kMjH5qIiLi9Xb+/AM9TC4KiaJzl27s3LmT3bt3t3oOZ0kxFpzUHQB/W+tOGdDWmc1mkpOTGxbdPVEqjERExOuVba1fdX1PcE/irFbS0tIMuZy24aVH6Fm9gtUdrqL/Bbe0+vHbMqvV2iw9hCqMRETE61nz6yd2rI3vD9T3Hvx69uPWUBeeTFnhN+QVFjLUgOPLyVNhJCIiXq9D5XoAwroMNTSHeeiNDF4/iLjyAC50u0/6so60Pt2VJiIiXq1wzw7iKMbpNpHSZ5ihWXonRWMxmykst5NXWmNoFjkxKoxERMSrrd5v4TL733gy+CaCQiIMzRJotZCeEAq4WbNrn6FZ5MR4fWH0zDPPkJKSQkBAAJmZmSxfvvyo+77wwgucdtppREZGEhkZyciRI4+5v4iIeL5Ve6tY5u5OYZdLjY4CwP8FfM0K2w1ELnvU6ChyAry6MHr77beZNm0a99xzD6tWraJv376MHj2awsLCI+7/7bffcsUVV7Bw4UKWLl1KUlISo0aNIjc3t5WTi4hIc1mdXQJA/+QIQ3McEhcZSqyplOADG4yOIifAqwujJ554guuuu45JkybRo0cPZs+eTVBQEC+//PIR93/99de54YYb6NevH+np6bz44ou4XC4WLFjQyslFRKQ5OOpqOTv3Kc4zL6F/YrDRcQCI7DwIgKSarbhdLoPTSFN5bWFUW1vLypUrGTlyZMM2s9nMyJEjWbp06XG1UVVVRV1dHVFRUUd83W63U1ZW1ughIiKeIztrNZPM/+UB/5foHB9udBwAkrtn4HCbiaSMgtwdRseRJvLawqioqAin00l8fHyj7fHx8eTn5x9XG7fffjuJiYmNiqtfmjlzJuHh4Q2PpKSkk84tIiLNp2hr/TjRbFsa5pNcI6u5BAQGk21JBiBv048Gp5Gm8trC6GQ99NBDvPXWW3z44YdHnQRs+vTplJaWNjxycnJaOaWIiByLe+8aAMojexob5Ff2h3UHwJ6z2uAk0lReO8FjTEwMFouFgoKCRtsLCgpISEg45nsfe+wxHnroIb7++mv69Olz1P1sNhs2m61Z8oqISPMLK9kIgF/7fsYG+RVnfB8o+YLAovVGR5Em8toeI6vVysCBAxsNnD40kHro0KPPfPrII49w//33M2/ePDIyMlojqoiItACnw0HH2u0AxHYdbHCaxsK6ZLLMlc6PtalGR5Em8toeI4Bp06YxYcIEMjIyGDx4MLNmzaKyspJJkyYBcPXVV9O+fXtmzpwJwMMPP8yMGTN44403SElJaRiLFBISQkhIiGGfQ0REmm7P9vV0NNmpctvo0OXovf9GSO4znN4fzMBdCxdV2IkJ0dUHb+G1PUYAl112GY899hgzZsygX79+rFmzhnnz5jUMyM7OziYvL69h/+eee47a2louvvhi2rVr1/B47LHHjPoIIiJyggq3/gRAtrUzFj/P+nd+iM2P1Jj66QM27NUdzd7Es36TTsCUKVOYMmXKEV/79ttvGz3ftWtXywcSEZFW8RVDuanmKa5KDyfd6DBH0CsxnIJ9RezcsYXhXWONjiPHyat7jEREpO1av7ecfKKJ7TLA6ChHdDHz2RAwmT7rHzI6ijSBCiMREfE6breb9XtLgfqeGU8UmdgFgJiq7QYnkaZQYSQiIl5n764tPOF8mCn+n5IW75k3z7RLGwhAe+deaqoqDE4jx0uFkYiIeJ2CzUs4y7KS82wr8bd45qksOiGJA4RhMbnJ2aKJHr2FZ/42iYiIHIM9ZxUABw7OMO2JTGYze6318xgd2LnG2DBy3FQYiYiI1wku3lD/H+36GhvkN5SHdwXAlb/B4CRyvFQYiYiI12lfsw2AyM4DDU5ybOaEXgAEl2w2OIkcLxVGIiLiVfYX7CGaUlxuE0ndPLswCksbxluOEXxQN8zoKHKcvH6CRxERaVvytqwkGthrTqBDcKjRcY4pOX0AZzuvx10FN2ppEK+gHiMREfEq+wr2UO22si+os9FRflOQ1Y/kqCAAsvLLDU4jx0OFkYiIeJV5nEZP+8ss6XWf0VGOS694Gz1Mu8jbvtboKHIcVBiJiIhX2VxQjgszKe0TjY5yXK6se5/PbXfScdOLRkeR46DCSEREvIbL5WZrQf0lqW4Jnj2+6BBb+94ARFRsNTiJHA8NvhYREa+Rt2szH/AXfrZ2JiX6bKPjHJeYzv3hR+hQtxunw4HFT6deT6YeIxER8RqF21aSbs6hv38Ofh66FMivtU/tSbXbSqCplr27NhkdR36Dd/xWiYiIADW5PwNwIMTz70g7xOLnxx6/ZAD2bVtpcBr5LSqMRETEa1j3188g7Yzx3DXSjqQkpAsA9jz1GHk6FUYiIuI1YqrqlwIJ6tDH4CRN44yuXzPNv1gDsD2dRoCJiIhXqKmuor1zL5ggoatnLwXya6bOZzAzax/F7r5kGB1Gjkk9RiIi4hVyt67Bz+SilGBi23U0Ok6TJKQP5nnnuXxckoLT5TY6jhyDCiMREfEKewr2scXVnt3WNExm7zp9dYgMwuZnptbhYs+BKqPjyDF412+WiIi0WUvqujKq9lHe6/G00VGazGI2cUpUOWPMy8ndus7oOHIMKoxERMQrbD64CGu3dmEGJzkxN7jfYrZ1FqYtnxsdRY5BhZGIiHiFLXmlAKR7yVIgv1YXlQaA3/4tBieRY9FdaSIi4vFKi/fxde14tlo70CnmO6PjnJCAxB6wG8IrdxgdRY5BPUYiIuLxcresJNhkJ8FcRlhwsNFxTkhUx/rFZNvXZeN2uQxOI0ejwkhERDxe+e61ABQEdjI4yYlL7NSTOreFYFMNBbnqNfJUKoxERMTzFW4EoCqym8FBTpy/1cZeSyIAhdvXGpxGjkaFkYiIeLywsvoBy/7tehmc5OTsD0wFoDJ3o8FJ5GhUGImIiEdzu1y0r9sFQHSnfoZmOVnbUq7gj7VT+dZvmNFR5ChUGImIiEcr2LOdMKqoc1to36Wv0XFOSkDXEXzpGszK4kCjo8hR6HZ9ERHxaDvz9/OzcyDhNhhsCzA6zklJiwsBYGthBW63G5PJZHAi+TUVRiIi4tFWV8XwSN2tnNsjkcFGhzlJqTHBjLSsolNtLvv39SEmLsHoSPIrKoxERMSjbTm4FIi3znj9SwH+Fu6zvkaiu5CN288nJu5soyPJr2iMkYiIeLTcvHzATdd47y+MAIpsyQBU5G4yOIkciXqMRETEY7ldLl4tmYDDZuaAbSEQb3Skk1Ydlgo1P+HapzXTPJEKIxER8Vj7C/cQY7Ljcpuwte9odJzmEZMGhRBYttPoJHIEupQmIiIeq2j3ZgAKTDHYAoIMTtM8QtqlAxBVk21wEjkSFUYiIuKxyvPqLzftt7U3OEnziUmtn727nSufutoag9PIr6kwEhERj+Uo2g5AZYiPXEYD4hJTqHLb8DO5yNu12eg48isaYyQiIh7Lv3Q3AO6IFGODNCOT2cJDodNZud/Kn+3RJBsdSBpRj5GIiHissOocAKxxaQYnaV4H2o9ggzuF7cW1RkeRX1GPkYiIeKxvHb3JcQaT2rGX0VGaVaeYYAB27Ks0OIn8mgojERHxSCVVtTxYcxEAGzv1NjhN8+oRUslky39J2R0APGF0HPkFFUYiIuKRdu+vAiAu1EaQ1bdOV50CKxnt/zrF5WGoMPIsGmMkIiIeKTcvl3AqSIkONjpKs2vXuf7SYBRllB7YZ3Aa+SUVRiIi4pEiN7zG2oDrmWqfbXSUZhcSGkEhUQDkb//Z4DTyS15dGD3zzDOkpKQQEBBAZmYmy5cvP+q+GzZs4KKLLiIlJQWTycSsWbNaL6iIiDSZX8kuAEzh7YwN0kL2WZMAKNujxWQ9idcWRm+//TbTpk3jnnvuYdWqVfTt25fRo0dTWFh4xP2rqqro1KkTDz30EAkJCa2cVkREmiqkqv5Wff/YzgYnaRkVoakAOLSYrEfx2sLoiSee4LrrrmPSpEn06NGD2bNnExQUxMsvv3zE/QcNGsSjjz7K5Zdfjs1mO65j2O12ysrKGj1ERKR1xNTtBSA8savBSVqGK6oLALaSHQYnkV/yysKotraWlStXMnLkyIZtZrOZkSNHsnTp0mY7zsyZMwkPD294JCUlNVvbIiJydFUVpcRyAIC4jj0MTtMygg4uJhtZvdvgJPJLXlkYFRUV4XQ6iY+Pb7Q9Pj6e/Pz8ZjvO9OnTKS0tbXjk5OQ0W9siInJ0Bbvr1xArJZjwqFiD07SMyO6nca79H/y+9h5cLrfRceQg35oYopnZbLbjvuwmIiLNpyR3KwCFfomEG5ylpbSPj2ezuTN1Dje5JdUkRQUZHUnw0h6jmJgYLBYLBQUFjbYXFBRoYLWIiA/YWRfJK45RbIj4ndFRWozFbKLjwTmadhZpaRBP4ZWFkdVqZeDAgSxYsKBhm8vlYsGCBQwdOtTAZCIi0hxW1SXzd8dEtqZNNjpKizovcB1/93uFuk2fGx1FDvLaS2nTpk1jwoQJZGRkMHjwYGbNmkVlZSWTJk0C4Oqrr6Z9+/bMnDkTqB+wvXHjxob/zs3NZc2aNYSEhNClSxfDPoeIiBzu0HIgHaN8b9brXxrMBob4fcWPuRHABKPjCF5cGF122WXs27ePGTNmkJ+fT79+/Zg3b17DgOzs7GzM5v91iO3du5f+/fs3PH/sscd47LHHGD58ON9++21rxxcRkWOw7NtIGMEkR/v2uBtTdBcogMBy3ZnmKUxut1tD4Y9TWVkZ4eHhlJaWEhYWZnQcERGfVFdrx/RAAn4mF4XXrSGufarRkVrM+u8/odfXV5FjSiTpHs2A3VKacv72yjFGIiLiuwr3bMPP5KLG7U9MQrLRcVpUdFL9XEbxrgIcdbUGpxFQYSQiIh6mOCcLgHxLAmaLxeA0LSu+Q2fsbn+sJicFOduNjiOoMBIREQ9TVVA/h1FJQAeDk7Q8s8VCnqV+mpni7I0GpxFQYSQiIh7GvX8nADUhvn0Z7ZADAfXLTVUUas00T6DCSEREPIrt4B1apijfHXT9S9+l3U7fmjnMDxxndBTBi2/XFxER3xRRkwtAQHzbmGMuOjGVUirZtV+zX3sCFUYiIuIxXC43r9adSRf3boan9DU6TqtIObgsyC4tC+IRVBiJiIjHyC2p5pW6kfhbTGxKbhs9RqnhJu7xe5WOZftw1A3Dz99qdKQ2TWOMRETEY+w42GvSMToYP0vbOEUlREXwB8s3nGFeRUGOBmAbrW381omIiFco2rWBnqadpEe1ndNTo1v2c3TLvtHazm+eiIh4vA5Zr/Bf212Mt79jdJRWdeiW/ar8LQYnERVGIiLiMYIr6ucwssSlGZykddWEpQDg3q/Zr42mwkhERDxGnD0bgLD23Q1O0rrM0Z0BCDw4h5MYR4WRiIh4hKqKEuIoBiChU2+D07Su4HZdAYiqyTE4iagwEhERj7B3+wYADhBKREyCwWlaV0xyfQ9ZkKsCh8NhcJq2TfMYiYiIRyjZU39HVoF/EpEGZ2ltce07kemYQ4EjmMWltSRH6/RsFPUYiYiIR6grqL8jqyw4xdggBjBbLIRFJQAmLQ1iMBVGIiLiEb4zDeSBuj9QmHS20VEMkRJzcGkQFUaGUmEkIiIe4ZvSRF5wnkNgj9FGRzHEKMtKXvR/lMT1s42O0qbpIqaIiBiuzuli+74KALrGhxqcxhjJ1nIyLatZW6y10oykHiMRETFcTvZORrmX0suaT/uIQKPjGEK37HsG9RiJiIjhDmxaxDPWJ9nsl47ZPNnoOIaITuoGQLyrEKfDgcVPp2gjqMdIREQMV7d3PQBloV0MTmKcuPadqXVbsJoc7Nu70+g4bZYKIxERMZztQBYArth0g5MYx+LnR4E5HoCinM0Gp2m7VBiJiIjhYqp2ABDcoY/BSYx1wNYegKr8bQYnabtUGImIiKGqK8tJdOUB0K5rf4PTGKs6JIkKdwBlZaVGR2mzVBiJiIihdm/4EYvJTRERxCQkGx3HUBt6304v+0t8aD3P6ChtlgojERExVMn2FQDkBnYzOInxkmIjARO7izX7tVFUGImIiKHmMZTra//Mlk4TjI5iuI7RQQDs3l+F2+02OE3bpEkSRETEUD8WWNjsGsQlPTOMjmK4pHAbc/wfp6OrgLLiBYRHJxgdqc1Rj5GIiBimps7J1sL6pUB6tQ8zOI3xAgOs9LfsoJt5DwW7s4yO0yapMBIREcNs37SKG0zvMyYoi4SwAKPjeIQi/0QAyvK2GJykbVJhJCIihinf8BW3+r/Hn2xfYDKZjI7jESqCkgCo27fd4CRtk8YYibRhLqeT4oI9FOfvorIoh7rKA7hqynDXlOFwuliWdC1mE5jNJrqXLSHKXIE1LIbAiATiktOJiNH4Bzk51twfAaiOH2RwEs/hDO8IpWAp2W10lDZJhZFIG1BSlE/e1tUUFuxloXkIWwvL2VVUxQtVU+lh3k3MEd5zwB3CVdtGNDx/3X8OgywbGrdLCAV+HTgQ2ZuSU+5iSNf2RARZW/bDiM9wu1x0rFgLQHj34Qan8Rz+sZ0gG0KqcoyO0iapMBLxMU6Hgx3rl1K8+Xsse38ioXw9Hdz5RACJ7iAm2F8A6i9ZFPpH0M2dzX5TJCV+MVT7hePwD8HpH4LdGsnExBRcbjcOl5uqPf34uTKAgLpSwp3FxFFMBBVEODazr3Avg966AD/zJk5Ni2FCSinDhp6CLSDIyK9CPNye7T+TRCl2tz+d+p5mdByPEdwuDYCY2lyDk7RNKoxEfEB+aQ3fZhXy3dYixm+dyjDWHrbPXlMc+wJTuDEjkZR2sXSKDSbR9g7u6Cji/K3EHaHdxqeqZxs9q64sJ2/nRop3rWVPQRFdy0LZUlDB4qwCHt41hfJFsKrj5aSfM5XI2HbN+XHFR+StW0gSsN3ajR4qohvEJadT6bZR5A4lzG4nwGYzOlKbctKFUXFxMREREZjNGsct0pqK9u5m+6L/ELTjSy4rv4Uq6u/oSfPrTC+/rewM6ElV3ABCOg8huc/pJEbGkAj0babjBwaH0qlXJp16ZZIBXABs31fBwuWrMK0wE0MxMbtnU/n0KyxN+gM9LrqL8MgjXbSTtsqUvRSA0jiNL/qlyJh29OY1KmqdfF1aS5c4FUat6YQKo40bN/LJJ5/wySefsGzZMiIjIxk7diznn38+Y8aMITg4uLlzigj1g6U3fP8xjmUv0rtyKZkmFwBnWlaxp/1YhneNZXjK/QR1fJ6+/q0/1qdzbAidx51O3Vmb+emrV4lYPZsuzu0M3fMypf96m6WpE+l38XQCg0NbPZt4FpfLTXjpZgBCuv3O4DSexWQ2kxwVzMa8Mnbvr6JLnP5/aU3HXRhlZWUxZ84cPvnkEwoKCjjrrLP4v//7Pz755BN27NjBp59+yn333ceVV17JiBEjOO+88/jTn/7UktlF2gx7TRVrPn2O9htfoLe7fhVyTJDll86BTufwt+FXE9e+o7Ehf8HfaiPjnOtxj72W1fP/TeSyR0lx5TB05zNMmRXHqHMu5dw+7XR7dhu2fm8p59f8g0zrbl4bPMroOB6nY3RQQ2EkrcvkPs7FWObOncuyZcs4//zzOfPMM7Faj/yv0V27dvHxxx/z6aef8vXXXzdrWKOVlZURHh5OaWkpYWGaoVVant3h5K3lOXy5cCFv1E0FoIwgNsWOJeGMG+jYfaCxAY+T0+Fg9ecvsGvtYv5SeSUAGR0jue+sdvTokmpwOjkRToeDgj3bKS/Kpa66HEdNJSaLH34BIfinDCEpJpxAq+Wo7//n/C38a8FWxvRMYPZV3vF73Jo+fe1xumyby/52wzn1T88YHcfrNeX8fdyF0bGsWrWKAQMGnGwzHs9XC6Piwlx2r/6auooDpAw5n7j2OlEZze1y8d2S77hriZOc4moAHgt6jQ5detPnvJsICgk3OOGJqalz8sLiHTz77XZC64r42vYXNkf+js5XPEp0fAej48lROJ0uNuWXsyr7ACt3H+D32+5kaN0yrCbnEffvVfMiFQQRF2pjQthKBgTtI7hTJh37nE54dDxul4tRT3zD1iI7j13Sl4sH6mf/a8vefYzMDfezNnAwfW+fb3Qcr9eU83ez3JU2ePBgbr75Zp544omGbZ9//jljx45tjualheSWVPPpB29w7e6/0P/gWJWSnx9l/Vmz6XXKuQana7u2rf2Bus9uI7M2C2ofJT4smSlnpHHOwDcI8D/6v8C9QYC/hZvOTOPijA4sfvMxwvKrGVzyOaXPLWJ579vIuOBmzBbv/oy+orK8hKwln+DY+DntSlfx+5pHqMUfgP5+IQz3c1LrtrDfFEWNOYhacwBmtxObuxq/gGCocVNYbie95guGWlZDzguwCPKJxYyT+RTzkvUcRvfUZbQjCYpPgw0QYd9rdJQ2p1l6jPr378/555/P7t27mTt3LgADBgxg1apVJx3Qk/hSj9GCTQVMfXsNNTU1LLDeisMvmEBXJe3YR53bwqqed5J56V+MjtmmVFeWs/bft5OR9yZ+JhfVbisL0u/jjIuuI8jqmzNrZP30NX5f3EZn5w4ANvn3JPD3T5LSXausG6G6spyNi97BvP49elSuwGaqa3jt/9x3UtXxdwxMjiQztpaOEX7Ete+Mxe/Iv5ulVXXs3F9J5bJ/Y81ZTELZepLcjU/yK0PPYOCtH7boZ/JWe3duJvHVTOxuf/xnFOgfDCep1S+lHSqCZs2axffff8+bb77J4MGDWb169ck27VF8oTByOZ189daT3PBzF1yY6Z8cwb2jk+nTOYmaqgrWz55ARln92LBlMRcx8I+z8TPg7qa25ufFHxO18DbauwsAWBkygg6XP0F8h84GJ2t5jrpafnrnIfpseZogk506t4UVHa5mwMTHvb6HzBs4nC5+2L6fnYtf55KcmQSbahpe22uKJzt2BKF9z6ProLPwt57cbeOlB4rI3byCsl2roDSX1HNubRO/4yfCUVeL+x8J+Juc5E9eSUJSF6MjebVWv5R26CBTp04lMjKS8847j+rq6uZoWppRafE+dr4wnjHVy5jmdz77Bv2Vu8b1wOpXPwdVQFAIA6e+y9J/383Qnc9woCCbSa+s5OnxGYQH+Ruc3jdV1tSxbs61DC3+CIACosk77UEGnnm5scFakZ+/lSHjZ5CffQVZb91M/6olbNhdwB3/XMz9F/RieNdYoyP6HLfLxdY13/F1VjEvbw+hqKKWLqZAJtpqyCOWXYljiR82ntQeg0hsxjnqwiNjCB96Ngw9u9na9FV+/lb2mOPo4M5jf3aWCqNW1Cy/8d9++23Df0+YMIHrr7+ewsLC5mj6Nz3zzDOkpKQQEBBAZmYmy5cvP+b+7777Lunp6QQEBNC7d28+//zzVslptB3rl1H+1Kn0q15GjdufzIxM7j2/V0NRdIjJbGbohAdZcepL3G2awnfbi7ng2R/Yvq/CoOS+a1X2AcY+9T1LC/xwuU0si7mI4Gkr6deGiqJfSkhOo/9fv2D1Kc/xZtB4sourmPDycu599TOK8rSYZnOoqihl2buPs/2BDLp+ch5JG2dTVFFLVLCVoZmnsPGcT0iYsYWh1z9Jp16ZmDRxr6GKbe0BqMzfanCStqVZLqUZ5e233+bqq69m9uzZZGZmMmvWLN59912ysrKIizt8gYMlS5Zw+umnM3PmTM455xzeeOMNHn74YVatWkWvXr1+83jeeCnN7XKx4uOn6bXmHwSZ7Ow1xVF1wSt06XvKb753494yrnvtJ3JLqngs4CU6n3Ix/c8a3wqpfZujrpaX5//Ew9+X4HS5SQrz57kzLfTKPNPoaB6jwu7gn/O38MoP23nb/z66mXPY2GMagy66VWMtTkBNVQVrPnyCtK0vEk0pAHa3P6sizqLm7H9xaloM/hYVQZ7m+2f+SGzB92xNm8w5V00zOo5Xa/ExRmVlZcydO5f8/HxSU1Pp27cvvXv3Jiiodde6yczMZNCgQTz99NMAuFwukpKSuOmmm7jjjjsO2/+yyy6jsrKSzz77rGHbkCFD6NevH7Nnz/7N47VUYVRaXce81TvoUvID1pBoYlN6EN+h80n/a62stJgtL13XMGZoXcBAkq99g4iYhONuo6jCzn/mPMbUskcAWJo4gUGTHtO4oxO0Z/sGKt68BndtFefX3s/Z/Tpy3/m9CA/Upcoj2bRtB35vXUqao/5fzFl+3fA7/0k69x5icDLv4Ha7WfHfF0n56UHiKAYOjhvq/AfSx/xfk/4WSOt7YfEOHvh8E+P6tOOZP/j+lDgtqcXHGP3+979n7dq1DBo0iE8//ZSsrCwAOnfuTN++fXn77bdPpNkmqa2tZeXKlUyfPr1hm9lsZuTIkSxduvSI71m6dCnTpjWuukePHs1HH310xP3tdjt2u73heVlZ2ckHP4I9B6p47tPv+NZ26/+ORTC7AnpQlXQ67QaMI7lb/+MulJwuNx+uzmXu59/zruM7HJhZ0elPZF55f5P/tR0TYuPGKX/hxxd3MaTwHYbufZX1j62l3TWva96ZJnC7XKz46Cl6rX2ADiY7ZeYg5owJYsSI/kZH82jdu3TCecePLHvvUXpu+hfdHFk43jubH7+/jN5XPkRwaITRET3WtsJy7v5oPf13/8Tt/sXkE0t27xvpf+4NJJ7kIGppHcnR9Z0N2Zr9ulWdUGG0dOlSvv32WwYNql/4z2638/PPP7NmzRrWrj18Ve+WUFRUhNPpJD4+vtH2+Ph4Nm/efMT35OfnH3H//Pz8I+4/c+ZM7r333uYJfAw2PwvDOsewsaAXwc5SEp17CTNV0qdmBWxdAVsf5xXLRaztejOZqVFkpkaSEh3cqFByu1xkZ61m55qF/C27PzkHaoBQngm/jnPPGM7QzBOfK8TfamPIDS+w8r+ZdF9+J73sayh87jQ2j51D+uCzmuEb8G0lRfnsmHstgyu/AxNssPYm+sq5jEhOMzqaV7D4+ZF5+XT25V7OljdvYUDFIoYUvEnh41/y3RmvM+rUoZjNWlrkkLpaO6/OX87DS8qpc7rZ4H8OQ7p0ZMjFU0nQCvZepWNDYVRpcJK25YQKoz59+uD3i7krbDYbGRkZZGT41twj06dPb9TDVFZWRlJSUrMfp0tcCA9eewH165PXr4u1dfNK9q9fQHDOIrrW/My31Z34dnUuH67O5RTzz7zo/ziFlnjqTFYsbgcxzkI6mqrpCLSz/43yoD788fTOTD717MMGWJ+ogeOuZXen/vDu1XR07SHyv5exeNcMTrvkFq15dRTrv/uYuAVTGUAxtW4LqzrfyKA/3HPUuV/k6GLbpxL7l09Y+807xH53FyXOQG74fD891n7PXWN7MLRztNERDbd782pq37uWU2vtPOL8ByO7t+eec3uSFKUJW71Rcrg//7VOJ9ldSGnxz4RH6Q7N1nBCf50feeQRZsyYwXvvvYfNZkyXbExMDBaLhYKCgkbbCwoKSEg48nXzhISEJu1vs9kM+Xy2gCDS+p1GWr/TgPqBk9dll9E7u5xlO4oZlruZQFMtHV05/3uTqX4wZVZgH/5vUAeGnnXmMdcpOlEduw+kYur3rJwzkb7li/nXahevVa/k0Yv7EBmscUeH2B1OnvgyizOWPUicuZhsc3tqz5/DkL6nGh3N6/U941Jqho5j4aKfCF5aw/rcMia9sIgXY94i4ayb6dIGv2OX08nyt2fSL2sWAaY6Ss3BzBkTzIgRg4yOJichKDCQeHMpoVSzdfcmFUat5IQGX+fk5HDllVeyZ88eLrvsMoYMGUL//v1bpDflWDIzMxk8eDBPPfUUUD/4Ojk5mSlTphx18HVVVRWffvppw7Zhw4bRp08fQwdfN1VdrZ2C7K2U5G3HWWfHZLYQnpBKfMduBAQGt0oGt8vFZ/M+59YfLNQ6XbQLD+CZC1IY0F2TtW0rrOCWt1azYW8ZHUz7eLj99wyY9E8Cg0ONjuZz9lfYmfX1ViJ++he3+r0DwOqgYYSOvqvNFEj52Vspev1aetnXALAuIIOEq17Umoc+YtMDQ+let5GVgx5n4LhrjY7jtVr8rrTBgwdTUFDA8OHDyc7OZu3atZSVlREVFUX//v356quvTjh8U7z99ttMmDCB559/nsGDBzNr1izeeecdNm/eTHx8PFdffTXt27dn5syZQP3t+sOHD+ehhx5i3LhxvPXWWzz44IM+fbt+S1ufW8pNb67Gb38WH1jvYX3KBAZf9UCbvFTkdrlY/v4TrPl5HTNrLyMyyJ+HL+rDqJ6686elZW9ZQ+Fn/6B/6ddYTPV/0tYEDSVgxK0+Ow7O7XKx8tPn6LbqfkJN1VS5bfzc8zYGX3yr5h/yISv+eQmDSr/ix5QbGTLxQaPjeK0Wvytt/fr1LF26lL59+zZs27VrF6tXr2bdunUn0uQJueyyy9i3bx8zZswgPz+ffv36MW/evIYB1tnZ2Zh/8Qdi2LBhvPHGG9x9993ceeedpKWl8dFHHx1XUSRH1qt9OJ/edCo/vPAhoUXVDN09mw2PLCVu4mvEJqYYHa/V5Odso/D1P5JZ8xOZZshLPoM/XXk58WEBRkdrE5K79iN52nuNCqR+VUvh84vZOL8n2ee8xVm9k7D4yCDtA5W13P3hWq7a8m9CzdVs9utOyOUvktlFf8t8jSM8BUrBXLLT6Chtxgn1GA0fPpyZM2cybNiwlsjksdRjdGwrPnqGnqvvJchk5wBhZA9/gr6/u8ToWC3K7XKx4sMn6b7uIUJN1dS4/VnT9WYGX36XJiI0UM7WteT99yH6HfiKr1wDmVJ3C8lRQVxzSgqX9I8nuJXnXGtO324u4K/v/0xhuZ1kcxEPdd3C4PH3aG4xH/XTJ8+RseoONlh70/PO742O47Va/FLaBx98wOzZs3nnnXeIiIg40ZxeR4XRb8vesoa6tyfS2Vn/r5sfYy+h70TfHF9zqJeoT81PAGz2607QpbNJ7trP2GDSoCg/mw+Xb+eZNXWUVNWRYsrjY+sMNsedTcIZN9Cx+0CjIx636spy1s29mY35ldzrmEDn2GBmXdaf3h3CjY4mLWjziq9J/+9F5BNDwt+3Gx3Ha7V4YXTo8lR0dDQXXnghmZmZ9O/fn169emG1+u6/WlQYHZ+a6krWvnQTmUXvA/Av6/WcOv5OBnaMNDhZ86hzupj73TbOXjiOJFNhfS9R2hQGXX53mxxb5Q2qah28v3IP7m/+wdV17zZs32DtTU3fifQeeSVWm+de9lz/w6dEfH0bHdx5uNwmnu35OtdeOIYAf/VK+rr9hbkUP30Wu9wJnD7jS2z+miX/RLR4YbR7927Wrl3bMKHjmjVr2LVrF35+fnTr1q1Vxxm1JhVGTbNu4XsULX6B66pvxG2ycP3pnfnzWWnY/Lz3j/mPO/bzt4/Ws7WwgovMi7k2+DuCL3lWvURewuV0suH7j3Ese5E+lUsaBmoXEcG2hHFEjrmTbimeM6N7afE+sl67mcEl9YtdFxJFwe8ep/fw3xucTFqL2+2m1z1fUlnr5Otpw+kSF2J0JK/U4oXRkZSXl7NmzRrWrVvHjTfe2BxNehwVRk1XWlXHvZ9u4IPVudio5YWQOcSceTM9hp5tdLQm2btzM3kfTOel/b343DWE6GAr089O56IBiZjM3lvotWUFe7az48tn6ZLzPrEc4IA7hMH2Z+kUH8n5/RM5v0cE7eNiDMlWV2tn1Yez6LrpaSKpX4poWfQFdL/qCcIiNJFlWzNm1mI255fz8sQMzkiP/+03yGFapDDKz88nMjLyuCc83LFjB506dTqufb2FCqMT99WGfHa9dzfXu+svY/wUdhYpf3iCmIRkg5Md24F9eWS9O4MBBe9jNTnZ645idp/3mXZ2LyKCfPeycVtSV2vn54XvsHHbDu7bO5hapwtws9g6lTr/EAoTRhDZ7xzS+o9o8UulDqeLL9bnM3v+Gl4p/yOxpjJ2m5OoGv043TNHt+ixxXP98d8/8eWGfP4+risTT+tqdByv1CKF0dNPP83tt9/OqFGjOO+88zjnnHOIjW08C+eyZcv4+OOP+fjjj8nOzqa8vPzEP4UHUmF0ckr3F7D5jb8yqOhjzCY3Fe5Afu54Fb0umk5oeJTR8RrZX7CHLR8/Sq/ctwk1VQPws20AgWP/QZe+pxicTlpKaVUdX6zPY+WK73m48AbMpv/9eaxwB7IzoDsVcQPx7zGO9j2GkBAW0CzL4eTnbGPbd+9wZ/YgsktqAbgy8EfO7R7CgAum4q9FX9u0+S/PIHP3HDbGncuQG18wOo5XarFLadu2beOTTz7h448/5scff2TQoEGMHTuWnTt38tlnnwEwbtw4zj//fM466ywCAjx3MOOJUGHUPLasWgSf/4Wuji0AHCCUTV2up88ldxJiM3bwck5xFas/nMWo7CcIMNUBsN3SiarhM+h9+oWGZpPWdWBfHtuXfoRp65eklS8jjP+tcP4vx4X803EJwVYLGVE13OJ4mbrAWFzBsVhCE/APjcEvIBT/wBAs0SkERLTDz2LCaa/CXbaX8qJcqvbtxpG7lsiin+jmyALghtqb+THwdK4e2pFrTk0lLEADbQWWvfMomRv/wZrAIfS7/Uuj43ilVhljtH//fj777DM+//xzUlJSOP/88xk6dKhPLyaqwqj5uJxOVn/5CrE/PU6yK5ePncO42zyVSzKSmDgsheTo1ptnxlFXy+INu3lt9QEWbdlHBpt513YfW/y6UjHoZvqN/IPmJGrjnA4Huzb9RNGmxVj2LOf9uiG8U9oDp8vN6ea1vGZ9+KjvfbDuCuY46xdxzTBt5j3bfYft43Kb2Gzrxb5e1zN4zPgWWedQvNfPiz+k9zcT2W1OouOM9UbH8UqGDL4+ZP369T47k7QKo+bnqKtl1WezeXFrCF8V1w8q7G3ewczQ96jqeiHdfje+RRZOdDocbF72JRWr36Nz0Td85hjM3x0TATgtLYa/9Cynz+AztLSCHFWtw0V2cRW5OzZi2/EV7opCLFX7sNmLCKgrw+qqwequ5gXTxbxddzoOl4v+5h28bP4HJeZwSv3jqAhNxZw0mI6DxmltMzmq3B2baP/aEOxuf/xnFOgfaieg1Quj8vJy3nzzTV588UVWrVqFw+E42SY9kgqjluNyuVm8dR9zf9jFqTv+yXV+9bcn17ktbLV2pzTxVCJ6nEHHnkMICmn6hHZOl5ucLWsoWPsV/jk/kFqxuuFuH4BsEnh90AdcnplCakzrLMQrInI8HLV2eCABP5OLgmtXEd9Bi3U3VasVRosXL+all17i/fffJygoiNNOO42PPvoIp9N5ok16NBVGrWPvrix2L3qNhN2fkura3eg1p9vEhNA5BMd3IikyiP7uDcQ68vALDMNsseJy2HE5anFUFFFXWcIHoePZUlDO1sIK3jbfTX/ztoa2SgkmK2I4tj4Xkj7sHGwB3rtMhIj4ttx7u9LeXcCGUW/Sc9hYo+N4nRZdRDY/P59XXnmFl156iby8PM4//3zeeecdRo0axebNm/noo49ONLcIAIkp3UhMeQB4gL07N5Oz4lOsu7+lfeVGAqjhh6JA3EUFADzn/zyDLSuO2I7LbWKS/VQcB3/N11u74G8LoTxhCBE9zqBL/xEM1t0+IuIFiq3taW8voCp/q9FRfF6TCqNzzz2XBQsW8Lvf/Y6///3vXHDBBQQH/++ygy8PvBZjJKamk5iaDtwGwL7CfF4uNpNdXEVOcRXmHV1ZWwVWZxVmtwOnyR+X2Y9a/3DqAmP5a3onUhJi6ZYQSlLkWMw+srq6iLQtBZED2Jfr4kBtMIOMDuPjmlQY/fe//+UPf/gDU6dOJSMjo6UyiRxVbFwCv4v75ZZnj7l/ZoumERFpHTt63MCDuzZzrjuRi4wO4+OadMvNkiVLCAwM5IwzzqBbt27cd999bN+u1X5FRERaUnJU/dWZ7P2VBifxfU0qjIYMGcILL7xAXl4et99+O1999RVdu3ZlyJAhPPXUUxQUFLRUThERkTar48G53Yr3FxqcxPed9O36WVlZvPTSS/z73/+moKAAk8mku9JERESaUWVlBY5H0gg3VVF6y3bCI41Z4NhbNeX8fdKz13Xr1o1HHnmEPXv28MEHHzBu3LiTbVJERER+ITg4BIepfomYwt2bDE7j25ptWl+LxcIFF1zAJ5980lxNioiIyEH7/BIBKNu7xeAkvk3rHYiIiHiBiqAOANTu22FwEt+mwkhERMQL1IWnAGAp2WVoDl+nwkhERMQL+MV0AiC4MsfgJL5NhZGIiIgXCG2XBkB07V6Dk/g2FUYiIiJeIKZjD7519uULxwDsdQ6j4/isJi8iKyIiIq0vOi6RG0x3UlXn5PSSGjrHhhgdySepx0hERMQLmEwmkqPqZ8DO3l9lcBrfpcJIRETESyRHBRFGJQX5uUZH8VkqjERERLzE1dX/Zl3AdaRsfM7oKD5LhZGIiIiX8I9sD0BARbbBSXyXCiMREREvERTfBYCImj0GJ/FdKoxERES8RFRSNwASnPm4nC6D0/gmFUYiIiJeIq5DFxxuMwGmOorydTmtJagwEhER8RL+VhsF5lgAirI3GZzGN6kwEhER8SLF1kQAKvK3GZzEN2nmaxERES+yM2YEq3fH4O+MZ7DRYXyQeoxERES8SF7Xq5jhmMTSujSjo/gkFUYiIiJepGN0/bIgu4u1LEhLUGEkIiLiRZKjggmhioCiDUZH8UkaYyQiIuJFkkNdrA+4FtxQVnIRYRHRRkfyKeoxEhER8SIhoREUEwZA4W7dst/cVBiJiIh4mX1+9bfsl+3danAS36PCSERExMuUB3UAoLZwu8FJfI8KIxERES9TF54CgLl0l6E5fJEKIxERES/jF90JgKDKHIOT+B4VRiIiIl4mtF0XAKLtuQYn8T0qjERERLxMdEov/uM4k5cco6l1uIyO41O8sjAqLi5m/PjxhIWFERERweTJk6moqDjme+bMmcOIESMICwvDZDJRUlLSOmFFRESaWUxcIg+YrudFx1hyS6qNjuNTvLIwGj9+PBs2bGD+/Pl89tlnLF68mOuvv/6Y76mqqmLMmDHceeedrZRSRESkZZhMJpKjDi4Nsr/S4DS+xetmvt60aRPz5s1jxYoVZGRkAPDUU08xduxYHnvsMRITE4/4vqlTpwLw7bfftlJSERGRlpMWacJcuJviPeHQLc7oOD7D63qMli5dSkRERENRBDBy5EjMZjPLli1r1mPZ7XbKysoaPURERDzBldWv84VtOolZrxkdxad4XWGUn59PXFzjytjPz4+oqCjy8/Ob9VgzZ84kPDy84ZGUlNSs7YuIiJwoU3RnAALLdxkbxMd4TGF0xx13YDKZjvnYvHlzq2aaPn06paWlDY+cHM0XISIiniG4XVcAomp0bmpOHjPG6NZbb2XixInH3KdTp04kJCRQWFjYaLvD4aC4uJiEhIRmzWSz2bDZbM3apoiISHOISekJQIKrAEddLX7+VoMT+QaPKYxiY2OJjY39zf2GDh1KSUkJK1euZODAgQB88803uFwuMjMzWzqmiIiIR4hLTKXG7U+AqY7c7C2079zL6Eg+wWMupR2v7t27M2bMGK677jqWL1/ODz/8wJQpU7j88ssb7kjLzc0lPT2d5cuXN7wvPz+fNWvWsG3bNgB+/vln1qxZQ3FxsSGfQ0RE5GSYLRbyLPXnvaLsTQan8R1eVxgBvP7666Snp3PmmWcyduxYTj31VObMmdPwel1dHVlZWVRVVTVsmz17Nv379+e6664D4PTTT6d///588sknrZ5fRESkORwITAagJj/L4CS+w+R2u91Gh/AWZWVlhIeHU1paSlhYmNFxRESkjfvg9efI2riWiF6j+NMVvzc6jsdqyvnbK3uMREREBOq6juN557ksqWpvdBSfocJIRETES6VEBwOwS8uCNBsVRiIiIl4qNSaIrqYcepYuptZeY3Qcn+Axt+uLiIhI08SG2PjQeg/Bphp27zyfjun9jY7k9dRjJCIi4qVMZjN5fvXjiw7k6Jb95qDCSERExIuVBh28Zb9gi8FJfIMKIxERES9WG54KgLl4u8FJfIMKIxERES/mF9MFgOCK3QYn8Q0qjERERLxYWIduAMTU7jE4iW9QYSQiIuLF4lPqF4+NZz/VleUGp/F+ul1fRETEi0XEJPA4V7GtNopbiqtJDw41OpJXU4+RiIiIl1scewVfuDLZWeI0OorXU2EkIiLi5TrF1C8NslNLg5w0FUYiIiJernuonZHmlVh3LjQ6itdTYSQiIuLlBrjW8qL1cU7ZO9foKF5PhZGIiIiXi2ifDkBsXa7BSbyfCiMREREvF5/aE4AYSigvLTY4jXdTYSQiIuLlQiOiKSICgPwd640N4+VUGImIiPiAAmsSAKU5GwxO4t1UGImIiPiAitBOANQVZBmcxLupMBIREfEB7ug0AGwl2wxO4t20JIiIiIgPMHcdw03ra6gK7s5LRoc5AXml1cxZvIPu7cK4NCPJsBzqMRIREfEBiZ178qlrGItLonA4XUbHabKcDUuJWPYo6xa+a2gOFUYiIiI+IDE8kAB/M3VONzkHqo2O02TuHYu5xe9DLjQtMjSHLqWJiIj4ALPZxLiIHCKK15KfFURqzO+MjtQku+1B4EqnJrqPoTlUGImIiPiIK5hHhv8CftweBad4V2H0nuM0ltf2ZFa/fobm0KU0ERERH1EX2QUAc7H33Zm2Y18lAJ1igw3NocJIRETER1gTugEQXrHD4CRNU1pZTXlFOQCpMcYWRrqUJiIi4iMik3vBcmjnyMHtcmEye0f/R/6mpWyyTWKDOY3QgHGGZvGOb0xERER+U2LnXrjcJsKoZH9hrtFxjltpznrMJjcma5DRUVQYiYiI+IqAwGDyzHEAFOz42eA0x89VsBmAytDOBidRYSQiIuJTigI6AlCxZ6PBSY5fYOnBweJx6cYGQYWRiIiIT1mR8ifOs9/PAusIo6Mct5iaXQCEtO9pbBA0+FpERMSnhKRmsG61jYhi71gWpKaqgnauQjBBQpe+RsdRj5GIiIgv6RwXAsC2gnKDkxyf3G3rMJvcHCCUqNhEo+Oox0hERMSXdI0N4UrLfLpV5lBe2p/Q8CijIx3TrlIHqxynEx4awigPmF7A+AQiIiLSbMKDrdzs/zFX+X1N7pZVRsf5TWuq47nN8X8sTJtudBRAhZGIiIjPyQ9IBaBs9zqDk/y2rQUVAHSJCzU4ST0VRiIiIj6mKrwrAK4Cz79lvzp/C/44SDs4NspoGmMkIiLiY8wJPaAAQsq2Gh3lmGrtdl6suBGTzU1R8Gog1uhI6jESERHxNREd6297T7DvMjbIb9i7cwP+Jid2rMS3SzY6DqDCSERExOd06NoPgBhKKPbgNdOKd9WPgcr1T/aYBW89I4WIiIg0m6CQcPaa4gHYu81zB2Db8zYBUBrcyeAk/6PCSERExAc9l/ggfWrmsJLuRkc5Kv/i+jFQjuiuBif5HxVGIiIiPig0qRdlhJDlwTNgR1btACAwsYfBSf5HhZGIiIgP6pZQPy/QlnzPLIwcdbV0cOwBILZTH4PT/I9u1xcREfFB6RFu7vb7N50K9uF2zfeYwc2H7C4s4X3HhXTzy+PcjulGx2ngWd9SExQXFzN+/HjCwsKIiIhg8uTJVFRUHHP/m266iW7duhEYGEhycjI333wzpaWlrZhaRESkdaQkRDHR8iVn8BOFebuMjnOYTfsdPOu8gLlx0zFbLEbHaeC1hdH48ePZsGED8+fP57PPPmPx4sVcf/31R91/79697N27l8cee4z169fzyiuvMG/ePCZPntyKqUVERFqHLSCIXEt7AAq2rjY4zeE259Vf4uvezjOWAjnEKy+lbdq0iXnz5rFixQoyMjIAeOqppxg7diyPPfYYiYmJh72nV69evP/++w3PO3fuzAMPPMCVV16Jw+HAz+/wr8Jut2O32xuel5WVtcCnERERaRn7gzrRsSKHqj0/AxcZHaeR2l0/0tHkoFuc51xGAy/tMVq6dCkRERENRRHAyJEjMZvNLFu27LjbKS0tJSws7IhFEcDMmTMJDw9veCQlJZ10dhERkdZij6ovOiz7Nhic5HAT8//BIts0Bps3Gx2lEa8sjPLz84mLi2u0zc/Pj6ioKPLz84+rjaKiIu6///5jXn6bPn06paWlDY+cnJyTyi0iItKaApP6ARBTvsXYIL9SXlpMorsQgPbdBhqcpjGPKozuuOMOTCbTMR+bN598ZVlWVsa4cePo0aMHf//734+6n81mIywsrNFDRETEWySkDwaggzOHmupKg9P8T27WSgAKiSI8OsHgNI151BijW2+9lYkTJx5zn06dOpGQkEBhYWGj7Q6Hg+LiYhISjv0Fl5eXM2bMGEJDQ/nwww/x9/c/2dgiIiIeKb59J0oIwQUU7dxK1x79jI4EQOnutQDkB3Qm7jf2bW0eVRjFxsYSGxv7m/sNHTqUkpISVq5cycCB9V1w33zzDS6Xi8zMzKO+r6ysjNGjR2Oz2fjkk08ICAhotuwiIiKexmQ2c3vCy3y5q46HK6PwlIU33AX1Y56qIj0l0f941KW049W9e3fGjBnDddddx/Lly/nhhx+YMmUKl19+ecMdabm5uaSnp7N8+XKgvigaNWoUlZWVvPTSS5SVlZGfn09+fj5Op9PIjyMiItJikjokASY27vWcO6vDSuvHPPm1621wksN5VI9RU7z++utMmTKFM888E7PZzEUXXcSTTz7Z8HpdXR1ZWVlUVVUBsGrVqoY71rp06dKorZ07d5KSktJq2UVERFpLz/b142M35nlGYeR2uehQtxOAqE79DU5zOK8tjKKionjjjTeO+npKSgput7vh+YgRIxo9FxERaQt6Rzh5wf9xUvMKcDnXGT7LdF5JFf+onUwPSw7Xd+lraJYj8cpLaSIiInJ8OrZP4HTzOrqY9rB35yaj47A+r4LPXUP4LPoarAGBRsc5jAojERERH+ZvtZHtlwJA4dYVxoYB1h8c69S7fbjBSY5MhZGIiIiPOxDWDQD7nrUGJ4HALR9xunkt/eI9czSPCiMREREf506ov/srqNj4pUEu2fcMr1kfZmBgntFRjkiFkYiIiI8LT62f86999RbcLpdhOYr27iaGEpxuE8k9BhuW41hUGImIiPi4jj2H4HCbiaGEgtwdhuXI3bwUgGxLEkHBnrnMlgojERERHxcYHMpWvzRWutLYtsu4BdGrdq0CoCg03bAMv0WFkYiISBvwWo8Xuaj2Xr6rMG7R1oCinwFwxnve/EWHqDASERFpA/omRQCwLqfUsAyJVVkAhHXKMCzDb1FhJCIi0gYcKoy25RbgMmCN0P0Fe4hnPy63ieQeR1/w3WgqjERERNqAtNhgPrLdw49MIGdr689ntP6AhbPtM7k/8C+EhEW2+vGPlwojERGRNsDPz4LNasViclO4eUmrH39tbgWb3B0pThnX6sduChVGIiIibURpVB8AnHtWtvqxV2cfAKD/wUt6nkqFkYiISBvhn1w/6DmqZH2rHtftcjFu98NcaZnPgMSAVj12U6kwEhERaSMSup8CQErddmqqK1vtuHu2/8zFfM3dfv8hPdFzxxeBCiMREZE2IzGlG/sJx2pysmvdD6123PwN3wOw05qG1aYeIxEREfEAJrOZ3cH144wOZH3Xasd15SwHoDTKcyd2PESFkYiISBtSnjySD52n8GMrzoAdU7IOAGuK585fdIif0QFERESk9UQMm8iE1WmE7/PnFpcbs9nUoserqiglxbETTNC+9+kteqzmoB4jERGRNqRHYhiB/hZKq+vYtq+ixY+3Y82i+rmTiCK+Q+cWP97JUmEkIiLShvhbzAxICqOrKYesn1e0+PEKdvyM020iO2xAix+rOagwEhERaWNu8PuIr2y3027dsy1+rOerz6Cf/QX2DLi9xY/VHFQYiYiItDFhXYYC0KFsNW6Xq8WOU1PnZE1OCeUE0adnjxY7TnNSYSQiItLGdB5wBrVuCwkUsWfHhhY7zpqcEmodLmJDbaTGBLfYcZqTCiMREZE2JigknK22+h6cvavmtdhxnIse533rPdwQvQaTqWXvfmsuKoxERETaoLJ29cuD+O9e3GLHiMj7noHmrfSIcrfYMZqbCiMREZE2KKr3WQB0rlyJ0+Fo9vZrqivpbN8IQEKfM5u9/ZaiwkhERKQN6tz3dCrcgYRTyc6flzR7+1uXf0mAqY5Cokju2q/Z228pmvlaRESkDfLzt/JO7BS+2evH6cXRdGnm9is31I9d2hU5lDiz9/TDeE9SERERaVbm/uP53tWbBdvKmr3tdkU/AODXbVSzt92SVBiJiIi0UWd2jwfgp90HKKmqbbZ29+7KoqNrDw63mS5Dzmm2dluDLqWJiIi0UUlRQZwXk0efkq/ZtKiYoWdf2SztrtiWh59zMPFBJjIiYpqlzdaiHiMREZE27Irw9Vzr9wW2De80W5uf5gZzY91Ulg1p+SVHmpsKIxERkTYseuAFAHQtX469puqk26uwO1i8tQiAM9LjTrq91qbCSEREpA3r0vc0ioggxFRN1o9fnHR7K5b/QJIzh9SYYNITQpshYetSYSQiItKGmS0WtkedDkDN2vdPur2wZY+zwHYbM6K+9pplQH5JhZGIiEgbFzzwUgDSDyzEXlN5wu1UV5bTvfxHADoMGN0s2VqbCiMREZE2rseQsRQQTRhVbFj0wQm3s2HBfwgy2ck1xdOlzynNmLD1qDASERFp48wWCzsSxpDnjmLN9twTbidgw1sAZCddgMmLZrv+Jc1jJCIiIkSN+xunPHM25j0WzimrIS4soEnv37sri172NbjcJlLOnNxCKVued5ZzIiIi0qy6JbVjQMdoHC43by7PafL7d89/DoCNAX1p17Fbc8drNSqMREREBICrhnbEgpOcH9+jrtZ+3O+rtjuIyv0GgNp+E1soXevQpTQREREB4OyeCXQJuJeejm0s/28wgy+8+bje996qPdxXcz9/CFvHjLOuauGULUs9RiIiIgKA1d9CeZf6RV87rHv6uHqNauqcPL94B3X40WnEVVj8vLvPRYWRiIiINOhzwTT2E06iu4BVHz35m/v/d97nFB4oIz7MxiUZHVohYctSYSQiIiINgkLC2drtjwB03/hPivbuPuq+RfnZnLXyeuZbb2PGqaEEWb27twi8uDAqLi5m/PjxhIWFERERweTJk6moqDjme/74xz/SuXNnAgMDiY2N5fzzz2fz5s2tlFhERMQ7ZFx8G1v90gijkpz//B8up/OwfVxOJ7mvXEMYVdT5h3L2KRkGJG1+XlsYjR8/ng0bNjB//nw+++wzFi9ezPXXX3/M9wwcOJC5c+eyadMmvvzyS9xuN6NGjcJ5hB+4iIhIW+Xnb8V8/tPUui30r1rC16/+A7fb3fC62+Vi+fN/om/NCuxuf/wunoPZYjEwcfMxuX/5Sb3Epk2b6NGjBytWrCAjo75CnTdvHmPHjmXPnj0kJiYeVzvr1q2jb9++bNu2jc6dO//m/mVlZYSHh1NaWkpYWNhJfQYRERFPt/zDJ4le/SyX1N7D4J5due7UJIIL11Cz6An6VS0F4KcBD5Nx3v8ZnPTYmnL+9sqLgUuXLiUiIqKhKAIYOXIkZrOZZcuWceGFF/5mG5WVlcydO5fU1FSSkpKOuI/dbsdu/9+I/LKyspMPLyIi4iUGX3gzb8WdRel/dzJvQz6rN2xkWcAUAOrcFlb3mcFgDy+KmsorL6Xl5+cTFxfXaJufnx9RUVHk5+cf873PPvssISEhhISE8MUXXzB//nysVusR9505cybh4eENj6MVUCIiIr7q8lO68+mUUxnXpx3xwWaKiGBl6O/Yc+kXDL5oqtHxmp1HFUZ33HEHJpPpmI+THSw9fvx4Vq9ezaJFi+jatSuXXnopNTU1R9x3+vTplJaWNjxycpo+RbqIiIi365EYxjN/GMAnfxtPzN93M/DWj0jtmWl0rBbhUZfSbr31ViZOnHjMfTp16kRCQgKFhYWNtjscDoqLi0lISDjm+w/1/qSlpTFkyBAiIyP58MMPueKKKw7b12azYbPZmvw5RERExDt5VGEUGxtLbGzsb+43dOhQSkpKWLlyJQMHDgTgm2++weVykZl5/BWs2+3G7XY3GkckIiIibZdHXUo7Xt27d2fMmDFcd911LF++nB9++IEpU6Zw+eWXN9yRlpubS3p6OsuXLwdgx44dzJw5k5UrV5Kdnc2SJUu45JJLCAwMZOzYsUZ+HBEREfEQXlkYAbz++uukp6dz5plnMnbsWE499VTmzJnT8HpdXR1ZWVlUVVUBEBAQwHfffcfYsWPp0qULl112GaGhoSxZsuSwgdwiIiLSNnnlPEZG0TxGIiIi3qcp52+v7TESERERaW4qjEREREQOUmEkIiIicpAKIxEREZGDVBiJiIiIHKTCSEREROQgFUYiIiIiB6kwEhERETlIhZGIiIjIQR61iKynOzRJeFlZmcFJRERE5HgdOm8fz2IfKoyaoLy8HICkpCSDk4iIiEhTlZeXEx4efsx9tFZaE7hcLvbu3UtoaCgmk6lZ2y4rKyMpKYmcnBytw9aC9D23Dn3PrUPfc+vQ99w6WvJ7drvdlJeXk5iYiNl87FFE6jFqArPZTIcOHVr0GGFhYfofrxXoe24d+p5bh77n1qHvuXW01Pf8Wz1Fh2jwtYiIiMhBKoxEREREDlJh5CFsNhv33HMPNpvN6Cg+Td9z69D33Dr0PbcOfc+tw1O+Zw2+FhERETlIPUYiIiIiB6kwEhERETlIhZGIiIjIQSqMRERERA5SYeQBnnnmGVJSUggICCAzM5Ply5cbHcnnzJw5k0GDBhEaGkpcXBwXXHABWVlZRsfyaQ899BAmk4mpU6caHcUn5ebmcuWVVxIdHU1gYCC9e/fmp59+MjqWT3E6nfztb38jNTWVwMBAOnfuzP33339c623J0S1evJhzzz2XxMRETCYTH330UaPX3W43M2bMoF27dgQGBjJy5Ei2bt3aavlUGBns7bffZtq0adxzzz2sWrWKvn37Mnr0aAoLC42O5lMWLVrEjTfeyI8//sj8+fOpq6tj1KhRVFZWGh3NJ61YsYLnn3+ePn36GB3FJx04cIBTTjkFf39/vvjiCzZu3Mjjjz9OZGSk0dF8ysMPP8xzzz3H008/zaZNm3j44Yd55JFHeOqpp4yO5tUqKyvp27cvzzzzzBFff+SRR3jyySeZPXs2y5YtIzg4mNGjR1NTU9M6Ad1iqMGDB7tvvPHGhudOp9OdmJjonjlzpoGpfF9hYaEbcC9atMjoKD6nvLzcnZaW5p4/f757+PDh7ltuucXoSD7n9ttvd5966qlGx/B548aNc19zzTWNtv3+9793jx8/3qBEvgdwf/jhhw3PXS6XOyEhwf3oo482bCspKXHbbDb3m2++2SqZ1GNkoNraWlauXMnIkSMbtpnNZkaOHMnSpUsNTOb7SktLAYiKijI4ie+58cYbGTduXKPfa2len3zyCRkZGVxyySXExcXRv39/XnjhBaNj+Zxhw4axYMECtmzZAsDatWv5/vvvOfvssw1O5rt27txJfn5+o78f4eHhZGZmttp5UYvIGqioqAin00l8fHyj7fHx8WzevNmgVL7P5XIxdepUTjnlFHr16mV0HJ/y1ltvsWrVKlasWGF0FJ+2Y8cOnnvuOaZNm8add97JihUruPnmm7FarUyYMMHoeD7jjjvuoKysjPT0dCwWC06nkwceeIDx48cbHc1n5efnAxzxvHjotZamwkjanBtvvJH169fz/fffGx3Fp+Tk5HDLLbcwf/58AgICjI7j01wuFxkZGTz44IMA9O/fn/Xr1zN79mwVRs3onXfe4fXXX+eNN96gZ8+erFmzhqlTp5KYmKjv2YfpUpqBYmJisFgsFBQUNNpeUFBAQkKCQal825QpU/jss89YuHAhHTp0MDqOT1m5ciWFhYUMGDAAPz8//Pz8WLRoEU8++SR+fn44nU6jI/qMdu3a0aNHj0bbunfvTnZ2tkGJfNNtt93GHXfcweWXX07v3r256qqr+POf/8zMmTONjuazDp37jDwvqjAykNVqZeDAgSxYsKBhm8vlYsGCBQwdOtTAZL7H7XYzZcoUPvzwQ7755htSU1ONjuRzzjzzTH7++WfWrFnT8MjIyGD8+PGsWbMGi8VidESfccoppxw23cSWLVvo2LGjQYl8U1VVFWZz49OkxWLB5XIZlMj3paamkpCQ0Oi8WFZWxrJly1rtvKhLaQabNm0aEyZMICMjg8GDBzNr1iwqKyuZNGmS0dF8yo033sgbb7zBxx9/TGhoaMO16vDwcAIDAw1O5xtCQ0MPG7MVHBxMdHS0xnI1sz//+c8MGzaMBx98kEsvvZTly5czZ84c5syZY3Q0n3LuuefywAMPkJycTM+ePVm9ejVPPPEE11xzjdHRvFpFRQXbtm1reL5z507WrFlDVFQUycnJTJ06lX/84x+kpaWRmprK3/72NxITE7ngggtaJ2Cr3Psmx/TUU0+5k5OT3Var1T148GD3jz/+aHQknwMc8TF37lyjo/k03a7fcj799FN3r1693DabzZ2enu6eM2eO0ZF8TllZmfuWW25xJycnuwMCAtydOnVy33XXXW673W50NK+2cOHCI/49njBhgtvtrr9l/29/+5s7Pj7ebbPZ3GeeeaY7Kyur1fKZ3G5N4SkiIiICGmMkIiIi0kCFkYiIiMhBKoxEREREDlJhJCIiInKQCiMRERGRg1QYiYiIiBykwkhERETkIBVGIiIiIgepMBKRNmPixImtt6yAiHglrZUmIj7BZDId8/V77rmHf/3rX2iyfxE5FhVGIuIT8vLyGv777bffZsaMGY1WoA8JCSEkJMSIaCLiRXQpTUR8QkJCQsMjPDwck8nUaFtISMhhl9JGjBjBTTfdxNSpU4mMjCQ+Pp4XXniByspKJk2aRGhoKF26dOGLL75odKz169dz9tlnExISQnx8PFdddRVFRUWt/IlFpCWoMBKRNu3VV18lJiaG5cuXc9NNN/GnP/2JSy65hGHDhrFq1SpGjRrFVVddRVVVFQAlJSWcccYZ9O/fn59++ol58+ZRUFDApZdeavAnEZHmoMJIRNq0vn37cvfdd5OWlsb06dMJCAggJiaG6667jrS0NGbMmMH+/ftZt24dAE8//TT9+/fnwQcfJD09nf79+/Pyyy+zcOFCtmzZYvCnEZGTpTFGItKm9enTp+G/LRYL0dHR9O7du2FbfHw8AIWFhQCsXbuWhQsXHnG80vbt2+natWsLJxaRlqTCSETaNH9//0bPTSZTo22H7nZzuVwAVFRUcO655/Lwww8f1la7du1aMKmItAYVRiIiTTBgwADef/99UlJS8PPTn1ARX6MxRiIiTXDjjTdSXFzMFVdcwYoVK9i+fTtffvklkyZNwul0Gh1PRE6SCiMRkSZITEzkhx9+wOl0MmrUKHr37s3UqVOJiIjAbNafVBFvZ3JrGlgRERERQD1GIiIiIg1UGImIiIgcpMJIRERE5CAVRiIiIiIHqTASEREROUiFkYiIiMhBKoxEREREDlJhJCIiInKQCiMRERGRg1QYiYiIiBykwkhERETkoP8HP3D6UyV6Qw0AAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkYAAAGwCAYAAABM/qr1AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAZV1JREFUeJzt3Xd4VFX+x/H3zCQz6b0RSEiAQOgtEMACqwgI1rUvKiDq/lZRWVxXURdXXcW+rBWxoO7ae1lFERFUEJAqLXQSQgohpCeTTPn9EcgaKRJIcmcmn9fzzPM4d+6c+5lJzP1y7rnnmNxutxsRERERwWx0ABERERFPocJIRERE5CAVRiIiIiIHqTASEREROUiFkYiIiMhBKoxEREREDlJhJCIiInKQn9EBvInL5WLv3r2EhoZiMpmMjiMiIiLHwe12U15eTmJiImbzsfuEVBg1wd69e0lKSjI6hoiIiJyAnJwcOnTocMx9VBg1QWhoKFD/xYaFhRmcRkRERI5HWVkZSUlJDefxY1Fh1ASHLp+FhYWpMBIREfEyxzMMRoOvRURERA5SYSQiIiJykNcXRs888wwpKSkEBASQmZnJ8uXLj7rvBx98QEZGBhEREQQHB9OvXz/+/e9/t2JaERER8WRePcbo7bffZtq0acyePZvMzExmzZrF6NGjycrKIi4u7rD9o6KiuOuuu0hPT8dqtfLZZ58xadIk4uLiGD16tAGfQEREWoLL5aK2ttboGNKKrFbrb96KfzxMbrfb3Qx5DJGZmcmgQYN4+umngfr/EZKSkrjpppu44447jquNAQMGMG7cOO6///7f3LesrIzw8HBKS0s1+FpExEPV1tayc+dOXC6X0VGkFZnNZlJTU7FarYe91pTzt9f2GNXW1rJy5UqmT5/esM1sNjNy5EiWLl36m+93u9188803ZGVl8fDDDx9xH7vdjt1ub3heVlZ28sFFRKTFuN1u8vLysFgsJCUlNUsPgni+QxMw5+XlkZycfFKTMHttYVRUVITT6SQ+Pr7R9vj4eDZv3nzU95WWltK+fXvsdjsWi4Vnn32Ws84664j7zpw5k3vvvbdZc4uISMtxOBxUVVWRmJhIUFCQ0XGkFcXGxrJ3714cDgf+/v4n3E6bK6VDQ0NZs2YNK1as4IEHHmDatGl8++23R9x3+vTplJaWNjxycnJaN6yIiDSJ0+kEOOLlFPFth37mh34HTpTX9hjFxMRgsVgoKChotL2goICEhISjvs9sNtOlSxcA+vXrx6ZNm5g5cyYjRow4bF+bzYbNZmvW3CIi0vK0nmXb01w/c6/tMbJarQwcOJAFCxY0bHO5XCxYsIChQ4cedzsul6vROCIRERFpu7y2xwhg2rRpTJgwgYyMDAYPHsysWbOorKxk0qRJAFx99dW0b9+emTNnAvVjhjIyMujcuTN2u53PP/+cf//73zz33HNGfgwRERHxEF5dGF122WXs27ePGTNmkJ+fT79+/Zg3b17DgOzs7OxGdyRUVlZyww03sGfPHgIDA0lPT+c///kPl112mVEfQURERDyI115KO2TKlCns3r0bu93OsmXLyMzMbHjt22+/5ZVXXml4/o9//IOtW7dSXV1NcXExS5YsUVEkIiIAuF0u6ursuFwnN3i3qc4991zGjBlzxNe+++47TCYT69atO+H2lyxZwtixY4mMjCQgIIDevXvzxBNPHDZI2WQyNTzCwsIYNGgQH3/8MQAjRoxo9PqvH4fG6aakpBzx9YceeuiE87c2r+4xEhEROVkORx01xbkEOkrxx4XbDVXmYMzhiQQEhbT48SdPnsxFF13Enj176NChQ6PX5s6dS0ZGBn369GlSm7W1tVitVj788EMuvfRSJk2axMKFC4mIiODrr7/mr3/9K0uXLuWdd95pNGh57ty5jBkzhrKyMp599lkuvvhiVq1axQcffNAwk3hOTg6DBw/m66+/pmfPnkDjuwDvu+8+rrvuukZ5QkNDm5TfSF7fYyQiInI0brebqlrHUR8HSsuozN2IuXo/9joHVXUuqh0u3PZythWWsfdA9THff6zH8S4scc455xAbG9voCgdARUUF7777LhdccAFXXHEF7du3JygoiN69e/Pmm2822nfEiBFMmTKFqVOnEhMTw+jRo6msrOS6667jvPPOY86cOfTr14+UlBSuvfZaXn31Vd577z3eeeedRu1ERESQkJBA165duf/++3E4HCxcuJCoqCgSEhJISEggNjYWgOjo6IZtUVFRDW2EhoY2bD/0CA4OPoGfnjHUYyQiIj6rus5JjxlfnuC780/q2BvvG02Q9bdPs35+flx99dW88sor3HXXXQ09OO+++y5Op5Mrr7ySd999l9tvv52wsDD++9//ctVVV9G5c2cGDx7c0M6rr77Kn/70J3744QcAvvrqK/bv389f/vKXw4557rnn0rVrV958880jDilxOBy89NJLQNubE0o9RiIiIga75ppr2L59O4sWLWrYNnfuXC666CI6duzIX/7yF/r160enTp246aabGDNmzGG9PWlpaTzyyCN069aNbt26sWXLFgC6d+9+xGOmp6c37HPIFVdcQUhICDabjT//+c+kpKRw6aWXNumz3H777YSEhDR6fPfdd01qw0jqMRIREZ8V6G9h432jD9teUGZnX3kNfmYTnaIDsVoPX0LC7XaTX1RMTF0eDpM/AQldmzSJYKC/5bj3TU9PZ9iwYbz88suMGDGCbdu28d1333HffffhdDp58MEHeeedd8jNzaW2tha73X7YkicDBw48YtvHuqT3696gf/7zn4wcOZIdO3bw5z//mSeffLLRZbLjcdtttzFx4sRG29q3b9+kNoykwkhERHyWyWQ67HJWTW0tFfY6AvwtdIwKIjzo6JeKkmPDMe/Lx2KqpaKyiOCodi2WdfLkydx0000888wzzJ07l86dOzN8+HAefvhh/vWvfzFr1ix69+5NcHAwU6dObRgMfcivx/GkpaUBsGnTJoYNG3bY8TZt2kS/fv0abUtISKBLly506dKFuXPnMnbsWDZu3EhcXNxxf46YmJiGFSa8kS6liYhIm+Iq3kUK+UTaICzw2IuN+lsDqA6sLwoCavbhdDpaLNell16K2WzmjTfe4LXXXuOaa67BZDLxww8/cP7553PllVfSt29fOnXqdNglsCMZPXo0UVFRPP7444e99sknn7B169bDenZ+afDgwQwcOJAHHnjgZD6W11FhJCIibUZNVTlBrkpCqCYu1Hpcl8aCIuKpxR8/nFQfKPjN/U9USEgIl112GdOnTycvL6+haElLS2P+/PksWbKETZs28cc//vGwdUKPJDg4mOeff56PP/6Y66+/nnXr1rFr1y5eeuklJk6cyHXXXcfYsWOP2cbUqVN5/vnnyc3NPe7PUV5eTn5+fqNHWVnZcb/faCqMRESkzXCV5gFQ5ReGLSDoN/auZzabqTvUa1RbhOskV28/lsmTJ3PgwAFGjx5NYmIiAHfffTcDBgxg9OjRjBgxgoSEBC644ILjau/iiy9m4cKFZGdnc9ppp5Gamsq1117LHXfcwZw5c37z/WPGjCE1NbVJvUYzZsygXbt2jR5//etfj/v9RjO5j3eiBaGsrIzw8HBKS0sJCwszOo6IiPxKTU0NO3fuJDU1lYCAgEav2WuqsBVn4XZDXXQ3rMdZGMHBWbHzN2DFQWVAO4KjEpo7equoqanh/PPPJycnh0WLFjXMSeQLjvWzb8r5Wz1GIiLSJtSVFQJQbQ5uUlEEYDKbqbVFA1BrrzruyRs9TUBAAB9//DFXX301ixcvNjqOR9JdaSIi4vOcTgeBdaVgAkJOrJckIDyOLQVWalx+WGudBNu88xQaEBDAHXfcYXQMj6UeIxER8Xk1ZfuxmFzY8ScwJOKE2vDz8yMosL6nqbiy9jf2Fm+lwkhERHzevrpA9rhjqAmIa9Ikjb8WGVw/51FldU2LDsIW46gwEhERn1brcFFW66LYHUpgWMxJtRVktZBk3k83dlNdXtxMCcWTqDASERGfVlJdf9kr2OaH1e/kTnsmkwl/fysmE5iqVRj5IhVGIiLis9xuNwEVOcSYyogKPP61y47FP7T+7rQAVxVOR8vNhC3GUGEkIiI+q7amijB3BQkUExrQPHeR2QKCsOOP2QQ1FQeapU3xHCqMRETEZ9VV1hcuNeZA/PyOvS5ak9r1PzhJYE1ps7UpnkGFkYiI+Cy/2nIAXLbw5m03KAKAAGclLpfuTvMlKoxERMQn1dXaCaAGAFtIZLO2bQsKpQ4LFpOLmoqT7zU699xzGTNmzBFf++677zCZTKxbt+6kjpGTk8M111xDYmIiVquVjh07csstt7B///5G+02cOBGTyXRwoLk/qamp/PWvf6WmpqZhn0OvH+3x97//vVE7v3wc7XN6Cu+ctlNEROQ32CsO4A/UEECA1dasbZtMJir9Y6iodWJx+NO0BUYON3nyZC666CL27NlDhw4dGr02d+5cMjIy6NOnT5Pbra2txWq1smPHDoYOHUrXrl158803SU1NZcOGDdx222188cUX/Pjjj0RFRTW8b8yYMcydO5e6ujpWrlzJhAkTMJlMPPzwwwDk5eU17Pv2228zY8YMsrKyGraFhIQwZcqUhnZ+yWZr3p9Fc1OPkYiI+CSzvb4nx2ENbZn2Q2IpdodSWnvy66adc845xMbG8sorrzTaXlFRwbvvvsvkyZMBmDdvHqeeeioRERFER0dzzjnnsH379ob9R4wYwZQpU5g6dSoxMTGMHj0agBtvvBGr1cpXX33F8OHDSU5O5uyzz+brr78mNzeXu+66q9FxbTYbCQkJJCUlccEFFzBy5Ejmz5/f8HpCQkLDIzw8HJPJ1GhbSEhIo3Z++YiMbN7eu+amwkhERHyOy+WmzgUutwn/4EiorTz6o66m8ZuPuW91w27BNj/MjmrqqiuwV5U13q+J/Pz8uPrqq3nllVcaLVD77rvv4nQ6ueKKKwCorKxk2rRp/PTTTyxYsACz2cyFF16Iy+VqeM+rr76K1Wrlhx9+YPbs2RQXF/Pll19yww03EBgY2Oi4CQkJjB8/nrfffvuoC+OuX7+eJUuWYLVam/y5vJEupYmIiM+prnOQ647HajHRLSAI7o04+s5po2D8u/97/mgXqKs68r4dT4VJ/wXAYjbR/a1hWGqOMNHj35s+7uiaa67h0UcfZdGiRYwYMQKov4x20UUXER5eP3j8oosuavSel19+mdjYWDZu3EivXr3qP05aGo888kjDPsuWLcPtdtO9e/cjHrd79+4cOHCAffv2ERcXB8Bnn31GSEgIDocDu92O2Wzm6aefbvJnOtTOL915553ceeedv/ne66+/nhUrVnDxxRdz1113Hfa8pagwEhERn1NZW3+nWLDN/6TWRvstZk7+Mtoh6enpDBs2jJdffpkRI0awbds2vvvuO+67776GfbZu3cqMGTNYtmwZRUVFDT1F2dnZDYXRwIEDj9j+0XqEDvllj9Dvfvc7nnvuOSorK/nnP/+Jn5/fYUXZ8TjUzi/9cizT0axbt47s7GxWr159xOctSYWRiIj4HLu9FrD+b1LHO/cefWfTr2bEvm3bMfZtPALF/sdlBJRtx4kZc3xPTOaTG6EyefJkbrrpJp555hnmzp1L586dGT58eMPr5557Lh07duSFF14gMTERl8tFr169qK2tbdgnODi4UZtdunTBZDKxadMmLrzwwsOOuWnTJmJjY4mIiGjURpcuXYD6Xqm+ffvy0ksvNYx1Ol6/bOdItm7dytSpU8nPzyc4OJj33nuPoqIizj77bEwmE8OGDePFF19s9HzJkiVNytBUGmMkIiI+xel0kOTaQ1fTHoKtB09z1uCjP/wDGjdwzH0bj9GxRcTh8A/G4m+jxun+334n6NJLL8VsNvPGG2/w2muvcc011zT0eO3fv5+srCzuvvtuzjzzzIZLYL8lOjqas846i2effZbq6upGr+Xn5/P6668zceLEo77fbDZz5513cvfddx/2/pNht9u54YYbeP7551m5ciV/+MMfmDNnDj169OCKK65g1qxZLFmy5LDnLU2FkYiI+BSH/eDJ22TG369lL4yYTCbs5vqb9Z3VZSfdXkhICJdddhnTp08nLy+vUcESGRlJdHQ0c+bMYdu2bXzzzTdMmzbtuNp9+umnsdvtjB49msWLF5OTk8O8efM466yz6Nq1KzNmzDjm+y+55BIsFgvPPPNMkz6P3W4nPz+/0aOoqAiAjz76iA0bNnDOOefQr18//vWvf+HvXz87+c8//9xwafBIz1uSCiMREfEtjvq7zBz+J95z0xRua/3gYnNd0+9GO5LJkydz4MABRo8eTWJiYsN2s9nMW2+9xcqVK+nVqxd//vOfefTRR4+rzbS0NFasWEGnTp249NJL6dixI2effTZdu3blhx9+OGyA9K/5+fkxZcoUHnnkESorj/9zzps3j3bt2jV6nHrqqUB9sfP444+zZs0a1qxZw6ZNm7j99tuB+ktsaWlpDe38+nlLMrl/azSWNCgrKyM8PJzS0lLCwsKMjiMiIr9SU1PDttXf06V9FK7IVIJCW37OHHt1BbYDW3G6TZjb9TnpcUat5Z577uGJJ55g/vz5DBkypNWP//TTT/PTTz81zN20bt06+vTpQ1FREaNGjWLVqlUAhz0/mpqaGnbu3ElqaioBAY0vjzbl/O0dPz0REZHjUJSfjQUnbnf9sh2twRoQXD/4Gjf2muYbg9PS7r33Xp588kl+/PHHRvMgtZZJkyZRUlJCeno6ffv25T//+Q9g7GU0UI9Rk6jHSETEs/30xasERySQ2L494cmtdzLdu28/xXYT8eHBxIZ69pIXvko9RiIiIr/izK2f58ZhCfyNPZuXf0AwLsxU2h2telxpfiqMRETEZyys7kolAZhsxx5M3NyCrfV3v1XWOn5zIkXxbCqMRETEJxRX1vJpWScOuEOxBrbO+KJDAqwWEkwlpLpzqa05ynIi4hVUGImIiE9Ysat+zTJ/iwk/S+ue3swmE6HmGoJMdhw1Fa16bGleKoxERMQnFKz9mjSysfmZDbmc5fQ7OK6ptnnmM5Kmaa6fuQojERHxCUO3/5MXTA8Q6K5ptHZYazEdnOjRz+k9t+z7kkM/c4vF8ht7HpsWkRUREa9XXVlOqmMHFqcbW1AQ+/btw9/fH3MrTrboMvlT43DjdtuprKzAYtEptrW4XC727dtHUFAQfie5DIx+aiIi4vV2/vwDPUwuComic5du7Ny5k927d7d6DmdJMRac1B0Af1vrThnQ1pnNZpKTkxsW3T1RKoxERMTrlW2tX3V9T3BP4qxW0tLSDLmctuGlR+hZvYLVHa6i/wW3tPrx2zKr1dosPYQqjERExOtZ8+sndqyN7w/U9x78evbj1lAXnkxZ4TfkFRYy1IDjy8lTYSQiIl6vQ+V6AMK6DDU0h3nojQxeP4i48gAudLtP+rKOtD7dlSYiIl6tcM8O4ijG6TaR0meYoVl6J0VjMZspLLeTV1pjaBY5MSqMRETEq63eb+Ey+994MvgmgkIiDM0SaLWQnhAKuFmza5+hWeTEeH1h9Mwzz5CSkkJAQACZmZksX778qPu+8MILnHbaaURGRhIZGcnIkSOPub+IiHi+VXurWObuTmGXS42OAsD/BXzNCtsNRC571OgocgK8ujB6++23mTZtGvfccw+rVq2ib9++jB49msLCwiPu/+2333LFFVewcOFCli5dSlJSEqNGjSI3N7eVk4uISHNZnV0CQP/kCENzHBIXGUqsqZTgAxuMjiInwKsLoyeeeILrrruOSZMm0aNHD2bPnk1QUBAvv/zyEfd//fXXueGGG+jXrx/p6em8+OKLuFwuFixY0MrJRUSkOTjqajk79ynOMy+hf2Kw0XEAiOw8CICkmq24XS6D00hTeW1hVFtby8qVKxk5cmTDNrPZzMiRI1m6dOlxtVFVVUVdXR1RUVFHfN1ut1NWVtboISIiniM7azWTzP/lAf+X6BwfbnQcAJK7Z+Bwm4mkjILcHUbHkSby2sKoqKgIp9NJfHx8o+3x8fHk5+cfVxu33347iYmJjYqrX5o5cybh4eENj6SkpJPOLSIizadoa/040WxbGuaTXCOruQQEBpNtSQYgb9OPBqeRpvLawuhkPfTQQ7z11lt8+OGHR50EbPr06ZSWljY8cnJyWjmliIgci3vvGgDKI3saG+RX9od1B8Ces9rgJNJUXjvBY0xMDBaLhYKCgkbbCwoKSEhIOOZ7H3vsMR566CG+/vpr+vTpc9T9bDYbNputWfKKiEjzCyvZCIBf+37GBvkVZ3wfKPmCwKL1RkeRJvLaHiOr1crAgQMbDZw+NJB66NCjz3z6yCOPcP/99zNv3jwyMjJaI6qIiLQAp8NBx9rtAMR2HWxwmsbCumSyzJXOj7WpRkeRJvLaHiOAadOmMWHCBDIyMhg8eDCzZs2isrKSSZMmAXD11VfTvn17Zs6cCcDDDz/MjBkzeOONN0hJSWkYixQSEkJISIhhn0NERJpuz/b1dDTZqXLb6NDl6L3/RkjuM5zeH8zAXQsXVdiJCdHVB2/htT1GAJdddhmPPfYYM2bMoF+/fqxZs4Z58+Y1DMjOzs4mLy+vYf/nnnuO2tpaLr74Ytq1a9fweOyxx4z6CCIicoIKt/4EQLa1MxY/z/p3fojNj9SY+ukDNuzVHc3exLN+k07AlClTmDJlyhFf+/bbbxs937VrV8sHEhGRVvEVQ7mp5imuSg8n3egwR9ArMZyCfUXs3LGF4V1jjY4jx8mre4xERKTtWr+3nHyiie0ywOgoR3Qx89kQMJk+6x8yOoo0gQojERHxOm63m/V7S4H6nhlPFJnYBYCYqu0GJ5GmUGEkIiJeZ++uLTzhfJgp/p+SFu+ZN8+0SxsIQHvnXmqqKgxOI8dLhZGIiHidgs1LOMuykvNsK/G3eOapLDohiQOEYTG5ydmiiR69hWf+NomIiByDPWcVAAcOzjDtiUxmM3ut9fMYHdi5xtgwctxUGImIiNcJLt5Q/x/t+hob5DeUh3cFwJW/weAkcrxUGImIiNdpX7MNgMjOAw1OcmzmhF4ABJdsNjiJHC8VRiIi4lX2F+whmlJcbhNJ3Ty7MApLG8ZbjhF8UDfM6ChynLx+gkcREWlb8rasJBrYa06gQ3Co0XGOKTl9AGc7r8ddBTdqaRCvoB4jERHxKvsK9lDttrIvqLPRUX5TkNWP5KggALLyyw1OI8dDhZGIiHiVeZxGT/vLLOl1n9FRjkuveBs9TLvI277W6ChyHFQYiYiIV9lcUI4LMyntE42OclyurHufz2130nHTi0ZHkeOgwkhERLyGy+Vma0H9JaluCZ49vugQW/veAERUbDU4iRwPDb4WERGvkbdrMx/wF362diYl+myj4xyXmM794UfoULcbp8OBxU+nXk+mHiMREfEahdtWkm7Oob9/Dn4euhTIr7VP7Um120qgqZa9uzYZHUd+g3f8VomIiAA1uT8DcCDE8+9IO8Ti58cev2QA9m1baXAa+S0qjERExGtY99fPIO2M8dw10o6kJKQLAPY89Rh5OhVGIiLiNWKq6pcCCerQx+AkTeOMrl8zzb9YA7A9nUaAiYiIV6iprqK9cy+YIKGrZy8F8mumzmcwM2sfxe6+ZBgdRo5JPUYiIuIVcreuwc/kopRgYtt1NDpOkySkD+Z557l8XJKC0+U2Oo4cgwojERHxCnsK9rHF1Z7d1jRMZu86fXWIDMLmZ6bW4WLPgSqj48gxeNdvloiItFlL6royqvZR3uvxtNFRmsxiNnFKVDljzMvJ3brO6DhyDCqMRETEK2w+uAhrt3ZhBic5MTe432K2dRamLZ8bHUWOQYWRiIh4hS15pQCke8lSIL9WF5UGgN/+LQYnkWPRXWkiIuLxSov38XXteLZaO9Ap5juj45yQgMQesBvCK3cYHUWOQT1GIiLi8XK3rCTYZCfBXEZYcLDRcU5IVMf6xWTb12XjdrkMTiNHo8JIREQ8XvnutQAUBHYyOMmJS+zUkzq3hWBTDQW56jXyVCqMRETE8xVuBKAqspvBQU6cv9XGXksiAIXb1xqcRo5GhZGIiHi8sLL6Acv+7XoZnOTk7A9MBaAyd6PBSeRoVBiJiIhHc7tctK/bBUB0p36GZjlZ21Ku4I+1U/nWb5jRUeQoVBiJiIhHK9iznTCqqHNbaN+lr9FxTkpA1xF86RrMyuJAo6PIUeh2fRER8Wg78/fzs3Mg4TYYbAswOs5JSYsLAWBrYQVutxuTyWRwIvk1FUYiIuLRVlfF8EjdrZzbI5HBRoc5SakxwYy0rKJTbS779/UhJi7B6EjyKyqMRETEo205uBSIt854/UsB/hbus75GoruQjdvPJybubKMjya9ojJGIiHi03Lx8wE3XeO8vjACKbMkAVORuMjiJHIl6jERExGO5XS5eLZmAw2bmgG0hEG90pJNWHZYKNT/h2qc10zyRCiMREfFY+wv3EGOy43KbsLXvaHSc5hGTBoUQWLbT6CRyBLqUJiIiHqto92YACkwx2AKCDE7TPELapQMQVZNtcBI5EhVGIiLiscrz6i837be1NzhJ84lJrZ+9u50rn7raGoPTyK+pMBIREY/lKNoOQGWIj1xGA+ISU6hy2/AzucjbtdnoOPIrGmMkIiIey790NwDuiBRjgzQjk9nCQ6HTWbnfyp/t0SQbHUgaUY+RiIh4rLDqHACscWkGJ2leB9qPYIM7he3FtUZHkV9Rj5GIiHisbx29yXEGk9qxl9FRmlWnmGAAduyrNDiJ/JoKIxER8UglVbU8WHMRABs79TY4TfPqEVLJZMt/SdkdADxhdBz5BRVGIiLikXbvrwIgLtRGkNW3TledAisZ7f86xeVhqDDyLBpjJCIiHik3L5dwKkiJDjY6SrNr17n+0mAUZZQe2GdwGvklFUYiIuKRIje8xtqA65lqn210lGYXEhpBIVEA5G//2eA08kteXRg988wzpKSkEBAQQGZmJsuXLz/qvhs2bOCiiy4iJSUFk8nErFmzWi+oiIg0mV/JLgBM4e2MDdJC9lmTACjbo8VkPYnXFkZvv/0206ZN45577mHVqlX07duX0aNHU1hYeMT9q6qq6NSpEw899BAJCQmtnFZERJoqpKr+Vn3/2M4GJ2kZFaGpADi0mKxH8drC6IknnuC6665j0qRJ9OjRg9mzZxMUFMTLL798xP0HDRrEo48+yuWXX47NZjuuY9jtdsrKyho9RESkdcTU7QUgPLGrwUlahiuqCwC2kh0GJ5Ff8srCqLa2lpUrVzJy5MiGbWazmZEjR7J06dJmO87MmTMJDw9veCQlJTVb2yIicnRVFaXEcgCAuI49DE7TMoIOLiYbWb3b4CTyS15ZGBUVFeF0OomPj2+0PT4+nvz8/GY7zvTp0yktLW145OTkNFvbIiJydAW769cQKyWY8KhYg9O0jMjup3Gu/R/8vvYeXC630XHkIN+aGKKZ2Wy2477sJiIizackdysAhX6JhBucpaW0j49ns7kzdQ43uSXVJEUFGR1J8NIeo5iYGCwWCwUFBY22FxQUaGC1iIgP2FkXySuOUWyI+J3RUVqMxWyi48E5mnYWaWkQT+GVhZHVamXgwIEsWLCgYZvL5WLBggUMHTrUwGQiItIcVtUl83fHRLamTTY6Sos6L3Adf/d7hbpNnxsdRQ7y2ktp06ZNY8KECWRkZDB48GBmzZpFZWUlkyZNAuDqq6+mffv2zJw5E6gfsL1x48aG/87NzWXNmjWEhITQpUsXwz6HiIgc7tByIB2jfG/W618azAaG+H3Fj7kRwASj4wheXBhddtll7Nu3jxkzZpCfn0+/fv2YN29ew4Ds7OxszOb/dYjt3buX/v37Nzx/7LHHeOyxxxg+fDjffvtta8cXEZFjsOzbSBjBJEf79rgbU3QXKIDAct2Z5ilMbrdbQ+GPU1lZGeHh4ZSWlhIWFmZ0HBERn1RXa8f0QAJ+JheF160hrn2q0ZFazPrvP6HX11eRY0ok6R7NgN1SmnL+9soxRiIi4rsK92zDz+Sixu1PTEKy0XFaVHRS/VxG8a4CHHW1BqcRUGEkIiIepjgnC4B8SwJmi8XgNC0rvkNn7G5/rCYnBTnbjY4jqDASEREPU1VQP4dRSUAHg5O0PLPFQp6lfpqZ4uyNBqcRUGEkIiIexr1/JwA1Ib59Ge2QAwH1y01VFGrNNE+gwkhERDyK7eAdWqYo3x10/Uvfpd1O35o5zA8cZ3QUwYtv1xcREd8UUZMLQEB825hjLjoxlVIq2bVfs197AhVGIiLiMVwuN6/WnUkX926Gp/Q1Ok6rSDm4LMguLQviEVQYiYiIx8gtqeaVupH4W0xsSm4bPUap4Sbu8XuVjmX7cNQNw8/fanSkNk1jjERExGPsONhr0jE6GD9L2zhFJURF8AfLN5xhXkVBjgZgG61t/NaJiIhXKNq1gZ6mnaRHtZ3TU6Nb9nN0y77R2s5vnoiIeLwOWa/wX9tdjLe/Y3SUVnXolv2q/C0GJxEVRiIi4jGCK+rnMLLEpRmcpHXVhKUA4N6v2a+NpsJIREQ8Rpw9G4Cw9t0NTtK6zNGdAQg8OIeTGEeFkYiIeISqihLiKAYgoVNvg9O0ruB2XQGIqskxOImoMBIREY+wd/sGAA4QSkRMgsFpWldMcn0PWZCrAofDYXCatk3zGImIiEco2VN/R1aBfxKRBmdpbXHtO5HpmEOBI5jFpbUkR+v0bBT1GImIiEeoK6i/I6ssOMXYIAYwWyyERSUAJi0NYjAVRiIi4hG+Mw3kgbo/UJh0ttFRDJESc3BpEBVGhlJhJCIiHuGb0kRecJ5DYI/RRkcxxCjLSl70f5TE9bONjtKm6SKmiIgYrs7pYvu+CgC6xocanMYYydZyMi2rWVustdKMpB4jERExXE72Tka5l9LLmk/7iECj4xhCt+x7BvUYiYiI4Q5sWsQz1ifZ7JeO2TzZ6DiGiE7qBkC8qxCnw4HFT6doI6jHSEREDFe3dz0AZaFdDE5inLj2nal1W7CaHOzbu9PoOG2WCiMRETGc7UAWAK7YdIOTGMfi50eBOR6AopzNBqdpu1QYiYiI4WKqdgAQ3KGPwUmMdcDWHoCq/G0GJ2m7VBiJiIihqivLSXTlAdCua3+D0xirOiSJCncAZWWlRkdps1QYiYiIoXZv+BGLyU0REcQkJBsdx1Abet9OL/tLfGg9z+gobZYKIxERMVTJ9hUA5AZ2MziJ8ZJiIwETu4s1+7VRVBiJiIih5jGU62v/zJZOE4yOYriO0UEA7N5fhdvtNjhN26RJEkRExFA/FljY7BrEJT0zjI5iuKRwG3P8H6ejq4Cy4gWERycYHanNUY+RiIgYpqbOydbC+qVAerUPMziN8QIDrPS37KCbeQ8Fu7OMjtMmqTASERHDbN+0ihtM7zMmKIuEsACj43iEIv9EAMrythicpG1SYSQiIoYp3/AVt/q/x59sX2AymYyO4xEqgpIAqNu33eAkbZPGGIm0YS6nk+KCPRTn76KyKIe6ygO4aspw15ThcLpYlnQtZhOYzSa6ly0hylyBNSyGwIgE4pLTiYjR+Ac5OdbcHwGojh9kcBLP4QzvCKVgKdltdJQ2SYWRSBtQUpRP3tbVFBbsZaF5CFsLy9lVVMULVVPpYd5NzBHec8AdwlXbRjQ8f91/DoMsGxq3SwgFfh04ENmbklPuYkjX9kQEWVv2w4jPcLtcdKxYC0B49+EGp/Ec/rGdIBtCqnKMjtImqTAS8TFOh4Md65dSvPl7LHt/IqF8PR3c+UQAie4gJthfAOovWRT6R9DNnc1+UyQlfjFU+4Xj8A/B6R+C3RrJxMQUXG43Dpebqj39+LkygIC6UsKdxcRRTAQVRDg2s69wL4PeugA/8yZOTYthQkopw4aegi0gyMivQjzcnu0/k0Qpdrc/nfqeZnQcjxHcLg2AmNpcg5O0TSqMRHxAfmkN32YV8t3WIsZvncow1h62z15THPsCU7gxI5GUdrF0ig0m0fYO7ugo4vytxB2h3canqmcbPauuLCdv50aKd61lT0ERXctC2VJQweKsAh7eNYXyRbCq4+WknzOVyNh2zflxxUfkrVtIErDd2o0eKqIbxCWnU+m2UeQOJcxuJ8BmMzpSm3LShVFxcTERERGYzRrHLdKaivbuZvui/xC040suK7+FKurv6Enz60wvv63sDOhJVdwAQjoPIbnP6SRGxpAI9G2m4wcGh9KpVyademWSAVwAbN9XwcLlqzCtMBNDMTG7Z1P59CssTfoDPS66i/DII120k7bKlL0UgNI4jS/6pciYdvTmNSpqnXxdWkuXOBVGremECqONGzfyySef8Mknn7Bs2TIiIyMZO3Ys559/PmPGjCE4OLi5c4oI9YOlN3z/MY5lL9K7cimZJhcAZ1pWsaf9WIZ3jWV4yv0EdXyevv6tP9anc2wIncedTt1Zm/npq1eJWD2bLs7tDN3zMqX/epulqRPpd/F0AoNDWz2beBaXy0146WYAQrr9zuA0nsVkNpMcFczGvDJ276+iS5z+f2lNx10YZWVlMWfOHD755BMKCgo466yz+L//+z8++eQTduzYwaeffsp9993HlVdeyYgRIzjvvPP405/+1JLZRdoMe00Vaz59jvYbX6C3u34VckyQ5ZfOgU7n8LfhVxPXvqOxIX/B32oj45zrcY+9ltXz/03kskdJceUwdOczTJkVx6hzLuXcPu10e3Ybtn5vKefX/INM625eGzzK6Dgep2N0UENhJK3L5D7OxVjmzp3LsmXLOP/88znzzDOxWo/8r9Fdu3bx8ccf8+mnn/L11183a1ijlZWVER4eTmlpKWFhmqFVWp7d4eSt5Tl8uXAhb9RNBaCMIDbFjiXhjBvo2H2gsQGPk9PhYPXnL7Br7WL+UnklABkdI7nvrHb06JJqcDo5EU6Hg4I92ykvyqWuuhxHTSUmix9+ASH4pwwhKSacQKvlqO//5/wt/GvBVsb0TGD2Vd7xe9yaPn3tcbpsm8v+dsM59U/PGB3H6zXl/H3chdGxrFq1igEDBpxsMx7PVwuj4sJcdq/+mrqKA6QMOZ+49jpRGc3tcvHdku+4a4mTnOJqAB4Leo0OXXrT57ybCAoJNzjhiampc/LC4h08++12QuuK+Nr2FzZH/o7OVzxKdHwHo+PJUTidLjbll7Mq+wArdx/g99vuZGjdMqwm5xH371XzIhUEERdqY0LYSgYE7SO4UyYd+5xOeHQ8bpeLUU98w9YiO49d0peLB+pn/2vL3n2MzA33szZwMH1vn290HK/XlPN3s9yVNnjwYG6++WaeeOKJhm2ff/45Y8eObY7mpYXkllTz6QdvcO3uv9D/4FiVkp8fZf1Zs+l1yrkGp2u7tq39gbrPbiOzNgtqHyU+LJkpZ6RxzsA3CPA/+r/AvUGAv4Wbzkzj4owOLH7zMcLyqxlc8jmlzy1iee/byLjgZswW7/6MvqKyvISsJZ/g2Pg57UpX8fuaR6jFH4D+fiEM93NS67aw3xRFjTmIWnMAZrcTm7sav4BgqHFTWG4nveYLhlpWQ84LsAjyicWMk/kU85L1HEb31GW0IwmKT4MNEGHfa3SUNqdZeoz69+/P+eefz+7du5k7dy4AAwYMYNWqVScd0JP4Uo/Rgk0FTH17DTU1NSyw3orDL5hAVyXt2Eed28KqnneSeelfjI7ZplRXlrP237eTkfcmfiYX1W4rC9Lv44yLriPI6psza2T99DV+X9xGZ+cOADb59yTw90+S0l2rrBuhurKcjYvewbz+PXpUrsBmqmt47f/cd1LV8XcMTI4kM7aWjhF+xLXvjMXvyL+bpVV17NxfSeWyf2PNWUxC2XqS3I1P8itDz2DgrR+26GfyVnt3bibx1Uzsbn/8ZxToHwwnqdUvpR0qgmbNmsX333/Pm2++yeDBg1m9evXJNu1RfKEwcjmdfPXWk9zwcxdcmOmfHMG9o5Pp0zmJmqoK1s+eQEZZ/diwZTEXMfCPs/Ez4O6mtubnxR8TtfA22rsLAFgZMoIOlz9BfIfOBidreY66Wn565yH6bHmaIJOdOreFFR2uZsDEx72+h8wbOJwufti+n52LX+eSnJkEm2oaXttriic7dgShfc+j66Cz8Lee3G3jpQeKyN28grJdq6A0l9Rzbm0Tv+MnwlFXi/sfCfibnORPXklCUhejI3m1Vr+UduggU6dOJTIykvPOO4/q6urmaFqaUWnxPna+MJ4x1cuY5nc++wb9lbvG9cDqVz8HVUBQCAOnvsvSf9/N0J3PcKAgm0mvrOTp8RmEB/kbnN43VdbUsW7OtQwt/giAAqLJO+1BBp55ubHBWpGfv5Uh42eQn30FWW/dTP+qJWzYXcAd/1zM/Rf0YnjXWKMj+hy3y8XWNd/xdVYxL28Poaiili6mQCbaasgjll2JY4kfNp7UHoNIbMY56sIjYwgfejYMPbvZ2vRVfv5W9pjj6ODOY392lgqjVtQsv/Hffvttw39PmDCB66+/nsLCwuZo+jc988wzpKSkEBAQQGZmJsuXLz/m/u+++y7p6ekEBATQu3dvPv/881bJabQd65dR/tSp9KteRo3bn8yMTO49v1dDUXSIyWxm6IQHWXHqS9xtmsJ324u54Nkf2L6vwqDkvmtV9gHGPvU9Swv8cLlNLIu5iOBpK+nXhoqiX0pITqP/X79g9SnP8WbQeLKLq5jw8nLuffUzivK0mGZzqKooZdm7j7P9gQy6fnIeSRtnU1RRS1SwlaGZp7DxnE9ImLGFodc/SademZg0ca+him3tAajM32pwkralWS6lGeXtt9/m6quvZvbs2WRmZjJr1izeffddsrKyiIs7fIGDJUuWcPrppzNz5kzOOecc3njjDR5++GFWrVpFr169fvN43ngpze1yseLjp+m15h8EmezsNcVRdcErdOl7ym++d+PeMq577SdyS6p4LOAlOp9yMf3PGt8KqX2bo66Wl+f/xMPfl+B0uUkK8+e5My30yjzT6Ggeo8Lu4J/zt/DKD9t52/8+uplz2NhjGoMuulVjLU5ATVUFaz58grStLxJNKQB2tz+rIs6i5ux/cWpaDP4WFUGe5vtn/khswfdsTZvMOVdNMzqOV2vxMUZlZWXMnTuX/Px8UlNT6du3L7179yYoqHXXusnMzGTQoEE8/fTTALhcLpKSkrjpppu44447Dtv/sssuo7Kyks8++6xh25AhQ+jXrx+zZ8/+zeO1VGFUWl3HvNU76FLyA9aQaGJTehDfofNJ/2utrLSYLS9d1zBmaF3AQJKvfYOImITjbqOows5/5jzG1LJHAFiaOIFBkx7TuKMTtGf7BirevAZ3bRXn197P2f06ct/5vQgP1KXKI9m0bQd+b11KmqP+X8xZft3wO/9JOvceYnAy7+B2u1nx3xdJ+elB4igGDo4b6vwH0sf8X5P+Fkjre2HxDh74fBPj+rTjmT/4/pQ4LanFxxj9/ve/Z+3atQwaNIhPP/2UrKwsADp37kzfvn15++23T6TZJqmtrWXlypVMnz69YZvZbGbkyJEsXbr0iO9ZunQp06Y1rrpHjx7NRx99dMT97XY7dru94XlZWdnJBz+CPQeqeO7T7/jWduv/jkUwuwJ6UJV0Ou0GjCO5W//jLpScLjcfrs5l7uff867jOxyYWdHpT2ReeX+T/7UdE2Ljxil/4ccXdzGk8B2G7n2V9Y+tpd01r2vemSZwu1ys+Ogpeq19gA4mO2XmIOaMCWLEiP5GR/No3bt0wnnHjyx771F6bvoX3RxZON47mx+/v4zeVz5EcGiE0RE91rbCcu7+aD39d//E7f7F5BNLdu8b6X/uDSSe5CBqaR3J0fWdDdma/bpVnVBhtHTpUr799lsGDapf+M9ut/Pzzz+zZs0a1q49fFXvllBUVITT6SQ+Pr7R9vj4eDZv3nzE9+Tn5x9x//z8/CPuP3PmTO69997mCXwMNj8LwzrHsLGgF8HOUhKdewkzVdKnZgVsXQFbH+cVy0Ws7XozmalRZKZGkhId3KhQcrtcZGetZueahfwtuz85B2qAUJ4Jv45zzxjO0MwTnyvE32pjyA0vsPK/mXRffie97GsofO40No+dQ/rgs5rhG/BtJUX57Jh7LYMrvwMTbLD2JvrKuYxITjM6mlew+PmRefl09uVezpY3b2FAxSKGFLxJ4eNf8t0ZrzPq1KGYzVpa5JC6Wjuvzl/Ow0vKqXO62eB/DkO6dGTIxVNJ0Ar2XqVjQ2FUaXCStuWECqM+ffrg94u5K2w2GxkZGWRk+NbcI9OnT2/Uw1RWVkZSUlKzH6dLXAgPXnsB9euT16+LtXXzSvavX0BwziK61vzMt9Wd+HZ1Lh+uzuUU88+86P84hZZ46kxWLG4HMc5COpqq6Qi0s/+N8qA+/PH0zkw+9ezDBlifqIHjrmV3p/7w7tV0dO0h8r+XsXjXDE675BateXUU67/7mLgFUxlAMbVuC6s638igP9xz1Llf5Ohi26cS+5dPWPvNO8R+dxclzkBu+Hw/PdZ+z11jezC0c7TREQ23e/Nqat+7llNr7Tzi/Acju7fnnnN7khSlCVu9UXK4P/+1TifZXUhp8c+ER+kOzdZwQn+dH3nkEWbMmMF7772HzWZMl2xMTAwWi4WCgoJG2wsKCkhIOPJ184SEhCbtb7PZDPl8toAg0vqdRlq/04D6gZPXZZfRO7ucZTuKGZa7mUBTLR1dOf97k6l+MGVWYB/+b1AHhp515jHXKTpRHbsPpGLq96ycM5G+5Yv512oXr1Wv5NGL+xAZrHFHh9gdTp74Moszlj1InLmYbHN7as+fw5C+pxodzev1PeNSaoaOY+GinwheWsP63DImvbCIF2PeIuGsm+nSBr9jl9PJ8rdn0i9rFgGmOkrNwcwZE8yIEYOMjiYnISgwkHhzKaFUs3X3JhVGreSEBl/n5ORw5ZVXsmfPHi677DKGDBlC//79W6Q35VgyMzMZPHgwTz31FFA/+Do5OZkpU6YcdfB1VVUVn376acO2YcOG0adPH0MHXzdVXa2dguytlORtx1lnx2S2EJ6QSnzHbgQEBrdKBrfLxWfzPufWHyzUOl20Cw/gmQtSGNBdk7VtK6zglrdWs2FvGR1M+3i4/fcMmPRPAoNDjY7mc/ZX2Jn19VYifvoXt/q9A8DqoGGEjr6rzRRI+dlbKXr9WnrZ1wCwLiCDhKte1JqHPmLTA0PpXreRlYMeZ+C4a42O47Va/K60wYMHU1BQwPDhw8nOzmbt2rWUlZURFRVF//79+eqrr044fFO8/fbbTJgwgeeff57Bgwcza9Ys3nnnHTZv3kx8fDxXX3017du3Z+bMmUD97frDhw/noYceYty4cbz11ls8+OCDPn27fktbn1vKTW+uxm9/Fh9Y72F9ygQGX/VAm7xU5Ha5WP7+E6z5eR0zay8jMsifhy/qw6ieuvOnpWVvWUPhZ/+gf+nXWEz1f9LWBA0lYMStPjsOzu1ysfLT5+i26n5CTdVUuW383PM2Bl98q+Yf8iEr/nkJg0q/4seUGxky8UGj43itFr8rbf369SxdupS+ffs2bNu1axerV69m3bp1J9LkCbnsssvYt28fM2bMID8/n379+jFv3ryGAdbZ2dmYf/EHYtiwYbzxxhvcfffd3HnnnaSlpfHRRx8dV1EkR9arfTif3nQqP7zwIaFF1QzdPZsNjywlbuJrxCamGB2v1eTnbKPw9T+SWfMTmWbISz6DP115OfFhAUZHaxOSu/Yjedp7jQqkflVL4fOL2Ti/J9nnvMVZvZOw+Mgg7QOVtdz94Vqu2vJvQs3VbPbrTsjlL5LZRX/LfI0jPAVKwVyy0+gobcYJ9RgNHz6cmTNnMmzYsJbI5LHUY3RsKz56hp6r7yXIZOcAYWQPf4K+v7vE6Fgtyu1yseLDJ+m+7iFCTdXUuP1Z0/VmBl9+lyYiNFDO1rXk/fch+h34iq9cA5lSdwvJUUFcc0oKl/SPJ7iV51xrTt9uLuCv7/9MYbmdZHMRD3XdwuDx92huMR/10yfPkbHqDjZYe9Pzzu+NjuO1WvxS2gcffMDs2bN55513iIiIONGcXkeF0W/L3rKGurcn0tlZ/6+bH2Mvoe9E3xxfc6iXqE/NTwBs9utO0KWzSe7az9hg0qAoP5sPl2/nmTV1lFTVkWLK42PrDDbHnU3CGTfQsftAoyMet+rKctbNvZmN+ZXc65hA59hgZl3Wn94dwo2OJi1o84qvSf/vReQTQ8Lftxsdx2u1eGF06PJUdHQ0F154IZmZmfTv359evXphtfruv1pUGB2fmupK1r50E5lF7wPwL+v1nDr+TgZ2jDQ4WfOoc7qY+902zl44jiRTYX0vUdoUBl1+d5scW+UNqmodvL9yD+5v/sHVde82bN9g7U1N34n0HnklVpvnXvZc/8OnRHx9Gx3cebjcJp7t+TrXXjiGAH/1Svq6/YW5FD99FrvcCZw+40ts/pol/0S0eGG0e/du1q5d2zCh45o1a9i1axd+fn5069atVccZtSYVRk2zbuF7FC1+geuqb8RtsnD96Z3581lp2Py894/5jzv287eP1rO1sIKLzIu5Nvg7gi95Vr1EXsLldLLh+49xLHuRPpVLGgZqFxHBtoRxRI65k24pnjOje2nxPrJeu5nBJfWLXRcSRcHvHqf38N8bnExai9vtptc9X1JZ6+TracPpEhdidCSv1OKF0ZGUl5ezZs0a1q1bx4033tgcTXocFUZNV1pVx72fbuCD1bnYqOWFkDnEnHkzPYaebXS0Jtm7czN5H0znpf29+Nw1hOhgK9PPTueiAYmYzN5b6LVlBXu2s+PLZ+mS8z6xHOCAO4TB9mfpFB/J+f0TOb9HBO3jYgzJVldrZ9WHs+i66WkiqV+KaFn0BXS/6gnCIjSRZVszZtZiNueX8/LEDM5Ij//tN8hhWqQwys/PJzIy8rgnPNyxYwedOnU6rn29hQqjE/fVhnx2vXc317vrL2P8FHYWKX94gpiEZIOTHduBfXlkvTuDAQXvYzU52euOYnaf95l2di8ignz3snFbUldr5+eF77Bx2w7u2zuYWqcLcLPYOpU6/xAKE0YQ2e8c0vqPaPFLpQ6niy/W5zN7/hpeKf8jsaYydpuTqBr9ON0zR7foscVz/fHfP/Hlhnz+Pq4rE0/ranQcr9QihdHTTz/N7bffzqhRozjvvPM455xziI1tPAvnsmXL+Pjjj/n444/Jzs6mvLz8xD+FB1JhdHJK9xew+Y2/MqjoY8wmNxXuQH7ueBW9LppOaHiU0fEa2V+why0fP0qv3LcJNVUD8LNtAIFj/0GXvqcYnE5aSmlVHV+sz2Pliu95uPAGzKb//XmscAeyM6A7FXED8e8xjvY9hpAQFtAsy+Hk52xj23fvcGf2ILJLagG4MvBHzu0ewoALpuKvRV/btPkvzyBz9xw2xp3LkBtfMDqOV2qxS2nbtm3jk08+4eOPP+bHH39k0KBBjB07lp07d/LZZ58BMG7cOM4//3zOOussAgI8dzDjiVBh1Dy2rFoEn/+Fro4tABwglE1drqfPJXcSYjN28HJOcRWrP5zFqOwnCDDVAbDd0omq4TPoffqFhmaT1nVgXx7bl36EaeuXpJUvI4z/rXD+L8eF/NNxCcFWCxlRNdzieJm6wFhcwbFYQhPwD43BLyAU/8AQLNEpBES0w89iwmmvwl22l/KiXKr27caRu5bIop/o5sgC4Ibam/kx8HSuHtqRa05NJSxAA20Flr3zKJkb/8GawCH0u/1Lo+N4pVYZY7R//34+++wzPv/8c1JSUjj//PMZOnSoTy8mqsKo+bicTlZ/+QqxPz1OsiuXj53DuNs8lUsykpg4LIXk6NabZ8ZRV8viDbt5bfUBFm3ZRwabedd2H1v8ulIx6Gb6jfyD5iRq45wOB7s2/UTRpsVY9izn/bohvFPaA6fLzenmtbxmffio732w7grmOOsXcc0wbeY9232H7eNym9hs68W+XtczeMz4FlnnULzXz4s/pPc3E9ltTqLjjPVGx/FKhgy+PmT9+vU+O5O0CqPm56irZdVns3lxawhfFdcPKuxt3sHM0Peo6noh3X43vkUWTnQ6HGxe9iUVq9+jc9E3fOYYzN8dEwE4LS2Gv/Qsp8/gM7S0ghxVrcNFdnEVuTs2YtvxFe6KQixV+7DZiwioK8PqqsHqruYF08W8XXc6DpeL/uYdvGz+ByXmcEr946gITcWcNJiOg8ZpbTM5qtwdm2j/2hDsbn/8ZxToH2onoNULo/Lyct58801efPFFVq1ahcPhONkmPZIKo5bjcrlZvHUfc3/Yxak7/sl1fvW3J9e5LWy1dqc08VQiepxBx55DCApp+oR2TpebnC1rKFj7Ff45P5Basbrhbh+AbBJ4fdAHXJ6ZQmpM6yzEKyJyPBy1dnggAT+Ti4JrVxHfQYt1N1WrFUaLFy/mpZde4v333ycoKIjTTjuNjz76CKfTeaJNejQVRq1j764sdi96jYTdn5Lq2t3oNafbxITQOQTHdyIpMoj+7g3EOvLwCwzDbLHicthxOWpxVBRRV1nCB6Hj2VJQztbCCt42301/87aGtkoJJitiOLY+F5I+7BxsAd67TISI+Lbce7vS3l3AhlFv0nPYWKPjeJ0WXUQ2Pz+fV155hZdeeom8vDzOP/983nnnHUaNGsXmzZv56KOPTjS3CACJKd1ITHkAeIC9OzeTs+JTrLu/pX3lRgKo4YeiQNxFBQA85/88gy0rjtiOy21ikv1UHAd/zddbu+BvC6E8YQgRPc6gS/8RDNbdPiLiBYqt7WlvL6Aqf6vRUXxekwqjc889lwULFvC73/2Ov//971xwwQUEB//vsoMvD7wWYySmppOYmg7cBsC+wnxeLjaTXVxFTnEV5h1dWVsFVmcVZrcDp8kfl9mPWv9w6gJj+Wt6J1ISYumWEEpS5FjMPrK6uoi0LQWRA9iX6+JAbTCDjA7j45pUGP33v//lD3/4A1OnTiUjI6OlMokcVWxcAr+L++WWZ4+5f2aLphERaR07etzAg7s2c647kYuMDuPjmnTLzZIlSwgMDOSMM86gW7du3HfffWzfrtV+RUREWlJyVP3Vmez9lQYn8X1NKoyGDBnCCy+8QF5eHrfffjtfffUVXbt2ZciQITz11FMUFBS0VE4REZE2q+PBud2K9xcanMT3nfTt+llZWbz00kv8+9//pqCgAJPJpLvSREREmlFlZQWOR9IIN1VRest2wiONWeDYWzXl/H3Ss9d169aNRx55hD179vDBBx8wbty4k21SREREfiE4OASHqX6JmMLdmwxO49uabVpfi8XCBRdcwCeffNJcTYqIiMhB+/wSASjbu8XgJL5N6x2IiIh4gYqgDgDU7tthcBLfpsJIRETEC9SFpwBgKdllaA5fp8JIRETEC/jFdAIguDLH4CS+TYWRiIiIFwhtlwZAdO1eg5P4NhVGIiIiXiCmYw++dfblC8cA7HUOo+P4rCYvIisiIiKtLzoukRtMd1JV5+T0kho6x4YYHcknqcdIRETEC5hMJpKj6mfAzt5fZXAa36XCSERExEskRwURRiUF+blGR/FZKoxERES8xNXV/2ZdwHWkbHzO6Cg+S4WRiIiIl/CPbA9AQEW2wUl8lwojERERLxEU3wWAiJo9BifxXSqMREREvERUUjcAEpz5uJwug9P4JhVGIiIiXiKuQxccbjMBpjqK8nU5rSWoMBIREfES/lYbBeZYAIqyNxmcxjepMBIREfEixdZEACrytxmcxDdp5msREREvsjNmBKt3x+DvjGew0WF8kHqMREREvEhe16uY4ZjE0ro0o6P4JBVGIiIiXqRjdP2yILuLtSxIS1BhJCIi4kWSo4IJoYqAog1GR/FJGmMkIiLiRZJDXawPuBbcUFZyEWER0UZH8inqMRIREfEiIaERFBMGQOFu3bLf3FQYiYiIeJl9fvW37Jft3WpwEt+jwkhERMTLlAd1AKC2cLvBSXyPCiMREREvUxeeAoC5dJehOXyRCiMREREv4xfdCYCgyhyDk/geFUYiIiJeJrRdFwCi7bkGJ/E9KoxERES8THRKL/7jOJOXHKOpdbiMjuNTvLIwKi4uZvz48YSFhREREcHkyZOpqKg45nvmzJnDiBEjCAsLw2QyUVJS0jphRUREmllMXCIPmK7nRcdYckuqjY7jU7yyMBo/fjwbNmxg/vz5fPbZZyxevJjrr7/+mO+pqqpizJgx3Hnnna2UUkREpGWYTCaSow4uDbK/0uA0vsXrZr7etGkT8+bNY8WKFWRkZADw1FNPMXbsWB577DESExOP+L6pU6cC8O2337ZSUhERkZaTFmnCXLib4j3h0C3O6Dg+w+t6jJYuXUpERERDUQQwcuRIzGYzy5Yta9Zj2e12ysrKGj1EREQ8wZXVr/OFbTqJWa8ZHcWneF1hlJ+fT1xc48rYz8+PqKgo8vPzm/VYM2fOJDw8vOGRlJTUrO2LiIicKFN0ZwACy3cZG8THeExhdMcdd2AymY752Lx5c6tmmj59OqWlpQ2PnBzNFyEiIp4huF1XAKJqdG5qTh4zxujWW29l4sSJx9ynU6dOJCQkUFhY2Gi7w+GguLiYhISEZs1ks9mw2WzN2qaIiEhziEnpCUCCqwBHXS1+/laDE/kGjymMYmNjiY2N/c39hg4dSklJCStXrmTgwIEAfPPNN7hcLjIzM1s6poiIiEeIS0ylxu1PgKmO3OwttO/cy+hIPsFjLqUdr+7duzNmzBiuu+46li9fzg8//MCUKVO4/PLLG+5Iy83NJT09neXLlze8Lz8/nzVr1rBt2zYAfv75Z9asWUNxcbEhn0NERORkmC0W8iz1572i7E0Gp/EdXlcYAbz++uukp6dz5plnMnbsWE499VTmzJnT8HpdXR1ZWVlUVVU1bJs9ezb9+/fnuuuuA+D000+nf//+fPLJJ62eX0REpDkcCEwGoCY/y+AkvsPkdrvdRofwFmVlZYSHh1NaWkpYWJjRcUREpI374PXnyNq4loheo/jTFb83Oo7Hasr52yt7jERERATquo7jeee5LKlqb3QUn6HCSERExEulRAcDsEvLgjQbFUYiIiJeKjUmiK6mHHqWLqbWXmN0HJ/gMbfri4iISNPEhtj40HoPwaYadu88n47p/Y2O5PXUYyQiIuKlTGYzeX7144sO5OiW/eagwkhERMSLlQYdvGW/YIvBSXyDCiMREREvVhueCoC5eLvBSXyDCiMREREv5hfTBYDgit0GJ/ENKoxERES8WFiHbgDE1O4xOIlvUGEkIiLixeJT6hePjWc/1ZXlBqfxfrpdX0RExItFxCTwOFexrTaKW4qrSQ8ONTqSV1OPkYiIiJdbHHsFX7gy2VniNDqK11NhJCIi4uU6xdQvDbJTS4OcNBVGIiIiXq57qJ2R5pVYdy40OorXU2EkIiLi5Qa41vKi9XFO2TvX6CheT4WRiIiIl4tonw5AbF2uwUm8nwojERERLxef2hOAGEooLy02OI13U2EkIiLi5UIjoikiAoD8HeuNDePlVBiJiIj4gAJrEgClORsMTuLdVBiJiIj4gIrQTgDUFWQZnMS7qTASERHxAe7oNABsJdsMTuLdtCSIiIiIDzB3HcNN62uoCu7OS0aHOQF5pdXMWbyD7u3CuDQjybAc6jESERHxAYmde/KpaxiLS6JwOF1Gx2mynA1LiVj2KOsWvmtoDhVGIiIiPiAxPJAAfzN1Tjc5B6qNjtNk7h2LucXvQy40LTI0hy6liYiI+ACz2cS4iBwiiteSnxVEaszvjI7UJLvtQeBKpya6j6E5VBiJiIj4iCuYR4b/An7cHgWneFdh9J7jNJbX9mRWv36G5tClNBERER9RF9kFAHOx992ZtmNfJQCdYoMNzaHCSERExEdYE7oBEF6xw+AkTVNaWU15RTkAqTHGFka6lCYiIuIjIpN7wXJo58jB7XJhMntH/0f+pqVssk1igzmN0IBxhmbxjm9MREREflNi51643CbCqGR/Ya7RcY5bac56zCY3JmuQ0VFUGImIiPiKgMBg8sxxABTs+NngNMfPVbAZgMrQzgYnUWEkIiLiU4oCOgJQsWejwUmOX2DpwcHicenGBkGFkYiIiE9ZkfInzrPfzwLrCKOjHLeYml0AhLTvaWwQNPhaRETEp4SkZrButY2IYu9YFqSmqoJ2rkIwQUKXvkbHUY+RiIiIL+kcFwLAtoJyg5Mcn9xt6zCb3BwglKjYRKPjqMdIRETEl3SNDeFKy3y6VeZQXtqf0PAooyMd065SB6scpxMeGsIoD5hewPgEIiIi0mzCg63c7P8xV/l9Te6WVUbH+U1rquO5zfF/LEybbnQUQIWRiIiIz8kPSAWgbPc6g5P8tq0FFQB0iQs1OEk9FUYiIiI+piq8KwCuAs+/Zb86fwv+OEg7ODbKaBpjJCIi4mPMCT2gAELKthod5Zhq7XZerLgRk81NUfBqINboSOoxEhER8TURHetve0+w7zI2yG/Yu3MD/iYndqzEt0s2Og6gwkhERMTndOjaD4AYSij24DXTinfVj4HK9U/2mAVvPSOFiIiINJugkHD2muIB2LvNcwdg2/M2AVAa3MngJP+jwkhERMQHPZf4IH1q5rCS7kZHOSr/4voxUI7orgYn+R8VRiIiIj4oNKkXZYSQ5cEzYEdW7QAgMLGHwUn+R4WRiIiID+qWUD8v0JZ8zyyMHHW1dHDsASC2Ux+D0/yPbtcXERHxQekRbu72+zedCvbhds33mMHNh+wuLOF9x4V088vj3I7pRsdp4FnfUhMUFxczfvx4wsLCiIiIYPLkyVRUVBxz/5tuuolu3boRGBhIcnIyN998M6Wlpa2YWkREpHWkJEQx0fIlZ/AThXm7jI5zmE37HTzrvIC5cdMxWyxGx2ngtYXR+PHj2bBhA/Pnz+ezzz5j8eLFXH/99Ufdf+/evezdu5fHHnuM9evX88orrzBv3jwmT57ciqlFRERahy0giFxLewAKtq42OM3hNufVX+Lr3s4zlgI5xCsvpW3atIl58+axYsUKMjIyAHjqqacYO3Ysjz32GImJiYe9p1evXrz//vsNzzt37swDDzzAlVdeicPhwM/v8K/Cbrdjt9sbnpeVlbXApxEREWkZ+4M60bEih6o9PwMXGR2nkdpdP9LR5KBbnOdcRgMv7TFaunQpERERDUURwMiRIzGbzSxbtuy42yktLSUsLOyIRRHAzJkzCQ8Pb3gkJSWddHYREZHWYo+qLzos+zYYnORwE/P/wSLbNAabNxsdpRGvLIzy8/OJi4trtM3Pz4+oqCjy8/OPq42ioiLuv//+Y15+mz59OqWlpQ2PnJyck8otIiLSmgKT+gEQU77F2CC/Ul5aTKK7EID23QYanKYxjyqM7rjjDkwm0zEfmzeffGVZVlbGuHHj6NGjB3//+9+Pup/NZiMsLKzRQ0RExFskpA8GoIMzh5rqSoPT/E9u1koACokiPDrB4DSNedQYo1tvvZWJEycec59OnTqRkJBAYWFho+0Oh4Pi4mISEo79BZeXlzNmzBhCQ0P58MMP8ff3P9nYIiIiHim+fSdKCMEFFO3cStce/YyOBEDp7rUA5Ad0Ju439m1tHlUYxcbGEhsb+5v7DR06lJKSElauXMnAgfVdcN988w0ul4vMzMyjvq+srIzRo0djs9n45JNPCAgIaLbsIiIinsZkNnN7wst8uauOhyuj8JSFN9wF9WOeqiI9JdH/eNSltOPVvXt3xowZw3XXXcfy5cv54YcfmDJlCpdffnnDHWm5ubmkp6ezfPlyoL4oGjVqFJWVlbz00kuUlZWRn59Pfn4+TqfTyI8jIiLSYpI6JAEmNu71nDurw0rrxzz5tettcJLDeVSPUVO8/vrrTJkyhTPPPBOz2cxFF13Ek08+2fB6XV0dWVlZVFVVAbBq1aqGO9a6dOnSqK2dO3eSkpLSatlFRERaS8/29eNjN+Z5RmHkdrnoULcTgKhO/Q1OczivLYyioqJ44403jvp6SkoKbre74fmIESMaPRcREWkLekc4ecH/cVLzCnA51xk+y3ReSRX/qJ1MD0sO13fpa2iWI/HKS2kiIiJyfDq2T+B08zq6mPawd+cmo+OwPq+Cz11D+Cz6GqwBgUbHOYwKIxERER/mb7WR7ZcCQOHWFcaGAdYfHOvUu324wUmOTIWRiIiIjzsQ1g0A+561BieBwC0fcbp5Lf3iPXM0jwojERERH+dOqL/7K6jY+KVBLtn3DK9ZH2ZgYJ7RUY5IhZGIiIiPC0+tn/OvffUW3C6XYTmK9u4mhhKcbhPJPQYbluNYVBiJiIj4uI49h+Bwm4mhhILcHYblyN28FIBsSxJBwZ65zJYKIxERER8XGBzKVr80VrrS2LbLuAXRq3atAqAoNN2wDL9FhZGIiEgb8FqPF7mo9l6+qzBu0daAop8BcMZ73vxFh6gwEhERaQP6JkUAsC6n1LAMiVVZAIR1yjAsw29RYSQiItIGHCqMtuUW4DJgjdD9BXuIZz8ut4nkHkdf8N1oKoxERETagLTYYD6y3cOPTCBna+vPZ7T+gIWz7TO5P/AvhIRFtvrxj5cKIxERkTbAz8+CzWrFYnJTuHlJqx9/bW4Fm9wdKU4Z1+rHbgoVRiIiIm1EaVQfAJx7Vrb6sVdnHwCg/8FLep5KhZGIiEgb4Z9cP+g5qmR9qx7X7XIxbvfDXGmZz4DEgFY9dlOpMBIREWkjErqfAkBK3XZqqitb7bh7tv/MxXzN3X7/IT3Rc8cXgQojERGRNiMxpRv7CcdqcrJr3Q+tdtz8Dd8DsNOahtWmHiMRERHxACazmd3B9eOMDmR912rHdeUsB6A0ynMndjxEhZGIiEgbUp48kg+dp/BjK86AHVOyDgBriufOX3SIn9EBREREpPVEDJvIhNVphO/z5xaXG7PZ1KLHq6ooJcWxE0zQvvfpLXqs5qAeIxERkTakR2IYgf4WSqvr2LavosWPt2PNovq5k4givkPnFj/eyVJhJCIi0ob4W8wMSAqjqymHrJ9XtPjxCnb8jNNtIjtsQIsfqzmoMBIREWljbvD7iK9st9Nu3bMtfqznq8+gn/0F9gy4vcWP1RxUGImIiLQxYV2GAtChbDVul6vFjlNT52RNTgnlBNGnZ48WO05zUmEkIiLSxnQecAa1bgsJFLFnx4YWO86anBJqHS5iQ22kxgS32HGakwojERGRNiYoJJyttvoenL2r5rXYcZyLHud96z3cEL0Gk6ll735rLiqMRERE2qCydvXLg/jvXtxix4jI+56B5q30iHK32DGamwojERGRNiiq91kAdK5cidPhaPb2a6or6WzfCEBCnzObvf2WosJIRESkDerc93Qq3IGEU8nOn5c0e/tbl39JgKmOQqJI7tqv2dtvKZr5WkREpA3y87fyTuwUvtnrx+nF0XRp5vYrN9SPXdoVOZQ4s/f0w3hPUhEREWlW5v7j+d7VmwXbypq97XZFPwDg121Us7fdklQYiYiItFFndo8H4KfdByipqm22dvfuyqKjaw8Ot5kuQ85ptnZbgy6liYiItFFJUUGcF5NHn5Kv2bSomKFnX9ks7a7YloefczDxQSYyImKapc3Woh4jERGRNuyK8PVc6/cFtg3vNFubn+YGc2PdVJYNafklR5qbCiMREZE2LHrgBQB0LV+OvabqpNursDtYvLUIgDPS4066vdamwkhERKQN69L3NIqIIMRUTdaPX5x0eyuW/0CSM4fUmGDSE0KbIWHrUmEkIiLShpktFrZHnQ5Azdr3T7q9sGWPs8B2GzOivvaaZUB+SYWRiIhIGxc88FIA0g8sxF5TecLtVFeW0738RwA6DBjdLNlamwojERGRNq7HkLEUEE0YVWxY9MEJt7NhwX8IMtnJNcXTpc8pzZiw9agwEhERaePMFgs7EsaQ545izfbcE24nYMNbAGQnXYDJi2a7/iXNYyQiIiJEjfsbpzxzNuY9Fs4pqyEuLKBJ79+7K4te9jW43CZSzpzcQilbnneWcyIiItKsuiW1Y0DHaBwuN28uz2ny+3fPfw6AjQF9adexW3PHazUqjERERASAq4Z2xIKTnB/fo67Wftzvq7Y7iMr9BoDafhNbKF3r0KU0ERERAeDsngl0CbiXno5tLP9vMIMvvPm43vfeqj3cV3M/fwhbx4yzrmrhlC1LPUYiIiICgNXfQnmX+kVfO6x7+rh6jWrqnDy/eAd1+NFpxFVY/Ly7z0WFkYiIiDToc8E09hNOoruAVR89+Zv7/3fe5xQeKCM+zMYlGR1aIWHLUmEkIiIiDYJCwtna7Y8AdN/4T4r27j7qvkX52Zy18nrmW29jxqmhBFm9u7cIvLgwKi4uZvz48YSFhREREcHkyZOpqKg45nv++Mc/0rlzZwIDA4mNjeX8889n8+bNrZRYRETEO2RcfBtb/dIIo5Kc//wfLqfzsH1cTie5r1xDGFXU+Ydy9ikZBiRtfl5bGI0fP54NGzYwf/58PvvsMxYvXsz1119/zPcMHDiQuXPnsmnTJr788kvcbjejRo3CeYQfuIiISFvl52/FfP7T1Lot9K9awtev/gO3293wutvlYvnzf6JvzQrsbn/8Lp6D2WIxMHHzMbl/+Um9xKZNm+jRowcrVqwgI6O+Qp03bx5jx45lz549JCYmHlc769ato2/fvmzbto3OnTv/5v5lZWWEh4dTWlpKWFjYSX0GERERT7f8wyeJXv0sl9Tew+CeXbnu1CSCC9dQs+gJ+lUtBeCnAQ+Tcd7/GZz02Jpy/vbKi4FLly4lIiKioSgCGDlyJGazmWXLlnHhhRf+ZhuVlZXMnTuX1NRUkpKSjriP3W7Hbv/fiPyysrKTDy8iIuIlBl94M2/FnUXpf3cyb0M+qzdsZFnAFADq3BZW95nBYA8viprKKy+l5efnExcX12ibn58fUVFR5OfnH/O9zz77LCEhIYSEhPDFF18wf/58rFbrEfedOXMm4eHhDY+jFVAiIiK+6vJTuvPplFMZ16cd8cFmiohgZejv2HPpFwy+aKrR8ZqdRxVGd9xxByaT6ZiPkx0sPX78eFavXs2iRYvo2rUrl156KTU1NUfcd/r06ZSWljY8cnKaPkW6iIiIt+uRGMYzfxjAJ38bT8zfdzPw1o9I7ZlpdKwW4VGX0m699VYmTpx4zH06depEQkIChYWFjbY7HA6Ki4tJSEg45vsP9f6kpaUxZMgQIiMj+fDDD7niiisO29dms2Gz2Zr8OURERMQ7eVRhFBsbS2xs7G/uN3ToUEpKSli5ciUDBw4E4JtvvsHlcpGZefwVrNvtxu12NxpHJCIiIm2XR11KO17du3dnzJgxXHfddSxfvpwffviBKVOmcPnllzfckZabm0t6ejrLly8HYMeOHcycOZOVK1eSnZ3NkiVLuOSSSwgMDGTs2LFGfhwRERHxEF5ZGAG8/vrrpKenc+aZZzJ27FhOPfVU5syZ0/B6XV0dWVlZVFVVARAQEMB3333H2LFj6dKlC5dddhmhoaEsWbLksIHcIiIi0jZ55TxGRtE8RiIiIt6nKedvr+0xEhEREWluKoxEREREDlJhJCIiInKQCiMRERGRg1QYiYiIiBykwkhERETkIBVGIiIiIgepMBIRERE5SIWRiIiIyEEetYispzs0SXhZWZnBSUREROR4HTpvH89iHyqMmqC8vByApKQkg5OIiIhIU5WXlxMeHn7MfbRWWhO4XC727t1LaGgoJpOpWdsuKysjKSmJnJwcrcPWgvQ9tw59z61D33Pr0PfcOlrye3a73ZSXl5OYmIjZfOxRROoxagKz2UyHDh1a9BhhYWH6H68V6HtuHfqeW4e+59ah77l1tNT3/Fs9RYdo8LWIiIjIQSqMRERERA5SYeQhbDYb99xzDzabzegoPk3fc+vQ99w69D23Dn3PrcNTvmcNvhYRERE5SD1GIiIiIgepMBIRERE5SIWRiIiIyEEqjEREREQOUmHkAZ555hlSUlIICAggMzOT5cuXGx3J58ycOZNBgwYRGhpKXFwcF1xwAVlZWUbH8mkPPfQQJpOJqVOnGh3FJ+Xm5nLllVcSHR1NYGAgvXv35qeffjI6lk9xOp387W9/IzU1lcDAQDp37sz9999/XOttydEtXryYc889l8TEREwmEx999FGj191uNzNmzKBdu3YEBgYycuRItm7d2mr5VBgZ7O2332batGncc889rFq1ir59+zJ69GgKCwuNjuZTFi1axI033siPP/7I/PnzqaurY9SoUVRWVhodzSetWLGC559/nj59+hgdxScdOHCAU045BX9/f7744gs2btzI448/TmRkpNHRfMrDDz/Mc889x9NPP82mTZt4+OGHeeSRR3jqqaeMjubVKisr6du3L88888wRX3/kkUd48sknmT17NsuWLSM4OJjRo0dTU1PTOgHdYqjBgwe7b7zxxobnTqfTnZiY6J45c6aBqXxfYWGhG3AvWrTI6Cg+p7y83J2WluaeP3++e/jw4e5bbrnF6Eg+5/bbb3efeuqpRsfweePGjXNfc801jbb9/ve/d48fP96gRL4HcH/44YcNz10ulzshIcH96KOPNmwrKSlx22w295tvvtkqmdRjZKDa2lpWrlzJyJEjG7aZzWZGjhzJ0qVLDUzm+0pLSwGIiooyOInvufHGGxk3blyj32tpXp988gkZGRlccsklxMXF0b9/f1544QWjY/mcYcOGsWDBArZs2QLA2rVr+f777zn77LMNTua7du7cSX5+fqO/H+Hh4WRmZrbaeVGLyBqoqKgIp9NJfHx8o+3x8fFs3rzZoFS+z+VyMXXqVE455RR69epldByf8tZbb7Fq1SpWrFhhdBSftmPHDp577jmmTZvGnXfeyYoVK7j55puxWq1MmDDB6Hg+44477qCsrIz09HQsFgtOp5MHHniA8ePHGx3NZ+Xn5wMc8bx46LWWpsJI2pwbb7yR9evX8/333xsdxafk5ORwyy23MH/+fAICAoyO49NcLhcZGRk8+OCDAPTv35/169cze/ZsFUbN6J133uH111/njTfeoGfPnqxZs4apU6eSmJio79mH6VKagWJiYrBYLBQUFDTaXlBQQEJCgkGpfNuUKVP47LPPWLhwIR06dDA6jk9ZuXIlhYWFDBgwAD8/P/z8/Fi0aBFPPvkkfn5+OJ1OoyP6jHbt2tGjR49G27p37052drZBiXzTbbfdxh133MHll19O7969ueqqq/jzn//MzJkzjY7msw6d+4w8L6owMpDVamXgwIEsWLCgYZvL5WLBggUMHTrUwGS+x+12M2XKFD788EO++eYbUlNTjY7kc84880x+/vln1qxZ0/DIyMhg/PjxrFmzBovFYnREn3HKKaccNt3Eli1b6Nixo0GJfFNVVRVmc+PTpMViweVyGZTI96WmppKQkNDovFhWVsayZcta7byoS2kGmzZtGhMmTCAjI4PBgwcza9YsKisrmTRpktHRfMqNN97IG2+8wccff0xoaGjDterw8HACAwMNTucbQkNDDxuzFRwcTHR0tMZyNbM///nPDBs2jAcffJBLL72U5cuXM2fOHObMmWN0NJ9y7rnn8sADD5CcnEzPnj1ZvXo1TzzxBNdcc43R0bxaRUUF27Zta3i+c+dO1qxZQ1RUFMnJyUydOpV//OMfpKWlkZqayt/+9jcSExO54IILWidgq9z7Jsf01FNPuZOTk91Wq9U9ePBg948//mh0JJ8DHPExd+5co6P5NN2u33I+/fRTd69evdw2m82dnp7unjNnjtGRfE5ZWZn7lltucScnJ7sDAgLcnTp1ct91111uu91udDSvtnDhwiP+PZ4wYYLb7a6/Zf9vf/ubOz4+3m2z2dxnnnmmOysrq9XymdxuTeEpIiIiAhpjJCIiItJAhZGIiIjIQSqMRERERA5SYSQiIiJykAojERERkYNUGImIiIgcpMJIRERE5CAVRiIiIiIHqTASkTZj4sSJrbesgIh4Ja2VJiI+wWQyHfP1e+65h3/9619osn8RORYVRiLiE/Ly8hr+++2332bGjBmNVqAPCQkhJCTEiGgi4kV0KU1EfEJCQkLDIzw8HJPJ1GhbSEjIYZfSRowYwU033cTUqVOJjIwkPj6eF154gcrKSiZNmkRoaChdunThiy++aHSs9evXc/bZZxMSEkJ8fDxXXXUVRUVFrfyJRaQlqDASkTbt1VdfJSYmhuXLl3PTTTfxpz/9iUsuuYRhw4axatUqRo0axVVXXUVVVRUAJSUlnHHGGfTv35+ffvqJefPmUVBQwKWXXmrwJxGR5qDCSETatL59+3L33XeTlpbG9OnTCQgIICYmhuuuu460tDRmzJjB/v37WbduHQBPP/00/fv358EHHyQ9PZ3+/fvz8ssvs3DhQrZs2WLwpxGRk6UxRiLSpvXp06fhvy0WC9HR0fTu3bthW3x8PACFhYUArF27loULFx5xvNL27dvp2rVrCycWkZakwkhE2jR/f/9Gz00mU6Nth+52c7lcAFRUVHDuuefy8MMPH9ZWu3btWjCpiLQGFUYiIk0wYMAA3n//fVJSUvDz059QEV+jMUYiIk1w4403UlxczBVXXMGKFSvYvn07X375JZMmTcLpdBodT0ROkgojEZEmSExM5IcffsDpdDJq1Ch69+7N1KlTiYiIwGzWn1QRb2dyaxpYEREREUA9RiIiIiINVBiJiIiIHKTCSEREROQgFUYiIiIiB6kwEhERETlIhZGIiIjIQSqMRERERA5SYSQiIiJykAojERERkYNUGImIiIgcpMJIRERE5KD/Bz9w+lMlekMNAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -898,7 +898,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:24:44 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 14:29:53 2025 CEST
" ], "text/plain": [ "" @@ -910,7 +910,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -948,7 +948,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/12_gradients_framework.ipynb b/docs/tutorials/12_gradients_framework.ipynb index def6562b..4ba11c61 100644 --- a/docs/tutorials/12_gradients_framework.ipynb +++ b/docs/tutorials/12_gradients_framework.ipynb @@ -33,8 +33,8 @@ "The Qiskit Primitives work as an abstraction level between algorithms and (real/simulated) quantum devices. Instead of having to manually deal with tasks such as parameter binding or circuit transpilation, the `primitives` module offers a `Sampler` and an `Estimator` class that take the circuits, the observable Hamiltonians, and the circuit parameters and return the sampling distribution and the computed expectation values respectively.\n", "\n", "`qiskit.primitives` provides two classes for evaluating the circuit:\n", - "- The `Estimator` class allows to evaluate expectation values of observables with respect to states prepared by quantum circuits.\n", - "- The `Sampler` class returns quasi-probability distributions as a result of sampling quantum circuits." + "- The `StatevectorEstimator` class allows to evaluate expectation values of observables with respect to states prepared by quantum circuits.\n", + "- The `StatevectorSampler` class returns quasi-probability distributions as a result of sampling quantum circuits." ] }, { @@ -133,7 +133,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAABuCAYAAABPyiT+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAM8UlEQVR4nO3de3TU5Z3H8fckIZnEBIRAhMglEDJyMUCEcqncglBQC7ruKlZKpVKLKwrniGQP1K6tHg7JoltkWSlVKtgqm4pYbhZTikK4Q4MCMRBICBiSAaIUEkgmmeS3f0SCKYklw0ymz+TzOid/8Ls8853wyyfP78lvnsdmWZaFiIihgvxdgIjIzVCIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRgvxdwFyPcuywOXydxlNExaGzWbzWnOWBRXVXmvO5+zB4MW3j2VZuMvNugZCwr17Ddzw6zb7K8o/5nLhfuRxf1fRJCF/WAV2u9faq6iGER96rTmfy7wPwr340+Qud/FO/A+912AzmJL3e1pFeO8auFG6nRQRoynERMRoCjERMZpCTESMphATEaMpxETEaAoxETGanhOTgFF6+BNyX0iuty3IfgthsQ6iR08l5vvPYgsO3Eu+47C+TFj7y3rbqi6Xcym/mLw128lZ8SFWdY2fqvOdwP0flRar7cgf0GbgfWBZVF1w8uUnb1P42+eoKMyh28zf+Ls8n8tfm0nh1iyw2QjvcCs9Hx7F4F9Oo03C7eyeu9zf5XmdQkwCTkSPu4gefe1p9w73PU32070o+fObxP5wAa3adPBjdb735eGT5L+fWffvYys/4l8yX8Px2D1kpa7G9eUlP1bnfRoTk4AXbL+FW+4YCpaFy5nn73Kanbvcxfms49iCgmjd7TZ/l+N1CrGvZWRkMGHCBKKjo4mIiCAxMZGFCxdSWVnp79LEC66GV0hkOz9X4h9RcbXh5fpbmZ8r8T7dTgKvvvoqzz//PADdunWja9euHDlyhPnz57Nx40a2bNlCeHi4n6uUG1XjuoL7UkntTBAXnJzf/GvK8w8SkTAY++0Of5fncyHhoYS1i6obE7vjR98jOrEH57OOcym/2N/leV2LD7F9+/Yxd+5cbDYbb731Fo8/Xjt7RF5eHhMmTGDXrl3MmzePxYsX+7dQuWHFq1+kePWL9bbdOuwhus74Xz9V1LySUh4lKeXRetsKNu1h77w3/VSRb7X4EHv55ZexLIsnnniiLsAA4uPjWbFiBaNGjWLZsmXMnz+fmJgYP1badNtKzjFu9yek9unHc/G9GjwmdMMfuC+mE38cMqKZq/Od9uN/StvvPoxVXUX5qcM416ZRWVKIrdW1aWJKszM58dK9151ruSuxaqoZ+IFBk5n9nWO/y6Bgw26CWoXQtldX7pz5ILd0iqbadW1oJCg0hIkZizj5QSaHXltbt3344pnYO9zKlikL/FG6RwJuTKykpISUlBR69uyJ3W6nS5cuzJ49m8uXLzN9+nRsNhtLly4FoLS0lIyMDACefPLJ69oaOXIkDoeDyspK1q9f36zvQzwX1imB1gPG0mbgvXR8KIWeP9vAlRP7Ob3sqbpjovqOICm9rN5X39dzCYlqT+xjL/ux+pt3Kd9JceZhzmw9yJHX1/GXx1NpPyCeYWkz6o6pqXSzY9b/kDjrIdr26QZA1wnfofO4Qex87nV/le6RgAqxTz/9lMTERBYtWoTT6aRPnz5UVVWxZMkSJk+eTE5ODgADBgwA4ODBg1RWVhIWFsagQYMabHP48OEA7Nmzp1neg3hfZO/v0m70VC7sSKcsZ1eDx9RUuchPfYjIPsPp9PD8Zq7Qt84fOEbemu10f/BuOgy6o277l4fyyV62nhFLniWiUzuGLXqKvfPfpPzsBT9W23QBE2IlJSVMnDgRp9PJnDlzKC4uJisrC6fTSVpaGps2bWL//v3YbDb69esHQG5uLlA7mB8S0vCddXx8fL1jxUydJv8cgoIpevc/G9x/+vWnqKmqIG72yuYtrJl89qs11LirSZo7uf72xe9TU13NpD8vwrnzCCfX7fRThZ4LmBCbNWsWhYWFPPPMM7zyyitERUXV7UtJSaF///643W7i4uJo3bo1ABcu1P7Gadu2baPtXt139VgTXamupsTlavCrpbB36km7EY9SeugvlGZn1tt3bsMSLh7YSPy8PxIUFuGnCn2rtMDJyXU7iR3Zj5ghveu2W+5qzu8/hj26DSfSP/ZjhZ4LiBDLyckhPT2d9u3bs3DhwgaPGThwIAD9+/ev21ZRUQFAaGhoo22HhYUBUF5e7q1ym91Lx7KJzVjX4FdL0vHhn0FQUL3eWOmhjyl8+z/okfIeYbfF+a+4ZnDotdpe1zd7YzFDetNzcjI5Kz5k8Es/Jtje+M/CP6uA+Ovk6tWrqampYcqUKURGRjZ4zNXnvL4ZYvavF7b4tgdaXV/3Vjx9TmzQoEE4nc4mnRMeFMTnA4Z59HoN+UnXHvxrbJcG9927Z5tXXsPhcFBe470PF9tCw7lt8fEmnROVOJqB66xG94d36V3vr46uswXkL3qEztMWEZU42tNSAXA4ErAqvfeLrpUVxIsMbtI5zt3ZrOz0b43uv3j8DG93vhZgIRF2hi+eyV8XvMPRVR9x7wcvcde8x9j/4kqPanYkOKiyeXYNdOzYkQMHDnh0bkCE2NatWwFITk5u9JjCwkKgfojdyK3ijdxyfhun08mZM2eadE5EcDAM8OjlGtQzMpJ7Ovj24yZFRUVcqfbeYwlBYRH4suIa1xXyFj5Im8GTiLn/mZtur6ioiBrXFS9UVivUFoxPvwHAd37xI8pOn+Poys0A7Ji9lElbXuH0n/Zydk9Ok9srKi6i0mr+R1MCIsROnToF1A7QN8TtdrNzZ+2A5TdDzOFw1J3vdrsbHNzPy8urd2xTdezYscnnhAeZd5cfGxvr9Z6YL13Y9T7lJz+j4kwuF3akX7e/79LPCe3Q9Ybbi42N9XpPDB/OmnP7mCS6T7qbdffMqdtWeuosf13wDnf/aibrx8xp8rqXsZ1ib6on5qmACLHLly8DjY9bpaenU1JSQlRUFN27d6/bnpSURGhoKC6XiwMHDjB06NDrzt2xYwcAQ4YM8ag2T7rIVkWFcetO5ubmYvPiupPlbt+uOxmdPJXo5Kleay8397hX152sulLh03Unz2w9yLu9rr/Gjq7cXNcza6rc47lad9JTV1M8Kyvrun3FxcXMnTsXgH79+tVboTgqKopx48YB8MYbb1x37vbt28nNzSU0NJQHHnjAF6WLyE0KiBAbO3YsAGlpafWe59q/fz/JycmUlJQA1x5y/aYXXnih7nOTq1atqtuel5fH9OnTAZgxY4ZxHzkSaSkCIsRSUlKIjo7miy++oG/fviQmJpKQkMDgwYPp0aMHY8aMAeqPh101dOhQUlNTsSyLadOmERcXR1JSEr169eLEiRMMGTKE1NTU5n5LInKDAiLEOnfuTGZmJvfffz92u52CggLatWvH8uXL2bRpU13vrKEQg9oQ3Lx5M+PGjePixYscPXoUh8PBggUL2LZtGxERZj4AOap9DJUTH2n0w98AlRMfCagPf0vLExAD+wC9e/dm48aN120vKyujoKCAoKAg7rzzzkbPHz9+POPHj/dliSLiAwHRE/s22dnZWJZFQkKCsT0qkZs1rXgNoa0D8/oP+BA7fPgw0PitpIiYLWBuJxujEJOrTr46hYozx7DclbRq34W4Z1fQqq3nD1mapu+/T6LzPQMJiQjjs/9+j/y1mf/4JAMoxKTF6PyTxXXLtTnXpFK0+hd0e/rXfq6qGVmw4Xtziewaw8TNaZzbd5SywvP+ruqmBXyIXf1cpchX29/lq49/R01VBVZlBSGt2/u7pGaV++4WAMpOn+Ps3hxuG9aHsve8MwGAPwV8iIkAlH2+g3Mbl9ArbTetbo3hb3vXU7S64QkSWwrLanzGD5ME/MC+CIC77ALB4VGEREVTU1XJ+Y+W+7ukZpcwufah78jOHYgZ3JtzHsxU8c9IPTFpEdrcNYGvPvk92U/fQXBUNK37j+XiV02bIsl0tuAgJmYsIiQijH0//21AjIeBQkxaCFtIK3qk1J9y5/ap5ixLdrOuTpZ48L/+z8+VeJ9uJ0XEaAoxETGaQkxEjKYQExGjKcRExGg2K1CeeAsglmWBaQvbhoXVm/r7ZlkWVDT/wjkesweDF98+lmU1eaEOfwsJ9+41cKMUYiJiNN1OiojRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjR/h+QPuxlfzmJTQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAATEAAABuCAYAAABPyiT+AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAADPFJREFUeJzt3Xt01OWdx/H3JCGZxASEQITIJRAycjFAhHKp3IJQUAu67ipWSqVSiysK54hkD9SurR4OyaJbZFkpVSrYKpuKWG4WU4pCuEODAjEQSAgYkgGiFBJIJpnkt39EgimJJcNMps/k8zonf/C7PPOd8Msnz+/Jb57HZlmWhYiIoYL8XYCIyM1QiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkYL8XcBcj3LssDl8ncZTRMWhs1m81pzlgUV1V5rzufsweDFt49lWbjLzboGQsK9ew3c8Os2+yvKP+Zy4X7kcX9X0SQhf1gFdrvX2quohhEfeq05n8u8D8K9+NPkLnfxTvwPvddgM5iS93taRXjvGrhRup0UEaMpxETEaAoxETGaQkxEjKYQExGjKcRExGgKMRExmp4Tk4BRevgTcl9IrrctyH4LYbEOokdPJeb7z2ILDtxLvuOwvkxY+8t626oul3Mpv5i8NdvJWfEhVnWNn6rzncD9H5UWq+3IH9Bm4H1gWVRdcPLlJ29T+NvnqCjModvM3/i7PJ/LX5tJ4dYssNkI73ArPR8exeBfTqNNwu3snrvc3+V5nUJMAk5Ej7uIHn3tafcO9z1N9tO9KPnzm8T+cAGt2nTwY3W+9+Xhk+S/n1n372MrP+JfMl/D8dg9ZKWuxvXlJT9W530aE5OAF2y/hVvuGAqWhcuZ5+9ymp273MX5rOPYgoJo3e02f5fjdQqxr2VkZDBhwgSio6OJiIggMTGRhQsXUllZ6e/SxAuuhldIZDs/V+IfUXG14eX6W5mfK/E+3U4Cr776Ks8//zwA3bp1o2vXrhw5coT58+ezceNGtmzZQnh4uJ+rlBtV47qC+1JJ7UwQF5yc3/xryvMPEpEwGPvtDn+X53Mh4aGEtYuqGxO740ffIzqxB+ezjnMpv9jf5Xldiw+xffv2MXfuXGw2G2+99RaPP147e0ReXh4TJkxg165dzJs3j8WLF/u3ULlhxatfpHj1i/W23TrsIbrO+F8/VdS8klIeJSnl0XrbCjbtYe+8N/1UkW+1+BB7+eWXsSyLJ554oi7AAOLj41mxYgWjRo1i2bJlzJ8/n5iYGD9W2nTbSs4xbvcnpPbpx3PxvRo8JnTDH7gvphN/HDKimavznfbjf0rb7z6MVV1F+anDONemUVlSiK3VtWliSrMzOfHSvdeda7krsWqqGfiBQZOZ/Z1jv8ugYMNuglqF0LZXV+6c+SC3dIqm2nVtaCQoNISJGYs4+UEmh15bW7d9+OKZ2DvcypYpC/xRukcCbkyspKSElJQUevbsid1up0uXLsyePZvLly8zffp0bDYbS5cuBaC0tJSMjAwAnnzyyevaGjlyJA6Hg8rKStavX9+s70M8F9YpgdYDxtJm4L10fCiFnj/bwJUT+zm97Km6Y6L6jiApvazeV9/XcwmJak/sYy/7sfqbdynfSXHmYc5sPciR19fxl8dTaT8gnmFpM+qOqal0s2PW/5A46yHa9ukGQNcJ36HzuEHsfO51f5XukYAKsU8//ZTExEQWLVqE0+mkT58+VFVVsWTJEiZPnkxOTg4AAwYMAODgwYNUVlYSFhbGoEGDGmxz+PDhAOzZs6dZ3oN4X2Tv79Ju9FQu7EinLGdXg8fUVLnIT32IyD7D6fTw/Gau0LfOHzhG3prtdH/wbjoMuqNu+5eH8sletp4RS54lolM7hi16ir3z36T87AU/Vtt0ARNiJSUlTJw4EafTyZw5cyguLiYrKwun00laWhqbNm1i//792Gw2+vXrB0Bubi5QO5gfEtLwnXV8fHy9Y8VMnSb/HIKCKXr3Pxvcf/r1p6ipqiBu9srmLayZfParNdS4q0maO7n+9sXvU1NdzaQ/L8K58wgn1+30U4WeC5gQmzVrFoWFhTzzzDO88sorREVF1e1LSUmhf//+uN1u4uLiaN26NQAXLtT+xmnbtm2j7V7dd/VYE12prqbE5Wrwq6Wwd+pJuxGPUnroL5RmZ9bbd27DEi4e2Ej8vD8SFBbhpwp9q7TAycl1O4kd2Y+YIb3rtlvuas7vP4Y9ug0n0j/2Y4WeC4gQy8nJIT09nfbt27Nw4cIGjxk4cCAA/fv3r9tWUVEBQGhoaKNth4WFAVBeXu6tcpvdS8eyic1Y1+BXS9Lx4Z9BUFC93ljpoY8pfPs/6JHyHmG3xfmvuGZw6LXaXtc3e2MxQ3rTc3IyOSs+ZPBLPybY3vjPwj+rgPjr5OrVq6mpqWHKlClERkY2eMzV57y+GWL2rxe2+LYHWl1f91Y8fU5s0KBBOJ3OJp0THhTE5wOGefR6DflJ1x78a2yXBvfdu2ebV17D4XBQXuO9DxfbQsO5bfHxJp0TlTiageusRveHd+ld76+OrrMF5C96hM7TFhGVONrTUgFwOBKwKr33i66VFcSLDG7SOc7d2azs9G+N7r94/Axvd74WYCERdoYvnslfF7zD0VUfce8HL3HXvMfY/+JKj2p2JDiosnl2DXTs2JEDBw54dG5AhNjWrVsBSE5ObvSYwsJCoH6I3cit4o3ccn4bp9PJmTNnmnRORHAwDPDo5RrUMzKSezr49uMmRUVFXKn23mMJQWER+LLiGtcV8hY+SJvBk4i5/5mbbq+oqIga1xUvVFYr1BaMT78BwHd+8SPKTp/j6MrNAOyYvZRJW17h9J/2cnZPTpPbKyouotJq/kdTAiLETp06BdQO0DfE7Xazc2ftgOU3Q8zhcNSd73a7Gxzcz8vLq3dsU3Xs2LHJ54QHmXeXHxsb6/WemC9d2PU+5Sc/o+JMLhd2pF+3v+/Szwnt0PWG24uNjfV6Twwfzppz+5gkuk+6m3X3zKnbVnrqLH9d8A53/2om68fMafK6l7GdYm+qJ+apgAixy5cvA42PW6Wnp1NSUkJUVBTdu3ev256UlERoaCgul4sDBw4wdOjQ687dsWMHAEOGDPGoNk+6yFZFhXHrTubm5mLz4rqT5W7frjsZnTyV6OSpXmsvN/e4V9edrLpS4dN1J89sPci7va6/xo6u3FzXM2uq3OO5WnfSU1dTPCsr67p9xcXFzJ07F4B+/frVW6E4KiqKcePGAfDGG29cd+727dvJzc0lNDSUBx54wBeli8hNCogQGzt2LABpaWn1nufav38/ycnJlJSUANcecv2mF154oe5zk6tWrarbnpeXx/Tp0wGYMWOGcR85EmkpAiLEUlJSiI6O5osvvqBv374kJiaSkJDA4MGD6dGjB2PGjAHqj4ddNXToUFJTU7Esi2nTphEXF0dSUhK9evXixIkTDBkyhNTU1OZ+SyJygwIixDp37kxmZib3338/drudgoIC2rVrx/Lly9m0aVNd76yhEIPaENy8eTPjxo3j4sWLHD16FIfDwYIFC9i2bRsREWY+ADmqfQyVEx9p9MPfAJUTHwmoD39LyxMQA/sAvXv3ZuPGjddtLysro6CggKCgIO68885Gzx8/fjzjx4/3ZYki4gMB0RP7NtnZ2ViWRUJCgrE9KpGbNa14DaGtA/P6D/gQO3z4MND4raSImC1gbicboxCTq06+OoWKM8ew3JW0at+FuGdX0Kqt5w9Zmqbvv0+i8z0DCYkI47P/fo/8tZn/+CQDKMSkxej8k8V1y7U516RStPoXdHv6136uqhlZsOF7c4nsGsPEzWmc23eUssLz/q7qpgV8iF39XKXIV9vf5auPf0dNVQVWZQUhrdv7u6RmlfvuFgDKTp/j7N4cbhvWh7L3vDMBgD8FfIiJAJR9voNzG5fQK203rW6N4W9711O0uuEJElsKy2p8xg+TBPzAvgiAu+wCweFRhERFU1NVyfmPlvu7pGaXMLn2oe/Izh2IGdybcx7MVPHPSD0xaRHa3DWBrz75PdlP30FwVDSt+4/l4ldNmyLJdLbgICZmLCIkIox9P/9tQIyHgUJMWghbSCt6pNSfcuf2qeYsS3azrk6WePC//s/PlXifbidFxGgKMRExmkJMRIymEBMRoynERMRoNitQnngLIJZlgWkL24aF1Zv6+2ZZFlQ0/8I5HrMHgxffPpZlNXmhDn8LCffuNXCjFGIiYjTdToqI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0RRiImI0hZiIGE0hJiJGU4iJiNEUYiJiNIWYiBhNISYiRlOIiYjRFGIiYjSFmIgYTSEmIkZTiImI0f4fkD7sZX85iU0AAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -200,11 +200,11 @@ } ], "source": [ - "from qiskit.primitives import Estimator\n", + "from qiskit.primitives import StatevectorEstimator\n", "from qiskit_algorithms.gradients import ParamShiftEstimatorGradient\n", "\n", "# Define the estimator\n", - "estimator = Estimator()\n", + "estimator = StatevectorEstimator(seed=42)\n", "# Define the gradient\n", "gradient = ParamShiftEstimatorGradient(estimator)\n", "\n", @@ -230,7 +230,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAACuCAYAAACC94w4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAcXElEQVR4nO3deVhTZ74H8G8SloAssikBKoIIouKOLdXW3Qu06Iy713ac8dGrbbVO6+Myatdrp1od116nnbEu41i0U1GrdRm0VVFrRRG3kUUJVoRowY0oS5Zz/2DISEEhOSc5gN/P8/BIznvOyS8x4Zv3vCfvUQiCIICIiIhsopS7ACIioqaMQUpERCQCg5SIiEgEBikREZEIDFIiIiIRGKREREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIREYnAICUiIhKBQUpERCQCg5SIiEgEBikREZEITnIXQETUlKWnp1u1fnFxMVJSUjBixAj4+/s3eLvY2FhrSyMHYY+UiMiBiouLsW7dOhQXF8tdCkmEQUpERCQCg5SIiEgEBikREZEIDFIiIgfy9PREfHw8PD095S6FJKIQBEGQuwgioqbK2rN2bcWzdhsv9kiJiByooqIC169fR0VFhdylkEQYpEREDqTVajFy5EhotVq5SyGJcEIGqpMgCEBT+8Ts6gqFQiHJrgQBKDdJsiuHUasAiR4+gKrXgLGsab0GnNykew087QRBgMnUtN4EKpVKlv9/BinVraICxjET5a7CKk5fbQLUakn2VW4CXtgrya4cJi0RcJPwHW0sq8CWdq9It0MHmHD173B2l+Y18LQzmUzYvn273GVYZeTIkXBycnys8dAuERGRCAxSIiIiEXhol4jIgTp06IBTp07JXQZJiD1SIiIiERikREQOdO3aNUyaNAnXrl2TuxSSCIOUiMiBysrKcPHiRZSVlcldCkmEQUpERCQCTzYiklDphcPIWTigxjKlugVcgyLh1/9VtHp5BhSq5vu2C4zrhPiUD2osMzwow/28Ilz9+iguf7EXgsksU3VE9tF839FEMvJ5cTy8eyYCggDDHR1KDv8NBevfRnnBZYS+8Re5y7O7vJQ0FHyXASgUcAtoiYjR/dD7g9/Cu30wfpj9udzlEUmKQUpkB+7hPeDX/z+zAgUkvo5Lr3dAceo6BL3yEZy9A2Sszv5KLmiRtz3Ncjt74wH8Om0VIv97EDIWJ6Oi5L6M1clLo9Hggw8+gEajkbsUkgjHSIkcQKVugRZRzwGCgArdVbnLcThjWQV+zsiFQqmEV2hrucuRlbe3NxISEuDt7S13KU1OeXk57t9vfB/C2CNtJPLz83Ho0CGkp6cjPT0dFy5cgMFgwMSJE7Fx40a5yyMJVAeok4evzJXIw7NtVYBW3NXLXIm87ty5g4MHD2Lw4MHw8fGRuxy7Ky8vx5UrV6DVapGXl4f79+/DaDTC2dkZfn5+CAsLQ3h4OMLDw584T255eTmWLFmCBw8eYOHChfDy8nLgo3gyBmkjsXLlSqxatUruMkgi5oqHMN4vrrqCyh0dft7/GcryzsK9fW+ogyPlLs/unNxc4OrraRkjjfrNUPjFhOPnjFzczyuSuzxZ3bx5E0uXLkVMTEyzDtJr164hNTUVaWlpT7z26pEjRwBU9dQHDhyIQYMGwd/fv8Y61SF6+fJlAMCKFSvw7rvvNpor/TBIGwl/f38kJiYiNjYWvXr1wr59+7B27Vq5yyIbFSW/h6Lk92osaxk3Am2m/p9MFTlW9znj0H3OuBrL8r89iR//sE6mishR7t69i/Xr11s9DeK9e/ewY8cO7Ny5E/Hx8Rg3bhxcXV1rhai7uzteeeWVRhOiAIO00Vi4cGGN2ydPnpSpEmkdKb6FIT8cxuKOXfB2uw51ruOy+yskttJg57MvOLg6+/H/r/+Bz/OjIZgMKLt2AbqUJagsLoDC+T+X+Cq9lIYrHybU2lYwVkIwm9BzR9O6FuSjsjf/E/m7f4DS2Qk+Hdqg8xu/QguNH0wVlZZ1lC5OSPrnUmh3pOH8qhTL8r4r34A6oCUOTvhIjtJJhBMnTmD9+vXQ6/9z+F6tViMuLg5RUVEIDw9Hq1at4OTkhMrKSty4cQNarRYXL17EmTNnYDKZIAgC9u3bh7Nnz2Ly5MnYvn17jRBdsGAB2rVrJ9dDrBOD1E6Ki4vxySefICUlBQUFBQgICMCIESPwxz/+EW+++SbWr1+PNWvWYPr06XKXSnbgqmkPr26DAQDePRPgEd0X2X/oi5/+PA3hs7cCADw7vYDu22qOF1aWFCJrVi8EvNS0Xxf383QoSrsAALjx3VncPJWFxF3/i7glU3HktRUAAHOlEcfeXIP4HR/ieuoZ3PnXNbSJj0XIkF7YNfBtOcsnG+zYsQPbtm2z3Pby8sKIESPw4osvwt3dvdb6Tk5OaN++Pdq3b4+hQ4fi9u3bOHjwIHbv3g2DwQCdTodFixZZ1m+sIQrwrF27yMzMRExMDJYuXQqdToeOHTvCYDBg9erVGDt2rOXTVbdu3eQtlBzGI/p5+PZ/FXeObYP+8ok61zEbKpC3eAQ8OvaFZvR8B1doXz+fzsbVr48i7Fd9ENAryrK85HweLv35G7ywegbcNb6IWzoNP85fh7Kbd2Ss1r7c3d3x7LPP1hkuTdWuXbtqhOhzzz2HZcuWIT4+vsGP09fXF2PGjMHixYtrhaWrq2ujDVGAQSq54uJiJCUlQafTYdasWSgqKkJGRgZ0Oh2WLFmCb7/9Funp6VAoFOjSpYvc5ZIDaca+AyhVKPzy3Trbf1o7DWZDOdrO3OjYwhzk3IqvYTaa0H322JrLV26H2WTCsNSl0B2/CO2u4zJV6Bht2rTBmjVr0KZNG7lLkcSZM2eQnJxsuT1hwgT8/ve/t/msWj8/P7i4uNRYZjQa4ebmJqpOe2KQSuzNN99EQUEBpk+fjmXLlsHT09PSNmfOHHTt2hVGoxFt27ZtVKdv29tDkwnFFRV1/jwt1JoI+L4wDqXnD6H0UlqNtlu7V+Pe6T1o94edULo2n57Ko0rzddDuOo6gF7ug1bPRluWC0YSf07Oh9vPGlW3fy1ihY5hMJuj1ephMTXcMvJper8df//pXy+3x48cjKSnJ5v398sQilUoFoOo5++yzz2A2N87pJRmkErp8+TK2bdsGf39/fPzxx3Wu07NnTwBA165dHVma7D7MvoSgf+6q8+dpEjh6AaBU1uiVlp7/HgV/m4vwOf+Aa+u28hXnAOdXVfU+H+2Vtno2GhFjB+DyF3vR+8PfQaV2ecIemr7c3FwMHDgQubm5cpci2ubNm3H37l0AQPfu3TFs2DCb91XX2bkLFy5E69ZV3z/OycnB/v37RddsDzzZSELJyckwm82YMGECPDw86lyn+vCEI4O0V69e0Ol0Vm3jplTiX93iJKthcptwjAx6ps62hJNHJLmPyMhIlEn0iVXh4obWK63/Q+cZ0x89dwmPbXd7JrrG2bgVN/ORt3QMQn67FJ4x/W0p1SIysj2ESukuzeUsKPEeelu1je6HS9ioGfXY9nu5N/C3kP+EqJO7Gn1XvoEzH21B1qYDSNjxIXr84b+R/t5Gm2qObB8Jg8KxvZZRox7/eOty69YtAMC+fftw5syZBm/361//2qr7EcvFxeWxHQKgahjr6NGjAKpCb8qUKTZ/JaWuEK0eE502bRo+/PBDCIKA3bt3Y+jQoY+duCEyMhKVlZV1ttUnMDAQp0+ftmlbBqmEvvvuOwDAgAEDHrtOQUEBAMcGqU6nw40bN6zaxl2lArpJV0OEhwcGBdh3arjCwkI8lOhwmdLVHfaeyM5c8RBXP/4VvHsPQysJztItLCyEueKhBJVVcVGoYO8nIfb930D/0y1kbazqaRyb+SmGHVyGn/b9iJsnL1u9v8KiQlQKjj1k+uDBA6vWr74OaVlZmVXbWvseFsvV1fWJ7YcOHYIgVH1oTEhIgK+vbTN2PSlEASA6Oho9e/bE6dOncefOHWRkZKB377o/4BUWFj5x8gd7YZBKqPqK96GhoXW2G41GHD9edSKFI4M0MDDQ6m3clE3vqH9QUJCkPVJ7u3NiO8q051B+Iwd3jm2r1d7p03/BJaDhJ6QEBQVJ3iOFHTt3wQO7I2xYH+waNMuyrPTaTZz5aAv6rHgD3wycBWOZdX8UgzRBDu+RtmjRwqr1q8PTzc3Nqm2Dg4Otuh+xfnnCz6PMZrOl46BUKjFo0CCb7qO+EK02ZMgQS2/x0KFDjw3SoKAgUT1SWzFIJVT9Bqn+xPlL27ZtQ3FxMTw9PREWFuawumw5XCGUl8M4ZqIdqrGfnJwcKNTq+ldsgDIj8MJeSXb1WH4DXoXfgFcl219OTi7cJHxHGx6WY0u7V+pf0UY3vjuLLzvUfo1lbdxv6aFaKyc3B87u0rwGGio9Pd2q9bOyspCcnIyEhAR06FD3JCV1WblypZWViWM0GrF9+/Y623Q6He7duwegqlNgS2+0oSEKADExMfD19cXt27eRnZ0Ns9kMZR0f9nNycp44X6+9NL1uRyNW/YkmIyOjVltRURFmz54NAOjSpUujmt6KiBwnIiICBw4cQEREhNyl2Eyr1Vp+t+VxWBOiQFWvt7qtvLwcRUWNa75mBqmEBg+umslmyZIlyMnJsSxPT0/HgAEDUFxcDIATMRA9zZycnODj4yNLz0kq+fn5lt/Dw8Ot2tbaEK3rfh4N8saAQSqhOXPmwM/PD9evX0enTp0QExOD9u3bo3fv3ggPD8fAgQMB1D0+evz4cfj7+1t+li9fDgDYunVrjeXVY6xE1DQVFBRg1qxZlhMPm6JH59L95ZVansTWEAWqJmqoZu0JXvbWdD8SNUIhISFIS0vD7NmzceTIEeTn56Njx474/PPPMWXKFMuLpa4gNRgMKCkpqbW8oqKixlloBoPBfg/ADvr5t0Jl0pgnrlNfO1FzotfrkZaWhilTpshdis2SkpLQp08fGAwGq4I0OzsbWVlZAKyfO7dz586YO3cuXFxcoNFobKrbXhikEouOjsaePXtqLdfr9cjPz4dSqUTnzp1rtffv399yKjkRUWMWFBSEoKAgq7fr2rUrZsyYgQ0bNmDevHlWzZ3r6+tr81ds7I1B6iCXLl2CIAiIjIxsVpNVEzXUb4u+xpdRv0Hlfem+60pNz/PPP49u3bo1q7+DHCN1kAsXqi4p9bRNDUhE9EvNKUQB9kgdhkFK2j9NQPmNbAjGSjj7P4O2M76As4/tXwJvijq9Ngwhg3rCyd0V55b/A3kpafVv1MwEBARg5syZCAgIkLsUkgiD1EEYpBQyeSWcvav+eOq+XozC5PcR+vpnMlflYAKwe+hseLRphaT9S3DrVBb0BT/LXZVD+fn5YcKECXKXQRJikDpI9XRa9PS6ffRL3P5+M8yGcgiV5XDyavjZjs1FzpcHAQD6n27h5o+X0TquI/T/kOaiBU3F/fv3cerUKfTu3fupupRic8YxUiIH0P/rGG7tWY2Id/ei05qLCJm0HGZDudxlye5pPFO9sLAQ8+fPR2FhodylkEQYpEQOYNTfgcrNE06efjAbKvHzgc/lLkkW7cdWTUriERKAVr2jccuGK7wQNTY8tEvkAN494nH78N9x6fUoqDz94NV1MO7dduxlsRoDhUqJpH8uhZO7K069s/6pGx+l5olBSuQACidnhM+peam04Fc/kqkaeVRf8PvsJ1tlroRIWjy0S0TkQK6uroiKiqr3wtnUdLBHSkTkQGFhYdi8ebPcZZCE2CMlIiISgUFKRORA2dnZ6NOnD7Kzs+UuhSTCICUiciBBEGAwGJ7K79A2Vxwjpbq5usLpq01yV2EdCU/eUKuAtETJducQapW0+3Nyc8WEq3+Xdqd25uTGE3ikolKpMHLkSMn2t/TzbSh98ACeLVpg9tSxtW5LQaWS+E3QQAxSqpNCoQDUarnLkI1CAbg95e8OhUIBZ/en9zXwtFMoFHByku5NIAAwC1X/Ojk51brdlPHQLhERkQhN+2MAEVET07ZtWyQnJyM4OFjuUkgiDFIiIgdSq9Vo166d3GWQhHhol4jIgYqKirBo0SIUFRXJXQpJhEFKRORA9+7dwzfffIN79+7JXQpJhEFKREQkAoOUiIhIBAYpERGRCDxrl4hIhNjYWKvWDwkJwXvvvYfBgwdDo9HYqSpyJAYpEZEDaTQavP/++3KXQRLioV0iIiIRGKREREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEgDg6NGjGD58OEJDQ6FQKLBo0SK5SyIiqtfevXvRrVs3uLq6om3btli+fLnDa2CQEgBAr9ejY8eO+OSTTxAYGCh3OURE9Tp9+jSGDx+OhIQEZGZm4v3338f8+fPx2WefObQOXv2FAACJiYlITEwEAMydO1fmaoiI6rd8+XLExsbi448/BgBER0fj0qVLWLx4MaZNm+awOtgjJSKiJun48eOIj4+vsSw+Ph7Xrl1DQUGBw+pgj5SIiCSlvV4Eg9FUY5nRZLL8m6MtqHX7UR7uagS19q/3foqKimoNRVXfLioqQkhIiM2PwRoMUiIiklThzRLsPnSizraHZeVY/9Xex95WAJgy/mV7lygpHtolIiJJxfXshIjQYJu27RvbBeFtghq0rkajgU6nq7Hs5s2bljZHYZASEZGklAoFRif2g9rVxartWvv7YOiLvRq8fp8+fXDgwIEay/bv34/Q0FCHHdYFGKT0b3q9HpmZmcjMzERlZSV0Oh0yMzNx5coVuUsjoibI28sDvxrat8Hrq5RKjE0aCGenho84vvXWWzh16hQWLFiArKwsbNq0CWvWrMG8efNsKdlmCkEQBIfeIzVKhw8fxoABA2ot79evHw4fPuz4goioWfhy10Gcz8qrd734fr3R/7luVu//22+/xfz585GVlYXAwEDMnDkTb7/9tg2V2o5BSkREdvOwrBwr13+N+/qHj12nbUgg/mf8y1Aqm+ZB0qZZNcnmYVk5Cop+lrsMImoi3N3UGJXY/7HtLi7OGP1S/yYbogCDlKyUln4Bn/5tB7797qTcpRBRExEZFoK4Hp3qbEsaGAe/ll4OrkhazSZIFQoFFAoFAGD37t144YUX4OXlBX9/f4waNQpXr161rLtnzx7069cPLVu2hJeXF4YPH47c3NzH7ruiogKrVq3C888/j5YtW0KtViMqKgqzZ89GcXFxndv8+OOPmDt3LmJjYxEYGAhXV1cEBwdjzJgxSE9Pf+x97d27F4mJiWjVqhWcnZ3h5+eH6OhoTJo0CcePH7fx2ZHGg7JynDhzEUDVoRgiooZK6P8sAny9ayyLjghFry5RMlUknWYzRlodop9++immT5+OoKAgtG7dGllZWSgrK0NwcDDOnj2LLVu24K233oJGo0FgYKClPTAwEOfPn0dAQECN/d68eRMJCQk4e/YslEolnnnmGXh5eSEnJwcVFRVo06YNvv/+e4SHh9fYLiIiAlevXoWvry80Gg1cXFzw008/oaSkBE5OTti6dStGjhxZY5u1a9fijTfeAAD4+fkhNDQUZWVluH79OvR6PaZOnerwyZgfdeBoOr7/4Sw0rfzw5m9HWJ5zIqKGuF50C3/evAtmQUALdzXemjQaHi3c5C5LPKGZACAAENzd3YVNmzZZlpeUlAixsbECAOHll18W3NzcarQXFxcLPXv2FAAIc+fOrbFPs9ks9OvXTwAgvPTSS4JWq7W0lZaWCpMmTRIACHFxcbXq2bRpk5Cbm1tjmclkElJSUgQPDw+hZcuWQmlpqaXNYDAIPj4+AgBh7dq1gtForFHHkSNHhJSUFJufH7H0D8uEd5evF+Yu/ly4mK2VrQ4iatpS005X/R3J0cpdimSaXY90xowZWL16dY22/fv3IyEh4bHt+/btQ2JiIrp06YJz585Zlu/duxcvvfQSOnfujPT0dKjV6hrbmUwm9O7dGxkZGTh27Bj69OnToFrfeecdLFq0CMnJyRg3bhwAQKfTQaPRwMfHB7dv37buwddjzaYUlOrLRO2jorISFZUGKJVKeLg3g0+QRCQLQRBgMBjh4uIsdyk1eHq4YcbEETZt2+zm2p08eXKtZT169GhQe15eze86bd++HQAwceLEWiEKACqVCsOGDUNGRgYOHz5cK0hzc3OxdetWnDt3DiUlJTAYDACAW7duAQAyMzMtQRoQEAC1Wo27d+8iNTUVQ4YMafBjrk+pvgz39Q8k2ZfZbJZsX0T09CqvrJS7BMk0uyBt165drWWPjnvW1d6qVSsAVbP7POr8+fMAgA0bNmDnzp113l/1vI43btyosfxPf/oT5s2bB6PR+NhaS0pKLL+rVCrMnDkTS5YswdChQ9GjRw8MHjwYffv2Rb9+/eDlZftZbZ4e4nqQ7I0SUXMn6u+kzIeWJYN/j5FK2R4REWFZXt/PxIkTLdsdO3ZMACCoVCph0aJFwoULF4TS0lLBbDYLgiAIX3zxRa1tBKFqDHXNmjVChw4dauzb1dVV+N3vfieUlJRY/8SIxLFRIqIna3Y9Uil5eHgAAL755hskJSU1eLvNmzcDAGbNmoUFCxbUan+0J/oopVKJ6dOnY/r06SgoKEBaWhpSU1Px1VdfYcOGDbh+/TpSU1Otfhxixkgf7Y3uSj2OXanyfgWHiMgeOEZqJ506dUJmZiYuXrxoVZBqtVoAQN++dU/YfPJk/ZMZhISEYPz48Rg/fjxmzZqFmJgYHDx4EFqtFmFhYQ2uBZBmjJRjo0REdWOQPsGoUaOwZcsW/OUvf8GMGTMsPdT6uLlVHWv/5XXygKoTkPbs2WNVHZ06dYK3tzfu3r2LwsJCq4PU1mP/HBsloqcFx0gF+4yRPvo90ri4OOHChQs12k0mk3DixAlh6tSpwtWrVy3Lly1bJgAQwsLChCtXrliWX7x4UYiKihLUanWtMdJLly4JkydPFn744QfLWKogCILRaBRWrFghABDUarVw586d+p4KSXBslIioYZrd90gf93BsbS8uLsbw4cNx4sQJAEBoaCgCAwNRVlaGq1ev4sGDqsOdly9fRocOHQAApaWl6NGjB65cuQJnZ2dERUXBbDbj8uXL0Gg0eP3117Fw4UJMnDgRGzduBFD1VZju3bsDADw9PdGuXTuoVCrk5+dbxlTXrl2L1157zabnx1qcxYiIqGGazVy79uLv748jR45g48aNGDJkCB48eIDTp09Dq9UiIiICM2fOxJEjRxAZGWnZxtPTE8eOHcOkSZPg4+OD7OxsyxR/GRkZCA4OrnU/kZGRWLduHcaOHQuNRoO8vDycO3cOarUao0ePRlpamsNC9NE5dQf36ckQJSJ6gmbTIyXplNy9j50H0qB/WM7eKBFRPRik9FjlFZVQu7rIXQYRUaPGICUiIhKBY6REREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIREYnAICUiIhKBQUpERCQCg5SIiEgEBikREZEIDFIiIiIRGKREREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQj/D4RNtP89TTexAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAACuCAYAAACC94w4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAHFxJREFUeJzt3XlYU2e+B/BvEpaALLIpASqCCKLiji3V1t0LtOiMu9d2nPHRq221TuvjMmrXa6daHddep52xLuNYtFNRq3UZtFVRa0URt5FFCVaEaMGNKEuWc/9gyEhBITknOYDfz/PwSM57zskvMeGb97wn71EIgiCAiIiIbKKUuwAiIqKmjEFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIREYnAICUiIhKBQUpERCQCg5SIiEgEBikREZEIDFIiIiIRGKREREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCE5yF0BE1JSlp6dbtX5xcTFSUlIwYsQI+Pv7N3i72NhYa0sjB2GPlIjIgYqLi7Fu3ToUFxfLXQpJhEFKREQkAoOUiIhIBAYpERGRCAxSIiIH8vT0RHx8PDw9PeUuhSSiEARBkLsIIqKmytqzdm3Fs3YbL/ZIiYgcqKKiAtevX0dFRYXcpZBEGKRERA6k1WoxcuRIaLVauUshiXBCBqqTIAhAU/vE7OoKhUIhya4EASg3SbIrh1GrAIkePoCq14CxrGm9BpzcpHsNPO0EQYDJ1LTeBCqVSpb/fwYp1a2iAsYxE+WuwipOX20C1GpJ9lVuAl7YK8muHCYtEXCT8B1tLKvAlnavSLdDB5hw9e9wdpfmNfC0M5lM2L59u9xlWGXkyJFwcnJ8rPHQLhERkQgMUiIiIhF4aJeIyIE6dOiAU6dOyV0GSYg9UiIiIhEYpEREDnTt2jVMmjQJ165dk7sUkgiDlIjIgcrKynDx4kWUlZXJXQpJhEFKREQkAk82IpJQ6YXDyFk4oMYypboFXIMi4df/VbR6eQYUqub7tguM64T4lA9qLDM8KMP9vCJc/fooLn+xF4LJLFN1RPbRfN/RRDLyeXE8vHsmAoIAwx0dSg7/DQXr30Z5wWWEvvEXucuzu7yUNBR8lwEoFHALaImI0f3Q+4Pfwrt9MH6Y/bnc5RFJikFKZAfu4T3g1/8/swIFJL6OS693QHHqOgS98hGcvQNkrM7+Si5okbc9zXI7e+MB/DptFSL/exAyFiejouS+jNXJS6PR4IMPPoBGo5G7FJIIx0iJHEClboEWUc8BgoAK3VW5y3E4Y1kFfs7IhUKphFdoa7nLkZW3tzcSEhLg7e0tdylNTnl5Oe7fb3wfwtgjbSTy8/Nx6NAhpKenIz09HRcuXIDBYMDEiROxceNGucsjCVQHqJOHr8yVyMOzbVWAVtzVy1yJvO7cuYODBw9i8ODB8PHxkbscuysvL8eVK1eg1WqRl5eH+/fvw2g0wtnZGX5+fggLC0N4eDjCw8OfOE9ueXk5lixZggcPHmDhwoXw8vJy4KN4MgZpI7Fy5UqsWrVK7jJIIuaKhzDeL666gsodHX7e/xnK8s7CvX1vqIMj5S7P7pzcXODq62kZI436zVD4xYTj54xc3M8rkrs8Wd28eRNLly5FTExMsw7Sa9euITU1FWlpaU+89uqRI0cAVPXUBw4ciEGDBsHf37/GOtUhevnyZQDAihUr8O677zaaK/0wSBsJf39/JCYmIjY2Fr169cK+ffuwdu1aucsiGxUlv4ei5PdqLGsZNwJtpv6fTBU5Vvc549B9zrgay/K/PYkf/7BOporIUe7evYv169dbPQ3ivXv3sGPHDuzcuRPx8fEYN24cXF1da4Wou7s7XnnllUYTogCDtNFYuHBhjdsnT56UqRJpHSm+hSE/HMbijl3wdrsOda7jsvsrJLbSYOezLzi4Ovvx/6//gc/zoyGYDCi7dgG6lCWoLC6Awvk/l/gqvZSGKx8m1NpWMFZCMJvQc0fTuhbko7I3/xP5u3+A0tkJPh3aoPMbv0ILjR9MFZWWdZQuTkj651Jod6Th/KoUy/K+K9+AOqAlDk74SI7SSYQTJ05g/fr10Ov/c/herVYjLi4OUVFRCA8PR6tWreDk5ITKykrcuHEDWq0WFy9exJkzZ2AymSAIAvbt24ezZ89i8uTJ2L59e40QXbBgAdq1ayfXQ6wTg9ROiouL8cknnyAlJQUFBQUICAjAiBEj8Mc//hFvvvkm1q9fjzVr1mD69Olyl0p24KppD69ugwEA3j0T4BHdF9l/6Iuf/jwN4bO3AgA8O72A7ttqjhdWlhQia1YvBLzUtF8X9/N0KEq7AAC48d1Z3DyVhcRd/4u4JVNx5LUVAABzpRHH3lyD+B0f4nrqGdz51zW0iY9FyJBe2DXwbTnLJxvs2LED27Zts9z28vLCiBEj8OKLL8Ld3b3W+k5OTmjfvj3at2+PoUOH4vbt2zh48CB2794Ng8EAnU6HRYsWWdZvrCEK8Kxdu8jMzERMTAyWLl0KnU6Hjh07wmAwYPXq1Rg7dqzl01W3bt3kLZQcxiP6efj2fxV3jm2D/vKJOtcxGyqQt3gEPDr2hWb0fAdXaF8/n87G1a+PIuxXfRDQK8qyvOR8Hi79+Ru8sHoG3DW+iFs6DT/OX4eym3dkrNa+3N3d8eyzz9YZLk3Vrl27aoToc889h2XLliE+Pr7Bj9PX1xdjxozB4sWLa4Wlq6trow1RgEEqueLiYiQlJUGn02HWrFkoKipCRkYGdDodlixZgm+//Rbp6elQKBTo0qWL3OWSA2nGvgMoVSj88t06239aOw1mQznaztzo2MIc5NyKr2E2mtB99tiay1duh9lkwrDUpdAdvwjtruMyVegYbdq0wZo1a9CmTRu5S5HEmTNnkJycbLk9YcIE/P73v7f5rFo/Pz+4uLjUWGY0GuHm5iaqTntikErszTffREFBAaZPn45ly5bB09PT0jZnzhx07doVRqMRbdu2bVSnb9vbQ5MJxRUVdf48LdSaCPi+MA6l5w+h9FJajbZbu1fj3uk9aPeHnVC6Np+eyqNK83XQ7jqOoBe7oNWz0ZblgtGEn9OzofbzxpVt38tYoWOYTCbo9XqYTE13DLyaXq/HX//6V8vt8ePHIykpyeb9/fLEIpVKBaDqOfvss89gNjfO6SUZpBK6fPkytm3bBn9/f3z88cd1rtOzZ08AQNeuXR1Zmuw+zL6EoH/uqvPnaRI4egGgVNbolZae/x4Ff5uL8Dn/gGvrtvIV5wDnV1X1Ph/tlbZ6NhoRYwfg8hd70fvD30GldnnCHpq+3NxcDBw4ELm5uXKXItrmzZtx9+5dAED37t0xbNgwm/dV19m5CxcuROvWVd8/zsnJwf79+0XXbA882UhCycnJMJvNmDBhAjw8POpcp/rwhCODtFevXtDpdFZt46ZU4l/d4iSrYXKbcIwMeqbOtoSTRyS5j8jISJRJ9IlV4eKG1iut/0PnGdMfPXcJj213eya6xtm4FTfzkbd0DEJ+uxSeMf1tKdUiMrI9hErpLs3lLCjxHnpbtY3uh0vYqBn12PZ7uTfwt5D/hKiTuxp9V76BMx9tQdamA0jY8SF6/OG/kf7eRptqjmwfCYPCsb2WUaMe/3jrcuvWLQDAvn37cObMmQZv9+tf/9qq+xHLxcXlsR0CoGoY6+jRowCqQm/KlCk2fyWlrhCtHhOdNm0aPvzwQwiCgN27d2Po0KGPnbghMjISlZWVdbbVJzAwEKdPn7ZpWwaphL777jsAwIABAx67TkFBAQDHBqlOp8ONGzes2sZdpQK6SVdDhIcHBgXYd2q4wsJCPJTocJnS1R32nsjOXPEQVz/+Fbx7D0MrCc7SLSwshLnioQSVVXFRqGDvJyH2/d9A/9MtZG2s6mkcm/kphh1chp/2/YibJy9bvb/CokJUCo49ZPrgwQOr1q++DmlZWZlV21r7HhbL1dX1ie2HDh2CIFR9aExISICvr20zdj0pRAEgOjoaPXv2xOnTp3Hnzh1kZGSgd++6P+AVFhY+cfIHe2GQSqj6ivehoaF1thuNRhw/XnUihSODNDAw0Opt3JRN76h/UFCQpD1Se7tzYjvKtOdQfiMHd45tq9Xe6dN/wSWg4SekBAUFSd4jhR07d8EDuyNsWB/sGjTLsqz02k2c+WgL+qx4A98MnAVjmXV/FIM0QQ7vkbZo0cKq9avD083Nzaptg4ODrbofsX55ws+jzGazpeOgVCoxaNAgm+6jvhCtNmTIEEtv8dChQ48N0qCgIFE9UlsxSCVU/Qap/sT5S9u2bUNxcTE8PT0RFhbmsLpsOVwhlJfDOGaiHaqxn5ycHCjU6vpXbIAyI/DCXkl29Vh+A16F34BXJdtfTk4u3CR8RxselmNLu1fqX9FGN747iy871H6NZW3cb+mhWisnNwfO7tK8BhoqPT3dqvWzsrKQnJyMhIQEdOhQ9yQldVm5cqWVlYljNBqxffv2Ott0Oh3u3bsHoKpTYEtvtKEhCgAxMTHw9fXF7du3kZ2dDbPZDGUdH/ZzcnKeOF+vvTS9bkcjVv2JJiMjo1ZbUVERZs+eDQDo0qVLo5reiogcJyIiAgcOHEBERITcpdhMq9VafrflcVgTokBVr7e6rby8HEVFjWu+ZgaphAYPrprJZsmSJcjJybEsT09Px4ABA1BcXAyAEzEQPc2cnJzg4+MjS89JKvn5+Zbfw8PDrdrW2hCt634eDfLGgEEqoTlz5sDPzw/Xr19Hp06dEBMTg/bt26N3794IDw/HwIEDAdQ9Pnr8+HH4+/tbfpYvXw4A2Lp1a43l1WOsRNQ0FRQUYNasWZYTD5uiR+fS/eWVWp7E1hAFqiZqqGbtCV721nQ/EjVCISEhSEtLw+zZs3HkyBHk5+ejY8eO+PzzzzFlyhTLi6WuIDUYDCgpKam1vKKiosZZaAaDwX4PwA76+bdCZdKYJ65TXztRc6LX65GWloYpU6bIXYrNkpKS0KdPHxgMBquCNDs7G1lZWQCsnzu3c+fOmDt3LlxcXKDRaGyq214YpBKLjo7Gnj17ai3X6/XIz8+HUqlE586da7X379/fcio5EVFjFhQUhKCgIKu369q1K2bMmIENGzZg3rx5Vs2d6+vra/NXbOyNQeogly5dgiAIiIyMbFaTVRM11G+LvsaXUb9B5X3pvutKTc/zzz+Pbt26Nau/gxwjdZALF6ouKfW0TQ1IRPRLzSlEAfZIHYZBSto/TUD5jWwIxko4+z+DtjO+gLOP7V8Cb4o6vTYMIYN6wsndFeeW/wN5KWn1b9TMBAQEYObMmQgICJC7FJIIg9RBGKQUMnklnL2r/njqvl6MwuT3Efr6ZzJX5WACsHvobHi0aYWk/Utw61QW9AU/y12VQ/n5+WHChAlyl0ESYpA6SPV0WvT0un30S9z+fjPMhnIIleVw8mr42Y7NRc6XBwEA+p9u4eaPl9E6riP0/5DmogVNxf3793Hq1Cn07t37qbqUYnPGMVIiB9D/6xhu7VmNiHf3otOaiwiZtBxmQ7ncZcnuaTxTvbCwEPPnz0dhYaHcpZBEGKREDmDU34HKzRNOnn4wGyrx84HP5S5JFu3HVk1K4hESgFa9o3HLhiu8EDU2PLRL5ADePeJx+/Dfcen1KKg8/eDVdTDu3XbsZbEaA4VKiaR/LoWTuytOvbP+qRsfpeaJQUrkAAonZ4TPqXmptOBXP5KpGnlUX/D77CdbZa6ESFo8tEtE5ECurq6Iioqq98LZ1HSwR0pE5EBhYWHYvHmz3GWQhNgjJSIiEoFBSkTkQNnZ2ejTpw+ys7PlLoUkwiAlInIgQRBgMBieyu/QNlccI6W6ubrC6atNcldhHQlP3lCrgLREyXbnEGqVtPtzcnPFhKt/l3andubkxhN4pKJSqTBy5EjJ9rf0820offAAni1aYPbUsbVuS0GlkvhN0EAMUqqTQqEA1Gq5y5CNQgG4PeXvDoVCAWf3p/c18LRTKBRwcpLuTSAAMAtV/zo5OdW63ZTx0C4REZEITftjABFRE9O2bVskJycjODhY7lJIIgxSIiIHUqvVaNeundxlkIR4aJeIyIGKioqwaNEiFBUVyV0KSYRBSkTkQPfu3cM333yDe/fuyV0KSYRBSkREJAKDlIiISAQGKRERkQg8a5eISITY2Fir1g8JCcF7772HwYMHQ6PR2KkqciQGKRGRA2k0Grz//vtyl0ES4qFdIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIA4OjRoxg+fDhCQ0OhUCiwaNEiuUsiIqrX3r170a1bN7i6uqJt27ZYvny5w2tgkBIAQK/Xo2PHjvjkk08QGBgodzlERPU6ffo0hg8fjoSEBGRmZuL999/H/Pnz8dlnnzm0Dl79hQAAiYmJSExMBADMnTtX5mqIiOq3fPlyxMbG4uOPPwYAREdH49KlS1i8eDGmTZvmsDrYIyUioibp+PHjiI+Pr7EsPj4e165dQ0FBgcPqYI+UiIgkpb1eBIPRVGOZ0WSy/JujLah1+1Ee7moEtfav936KiopqDUVV3y4qKkJISIjNj8EaDFIiIpJU4c0S7D50os62h2XlWP/V3sfeVgCYMv5le5coKR7aJSIiScX17ISI0GCbtu0b2wXhbYIatK5Go4FOp6ux7ObNm5Y2R2GQEhGRpJQKBUYn9oPa1cWq7Vr7+2Doi70avH6fPn1w4MCBGsv279+P0NBQhx3WBRik9G96vR6ZmZnIzMxEZWUldDodMjMzceXKFblLI6ImyNvLA78a2rfB66uUSoxNGghnp4aPOL711ls4deoUFixYgKysLGzatAlr1qzBvHnzbCnZZgpBEASH3iM1SocPH8aAAQNqLe/Xrx8OHz7s+IKIqFn4ctdBnM/Kq3e9+H690f+5blbv/9tvv8X8+fORlZWFwMBAzJw5E2+//bYNldqOQUpERHbzsKwcK9d/jfv6h49dp21IIP5n/MtQKpvmQdKmWTXJ5mFZOQqKfpa7DCJqItzd1BiV2P+x7S4uzhj9Uv8mG6IAg5SslJZ+AZ/+bQe+/e6k3KUQURMRGRaCuB6d6mxLGhgHv5ZeDq5IWs0mSBUKBRQKBQBg9+7deOGFF+Dl5QV/f3+MGjUKV69etay7Z88e9OvXDy1btoSXlxeGDx+O3Nzcx+67oqICq1atwvPPP4+WLVtCrVYjKioKs2fPRnFxcZ3b/Pjjj5g7dy5iY2MRGBgIV1dXBAcHY8yYMUhPT3/sfe3duxeJiYlo1aoVnJ2d4efnh+joaEyaNAnHjx+38dmRxoOycpw4cxFA1aEYIqKGSuj/LAJ8vWssi44IRa8uUTJVJJ1mM0ZaHaKffvoppk+fjqCgILRu3RpZWVkoKytDcHAwzp49iy1btuCtt96CRqNBYGCgpT0wMBDnz59HQEBAjf3evHkTCQkJOHv2LJRKJZ555hl4eXkhJycHFRUVaNOmDb7//nuEh4fX2C4iIgJXr16Fr68vNBoNXFxc8NNPP6GkpAROTk7YunUrRo4cWWObtWvX4o033gAA+Pn5ITQ0FGVlZbh+/Tr0ej2mTp3q8MmYH3XgaDq+/+EsNK388OZvR1iecyKihrhedAt/3rwLZkFAC3c13po0Gh4t3OQuSzyhmQAgABDc3d2FTZs2WZaXlJQIsbGxAgDh5ZdfFtzc3Gq0FxcXCz179hQACHPnzq2xT7PZLPTr108AILz00kuCVqu1tJWWlgqTJk0SAAhxcXG16tm0aZOQm5tbY5nJZBJSUlIEDw8PoWXLlkJpaamlzWAwCD4+PgIAYe3atYLRaKxRx5EjR4SUlBSbnx+x9A/LhHeXrxfmLv5cuJitla0OImraUtNOV/0dydHKXYpkml2PdMaMGVi9enWNtv379yMhIeGx7fv27UNiYiK6dOmCc+fOWZbv3bsXL730Ejp37oz09HSo1eoa25lMJvTu3RsZGRk4duwY+vTp06Ba33nnHSxatAjJyckYN24cAECn00Gj0cDHxwe3b9+27sHXY82mFJTqy0Tto6KyEhWVBiiVSni4N4NPkEQkC0EQYDAY4eLiLHcpNXh6uGHGxBE2bdvs5tqdPHlyrWU9evRoUHteXs3vOm3fvh0AMHHixFohCgAqlQrDhg1DRkYGDh8+XCtIc3NzsXXrVpw7dw4lJSUwGAwAgFu3bgEAMjMzLUEaEBAAtVqNu3fvIjU1FUOGDGnwY65Pqb4M9/UPJNmX2WyWbF9E9PQqr6yUuwTJNLsgbdeuXa1lj4571tXeqlUrAFWz+zzq/PnzAIANGzZg586ddd5f9byON27cqLH8T3/6E+bNmwej0fjYWktKSiy/q1QqzJw5E0uWLMHQoUPRo0cPDB48GH379kW/fv3g5WX7WW2eHuJ6kOyNElFzJ+rvpMyHliWDf4+RStkeERFhWV7fz8SJEy3bHTt2TAAgqFQqYdGiRcKFCxeE0tJSwWw2C4IgCF988UWtbQShagx1zZo1QocOHWrs29XVVfjd734nlJSUWP/EiMSxUSKiJ2t2PVIpeXh4AAC++eYbJCUlNXi7zZs3AwBmzZqFBQsW1Gp/tCf6KKVSienTp2P69OkoKChAWloaUlNT8dVXX2HDhg24fv06UlNTrX4cYsZIH+2N7ko9jl2p8n4Fh4jIHjhGaiedOnVCZmYmLl68aFWQarVaAEDfvnVP2HzyZP2TGYSEhGD8+PEYP348Zs2ahZiYGBw8eBBarRZhYWENrgWQZoyUY6NERHVjkD7BqFGjsGXLFvzlL3/BjBkzLD3U+ri5VR1r/+V18oCqE5D27NljVR2dOnWCt7c37t69i8LCQquD1NZj/xwbJaKnBcdIBfuMkT76PdK4uDjhwoULNdpNJpNw4sQJYerUqcLVq1cty5ctWyYAEMLCwoQrV65Yll+8eFGIiooS1Gp1rTHSS5cuCZMnTxZ++OEHy1iqIAiC0WgUVqxYIQAQ1Gq1cOfOnfqeCklwbJSIqGGa3fdIH/dwbG0vLi7G8OHDceLECQBAaGgoAgMDUVZWhqtXr+LBg6rDnZcvX0aHDh0AAKWlpejRoweuXLkCZ2dnREVFwWw24/Lly9BoNHj99dexcOFCTJw4ERs3bgRQ9VWY7t27AwA8PT3Rrl07qFQq5OfnW8ZU165di9dee82m58danMWIiKhhms1cu/bi7++PI0eOYOPGjRgyZAgePHiA06dPQ6vVIiIiAjNnzsSRI0cQGRlp2cbT0xPHjh3DpEmT4OPjg+zsbMsUfxkZGQgODq51P5GRkVi3bh3Gjh0LjUaDvLw8nDt3Dmq1GqNHj0ZaWprDQvTROXUH9+nJECUieoJm0yMl6ZTcvY+dB9Kgf1jO3igRUT0YpPRY5RWVULu6yF0GEVGjxiAlIiISgWOkREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIREYnAICUiIhKBQUpERCQCg5SIiEgEBikREZEIDFIiIiIRGKREREQiMEiJiIhEYJASERGJwCAlIiISgUFKREQkAoOUiIhIBAYpERGRCAxSIiIiERikREREIjBIiYiIRGCQEhERicAgJSIiEoFBSkREJAKDlIiISAQGKRERkQgMUiIiIhEYpERERCIwSImIiERgkBIREYnAICUiIhKBQUpERCQCg5SIiEgEBikREZEI/w+ETbT/PU03sQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -264,16 +264,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "State sampler gradient computed with parameter shift [[{0: 0.35355339059327373, 1: -0.3535533905932736}, {0: 0.0, 1: 0.0}]]\n" + "State sampler gradient computed with parameter shift [[{0: 0.354085, 1: -0.354085}, {1: 0.0, 0: 0.0}]]\n" ] } ], "source": [ - "from qiskit.primitives import Sampler\n", + "from qiskit.primitives import StatevectorSampler\n", "from qiskit_algorithms.gradients import ParamShiftSamplerGradient\n", "\n", "param_vals = [[np.pi / 4, np.pi / 2]]\n", - "sampler = Sampler()\n", + "sampler = StatevectorSampler(default_shots=100_000, seed=42)\n", "gradient = ParamShiftSamplerGradient(sampler)\n", "pss_grad_result = gradient.run(qc_sample, param_vals).result().gradients\n", "print(\"State sampler gradient computed with parameter shift\", pss_grad_result)" @@ -534,7 +534,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAnWklEQVR4nO3deViU9f7/8efMsCM7KJAiuKCCayhqpmlHPS6kZmmamXW1njT1ZOJP02z55n5ySTNt83Qqs6NmLmXHJIvc0tQ0RFEQZRt1FFR2mLl/f5AYCQo4C/fwflxXV3HPZ+553128ec29fjSKoigIIYQQKqW1dQFCCCHEnZAgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1B1sXIMooikJpQZGtyzAbB1dnNBpNtccrChQaLViQlbnooAabL5AekB6oPQmyOqK0oIjPmj9m6zLMZkzypzi6uVR7fKERen5jwYKsLH4QuEp31Yj0gPRAbcmhRSGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqyZ0udiSweyQDNr5eYVlJXgFXU7JIXv8TiR9+g2I02ag6y7t2bBdJM/tUWKZ1ccc5OBy/3mNpGPMiGp38ytsz6YH62QP2t0WClI3xpMcdAo0G1wBvWoy4j+jXn8Cr5V3snbrK1uVZnE+v0XhFDQJFoSRbz6Vdn5D+0UsUpifSdPxqW5cnrEB6oH71gASZHbp07AwpG+LLfz655jsejF9K+KN/49C8tRRdumrD6izPrdnd+PW+8YSIgEEvkPBCaww7PiD4sbdw9AqwYXXCGqQH6lcPyDmyeqC0oIiLh06h0WrxbNrI1uVYnc7FHfdW3UBRKNIn27ocYQPSA/bdAxJk9YRHaFnzFuXk2rgS27jevA4NfG1cibAV6QH77QE5tGiHHFydcPb1KD8/0Orx/vi1a8bFQ6e4mpJl6/IszlSUT+lVQ9nT1LP1XNz+HgUph3FrGY3LXeG2Lk9YgfRA/eoBuw8yg8HAggUL2LhxI+np6QQEBDB8+HDmzJnDxIkT+eijj3jnnXeYMGGCrUs1m06xo+gUO6rCstRt+9g//QMbVWRdWWtnk7V2doVl3t2HE/LcChtVVDecOJNDctpVjEaFoAA3oiL80Wrtc64Z6YH61QN2HWRHjhxh4MCB6PV63N3diYiIIDMzk2XLlpGcnMzly5cB6Nixo20LNbOT//kfqVv2onV0wKd1CG3HD8M9yA9jUXH5mPtW/hO0Gn587u3yZU7eDRi2azEH3/iElI3xla1aFfz//iw+94xAMZZQcPYY+o3zKTako3G8MaXGtYR4Tr8x8Kb3KqXFKCYjUV/Zx8RQRqOJddvP8O6Xiew+fL7Cay2bevKPkW14eng4Hu5ONqrQMqQH6lcP2O05MoPBwAMPPIBer2fKlClkZWVx6NAh9Ho98+fPZ9u2bRw4cACNRkP79u1tXa5ZXU3RkxV/jIy4w/z+7tfsHDcP/47N6T7/ufIxe6e/T8MurQgb1qN8Wbc5T3PhlxOqbmAA56CWeHbsi1fUQAKHx9LilS3knz7AuZXPl4/xiOxJp3W5Ff6JfDcJBw9/gh9904bVm09hUSkjXo5jzPRdN4UYwKmzV3lp4X7uHbeNjPN5NqjQcqQH6lcP2G2QTZw4kfT0dCZMmMCiRYvw8PAofy02NpYOHTpQWlpKaGgonp6eNqzU8i4ePEny+p8IG9aDgM6tACjOyWXPlJV0fetpXBv50HRwNwLviWTvNPu7x6ZBm3vw7T2W7J/XkZu4p9IxppIiUuYNp0HEvQSNmGHlCs3PZFIYO+NHvtp59rZjjyZd5u/Pbyfnqv3MzvxX0gP23QN2GWSJiYmsW7cOf39/5s6dW+mYqKgoADp06FBh+ZkzZxgyZAgeHh74+Pjw+OOPc+nSJYvXbGm/LV6PqdRIp6mPlC/L+OEIqVv20Gv5RLrNe4Y9U1ZSlG2fV3QFPTILtDoyP3+10tfPvfs8ppJCQietsW5hFvLd7nTW70it9viE5ByWfpZguYLqAOkB++0BuwyytWvXYjKZGDNmDA0aNKh0jKurK1AxyK5du0afPn1IT09n7dq1rF69mvj4eGJiYjCZ1P1Ym2upes58vZvgXu1p2LVN+fKDr3+CR1ggGXGHSd95yIYVWpZLUAt8e47i2tGdXEuoeNjowpZlXDm4lebTN6F1drNRheb17rrEGr9n9YaTlJSo+/f8VqQH7LcH7DLI4uLiAOjTp0+VY9LT04GKQbZ69WoyMjLYtGkTMTExjBgxgs8//5x9+/axefNmyxZtBUeXbsBkrPiNtLSgiNyzF8hOPGfDyqwjcMQroNVW+EZ67egPpH8yjWax/8W5UajtijOjC5cK2BafVuP3ZV7IZ+f+TAtUVHdID9hnD2gURVFsXYS5NWnShPT0dA4fPlzpFYmlpaUEBQVhMBhITk6mWbNmwI3g++GHHyqMb968Ob179+bDDz+sVT2dO3dGr9ffcoyjomW2KbpW679TAza8TtqOX0l4z3xh/br2F0o01f92r3FypdGSU2b7/OooOp/KiZe7EDRqNg0Hm/f2i/OTW6IUF5h1ndVVrAvkotc/avVe77zNuBf9auaKqkd6oH73QGBgIAcPHqzVZ9nl5fd5eWVXYBUUVP4/cd26dRgMBjw8PAgLCytffvz4cUaMGHHT+MjISI4fP17revR6PRkZGbcc46TRgR09OSczK5NipfqX72qd3ay6+aaifJLnDsMreojZGxggMzMTU1G+2ddbLS4a8KrdW3Oys8nJvvXvqqVID0gP1JZdBllgYCDZ2dkcOnSI7t27V3gtKyuLqVOnAtC+fXs0mhs3hGZnZ+Pt7X3T+nx9fTl58uQd1XM7jooW7Oj0RHBQcI2/jVpT9p4NFJz5jcKMJLJ/XnfT65HLj+MUEFLr9QcHB9tsj8yocUWvmEBT8zMHfl4aXNzuskBVtyc9UL97oDp/J6til0HWt29fEhMTmT9/Pv369SM8vOyRLAcOHGDs2LEYDAbAejdCV2d3uSS/kM+aP3bbcZaw/aHZtx9UQ0mnknB0c7n9wD8UlELPb8xeRpX8+ozFr89Yi60/KekUrjbsrqETd7B5V83O+dzV0I3UQz/g4GCbU+fSA9IDtWWXF3vExsbi5+dHWloakZGRtGvXjpYtWxIdHU2zZs24//77gZsvvffx8SEnJ+em9V2+fBlfX/t70KawXy880ub2g/7iuRGtbRZiQtwJu/ytbdy4MfHx8QwePBgXFxdSU1Px9fVl1apVbNu2jaSkJODmIGvTpk2l58KOHz9OmzY1/8MghK30634XowY0q/b49uG+TBoTacGKhLAcuzy0CGWhtHXr1puW5+bmkpqailarpW3bthVei4mJYcaMGaSnp9O4cWMA9u/fT3JyMgsXLrRK3UKYg1arYc3/9cKkKHz53Zlbju3U2o9tK/rj2cC+nrco6g+73CO7lYSEBBRFoWXLlri5Vbzx79lnnyUoKIihQ4eydetW1q9fz+jRo4mOjmbo0KE2qliI2nF20rF2fh++XHQ/vbsE3fR6RHNvls/oTvyawQQFqO8mWCGus9s9sqocO3YMuPmwIoCnpydxcXFMmjSJUaNG4eDgQExMDIsXL0arrXeZL+yAVqthRP8wRvQP49TZK3R/bAuXrhQR4OPC7xuHV7hqVwi1kiD7i+bNm1d6SFIItWvZ1AsXZx0ATo5aCTFhN+rdbsbtgqwu6ThlJDpnRwDuXTKeiGcG13gdIQO6EHB3y2qNbTGyN4+e/Dcx2+eXL3Px86Tf568wfPc7DP3hbRp1u3HRS88Vk3jkt/eJfuOJGtdVHZlrX8NUXAhA6tInOL95SY3XkbNvE7kn91VrrGHnGg6P9iLxpc7ly1KXPsnv/wjn+KQOnJjWg7xTB8pfS/94KkefCuH0nGE1rktUT13ogesCe7Tl8fR1FWroPGssDx9cyf0fx9a4ruqoCz2gKAqZa1/j93+EkzCxHSdfufHovzP/GsNv4wJJ+2Byjesyp3oXZHFxcSiKwuDBNW8Ia+v48o0mrq2QAdEERFV/anP9ngS2DphW/nPUK49x8ddTbOzxIj9PXkGvFZPROJR9q48fv5STn+y4o/puJeuL18ubuLZy9m8ir5pNDODRrg9t3r5x3593tweJXH6ciKW/EfjwdFIW3HjyS+MnFxL86Bt3VJ+4tbrQAwCOHm5EvTKGjJ2HKyw/+OZ/OLLg5puJzaUu9MCFrcsoSD1KxLLfiVx2jGYvry1/LWzKZwQMeL6y1VhVvTu0qBbd5z8LwMBNb6IYTeSfz8ar5V30/3I27sF+5JxM48fnF2MqKUXjoOPu2FEE3tsWnaMDV1Ky2Bu7ioCocJr070xQr/a0GNmbxI+3k77jV3qtnIyjhys6Zyf0u39n/8yPoIpHboYO6c7G7i8CcOm3ZPLPXyawewRZ8ccsuv1n3y1rjpMzeqLR6nD0DUaTnkjSrL9RbEjDNaQtYS9/gdbRCaW0hIzPZnHtWBxKaTEuweGEvLCKvBN7yfllM1eP7OBS3BoaDpqAV5cYUhaNxlRwFVNxIR7t+tDkmWVoqjgH6t11SPl/N2jVjeJLGSjGUjQ6aR1Lqys9ANBtzlMcXbKBpoO6Wmvz60wPnP9qIeFvxqF1LLuq1dGn9k/gsJR6t0emFnunrQbg22Gz2NxvKoWGK/hGhrFz3Fw29ZqMi78XTQeXNVXbF4ZSUlDEtkHT2dxvKtknztFp2mgy4g6T9r+DJKzczOZ+Uzn1+U6Kr+ax8/F5bP37NDbfP4UGTRoSNuSeSmtw9mmA1sGBgos55cty0y7ifleAxbe/6QvvAdBqTjwRS47g6NWQ/JQjtJi5hcjliZTknCdn7wYA9F8tROfiTptFvxCx5AiuTduR+elMvDoPwjt6CI0enErEkiP4938anbs3LWZuoc3bvxKx9CjFF1LJ/vnLatV0fstSvKIGSYhZSV3oAYCmg7uhmBTS/le7B9rWVl3oAWP+1bLP2f81iS93JfHlrlyOt9weaG1JR6rIuW/3YywoBsBw5DQeoWXfjEIGdMHJw43QP74tap0cyE27WPlKtBqiZj5Go+jWoNHg6u9JzolznPl6t1W24U74dHuwfK4k95bRFOmTgbJDJ8a8K2T/0dRKSTFOVU1HoZjI+Pc0chN/BkWh5MoFXELa4ttr1C0/+9KuT8n++Utazf3JbNsjas7aPeAa4E2HyQ9Z5BFWtWHtHlCMpWAsxVRcQJtF+yk6n8rJaffg0rg1bmF15zoDCTIVMRaVlP+3YjSh1ZWdq9JoNOyf+RGZP/5223VEPvcArv5ebBs8HWNRCV1eG4fOpfJzEEXZuZiMRlwDvMv3yho0CSAvo4o/EBamcbrx3DqNTlfWZACKQsiz7+DZqf9t13H+67cpuXKB1gv3o3VyIe3Dl1BKbn0O4nL8OrK+eJ3wN3fi6G1Hj2dXIWv3gF/7Zrg28mHI94sAcPb1oEn/zjj7eXJ43tpK32NJ1u4BBw9ftC4N8Otd9gxM50ahuLfpQf6pA3UqyOTQYh1WfC0fR8/b36h6bvsvRDwbg8617Bi2ztUJ7/DGf6yjAEePG+tw8nKn4EI2xqISXAO8CY3pXuk6rzu7ZS+tHi9rDr8OzXEL9EW/t/ZT2tSE1tUDY/6V247z7jqM85sXl08ZYSrKp+Bcwh/r8KywjtLcbBx9AtE6uVCSrSd7939vue7LP39J5mczafnG93f0JHBRO7bugfSdh1jX/mnWR7/A+ugXOLt1H78tXm+1EKsLPeDbazRXDm0ve++1y+Sf+gXX0Pa13SSLkD2yOizhvS30/+JVjAVF5J/PrnLcseWb6PCSIzHb5pafr/59xSZyktJJXv8j9y6dQMiAaE6s2U7iB9/Q+/0pDN21mAL9ZTLjj96yhoP/9yk9l09k+O53MJaUEj9hGUpp9edYuhONhk3h1Ox+aJ3dcPQNpqpJLgIfmkbWF0UkTu2KhrJ7oxoNn4ZrSCR+fcaSuvQJcvZtouGg8TR6YBLJ8x8mYUIkjr7BeHboe8sazrw9BkfvQJLn3HiyS/gbO3Hw9DPXZopbqAs9YEt1oQfuGjuX1GVPcvHbd8vX6x5umwlQq2KXM0SrkS2nsLiuxcjehAyMJu7JBdV+T8cpI3HycuOXV9dUWD4m+dM6PYVFZQw715CzfxMtZmy64/fED8Km07hUpXHftWRcyOeuhm6kfz/a1uVUoNYeqOo99aUHMte+hjEvhyZPL6mw3Jo9IIcWRbnSwmJ8I0MrvRm0Mj1XTKLZQz0pvmabCSTNTevkSsGZIxVuBr2V9I+nol8/Fwd3HwtXJqylpj3QedZY2r34IEU5uRauzDpq2gNn/jWGy7s+RefqaeHKbk32yOqIuvBt1JzU+G3UnGSPrOakB6QHakv2yIQQQqiaBJkQQghVk0OLdYSiKJQWFNm6DLNxcHWu0dPVFQUKrXMxpFW46KAuPly+Lh9alB6QHqitOngUv37SaDQ1Op5ubzSaunlOSViP9ID0QG3JoUUhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqibzkdYRMs27TPNe30kPSA/UlgRZHVFaUMRnzR+zdRlmMyb50xpNW19ohJ7fWLAgK4sfJNPW15T0gPRAbcmhRSGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWpyXZUQdqygsJSjSZf59biBo6eyuXyl7PL27KtFLPz4KFER/tzdxg9vT2cbVypE7UmQCWGHfj1uYMUXx1n7bQqFRTffnJRfaCR28QGg7F6fQT2b8MIjbRjQozFardwAJ9RFgkwIO5KUeoVn3/iZHw/qq/0eRYFtP6Wx7ac0Wjb1ZNWsHvSJDrZglUKYlwSZHQnsHsmAja9XWFaSV8DVlCyS1/9E4offoBhNNqrO8q4d20XSzD4Vlmld3HEODsev91gaxryIRmefv/Imk8LSzxKYsexgpXtg1XXq7FXuf/pb/jGyNQteiqaBm6MZq7Q86YH62QP2t0WClI3xpMcdAo0G1wBvWoy4j+jXn8Cr5V3snbrK1uVZnE+v0XhFDQJFoSRbz6Vdn5D+0UsUpifSdPxqW5dndiUlJh5/5Ue+2J5itnWu/PIE+49dZPvKvxPg62q29VqL9ED96gG5atEOXTp2hpQN8aSs/4mElZvZNngGeRkGwh/9G85+nrYuz+Lcmt2NX+/H8OszlsDhU2m9YB+Ofo0x7PiAkisXbV2eWRmNJsZM32XWELvuUOIl/vbMt2RfVd/zD6UH6k8PgARZvVBaUMTFQ6fQaLV4Nm1k63KsTufijnurbqAoFOmTbV2OWc1afoj//u+MxdZ/7FQ2I1+OQ1EUi32GNUgP2G8PgARZveERWta8RTm5Nq7ENq43r0MDXxtXYj77j15g/sdHa/SeA2uHkLZjFAfWDqn2e77fl8mq/56oaXl1jvSA/fXAdfUiyAwGA7GxsbRo0QIXFxeaNGnCpEmTyMvL46mnnkKj0bB8+XJbl2k2Dq5OOPt64OzniXfrELrOeRq/ds24eOgUV1OybF2exZmK8im9aqDkykUKUo9x7r3xFKQcxq1lNC53hdu6PLMoKjby5KvxmEw121MK9HejcSN3Av3davS+qW8f4GzmtRq9x5akB+y/B/7M7i/2OHLkCAMHDkSv1+Pu7k5ERASZmZksW7aM5ORkLl++DEDHjh1tW6gZdYodRafYURWWpW7bx/7pH9ioIuvKWjubrLWzKyzz7j6ckOdW2Kgi81u/4wyJKTlW+7zc/BIW/yeBJdO6We0z74T0gP33wJ/ZdZAZDAYeeOAB9Ho9U6ZMYfbs2Xh4eACwYMECpk2bhoODAxqNhvbt29u4WvM5+Z//kbplL1pHB3xah9B2/DDcg/wwFhWXj7lv5T9Bq+HH594uX+bk3YBhuxZz8I1PSNkYb4vSzcL/78/ic88IFGMJBWePod84n2JDOhrHG3NDXUuI5/QbA296r1JajGIyEvVV3Z7h8N11iVb/zDWbT/HWi1G4q+CSfOkB+++BP7PrQ4sTJ04kPT2dCRMmsGjRovIQA4iNjaVDhw6UlpYSGhqKp6f9XMl0NUVPVvwxMuIO8/u7X7Nz3Dz8Ozan+/znysfsnf4+Dbu0ImxYj/Jl3eY8zYVfTqi6gQGcg1ri2bEvXlEDCRweS4tXtpB/+gDnVj5fPsYjsied1uVW+Cfy3SQcPPwJfvRNG1Z/e8eSLrPnyAWrf+6Va8UWuTrSEqQH7LsH/spugywxMZF169bh7+/P3LlzKx0TFRUFQIcOHcqXXQ++6OhonJ1rNlV5XXXx4EmS1/9E2LAeBHRuBUBxTi57pqyk61tP49rIh6aDuxF4TyR7p9nfPTYN2tyDb++xZP+8jtzEPZWOMZUUkTJvOA0i7iVoxAwrV1gzPxyw3TmeXQfVeX5JesC+euCv7DbI1q5di8lkYsyYMTRo0KDSMa6uZTd6/jnITp8+zYYNGwgMDKRLly5WqdUaflu8HlOpkU5THylflvHDEVK37KHX8ol0m/cMe6aspCjbPq/oCnpkFmh1ZH7+aqWvn3v3eUwlhYROWmPdwmrh1+MGG372JZt99p2SHrCfHvgruw2yuLg4APr06VPlmPT0dKBikPXq1YusrCw2b95M3759LVukFV1L1XPm690E92pPw65typcffP0TPMICyYg7TPrOQzas0LJcglrg23MU147u5FpCxcNGF7Ys48rBrTSfvgmtc82u5rOFwydsFyYnzuSQl19is8+/E9ID9tMDf2W3F3ucPXsWgKZNm1b6emlpKbt37wYqBplWa/5s79y5M3r9rR/i6qhomU202T/7z44u3UDYsB50mvoI3z38GlB2o2ju2QtkJ54z62eFtwynRFP9Z9ppnFxptOSUWWv4q8ARr3A5fi2Zn79Kq7d+AODa0R9I/2QaLV/9FudGoWb7rPDwlijFBWZb359leb8MWo9KXzuwdsgtL60P9Hct/3fajlFVjtMb8ukyevNNyxUFmrfugIPpag2rvj3pgfrdA4GBgRw8eLBWn2W3QZaXlwdAQUHl/yPXrVuHwWDAw8ODsLAwi9ai1+vJyMi45RgnjQ7u8IED+r0JrAl6uMrXr5zK4JPGj1T5ujllZmVSrFT/qiets9udbj4e7XoT9XXV91W5NmlT4UqsovOppCwcSeMnFuLRrvcdfnpFmZmZmIryzbrOcp5UeSzl+n1it+Og01ZrXGXO6y9CifkPb0oPSA/Ult0GWWBgINnZ2Rw6dIju3btXeC0rK4upU6cC0L59e4tf0BEYGHjbMY6KFuzoodzBQcE1/jZqTaaifJLnDsMreggNB08w+/qDg4Mtt0emVar8VdEbbv2HI9DfFQedllKjCb2h6vputZ7ARv7oFPNPxCk9UL97oDp/J6tit0HWt29fEhMTmT9/Pv369SM8vOxu9gMHDjB27FgMhrJvlNa4Ebo6u8sl+YV81vwxi9diLUmnknB0c7n9wD8UlELPbyxY0F9k79lAwZnfKMxIIvvndTe9Hrn8OE4BIbVef1LSKVwt1F3dH9vMvqOVP/i1ssOBf5a2YxSNG7mjNxTQpN8XNf5sZycd51IScHQ0/yF46QHpgdqy2yCLjY3l888/Jy0tjcjISFq3bk1hYSGnT59m4MCBhIaG8t1331U4P1ZfbX9o9u0H2Rm/PmPx6zPW1mXUSlSEf5VBZmkdwn0tEmK2Jj2gbvb3G/mHxo0bEx8fz+DBg3FxcSE1NRVfX19WrVrFtm3bSEpKApAgE6oTFeFvw8/2s9lnC1EVu90jA2jTpg1bt269aXlubi6pqalotVratm1rg8qEqL0BPRrj4KChtNT6U6vE3Ff7Q01CWIpdB1lVEhISUBSF8PBw3NxuvlR5/fr1ABw/frzCz6GhoXTu3Nl6hQpRiaAANx68P9Si85BVJuwuDwb0aGzVzxSiOuplkB07dgyo+rDiiBEjKv153LhxrFmzxqK1CVEdLzzSxupB9vyI1mi16n9km7A/EmSVUPtsuML+3dc5kAfuC2HLj+a9ibcqzZt4MH5Um9sPFMIG7PZij1u5XZDVFR2njETnXDZlxr1LxhPxzOAaryNkQBcC7m5ZrbEtRvbm0ZP/Jmb7/PJl7SYO58H4pYzL+JKQARWfPdlzxSQe+e19ot94osZ1VUfm2tcwFRcCkLr0Cc5vXlLjdeTs20TuyX3VGmvYuYbDo71IfOnG4ePUpU9yfGJ7jk/uSOKULlz9bWf5a2f+NYbfxgWS9sHkGtd1pzQaDate7YG3h5NVPu+j13vaZPqWutADAza8zkP7VzBkx0KG7FhIxLMx5a/Vhx5IfLkrxyd35PjkjiS82JZfh2rITy2bmTz946kcfSqE03OG1bguc6qXQRYXF4eiKAweXPOmsKaOL99o4toKGRBNQFT1Z4TV70lg64Bp5T9n/XSUHWPe4vy+m+e/ih+/lJOf7Lij+m4l64vXy5u4tnL2byKvmk0M4NGuD23evnHfX+OnFhOx7CgRS47QdPxqUhaMQDGV3eQaNuUzAgY8X9WqLC4owI33ZvW4/cA/0RvyST+fd9sbp//s5XHt6NU5qKblmUVd6AGAA7PXsLnfVDb3m8rx1TcuIKsPPdBm0X4ilhwhYskRgke9hkvTtriFls3f2PjJhQQ/+sYd1WcO9fLQohp0n/8sAAM3vYliNJF/PhuvlnfR/8vZuAf7kXMyjR+fX4yppBSNg467Y0cReG9bdI4OXEnJYm/sKgKiwmnSvzNBvdrTYmRvEj/eTvqOX+m1cjKOHq7onJ3Q7/6d/TM/KnuIXiUMR05bc7PLnX23LCBOzuiJRqvD0TcYTXoiSbP+RrEhDdeQtoS9/AVaRyeU0hIyPpvFtWNxKKXFuASHE/LCKvJO7CXnl81cPbKDS3FraDhoAl5dYkhZNBpTwVVMxYV4tOtDk2eWoaniGZsODbzL/9uYd8Uam14jjwxoht6Qz+QF+6s1/nY3TP/V2JgWzP+nbWaBqCs9YCt1pQf+zPD9h/j3fcrSm15jEmR11N5pq2n1eH++HTaL4qv53LtkPL6RYWx/eDamolIGfPUGTQd35cym3bR9YSglBUVsGzQdgPb/fJhO00azf8YHpP3vIJcTUjn+/jYAdM6O7Hx8HqX5hWi0Wu5fM42wIfdw5uvdttzcmzR94T0M362i1Zx4HBp4k7r0CfJTjtDqrR/QODhzckYvcvZuwLfXaPRfLUTn4k6bRb8AkLXuTTI/nUnI8yvwjh6Ca1hHGg2ZDICpuJAWM7egc22AYjSSPGco2T9/iW+vqh+gm/7v/0f2nv9izM2m+bQN1Wp4a5r0WFtcnB0YP2cPRqP5/hj/Y2Rr3pne3WYXeNSlHoh65TE6xY4iJymdX+d8Ru45y09sWpd6AKD4YhrXfv+RsH/+x9KbXmMSZCpy7tv9GAvKpmo3HDmNR2jZs8lCBnTBycON0EFdAdA6OZCbVsWTH7QaomY+RqPo1qDR4OrvSc6Jc3UuyCrj0+3B8ikm3FtGU6RPBsoOnRjzrpC9dwMASkkxTlU9xVsxkfHvaeQm/gyKQsmVC7iEtL1lEzceN4/G4+Zx9cj3pP87llbzdqN1tM65qep6bkRroiL8eHJWPL+fzr6jdQX4uLBy5j081M+yD9OuDVv0wE8vLiM/s2zqnNZPDqDvf6az6b5/mnnLqsdWPQBwKW4N3l1icPC03Q35VZEgUxFj0Y15oBSjCa1OB5Sd+N8/8yMyf/zttuuIfO4BXP292DZ4OsaiErq8Ng6di/VP4teGxunGc+s0Oh2KsbTsB0Uh5Nl38OzU/7brOP/125RcuUDrhfvROrmQ9uFLKCXVOwfh2bEv51ZPoODsMdxbRNVqGyypc2QAB78YyoKPj/LO58e5mF2zcysuzjrGxrRgzsTO+PtU/xmB1mSLHrgeYgAnPt5Ol1cfx9mngU0m4LRVDyiKgmHnx4Q8v/KO6reUunWMRFRQfC0fR8/bT3J3bvsvRDwbg861bC9B5+qEd3jjP9ZRgKPHjXU4eblTcCEbY1EJrgHehMZ0r3SddYHW1QNj/u3PS3l3Hcb5zYvLp4wwFeVTcC7hj3V4VlhHaW42jj6BaJ1cKMnWk737v1WuVyktoTDrxjnCvKRfKL1yAefAZrXdJItzdtIx67lOpO0YxWdze3N/dBANbnG1oaODls6R/rw9tSuZO0ezeva9dSrEbN0DGp0WF3+v8p+bDu5KgeGK1ULM1j1w3bWjcSjGUjw79qvllliW7JHVYQnvbaH/F69iLCgi/3zVh4uOLd9Eh5ccidk2t/x89e8rNpGTlE7y+h+5d+kEQgZEc2LNdhI/+Ibe709h6K7FFOgvkxl/9JY1tJ/8EK3G9sfFz5N7Wv+Drm89zeb+Uym6ZP6JFf+q0bApnJrdD62zG46+wVQ1yUXgQ9PI+qKIxKld0VB2PqfR8Gm4hkTi12csqUufIGffJhoOGk+jByaRPP9hEiZE4ugbjGeHqmcBV4wlpC4ZhzH/ChqdA1pnd5pNW49DAx8LbK15OTvpeHRwcx4d3ByTSSHp7BWOJl3mWl4JJpOCm6sDrcO8advCB2cnna3LrZKte0Dn5EjfT2egc3JAMSkUXr7GznHzzL2ZVbJ1D1xn+P5D/P/2ZJ07P3ydRpG7f+uEujCFRYuRvQkZGE3ckwuq/Z6OU0bi5OXGL6+uqbB8TPKndXoKi8oYdq4hZ/8mWszYVO33ZK59DWNeDk2eXlJhefwgrDaFhb2QHlBnD1T1Hmv2QN2MV2ETpYXF+EaGVrgZ9FZ6rphEs4d6UnzNMhNIWpvWyZWCM0cq3Ax6K2f+NYbLuz5F5+pp4cqEtUgP1KwH0j+ein79XBzcbXuUQvbI6oi68G3UnNT4bdScZI+s5qQHpAdqS/bIhBBCqJoEmRBCCFWTQ4t1hKIolBYU2boMs3FwdUajqf4TIRQFCo0WLMjKXHRQg80XSA9ID9SeBJkQQghVk0OLQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVO3/AyO/QI2Kjjw8AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAJ1pJREFUeJzt3XlYlPX+//HnzLAjOyiQIriggmsoaqZpRz0upGZpmpl1tZ409WTiT9Ns+eZ+ckkzbfN0KrOjZi5lxySL3NLUNERREGUbdRRUdpi5f3+QGAkKOAv38H5cV1dxz2fued9dvHnNvX40iqIoCCGEECqltXUBQgghxJ2QIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVRNgkwIIYSqSZAJIYRQNQdbFyDKKIpCaUGRrcswGwdXZzQaTbXHKwoUGi1YkJW56KAGmy+QHpAeqD0JsjqitKCIz5o/ZusyzGZM8qc4urlUe3yhEXp+Y8GCrCx+ELhKd9WI9ID0QG3JoUUhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqsmdLnYksHskAza+XmFZSV4BV1OySF7/E4kffoNiNNmoOsu7dmwXSTP7VFimdXHHOTgcv95jaRjzIhqd/MrbM+mB+tkD9rdFgpSN8aTHHQKNBtcAb1qMuI/o15/Aq+Vd7J26ytblWZxPr9F4RQ0CRaEkW8+lXZ+Q/tFLFKYn0nT8aluXJ6xAeqB+9YAEmR26dOwMKRviy38+ueY7HoxfSvijf+PQvLUUXbpqw+osz63Z3fj1vvGEiIBBL5DwQmsMOz4g+LG3cPQKsGF1whqkB+pXD8g5snqgtKCIi4dOodFq8WzayNblWJ3OxR33Vt1AUSjSJ9u6HGED0gP23QMSZPWER2hZ8xbl5Nq4Etu43rwODXxtXImwFekB++0BObRohxxcnXD29Sg/P9Dq8f74tWvGxUOnuJqSZevyLM5UlE/pVUPZ09Sz9Vzc/h4FKYdxaxmNy13hti5PWIH0QP3qAbsPMoPBwIIFC9i4cSPp6ekEBAQwfPhw5syZw8SJE/noo4945513mDBhgq1LNZtOsaPoFDuqwrLUbfvYP/0DG1VkXVlrZ5O1dnaFZd7dhxPy3AobVVQ3nDiTQ3LaVYxGhaAAN6Ii/NFq7XOuGemB+tUDdh1kR44cYeDAgej1etzd3YmIiCAzM5Nly5aRnJzM5cuXAejYsaNtCzWzk//5H6lb9qJ1dMCndQhtxw/DPcgPY1Fx+Zj7Vv4TtBp+fO7t8mVO3g0YtmsxB9/4hJSN8ZWtWhX8//4sPveMQDGWUHD2GPqN8yk2pKNxvDGlxrWEeE6/MfCm9yqlxSgmI1Ff2cfEUEajiXXbz/Dul4nsPny+wmstm3ryj5FteHp4OB7uTjaq0DKkB+pXD9jtOTKDwcADDzyAXq9nypQpZGVlcejQIfR6PfPnz2fbtm0cOHAAjUZD+/btbV2uWV1N0ZMVf4yMuMP8/u7X7Bw3D/+Ozek+/7nyMXunv0/DLq0IG9ajfFm3OU9z4ZcTqm5gAOeglnh27ItX1EACh8fS4pUt5J8+wLmVz5eP8YjsSad1uRX+iXw3CQcPf4IffdOG1ZtPYVEpI16OY8z0XTeFGMCps1d5aeF+7h23jYzzeTao0HKkB+pXD9htkE2cOJH09HQmTJjAokWL8PDwKH8tNjaWDh06UFpaSmhoKJ6enjas1PIuHjxJ8vqfCBvWg4DOrQAozsllz5SVdH3raVwb+dB0cDcC74lk7zT7u8emQZt78O09luyf15GbuKfSMaaSIlLmDadBxL0EjZhh5QrNz2RSGDvjR77aefa2Y48mXebvz28n56r9zM78V9ID9t0DdhlkiYmJrFu3Dn9/f+bOnVvpmKioKAA6dOhQYfmZM2cYMmQIHh4e+Pj48Pjjj3Pp0iWL12xpvy1ej6nUSKepj5Qvy/jhCKlb9tBr+US6zXuGPVNWUpRtn1d0BT0yC7Q6Mj9/tdLXz737PKaSQkInrbFuYRby3e501u9Irfb4hOQcln6WYLmC6gDpAfvtAbsMsrVr12IymRgzZgwNGjSodIyrqytQMciuXbtGnz59SE9PZ+3ataxevZr4+HhiYmIwmdT9WJtrqXrOfL2b4F7tadi1Tfnyg69/gkdYIBlxh0nfeciGFVqWS1ALfHuO4trRnVxLqHjY6MKWZVw5uJXm0zehdXazUYXm9e66xBq/Z/WGk5SUqPv3/FakB+y3B+wyyOLi4gDo06dPlWPS09OBikG2evVqMjIy2LRpEzExMYwYMYLPP/+cffv2sXnzZssWbQVHl27AZKz4jbS0oIjcsxfITjxnw8qsI3DEK6DVVvhGeu3oD6R/Mo1msf/FuVGo7YozowuXCtgWn1bj92VeyGfn/kwLVFR3SA/YZw9oFEVRbF2EuTVp0oT09HQOHz5c6RWJpaWlBAUFYTAYSE5OplmzZsCN4Pvhhx8qjG/evDm9e/fmww8/rFU9nTt3Rq/X33KMo6Jltim6Vuu/UwM2vE7ajl9JeM98Yf269hdKNNX/dq9xcqXRklNm+/zqKDqfyomXuxA0ajYNB5v39ovzk1uiFBeYdZ3VVawL5KLXP2r1Xu+8zbgX/WrmiqpHeqB+90BgYCAHDx6s1WfZ5eX3eXllV2AVFFT+P3HdunUYDAY8PDwICwsrX378+HFGjBhx0/jIyEiOHz9e63r0ej0ZGRm3HOOk0YEdPTknMyuTYqX6l+9qnd2suvmmonyS5w7DK3qI2RsYIDMzE1NRvtnXWy0uGvCq3VtzsrPJyb7176qlSA9ID9SWXQZZYGAg2dnZHDp0iO7du1d4LSsri6lTpwLQvn17NJobN4RmZ2fj7e190/p8fX05efLkHdVzO46KFuzo9ERwUHCNv41aU/aeDRSc+Y3CjCSyf1530+uRy4/jFBBS6/UHBwfbbI/MqHFFr5hAU/MzB35eGlzc7rJAVbcnPVC/e6A6fyerYpdB1rdvXxITE5k/fz79+vUjPLzskSwHDhxg7NixGAwGwHo3Qldnd7kkv5DPmj9223GWsP2h2bcfVENJp5JwdHO5/cA/FJRCz2/MXkaV/PqMxa/PWIutPynpFK427K6hE3eweVfNzvnc1dCN1EM/4OBgm1Pn0gPSA7Vllxd7xMbG4ufnR1paGpGRkbRr146WLVsSHR1Ns2bNuP/++4GbL7338fEhJyfnpvVdvnwZX1/7e9CmsF8vPNLm9oP+4rkRrW0WYkLcCbv8rW3cuDHx8fEMHjwYFxcXUlNT8fX1ZdWqVWzbto2kpCTg5iBr06ZNpefCjh8/Tps2Nf/DIISt9Ot+F6MGNKv2+PbhvkwaE2nBioSwHLs8tAhlobR169ablufm5pKamopWq6Vt27YVXouJiWHGjBmkp6fTuHFjAPbv309ycjILFy60St1CmINWq2HN//XCpCh8+d2ZW47t1NqPbSv649nAvp63KOoPu9wju5WEhAQURaFly5a4uVW88e/ZZ58lKCiIoUOHsnXrVtavX8/o0aOJjo5m6NChNqpYiNpxdtKxdn4fvlx0P727BN30ekRzb5bP6E78msEEBajvJlghrrPbPbKqHDt2DLj5sCKAp6cncXFxTJo0iVGjRuHg4EBMTAyLFy9Gq613mS/sgFarYUT/MEb0D+PU2St0f2wLl64UEeDjwu8bh1e4alcItZIg+4vmzZtXekhSCLVr2dQLF2cdAE6OWgkxYTfq3W7G7YKsLuk4ZSQ6Z0cA7l0ynohnBtd4HSEDuhBwd8tqjW0xsjePnvw3Mdvnly9z8fOk3+evMHz3Owz94W0adbtx0UvPFZN45Lf3iX7jiRrXVR2Za1/DVFwIQOrSJzi/eUmN15GzbxO5J/dVa6xh5xoOj/Yi8aXO5ctSlz7J7/8I5/ikDpyY1oO8UwfKX0v/eCpHnwrh9JxhNa5LVE9d6IHrAnu05fH0dRVq6DxrLA8fXMn9H8fWuK7qqAs9oCgKmWtf4/d/hJMwsR0nX7nx6L8z/xrDb+MCSftgco3rMqd6F2RxcXEoisLgwTVvCGvr+PKNJq6tkAHRBERVf2pz/Z4Etg6YVv5z1CuPcfHXU2zs8SI/T15BrxWT0TiUfauPH7+Uk5/suKP6biXri9fLm7i2cvZvIq+aTQzg0a4Pbd6+cd+fd7cHiVx+nIilvxH48HRSFtx48kvjJxcS/Ogbd1SfuLW60AMAjh5uRL0yhoydhyssP/jmfziy4Oabic2lLvTAha3LKEg9SsSy34lcdoxmL68tfy1symcEDHi+stVYVb07tKgW3ec/C8DATW+iGE3kn8/Gq+Vd9P9yNu7BfuScTOPH5xdjKilF46Dj7thRBN7bFp2jA1dSstgbu4qAqHCa9O9MUK/2tBjZm8SPt5O+41d6rZyMo4crOmcn9Lt/Z//Mj6CKR26GDunOxu4vAnDpt2Tyz18msHsEWfHHLLr9Z98ta46TM3qi0epw9A1Gk55I0qy/UWxIwzWkLWEvf4HW0QmltISMz2Zx7VgcSmkxLsHhhLywirwTe8n5ZTNXj+zgUtwaGg6agFeXGFIWjcZUcBVTcSEe7frQ5JllaKo4B+rddUj5fzdo1Y3iSxkoxlI0OmkdS6srPQDQbc5THF2ygaaDulpr8+tMD5z/aiHhb8ahdSy7qtXRp/ZP4LCUerdHphZ7p60G4Nths9jcbyqFhiv4Roaxc9xcNvWajIu/F00HlzVV2xeGUlJQxLZB09ncbyrZJ87RadpoMuIOk/a/gySs3MzmflM59flOiq/msfPxeWz9+zQ23z+FBk0aEjbknkprcPZpgNbBgYKLOeXLctMu4n5XgMW3v+kL7wHQak48EUuO4OjVkPyUI7SYuYXI5YmU5JwnZ+8GAPRfLUTn4k6bRb8QseQIrk3bkfnpTLw6D8I7egiNHpxKxJIj+Pd/Gp27Ny1mbqHN278SsfQoxRdSyf75y2rVdH7LUryiBkmIWUld6AGApoO7oZgU0v5Xuwfa1lZd6AFj/tWyz9n/NYkvdyXx5a5cjrfcHmhtSUeqyLlv92MsKAbAcOQ0HqFl34xCBnTBycON0D++LWqdHMhNu1j5SrQaomY+RqPo1qDR4OrvSc6Jc5z5erdVtuFO+HR7sHyuJPeW0RTpk4GyQyfGvCtk/9HUSkkxTlVNR6GYyPj3NHITfwZFoeTKBVxC2uLba9QtP/vSrk/J/vlLWs39yWzbI2rO2j3gGuBNh8kPWeQRVrVh7R5QjKVgLMVUXECbRfspOp/KyWn34NK4NW5hdec6AwkyFTEWlZT/t2I0odWVnavSaDTsn/kRmT/+dtt1RD73AK7+XmwbPB1jUQldXhuHzqXycxBF2bmYjEZcA7zL98oaNAkgL6OKPxAWpnG68dw6jU5X1mQAikLIs+/g2an/bddx/uu3KblygdYL96N1ciHtw5dQSm59DuJy/Dqyvnid8Dd34uhtR49nVyFr94Bf+2a4NvJhyPeLAHD29aBJ/844+3lyeN7aSt9jSdbuAQcPX7QuDfDrXfYMTOdGobi36UH+qQN1Ksjk0GIdVnwtH0fP29+oem77L0Q8G4POtewYts7VCe/wxn+sowBHjxvrcPJyp+BCNsaiElwDvAmN6V7pOq87u2UvrR4vaw6/Ds1xC/RFv7f2U9rUhNbVA2P+lduO8+46jPObF5dPGWEqyqfgXMIf6/CssI7S3GwcfQLROrlQkq0ne/d/b7nuyz9/SeZnM2n5xvd39CRwUTu27oH0nYdY1/5p1ke/wProFzi7dR+/LV5vtRCrCz3g22s0Vw5tL3vvtcvkn/oF19D2td0ki5A9sjos4b0t9P/iVYwFReSfz65y3LHlm+jwkiMx2+aWn6/+fcUmcpLSSV7/I/cunUDIgGhOrNlO4gff0Pv9KQzdtZgC/WUy44/esoaD//cpPZdPZPjudzCWlBI/YRlKafXnWLoTjYZN4dTsfmid3XD0DaaqSS4CH5pG1hdFJE7tioaye6MaDZ+Ga0gkfn3Gkrr0CXL2baLhoPE0emASyfMfJmFCJI6+wXh26HvLGs68PQZH70CS59x4skv4Gztx8PQz12aKW6gLPWBLdaEH7ho7l9RlT3Lx23fL1+sebpsJUKtilzNEq5Etp7C4rsXI3oQMjCbuyQXVfk/HKSNx8nLjl1fXVFg+JvnTOj2FRWUMO9eQs38TLWZsuuP3xA/CptO4VKVx37VkXMjnroZupH8/2tblVKDWHqjqPfWlBzLXvoYxL4cmTy+psNyaPSCHFkW50sJifCNDK70ZtDI9V0yi2UM9Kb5mmwkkzU3r5ErBmSMVbga9lfSPp6JfPxcHdx8LVyaspaY90HnWWNq9+CBFObkWrsw6atoDZ/41hsu7PkXn6mnhym5N9sjqiLrwbdSc1Pht1Jxkj6zmpAekB2pL9siEEEKomgSZEEIIVZNDi3WEoiiUFhTZugyzcXB1rtHT1RUFCq1zMaRVuOigLj5cvi4fWpQekB6orTp4FL9+0mg0NTqebm80mrp5TklYj/SA9EBtyaFFIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKom85HWETLNu0zzXt9JD0gP1JYEWR1RWlDEZ80fs3UZZjMm+dMaTVtfaISe31iwICuLHyTT1teU9ID0QG3JoUUhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqcl2VEHasoLCUo0mX+fW4gaOnsrl8pezy9uyrRSz8+ChREf7c3cYPb09nG1cqRO1JkAlhh349bmDFF8dZ+20KhUU335yUX2gkdvEBoOxen0E9m/DCI20Y0KMxWq3cACfURYJMCDuSlHqFZ9/4mR8P6qv9HkWBbT+lse2nNFo29WTVrB70iQ62YJVCmJcEmR0J7B7JgI2vV1hWklfA1ZQsktf/ROKH36AYTTaqzvKuHdtF0sw+FZZpXdxxDg7Hr/dYGsa8iEZnn7/yJpPC0s8SmLHsYKV7YNV16uxV7n/6W/4xsjULXoqmgZujGau0POmB+tkD9rdFgpSN8aTHHQKNBtcAb1qMuI/o15/Aq+Vd7J26ytblWZxPr9F4RQ0CRaEkW8+lXZ+Q/tFLFKYn0nT8aluXZ3YlJSYef+VHvtieYrZ1rvzyBPuPXWT7yr8T4OtqtvVai/RA/eoBuWrRDl06doaUDfGkrP+JhJWb2TZ4BnkZBsIf/RvOfp62Ls/i3JrdjV/vx/DrM5bA4VNpvWAfjn6NMez4gJIrF21dnlkZjSbGTN9l1hC77lDiJf72zLdkX1Xf8w+lB+pPD4AEWb1QWlDExUOn0Gi1eDZtZOtyrE7n4o57q26gKBTpk21djlnNWn6I//7vjMXWf+xUNiNfjkNRFIt9hjVID9hvD4AEWb3hEVrWvEU5uTauxDauN69DA18bV2I++49eYP7HR2v0ngNrh5C2YxQH1g6p9nu+35fJqv+eqGl5dY70gP31wHX1IsgMBgOxsbG0aNECFxcXmjRpwqRJk8jLy+Opp55Co9GwfPlyW5dpNg6uTjj7euDs54l36xC6znkav3bNuHjoFFdTsmxdnsWZivIpvWqg5MpFClKPce698RSkHMatZTQud4XbujyzKCo28uSr8ZhMNdtTCvR3o3EjdwL93Wr0vqlvH+Bs5rUavceWpAfsvwf+zO4v9jhy5AgDBw5Er9fj7u5OREQEmZmZLFu2jOTkZC5fvgxAx44dbVuoGXWKHUWn2FEVlqVu28f+6R/YqCLrylo7m6y1syss8+4+nJDnVtioIvNbv+MMiSk5Vvu83PwSFv8ngSXTulntM++E9ID998Cf2XWQGQwGHnjgAfR6PVOmTGH27Nl4eHgAsGDBAqZNm4aDgwMajYb27dvbuFrzOfmf/5G6ZS9aRwd8WofQdvww3IP8MBYVl4+5b+U/Qavhx+feLl/m5N2AYbsWc/CNT0jZGG+L0s3C/+/P4nPPCBRjCQVnj6HfOJ9iQzoaxxtzQ11LiOf0GwNveq9SWoxiMhL1Vd2e4fDddYlW/8w1m0/x1otRuKvgknzpAfvvgT+z60OLEydOJD09nQkTJrBo0aLyEAOIjY2lQ4cOlJaWEhoaiqen/VzJdDVFT1b8MTLiDvP7u1+zc9w8/Ds2p/v858rH7J3+Pg27tCJsWI/yZd3mPM2FX06ouoEBnINa4tmxL15RAwkcHkuLV7aQf/oA51Y+Xz7GI7InndblVvgn8t0kHDz8CX70TRtWf3vHki6z58gFq3/ulWvFFrk60hKkB+y7B/7KboMsMTGRdevW4e/vz9y5cysdExUVBUCHDh3Kl10PvujoaJydazZVeV118eBJktf/RNiwHgR0bgVAcU4ue6aspOtbT+PayIemg7sReE8ke6fZ3z02Ddrcg2/vsWT/vI7cxD2VjjGVFJEybzgNIu4laMQMK1dYMz8csN05nl0H1Xl+SXrAvnrgr+w2yNauXYvJZGLMmDE0aNCg0jGurmU3ev45yE6fPs2GDRsIDAykS5cuVqnVGn5bvB5TqZFOUx8pX5bxwxFSt+yh1/KJdJv3DHumrKQo2z6v6Ap6ZBZodWR+/mqlr59793lMJYWETlpj3cJq4dfjBht+9iWbffadkh6wnx74K7sNsri4OAD69OlT5Zj09HSgYpD16tWLrKwsNm/eTN++fS1bpBVdS9Vz5uvdBPdqT8OubcqXH3z9EzzCAsmIO0z6zkM2rNCyXIJa4NtzFNeO7uRaQsXDRhe2LOPKwa00n74JrXPNruazhcMnbBcmJ87kkJdfYrPPvxPSA/bTA39ltxd7nD17FoCmTZtW+nppaSm7d+8GKgaZVmv+bO/cuTN6/a0f4uqoaJlNtNk/+8+OLt1A2LAedJr6CN89/BpQdqNo7tkLZCeeM+tnhbcMp0RT/WfaaZxcabTklFlr+KvAEa9wOX4tmZ+/Squ3fgDg2tEfSP9kGi1f/RbnRqFm+6zw8JYoxQVmW9+fZXm/DFqPSl87sHbILS+tD/R3Lf932o5RVY7TG/LpMnrzTcsVBZq37oCD6WoNq7496YH63QOBgYEcPHiwVp9lt0GWl5cHQEFB5f8j161bh8FgwMPDg7CwMIvWotfrycjIuOUYJ40O7vCBA/q9CawJerjK16+cyuCTxo9U+bo5ZWZlUqxU/6onrbPbnW4+Hu16E/V11fdVuTZpU+FKrKLzqaQsHEnjJxbi0a73HX56RZmZmZiK8s26znKeVHks5fp9YrfjoNNWa1xlzusvQon5D29KD0gP1JbdBllgYCDZ2dkcOnSI7t27V3gtKyuLqVOnAtC+fXuLX9ARGBh42zGOihbs6KHcwUHBNf42ak2monyS5w7DK3oIDQdPMPv6g4ODLbdHplWq/FXRG279hyPQ3xUHnZZSowm9oer6brWewEb+6BTzT8QpPVC/e6A6fyerYrdB1rdvXxITE5k/fz79+vUjPLzsbvYDBw4wduxYDIayb5TWuBG6OrvLJfmFfNb8MYvXYi1Jp5JwdHO5/cA/FJRCz28sWNBfZO/ZQMGZ3yjMSCL753U3vR65/DhOASG1Xn9S0ilcLdRd3R/bzL6jlT/4tbLDgX+WtmMUjRu5ozcU0KTfFzX+bGcnHedSEnB0NP8heOkB6YHastsgi42N5fPPPyctLY3IyEhat25NYWEhp0+fZuDAgYSGhvLdd99VOD9WX21/aPbtB9kZvz5j8esz1tZl1EpUhH+VQWZpHcJ9LRJitiY9oG729xv5h8aNGxMfH8/gwYNxcXEhNTUVX19fVq1axbZt20hKSgKQIBOqExXhb8PP9rPZZwtRFbvdIwNo06YNW7duvWl5bm4uqampaLVa2rZta4PKhKi9AT0a4+CgobTU+lOrxNxX+0NNQliKXQdZVRISElAUhfDwcNzcbr5Uef369QAcP368ws+hoaF07tzZeoUKUYmgADcevD/UovOQVSbsLg8G9Ghs1c8UojrqZZAdO3YMqPqw4ogRIyr9edy4caxZs8aitQlRHS880sbqQfb8iNZotep/ZJuwPxJklVD7bLjC/t3XOZAH7gthy4/mvYm3Ks2beDB+VJvbDxTCBuz2Yo9buV2Q1RUdp4xE51w2Zca9S8YT8czgGq8jZEAXAu5uWa2xLUb25tGT/yZm+/zyZe0mDufB+KWMy/iSkAEVnz3Zc8UkHvntfaLfeKLGdVVH5trXMBUXApC69AnOb15S43Xk7NtE7sl91Rpr2LmGw6O9SHzpxuHj1KVPcnxie45P7kjilC5c/W1n+Wtn/jWG38YFkvbB5BrXdac0Gg2rXu2Bt4eTVT7vo9d72mT6lrrQAwM2vM5D+1cwZMdChuxYSMSzMeWv1YceSHy5K8cnd+T45I4kvNiWX4dqyE8tm5k8/eOpHH0qhNNzhtW4LnOql0EWFxeHoigMHlzzprCmji/faOLaChkQTUBU9WeE1e9JYOuAaeU/Z/10lB1j3uL8vpvnv4ofv5STn+y4o/puJeuL18ubuLZy9m8ir5pNDODRrg9t3r5x31/jpxYTsewoEUuO0HT8alIWjEAxld3kGjblMwIGPF/VqiwuKMCN92b1uP3AP9Eb8kk/n3fbG6f/7OVx7ejVOaim5ZlFXegBgAOz17C531Q295vK8dU3LiCrDz3QZtF+IpYcIWLJEYJHvYZL07a4hZbN39j4yYUEP/rGHdVnDvXy0KIadJ//LAADN72JYjSRfz4br5Z30f/L2bgH+5FzMo0fn1+MqaQUjYOOu2NHEXhvW3SODlxJyWJv7CoCosJp0r8zQb3a02JkbxI/3k76jl/ptXIyjh6u6Jyd0O/+nf0zPyp7iF4lDEdOW3Ozy519tywgTs7oiUarw9E3GE16Ikmz/kaxIQ3XkLaEvfwFWkcnlNISMj6bxbVjcSilxbgEhxPywiryTuwl55fNXD2yg0txa2g4aAJeXWJIWTQaU8FVTMWFeLTrQ5NnlqGp4hmbDg28y//bmHfFGpteI48MaIbekM/kBfurNf52N0z/1diYFsz/p21mgagrPWArdaUH/szw/Yf4933K0pteYxJkddTeaatp9Xh/vh02i+Kr+dy7ZDy+kWFsf3g2pqJSBnz1Bk0Hd+XMpt20fWEoJQVFbBs0HYD2/3yYTtNGs3/GB6T97yCXE1I5/v42AHTOjux8fB6l+YVotFruXzONsCH3cObr3bbc3Js0feE9DN+totWceBwaeJO69AnyU47Q6q0f0Dg4c3JGL3L2bsC312j0Xy1E5+JOm0W/AJC17k0yP51JyPMr8I4egmtYRxoNmQyAqbiQFjO3oHNtgGI0kjxnKNk/f4lvr6ofoJv+7/9H9p7/YszNpvm0DdVqeGua9FhbXJwdGD9nD0aj+f4Y/2Nka96Z3t1mF3jUpR6IeuUxOsWOIicpnV/nfEbuOctPbFqXegCg+GIa137/kbB//sfSm15jEmQqcu7b/RgLyqZqNxw5jUdo2bPJQgZ0wcnDjdBBXQHQOjmQm1bFkx+0GqJmPkaj6Nag0eDq70nOiXN1Lsgq49PtwfIpJtxbRlOkTwbKDp0Y866QvXcDAEpJMU5VPcVbMZHx72nkJv4MikLJlQu4hLS9ZRM3HjePxuPmcfXI96T/O5ZW83ajdbTOuanqem5Ea6Ii/HhyVjy/n86+o3UF+LiwcuY9PNTPsg/Trg1b9MBPLy4jP7Ns6pzWTw6g73+ms+m+f5p5y6rHVj0AcCluDd5dYnDwtN0N+VWRIFMRY9GNeaAUowmtTgeUnfjfP/MjMn/87bbriHzuAVz9vdg2eDrGohK6vDYOnYv1T+LXhsbpxnPrNDodirG07AdFIeTZd/Ds1P+26zj/9duUXLlA64X70Tq5kPbhSygl1TsH4dmxL+dWT6Dg7DHcW0TVahssqXNkAAe/GMqCj4/yzufHuZhds3MrLs46xsa0YM7Ezvj7VP8ZgdZkix64HmIAJz7eTpdXH8fZp4FNJuC0VQ8oioJh58eEPL/yjuq3lLp1jERUUHwtH0fP209yd277L0Q8G4POtWwvQefqhHd44z/WUYCjx411OHm5U3AhG2NRCa4B3oTGdK90nXWB1tUDY/7tz0t5dx3G+c2Ly6eMMBXlU3Au4Y91eFZYR2luNo4+gWidXCjJ1pO9+79VrlcpLaEw68Y5wrykXyi9cgHnwGa13SSLc3bSMeu5TqTtGMVnc3tzf3QQDW5xtaGjg5bOkf68PbUrmTtHs3r2vXUqxGzdAxqdFhd/r/Kfmw7uSoHhitVCzNY9cN21o3EoxlI8O/ar5ZZYluyR1WEJ722h/xevYiwoIv981YeLji3fRIeXHInZNrf8fPXvKzaRk5RO8vofuXfpBEIGRHNizXYSP/iG3u9PYeiuxRToL5MZf/SWNbSf/BCtxvbHxc+Te1r/g65vPc3m/lMpumT+iRX/qtGwKZya3Q+tsxuOvsFUNclF4EPTyPqiiMSpXdFQdj6n0fBpuIZE4tdnLKlLnyBn3yYaDhpPowcmkTz/YRImROLoG4xnh6pnAVeMJaQuGYcx/woanQNaZ3eaTVuPQwMfC2yteTk76Xh0cHMeHdwck0kh6ewVjiZd5lpeCSaTgpurA63DvGnbwgdnJ52ty62SrXtA5+RI309noHNyQDEpFF6+xs5x88y9mVWydQ9cZ/j+Q/z/9mSdOz98nUaRu3/rhLowhUWLkb0JGRhN3JMLqv2ejlNG4uTlxi+vrqmwfEzyp3V6CovKGHauIWf/JlrM2FTt92SufQ1jXg5Nnl5SYXn8IKw2hYW9kB5QZw9U9R5r9kDdjFdhE6WFxfhGhla4GfRWeq6YRLOHelJ8zTITSFqb1smVgjNHKtwMeitn/jWGy7s+RefqaeHKhLVID9SsB9I/nop+/Vwc3G17lEL2yOqIuvBt1JzU+G3UnGSPrOakB6QHakv2yIQQQqiaBJkQQghVk0OLdYSiKJQWFNm6DLNxcHVGo6n+EyEUBQqNFizIylx0UIPNF0gPSA/UngSZEEIIVZNDi0IIIVRNgkwIIYSqSZAJIYRQNQkyIYQQqiZBJoQQQtUkyIQQQqiaBJkQQghVkyATQgihahJkQgghVE2CTAghhKpJkAkhhFA1CTIhhBCqJkEmhBBC1STIhBBCqJoEmRBCCFWTIBNCCKFqEmRCCCFUTYJMCCGEqkmQCSGEUDUJMiGEEKomQSaEEELVJMiEEEKomgSZEEIIVZMgE0IIoWoSZEIIIVTt/wMjv0CNio48PAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -603,7 +603,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Result of Estimator VQE: -1.8199999999619816 \n", + "Result of Estimator VQE: -1.819999999715071 \n", "Reference: -1.85727503\n" ] } @@ -616,7 +616,7 @@ "optimizer = CG(maxiter=50)\n", "\n", "# Gradient callable\n", - "estimator = Estimator()\n", + "estimator = StatevectorEstimator()\n", "grad = LinCombEstimatorGradient(estimator) # optional estimator gradient\n", "vqe = VQE(estimator=estimator, ansatz=wavefunction, optimizer=optimizer, gradient=grad)\n", "\n", @@ -647,7 +647,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Result of classical optimizer: -1.8199999993744493 \n", + "Result of classical optimizer: -1.8199999999997165 \n", "Reference: -1.85727503\n" ] } @@ -674,7 +674,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:24:10 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 14:33:48 2025 CEST
" ], "text/plain": [ "" @@ -686,7 +686,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -721,7 +721,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/docs/tutorials/13_trotterQRTE.ipynb b/docs/tutorials/13_trotterQRTE.ipynb index 7729fb86..d5adfa9b 100644 --- a/docs/tutorials/13_trotterQRTE.ipynb +++ b/docs/tutorials/13_trotterQRTE.ipynb @@ -179,7 +179,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAACuCAYAAABdj4vWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAh9ElEQVR4nO3deVxU5f4H8M8M+yoCKiiIrCqbpIKCaK7lhlpqZahZaNfUtA3sV5aZlZlWZt7u1evtmveqeUMrt6uWC5AaYqQS4MYm24js+zrz+4McHZkBhm3mDJ/368Ufnucs3xkfZj6c85zniGQymQxEREREJEhiTRdARERERG3HMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERALGMEdEREQkYAxzRERERAKmr+kCujuZTIb6qhpNl0GdRN/ECCKRSNNlyLG/ERFp32dzezHMaVh9VQ32uM7XdBnUSUJT/gMDU2NNlyHH/kZEpH2fze3Fy6xEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAqbzYS4/Px8RERFwc3ODsbExHB0dsWrVKlRUVCAsLAwikQjbtm3TdJlEREREbaKv6QI60+XLlzFlyhRIJBKYmZnB09MTOTk52Lp1K1JSUlBYWAgA8PPz02yhLRGJ4LlkGgYumARzh16oLihF2uHzuPzJftRX1Wi6OtIl7GtERIKjs2fm8vPzERISAolEgtdffx25ubmIj4+HRCLBxo0bcfToUcTFxUEkEsHX11fT5TYr4P1FCFi3CMU3svDrmq+RfuQCPMOmYsLuNwGRSNPlkQ5hXyMiEh6dPTO3cuVKZGVlYcWKFdi8ebNCW0REBPbu3YsrV67A2dkZlpaWGqqyZVYeDhj8whSkH/0VZxfffx1lt/Mw8sMwOM8ahbTvf9FghaQr2NeIiIRJJ8/MJScnY//+/bC1tcWGDRuUrjNs2DAAwJAhQxSWp6WlYcaMGbCwsEDPnj2xcOFCFBQUdHrNqjg/EQyRWIykfxxVWH5zz8+oq6yG6+wxGqqMdA37GhGRMOlkmNu3bx+kUilCQ0Nhbm6udB0TExMAimGurKwM48aNQ1ZWFvbt24cdO3YgJiYG06dPh1Qq7ZLaH2br5wZpQwPyf7+psLyhpg6Ff6TD1s9VI3WR7mFfIyISJp28zHr69GkAwLhx41Suk5WVBUAxzO3YsQPZ2dmIjo5G//79AQAODg4ICgrCoUOHMGvWrM4rWgXTPj1RU1gGaW19k7ZKSSH6BAyC2EAf0rqm7UTqYF8jIhImnQxzGRkZAAAnJyel7fX19Th37hwAxTB35MgRBAcHy4McAAQGBsLFxQWHDx9uc5gbPnw4JBKJ0jYDmRhrEaByWz0TIzTU1ilta6hpXK5vYohafsFqJQ93D9SJNHNWV5nm+hv7GhF1F9r22QwAdnZ2uHTpUpu21ckwV1FRAQCoqqpS2r5//37k5+fDwsICzs7O8uVJSUmYO3duk/W9vLyQlJTU5nokEgmys7OVthmK9IA+qrdtqKqBgVkPpW16RgYAgPqq2jbXRp0rJzcHtbIGTZch11x/Y18jou5C2z6b20snw5ydnR2KiooQHx+PwMBAhbbc3FyEh4cDAHx9fSF6YLqFoqIiWFlZNdmftbU1rl+/3q56VDGQiYFm/jiovFOEHh4OEBvqN7n8ZWpnjeqCEl720mJ97ftq1V9/zfU39jUi6i607bMZaD4rtEQnw9zEiRORnJyMjRs3YtKkSfDw8AAAxMXFYcGCBcjPzwfQdZMFN3fatK6yGntc56tsz798C/3G+sH2EXfkxSbLl+sZGcDaewDu/JqsclvSvBs3b8DA1FjTZcg119/Y14iou9C2z+b20sm7WSMiImBjY4PMzEx4eXnBx8cH7u7uCAgIgIuLC8aPHw+g6bQkPXv2RHFxcZP9FRYWwtrauitKbyLtx/OQSaXwXDJNYbl76EQYmBoj9WC0Ruoi3cO+RkQkTDp5Zs7BwQExMTEIDw9HVFQU0tPT4enpie3bt2PJkiVwdW2cYuHhMDd48GClY+OSkpIwZoxm5tgqvnYb1/51HIPDpmLcP8ORdSoePdz7wTNsKiTnE5F6kJO4UsdgXyMiEiadDHNAYzA7cuRIk+Xl5eVIT0+HWCyGt7e3Qtv06dPx1ltvISsrCw4ODgCA2NhYpKSkYNOmTV1StzIX392F8sy78Jg/EQ4ThqK6sBTJX/8Pv3+yH5DJNFYX6R72NSIi4RHJZN3rEzo2NhYjR47EwIEDce3aNYW20tJS+Pj4wNbWFuvWrUN1dTUiIiLQq1cvXLhwAWJxx1+VbmnMHAlbaMp/tGpcBvsbEZH2fTa3l06OmWtOQkICgKaXWAHA0tISp0+fhr29PZ555hksXrwYQUFBOHLkSKcEOSIiIqL20tnLrKo0F+YAwNXVVenlWSIiIiJt1O1ON7UU5oiIiIiEpNudmbv33FYiIiIiXdDtzswRERER6RKGOSIiIiIBY5gjIp3Xb/wjWJi5Hz3c+rZq/TkXv8LkA+s65Nh6RgaYc/ErPPLmvA7ZH1F34Pi4PxZk7IOFc9PnlTbX1l11uzFzRNS9iPTE8F+7EKkHY1ByK6fN+/FcMg21JRW49d+z6m33lxAYWpoh8W+H5MsmH1gHuyCvFre9vPm/uPzpf+H3+lPwe+OpFteXnE/E8dlr1aqvIyzKjUTmT7/h1MINAKDV9ar73t/bxmaIC/a4Lejs8pR6+P016WWFmWc/R01hKQ5NCkdDda3C+vbBPnhs/ztI/eEcYpZ/0aW1Wg10RMiJT3D3txtK/2/d543HqM+W4coXB/D7x/sA3O8vhyevRsGVFABA5ok4FF27jeFrFuBMmOKk/c21dVcMc0Sk0waEBMLKwxFRL21p9TYHg1cCD02n7rlkGsoz76oV5vSMDeH90gzc3H8GtSUV8uVXvjiAG3t/Vr6NoQH833sOBuYmyLt0HQCQcSwWpem5Ko/jvXQGrL2dcedicqtr60zaXK+67702qrpbjNg1/8SjX72CoW/OQ9x738jbDMxNMOrzZajKK0bs2//s8tqKr2fi8mffYdj/PYvBYVOR/M9j8jYzB1v4v/ccCpMycOXT71rcV/LOYxi99WVYeTig+EZWq9u6I4Y5ItJpgxZNRmFiOoqSMlq9jbS2vkOO7fJEMIyszJHyXZTC8tzoqyq3Cdq8FIaWZvj9k2+RE3UFAFCUnIGiZOX1u8weDWtvZ+REXcHlTf9tU533Lil31Fkyba5X3fe+I3T0+wsAad//AqdpIzF48VRkHItF3sXGJxoFrH8e5g698PP8j1BbXN6mfQdvWQ67IC9EBixr0/Z/bPsB/Sf7Y+hbzyLrVDzK0iUAgFGfLYeesSF+WbUN0rqWf8cyjsZi5MdLMHDhY4hd83Wr27ojjpkjok4jNtSHz8onMfPs51iQthfPXvsGE755E9bezvJ1TO2t8UzivzDzzGfQMzZU2H70X1fhuez/wn60j3zZotxIBG9ZDvvRPph25CPMT92Dp6/8AwHrn4f+Q4/nMellhT4jBiPrdLxadT88Zm5RbiTMHXvDLsgLi3Ij5T/mDr2a3c+AkEBU3ilC4R9prTruwIWPwSN0Im6fiMOVzyNbXN/a2xlBm5aiPDMPUS99DplU2qrjaIo216vue68Nfl29A7XF5Qj+fDn0TAzhMGkY3J8Zj5v7TiPrlHp9viPJpFL8smobxGIxgrcsB0QiDHphCvqO9sHVLQda/ftQX1mNvNhkOE0PVKutO2KYI6JOIdLXw6S9a+D32lzcvXQdF9fuQsK279HDwwFTD30AmyGuAIDK3EKce/Wv6DmoPwLeXyTf3u2Z8XB9cjQS/voDcmMSFPZt7eOC8f+KQN5vNxC3bjfuxF6D5+JpGL9rNSASydfrE+gJAMj//Va7Xkv0ii9QXVCC4ptZiF7xhfynuqBU9esXi9Hbf1Crj93bfyAC1j+PklvZiHn5yxbXN7K2wPivwwEAp1/YhJqitp2F6SraXK+67722qC4oxYU3d8LSxR6BH7+IoE1LUZGdj4trd2m6NJTczEb8J9+iz4jBGLH+eQx7OxT5V1NwdetBtfaTd+kGTPv0VHrzUnNt3Q0vsxJRpxj8whTYj/LGyXnrkXP2/iWra7tOYObZz+D/7kL5ZafMk5eQtPMYPBdPRU7UVRRfv40RH76AvEvX8fvGb5vs29rTCaef34jbx+MAANe/OYGA9c/Dc/E0OM8IQtqP5wAAVh4OAICy9Dvtei2pB2IwdPU8VN8tQeqBmFZtY9bPFgbmJijLkLS4rkmfnhj7jzcgra3H6bBNqCurbHZ9kViMsdtfg7ljb0S/vLXVZzo0RZvrVfe91zYZRy4g7cdzcHtqLADg5DPrteY1JP79MJymjMDgsKloqKnDLyu3Qdag3tnYe78/VgMdm9zA1Fxbd8MwR0SdwmX2aBTfzELB1VQYWVsotOVEXYXbU2OhZ2wovxPv0vrd6DNiEII2L0WlpBCyugZEv7RF6Yd/ya1seZC7J+HL7+G5eBr6TwmQhzljG0sAQE1xWWe8xGbdP3bzZ6DEBvoYt/MNmPbpiTOLN6GkFYO5h7+7APbBPkjaeQypkdFq1aVvagw9YwOFZSJ9PQBo8v/UUF2H+spqtfavjLbW25b3XpP1qnLvDHF1QYnaN27omRhC38RIYZnY0AAQi5rUK61rUC8oymTy/l+aLkHJzWy1agMgP4NrbNNDrbbuhmGOiDqFlbsD9E2MMC/xXyrXMbK2QGVOAYDGmw6iXtqCWWc/R89B/RG1bAvKs+4q3a74ZtMv3aq8YtQUl8PCqY98mezeHakPXHoFGr/EjazMFZbVVVR3yBfr/WPLlB77YSM+CkPv4QNx9cuDyDga2+J+nZ8IhtdfQiD5NQlx675pcf2HjfwoDG5Pj1Pa9vD/1a39Z/DLK39V+xgP0uZ61X3vW6Or31+7Ud4YtOhxFCSkwcbHGf5rF+JCxI5Wb++zbJbKaWQerlfdqWTcnh4Hx0nD5LV5L5+JhC+/b/X21HoMc0TUaQqTMhD33i6V7TUPjTlzmDgU4j/PYth4OyPt+1/adfx7+zeyMpeHRgDoPXwgJh9UnBT4wXnFOsKDx1bFY/5EDJw/CdlnLyN+w74W99nT0wlBm5eiIqcAZ5d8Cll9g9p1JXz1I1IOKJ4d81/7HAA0CVuVd4rU3v+DtLledd/71urK91ffzBjBny9D1d0SnHhqHUZ88AIGLngM6YcvNBlnqsqt7842mSLGe9lMWHs6IXrFVoXlD06v0xLTvjYIWLcIRckZOBbyFiZ9+w78XpuL2yfi1DoDatSz8fenuqBErbbuhmGOiDpFaZoExjaWyP3ljwdOkalm4+uCYf8XiuyoK6gpKIXX0hDkRF9VOkWElbtDk2Umva1gZGWOnIz74+OKrt0GAFg62ytMTVKYlI4TTymGubKM5sfVyVrxGh5UkVOA2tIKWDrbK23vNdQdIz4IQ1nGncY58FrYv6GVOcZ/HQGxnh7OLtmM6vy2fYGV3Mhq8mV670u6tQGgNbS5XnXfe3V01fsLAAHrFsHcsTdOPfcxaovLEbvma9gH+2DUpy/hh3Gvob6i5TPN5bfzUH47T2GZ6+wxaHDt2656R322DPqmRohZtQ0NNXU49+pXmHFqM4K3LMex6W+3+k5mywGNvz9F1zLVautueDdrN+X21Fgsyo2EXWDLM6F3po58bBJpl5TvomDapye8/hKitN3Y9v44F31TYzz6t1dRW1KOmBVbcWH1DpTdzsPorSvkY88e1MOtH/pP9ldY5rNiFgDg9vGL8mWSX5MAAL2GeSisW1tSgdyYBIWfh7/QHlZfUQ3DZs6yPUwmleJO7DX0GurWpM2klxXG7nwDMqkUZ8I2tTgfmEgsxqN/fxUWTn0Q+87XuBt/s9V1aII216vue6+t+o3zg0foRNz6LgqZJy8BAGqLy3Fh9Q6YO/aG/9qFGqtt4MLH0O/RIbj65fcoTGi82aUsXYL4DXvR6xF3eC+f2ep99Rrmjqq8IpSmNL3Bobm27oZn5kjrtPWxST4vPwEbHxfY+LrAwqkPyjPzVE56GbxlucpxLWcWb0bG0V8VlhlZW8B72Uz0f9wfZv1sUVdWieIbWUjaeQyZJ+KU7qe7S9p5FH0f9YX/2oWwD/ZG7i9/oK68Emb9bGEf7IOGmjqcmPMeACBw4xJYDOiDn579UH4GJ/qlLZjy43oEb30ZP4d+qLDvwqQMjN62Ejf2nEJpai7sR3ljQEggJOcTkfbjefl6NQWlyD33BxwmPIJL7+9u1+u5G38T7vPG45GIZxrH7EllyDx5CfVVNSq3ST98Ho6ThsHWzw35l+9PUTJ25+sws7dBxrFYWA1yhNUgR6XbV90tQW70VfiFP4V+jw5B8c0s1FdWw2X2aJXHbO3dtp1Jm+tV973XRoaWpgja/BIqcgtwcY3iUx4yT8Qh5UC02pdbO4q5Y28Mf2cBCv9IazJfX/LOY3CaNrLVl1v1TY3Re8Rg3Np3Wq227ohhrptKiYxG2o/n0NBBM923VUc9NgkAhr0ViurCMhQmpMLQ0rRV20SvaPrcwge/dIHGu72mHvoQZn1tcGPPKRQlZ8DIyhxuT4/FhF2rcWH1DlzffVKtWrsDWX0Dfp7/EQYtmgzXOWPgF944yLpKUoS7l28h5c//X9e5j8J1zqNI2PaDwiXV/Mu3EP/xPvi/uxBefwlB4vbD8rbChFTEvbcLQ998FgMXTEJdeRWS/3kMv23Y2+SS2fVvTmDsjtdh4+uCgqupbX498Rv2wtDKHIMWPQ7DHmYQicWI9H9J5U0aAJB+6Dz831sE1zljFPpVn4DBAACnqSPgNHWEyu0l5xORG31Vvr6VuwPGbFvVbJ3aEOa0uV5133ttFPBBGMz62uCn0A9RW9r07tK2XG7tKMFblkNsqI+YVduUjpFU53Kr07QRMDA1xvV//6RWW3ckkqk7EIQ6VF1lNfa4ztd0GSqJxGKIjfTRUFXb8sodZM7Fr1CeeVftR9+Y9+8tv1Q288xnMDAzbvHM3C77OS3u13nWKDz6t1cR+87XSN55/zmDhpammBu/HWVpEhyaFK5029CU/8DgoacSaJK297fWWJQbqdZdgCKxGDNObUZhYjpiHhrQ3RV8VsyCz8tPIHLEcsFe0iPShJCTn6A88y7OhG1Sq601tO2zub04Zk4HiQ304b1sJmb8tAnzU/fg2evfYPrxjRj0/GT5OsrGzN1bZj/aB76vzsGTF7ZhQfpeOIcEyddxD52IaUc3IPTWvxF669+YefpT+IU/LW/3e/0plY85UjY+rqMemwSgxTFPqhiYmzQ7fYSBReNZvkqJ4p1ntaWVqK+sQV2l6stspHkyqRSX3t8N51mj0MO9X5cfP+kfR1FbUgHvl2Z0+bGJhKr/ZH9YDXTEpQ/+rVZbd8XLrDpGbKCPSfvWwH6UN7LPXkbKgRg01NSi5+D+cJo6Atf+dbzFffi/uxAiA33c3PMzasuqUPLn4NLR21bCdfYY3P3tBq5+cRC1JRXo4d4PA6aPxOVN+zuk/ugVXyBg3SJUF5bh6hcH5Mube2xSezx7YzcMLUzRUFOHO78mIX7jt8j/XXGwdu4vCZDW1WPYW8+ivrIaRckZMOxhDq8Xp8PQ0kyhTtJO2WcuY7fD0y2v2Akaaura/MByou7q9vE4/Ntpntpt3RXDnI7xXDIN9qO8cXXrQcRv2KvY2MLkpffoGRvi0GPhCpdWB4QEwnX2GKRERiFm5TbFcUmt3G9rtOWxSW1RlVeMxO2HUXA1FfWV1ejpOQCeS6Zhyg/v4+f5HykMGi5Lk+Ds0s8x4v3nMWnP2w/sowgn5r6HvDj1ZlwnIiLqSAxzOsblydGoKSrDlc++a9rYyuGR13efbDJGzuXJMQCAuHW7m+5HgMMuf/toj8K/bx+PQ+r3MZjx82YEfvwiDo56WaG9tqQChckZuLH3FAoT02FqZw2vpSEYv2s1TsxdpzCHGXWu1oxzJCLqTjhmTsdYutij5FYOGmrq2ryPEiVz9li62KFSUtjmiT87goGFKUx6WSn8iMQd14XL0iRIP3Qeli72sHS5P9Fr37FD8Nj+d3Dt6//hymffIfNEHK5/cwL/m7EGYj09jNywuMNqICIiUhfPzFET7blztbmbo0V6em3eLwCMWP98k7nhWpoaQl3lmY37MrK2BFJzAQA+y2ehvrIG2WcuK6xbdbcYd2KT0W/8IxAb6ENap9lpXoiIqHtimNMxpSk56OHWF2JDfUg7cA650tRc9J8cAGPbHs2enav5c+oFw57mwAMhS8/IACZ9rFCWLmnxWKoCobJnHlbdLW5F9a1374xc9QP7NbWzhkisfFygSF8PYn09le1ERESdjZdZdUzKwRgY9bTAkFc6dlxRyp83Iwx/Z0GzNzyUpjZeou072ldhueeL0yFu5Zk5VY9NKrmR1eQRTG25nKxvYgQ9I4Mmy629nTFgeiCKb2QqPKez+GYWDMxMMCAkUGF9c8fe6DNyMAqTMtp1WZuIiKg9eGZOxyTvPAbHx4ZjyKtzYOvniuyoK2ioroPVQEf0cO2Lk0+/36b9Zhy5gLQfzsHtqbGwdLZH5sk41JRUwNLFHv3G+uHHca8BAHKjE1ByKxuPhD8No54WKM/MQ++AQeg11B3VBa0bb9eWxyYBgMucMfL56IxtLCE20IfvK7MBAOVZd5Ea2XhWz9LFHhP3vI3bxy+iNC0X9ZU1sPZ0gvsz4yGTSnE+fLvCfq9+cRD9xvph9LaVsAvyarwBwt4Gg557DHpGBk3vGiYiIupCDHM6RlpXj5+eWQ+vpSFwfmI0hr35LBpq6lCaloub355p176jlm3BndhkuD87HkNemwtZgxRlt/OQfviCfB2ZVIpTz32MER+8gMFhUyCtrUd21BUcf3Itph76oFXHactjkwDAY94E2AV5KSwburpxLiLJ+UR5mKvKK0ZuzFXYj/KGy5OjoW9siMq8IqQdOo+ELw+i5JbiDSAFV1JwbMYa+K56Ek7TRsJjfuPjo/J/v4mEL3+A5EJiq14XERFRZ+DjvDRMFx6vRKpp2yNj2N+IiLTvs7m9eGaOiIi6TMD6F9D/8eEwd+yNQxPfQGFiutL1rAb1x8gPw2DcqwcAIP7jfbh9LLYLKyUSDoY5IiLqMhlHL+CPr37A1B9VD7vQMzHEhF2rEbPyS+RdvAaRWNx4hzwRKcUwR0REXebOr8ktruPyxGjc/e0G8i5eA9A4Fremk57PTKQLGOaIiEirWHk4oKG2DhN2/x/M7K1RmHwbceu+YaAjUoHzzBERkVYR6emh72hfXIjYjkOTwlEpKUDgx0s0XRaR1mKYIyIirVKRnY/c84molBQCAFIjo9FrqIeGqyLSXgxzRESkVdIPn4etnysMzE0AAP0mDEVhUrpmiyLSYhwzR0REXSbwkxfhMGEYTHpbYdK+Nagrr8LBoJcRtHkpMk9eQubJS6jIzsfVrQcx9fCHkEllqJQU4nz43zVdOpHWYpgjIqIucyFih9Ll599QDGupkdHyp7YQUfN4mZWIiIhIwBjmiIiIiASMYY6IiIhIwBjmiIiIiASMYY6IiIhIwBjmiIiIiASMYY6IiIhIwBjmiIiIiASsW4S5/Px8REREwM3NDcbGxnB0dMSqVatQUVGBsLAwiEQibNu2TdNlEhEREalN558AcfnyZUyZMgUSiQRmZmbw9PRETk4Otm7dipSUFBQWNj7I2c/PT7OFquDz8hOw8XGBja8LLJz6oDwzD5EByzRdFuko9jciIuHR6TCXn5+PkJAQSCQSvP7661i7di0sLCwAAJ988glWr14NfX19iEQi+Pr6arha5Ya9FYrqwjIUJqTC0NJU0+WQjmN/IyISHp0OcytXrkRWVhZWrFiBzZs3K7RFRERg7969uHLlCpydnWFpaamhKpsXOWIZym/nAQBmnvkMBmbGGq6IdBn7GxGR8OjsmLnk5GTs378ftra22LBhg9J1hg0bBgAYMmSIfNm98BcQEAAjIyOIRKIuqVeVe1+sRF2B/Y2ISHh0Nszt27cPUqkUoaGhMDc3V7qOiYkJAMUwd+vWLRw4cAB2dnbw9/fvklqJiIiI2kpnw9zp06cBAOPGjVO5TlZWFgDFMDdmzBjk5ubi0KFDmDhxYucWSURERNROOjtmLiMjAwDg5OSktL2+vh7nzp0DoBjmxOKOz7fDhw+HRCJR2mYgE2MtAjr8mKQdPNw9UCeSaroMOfY3IiLt+2wGADs7O1y6dKlN2+psmKuoqAAAVFVVKW3fv38/8vPzYWFhAWdn506tRSKRIDs7W2mboUgP6NOphycNysnNQa2sQdNlyLG/ERFp32dze+lsmLOzs0NRURHi4+MRGBio0Jabm4vw8HAAgK+vb6ff5GBnZ6eyzUAmBrTrjwPqQH3t+2rVX3/sb0RE2vfZDDSfFVqis2Fu4sSJSE5OxsaNGzFp0iR4eHgAAOLi4rBgwQLk5+cD6JrJgps7bVpXWY09rvM7vQbSjBs3b8DAVHum92B/IyLSvs/m9tLZGyAiIiJgY2ODzMxMeHl5wcfHB+7u7ggICICLiwvGjx8PQHG8HBEREZHQ6OyZOQcHB8TExCA8PBxRUVFIT0+Hp6cntm/fjiVLlsDV1RWA9oc5lzljYO7QCwBgbGMJsYE+fF+ZDQAoz7qL1MhoTZZHOob9jYhIeHQ2zAHA4MGDceTIkSbLy8vLkZ6eDrFYDG9vbw1U1noe8ybALshLYdnQ1fMAAJLzifxypQ7F/kZEJDw6HeZUSUxMhEwmg4eHB0xNmz5/MjIyEgCQlJSk8O8BAwZg+PDhXVcogOOz13bp8ah7Y38jIhKebhnmEhISAKi+xDp37lyl/37uueewa9euTq2NiIiISB0Mc0rIZLKuLIeIiIiozXT2btbmtBTmiIiIiISiW56Zu/fcViIiIiKh65Zn5oiIiIh0BcMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJmEgmk8k0XUR3JpPJUF9Vo+kyqJPomxhBJBJpugw59jciIu37bG4vhjkiIiIiAeNlViIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIBY5gjIiIiEjCGOSIiIiIB+3/qe15id2PylgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnMAAACuCAYAAABdj4vWAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAIQVJREFUeJzt3XlcVPX+P/DXDPsqq4KCyKoiIKmgIG6o5YZWLqmoWei9uaSVgd1uXTMrc6nMvH2vXiuzq2ah5fpTywVIDSFSSXBhlW1E9n2f3x/m5MiwDNvMGV7Px8M/PJ+zvDkeZl5+zud8jkgqlUpBRERERIIkVnUBRERERNR2DHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRgDHNEREREAsYwR0RERCRg2qouoLuTSqWoq6xWdRnUSbQN9CASiVRdhgyvNyIi9ftsbi+GORWrq6zGPucFqi6DOklw8v+gY6iv6jJkeL0REanfZ3N78TYrERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYAxzBEREREJGMMcERERkYBpfJjLy8tDWFgYXFxcoK+vD3t7e6xevRrl5eUICQmBSCTCjh07VF0mERERUZtoq7qAznT16lVMnjwZEokERkZGcHd3R3Z2NrZv347k5GQUFBQAALy9vVVbaHNEIrgvnYr+CyfC2M4aVfklSD12CVc3H0RdZbWqqyNNw+uNiEhwNLZnLi8vD0FBQZBIJFizZg1ycnIQFxcHiUSCTZs24cSJE4iJiYFIJIKXl5eqy22S77uL4bt+MYpuZ+LXt75E2vHLcA+ZgvF73wBEIlWXRxqG1xsRkfBobM/cqlWrkJmZiZUrV2Lr1q1ybWFhYdi/fz+uXbsGR0dHmJqaqqjK5pm52WHgi5ORduJXXFjy189QejcXI94PgePTI5H6wy8qrJA0Ca83IiJh0sieucTERBw8eBBWVlbYuHGjwnWGDh0KABg8eLDc8tTUVEyfPh0mJiYwNzfHokWLkJ+f3+k1K+L4TABEYjES/ntCbvmdfT+jtqIKzjNHq6Qu0ky83oiIhEkjw9yBAwfQ0NCA4OBgGBsbK1zHwMAAgHyYKy0txbhx45CZmYkDBw5g165diIqKwrRp09DQ0NAltT/KytsFDfX1yPv9jtzy+upaFPyRBitv5y6viTQXrzciImHSyNus586dAwCMGzeuyXUyMzMByIe5Xbt2ISsrC5GRkejbty8AwM7ODv7+/jh69CiefvrpzitaAcNe5qguKEVDTV2jtgpJAXr5DoBYRxsNtY3biZTF642ISJg0Msylp6cDABwcHBS219XV4eLFiwDkw9zx48cREBAgC3IA4OfnBycnJxw7dqzNYW7YsGGQSCQK23SkYqyDr8I2LQM91NfUKmyrr36wXNtAFzX8clVbbq5uqBV1fa9uU3i9ERGp32czANjY2CA2NrZN22pkmCsvLwcAVFZWKmw/ePAg8vLyYGJiAkdHR9nyhIQEzJ49u9H6gwYNQkJCQpvrkUgkyMrKUtimK9ICeinerr6yGjpGPRS2aenpAADqKmvaXBd1vuycbNRI61VdhgyvNyIi9ftsbi+NDHM2NjYoLCxEXFwc/Pz85NpycnIQGhoKAPDy8oLokekWCgsLYWZm1mh/FhYWuHXrVrvqaYqOVAw08Z+DinuF6OFmB7GudqNbX4Y2FqjKL+YtLzXX27a3Wv3vj9cbEZH6fTYDzWeFlmhkmJswYQISExOxadMmTJw4EW5ubgCAmJgYLFy4EHl5eQC6brLg5rpNayuqsM95gcK2vKtJ6DPWG1ZPuCI3OlG2XEtPBxYe/XDv10SF25H6uH3nNnQM9VVdhgyvNyIi9ftsbi+NfJo1LCwMlpaWyMjIwKBBg+Dp6QlXV1f4+vrCyckJgYGBABpPS2Jubo6ioqJG+ysoKICFhUVXlC4n9cglSBsa4L50qtxy1+AJ0DHUR8rhyC6viTQXrzciImHSyJ45Ozs7REVFITQ0FBEREUhLS4O7uzt27tyJpUuXwtn5wRQLj4e5gQMHKhwbl5CQgNGju36OraKbd3Hzq1MYGDIF474IRebZOPRw7QP3kCmQXLqBlMOcwJU6Dq83IiJh0sgwBzwIZsePH2+0vKysDGlpaRCLxfDw8JBrmzZtGt58801kZmbCzs4OABAdHY3k5GRs2bKlS+p+3JV/7UFZxn24LZgAu/FDUFVQgsQv/x9+33wQkEpVUhNpLl5vRETCI5JKu9cndHR0NEaMGIH+/fvj5s2bcm0lJSXw9PSElZUV1q9fj6qqKoSFhcHa2hqXL1+GWNzxd6WbG8NEwhec/D+1GpfB642ISP0+m9tLI8fMNSc+Ph5A41usAGBqaopz587B1tYWc+fOxZIlS+Dv74/jx493SpAjIiIiai+Nvc3alObCHAA4OzsrvD1LREREpI66XXdTS2GOiIiISEi6Xc/cw/e2EhEREWmCbtczR0RERKRJGOaIiIiIBIxhjog0Xp/AJ7Ao4yB6uPRu1fqzrnyOSYfWd8ixtfR0MOvK53jijXkdsj+i7sD+KR8sTD8AE8fG7yttrq276nZj5oioexFpieGzbhFSDkehOCm7zftxXzoVNcXlSPrugnLb/T0IuqZGuPF/R2XLJh1aDxv/QS1ue3Xrd7j60XfwXjMH3q/PaXF9yaUbODVznVL1dYTFOeHI+Ok3nF20EQDUul5lz/3DbSwHO2Gfy8LOLk+hx8+vgbUZZlz4BNUFJTg6MRT1VTVy69sGeOLJg28j5ceLiFrxaZfWatbfHkGnN+P+b7cV/tu6zgvEyI+X49qnh/D7hwcA/HW9HJu0FvnXkgEAGadjUHjzLoa9tRDnQ+Qn7W+urbtimCMijdYvyA9mbvaIWLat1dscDlgFPDaduvvSqSjLuK9UmNPS14XHsum4c/A8aorLZcuvfXoIt/f/rHgbXR34vPM8dIwNkBt7CwCQfjIaJWk5TR7H46XpsPBwxL0ria2urTOpc73Knnt1VHm/CNFvfYExn7+CIW/MQ8w7X8vadIwNMPKT5ajMLUL0P7/o8tqKbmXg6sffY+g/5mNgyBQkfnFS1mZkZwWfd55HQUI6rn30fYv7Stx9EqO2vwwzNzsU3c5sdVt3xDBHRBptwOJJKLiRhsKE9FZv01BT1yHHdnomAHpmxkj+PkJueU7k9Sa38d/6EnRNjfD75m+RHXENAFCYmI7CRMX1O80cBQsPR2RHXMPVLd+1qc6Ht5Q7qpdMnetV9tx3hI4+vwCQ+sMvcJg6AgOXTEH6yWjkXnnwRiPfDS/A2M4aPy/4ADVFZW3ad8C2FbDxH4Rw3+Vt2v6PHT+i7yQfDHlzPjLPxqE0TQIAGPnxCmjp6+KX1TvQUNvy71j6iWiM+HAp+i96EtFvfdnqtu6IY+aIqNOIdbXhuepZzLjwCRam7sf8m19j/NdvwMLDUbaOoa0F5t74CjPOfwwtfV257Uf9ezWez/oOtqM8ZcsW54QjYNsK2I7yxNTjH2BByj48d+2/8N3wArQfez2PgbUZeg0fiMxzcUrV/fiYucU54TC27wkb/0FYnBMu+2NsZ93sfvoF+aHiXiEK/kht1XH7L3oSbsETcPd0DK59Et7i+hYejvDf8hLKMnIRsewTSBsaWnUcVVHnepU99+rg17W7UFNUhoBPVkDLQBd2E4fCdW4g7hw4h8yzyl3zHUna0IBfVu+AWCxGwLYVgEiEAS9ORu9Rnri+7VCrfx/qKqqQG50Ih2l+SrV1RwxzRNQpRNpamLj/LXi/Nhv3Y2/hyro9iN/xA3q42WHK0fdgOdgZAFCRU4CLr/4b5gP6wvfdxbLtXeYGwvnZUYj/94/IiYqX27eFpxMCvwpD7m+3EbN+L+5F34T7kqkI3LMWEIlk6/XycwcA5P2e1K6fJXLlp6jKL0bRnUxErvxU9qcqv6Tpn18sRk+fAa0+dk+f/vDd8AKKk7IQ9fJnLa6vZ2GCwC9DAQDnXtyC6sK29cJ0FXWuV9lzry6q8ktw+Y3dMHWyhd+Hf4P/lpdQnpWHK+v2qLo0FN/JQtzmb9Fr+EAM3/AChv4zGHnXk3F9+2Gl9pMbexuGvcwVPrzUXFt3w9usRNQpBr44GbYjPXBm3gZkX/jrltXNPacx48LH8PnXItltp4wzsUjYfRLuS6YgO+I6im7dxfD3X0Ru7C38vunbRvu2cHfAuRc24e6pGADAra9Pw3fDC3BfMhWO0/2ReuQiAMDMzQ4AUJp2r10/S8qhKAxZOw9V94uRciiqVdsY9bGCjrEBStMlLa5r0MscY//7Ohpq6nAuZAtqSyuaXV8kFmPsztdgbN8TkS9vb3VPh6qoc73Knnt1k378MlKPXITLnLEAgDNzN6jNz3DjP8fgMHk4BoZMQX11LX5ZtQPSeuV6Yx/+/pj1t2/0AFNzbd0NwxwRdQqnmaNQdCcT+ddToGdhIteWHXEdLnPGQktfV/YkXuyGveg1fAD8t76ECkkBpLX1iFy2TeGHf3FSlizIPRT/2Q9wXzIVfSf7ysKcvqUpAKC6qLQzfsRm/XXs5nugxDraGLf7dRj2Msf5JVtQ3IrB3MP+tRC2AZ5I2H0SKeGRStWlbagPLX0duWUibS0AaPTvVF9Vi7qKKqX2r4i61tuWc6/KepvysIe4Kr9Y6Qc3tAx0oW2gJ7dMrKsDiEWN6m2orVcuKEqlsuu/JE2C4jtZStUGQNaDq2/ZQ6m27oZhjog6hZmrHbQN9DDvxldNrqNnYYKK7HwADx46iFi2DU9f+ATmA/oiYvk2lGXeV7hd0Z3GX7qVuUWoLiqDiUMv2TLpwydSH7n1Cjz4EtczM5ZbVlte1SFfrH8dW6rw2I8b/kEIeg7rj+ufHUb6iegW9+v4TAAG/T0Ikl8TELP+6xbXf9yID0Lg8tw4hW2P/1slHTyPX175t9LHeJQ616vsuW+Nrj6/NiM9MGDxU8iPT4WlpyN81i3C5bBdrd7ec/nTTU4j83i9yk4l4/LcONhPHCqrzWPFDMR/9kOrt6fWY5gjok5TkJCOmHf2NNle/diYM7sJQyD+sxfD0sMRqT/80q7jP9y/npmxLDQCQM9h/THpsPykwI/OK9YRHj12U9wWTED/BRORdeEq4jYeaHGf5u4O8N/6Esqz83Fh6UeQ1tUrXVf850eQfEi+d8xn3fMA0ChsVdwrVHr/j1LnepU9963VledX20gfAZ8sR+X9Ypyesx7D33sR/Rc+ibRjlxuNM21K0vcXGk0R47F8BizcHRC5crvc8ken12mJYW9L+K5fjMLEdJwMehMTv30b3q/Nxt3TMUr1gOqZP/j9qcovVqqtu2GYI6JOUZIqgb6lKXJ++eORLrKmWXo5Yeg/gpEVcQ3V+SUY9FIQsiOvK5wiwszVrtEyg55m0DMzRnb6X+PjCm/eBQCYOtrKTU1SkJCG03Pkw1xpevPj6qSt+BkeVZ6dj5qScpg62ipstx7iiuHvhaA0/d6DOfBa2L+umTECvwyDWEsLF5ZuRVVe277Aim9nNvoyffgl3doA0BrqXK+y514ZXXV+AcB3/WIY2/fE2ec/RE1RGaLf+hK2AZ4Y+dEy/DjuNdSVt9zTXHY3F2V3c+WWOc8cjXrn3u2qd+THy6FtqIeo1TtQX12Li69+julntyJg2wqcnPbPVj/JbNrvwe9P4c0Mpdq6Gz7N2k25zBmLxTnhsPFreSb0ztSRr00i9ZL8fQQMe5lj0N+DFLbrW/01zkXbUB9j/u9V1BSXIWrldlxeuwuld3MxavtK2dizR/Vw6YO+k3zklnmufBoAcPfUFdkyya8JAADroW5y69YUlyMnKl7uz+NfaI+rK6+CbjO9bI+TNjTgXvRNWA9xadRmYG2Gsbtfh7ShAedDtrQ4H5hILMaY/7wKE4deiH77S9yPu9PqOlRBnetV9tyrqz7jvOEWPAFJ30cg40wsAKCmqAyX1+6CsX1P+KxbpLLa+i96En3GDMb1z35AQfyDh11K0ySI27gf1k+4wmPFjFbvy3qoKypzC1GS3PgBh+bauhv2zJHaaetrkzxffgaWnk6w9HKCiUMvlGXkNjnpZcC2FU2Oazm/ZCvST/zaqnUBoCQlB4dHvqxUrd1Bwu4T6D3GCz7rFsE2wAM5v/yB2rIKGPWxgm2AJ+qra3F61jsAAL9NS2HSrxd+mv++rAcnctk2TD6yAQHbX8bPwe/L7bsgIR2jdqzC7X1nUZKSA9uRHugX5AfJpRtIPXJJtl51fglyLv4Bu/FPIPbdve36ee7H3YHrvEA8ETb3wZi9BikyzsSirrK6yW3Sjl2C/cShsPJ2Qd7Vv6YoGbt7DYxsLZF+MhpmA+xhNsBe4faV94uRE3kd3qFz0GfMYBTdyURdRRWcZo5q8pitfdq2M6lzvcqee3Wka2oI/63LUJ6Tjytvyb/lIeN0DJIPRSp9u7WjGNv3xLC3F6Lgj9RG8/Ul7j4Jh6kjWn27VdtQHz2HD0TSgXNKtXVHDHPdVHJ4JFKPXER9B81031Yd9dokABj6ZjCqCkpREJ8CXVPDVm0TubLxewsf/dIFgFvf/ITsqMYf6rYjPeE6LxAZP8UqVWd3Ia2rx88LPsCAxZPgPGs0vEMfDLKulBTi/tUkJP/57+s8ewycZ41B/I4f5W6p5l1NQtyHB+Dzr0UY9Pcg3Nh5TNZWEJ+CmHf2YMgb89F/4UTUllUi8YuT+G3j/ka3zG59fRpjd62BpZcT8q+ntPnnidu4H7pmxhiw+Cno9jCCSCxGuM+yJh/SAIC0o5fg885iOM8aLXdd9fIdCABwmDIcDlOGN7m95NIN5ERel61v5mqH0TtWN1unOoQ5da5X2XOvjnzfC4FRb0v8FPw+akoaP13altutHSVg2wqIdbURtXqHwjGSytxudZg6HDqG+rj1zU9KtXVHIqmyA0GoQ9VWVGGf8wJVl9EkkVgMsZ426itrWl65g8y68jnKMu4r/eob4749ZbfKZpz/GDpG+i32zO2xndXmOiceeAt9xnrjxzGvNPluwODk/0HnsbcSqJK6X2+tsTgnXKmnAEViMaaf3YqCG2mIemxAd1fwXPk0PF9+BuHDVwj2lh6RKgSd2YyyjPs4H7JFqbbWULfP5vbimDkNJNbRhsfyGZj+0xYsSNmH+be+xrRTmzDghUmydRSNmXu4zHaUJ7xenYVnL+/AwrT9cAzyl63jGjwBU09sRHDSNwhO+gYzzn0E79DnZO3ea+Y0+ZojRePjOuq1SQBaHPPUFB1jgxanj3ickZ0VbEd5Ijf2Fl/yrOakDQ2IfXcvHJ8eiR6ufbr8+An/PYGa4nJ4LJve5ccmEqq+k3xg1t8ese99o1Rbd8XbrBpGrKONiQfegu1ID2RduIrkQ1Gor66B+cC+cJgyHDe/OtXiPnz+tQgiHW3c2fczakorUfzn4NJRO1bBeeZo3P/tNq5/ehg1xeXo4doH/aaNwNUtBzuk/siVn8J3/WJUFZTi+qeHZMube21Se8y/vRe6Joaor67FvV8TELfpW+T93vJgbdfnAiHW0sKd/Wc7pS7qWFnnr2Kv3XMtr9gJ6qtr2/zCcqLu6u6pGHzjME/ptu6KYU7DuC+dCtuRHri+/TDiNu6Xb2xl75OWvi6OPhkqd2u1X5AfnGeORnJ4BKJW7ZAfl6Rkr1Zz2vLapLaozC3CjZ3HkH89BXUVVTB37wf3pVMx+cd38fOCD5ofNCwSwWXuONSWVcoNticiIlIFhjkN4/TsKFQXluLax983bmzl8Mhbe880GiPn9OxoAEDM+r2N9yPAYZe/fbBP7u93T8Ug5YcoTP95K/w+/FuzT6f2HuMFYztr3N73c4e+MYBapz3jHImINBHHzGkYUydbFCdlo766ts37KFYwZ4+pkw0qJAVtnvizI+iYGMLA2kzuj0jccZdwaaoEaUcvwdTJFqZOiid6BQDXeeMBgLdYiYhILbBnjhppz5OrzT0cLdLSavN+AWD4hhcazffW0tQQyirLeLAvPQtTICWnUbueuTH6PuWDwsR0tZoIlYiIui+GOQ1TkpyNHi69IdbVRkMHziFXkpKDvpN8oW/Vo9neueo/p17QNTcGHglZWno6MOhlhtI0SYvHaioQKnrnYeX9olZU33oPe+Sqmtiv8+yx0NLTwR1OVElERGqCt1k1TPLhKOiZm2DwKx07rij5z4cRhr29sNkHHkpSHtyi7T3KS265+9+mQdzKnrmmXptUfDuz0SuY2nI7WdtAD1p6Oo2WW3g4ot80PxTdzmjyPZ2u8wJRX12L5PAIpY9LRETUGdgzp2ESd5+E/ZPDMPjVWbDydkZWxDXUV9XCrL89ejj3xpnn3m3TftOPX0bqjxfhMmcsTB1tkXEmBtXF5TB1skWfsd44Mu41AEBOZDyKk7LwROhz0DM3QVlGLnr6DoD1EFdU5bduvF1bXpsEAE6zRsvmo9O3NIVYRxter8wEAJRl3kdK+INePVMnW0zY90/cPXUFJak5qKuohoW7A1znBkLa0IBLoTsV7t/qCVeYD+iL1CMXUV3IyV+JiEg9MMxpmIbaOvw0dwMGvRQEx2dGYegb81FfXYuS1Bzc+fZ8u/YdsXwb7kUnwnV+IAa/NhvS+gaU3s1F2rHLsnWkDQ04+/yHGP7eixgYMhkNNXXIiriGU8+uw5Sj77XqOG15bRIAuM0bDxv/QXLLhqx9MBeR5NINWZirzC1CTtR12I70gNOzo6Ctr4uK3EKkHr2E+M8OozhJ8UubXecHAgBu88EHIiJSI3ydl4ppwuuVqGnq9soYXm9EROr32dxe7JkjIqIu47vhRfR9ahiM7Xvi6ITXUXAjTeF6ZgP6YsT7IdC37gEAiPvwAO6ejO7CSomEg2GOiIi6TPqJy/jj8x8x5UjTwy60DHQxfs9aRK36DLlXbkIkFj94Qp6IFGKYIyKiLnPv18QW13F6ZhTu/3YbuVduAngwFre6k97PTKQJGOaIiEitmLnZob6mFuP3/gNGthYoSLyLmPVfM9ARNYHzzBERkVoRaWmh9ygvXA7biaMTQ1EhyYffh0tVXRaR2mKYIyIitVKelYecSzdQISkAAKSER8J6iJuKqyJSXwxzRESkVtKOXYKVtzN0jA0AAH3GD0FBQppqiyJSYxwzR0REXcZv899gN34oDHqaYeKBt1BbVonD/i/Df+tLyDgTi4wzsSjPysP17Ycx5dj7kDZIUSEpwKXQ/6i6dCK1xTBHRERd5nLYLoXLL70uH9ZSwiNlb20houbxNisRERGRgDHMEREREQkYwxwRERGRgDHMEREREQkYwxwRERGRgDHMEREREQkYwxwRERGRgDHMEREREQlYtwhzeXl5CAsLg4uLC/T19WFvb4/Vq1ejvLwcISEhEIlE2LFjh6rLJCIiIlKaxr8B4urVq5g8eTIkEgmMjIzg7u6O7OxsbN++HcnJySgoePAiZ29vb9UW2gTPl5+BpacTLL2cYOLQC2UZuQj3Xa7qskhD8XojIhIejQ5zeXl5CAoKgkQiwZo1a7Bu3TqYmJgAADZv3oy1a9dCW1sbIpEIXl5eKq5WsaFvBqOqoBQF8SnQNTVUdTmk4Xi9EREJj0aHuVWrViEzMxMrV67E1q1b5drCwsKwf/9+XLt2DY6OjjA1NVVRlc0LH74cZXdzAQAzzn8MHSN9FVdEmozXGxGR8GjsmLnExEQcPHgQVlZW2Lhxo8J1hg4dCgAYPHiwbNnD8Ofr6ws9PT2IRKIuqbcpD79YiboCrzciIuHR2DB34MABNDQ0IDg4GMbGxgrXMTAwACAf5pKSknDo0CHY2NjAx8enS2olIiIiaiuNDXPnzp0DAIwbN67JdTIzMwHIh7nRo0cjJycHR48exYQJEzq3SCIiIqJ20tgxc+np6QAABwcHhe11dXW4ePEiAPkwJxZ3fL4dNmwYJBKJwjYdqRjr4NvhxyT14ObqhlpRg6rLkOH1RkSkfp/NAGBjY4PY2Ng2bauxYa68vBwAUFlZqbD94MGDyMvLg4mJCRwdHTu1FolEgqysLIVtuiItoFenHp5UKDsnGzXSelWXIcPrjYhI/T6b20tjw5yNjQ0KCwsRFxcHPz8/ubacnByEhoYCALy8vDr9IQcbG5sm23SkYkC9/nNAHai3bW+1+t8frzciIvX7bAaazwot0dgwN2HCBCQmJmLTpk2YOHEi3NzcAAAxMTFYuHAh8vLyAHTNZMHNdZvWVlRhn/OCTq+BVOP2ndvQMVSf6T14vRERqd9nc3tp7AMQYWFhsLS0REZGBgYNGgRPT0+4urrC19cXTk5OCAwMBCA/Xo6IiIhIaDS2Z87Ozg5RUVEIDQ1FREQE0tLS4O7ujp07d2Lp0qVwdnYGoP5hzmnWaBjbWQMA9C1NIdbRhtcrMwEAZZn3kRIeqcrySMPweiMiEh6NDXMAMHDgQBw/frzR8rKyMqSlpUEsFsPDw0MFlbWe27zxsPEfJLdsyNp5AADJpRv8cqUOxeuNiEh4NDrMNeXGjRuQSqVwc3ODoWHj90+Gh4cDABISEuT+3q9fPwwbNqzrCgVwaua6Lj0edW+83oiIhKdbhrn4+HgATd9inT17tsK/P//889izZ0+n1kZERESkDIY5BaRSaVeWQ0RERNRmGvs0a3NaCnNEREREQtEte+YevreViIiISOi6Zc8cERERkaZgmCMiIiISMIY5IiIiIgFjmCMiIiISMIY5IiIiIgFjmCMiIiISMIY5IiIiIgFjmCMiIiISMIY5IiIiIgFjmCMiIiISMIY5IiIiIgETSaVSqaqL6M6kUinqKqtVXQZ1Em0DPYhEIlWXIcPrjYhI/T6b24thjoiIiEjAeJuViIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMAY5oiIiIgEjGGOiIiISMD+PxgqAqLFE03WAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -209,9 +209,9 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAbIAAACuCAYAAABTEIhIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAhxElEQVR4nO3de1xVdb7/8dfeIDe5CYpcFPGCiXcT71pq2qSpmZNdxqyZ0bGaHKvxiDWdGY/OQ8vyZJldtJo8TeXPR95TR62sCdMcTStTBOWmCFslUFG5bVi/PxgpBlDADZu1eT8fDx7J+n7X2h8Ivm/W2mt9vxbDMAxERERMyursAkRERG6EgkxERExNQSYiIqamIBMREVNTkImIiKkpyERExNQUZCIiYmoKMhERMTUFmYiImJqCTERETE1BJiIipqYgExERU1OQiYiIqSnIRETE1BRkIiJiagoyERExNQWZiIiYmoJMRERMTUEmIiKmpiATERFTU5CJiIipKchERMTUFGQiImJqCjIRETE1BZmIiJiagkxERExNQSYiIqamIBMREVNTkImIiKkpyERExNQUZCIiYmoKMhERMTUFmYiImJqCTERETE1BJiIipqYgExERU1OQiYiIqbk7uwARkaoYBhSUOLuKmvNyA4vFccczDAN7fqHjDtgA3L09sTjym1DT123wVxQRqYGCEhi2zdlV1Fz8WPB24Ihqzy/kg44POu6ADWBK8vs08/Fq8NfVpUURETE1BZmIiJiagkxERExNQSYiIqamIBMREVNTkImIiKkpyERExNT0HJmIuIy8w1+Q9N8jKmyzejXHM7wzwcOnEjLuD1jcXHfYCx3UjTvWz6+wrfhyPhdTskhe+yUJ72zDKCl1UnX1x3X/j4pIk9XilgcI6DsWDIPiXBs/fvEeGX/7IwUZCbR7fKWzy6t3Kevjydh1ECwWvFsF0mnyrfSf/2sCoiPYO2eFs8tzOAWZiLgcnw43Ezz8p1kxWo39PUd+34XsT94m/MGFNAto5cTq6t+Ph1NJWRdf/nniqh3cHf8KnX91GwefX03hjxedWJ3j6T0yEXF5bl7NaX7TQDAMCm3Jzi6nwdnzCzl38DgWqxX/dq2dXY7DKchEpEm4GmDuvkFOrsQ5/KLKAqzw/CUnV+J4urQoIi6ntPAK9ovZZTPI59o4t/1N8lMO4RPdH6+Izs4ur965e3vgGeRX/h7ZTQ/dTnCPDpw7eJyLKVnOLs/hXD7IsrOzeeGFF1i/fj0ZGRm0atWKSZMmsWjRImbNmsXf/vY3Xn31VWbOnOnsUsWFGQYcPQ/ZheBmgXAf6ODn7KpcV9bqeWStnldhW+CgSUQ+8pqTKmpYfeLup0/c/RW2pW39mn3PvO2kiuqXSwfZt99+y5gxY7DZbDRv3pyuXbuSmZnJsmXLSE5OJicnB4DevXs7t1BxWVfssOkkrE2D9P+4otOjBdwTBb+IAHdd5Heolr+YQYvBkzFKislPP4xt/WKKsjOwNPtpiZG8I/GcWDCm0r6GvQijtIS+G0y0GNp/SPz7TtI+3ou1mTstukTS/fGJNA8LpqSwqLyP1cOd8TtfJHVDPN+/sr58+9CXH8erVSCfTlnojNLrxGWDLDs7m/Hjx2Oz2Zg9ezbz5s3Dz6/sT+AXXniBuXPn4u7ujsVioWfPnk6uVlxRdgHM+hqSqrlB7HBu2cenmfBcX/By2d/GhucZFo1/71EABPQdg2/MUBKfGcrJNx6lw5z/B4Bft2H0WVPxr4uiHzM5NjuWVnea+wrNxRQbWfGHATi96xBn/nWMsZv+yqDFj/DPx5YCUFpkZ/esV7ljwwJOffINuUfTibyjH21Gx7Jp5B+dWX6tuezfgbNmzSIjI4OZM2eyZMmS8hADiIuLo1evXtjtdqKiovD393dipeKKLtuvHWI/F38Gnj0IJUb919VU+cYMJmj4VHJ3r+FSwp4q+5QWF5Ly/CR8uw4lbPKfGrjC+nXuQCLJa7+k/cQhtIq9qXz7j9+ncOSNzQxb9gd8woIY9OKj7PvT2+SfyXVitbXnkkGWkJDAmjVraNmyJc8991yVffr27QtAr169KmxPTU1lwoQJ+Pn50aJFCx566CF+/PHHeq9ZXMualJqF2FX/tMHuM/VXj0DYfX8GqxuZH/6lyvaTrz9KaXEBUU+satjCGsh3S9dSai+hz5z7Km5/eR2lJSVM+ORFbF/9QOqmr5xUYd25ZJCtXr2a0tJSpkyZgq+vb5V9vL29gYpBlpeXx4gRI8jIyGD16tWsXLmS+Ph4xo0bR2mp603rIvWjxID16bXfb22q42uRn3iFdSJo2P3kff8ZeUfiK7Sd/XgZFw5soeMzG7F6+jipwvqVl2YjddNXhN/Sk5ABMeXbDXsJ5/Yn4hUcwIk1nzuxwrpzySDbtWsXACNGjKi2T0ZGBlAxyFauXMnp06fZuHEj48aNY/LkyXz44Yd8/fXXbN68uX6LFpfxTTbY8mu/395zZe+rSf0JnfwsWK0Vzsryvv+cjPfm0iHuIzxbRzmvuAbw/StlZ18/PysLGRBDp/tGkPDONvov+A1uXh5OrLBuLIZhuNyV+bZt25KRkcGhQ4eqvCPRbrcTFhZGdnY2ycnJdOjQAfgp+D7/vOJfJR07dmT48OG88847daonNjYWm81Wp33FfLwHTibgoaV12jd78Z3Y079zcEXmZPHwpvXLx+v1NQrPpHHsv/oRdv88Qm7wBo8zT0ZjFNXhL5hqNDOszCvt77DjVcXdx4sJny3h6IotHPu/HYzZsIDs75LZP29VnY433/ovii11u3oVGhrKgQMH6rSvS94ndfnyZQDy86v+oVqzZg3Z2dn4+fnRvn378u1Hjx5l8uTJlfp369aNo0eP1rkem83G6dOn67y/mEtwbi4Bddz33NkzXNHPCgBWTx/qczKl0sIrJD83kYD+E244xAAyMzMpLbzigMrKeFjcqNdvANDvfx7i0smzHFu1HYDdTyxnwqdLOPmPfZz5OqHWx8vMyqTIaPjHFlwyyEJDQ8nNzeXgwYMMGjSoQltWVhZz5swBoGfPnlgslvK23NxcAgMDKx0vKCiIxMTEG6pHmg4Po26DmVFaSnCzUlpERDi4InOyeHjX6/Fz96wjP/U7Ck4nkbt7TaX2bsuP4tEqssbHCw8Pd/gZGfX41nzEyD60nzCETbfNLt+Wl36GbxZ+wJClj7N55Gzs+YW1OmZ4WPgNnZHVlUsG2ahRo0hISGDx4sWMHj2azp3LpqTZv38/U6dOJTs7G2i4B6Hreros5lRiwMRPIauWY9qQUCvLjh6sn6JMKN8Ow7bV3/GDR0wleMRUhx0vKek43g4cUYuvFPBBxwev37GOTu86xIddHq60/diq7eVnaLWVdDyJZj5e1+/oYC55s0dcXBzBwcGcOnWKbt260aNHD6Kjo+nfvz8dOnRg5MiRQOVb71u0aMH58+crHS8nJ4egoKY50ajUnpsFfhlV+/0m12EfEXHRIGvTpg3x8fHceeedeHl5kZaWRlBQECtWrGDr1q0kJSUBlYMsJiamyvfCjh49SkxMTKXtItW5tz10qcUbZSPDYIjrra4h0iBcMsigLJS2bNlCXl4eeXl57Nu3jxkzZnD58mXS0tKwWq107969wj7jxo1j9+7d5bfmA+zbt4/k5GTGjx/f0F+CmJiPO7wyALoGXr/viFBYcDNYLdfvKyKVuWyQVefIkSMYhkF0dDQ+PhUffJwxYwZhYWHcddddbNmyhbVr1/LAAw/Qv39/7rrrLidVLGYV7AUrB8PTPaqe6f7mYFjYF57vB15uDV+fiKtockF2+HDZRJr/eVkRwN/fn127dhEWFsb999/P9OnTGTx4MFu2bMFqbXLfKnEAL3e4pz2sGQ4f3AoBzcq2B3nAyiFlM9+76UxM5Ia45F2L13KtIIOyh5+3bNnSkCVJE2CxwE0B4OkGFGvZFhFHUpCJiEs6uXIWF/ZvpuhsOjFLD+HToXelPqVFBaQsuZ+CU0exenjjHhBC5GNv4BXW6ZptjZ2bZzNuffMpAqLbUFJQREH2BfY+/RZ5aZVnGIoY0Zs+cx/A2sydkvxC9sStIPfoT5OFWj3c6TfvYSKG96aksIico+nEz1zWkF/OdTW5ILs6D6OIuLYWQ+4hdFIcic8MvWa/VrfPwL/vGCwWC2e3Lid9+XRuWvjFddsau8S/f8LpXYcA6PKbOxjyv4+x/ZcVV832CGjOsOVPsP3uP3M+KYOQATHc8toTbBrx03pkfZ99EAyD9UP+AIB3q8AG+xpqShc4RMQl+XW7BY+Wba7Zx+rhRUDs2PIZfpp3HkjR2bTrtjV2JYXF5SEGcO7gcXzbtqrUzy8qlMLcPM4nld2pfXZfAs0jWhLUo2zqPndvT6IfGMnB51eX75N/7nz9Fl8HCjIRkX87u+UVAvtXfYfytdoau67Tx3Jyx/5K2y+mZOHZwq98sc22t8fi4eeDb9sQoCzois5fouesSYzbvpgxG/9K2NAeDVp7TTS5S4siYn7H4gZRkFn1zPhdlx7Co1XbWh8z66NFFGadoN1fP6tVmzOM/Xgh/h3CqmzbPHoOVzJ/Wgy4x6xJ+EWFsufe+ZX6Fudd4YvfLaHvn36Fe3Mvzh1IIjfxFIa9bOJfi7sV37YhnD+ewTeLPiCoe3tuX/NnNt76FAXZF+rni6sDBZmImE6XF/Y69Hi2DUs4v3c90Qs+rbSw5rXanGXb+Gdr1K/boxNoN3YAO++dT0l+UZV9bHuOsH1S2XtnVg937vvu7fJLjZdPZ1NaUkLKurKFSHN+SOXSybO0iIkkK/6wA74Sx9ClRRFp0s5seonc+NVEL/gEd9/AGrc1dl0fGUf7u4ew874FFF2sfkUG75DA8n/3euoesr76ofzuxsKcPLJ2/0D48LK7vH3bhuAbGcKF441rqSGXXFhTpLEauxPOFkCIF2y73dnVNG43Ovt9+uuPcOHAVopzbbj7BePm7Uf3FScASHt1OoH9J+DT8WYOT2uLR2gH3LzLpl+xuHsSs2QfRdkZ1bZVJX4sjWb2e5+wIO49uJKLaTbsl8qWYSgpsrP1zmcAGLzkUU7tPMCpnQcYvORRWg+IweJm5dw3Sex79p0KwecbGcKQl36PV5AfRqnBd0s/In1r1d+DKcnvO2X2ewWZSANSkNVcfS/j4miNKcicxVlBpkuLIiJiagoyERExNQWZiIiYmoJMRERMTc+RiUij5OVWdgOFWTh6TTl3b0+mJL/v2IPWM3dvT+e8rlNeVUTkOiwWx94FaDYWi8UpdwCakS4tioiIqSnIRBqpzZs307t37wofEREReHl5XbOtOpMnT2bv3tpN7XT8+HEGDx5M586d6devH0eOHKm2b2FhITNnziQ6OpoePXrw4IOVn4F69913sVgsbNy4sXzbsGHDSE1NrVVdIhUYItJgxuwwjL6byv5bW7m5uUanTp2Mt99+u1ZthmEY+/btM0aOHFnr1xwxYoTx7rvvGoZhGB999JERGxtbbd8nn3zSmDlzplFaWmoYhmFkZWVVaE9NTTUGDRpkDBw40NiwYUP59g0bNhhTp06tdW0iV2lmD5EGVNeZPUpLSxk/fjxt27blzTffrHHbVdOmTWPw4MFMmzatxq959uxZOnXqRE5ODu7u7hiGQVhYGLt376ZTp4qrJF++fJmwsDAyMjLw9/evsv7bb7+dxYsXM3v2bJ588kkmTpwIQHFxMeHh4Zw4cYKAgIAa1ydylS4tipjAvHnzyMnJYdmyykvMX6vtqi+++IIBAwbU6jVPnTpFWFgY7u5ld1xYLBYiIyM5efJkpb7JyckEBQWxaNEiYmNjGTZsGJ999tOSJy+99BJDhgyhb9++lfZt1qwZPXr0ID4+vlb1iVzVhO8JEjGHTZs28c4773DgwAE8PDxq3PZzGRkZtG7dusK2QYMGcfx41Wt6HTp0qMrt1bHb7aSnp9O1a1eef/55Dh06xOjRozly5Ajnzp1j3bp1fPnll9XuHxoaSkZGRq1eU+QqBZlII5aYmMi0adPYuHEj4eHhNW77Tz4+PhQUFFTYdr0bPzw9PcnKysJut5dfWjx58iSRkZGV+kZGRmK1WpkyZQoAffr0oX379hw+fJjjx4+TlpZGdHQ0ADabjRkzZpCVlcVjjz0GQEFBAd7e3tf+ZohUQ5cWRRqpvLw87r77bubPn8/QoUNr3FaVnj17kpiYWKvXDwkJ4eabb+b998seyl23bh1t2rSp9P4YQMuWLbntttvYsWMHAKmpqaSmphITE8Njjz1GVlYWaWlppKWlMXDgQFauXFkeYgAJCQn06tWrVvWJXKUzMpFG6rXXXiMxMZG33nqLt956q0LbvffeW23btm3bKp2h3XPPPezYsYNRo0bVqoYVK1bw61//mkWLFuHv78+7775b3jZ9+nQmTJjAhAkTAHjzzTeZNm0ac+fOxWq1smLFCiIiIq77GmlpaZSUlCjIpM5016JIA3LWemSXLl1i8ODB7N27l+bNmzfcC9fA008/TadOnZg+fbqzSxGT0qVFkSbA19eXpUuXNsoHj8PDw/ntb3/r7DLExHRGJtKAtEK0iOPpjExERExNQSYiIqamIBMREVNTkImIiKkpyERExNT0QHQjZBgG9vxCZ5dRK+7enlgsFmeXIS7EMKCgxNlV1JyXW9mq1o6icaAWr9vgryjXZc8v5IOOlRclbMymJL+vZdnFoQpKYNg2Z1dRc/FjwduBI6rGgZrTpUURETE1BZmIiJiagkxERExNQSYiIqamIBMREVNTkImIiKkpyERExNQUZCIiYmp6INqFhA7qxh3r51fYVnw5n4spWSSv/ZKEd7ZhlJQ6qTqR+pd3+AuS/ntEhW1Wr+Z4hncmePhUQsb9AYub6w57TXUMcN3/o01Yyvp4MnYdBIsF71aBdJp8K/3n/5qA6Aj2zlnh7PJE6l2LWx4goO9YMAyKc238+MV7ZPztjxRkJNDu8ZXOLq/eNbUxQEHmgn48nErKuvjyzxNX7eDu+Ffo/KvbOPj8agp/vOjE6kTqn0+Hmwke/tP0Tq3G/p4jv+9C9idvE/7gQpoFtHJidfWvqY0Beo+sCbDnF3Lu4HEsViv+7Vo7uxyRBufm1ZzmNw0Ew6DQluzschqcq48BCrImwi+q7Ie38PwlJ1ci4hxXA8zdN8jJlTiHK48BTSLIsrOziYuLo1OnTnh5edG2bVueeOIJLl++zLRp07BYLCxfvtzZZTqMu7cHnkF+eAb7E9glkgGLphPcowPnDh7nYkqWs8sTqXelhVewX8ym+MI58tMOc/LNx8lPOYRPdH+8Ijo7u7x619TGAJd/j+zbb79lzJgx2Gw2mjdvTteuXcnMzGTZsmUkJyeTk5MDQO/evZ1bqAP1ibufPnH3V9iWtvVr9j3ztpMqatpyC2HTSfhHBpwrKNuWUwgb0uGOCMcu/SFlslbPI2v1vArbAgdNIvKR15xUUcNqamOAS/8KZWdnM378eGw2G7Nnz2bevHn4+fkB8MILLzB37lzc3d2xWCz07NnTydU6TuLfd5L28V6szdxp0SWS7o9PpHlYMCWFReV9bn3jKbBa+OcjL5Vv8wj0ZeIXSzmw4D1S1sdXdWipBcOA/zsBKxKh+D/ueLYbsPA7eOUI/HdvGBXulBJdVstfzKDF4MkYJcXkpx/Gtn4xRdkZWJr9tFZW3pF4TiwYU2lfw16EUVpC3w0mWtXzP9RkDLB6uDN+54ukbojn+1fWl28f+vLjeLUK5NMpC51Rep249KXFWbNmkZGRwcyZM1myZEl5iAHExcXRq1cv7HY7UVFR+Pv7O7FSx7qYYiMr/jCndx3ih9c38dnDz9Oyd0cGLX6kvM/eZ94ipN9NtJ84pHzbwEXTOfuvYwoxB3ktAZYnVA6xn7tkh6cPwNZTDVdXU+AZFo1/71EE9B1D6KQ4Oj37MVdO7OfkG4+W9/HrNow+ay5V+Oj2ehLufi0J/9VfnVj9javJGFBaZGf3rFfpMWsSLbq2AyDyjn60GR3LV3983Vml14nLBllCQgJr1qyhZcuWPPfcc1X26du3LwC9evUq33Y1+Pr374+np3OW7Xa0cwcSSV77Je0nDqFV7E0AFJ2/xJ7ZbzBg4XS8W7eg3Z0DCR3cjb1zXe8ZE2eIt8GqEzXvv+BbSHe99+AbDd+YwQQNn0ru7jVcSthTZZ/S4kJSnp+Eb9ehhE3+UwNXWL+qGgMAfvw+hSNvbGbYsj/gExbEoBcfZd+f3ib/TK4Tq609lw2y1atXU1paypQpU/D19a2yj7e3N1AxyE6cOMG6desIDQ2lX79+DVJrQ/hu6VpK7SX0mXNf+bbTn39L2sd7uGX5LAY+/zv2zH6DwlyNpo6wOqV2/UsMWJtWL6XIv4Xd92ewupH54V+qbD/5+qOUFhcQ9cSqhi2sgVQ1BgB89/I6SktKmPDJi9i++oHUTV85qcK6c9kg27VrFwAjRoyotk9GRgZQMchuueUWsrKy2Lx5M6NGjarfIhtQXpqN1E1fEX5LT0IGxJRvPzD/Pfzah3J61yEyPjvoxApdR/ol+Fd27ff7+CQU2B1fj5TxCutE0LD7yfv+M/KOVLx8fvbjZVw4sIWOz2zE6unjpArrV3VjgGEv4dz+RLyCAzix5nMnVlh3LnuzR3p6OgDt2rWrst1ut/PVV2V/efw8yKxWx2d7bGwsNputxv2bGVbm0d/hdXz/yjraTxxCnzn3seOe/wHKHpS8lH6W3ISTN3TsztGdKba43hxudeEVexeBv6393XGX7NBl8CjsmcfqoSrzsXh40/rl4w49ZujkZ8mJX03mh3/hpoVlg3be95+T8d5cov/yDzxbR9X52J07R2MU5Tuo0voZB6oaA0IGxNDpvhEkvLON/gt+w+bRcygpKLr2gapxI+NAaGgoBw4cqNO+Lhtkly9fBiA/v+ofrDVr1pCdnY2fnx/t27ev11psNhunT5+ucX8PixvU4eF7294jrAq7p9r2C8dP816b+6ptvxGZWZkUGea9y8uRgrsWEljHfbMvXOJyLX5WXJnV06fWvwZ+PYbTd5NRbbt325gKdyMWnkkj5cV7afPrF/HrMbxuhf5bZmYmpYVXbugYP1eXcaC2Y4C7jxdDX36cbxZ+wLH/28GYDQu4+ZlfsX/eqjrV7KxxwGWDLDQ0lNzcXA4ePMigQYMqtGVlZTFnzhwAevbsWe83dISGhtaqfzPDCiY7uQkPC9cZ2b95errVed9gX08CIyIcWI15WTy86/X4pYVXSH5uIgH9JxBy58wbPl54eLjDz8jqexzo9z8PcenkWY6t2g7A7ieWM+HTJZz8xz7OfJ1Q6+PdyDhQ23Hy51w2yEaNGkVCQgKLFy9m9OjRdO5c9jT//v37mTp1KtnZZW9iNMSD0LU9XS6+UsAHHR+8fsdGJOl4Es18vK7fsQk4XwRjd0JRLX+fI3zgXwf+idX8N8o6RL4dhm2rv+Pn7llHfup3FJxOInf3mkrt3ZYfxaNVZI2Pl5R03KEPt9f3OBAxsg/tJwxh022zy7flpZ/hm4UfMGTp42weORt7fmGtjumsccBlgywuLo4PP/yQU6dO0a1bN7p06UJBQQEnTpxgzJgxREVFsWPHjgrvjzVV23857/qdpMYCPeD2CNhSy2fD7olCIdaAgkdMJXjEVGeX4TSndx3iwy4PV9p+bNX28jM0s3DZuxbbtGlDfHw8d955J15eXqSlpREUFMSKFSvYunUrSUlJAAoyqRcPdgSPWvx2tfSE8TX/419EfsZlz8gAYmJi2LJlS6Xtly5dIi0tDavVSvfu3Z1Qmbi6Tv7wXGzZrB3XmtkDIKAZvDKw7ExORGrPpYOsOkeOHMEwDDp37oyPT+VnRtauXQvA0aNHK3weFRVFbGxswxUqpnZrKLw2CJb+AAkXqu4zoBXE9YB2VT+zLyI10CSD7PDhw0D1lxUnT55c5ecPP/wwq1atqtfaxLXcHAx/vxWO5JbNfp9dWPY+WIQPjG8LkQowkRumIKuCYVT/HIpIXXRrUfYhIo6nIBMRl3Ry5Swu7N9M0dl0YpYewqdD70p9SosKSFlyPwWnjmL18MY9IITIx97AK6zTNdsaOzfPZtz65lMERLehpKCIguwL7H36LfLSKs8wFDGiN33mPoC1mTsl+YXsiVtB7tH08narhzv95j1MxPDelBQWkXM0nfiZyxryy7muJhlkV+dhbCo8/H246/OluHl5cCUzG6tnM/wiW5O89p/s+a83nV2eSL1oMeQeQifFkfjM0Gv2a3X7DPz7jsFisXB263LSl0/npoVfXLetsUv8+yec3nUIgC6/uYMh//tYpUdtPAKaM2z5E2y/+8+cT8ogZEAMt7z2BJtG/LG8T99nHwTDYP2QPwDg3Sqwwb6GmnLZ2+/lJ0UXr5CyIZ6jb29l8+g5/Osv73LuYJJCTFyaX7db8GjZ5pp9rB5eBMSOLZ/dp3nngRSdTbtuW2NXUlhcHmIA5w4ex7dtq0r9/KJCKczN43xS2QTqZ/cl0DyiJUE9yqbtc/f2JPqBkRx8fnX5Pvnnztdv8XWgIGsigrq3J+dwKgDBPTuS80OqkysSaXzObnmFwP531bqtses6fSwnd+yvtP1iShaeLfzK1yhre3ssHn4++LYNAcqCruj8JXrOmsS47YsZs/GvhA3t0aC110STvLTYFAV1iyoPr+CeHThVxQ+1iFkcixtEQWbVM+N3XXoIj1Zta33MrI8WUZh1gnZ//axWbc4w9uOF+HcIq7Jt8+g5XMn8sfzzHrMm4RcVyp5751fqW5x3hS9+t4S+f/oV7s29OHcgidzEUxj2sol/Le5WfNuGcP54Bt8s+oCg7u25fc2f2XjrUxRkV/NMiRMoyJoAn9AgMAyu2HIACIppx/evrHNyVSJ11+WFvQ49nm3DEs7vXU/0gk8rrUd2rTZn2Tb+2Rr16/boBNqNHcDOe+dTkl/10iy2PUfYPqnsvTOrhzv3ffd2+aXGy6ezKS0pIWVd2fptOT+kcunkWVrERJIVf9gBX4lj6NJiExDUvX2FS4lFFy/T5eFfOLEikcbjzKaXyI1fTfSCT3D3DaxxW2PX9ZFxtL97CDvvW0DRxeqXl/EOCSz/d6+n7iHrqx/K724szMkja/cPhA8vu8Pbt20IvpEhXDjeuJYashh6aKrRMePs91OS39fs9+JQNzr7ffrrj3DhwFaKc224+wXj5u1H9xUnAEh7dTqB/Sfg0/FmDk9ri0doB9y8/QCwuHsSs2QfRdkZ1bZVJX4sjWb2e5+wIO49uJKLaTbsl8qWlikpsrP1zmcAGLzkUU7tPMCpnQcYvORRWg+IweJm5dw3Sex79p0KwecbGcKQl36PV5AfRqnBd0s/In1r1d8DZ40DCrJGSEEmUv/LuDhaYwoyZ3HWOKBLiyIiYmoKMhERMTUFmYiImJqCTERETE03ezRChmFgzy90dhm14u7tWT6Vj4gjGAYUlDi7iprzcgNH/gpoHKg5BZmIiJiaLi2KiIipKchERMTUFGQiImJqCjIRETE1BZmIiJiagkxERExNQSYiIqamIBMREVNTkImIiKkpyERExNQUZCIiYmoKMhERMTUFmYiImJqCTERETE1BJiIipqYgExERU1OQiYiIqSnIRETE1BRkIiJiagoyERExNQWZiIiYmoJMRERMTUEmIiKmpiATERFTU5CJiIip/X+WIkMRLwyD1gAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAArMAAAC5CAYAAAA747dUAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAANZVJREFUeJzt3XlcVOX+B/DPDIPsyL4oiICIoIIrbuVubqmlN7WsNJc2t6s3yVa3W2lqZtc0NFtMRcusvJiKieaagrigEiiCCoKKoCCrMM/vD67zc3SAGWCWA5/36+XrJfMs53vOeZ6Z75x55oxMCCFARERERCRBcmMHQERERERUU0xmiYiIiEiymMwSERERkWQxmSUiIiIiyWIyS0RERESSxWSWiIiIiCSLySwRERERSRaTWSIiIiKSLCazRERERCRZektmZTIZfv31V63rT5gwAc8880yttpmWlgaZTIbTp0/XuI/58+ejXbt2tYqDiIiIiAxD52Q2KysLM2fORIsWLWBpaQl3d3f06NEDa9asQWFhoT5irFO9e/eGTCaDTCaDpaUlgoODsXr1amOHpbPMzEy88MILaNmyJeRyOf75z39q1e7Bvj/8b8uWLRrrHjlyBAqFosrkfvHixZDJZI9t/+Hj/ODf66+/rlYnNjYW/fr1g4ODAxwdHTFw4ECcOXNGrY4QAsuWLUPLli1hYWGBpk2b4qOPPlKr8+WXXyIoKAhWVlYIDAzEhg0bHovz888/R2BgIKysrODt7Y1Zs2ahuLhYVb5mzRqEhITA3t4e9vb26NatG3bt2qXzPgHAd999h5CQEFhaWsLNzQ1Tp05VK9+zZw+6du0KOzs7uLq6YtSoUUhLS1OVb9++HQMGDICrq6sqlj179qj1UV5ejg8++AC+vr6wsrKCv78/Fi1ahId/nVrTuZbJZFi6dKmqTvPmzR8rX7x48WP7REREZKoUulS+fPkyevToAQcHB3z88cdo27YtLCwskJCQgLVr16Jp06YYPny4vmKtM1OmTMHChQtRWFiIDRs2YOrUqXB0dMTzzz9v7NC0VlJSAldXV7z//vtYsWKFTm2//fZbDBo0SPW3g4PDY3Xu3LmDl19+Gf369cONGzc09hMbG4uIiAiEhIRoLH9wnB+wtrZW/f/evXsYNGgQhg8fjtWrV6OsrAzz5s3DwIEDce3aNZibmwMAZs6ciejoaCxbtgxt27ZFTk4OcnJyVP2sWbMG77zzDtatW4fOnTvjxIkTmDJlChwdHTFs2DAAwObNmzF37lx888036N69O5KTkzFhwgTIZDJ89tlnAAAvLy8sXrwYAQEBEELg+++/x4gRI3Dq1Cm0bt1aq30CgM8++wzLly/H0qVL0aVLFxQUFKglqqmpqRgxYgRmz56NTZs24e7du5g1axZGjhyJ+Ph4AMDBgwcxYMAAfPzxx3BwcMC3336LYcOG4fjx42jfvj0AYMmSJVizZg2+//57tG7dGnFxcXjllVfQuHFjzJgxA0DFG56H7dq1C5MmTcKoUaPUHl+4cCGmTJmi+tvOzk7j+SQiIjJJQgcDBw4UXl5e4t69exrLlUql6v8AxC+//KL6++zZs6JPnz7C0tJSODk5iSlTpoj8/HxV+fjx48WIESPE/PnzhYuLi7CzsxOvvfaaKCkpUdXZtWuX6NGjh2jcuLFwcnISQ4cOFZcuXVKVp6amCgDi1KlTle5Dr169xMyZM9UeCwgIEGPHjhVCCDFv3jwRGhoqNmzYIHx8fIS9vb0YM2aMyMvL0zqOkpISMXXqVOHh4SEsLCxEs2bNxMcff6wqz83NFZMmTVLtZ58+fcTp06crjbk6mvapMo+el8qMGTNGvP/++6rj8aj8/HwREBAg9u7dq3H71cUUGxsrAIirV6+qHjt79qwAIC5evCiEEOLChQtCoVCIv//+u9J+unXrJt566y21x2bPni169Oih+nvq1Kmib9++VdbRxNHRUXz99dda71NOTo6wsrISf/zxR6V1fvrpJ6FQKER5ebnqsR07dgiZTCZKS0srbRccHCwWLFig+nvo0KFi4sSJanVGjhwpxo0bV2kfI0aMeOw4+Pj4iBUrVlTahoiIyNRpvczg9u3biI6OxtSpU2FjY6Oxjkwm0/h4QUEBBg4cCEdHR8TGxuKnn37CH3/8gWnTpqnV27dvHxITE3HgwAFERkZi+/btWLBggVo/s2fPRlxcHPbt2we5XI5nn30WSqVS293QyMrKCqWlpaq/U1JS8OuvvyIqKgpRUVH4888/1T56rS6OL774Ajt27MCPP/6IpKQkbNq0Cc2bN1e1f+6553Dz5k3s2rULJ0+eRIcOHdCvXz/VFccHa38PHDhQq/2qzNSpU+Hi4oKwsDB88803ah9NAxVXbi9fvox58+ZV2cfQoUPRv3//Suts2rQJLi4uaNOmDd555x21ZSiBgYFwdnbG+vXrUVpaiqKiIqxfvx5BQUGqY/Xf//4Xfn5+iIqKgq+vL5o3b47JkyerXZktKSmBpaWl2natrKxw4sQJ3L9/HwDQvXt3nDx5EidOnABQ8QnD77//jiFDhmiMu7y8HFu2bEFBQQG6deum9T7t3bsXSqUSGRkZCAoKgpeXF0aPHo1r166p6nTs2BFyuRzffvstysvLcffuXfzwww/o37+/6mr0o5RKJfLz8+Hk5KR6rHv37ti3bx+Sk5MBAGfOnMHhw4cxePBgjX3cuHEDO3fuxKRJkx4rW7x4MZydndG+fXssXboUZWVlGvsgIiIySdpmvX/99ZcAILZv3672uLOzs7CxsRE2NjYiPDxc9TgeugK4du1a4ejoqHZFd+fOnUIul4usrCwhRMWVWScnJ1FQUKCqs2bNGmFra6t2Fetht27dEgBEQkKCEEL3K7NlZWXihx9+EADEqlWrhBAVV2atra3VrsTOmTNHdOnSpdI+H41j+vTpom/fvmpXqh84dOiQsLe3F8XFxWqP+/v7i4iICCGEEOnp6SIwMFAcP3680m1Wtk/VWbhwoTh8+LCIj48XixcvFhYWFmLlypWq8uTkZOHm5iaSkpKEEELjldnIyEjRpk0bUVRUVOn2IyIixO7du8XZs2fFxo0bRdOmTcWzzz6rVichIUH4+/sLuVwu5HK5CAwMFGlpaary1157TVhYWIguXbqIgwcPiv3794t27dqJPn36qOq88847wsPDQ8TFxQmlUiliY2OFu7u7ACCuX7+uqrdy5Uphbm4uFAqFACBef/31x47N2bNnhY2NjTAzMxONGzcWO3fu1GmfPvnkE2Fubi4CAwPF7t27xbFjx0S/fv1EYGCg2icMBw4cEG5ubsLMzEwAEN26dRO5ubmaTpcQQoglS5YIR0dHcePGDdVj5eXl4u233xYymUwoFAohk8nUrv5X1seDc/bA8uXLxf79+8WZM2fEmjVrhIODg5g1a1al/RAREZmaWiezKSkp4uLFiyIsLEwtoXk4mZ01a5bo3bu3Wrs7d+4IAOLPP/8UQlQksw8nKUIIcfr0aQFAleAkJyeLsWPHCl9fX2FnZydsbGwEAFXSoW0ya25uLmxsbIS5ubmwtLQUs2bNUiXM8+bNE8HBwWptPvvsM+Hr66v6u7o4Tp48KZycnERAQICYPn262LNnj6rtqlWrhFwuV70BePBPLpervRnQhS7J7KM++OAD4eXlJYSoSO47deok1qxZoyp/NJm9evWqcHNzE2fOnNFp+/v27RMAVMsxCgsLRVhYmHj55ZfFiRMnxLFjx8SoUaNE69atRWFhoRBCiClTpggAqsRaiIpjC0C19KCwsFC88sorQqFQCDMzM9GkSRMRHh4uAKjeKO3fv1+4u7uLdevWibNnz4rt27cLb29vsXDhQrUYS0pKxMWLF0VcXJyYO3eucHFxEefPn9d6nz766CMBQO1837x5U8jlcrF7924hhBCZmZkiICBAzJkzR8THx4s///xT9OrVS/Tr10/jm59NmzYJa2trsXfvXrXHIyMjhZeXl4iMjBRnz54VGzZsEE5OTuK7777TGGtgYKCYNm1apfvywPr164VCoXjszRYREZGp0voLYC1atIBMJkNSUpLa435+fgAqPtrVt2HDhsHHxwfr1q1DkyZNoFQq0aZNG7UlAtoYN24c3nvvPVhZWcHT0xNyufpqi0c/7pXJZGpLGaqLo0OHDkhNTcWuXbvwxx9/YPTo0ejfvz+2bduGe/fuwdPTU+MSAk1fxNK3Ll26YNGiRSgpKUFRURHi4uJw6tQp1RIQpVIJIQQUCgWio6ORl5eHmzdvokOHDqo+ysvLcfDgQaxatQolJSUwMzPTuB0AuHTpEvz9/bF582akpaXh2LFjquO/efNmODo64rfffsPYsWPh6ekJhUKBli1bqvoJCgoCAFy9elV1d4JvvvkGERERuHHjBjw9PbF27VrVnQIA4IMPPsBLL72EyZMnAwDatm2LgoICvPrqq3jvvfdU22/UqBFatGgBoGI5QGxsLFauXImIiIhKj93D++Tp6QkACA4OVtVxdXWFi4sLrl69CqDizguNGzfGp59+qqqzceNGeHt74/jx4+jatavq8S1btmDy5Mn46aefHlvOMWfOHMydOxdjx45V7dOVK1fwySefYPz48Wp1Dx06hKSkJGzdulXjfjy6T2VlZUhLS0NgYGC19YmIiIxN62TW2dkZAwYMwKpVqzB9+vRK181qEhQUhO+++w4FBQWqdkeOHIFcLld7wTxz5gyKiopUifFff/0FW1tbeHt74/bt20hKSsK6devw5JNPAgAOHz6sdQwPa9y4sSpp0ZW2cdjb22PMmDEYM2YM/vGPf2DQoEHIyclBhw4dkJWVBYVCobaO1lhOnz4NR0dHWFhYwNzcHAkJCWrlq1evRkxMDLZt2wZfX18olcrH6rzyyito1aoV3n77bY2J7IPtAFAlfIWFhZDL5WrrrB/8/eCNQ48ePVBWVoaUlBT4+/sDgGqNqI+Pj1r/5ubm8PLyAlCRBD799NOqJPXBth72IE7xyHrhhymVSpSUlFRa/ug+9ejRAwCQlJSkiiUnJwfZ2dmqeKuK5eE3TJGRkZg4cSK2bNmCoUOHPrbtyvrRtH58/fr16NixI0JDQyvdl4f3SS6Xw83Nrdq6REREJkGXy7iXLl0S7u7uolWrVmLLli3iwoUL4u+//xY//PCDcHd3F7Nnz1bVxUPLDAoKCoSnp6cYNWqUSEhIEDExMcLPz0+MHz9eVX/8+PHC1tZWPP/88+L8+fNi586dwt3dXcydO1cIUbFG0NnZWbz44ovi4sWLYt++faJz585q26np3QwepmmN6IoVK4SPj4/WcSxfvlxs3rxZJCYmiqSkJDFp0iTh4eEhysvLhVKpFE888YQIDQ0Ve/bsEampqeLIkSPi3XffFbGxsUII7dfMnjp1Spw6dUp07NhRvPDCC+LUqVNqH4tv375dBAYGqv7esWOHWLdunUhISBAXL14Uq1evFtbW1uLDDz/U6Xg86tFjeunSJbFw4UIRFxcnUlNTxW+//Sb8/PxEz549VXUSExOFhYWFeOONN8SFCxfEuXPnxIsvvigaN26sWutaXl4uOnToIHr27Cni4+NFXFyc6NKlixgwYICqn6SkJPHDDz+I5ORkcfz4cTFmzBjh5OQkUlNT1fbBzs5OREZGisuXL4vo6Gjh7+8vRo8eraozd+5c8eeff4rU1FRx9uxZMXfuXCGTyUR0dLTW+yRExR0DWrduLY4cOSISEhLE008/LYKDg1V3Kti3b5+QyWRiwYIFIjk5WZw8eVIMHDhQ+Pj4qJZXbNq0SSgUCvHll1+KzMxM1b87d+6otjN+/HjRtGlTERUVJVJTU8X27duFi4vLY0tV7t69K6ytrdWWjjxw9OhRsWLFCnH69GmRkpIiNm7cKFxdXcXLL79c5fkmIiIyJTols0IIcf36dTFt2jTh6+srzM3Nha2trQgLCxNLly5V+/IWULNbc3344YfC2dlZ2NraiilTpqit3du7d68ICgoSFhYWIiQkRBw4cMDgyaw2caxdu1a0a9dO2NjYCHt7e9GvXz8RHx+vap+XlyemT58umjRpIszNzYW3t7cYN26c6jZVD/Zj//79lcYpRMUxfvTfw3F+++234uH3K7t27RLt2rUTtra2wsbGRoSGhoqvvvqq0i/YVXY8HvXoMb169aro2bOncHJyEhYWFqJFixZizpw54u7du2rtoqOjVbc4c3R0FH379hXHjh1Tq5ORkSFGjhwpbG1thbu7u5gwYYK4ffu2qvzChQuiXbt2wsrKStjb24sRI0Y8diuv+/fvi/nz5wt/f39haWkpvL29xZtvvqn2pauJEycKHx8f0ahRI+Hq6ir69eunSmR12ae7d++KiRMnCgcHB+Hk5CSeffZZtduPCVGx3rV9+/bCxsZGuLq6iuHDh4vExES146np3D785i8vL0/MnDlTNGvWTFhaWgo/Pz/x3nvvqX3RTIiKL61ZWVmpJcIPnDx5UnTp0kU0btxYWFpaiqCgIPHxxx9zvSwREUmKTIgqPmclIiIiIjJhOv+cLRERERGRqWAyS0RERESSxWSWiIiIiCSLySwRERERSRaTWSIiIiKSLCazRERERCRZTGaJiIiISLKYzBIRERGRZDGZJSIiIiLJYjJLRERERJLFZJaIiIiIJIvJLBERERFJFpNZIiIiIpIsJrNEREREJFlMZomIiIhIspjMEhEREZFkMZklIiIiIsliMktEREREksVkloiIiIgki8ksEREREUkWk1kiIiIikiwms0REREQkWUxmiYiIiEiymMwSERERkWQxmSUiIiIiyWIyS0RERESSxWSWiIiIiCRLYewAiIiI9E0IgbKiEmOHYXIUVhaQyWTGDkMrPIemx1TGD5NZIiKq98qKSrDJ/0Vjh2FyxqVshLm1pbHD0ArPoekxlfHDZQZEREREJFlMZomIiIhIspjMEhEREZFkMZklIiIiIsliMktEREREksVkloiIiIgki8ksEREREUkWk1kiIiI9aTG6NyZkbkOL0b01ltt6uWJC5jY88flUwwZGBsMxoH9MZomIiIhIspjMEhEREZFkMZklIiIiIsliMktEREREksVkloiIiIgkq94ns9nZ2QgPD0eLFi1gaWkJb29vzJw5EwUFBZg0aRJkMhlWrVpl7DBJz0rvl+PQySz8GpOG3YfTcS3rnrFDIjIopVLg+Nmb2LH/Cn4/dA3JaXeNHRIRUZ1QGDsAfTp9+jQGDx6MrKws2NjYIDg4GNevX8cXX3yBlJQU5OTkAADatWtn3EBJbzJvFWL11kSs+zkJN24XqR6XyYChT3pj+gvBeKq7lxEjJNKvu/mlWPdzEr76KREp1/LVynp29MCbY4Lw3FO+kMtlRoqQAEAIYewQyMg4Bmqu3iaz2dnZGDZsGLKysvCvf/0L8+bNg52dHQDg008/xdtvvw2FQgGZTIaQkBAjR0v6cCoxG0OmRiMru+ixMiGAqIPXEHXwGuZMaIslszpDJuOLOdUvVzPvYdAbe5B4+Y7G8oMns3DwZBa270vDho96waKRmWEDbADKiksBAGZWFhrLFdYVj5f/rx7VPxwD+ldvlxnMmDED6enpmDZtGpYtW6ZKZAEgPDwcoaGhKCsrQ/PmzWFvb2/ESEkfLl3Nw1Ov79GYyD5q6XcJmL/6lAGiIjKcnLsleOq13ZUmsg/7cU8qJs07xCtDenDv6k0AgENAU43ljQMqPhnK/189qn84BvSvXiaziYmJ2Lp1K1xcXPDJJ59orNOxY0cAQGhoqNrjqampGD58OOzs7ODo6IiXX34Zt2/f1nvMVLfeWRmL7NxiresvWnsKaRn51Vckkohl3yUgSYd1sZt2puBAbKYeI2qYbidcxr2MW/B9pges3B3VyuTmCgRNHAyhVOJadJyRIiR94xjQv3q5zCAyMhJKpRLjxo2Dra2txjpWVlYA1JPZ/Px89OnTB05OToiMjERRURHCw8Px9NNP48iRI5DL62XuX+9cv1mAX2Ku6NRGCCBi29/4ZGZnPUVFZDglpeX4enuSzu1Wb01En7Ameoio4RLlSvz19jr0+WYORsQsx8XNMci/kgVLVwf4Du8Ox1bNcGblz8hLuW7sUElPOAb0r14mszExMQCAPn36VFonPT0dgHoyu3btWmRkZODgwYNo1qwZAMDLywvdu3fHjh078Mwzz+gvaKozm3+/jPJy3T8u/e63i0xmqV7YdfgabunwycQDv8RcwZ28EjjYa17bRzWTvi8evw9/H22nPoMWo3vBwtEOZYUluH0uFQdeXY60/x4zdoikZxwD+iUT9XCRlLe3N9LT03Hq1CmNdyooKyuDp6cnsrOzkZKSAj8/PwD/n/zu379frb6/vz969+6N9evX1yieTp06ISsrq0ZtSXd3rAejwLJrjdo2yVkAGZR1HBGRYd2z6IK7NkNq1Nbtzn9grsyu44iMz1zIMU8ZZuwwTM4C+Qncl0njOY/n0PTU5fjx8PBAXFzNllrUyyuzBQUFAICiIs1f/tm6dSuys7NhZ2cHX19f1eMXLlzAc88991j91q1b48KFCzWOJysrCxkZGTVuTzryzAcsa9b0ekYGwGSWpM45F7CpWdObN7KA0ht1G48JaCQzA9yNHYXpuZ55HaWi3NhhaIXn0PSYyvipl8msh4cHcnNzER8fj27duqmVZWZmYs6cOQCAkJAQtdsx5ebmwsHB4bH+nJyckJSk+/qzh+Mhw8m3VCKvBu3kyjx4NvWs83iIDK3IXIacmjQU5fB0s4FcaP7WtZSZCznfp2rQxLOJpK7M8hyalrocP7XJleplMtu/f38kJiZiyZIlGDBgAFq2bAkAiI2NxUsvvYTs7IqP0Az1Ywk1vWxONZN5qxDNntqCMh3Xzc599Ul8NGOWnqIiMpzS++XwHrAFN3N0Wzc7elALbF2aoqeojOt+YTE2+b9o7DBMTvLFZJhb1/CjLAPjOTQ9pjJ+6uXX88PDw+Hs7Ixr166hdevWaNu2LQICAhAWFgY/Pz/07dsXwOO35XJ0dMSdO3ce6y8nJwdOTk6GCJ3qgKerNUb2b65TG7lchlf/EaifgIgMrJG5GaaM0n08vzkmSA/REBHpV71MZr28vHDo0CEMHToUlpaWSEtLg5OTEyIiIrBz504kJycDeDyZDQoK0rg29sKFCwgK4pO8lCye2RluTtq/W5z/Rnv4NLGrviKRRLw1vi2C/R20rj9+eAB6duSSKCKSnnqZzAIViWlUVBTy8/ORn5+P48eP49VXX0VBQQHS0tIgl8vRpk0btTZPP/00Dh8+rLptFwAcP34cKSkpGDZsmKF3gWrB18sOe9cORhM362rrvjs5FO+/2k7/QREZkIO9BfasGYS2AY7V1h031B9r5/XgTzoTkSTV22S2MufPn4cQAgEBAbC2Vk90Xn31VXh6emLEiBGIiorCtm3b8PzzzyMsLAwjRowwUsRUUyEtnXBq6zNYOLUDmmpIakf2a46Yrwfjoxmd+CJO9ZKXhw2ObHgaK9/uisDmjR8r79elCX7+rB9++LgXGpmbGSFCIqLaa3DJbEJCAoDHlxgAgL29PWJiYuDp6YmxY8di8uTJ6N69O6KiovjrXxLl5myFD15rj7TdY3D0h6fh3LjiZvAezpb4eUU//toR1Xt2No0wY1xrJP42CnFbRqjmgLuTJf5YNxgj+zfnmzkikrR6eTeDqlSVzAIVP5AQFRVlyJDIABQKObqFusPSouLqk5kZ35xQwyKTydAx2EU1BxQKzgEiqh+YzBIRUYNl5+uBJ1dOh4WTHe7nF+LwzFW4k5yut3baCFs0Ec0GdoKttxt29H8LOefTHqtjZmGOXl/NQuMAL5QXl6I4+y6OzV2H/LSsKssaKl2OSdM+7dD+7echN1egvKgER8MjkHvhiqpc3kiBzvPGo2nvdigvKUXOhSs4NO0Lg+yHz9Cu8OrfARYOtno5v/ruX18aXDIbExNj7BCIiMhEdP/0NSRv3ItLPx6Az9CueGLlNEQNnqu3dtq4svMYzq3+FUN++3eV9ZJ+2IuMmFMAgFavDEKP5W9g96h51ZY1VNock0aNbfDkqpnY/ewHuJOcDrcuQej55Uz81me2qk7H914EhMD2HtMBAFauDgbbh2ZDuiBtx1Eo75fp5fzqu3994edMRETUIFk628M51B8pPx8EAFzZ+RdsmjjDrnnVtyiraTtt3fgrEYWZVf+GW3nJfVWyAQC34i/C1tu12rKGSttjYtfcAyW5+aqr7DePJ8KmqQuc2voCABRWFgh4vi/iF0eq2hTdulMnMTayt8ZzJyMw9vy3GL53KZ45+DleSotE92WvAwBkCjO4dw5E+r74Gp1fffdvTA3uyiwREREA2DR1QdGNXIjy//85znsZ2bBp6lLlR6o1badPwZOH4OqeWJ3LGqrKjkne5UxYONrBtVMgbsUlwfupTmhkZw1bbzfkJKTCrrkHSu/cQ8iMkfDsGYLy4lKcXvYjMg8n1Dqm0rxCXP7lEO4XFOPsim1o0jsUITNG4uhbXwEAPHu0wc3YJIiycq32xdD9GxOTWSIiIgMZ8t+PYO/nqbFsx4A5KLx+W+c+284YCbvmHjg6eoFOZfWJLse1qmNyP78QB6YsQ8d3X4DCxhK34pKRm3RNleDJFHLYervhzsV0nPx4E5za+OKprR/g116zUJx9t9YxOrXxReLXvwMAnEP8kXMuVVWn2aDOuLLrhFo7Xc+vvvs3FiazRETUIBVkZMPK3REyM7nqKqttUxcUZGTrpR0A/D7svdoH/pDWrw+Hz5AuiB69AOVFpVqX1TfaHldtjknW0fPYPbJifai8kQJjznytWnZQkJENZXk5Lv98CACQcy4V967ehGNQM2QeqvrqrDYxOrVurkownUP8cO2hK6JNerdD3KKNOu2Lofs3Fq6ZJSKiBqn4dh5yElLhP6ongIpvchdk5qiWCjzxxXQ0GxxWZ+3qWvBrT8P32R6IHrMQpXmFWpc1VNoeEys3B9X/Q2f9A5lHzqnObUlOPjIPn0OT3hV3RLL1doNtMzfcvZgBoHbn3trDCRAChVkV66WdgnyQ+/dVAIBL+wDcvZiBssLiavelshjqqn9TxCuzRETUYB0Nj8ATn09F2xkjcf9eEQ7/80tVmUuoHxLX/16n7bTR7dNX4dWvI6zcHDAg8n3cv1eE7d0rvjnffdnruBYdh9sJlxE2fwLy0rIwaNt8AEB5aRl2Dn0H1p5OlZY1VNUdkwfH9Vp0HNqHj4V7lyDIzOS4dTIZR2evVuvrWHgEenz2Jjq9/yKEUuBYeIQqQazNuXdq46v2sX9pXgFajR+Io299BZ/BYbi6+4RW+1JZDHXVvymSCSGEsYMgMhSv/pHIuFmIpm7WSP/jeWOHQ2RwDXUO3C8sxib/F7Wub+Fsj15fzkT02EU6baem7YxlXMpGmFtbGjsMreh6Dg1Nn+d+xIEV2DNqHopv5+klBm37f5SpjB9emSUiInpEye28GiUlNW1H0qfPc/9b71l6jUHb/k0V18wSERERkWQxmSUiIiIiyWIyS0RERESSxTWzRERU7ymsLDAuZWP1FRsYhZWFsUPQGs+h6TGV8cNkloiI6j2ZTGYS37qmmuM5pMpwmQERERERSRaTWSIiIiKSLCazRERERCRZTGaJiIiISLKYzBIRERGRZDGZJSIiIiLJYjJLRERERJLFZJaIiIiIJIvJLBERERFJFpNZIiIiIpIsJrNEREREJFlMZomIiIhIspjMEhEREZFkMZklIiIiIsliMktEREREksVkloiIiIgki8ksEREREUmWwtgB0OOEECgrKjF2GDpRWFlAJpMZOwyqhBTHlCFw3DYcnAOaSWkO8ByaHlMZP0xmTVBZUQk2+b9o7DB0Mi5lI8ytLY0dBlVCimPKEDhuGw7OAc2kNAd4Dk2PqYwfLjMgIiIiIsliMktEREREksVkloiIiIgki8ksEREREUkWk1kiIiIikizezYDqtazsQpy8kI2TF27jcno+cu5W3NblTn4pvvklGR2DnRHs5whzc76vo/opN6/kf3MgG0lpd9XmwJqtiegY7IKQlo6wtODLARFJE5+9qN4pLinDtr1pWL01EcfO3NRYp6CoDJPmHQIAONo3wsRnWuKNMUHw97Y3ZKhEelFersTvh9Kxemsidh9J11inoKgMb350FABgbanAC0P8MHVsMNq1cjZkqEREtcZkluoNIQQ2Rl3Cv5adwK3cYq3b5eaVYvmGc1i+4RzGDvLDF3O7wtXJSo+REulP9NF0vPHvo7icnq91m8LiMny9PRlfb09Gvy5NEPFhD76xIyLJ4Ger9ViL0b0xIXMbWozurbHc1ssVEzK34YnPpxo2MD3IvFWI4dP34uX3DuqUyD5qy+7LaP3sdmyLTq3D6BquhjQGjS3vXimmzD+Ega/v0SmRfdS+49cRMuoX/GfzeSiVog4jbJg4B4hjQP+YzJLkJV6+g87P/4aog9fqpL9bucV47q0YzF8dDyH4Yk6mLyu7EE9O2ImvtyfXSX+FxWWYsfgvTPzwEMrKlHXSJxGRvnCZAUlactpd9J64Ezdzan41tjILvjoFIYAFUzvUed9EdSU7txh9J+9C4uU7dd739zsuoqxciQ0f9YJcbvzfXyci0oRXZkmy7hXex5Cpe/SSyD6wMOIUNu28pLf+iWpDqRQYOesPvSSyD2zamYJFEaf01j8RUW0xmSXJmvt5LFKu6bY2MDZyOK7tHYvYyOFat5n+yTFk3irUNTwivfti03kcir+hU5uazIF/rzuN03/f1jU8IiKDaBDJbHZ2NsLDw9GiRQtYWlrC29sbM2fOREFBASZNmgSZTIZVq1YZO0zSwZ9xmfhyS6LO7TxcrOHlbgMPF2ut2+TmleL1RUd03haRPqVcy8O7/4nTuV1N5kBZmcCEDw7i/n2unyUi01Pv18yePn0agwcPRlZWFmxsbBAcHIzr16/jiy++QEpKCnJycgAA7dq1M26gpJOFXxn2Y88dB67i9N+3eQ9OMhlLv0tAUXG5wbZ3JikHOw5cwagBvgbbJhGRNur1ldns7GwMGzYMWVlZ+Ne//oXMzEzEx8cjKysLS5Yswc6dOxEbGwuZTIaQkBBjh2s0UvvG/t+pdxBzItPg213zo+5Xgkk7UhuDxnY3vxQbowy/lnv1Vs4BfeEcII6BmqvXyeyMGTOQnp6OadOmYdmyZbCzs1OVhYeHIzQ0FGVlZWjevDns7evfDcLLiksBAGZWFhrLFdYVj5f/r55UrN32t1G2uzEqBfkF0jpWxlZfx6Cxbdp5CQVFZQbfbsyJTCSn3TX4dqWMc4A4BvSv3iaziYmJ2Lp1K1xcXPDJJ59orNOxY0cAQGhoqOqxB8lvWFgYLCwsIJNJ93Y0965W/JSrQ0BTjeWNA7wAAPlXNf/kq6naH2v4q7JAxb03Y89lG2XbUlVfx6CxGWsOAMCBOONtW4o4B4hjQP/qbTIbGRkJpVKJcePGwdbWVmMdK6uKnyx9OJm9dOkSfv75Z3h4eKBz584GiVVfbidcxr2MW/B9pges3B3VyuTmCgRNHAyhVOJatO5fIjGW4pIynLuUa7Ttn7zAZFYX9XEMmoKTF4x3ZwHOAd1wDhDHgP7V2y+AxcTEAAD69OlTaZ309HQA6slsz549kZlZceVh/vz5OHJEut9iF+VK/PX2OvT5Zg5GxCzHxc0xyL+SBUtXB/gO7w7HVs1wZuXPyEu5buxQtXbuUi7Kyoy3rig+kbcn0kV9HIPGlptXgtSMmv9cbW0ZM5GWIs4B4hjQP5mopyuOvb29kZ6ejlOnTmm8U0FZWRk8PT2RnZ2NlJQU+Pn5PVZn/vz5WLBgQa0XZXfq1AlZWVla1zcXcsxThtVqmw9zDvVH26nPwL1LK1g42qGssAS3z6Ui6fs9SPvvsTrZxgL5CdyX6f+2PcXmLXDb7iWNZbGRw6u93ZCHixUUZnKUlSuRlV1Uab2s7EJ0fn7HY49b3E+BS/4G3YI2AXU9pnRliDFYE4Yat3WpTO6EGw4zNZYZYg6YlefC4+7nOsVsCjgHNJPSHDD2OawtUx0DtVGX48fDwwNxcTW7Ol1vr8wWFBQAAIqKND9Zb926FdnZ2bCzs4Ovr35vNZOVlYWMjAyt6zeSmQHudbf922dScODV5XXXoQbXM6+jVBjgNkF2LoCd5qIH98/UhsJMrnXdh5WUlOl0Lk1FXY8pXRliDNaEwcZtXbJQAg6aiwwxB8qV4ByoAc6B2jP2OawtUx0DtWEq46feJrMeHh7Izc1FfHw8unXrplaWmZmJOXPmAABCQkL0/iUvDw8PneqbCzkgjTfKKk08mxjoymxjVPYhZ1Z29b/SpctVKU0sLMzg0lTzIn5TJsUxZQiGGrd1qUzuiMp+88sQc8BMLuDBOVBvSGkO8ByanrocP7rmSg+rt8ls//79kZiYiCVLlmDAgAFo2bIlACA2NhYvvfQSsrMrvsRgiB9L0PWy+f3CYmzyf1FP0ehH8sVkmFtb6n07f6feQdCInzWWafpI9FHX9o6Fl7sNsrKL4D1gi87bf2nMEKybr/nuGKZMimPKEAw1butSUXEZ7LptQHn548ufDDEHnuzaGvvXp+vcztg4BzST0hzgOTQ9pjJ+6u3dDMLDw+Hs7Ixr166hdevWaNu2LQICAhAWFgY/Pz/07dsXgPqXv8j0tfRpDFtrc6Ntv2Owi9G2TQQAVpYKtPZ3rL6innQM4q/gEZFpqbfJrJeXFw4dOoShQ4fC0tISaWlpcHJyQkREBHbu3Ink5GQATGalRi6XoX0rJ6Ntn8ksmYKOwcZLKDkHiMjU1NtlBgAQFBSEqKioxx6/d+8e0tLSIJfL0aZNGyNERrUxrFczHIqvbNWg/jRxs0a7QF6VIuMb1qsZvv31osG328hcjv5dmxh8u0REVanXyWxlzp8/DyEEWrZsCWvrx29js23bNgDAhQsX1P5u3rw5OnXqZLhASaNXnmmJD76MR0mpYb9B+do/WsHcvN5+mEESMqxXMzR1s0bGzeq/8FWXxgz0g6uTlUG3SURUnQaZzCYkJACofInBc889p/Hv8ePH47vvvtNrbFQ9F0dLjH7KFz9EXTLYNhUKGSaPbGmw7RFVRaGQ47XnWuHDL+MNut03xrQy6PaIiLTRIC8zVZfMCiE0/mMiazoWvNkBNlaGey82Z3wImrjpfk9OIn2ZOa41mnkabkw+95QvuoVK+CafRFRv8cpsA2Dn64EnV06HhZMd7ucX4vDMVbiTXP2tdWrazhB8veywdHYY3vzoqN63FezvgHlvtNf7dgzNFMeFLn3LGynQed54NO3dDuUlpci5cAWHpn2hVqfFmD544vOpiHllCa7ujq2TGE2FvW0jfD3/STz12m69b8vF0RJfvtut+ooSZIrzIGzRRDQb2Am23m7Y0f8t5JxPe6yOmYU5en01C40DvFBeXIri7Ls4Nncd8tOyqixrqHQ5Jk37tEP7t5+H3FyB8qISHA2PQO6FK6pybZ579MVnaFd49e8ACwdbvZxfffevLw0ymY2JiTF2CAbV/dPXkLxxLy79eAA+Q7viiZXTEDV4rt7aGcprz7VC1MGr+P2Q9i8gD24Er83N5QHA0sIM3/+7JywamdUoRlNmiuNCl747vvciIAS295gOALBydVArt/VyRctx/XEzLqlOYjNFA7o1xfQXgvGfzRe0bqPrHJDJgHXzetTbtbKmOA+u7DyGc6t/xZDf/l1lvaQf9iIj5hQAoNUrg9Bj+RvYPWpetWUNlTbHpFFjGzy5aiZ2P/sB7iSnw61LEHp+ORO/9ZmtqlPdc48+NRvSBWk7jkJ5v0wv51ff/etLg1xmIFWN7K3x3MkIjD3/LYbvXYpnDn6Ol9Ii0X3Z65W2sXS2h3OoP1J+PggAuLLzL9g0cYZd86p/aaOm7QxJLpfhx6V90aO99h99dn5+B7wHbNHq5vKNzOX4+bN+6NTatTZhmiRTHBe69K2wskDA830RvzhS9VjRrTv/X0EmQ/flb+D4++uhLC2rdWymbMWcLhgzSPuf5NZlDgDA6ve645m+zWsYnWkzxXkAADf+SkRhZk6VdcpL7quSDQC4FX8Rtt6u1ZY1VNoeE7vmHijJzVddZb95PBE2TV3g1LZijlX73FML1b3GyxRmcO8ciPR98TU6v/ru35ga5JVZqSrNK8TlXw7hfkExzq7Yhia9QxEyYySOvvVVpW1smrqg6EYuRPn//9zcvYxs2DR1qfIjg5q2MzQba3PsXjMQo2bvQ/TRuvu9eFtrc/zyeT/07yq9n+3UhimOC136tmvugdI79xAyYyQ8e4agvLgUp5f9iMzDFUuIWr82DDdj/8bts5drFZMUmJnJsfHj3rC1Msf6X5LrrF+FQoZ1857AhBH194uPpjgPaip48hBc3aN5KU1VZQ1VZcck73ImLBzt4NopELfikuD9VCc0srOGrbcbchJSq33uqY3qXuM9e7TBzdgkiDL1O/loe3713b8xMZmVGKc2vkj8+ncAgHOIP3LOpRo5IuOztTbH718+hf9svoB3/xOHouLa3bKrf9cm+Hr+E/BpYldHERIADPnvR7D389RYtmPAHJ36kinksPV2w52L6Tj58SY4tfHFU1s/wK+9ZsHS2R4+Q7tg17Mf1kXYkqBQyLFu/hPo37UJpn1yDLfvlNSqv9BAJ3y3qCfateJ9letadfOg8PptnftsO2Mk7Jp74OjoBTqV1Se6HNeqjsn9/EIcmLIMHd99AQobS9yKS0Zu0jVVglfVc09x9t1ax1jVa3yzQZ1xZdcJtXa6nl99928sTGYlxql1c9Xgcw7xw7Vq3i0VZGTDyt0RMjO56iqCbVMXFGRk66WdsZiZyfHPl9pgaE9vhK+IxY4DV6FUPv7b9VXx87LDO5NCMWlkS8hkMj1FahqMMS5+H/ZeleXKkvta912QkQ1leTku/3wIAJBzLhX3rt6EY1Az2Pt6wtbbDaOO/gdAxXq2bktfh5WbI5I2RFcbp1TJZDKMHeyPPmFN8M7KWGz+/bLO92J2d7bCjBeC8daEtmhkXv/WiT/KFOeBrlq/Phw+Q7ogevQClBeVal1W32h7XLU5JllHz2P3yIr1ofJGCow587Vq2UFVzz2Zh6q+OqtNjFW9xjfp3Q5xizbqtC+G7t9YuGZWQqw9nAAhUJhVsZbKKcgHuX9fBQA88cV0NBsc9lib4tt5yElIhf+ongAqvqlYkJmj+iispu1MVYBPY/zyeX+k7R6N919th2B/B8jllSemzg4WeKavD3atHoiLUc9h8qjAep/IAvobF5W1q4uYHlaSk4/Mw+fQpHfFHUlsvd1g28wNdy9mIGlDNH5sNwXbwt7EtrA3cSv+Io7N+apeJ7IPc3e2wjcLeyLjj7FYOjsMHYKcYa6o/KnezsYcA7o1QeSS3rgaPQbvTmnXIBJZwDTngS6CX3savs/2QPSYhSjNK9S6rKHS9phYuTmo/h866x/IPHJOdW6reu4Banfuq3qNd2kfgLsXM1BWWFztvlQWQ131b4p4ZVZCnNr4qn0kUJpXgFbjB+LoW1/BJdQPiet/19juaHgEnvh8KtrOGIn794pw+J9fqspq2s7UeXvYYtG0jlg0rSMKCu/jdFIOUq7lobi0HOYKORztG6F9K2c087RtEMmrJvoYF1W1q21M3Ze9jmvRcbgWHQcAOBYegR6fvYlO778IoRQ4Fh6hepImwNnBEm9NaIu3JrRFSWk5Ei7m4O/UuygqLoOZmRx2NuYIbemEFs3sq3zDV9+Z4jzo9umr8OrXEVZuDhgQ+T7u3yvC9u4V35x/MA9uJ1xG2PwJyEvLwqBt8wEA5aVl2Dn0HVh7OlVa1lBVd0wefn5pHz4W7l2CIDOT49bJZBydvVqtr6qee2pz7qt6jfcZHIaru09otS+VxVBX/ZsimRBCt89iSe/uFxZjk/+LWte3cLZHry9nInrsIp22U9N2moxL2Qhza8ta90P6ocuYMoXxZCgctw2HFJ9XDUFKc0DXc2ho+jz3Iw6swJ5R81B8O08vMWjb/6NMZfwwmTVBpj5hNTGVAU2aSXFMGQLHbcPBOaCZlOYAz6HpMZXxwzWzRERERCRZTGaJiIiISLKYzBIRERGRZHHNrAkSQqCsqHY3PTc0hZVFg70rgBRIcUwZAsdtw8E5oJmU5gDPoekxlfHDZJaIiIiIJIvLDIiIiIhIspjMEhEREZFkMZklIiIiIsliMktEREREksVkloiIiIgki8ksEREREUkWk1kiIiIikiwms0REREQkWUxmiYiIiEiymMwSERERkWQxmSUiIiIiyWIyS0RERESSxWSWiIiIiCSLySwRERERSRaTWSIiIiKSLCazRERERCRZTGaJiIiISLKYzBIRERGRZDGZJSIiIiLJYjJLRERERJLFZJaIiIiIJIvJLBERERFJFpNZIiIiIpIsJrNEREREJFlMZomIiIhIsv4PfjRiwQlmxvMAAAAASUVORK5CYII=", "text/plain": [ - "
" + "
" ] }, "execution_count": 6, @@ -220,7 +220,7 @@ } ], "source": [ - "result.evolved_state.decompose(reps=2).decompose(\"disentangler_dg\").decompose(\n", + "result.evolved_state.decompose(reps=5).decompose(\"disentangler_dg\").decompose(\n", " \"multiplex1_reverse_dg\"\n", ").draw(\"mpl\")" ] @@ -270,17 +270,7 @@ "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABab0lEQVR4nO3deVxU1f8/8Ncw7IsIgmwiYKbihohClIYmiWYWLYBoimiWCaiRZlYIaoGilWtupZafD2na8vn0sVTEpY8fcYNMc8dUcAFcQVFBh/P7wx/zdZwBZoaBgevr+XjMo+bcc89533vPDG/vPXeuTAghQERERCRhJsYOgIiIiKi+MeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIceOykpKZDJZLhy5UqDt7l69WrIZDKcPXu22jJNdXRtk5qm/fv34+mnn4aNjQ1kMhkOHjxo7JAMoimM0Uf3/bx58/SOWZftrfruaMyawvHTRpNJeKp2uEwmw65du9SWCyHg6ekJmUyGF1980QgRUpXdu3cjJSUFN27cMHYoktEU96k+MQshMGPGDPz3v/+tv8AA3Lp1C8nJyRgwYAAcHR0hk8mwevVqndvJzc3FSy+9BEdHR1hbW6Nz585YsGCBXjHdu3cPERERuHbtGr744gusWbMGXl5eerVFutG07/lcbelpMglPFUtLS2RkZKiV79y5E+fPn4eFhYURoqKH7d69G9OnT29Sf5wbyvDhw3Hnzp0a/5BpqlPTPtWmTWPQZxycPHkSycnJuHTpUv0FBuDKlSuYMWMGjh07Bj8/P73a2LJlC4KDg1FcXIykpCTMnz8fL774Is6fP69Xe6dPn8a5c+cwadIkvPXWW3jjjTfg4OCgV1uNTWMdo1U07fvx48c36phJd6bGDkBXL7zwAtavX48FCxbA1PT/ws/IyEBAQIBBL1MYQ1lZGWxsbIwdRpPSlPaZXC6HXC6vc5261G/McnJyAADdu3ev137c3Nxw6dIluLq64sCBA+jZs6dO65eWlmLEiBEYNGgQNmzYABOTuv/bsbi4GADQvHnzOrdVxdifjar+G/sY1bTvG3vMpLsmd4YnOjoaV69eRWZmprKsoqICGzZswNChQzWuc+HCBYwaNQouLi6wsLBAp06dsHLlSpU6586dw7hx49C+fXtYWVmhRYsWiIiIULtmefPmTUycOBHe3t6wsLBAy5Yt8fzzzyM3N1dZZ+TIkfD29laL49FrtVXvjx49iqFDh8LBwQG9evXSKe6H2zl58iTeeOMN2Nvbw9nZGUlJSRBCoKCgAC+//DKaNWsGV1dXfPbZZ3rto6p+8vLyMHLkSDRv3hz29vaIjY3F7du3lXUmT54MAPDx8VFehqzp2m9Vu8ePH0dkZCSaNWuGFi1aYMKECbh7967GutXtsz/++AMDBw5Es2bNYGtri379+mHPnj0a+71y5UqN/Wk7JnRpU5tr4Y/WqW2fampTm+OpzVjWRJv9os84CAwMxLBhwwAATz75JGQymUH/+D/MwsICrq6ueq+fkZGBoqIifPrppzAxMUFZWRkqKyv1bm/kyJEICQkBAEREREAmk6FPnz7K5dqM69o+Gw/bsGEDZDIZdu7cqbZs2bJlkMlk+OuvvwBo/zmoqf/qxr0226Xt9ymg35iubt9XF7O238ua7Nq1Cz179oSlpSWeeOIJLFu2TKv1AN2PQ03f01V27NiBHj16qMSjy5yi+vyeqbJu3Tp0794dVlZW8PX1xdatWyGEQKdOnfDpp59q1UaVJneGx9vbG8HBwfjuu+8wcOBAAMBvv/2GkpISDBkyRO36eVFREZ566inIZDLEx8fD2dkZv/32G0aPHo3S0lJMnDgRwIMJa7t378aQIUPQqlUrnD17FkuWLEGfPn1w9OhRWFtbAwDGjh2LDRs2ID4+Hh07dsTVq1exa9cuHDt2TO9/lUZERODJJ59Eamqq8rqxtnE/LCoqCr6+vpg1axY2btyITz75BI6Ojli2bBmee+45zJ49G//85z8xadIk9OzZE88++6xefUVGRsLHxwdpaWnIzc3FV199hZYtW2L27Nl49dVXcfLkSXz33Xf44osv4OTkBABwdnaudT9ERkbC29sbaWlp2LNnDxYsWIDr16/j22+/1WqfHTlyBL1790azZs3w/vvvw8zMDMuWLUOfPn2wc+dOBAUF6dSftmNC323Qlq77VNvjqe9Y1ma/6DMOpkyZgpSUFJSXl2PatGkANJ/tuHfvHkpKSrTZdXB0dDTI2ZdHbd26Fc2aNcOFCxcQHh6OkydPwsbGBsOHD8cXX3wBS0tLndp7++234eHhgdTUVIwfPx49e/aEi4sLAN3HtabPxqMGDRoEW1tbfP/998o/9lXWrVuHTp06oXPnzgB0/xxo078+26UNfcZ0dfv+woULanX1+V6ucvjwYfTv3x/Ozs5ISUnB/fv3kZycrDzOtdH1ONT0PQ08SDYHDBgANzc3TJ8+HQqFAjNmzNDqu1qXfVGXv5kff/wxPv30U4wcORKjR4/G/PnzMWLECKxYsQLnz59HfHy8VrEqiSZi1apVAoDYv3+/WLRokbCzsxO3b98WQggREREh+vbtK4QQwsvLSwwaNEi53ujRo4Wbm5u4cuWKSntDhgwR9vb2yjaq/vuw7OxsAUB8++23yjJ7e3sRFxdXY6wxMTHCy8tLrTw5OVk8vMur3kdHR6vV1Tbuh9t56623lGX3798XrVq1EjKZTMyaNUtZfv36dWFlZSViYmJ07quqn1GjRqnUe+WVV0SLFi2U7+fMmSMAiDNnzmjYO+qq2n3ppZdUyseNGycAiD///FOtrqZ9Fh4eLszNzcXp06eVZRcvXhR2dnbi2Wef1bk/bceELm1WjeOH982jZZrq1LRPH62v7fHUZixrou1+0XUcCCFE69atxciRI2uss337dgFAq5c2fe/fv18AEKtWrdI6zq5duwpra2thbW0tEhISxA8//CASEhIEADFkyBCt29G0XevXr1cp13Vca/psaBIdHS1atmwp7t+/ryy7dOmSMDExETNmzFCWaXu8a+pf05jWdru0/T4VQv8xrWnfa4pZ289WddtraWkpzp07pyw7evSokMvlatuhia7Hobbv6cGDBwtra2tx4cIFZdmpU6eEqampWjx12Rf6HpPff/9dABBTpkxRlm3YsEEAEJ07d1Yp11aTu6QFPMhc79y5g//85z+4efMm/vOf/2i8nCWEwA8//IDBgwdDCIErV64oX2FhYSgpKVGeVrOyslKud+/ePVy9ehVt27ZF8+bNVU69NW/eHHv37sXFixcNtj1jx47VO+6Hvfnmm8r/l8vl6NGjB4QQGD16tEr87du3x99//613X4/G27t3b1y9ehWlpaV12g9xcXEq7xMSEgAAv/76q1rdR2NQKBTYsmULwsPD0aZNG2W5m5sbhg4dil27dqnFV1t/2o4JfbehPuhyPPUdy/rsF22UlJQgPz8fXbt2rbGen58fMjMztXrV5bJVTW7duoXbt29jxIgRWLBgAV599VUsWLAAb7/9NtauXYtTp04ZpB99xvWjn43qREVFobi4GDt27FCWbdiwAZWVlYiKilKW6Xq8telfn+3SRn18P1fR93sZeLC9mzdvRnh4OFq3bq0s9/X1RVhYmFb91/U4PPw9rVAosHXrVoSHh8Pd3V1Zp23btsorJzVpiO+Z+fPnw8HBAR9//LGyrOrSZl5eHt59912d2gOa4CUt4MFp8dDQUGRkZOD27dtQKBR4/fXX1epdvnwZN27cwPLly7F8+XKNbVVNVrtz5w7S0tKwatUqXLhwQeVU7MOnz9PT0xETEwNPT08EBATghRdewIgRI1Q+tLry8fHRO+6HPfxBAgB7e3tYWloqLyc8XH716lW9+3q0n6o7Sa5fv45mzZppbEMbTz75pMr7J554AiYmJhrnfWjaZ7dv30b79u3V6vr6+qKyshIFBQXo1KmT1v1pOyb03Yb6oMvx1Hcs67NftHHo0CEAqDXhcXBwQGhoqN79GELVH5/o6GiV8qFDh2LZsmXIzs5WGwv60GdcP/rZqM6AAQNgb2+PdevWoV+/fgAeXM7q1q0b2rVrp6yn6/HWpn99tksb9fH9/HDM+nwvV617584djWOiffv2Wv2DSNfjUNP3dFlZGe7cuYO2bduqraepTNP21Of3TFVCPHjwYNja2qotj42N1fpS4MOaZMIDPPhiGTNmDAoLCzFw4ECN1/qrJhG+8cYbiImJ0dhO1ZdrQkICVq1ahYkTJyI4OBj29vaQyWQYMmSIymTEyMhI9O7dGz/99BO2bNmCOXPmYPbs2fjxxx+VmXF1E74UCoXG8oczd13jfpimOwqqu8ug6sOiT1+1tWkoNU2ce3Sf1Ud/2o4JXdqsb7ocT23GsiaG2C+aVCU8td0mXlFRgWvXrmnVprOzc73caePu7o4jR46ofem2bNkSwIM/Ksai7WfDwsIC4eHh+Omnn/Dll1+iqKgI//vf/5CamqpST9fjbejPpi7fp/qOaW3o+71sKLoeh/r8nq7v75m///4bN2/eVJvjc/nyZQDqZ9K11WQTnldeeQVvv/029uzZg3Xr1mms4+zsDDs7OygUilr/RbhhwwbExMSo3MF09+5djb8h4ubmhnHjxmHcuHEoLi5G9+7d8emnnyoPnoODg8b1zp07p9W26RJ3XdVHX/r+kT916pTKvw7z8vJQWVmp8Q6NRzk7O8Pa2honTpxQW3b8+HGYmJjA09NTp/50GROG2IaaaLtPdT2etY1lTbTdL7qOg0OHDsHNzU3tjOSjdu/ejb59+2rV5pkzZ+q87zUJCAhAZmYmLly4oHKWouq0vbYTP2ujz7jWRVRUFL755htkZWXh2LFjEEKoXM4C9Psc1EaX7dL1+1SfMa1tzPp+Vzo7O8PKykrjpU5N+0ATQx6Hli1bwtLSEnl5eWrLNJU9qr6/Z6oSm0e/C9LS0jSWa6tJzuEBAFtbWyxZsgQpKSkYPHiwxjpyuRyvvfYafvjhB+Utlg+r2qlVdR/NfBcuXKjyrwiFQqF26rBly5Zwd3dHeXm5suyJJ55ASUmJ8l+sAHDp0iX89NNPWm2bLnHXVX30VfW7H7p+EBcvXqzyfuHChQCg1ReVXC5H//798a9//Uvl8lFRUREyMjLQq1cvtctttfWnzZgw5DbURNt9qu3x1HYsV9eHNvtF13GQn5+PVq1a1Vqvoefw3L59G8ePH1f5ja/IyEgAwNdff61S96uvvoKpqanKLeV1oc+41kVoaCgcHR2xbt06rFu3DoGBgWqXpPT5HNRGl+3S9vu0LmNa25j1/a6Uy+UICwvDzz//jPz8fGX5sWPHsHnzZq37N9RxkMvlCA0Nxc8//6wytyYvLw+//fabVuvX5/eMvb09AKi0nZGRgd9//x0A1H6uRFtN9gwPgGpPpT1s1qxZ2L59O4KCgjBmzBh07NgR165dQ25uLrZu3ao8Nf7iiy9izZo1sLe3R8eOHZGdnY2tW7eiRYsWyrZu3ryJVq1a4fXXX4efnx9sbW2xdetW7N+/XyXrHjJkCKZMmYJXXnkF48ePx+3bt7FkyRK0a9dO60md2sZtCIbuKyAgAADw0UcfYciQITAzM8PgwYNr/QG0M2fO4KWXXsKAAQOQnZ2Nf/zjHxg6dKjWv4T7ySefIDMzE7169cK4ceNgamqKZcuWoby8HOnp6Tr3p82YMPQ2VEeXfarN8dR2LGui7X7RdRz4+Phg27ZtSE9Ph7u7O3x9fZVtPMxQc3gWLVqEGzduKL/wf/nlF+WvJCckJCi/dPft24e+ffsiOTkZKSkpAAB/f3+MGjUKK1euxP379xESEoIdO3Zg/fr1mDp1qspEUODB2a6qOrrSdVzrwszMDK+++irWrl2LsrIyzJ07V62OPp8DbWi7Xdp+n9ZlTGurLt+V06dPx6ZNm9C7d2+MGzcO9+/fx8KFC9GpUyeVZK46hj4OKSkp2LJlC5555hm88847UCgUWLRoETp37qzVM9zq83vG19cXPj4+WLBgAaytrWFiYoJZs2YhMjIS33//PVJSUpCYmIguXbrottE639dlJA/fll6TR29LF0KIoqIiERcXJzw9PYWZmZlwdXUV/fr1E8uXL1fWuX79uoiNjRVOTk7C1tZWhIWFiePHjwsvLy/lLdzl5eVi8uTJws/PT9jZ2QkbGxvh5+cnvvzyS7U4tmzZIjp37izMzc1F+/btxT/+8Y9qb0u/fPmyxm3RJu6a2omJiRE2NjZq7YaEhIhOnTrp3Fd1/Wi6ZXHmzJnCw8NDmJiY1Hp7cFW7R48eFa+//rqws7MTDg4OIj4+Xty5c0erba2Sm5srwsLChK2trbC2thZ9+/YVu3fv1qs/bcaErm3qe1t6TftUU/3ajqcuY/lRuuwXXcbBhQsXlMcOgFiwYEGtsdSFl5eXVrezV92ynJycrLJ+RUWFSElJEV5eXsLMzEy0bdtWfPHFF2r93Lx5U6vb1au7LV0I3cZ1dZ+N6mRmZgoAQiaTiYKCArXl2h7vmvqvbkxrs11CaPd9Wpcxre1t6UJo911Z3bo7d+4UAQEBwtzcXLRp00YsXbpU4+31mtT1OGiKKSsrS/j7+wtzc3PxxBNPiK+++kq89957wtLSstZ1tdkXdTkmf/zxh3jqqaeEhYWFcHBwEB999JGorKwUo0aNEqampmL16tW1tvEomRB8QhoZV0pKCqZPn47Lly/rfW2WqLH69ddf8eKLL+LPP//U/V+kRA0sPDwcR44cMdhPKzQmTXYODxFRU7B9+3YMGTKEyQ41Onfu3FF5f+rUKfz6668Gm4PW2DTpOTxERI3dnDlzjB0CkUZt2rTByJEj0aZNG5w7dw5LliyBubk53n//fWOHVi+Y8BARET2GBgwYgO+++w6FhYWwsLBAcHAwUlNTDfKjmY0R5/AQERGR5HEODxEREUkeEx4iIiKSPCY8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkN6W716NWQymcrTjg1R15DrUv1rysenoWNvCvtq//79ePrpp2FjYwOZTKbVgySr0xS2lx4fTHgec1VfSAcOHDBIe7t370ZKSgpu3LhhkPYMyRCxNfT23bp1C8nJyRgwYAAcHR0hk8mwevVqjXXLy8sxZcoUuLu7w8rKCkFBQcjMzKxT/4YeH1JS01hozJ+Dmty7dw8RERG4du0avvjiC6xZswZeXl7GDksnGzduhEwmw9q1axusz/379yM+Ph6dOnWCjY0NWrdujcjISJw8ebLBYiAt6Py4UZIUbZ9Cr8n9+/fFnTt3RGVlpbJszpw5Gp+qq6murjHW9KRtbVQXW0O3oYszZ84IAKJ169aiT58+AoBYtWqVxrpDhgwRpqamYtKkSWLZsmUiODhYmJqaiv/+979696/N+KjLsTW2uoytmsZCfXwOGsKxY8cEALFixQqDtGeM7f30008FAHHkyJEG6/O1114Trq6uIiEhQaxYsULMnDlTuLi4CBsbG3H48OEGi4NqxkdLkN7kcjnkcrnB69L/cXNzw6VLl+Dq6ooDBw6gZ8+eGuvt27cPa9euxZw5czBp0iQAwIgRI9C5c2e8//772L17d73F2NiPbVlZGWxsbIwdBoDGv6+Ki4sBAM2bNzdIe8bY3kOHDsHCwgLt27dvsD4TExORkZEBc3NzZVlUVBS6dOmCWbNm4R//+EeDxULV4yUtUpGSkgKZTIa8vDyMHDkSzZs3h729PWJjY3H79m2Vuo9en09JScHkyZMBAD4+PpDJZMrlmq7lnzt3DuPGjUP79u1hZWWFFi1aICIiQu/r/Tdv3sTEiRPh7e0NCwsLtGzZEs8//zxyc3NrjE3bWGprAwAuXLiAUaNGwcXFBRYWFujUqRNWrlypFuvx48eRn59f6zZZWFjA1dW11nobNmyAXC7HW2+9pSyztLTE6NGjkZ2djYKCglrb0JemcaDtGAK022fajpWqvo8ePYqhQ4fCwcEBvXr10ml76joWdP0cVO2D0aNHw93dHRYWFvDx8cE777yDiooKnfZTTf744w8MHDgQzZo1g62tLfr164c9e/Yol48cORIhISEAgIiICMhkshqfml3T563Kw9t79uxZ5b7Q9Hp0f+i7rYcOHULHjh0bNNF6+umnVZIdAHjyySfRqVMnHDt2rMHioJrxDA9pFBkZCR8fH6SlpSE3NxdfffUVWrZsidmzZ1e7zquvvoqTJ0/iu+++wxdffAEnJycAgLOzs8b6+/fvx+7duzFkyBC0atUKZ8+exZIlS9CnTx8cPXoU1tbWOsU8duxYbNiwAfHx8ejYsSOuXr2KXbt24dixY7XGpk0stbVRVFSEp556CjKZDPHx8XB2dsZvv/2G0aNHo7S0FBMnTlTG6uvri5CQEOzYsUOnbazOH3/8gXbt2qFZs2Yq5YGBgQCAgwcPwtPT0yB9aUubMaTtPtN1rERERODJJ59EamoqhI6PC6zrWND1c3Dx4kUEBgbixo0beOutt9ChQwdcuHABGzZswO3bt2Fubq7T2NLkyJEj6N27N5o1a4b3338fZmZmWLZsGfr06YOdO3ciKCgIb7/9Njw8PJCamorx48ejZ8+ecHFxqbbNmj5v3bt3V6vv7OyMNWvWqJTdu3cP7777rkqyUJdtLS8vx8mTJ/HGG2/UuD8ejaGkpESruo6OjjAx0e48gRACRUVF6NSpk9axUD0z9jU1Mq5H52gkJycLAGLUqFEq9V555RXRokULjes+PE+hurkLmurevn1bLZ7s7GwBQHz77bc1rquJvb29iIuLq3Z5TXMutI2lpjZGjx4t3NzcxJUrV1TKhwwZIuzt7VX6ACBCQkJq3J5H7d+/v9o5PJ06dRLPPfecWvmRI0cEALF06VKd+qqizRyeR4+PLmNI232m7fGp6js6Olqn7dNnXOozh0dTfyNGjBAmJiYa93HV3BddxpYm4eHhwtzcXJw+fVpZdvHiRWFnZyeeffZZZdn27dsFALF+/foa2xOi9s+bELV/dseNGyfkcrnYtm2bsqwu25qTkyMAiM8++6zW+KtUbbM2L13meq1Zs0YAEF9//bXW61D94iUt0mjs2LEq73v37o2rV6+itLTUYH1YWVkp///evXu4evUq2rZti+bNm6ucFtdW8+bNsXfvXly8eLHBYxFC4IcffsDgwYMhhMCVK1eUr7CwMJSUlKi0I4Qw2NkdALhz5w4sLCzUyi0tLZXLG1ptY0iXfabr8Xm0b10YelzWpLKyEj///DMGDx6MHj16qC2XyWQ6j61HKRQKbNmyBeHh4WjTpo2y3M3NDUOHDsWuXbv0+lzX5fMGAN9++y2+/PJLpKeno2/fvgB0/xw96tChQwCArl27ah2Hn58fMjMztXppc3kZeHDJOi4uDsHBwYiJidE6FqpfvKRFGrVu3VrlvYODAwDg+vXrapdN9HXnzh2kpaVh1apVuHDhgsqlB21PMT8sPT0dMTEx8PT0REBAAF544QWMGDFC5Uu+vmK5fPkybty4geXLl2P58uUa61RNCK0PVlZWKC8vVyu/e/eucnlDq20M6bLPdD0+Pj4+esdt6HFZk8uXL6O0tBSdO3eusU5dxtbly5dx+/ZtjZN4fX19UVlZiYKCAp0vvdTl83bw4EGMHTsW0dHRSExMVIm1Ltv6559/AniQxGjLwcEBoaGhWtevTWFhIQYNGgR7e3vl3DpqHJjwkEbVfUiFjvMhapKQkIBVq1Zh4sSJCA4Ohr29PWQyGYYMGYLKykqd24uMjETv3r3x008/YcuWLZgzZw5mz56NH3/8EQMHDqzXWKrqvPHGG9X+i06Xf3Xqys3NDRcuXFArv3TpEgDA3d293vquTm1jSJd9puvxqUuCZ+hxWVfGHlvV0ffzdv36dbz22mto164dvvrqK5Vldd3WQ4cOwdXVtdr5UppUVFTg2rVrWtV1dnauMYEpKSnBwIEDcePGDfz3v/81yueOqseEhwzq0bstarJhwwbExMTgs88+U5bdvXu3Tj/W5ubmhnHjxmHcuHEoLi5G9+7d8emnn2LgwIE1xqZtLNW14ezsDDs7OygUCoP+a1Fb3bp1w/bt21FaWqpyBm7v3r3K5Y2NLvusPsZKXfuqaTxp+zlwdnZGs2bN8Ndff9VYpy5jy9nZGdbW1jhx4oTasuPHj8PExETvCe01fd40qaysxLBhw3Djxg1s3bpVbbJ5Xbf18OHD8Pf312md3bt3Ky+p1ebMmTPw9vbWuOzu3bsYPHgwTp48ia1bt6Jjx446xUH1j3N4yKCqfu9Emz9Ecrlc7YzRwoULoVAodO5XoVCoXW5o2bIl3N3dlZd6aopN21iqa0Mul+O1117DDz/8oPGP1+XLl1Xea3tburZef/11KBQKlcsA5eXlWLVqFYKCghr8Di1t6LLPDDlWtImrLmOhtmUPMzExQXh4OH755ReNv2YthNB5bD1KLpejf//++Ne//qVyO3xRUREyMjLQq1cvnS9Ta/N502T69OnYvHkzvvvuO42XHeuyrZcuXcLly5d1PttliDk8CoUCUVFRyM7Oxvr16xEcHKxTDNQweIaHDCogIAAA8NFHH2HIkCEwMzPD4MGDNdZ98cUXsWbNGtjb26Njx47Izs7G1q1b0aJFC537vXnzJlq1aoXXX38dfn5+sLW1xdatW7F//37lv9Sri83GxkbrWGpqY9asWdi+fTuCgoIwZswYdOzYEdeuXUNubi62bt2qctpcl9vSFy1ahBs3bignh/7yyy84f/48gAeXX+zt7REUFISIiAhMnToVxcXFaNu2Lb755hucPXsWX3/9tVqbMplMp9viV65ciU2bNqmVT5gwQav1q6PtPjPkWKmNIcaCLp+D1NRUbNmyBSEhIXjrrbfg6+uLS5cuYf369di1axeaN2+u09jS5JNPPkFmZiZ69eqFcePGwdTUFMuWLUN5eTnS09N13kfafN4edfjwYcycORPPPvssiouL1X6Mr+pWcn23tWrCcl5eHmbNmqW2fMSIERovMRliDs97772Hf//73xg8eDCuXbtW7baRkTXsTWHU2FR3W/rly5c11nv4tszqbjmdOXOm8PDwECYmJsrlmupev35dxMbGCicnJ2FrayvCwsLE8ePHhZeXl4iJiam1n4eVl5eLyZMnCz8/P2FnZydsbGyEn5+f+PLLL2uNTZdYampDCCGKiopEXFyc8PT0FGZmZsLV1VX069dPLF++XKUN6HBbupeXl1a3yd65c0dMmjRJuLq6CgsLC9GzZ0+xadMmtfZu3rwpAIghQ4bU2nfVvq/uVVBQUO1t6dqMIW33mbbHp7q+a9s+fcalEDWPBW0/B0IIce7cOTFixAjh7OwsLCwsRJs2bURcXJwoLy/XaT/VJDc3V4SFhQlbW1thbW0t+vbtK3bv3q1SR9vb0rX9vD28vbXd/v0wfbY1PT29xvYLCwu12k/6CAkJ0XrbyHhkQhhwFioRNXq//vorXnzxRfz555/o0qWLscMhImoQnMND9JjZvn07hgwZwmSHiB4rPMNDREREksczPERERCR5THiIiIhI8h6729IrKytx8eJF2NnZ6fQjeURERGQ8QgjcvHkT7u7uWj+1/mGPXcJz8eLFRvkjbERERFS7goICtGrVSuf1HruEx87ODsCDHWaoh2ASERFR/SotLYWnp6fy77iuHruEp+oyVrNmzZjwEBERNTH6TkfhpGUiIiKSPCY8REREJHlMeIiIiEjyHrs5PEREJB0KhQL37t0zdhhkIObm5nrdcq4NJjxERNTkCCFQWFiIGzduGDsUMiATExP4+PjA3Nzc4G0z4SEioianKtlp2bIlrK2t+UOyElD1w8CXLl1C69atDX5MmfAQEVGTolAolMlOixYtjB0OGZCzszMuXryI+/fvw8zMzKBtc9IyERE1KVVzdqytrY0cCRla1aUshUJh8LaZ8BARUZPEy1jSU5/HlAkPERERSR4THiIiIqpX5eXliI+PR0JCAsrLy40Sg1EnLf/++++YM2cOcnJycOnSJfz0008IDw+vcZ0dO3YgMTERR44cgaenJz7++GOMHDmyQeIlIqLGa/Tq/Q3a39cjezZofw3t5s2bSEpKwk8//YTi4mL4+/tj/vz56NlTdbsXL16MOXPmoLCwEH5+fli4cCECAwNV6mRkZCA0NBQmJiZYs2YN3nzzzYbcFABGPsNTVlYGPz8/LF68WKv6Z86cwaBBg9C3b18cPHgQEydOxJtvvonNmzfXc6RERESPlzfffBOZmZlYs2YNDh8+jP79+yM0NBQXLlxQ1lm3bh0SExORnJyM3Nxc+Pn5ISwsDMXFxSptVVZWorKyEsCD31AyBpkwVs+PkMlktZ7hmTJlCjZu3Ii//vpLWTZkyBDcuHEDmzZt0qqf0tJS2Nvbo6SkhE9LJyJqgu7evYszZ87Ax8cHlpaWyvKmcoZn3759eP/997F37154eXnhH//4B3Jzc/Gf//wH//73vw0cpX7u3LkDOzs7/Otf/8KgQYOU5QEBARg4cCA++eQTAEBQUBB69uyJRYsWAXiQ2Hh6eiIhIQEffPCBcr27d+9i0qRJkMlkmDNnjspxe1h1xxao+9/vJjWHJzs7G6GhoSplYWFhyM7Ornad8vJylJaWqryIiIiMYc+ePQgJCcGgQYNw6NAh+Pr6YsaMGZg9ezamT5+uUjc1NRW2trY1vvLz8+slzvv370OhUKglHVZWVti1axcAoKKiAjk5OSp/l01MTBAaGqr2d9nS0hKLFi3CwoULq0126luT+uHBwsJCuLi4qJS5uLigtLQUd+7cgZWVldo6aWlpaoOIqKmLz4rXeZ1F/RbVQyT0KH3OMjTmuSAbF/+p8zqD4vzqIRJpSExMREREBCZPngwAiI6ORnR0NF5++WX4+/ur1B07diwiIyNrbM/d3b1e4rSzs0NwcDBmzpwJX19fuLi44LvvvkN2djbatm0LALhy5QoUCoXGv8vHjx+vl7jqokmd4dHH1KlTUVJSonwVFBQYOyQiInoMnT9/HtnZ2Rg7dqyyzNTUFEIIjf8wd3R0RNu2bWt8mZrWfN7igw8+gEwmq/FVXXKyZs0aCCHg4eEBCwsLLFiwANHR0fX2cM/61qTO8Li6uqKoqEilrKioCM2aNdN4dgcALCwsYGFh0RDhERERVevYsWMAgO7duyvLTpw4gcDAQHTp0kWtfmpqKlJTU2ts8+jRo2jdunW1y997771a72Ru06aNxvInnngCO3fuRFlZGUpLS+Hm5oaoqChlfScnJ8jlco1/l11dXWvs0xiaVMITHByMX3/9VaUsMzMTwcHBRoqIiIhIOyUlJZDL5cpfE7527Rrmzp0LPz/NlwANcUnL2dkZzs7O+gX8/9nY2MDGxgbXr1/H5s2bkZ6eDuDBYyACAgKQlZWlvOGosrISWVlZiI/X/bJ7fTNqwnPr1i3k5eUp3585cwYHDx6Eo6MjWrdujalTp+LChQv49ttvATw4+IsWLcL777+PUaNGYdu2bfj++++xceNGY20CERGRVrp16waFQoH09HRERERgwoQJ8Pb2xtGjR3Hu3Dl4eXmp1Hd0dISjo6ORogU2b94MIQTat2+PvLw8TJ48GR06dEBsbKyyTmJiImJiYtCjRw8EBgZi3rx5KCsrU6nTWBj1QtyBAwfg7++vnKiVmJgIf39/TJs2DQBw6dIllRnoPj4+2LhxIzIzM+Hn54fPPvsMX331FcLCwowSPxERkbbatm2LGTNmYP78+fD394e7uzu2bNkCDw8PDBgwwNjhqSkpKUFcXBw6dOiAESNGoFevXti8ebPKU8yjoqIwd+5cTJs2Dd26dcPBgwexadMmtYnMjUGj+R2ehsLf4SEp4F1ajRfv0qr/u7Rq+q0Watr4OzxEREREdcCEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiOpVeXk54uPjkZCQgPLycqPEwISHiIiIajRr1izIZDJMnDhRpTwlJQUymUzl1aFDB7X1MzIyEBoaiueffx5r1qxpoKhVGfVp6URERAaTEdWw/Q1d17D9Gcn+/fuxbNkydO3aVePyTp06YevWrcr3pqbqqUVlZSUqKythYmICYz3Ck2d4iIiIGtC+ffvQp08fWFlZoUOHDjhw4ACWL1+Ol156ydihqbl16xaGDRuGFStWwMHBQWMdU1NTuLq6Kl9OTk5qdYYNG4Zt27YhMzMTw4cPr++wNWLCQ0RE1ED27NmDkJAQDBo0CIcOHYKvry9mzJiB2bNnY/r06Sp1U1NTYWtrW+MrPz+/XuONi4vDoEGDEBoaWm2dU6dOwd3dHW3atMGwYcM0xmRpaYlFixZh4cKFRnvCPS9pERERNZDExERERERg8uTJAIDo6GhER0fj5Zdfhr+/v0rdsWPHIjIyssb23N3d6y3WtWvXIjc3F/v376+2TlBQEFavXo327dvj0qVLmD59Onr37o2//voLdnZ29RabPpjwEBERNYDz588jOzsbc+fOVZaZmppCCKF2dgcAHB0d4ejoWKc+P/jgA8yePbvGOseOHVObaFxQUIAJEyYgMzOzxjMyAwcOVP5/165dERQUBC8vL3z//fcYPXp0nWI3NCY8REREDeDYsWMAgO7duyvLTpw4gcDAQHTp0kWtfmpqKlJTU2ts8+jRo2jdunW1y9977z2MHDmyxjbatGmjVpaTk4Pi4mKVWBUKBX7//XcsWrQI5eXlkMvlaus1b94c7dq1Q15eXo19GgMTHiIiogZQUlICuVwOmUwGALh27Rrmzp0LPz8/jfUNcUnL2dkZzs7OOsfar18/HD58WKUsNjYWHTp0wJQpUzQmO8CDSc6nT5822sTkmjDhISIiagDdunWDQqFAeno6IiIiMGHCBHh7e+Po0aM4d+4cvLy8VOob4pKWvuzs7NC5c2eVMhsbG7Ro0UKlfNKkSRg8eDC8vLxw8eJFJCcnQy6XIzo6uqFDrhXv0iIiImoAbdu2xYwZMzB//nz4+/vD3d0dW7ZsgYeHBwYMGGDs8PRy/vx5REdHo3379oiMjESLFi2wZ88evc4q1Tee4SEiImogSUlJSEpKUinLyckxUjS62bFjh1rZ2rVrGz4QPTHhISIiaXhMfvmY9MNLWkRERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIgeY+Xl5YiPj0dCQgLKy8uNHU694aMliIhIEuKz4hu0v0X9FjVof7pavHgx5syZg8LCQvj5+WHhwoUIDAxUq5eRkYHQ0FCYmJhgzZo1ePPNN40Qbf3jGR4iIiKJWbduHRITE5GcnIzc3Fz4+fkhLCwMxcXFanUrKytRWVkJABBCNHSoDYYJDxERUQPat28f+vTpAysrK3To0AEHDhzA8uXL8dJLLxmsj88//xxjxoxBbGwsOnbsiKVLl8La2horV65Uqzts2DBs27YNmZmZGD58uMFiaGyY8BARETWQPXv2ICQkBIMGDcKhQ4fg6+uLGTNmYPbs2Zg+fbpK3dTUVNja2tb4ys/PV+ujoqICOTk5CA0NVZaZmJggNDQU2dnZavUtLS2xaNEiLFy4EJaWlobf6EaCc3iIiIgaSGJiIiIiIjB58mQAQHR0NKKjo/Hyyy/D399fpe7YsWMRGRlZY3vu7u5qZVeuXIFCoYCLi4tKuYuLC44fP17HLWi6mPAQERE1gPPnzyM7Oxtz585VlpmamkIIoXZ2BwAcHR3h6OjYkCFKGi9pERERNYBjx44BALp3764sO3HiBAIDA9GlSxe1+vpe0nJycoJcLkdRUZFKeVFREVxdXQ28VU0Hz/AQERE1gJKSEsjlcshkMgDAtWvXMHfuXPj5+Wmsr+8lLXNzcwQEBCArKwvh4eEAHtyJlZWVhfj4hr11vzFhwkNERNQAunXrBoVCgfT0dERERGDChAnw9vbG0aNHce7cOXh5eanUr8slrcTERMTExKBHjx4IDAzEvHnzUFZWhtjYWENsSpPES1pEREQNoG3btpgxYwbmz58Pf39/uLu7Y8uWLfDw8MCAAQMM2ldUVBTmzp2LadOmoVu3bjh48CA2bdqkNpH5ccIzPEREJAmN/ZePASApKQlJSUkqZTk5OfXSV3x8/GN9CetRPMNDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiKpVXl6O+Ph4JCQkoLy83Njh6I0JDxERkYTNmjULMpkMEydOVClPSUmBTCZTeXXo0EFt/YyMDISGhuL555/HmjVrGihqw+OztIiISBIKxr7ToP15Ll3SoP3pY//+/Vi2bBm6du2qcXmnTp2wdetW5XtTU/W0oLKyEpWVlTAxMYEQot5irW88w0NERNSA9u3bhz59+sDKygodOnTAgQMHsHz5crz00ksG7efWrVsYNmwYVqxYAQcHB411TE1N4erqqnw5OTmp1Rk2bBi2bduGzMxMDB8+3KAxNiQmPERERA1kz549CAkJwaBBg3Do0CH4+vpixowZmD17NqZPn65SNzU1Fba2tjW+8vPzq+0rLi4OgwYNQmhoaLV1Tp06BXd3d7Rp0wbDhg3T2J6lpSUWLVqEhQsXwtLSUv+NNzJe0iIiImogiYmJiIiIwOTJkwEA0dHRiI6Oxssvvwx/f3+VumPHjkVkZGSN7bm7u2ssX7t2LXJzc7F///5q1w0KCsLq1avRvn17XLp0CdOnT0fv3r3x119/wc7OTscta/yY8BARETWA8+fPIzs7G3PnzlWWmZqaQgihdnYHABwdHeHo6KhzPwUFBZgwYQIyMzNrPCMzcOBA5f937doVQUFB8PLywvfff4/Ro0fr3G9jZ/RLWosXL4a3tzcsLS0RFBSEffv21Vh/3rx5aN++PaysrODp6Yl3330Xd+/ebaBoiYiI9HPs2DEAQPfu3ZVlJ06cQGBgILp06aJWX99LWjk5OSguLkb37t1hamoKU1NT7Ny5EwsWLICpqSkUCoXG+Jo3b4527dohLy/PQFvcuBj1DM+6deuQmJiIpUuXIigoCPPmzUNYWBhOnDiBli1bqtXPyMjABx98gJUrV+Lpp5/GyZMnMXLkSMhkMnz++edG2AIiIiLtlJSUQC6XQyaTAQCuXbuGuXPnws/PT2N9fS9p9evXD4cPH1Ypi42NRYcOHTBlyhTI5XKNbd26dQunT59u0hOTa2LUhOfzzz/HmDFjEBsbCwBYunQpNm7ciJUrV+KDDz5Qq797924888wzGDp0KADA29sb0dHR2Lt3b4PGTUREpKtu3bpBoVAgPT0dERERmDBhAry9vXH06FGcO3cOXl5eKvX1vaRlZ2eHzp07q5TZ2NigRYsWKuWTJk3C4MGD4eXlhYsXLyI5ORlyuRzR0dH6bWAjZ7RLWhUVFcjJyVGZPW5iYoLQ0FBkZ2drXOfpp59GTk6O8rLX33//jV9//RUvvPBCtf2Ul5ejtLRU5UVERNTQ2rZtixkzZmD+/Pnw9/eHu7s7tmzZAg8PDwwYMKDB4zl//jyio6PRvn17REZGokWLFtizZw+cnZ0bPJaGYLQzPFeuXIFCoYCLi4tKuYuLC44fP65xnaFDh+LKlSvo1asXhBC4f/8+xo4diw8//LDaftLS0jROBiMiImlpCj8EmJSUhKSkJJWynJyceu93x44damVr166t934bE6NPWtbFjh07kJqaii+//BK5ubn48ccfsXHjRsycObPadaZOnYqSkhLlq6CgoAEjJiIiosbAaGd4nJycIJfLUVRUpFJeVFQEV1dXjeskJSVh+PDhePPNNwEAXbp0QVlZGd566y189NFHMDFRz98sLCxgYWFh+A0gIiKiJsNoZ3jMzc0REBCArKwsZVllZSWysrIQHByscZ3bt2+rJTVVs82b8vM9iIiIqH4Z9S6txMRExMTEoEePHggMDMS8efNQVlamvGtrxIgR8PDwQFpaGgBg8ODB+Pzzz+Hv74+goCDk5eUhKSkJgwcPrvY2OyIiIiKjJjxRUVG4fPkypk2bhsLCQnTr1g2bNm1STmTOz89XOaPz8ccfQyaT4eOPP8aFCxfg7OyMwYMH49NPPzXWJhAREVETYPRHS8THxyM+Pl7jskdnlZuamiI5ORnJyckNEBkRERFJRZO6S4uIiIhIH0x4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERNUqLy9HfHw8EhISUF5ebuxw9Gb0u7SIiIgMYePiPxu0v0Fxfg3any5u3ryJpKQk/PTTTyguLoa/vz/mz5+Pnj17qtRbvHgx5syZg8LCQvj5+WHhwoUIDAxUqZORkYHQ0FCYmJhgzZo1yqcdNDU8w0NERCQxb775JjIzM7FmzRocPnwY/fv3R2hoKC5cuKCss27dOiQmJiI5ORm5ubnw8/NDWFgYiouLVdqqrKxEZWUlgKb9VAMmPERERA1o37596NOnD6ysrNChQwccOHAAy5cvx0svvWSQ9u/cuYMffvgB6enpePbZZ9G2bVukpKSgbdu2WLLk/54o//nnn2PMmDGIjY1Fx44dsXTpUlhbW2PlypUq7Q0bNgzbtm1DZmYmhg8fbpAYjYEJDxERUQPZs2cPQkJCMGjQIBw6dAi+vr6YMWMGZs+ejenTp6vUTU1Nha2tbY2v/Px8tT7u378PhUIBS0tLlXIrKyvs2rULAFBRUYGcnByEhoYql5uYmCA0NBTZ2dkq61laWmLRokVYuHChWptNCefwEBERNZDExERERERg8uTJAIDo6GhER0fj5Zdfhr+/v0rdsWPHIjIyssb23N3d1crs7OwQHByMmTNnwtfXFy4uLvjuu++QnZ2Ntm3bAgCuXLkChUKhfJRTFRcXFxw/frwum9hoMeEhIiJqAOfPn0d2djbmzp2rLDM1NYUQQu3sDgA4OjrC0dFRr77WrFmDUaNGwcPDA3K5HN27d0d0dDRycnL0jr+p4yUtIiKiBnDs2DEAQPfu3ZVlJ06cQGBgILp06aJWX99LWgDwxBNPYOfOnbh16xYKCgqwb98+3Lt3D23atAEAODk5QS6Xo6ioSGW9oqIiuLq6GmqTGxWe4SEiImoAJSUlkMvlkMlkAIBr165h7ty58PPTfHu7vpe0HmZjYwMbGxtcv34dmzdvRnp6OgDA3NwcAQEByMrKQnh4OIAHd2NlZWVV+0Dvpo4JDxERUQPo1q0bFAoF0tPTERERgQkTJsDb2xtHjx7FuXPn4OXlpVK/Lpe0Nm/eDCEE2rdvj7y8PEyePBkdOnRAbGyssk5iYiJiYmLQo0cPBAYGYt68eSgrK1OpIyW8pEVERNQA2rZtixkzZmD+/Pnw9/eHu7s7tmzZAg8PDwwYMMCgfZWUlCAuLg4dOnTAiBEj0KtXL2zevBlmZmbKOlFRUZg7dy6mTZuGbt264eDBg9i0aZPaRGap4BkeIiKShMb8y8dVkpKSkJSUpFJWHxOJIyMja70cBgDx8fGSvYT1KJ7hISIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8RETUJFVWVho7BDIwIUS9tc3b0omIqEkxNzeHiYkJLl68CGdnZ5ibmyt/vZiaLiEELl++DJlMpvJ7QYbChIeIiJoUExMT+Pj44NKlS7h48aKxwyEDkslkaNWqFeRyucHbZsJDRERNjrm5OVq3bo379+9DoVAYOxwyEDMzs3pJdgAmPERE1ERVXfqoj8sfJD2ctExERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREJHl8WjpRY5ARpVt9F2eduygY+47O63guXaLzOkREjRHP8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHk6ZXwbN++3dBxEBEREdUbvRKeAQMG4IknnsAnn3yCgoICQ8dEREREZFB6JTwXLlxAfHw8NmzYgDZt2iAsLAzff/89KioqDB0fERERUZ3plfA4OTnh3XffxcGDB7F37160a9cO48aNg7u7O8aPH48///xT67YWL14Mb29vWFpaIigoCPv27aux/o0bNxAXFwc3NzdYWFigXbt2+PXXX/XZDCIiInpM1HnScvfu3TF16lTEx8fj1q1bWLlyJQICAtC7d28cOXKkxnXXrVuHxMREJCcnIzc3F35+fggLC0NxcbHG+hUVFXj++edx9uxZbNiwASdOnMCKFSvg4eFR180gIiIiCdM74bl37x42bNiAF154AV5eXti8eTMWLVqEoqIi5OXlwcvLCxERETW28fnnn2PMmDGIjY1Fx44dsXTpUlhbW2PlypUa669cuRLXrl3Dzz//jGeeeQbe3t4ICQmBn5+fvptBREREjwG9Ep6EhAS4ubnh7bffRrt27fDHH38gOzsbb775JmxsbODt7Y25c+fi+PHj1bZRUVGBnJwchIaG/l8wJiYIDQ1Fdna2xnX+/e9/Izg4GHFxcXBxcUHnzp2RmpoKhUJRbT/l5eUoLS1VeREREdHjxVSflY4ePYqFCxfi1VdfhYWFhcY6Tk5ONd6+fuXKFSgUCri4uKiUu7i4VJso/f3339i2bRuGDRuGX3/9FXl5eRg3bhzu3buH5ORkjeukpaVh+vTpWm4ZERERSZFeZ3iSk5MRERGhluzcv38fv//+OwDA1NQUISEhdY/wIZWVlWjZsiWWL1+OgIAAREVF4aOPPsLSpUurXWfq1KkoKSlRvngbPRER0eNHrzM8ffv2xaVLl9CyZUuV8pKSEvTt27fGS0xVnJycIJfLUVRUpFJeVFQEV1dXjeu4ubnBzMwMcrlcWebr64vCwkJUVFTA3NxcbR0LC4tqz0IRERHR40GvMzxCCMhkMrXyq1evwsbGRqs2zM3NERAQgKysLGVZZWUlsrKyEBwcrHGdZ555Bnl5eaisrFSWnTx5Em5ubhqTHSIiIiJAxzM8r776KgBAJpNh5MiRKmdOFAoFDh06hKefflrr9hITExETE4MePXogMDAQ8+bNQ1lZGWJjYwEAI0aMgIeHB9LS0gAA77zzDhYtWoQJEyYgISEBp06dQmpqKsaPH6/LZhAREdFjRqeEx97eHsCDMzx2dnawsrJSLjM3N8dTTz2FMWPGaN1eVFQULl++jGnTpqGwsBDdunXDpk2blBOZ8/PzYWLyfyehPD09sXnzZrz77rvo2rUrPDw8MGHCBEyZMkWXzSAiIqLHjE4Jz6pVqwAA3t7emDRpktaXr2oSHx+P+Ph4jct27NihVhYcHIw9e/bUuV8iIiJ6fOg1abm6W8CJiIiIGiOtE57u3bsjKysLDg4O8Pf31zhpuUpubq5BgiMiIiIyBK0Tnpdfflk5STk8PLy+4iEiIiIyOK0TnocvY/GSFhERETUldX5aOhEREVFjp/UZHgcHhxrn7Tzs2rVregdEREREZGhaJzzz5s2rxzCIiIiI6o/WCU9MTEx9xkFERERUb7ROeEpLS9GsWTPl/9ekqh4RERFRY6DTHJ6qJ6Q3b95c43yeqoeKavO0dCIiIqKGonXCs23bNjg6OgIAtm/fXm8BERERERma1glPSEiIxv8nIiIiauz0epYWAFy/fh1ff/01jh07BgDo2LEjYmNjlWeBiIiIiBoLvX548Pfff4e3tzcWLFiA69ev4/r161iwYAF8fHzw+++/GzpGIiIiojrR6wxPXFwcoqKisGTJEsjlcgCAQqHAuHHjEBcXh8OHDxs0SCIiIqK60OsMT15eHt577z1lsgMAcrkciYmJyMvLM1hwRERERIagV8LTvXt35dydhx07dgx+fn51DoqIiIjIkLS+pHXo0CHl/48fPx4TJkxAXl4ennrqKQDAnj17sHjxYsyaNcvwURIRERHVgdYJT7du3SCTySCEUJa9//77avWGDh2KqKgow0RHREREZABaJzxnzpypzziIiIiI6o3WCY+Xl1d9xkFERERUb/T+4UEAOHr0KPLz81FRUaFS/tJLL9UpKCIiIiJD0ivh+fvvv/HKK6/g8OHDKvN6qh4oyoeHEhERUWOi123pEyZMgI+PD4qLi2FtbY0jR47g999/R48ePbBjxw4Dh0hERERUN3qd4cnOzsa2bdvg5OQEExMTmJiYoFevXkhLS8P48ePxxx9/GDpOIiIiIr3pdYZHoVDAzs4OAODk5ISLFy8CeDCx+cSJE4aLjoiIiMgA9DrD07lzZ/z555/w8fFBUFAQ0tPTYW5ujuXLl6NNmzaGjpGIiIioTvRKeD7++GOUlZUBAGbMmIEXX3wRvXv3RosWLbBu3TqDBkhERERUV3olPGFhYcr/b9u2LY4fP45r167BwcFBeacWERERUWNRp9/hAYCCggIAgKenZ52DISIiIqoPek1avn//PpKSkmBvbw9vb294e3vD3t4eH3/8Me7du2foGImIiIjqRK8zPAkJCfjxxx+Rnp6O4OBgAA9uVU9JScHVq1exZMkSgwZJREREVBd6JTwZGRlYu3YtBg4cqCzr2rUrPD09ER0dzYSHiIiIGhW9LmlZWFjA29tbrdzHxwfm5uZ1jYmIiIjIoPRKeOLj4zFz5kyUl5cry8rLy/Hpp58iPj7eYMERERERGYLWl7ReffVVlfdbt25Fq1at4OfnBwD4888/UVFRgX79+hk2QiIiIqI60jrhsbe3V3n/2muvqbznbelERETUWGmd8Kxatao+4yAiIiKqN3X64cHLly8rHxbavn17ODs7GyQoIiIiIkPSa9JyWVkZRo0aBTc3Nzz77LN49tln4e7ujtGjR+P27duGjpGIiIioTvRKeBITE7Fz50788ssvuHHjBm7cuIF//etf2LlzJ9577z1Dx0hERERUJ3pd0vrhhx+wYcMG9OnTR1n2wgsvwMrKCpGRkfzhQSIiImpU9DrDc/v2bbi4uKiVt2zZkpe0iIiIqNHRK+EJDg5GcnIy7t69qyy7c+cOpk+frny2FhEREVFjodclrXnz5mHAgAFqPzxoaWmJzZs3GzRAIiIiorrSK+Hp0qULTp06hX/+8584fvw4ACA6OhrDhg2DlZWVQQMkIiIiqiudE5579+6hQ4cO+M9//oMxY8bUR0xEREREBqXzHB4zMzOVuTtEREREjZ1ek5bj4uIwe/Zs3L9/39DxEBERERmcXnN49u/fj6ysLGzZsgVdunSBjY2NyvIff/zRIMERERERGYJeCU/z5s3VnpZORERE1FjplPBUVlZizpw5OHnyJCoqKvDcc88hJSWFd2YRERFRo6bTHJ5PP/0UH374IWxtbeHh4YEFCxYgLi6uvmIjIiIiMgidEp5vv/0WX375JTZv3oyff/4Zv/zyC/75z3+isrKyvuIjIiIiqjOdEp78/Hy88MILyvehoaGQyWS4ePGiwQMjIiIiMhSdEp779+/D0tJSpczMzAz37t0zaFBEREREhqTTpGUhBEaOHAkLCwtl2d27dzF27FiVW9N5WzoRERE1JjolPDExMWplb7zxhsGCISIiIqoPOiU8q1atqq84iIiIiOqNXo+WMLTFixfD29sblpaWCAoKwr59+7Rab+3atZDJZAgPD6/fAImIiKhJM3rCs27dOiQmJiI5ORm5ubnw8/NDWFgYiouLa1zv7NmzmDRpEnr37t1AkRIREVFTZfSE5/PPP8eYMWMQGxuLjh07YunSpbC2tsbKlSurXUehUGDYsGGYPn062rRp04DREhERUVNk1ISnoqICOTk5CA0NVZaZmJggNDQU2dnZ1a43Y8YMtGzZEqNHj661j/LycpSWlqq8iIiI6PFi1ITnypUrUCgUcHFxUSl3cXFBYWGhxnV27dqFr7/+GitWrNCqj7S0NNjb2ytfnp6edY6biIiImhajX9LSxc2bNzF8+HCsWLECTk5OWq0zdepUlJSUKF8FBQX1HCURERE1Njrdlm5oTk5OkMvlKCoqUikvKiqCq6urWv3Tp0/j7NmzGDx4sLKs6jlepqamOHHiBJ544gmVdSwsLFR+KJGIiIgeP0Y9w2Nubo6AgABkZWUpyyorK5GVlYXg4GC1+h06dMDhw4dx8OBB5eull15C3759cfDgQV6uIiIiIo2MeoYHABITExETE4MePXogMDAQ8+bNQ1lZGWJjYwEAI0aMgIeHB9LS0mBpaYnOnTurrN+8eXMAUCsnIiIiqmL0hCcqKgqXL1/GtGnTUFhYiG7dumHTpk3Kicz5+fkwMWlSU42IiIiokTF6wgMA8fHxiI+P17hsx44dNa67evVqwwdEREREksJTJ0RERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJaxQJz+LFi+Ht7Q1LS0sEBQVh37591dZdsWIFevfuDQcHBzg4OCA0NLTG+kRERERGT3jWrVuHxMREJCcnIzc3F35+fggLC0NxcbHG+jt27EB0dDS2b9+O7OxseHp6on///rhw4UIDR05ERERNhdETns8//xxjxoxBbGwsOnbsiKVLl8La2horV67UWP+f//wnxo0bh27duqFDhw746quvUFlZiaysLI31y8vLUVpaqvIiIiKix4tRE56Kigrk5OQgNDRUWWZiYoLQ0FBkZ2dr1cbt27dx7949ODo6alyelpYGe3t75cvT09MgsRMREVHTYdSE58qVK1AoFHBxcVEpd3FxQWFhoVZtTJkyBe7u7ipJ08OmTp2KkpIS5augoKDOcRMREVHTYmrsAOpi1qxZWLt2LXbs2AFLS0uNdSwsLGBhYdHAkREREVFjYtSEx8nJCXK5HEVFRSrlRUVFcHV1rXHduXPnYtasWdi6dSu6du1an2ESERFRE2fUS1rm5uYICAhQmXBcNQE5ODi42vXS09Mxc+ZMbNq0CT169GiIUImIiKgJM/olrcTERMTExKBHjx4IDAzEvHnzUFZWhtjYWADAiBEj4OHhgbS0NADA7NmzMW3aNGRkZMDb21s518fW1ha2trZG2w4iIiJqvIye8ERFReHy5cuYNm0aCgsL0a1bN2zatEk5kTk/Px8mJv93ImrJkiWoqKjA66+/rtJOcnIyUlJSGjJ0IiIiaiKMnvAAQHx8POLj4zUu27Fjh8r7s2fP1n9AREREJClG/+FBIiIiovrGhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSV6jeJbWYy8jSvd1hq7TqXrB2Hd07sJz6RKd1yEiIj00wN8B4PH+W8AzPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJnqmxAyAieuxlROm+ztB1Oq9SMPYd3fvpMlb3dYgaIZ7hISIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREJHlMeIiIiEjyGkXCs3jxYnh7e8PS0hJBQUHYt29fjfXXr1+PDh06wNLSEl26dMGvv/7aQJESERFRU2T0hGfdunVITExEcnIycnNz4efnh7CwMBQXF2usv3v3bkRHR2P06NH4448/EB4ejvDwcPz1118NHDkRERE1FUZPeD7//HOMGTMGsbGx6NixI5YuXQpra2usXLlSY/358+djwIABmDx5Mnx9fTFz5kx0794dixYtauDIiYiIqKkw6qMlKioqkJOTg6lTpyrLTExMEBoaiuzsbI3rZGdnIzExUaUsLCwMP//8s8b65eXlKC8vV74vKSkBAJSWltYxegO6fU/nVSb9+y2d6k+sUOjcR6PaR1Kn4xioKKvQuYubHAMNouLOLZ3XKb2v+3cA9Dg2Nyt0Hze39dkejhvdNcDfAaBp/y2oikMIoV8DwoguXLggAIjdu3erlE+ePFkEBgZqXMfMzExkZGSolC1evFi0bNlSY/3k5GQBgC+++OKLL774ksCroKBAr5xD8g8PnTp1qsoZocrKSly7dg0tWrSATCYzYmSGV1paCk9PTxQUFKBZs2bGDoeMgGOAOAZIqmNACIGbN2/C3d1dr/WNmvA4OTlBLpejqKhIpbyoqAiurq4a13F1ddWpvoWFBSwsLFTKmjdvrn/QTUCzZs0kNchJdxwDxDFAUhwD9vb2eq9r1EnL5ubmCAgIQFZWlrKssrISWVlZCA4O1rhOcHCwSn0AyMzMrLY+ERERkdEvaSUmJiImJgY9evRAYGAg5s2bh7KyMsTGxgIARowYAQ8PD6SlpQEAJkyYgJCQEHz22WcYNGgQ1q5diwMHDmD58uXG3AwiIiJqxIye8ERFReHy5cuYNm0aCgsL0a1bN2zatAkuLi4AgPz8fJiY/N+JqKeffhoZGRn4+OOP8eGHH+LJJ5/Ezz//jM6dOxtrExoNCwsLJCcnq13Co8cHxwBxDBDHgGYyIfS9v4uIiIioaTD6Dw8SERER1TcmPERERCR5THiIiIhI8pjwEBERkeQx4WmiFi9eDG9vb1haWiIoKAj79u1TLrt79y7i4uLQokUL2Nra4rXXXlP7sUZq+moaA8uXL0efPn3QrFkzyGQy3Lhxw3iBksH9/vvvGDx4MNzd3SGTydSeJSiEwLRp0+Dm5gYrKyuEhobi1KlTxgmW6kVtY+DHH39E//79lU8VOHjwoFHibEyY8DRB69atQ2JiIpKTk5Gbmws/Pz+EhYWhuLgYAPDuu+/il19+wfr167Fz505cvHgRr776qpGjJkOqbQzcvn0bAwYMwIcffmjkSKk+lJWVwc/PD4sXL9a4PD09HQsWLMDSpUuxd+9e2NjYICwsDHfv3m3gSKm+1DYGysrK0KtXL8yePbuBI2vE9HoCFxlVYGCgiIuLU75XKBTC3d1dpKWliRs3bggzMzOxfv165fJjx44JACI7O9sY4VI9qGkMPGz79u0CgLh+/XoDR0gNBYD46aeflO8rKyuFq6urmDNnjrLsxo0bwsLCQnz33XdGiJDq26Nj4GFnzpwRAMQff/zRoDE1RjzD08RUVFQgJycHoaGhyjITExOEhoYiOzsbOTk5uHfvnsryDh06oHXr1sjOzjZGyGRgtY0BerydOXMGhYWFKuPD3t4eQUFBHB/0WGPC08RcuXIFCoVC+UvUVVxcXFBYWIjCwkKYm5urPSC1ajk1fbWNAXq8VY0Bjg8iVUx4iIiISPKY8DQxTk5OkMvlanddFRUVwdXVFa6urqioqFC7K6dqOTV9tY0BerxVjQGODyJVTHiaGHNzcwQEBCArK0tZVllZiaysLAQHByMgIABmZmYqy0+cOIH8/HwEBwcbI2QysNrGAD3efHx84OrqqjI+SktLsXfvXo4PeqwZ/WnppLvExETExMSgR48eCAwMxLx581BWVobY2FjY29tj9OjRSExMhKOjI5o1a4aEhAQEBwfjqaeeMnboZCA1jQEAyvlceXl5AIDDhw/Dzs4OrVu3hqOjozFDJwO4deuW8tgCDyYqHzx4EI6OjmjdujUmTpyITz75BE8++SR8fHyQlJQEd3d3hIeHGy9oMqjaxsC1a9eQn5+PixcvAnjwD18AyisBjyVj3yZG+lm4cKFo3bq1MDc3F4GBgWLPnj3KZXfu3BHjxo0TDg4OwtraWrzyyivi0qVLRoyW6kNNYyA5OVkAUHutWrXKeAGTwVT93MCjr5iYGCHEg1vTk5KShIuLi7CwsBD9+vUTJ06cMG7QZFC1jYFVq1ZpXJ6cnGzUuI1JJoQQDZtiERERETUszuEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0QajRw5EjKZDGPHjlVbFhcXB5lMhpEjRzZ8YBIik8nw888/GzsMoscCEx4iqpanpyfWrl2LO3fuKMvu3r2LjIwMtG7d2oiR1a6iosLYIRBRI8KEh4iq1b17d3h6euLHH39Ulv34449o3bo1/P39lWWVlZVIS0uDj48PrKys4Ofnhw0bNiiXKxQKjB49Wrm8ffv2mD9/vkpfO3bsQGBgIGxsbNC8eXM888wzOHfuHIAHZ5sefdL3xIkT0adPH+X7Pn36ID4+HhMnToSTkxPCwsIAAH/99RcGDhwIW1tbuLi4YPjw4bhy5YrKegkJCZg4cSIcHBzg4uKCFStWKJ8+b2dnh7Zt2+K3335T6V+bdsePH4/3338fjo6OcHV1RUpKinK5t7c3AOCVV16BTCZTviei+sGEh4hqNGrUKKxatUr5fuXKlYiNjVWpk5aWhm+//RZLly7FkSNH8O677+KNN97Azp07ATxIiFq1aoX169fj6NGjmDZtGj788EN8//33AID79+8jPDwcISEhOHToELKzs/HWW29BJpPpFOs333wDc3Nz/O9//8PSpUtx48YNPPfcc/D398eBAwewadMmFBUVITIyUm09Jycn7Nu3DwkJCXjnnXcQERGBp59+Grm5uejfvz+GDx+O27dvA4BO7drY2GDv3r1IT0/HjBkzkJmZCQDYv38/AGDVqlW4dOmS8j0R1RNjP66diBqnmJgY8fLLL4vi4mJhYWEhzp49K86ePSssLS3F5cuXxcsvvyxiYmLE3bt3hbW1tdi9e7fK+qNHjxbR0dHVth8XFydee+01IYQQV69eFQDEjh07aozlYRMmTBAhISHK9yEhIcLf31+lzsyZM0X//v1VygoKCgQAceLECeV6vXr1Ui6/f/++sLGxEcOHD1eWXbp0SQAQ2dnZercrhBA9e/YUU6ZMUb4HIH766SeN20xEhmVq1GyLiBo9Z2dnDBo0CKtXr4YQAoMGDYKTk5NyeV5eHm7fvo3nn39eZb2KigqVy16LFy/GypUrkZ+fjzt37qCiogLdunUDADg6OmLkyJEICwvD888/j9DQUERGRsLNzU2nWAMCAlTe//nnn9i+fTtsbW3V6p4+fRrt2rUDAHTt2lVZLpfL0aJFC3Tp0kVZ5uLiAgAoLi7Wu10AcHNzU7ZBRA2LCQ8R1WrUqFGIj48H8CBxeditW7cAABs3boSHh4fKMgsLCwDA2rVrMWnSJHz22WcIDg6GnZ0d5syZg7179yrrrlq1CuPHj8emTZuwbt06fPzxx8jMzMRTTz0FExMTCCFU2r53755anDY2NmqxDR48GLNnz1ar+3AyZWZmprJMJpOplFVdWqusrKxzu1VtEFHDYsJDRLUaMGAAKioqIJPJlJOBq3Ts2BEWFhbIz89HSEiIxvX/97//4emnn8a4ceOUZadPn1ar5+/vD39/f0ydOhXBwcHIyMjAU089BWdnZ/z1118qdQ8ePKiWUDyqe/fu+OGHH+Dt7Q1TU8N93RmqXTMzMygUCoPFRUTV46RlIqqVXC7HsWPHcPToUcjlcpVldnZ2mDRpEt5991188803OH36NHJzc7Fw4UJ88803AIAnn3wSBw4cwObNm3Hy5EkkJSWpTNI9c+YMpk6diuzsbJw7dw5btmzBqVOn4OvrCwB47rnncODAAXz77bc4deoUkpOT1RIgTeLi4nDt2jVER0dj//79OH36NDZv3ozY2Ng6JRqGatfb2xtZWVkoLCzE9evX9Y6HiGrHhIeItNKsWTM0a9ZM47KZM2ciKSkJaWlp8PX1xYABA7Bx40b4+PgAAN5++228+uqriIqKQlBQEK5evapytsfa2hrHjx/Ha6+9hnbt2uGtt95CXFwc3n77bQBAWFgYkpKS8P7776Nnz564efMmRowYUWvM7u7u+N///geFQoH+/fujS5cumDhxIpo3bw4TE/2//gzV7meffYbMzEx4enqqzHciIsOTiUcvjBMRERFJDM/wEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkvf/AHkkKapE8JskAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjwAAAHgCAYAAAChG7dTAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAWmBJREFUeJzt3XlcVFX/B/DPMOyLCIJsImCm4oaIQpSGJolmFi2AaIpolgmokWZWCGqBopVrbqWVz0OatjxPj6YiLj0+4gaZ5o6p4AK4gqKCDuf3hy/m5zgDzAwDA9fP+/WaV825557zvfeeGb7ee+5cmRBCgIiIiEjCTIwdABEREVF9Y8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ89dlJSUiCTyXDlypUGb/Obb76BTCbD2bNnqy3TVEfXNqlp2r9/P55++mnY2NhAJpPh4MGDxg7JIJrCGH1038+bN0/vmHXZ3qrvjsasKRw/bTSZhKdqh8tkMuzatUttuRACnp6ekMlkePHFF40QIVXZvXs3UlJScOPGDWOHIhlNcZ/qE7MQAjNmzMB///vf+gsMwK1bt5CcnIwBAwbA0dERMpkM33zzjc7t5Obm4qWXXoKjoyOsra3RuXNnLFiwQK+Y7t27h4iICFy7dg1ffPEFVq9eDS8vL73aIt1o2vd8rrb0NJmEp4qlpSUyMjLUynfu3Inz58/DwsLCCFHRw3bv3o3p06c3qT/ODWX48OG4c+dOjX/INNWpaZ9q06Yx6DMOTp48ieTkZFy6dKn+AgNw5coVzJgxA8eOHYOfn59ebWzZsgXBwcEoLi5GUlIS5s+fjxdffBHnz5/Xq73Tp0/j3LlzmDRpEt566y288cYbcHBw0KutxqaxjtEqmvb9+PHjG3XMpDtTYwegqxdeeAHr1q3DggULYGr6/+FnZGQgICDAoJcpjKGsrAw2NjbGDqNJaUr7TC6XQy6X17lOXeo3Zjk5OQCA7t2712s/bm5uuHTpElxdXXHgwAH07NlTp/VLS0sxYsQIDBo0COvXr4eJSd3/7VhcXAwAaN68eZ3bqmLsz0ZV/419jGra9409ZtJdkzvDEx0djatXryIzM1NZVlFRgfXr12Po0KEa17lw4QJGjRoFFxcXWFhYoFOnTli5cqVKnXPnzmHcuHFo3749rKys0KJFC0RERKhds7x58yYmTpwIb29vWFhYoGXLlnj++eeRm5urrDNy5Eh4e3urxfHotdqq90ePHsXQoUPh4OCAXr166RT3w+2cPHkSb7zxBuzt7eHs7IykpCQIIVBQUICXX34ZzZo1g6urKz777DO99lFVP3l5eRg5ciSaN28Oe3t7xMbG4vbt28o6kydPBgD4+PgoL0PWdO23qt3jx48jMjISzZo1Q4sWLTBhwgTcvXtXY93q9tkff/yBgQMHolmzZrC1tUW/fv2wZ88ejf1euXKlxv60HRO6tKnNtfBH69S2TzW1qc3x1GYsa6LNftFnHAQGBmLYsGEAgCeffBIymcygf/wfZmFhAVdXV73Xz8jIQFFRET799FOYmJigrKwMlZWVerc3cuRIhISEAAAiIiIgk8nQp08f5XJtxnVtn42HrV+/HjKZDDt37lRbtmzZMshkMvz1118AtP8c1NR/deNem+3S9vsU0G9MV7fvq4tZ2+9lTXbt2oWePXvC0tISTzzxBJYtW6bVeoDux6Gm7+kqO3bsQI8ePVTi0WVOUX1+z1RZu3YtunfvDisrK/j6+mLr1q0QQqBTp0749NNPtWqjSpM7w+Pt7Y3g4GB8//33GDhwIADgt99+Q0lJCYYMGaJ2/byoqAhPPfUUZDIZ4uPj4ezsjN9++w2jR49GaWkpJk6cCODBhLXdu3djyJAhaNWqFc6ePYslS5agT58+OHr0KKytrQEAY8eOxfr16xEfH4+OHTvi6tWr2LVrF44dO6b3v0ojIiLw5JNPIjU1VXndWNu4HxYVFQVfX1/MmjULGzZswCeffAJHR0csW7YMzz33HGbPno1//vOfmDRpEnr27Ilnn31Wr74iIyPh4+ODtLQ05Obm4quvvkLLli0xe/ZsvPrqqzh58iS+//57fPHFF3BycgIAODs717ofIiMj4e3tjbS0NOzZswcLFizA9evX8d1332m1z44cOYLevXujWbNmeP/992FmZoZly5ahT58+2LlzJ4KCgnTqT9sxoe82aEvXfart8dR3LGuzX/QZB1OmTEFKSgrKy8sxbdo0AJrPdty7dw8lJSXa7Do4Ojoa5OzLo7Zu3YpmzZrhwoULCA8Px8mTJ2FjY4Phw4fjiy++gKWlpU7tvf322/Dw8EBqairGjx+Pnj17wsXFBYDu41rTZ+NRgwYNgq2tLX744QflH/sqa9euRadOndC5c2cAun8OtOlfn+3Shj5jurp9f+HCBbW6+nwvVzl8+DD69+8PZ2dnpKSk4P79+0hOTlYe59roehxq+p4GHiSbAwYMgJubG6ZPnw6FQoEZM2Zo9V2ty76oy9/Mjz/+GJ9++ilGjhyJ0aNHY/78+RgxYgRWrFiB8+fPIz4+XqtYlUQTsWrVKgFA7N+/XyxatEjY2dmJ27dvCyGEiIiIEH379hVCCOHl5SUGDRqkXG/06NHCzc1NXLlyRaW9IUOGCHt7e2UbVf99WHZ2tgAgvvvuO2WZvb29iIuLqzHWmJgY4eXlpVaenJwsHt7lVe+jo6PV6mob98PtvPXWW8qy+/fvi1atWgmZTCZmzZqlLL9+/bqwsrISMTExOvdV1c+oUaNU6r3yyiuiRYsWyvdz5swRAMSZM2c07B11Ve2+9NJLKuXjxo0TAMSff/6pVlfTPgsPDxfm5ubi9OnTyrKLFy8KOzs78eyzz+rcn7ZjQpc2q8bxw/vm0TJNdWrap4/W1/Z4ajOWNdF2v+g6DoQQonXr1mLkyJE11tm+fbsAoNVLm773798vAIhVq1ZpHWfXrl2FtbW1sLa2FgkJCeLHH38UCQkJAoAYMmSI1u1o2q5169aplOs6rjV9NjSJjo4WLVu2FPfv31eWXbp0SZiYmIgZM2Yoy7Q93jX1r2lMa7td2n6fCqH/mNa07zXFrO1nq7rttbS0FOfOnVOWHT16VMjlcrXt0ETX41Db9/TgwYOFtbW1uHDhgrLs1KlTwtTUVC2euuwLfY/J77//LgCIKVOmKMvWr18vAIjOnTurlGuryV3SAh5krnfu3MF//vMf3Lx5E//5z380Xs4SQuDHH3/E4MGDIYTAlStXlK+wsDCUlJQoT6tZWVkp17t37x6uXr2Ktm3bonnz5iqn3po3b469e/fi4sWLBtuesWPH6h33w958803l/8vlcvTo0QNCCIwePVol/vbt2+Pvv//Wu69H4+3duzeuXr2K0tLSOu2HuLg4lfcJCQkAgI0bN6rVfTQGhUKBLVu2IDw8HG3atFGWu7m5YejQodi1a5dafLX1p+2Y0Hcb6oMux1PfsazPftFGSUkJ8vPz0bVr1xrr+fn5ITMzU6tXXS5b1eTWrVu4ffs2RowYgQULFuDVV1/FggUL8Pbbb2PNmjU4deqUQfrRZ1w/+tmoTlRUFIqLi7Fjxw5l2fr161FZWYmoqChlma7HW5v+9dkubdTH93MVfb+XgQfbu3nzZoSHh6N169bKcl9fX4SFhWnVf12Pw8Pf0wqFAlu3bkV4eDjc3d2Vddq2bau8clKThviemT9/PhwcHPDxxx8ry6oubebl5eHdd9/VqT2gCV7SAh6cFg8NDUVGRgZu374NhUKB119/Xa3e5cuXcePGDSxfvhzLly/X2FbVZLU7d+4gLS0Nq1atwoULF1ROxT58+jw9PR0xMTHw9PREQEAAXnjhBYwYMULlQ6srHx8fveN+2MMfJACwt7eHpaWl8nLCw+VXr17Vu69H+6m6k+T69eto1qyZxja08eSTT6q8f+KJJ2BiYqJx3oemfXb79m20b99era6vry8qKytRUFCATp06ad2ftmNC322oD7ocT33Hsj77RRuHDh0CgFoTHgcHB4SGhurdjyFU/fGJjo5WKR86dCiWLVuG7OxstbGgD33G9aOfjeoMGDAA9vb2WLt2Lfr16wfgweWsbt26oV27dsp6uh5vbfrXZ7u0UR/fzw/HrM/3ctW6d+7c0Tgm2rdvr9U/iHQ9DjV9T5eVleHOnTto27at2nqayjRtT31+z1QlxIMHD4atra3a8tjYWK0vBT6sSSY8wIMvljFjxqCwsBADBw7UeK2/ahLhG2+8gZiYGI3tVH25JiQkYNWqVZg4cSKCg4Nhb28PmUyGIUOGqExGjIyMRO/evfHzzz9jy5YtmDNnDmbPno2ffvpJmRlXN+FLoVBoLH84c9c17odpuqOgursMqj4s+vRVW5uGUtPEuUf3WX30p+2Y0KXN+qbL8dRmLGtiiP2iSVXCU9tt4hUVFbh27ZpWbTo7O9fLnTbu7u44cuSI2pduy5YtATz4o2Is2n42LCwsEB4ejp9//hlffvklioqK8L///Q+pqakq9XQ93ob+bOryfarvmNaGvt/LhqLrcajP7+n6/p75+++/cfPmTbU5PpcvXwagfiZdW0024XnllVfw9ttvY8+ePVi7dq3GOs7OzrCzs4NCoaj1X4Tr169HTEyMyh1Md+/e1fgbIm5ubhg3bhzGjRuH4uJidO/eHZ9++qny4Dk4OGhc79y5c1ptmy5x11V99KXvH/lTp06p/OswLy8PlZWVGu/QeJSzszOsra1x4sQJtWXHjx+HiYkJPD09depPlzFhiG2oibb7VNfjWdtY1kTb/aLrODh06BDc3NzUzkg+avfu3ejbt69WbZ45c6bO+16TgIAAZGZm4sKFCypnKapO22s78bM2+oxrXURFReHbb79FVlYWjh07BiGEyuUsQL/PQW102S5dv0/1GdPaxqzvd6WzszOsrKw0XurUtA80MeRxaNmyJSwtLZGXl6e2TFPZo+r7e6YqsXn0uyAtLU1jubaa5BweALC1tcWSJUuQkpKCwYMHa6wjl8vx2muv4ccff1TeYvmwqp1aVffRzHfhwoUq/4pQKBRqpw5btmwJd3d3lJeXK8ueeOIJlJSUKP/FCgCXLl3Czz//rNW26RJ3XdVHX1W/+6HrB3Hx4sUq7xcuXAgAWn1RyeVy9O/fH//6179ULh8VFRUhIyMDvXr1UrvcVlt/2owJQ25DTbTdp9oeT23HcnV9aLNfdB0H+fn5aNWqVa31GnoOz+3bt3H8+HGV3/iKjIwEAHz99dcqdb/66iuYmpqq3FJeF/qMa12EhobC0dERa9euxdq1axEYGKh2SUqfz0FtdNkubb9P6zKmtY1Z3+9KuVyOsLAw/PLLL8jPz1eWHzt2DJs3b9a6f0MdB7lcjtDQUPzyyy8qc2vy8vLw22+/abV+fX7P2NvbA4BK2xkZGfj9998BQO3nSrTVZM/wAKj2VNrDZs2ahe3btyMoKAhjxoxBx44dce3aNeTm5mLr1q3KU+MvvvgiVq9eDXt7e3Ts2BHZ2dnYunUrWrRooWzr5s2baNWqFV5//XX4+fnB1tYWW7duxf79+1Wy7iFDhmDKlCl45ZVXMH78eNy+fRtLlixBu3bttJ7UqW3chmDovgICAgAAH330EYYMGQIzMzMMHjy41h9AO3PmDF566SUMGDAA2dnZ+Mc//oGhQ4dq/Uu4n3zyCTIzM9GrVy+MGzcOpqamWLZsGcrLy5Genq5zf9qMCUNvQ3V02afaHE9tx7Im2u4XXceBj48Ptm3bhvT0dLi7u8PX11fZxsMMNYdn0aJFuHHjhvIL/9dff1X+SnJCQoLyS3ffvn3o27cvkpOTkZKSAgDw9/fHqFGjsHLlSty/fx8hISHYsWMH1q1bh6lTp6pMBAUenO2qqqMrXce1LszMzPDqq69izZo1KCsrw9y5c9Xq6PM50Ia226Xt92ldxrS26vJdOX36dGzatAm9e/fGuHHjcP/+fSxcuBCdOnVSSeaqY+jjkJKSgi1btuCZZ57BO++8A4VCgUWLFqFz585aPcOtPr9nfH194ePjgwULFsDa2homJiaYNWsWIiMj8cMPPyAlJQWJiYno0qWLbhut831dRvLwbek1efS2dCGEKCoqEnFxccLT01OYmZkJV1dX0a9fP7F8+XJlnevXr4vY2Fjh5OQkbG1tRVhYmDh+/Ljw8vJS3sJdXl4uJk+eLPz8/ISdnZ2wsbERfn5+4ssvv1SLY8uWLaJz587C3NxctG/fXvzjH/+o9rb0y5cva9wWbeKuqZ2YmBhhY2Oj1m5ISIjo1KmTzn1V14+mWxZnzpwpPDw8hImJSa23B1e1e/ToUfH6668LOzs74eDgIOLj48WdO3e02tYqubm5IiwsTNja2gpra2vRt29fsXv3br3602ZM6Nqmvrel17RPNdWv7XjqMpYfpct+0WUcXLhwQXnsAIgFCxbUGktdeHl5aXU7e9Uty8nJySrrV1RUiJSUFOHl5SXMzMxE27ZtxRdffKHWz82bN7W6Xb2629KF0G1cV/fZqE5mZqYAIGQymSgoKFBbru3xrqn/6sa0NtslhHbfp3UZ09reli6Edt+V1a27c+dOERAQIMzNzUWbNm3E0qVLNd5er0ldj4OmmLKysoS/v78wNzcXTzzxhPjqq6/Ee++9JywtLWtdV5t9UZdj8scff4innnpKWFhYCAcHB/HRRx+JyspKMWrUKGFqaiq++eabWtt4lEwIPiGNjCslJQXTp0/H5cuX9b42S9RYbdy4ES+++CL+/PNP3f9FStTAwsPDceTIEYP9tEJj0mTn8BARNQXbt2/HkCFDmOxQo3Pnzh2V96dOncLGjRsNNgetsWnSc3iIiBq7OXPmGDsEIo3atGmDkSNHok2bNjh37hyWLFkCc3NzvP/++8YOrV4w4SEiInoMDRgwAN9//z0KCwthYWGB4OBgpKamGuRHMxsjzuEhIiIiyeMcHiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIf09s0330Amk6k87dgQdQ25LtW/pnx8Gjr2prCv9u/fj6effho2NjaQyWRaPUiyOk1he+nxwYTnMVf1hXTgwAGDtLd7926kpKTgxo0bBmnPkAwRW0Nv361bt5CcnIwBAwbA0dERMpkM33zzjca65eXlmDJlCtzd3WFlZYWgoCBkZmbWqX9Djw8pqWksNObPQU3u3buHiIgIXLt2DV988QVWr14NLy8vY4elkw0bNkAmk2HNmjUN1uf+/fsRHx+PTp06wcbGBq1bt0ZkZCROnjzZYDGQFnR+3ChJirZPodfk/v374s6dO6KyslJZNmfOHI1P1dVUV9cYa3rStjaqi62h29DFmTNnBADRunVr0adPHwFArFq1SmPdIUOGCFNTUzFp0iSxbNkyERwcLExNTcV///tfvfvXZnzU5dgaW13GVk1joT4+Bw3h2LFjAoBYsWKFQdozxvZ++umnAoA4cuRIg/X52muvCVdXV5GQkCBWrFghZs6cKVxcXISNjY04fPhwg8VBNeOjJUhvcrkccrnc4HXp/7m5ueHSpUtwdXXFgQMH0LNnT4319u3bhzVr1mDOnDmYNGkSAGDEiBHo3Lkz3n//fezevbveYmzsx7asrAw2NjbGDgNA499XxcXFAIDmzZsbpD1jbO+hQ4dgYWGB9u3bN1ifiYmJyMjIgLm5ubIsKioKXbp0waxZs/CPf/yjwWKh6vGSFqlISUmBTCZDXl4eRo4ciebNm8Pe3h6xsbG4ffu2St1Hr8+npKRg8uTJAAAfHx/IZDLlck3X8s+dO4dx48ahffv2sLKyQosWLRAREaH39f6bN29i4sSJ8Pb2hoWFBVq2bInnn38eubm5NcambSy1tQEAFy5cwKhRo+Di4gILCwt06tQJK1euVIv1+PHjyM/Pr3WbLCws4OrqWmu99evXQy6X46233lKWWVpaYvTo0cjOzkZBQUGtbehL0zjQdgwB2u0zbcdKVd9Hjx7F0KFD4eDggF69eum0PXUdC7p+Dqr2wejRo+Hu7g4LCwv4+PjgnXfeQUVFhU77qSZ//PEHBg4ciGbNmsHW1hb9+vXDnj17lMtHjhyJkJAQAEBERARkMlmNT82u6fNW5eHtPXv2rHJfaHo9uj/03dZDhw6hY8eODZpoPf300yrJDgA8+eST6NSpE44dO9ZgcVDNeIaHNIqMjISPjw/S0tKQm5uLr776Ci1btsTs2bOrXefVV1/FyZMn8f333+OLL76Ak5MTAMDZ2Vlj/f3792P37t0YMmQIWrVqhbNnz2LJkiXo06cPjh49Cmtra51iHjt2LNavX4/4+Hh07NgRV69exa5du3Ds2LFaY9MmltraKCoqwlNPPQWZTIb4+Hg4Ozvjt99+w+jRo1FaWoqJEycqY/X19UVISAh27Nih0zZW548//kC7du3QrFkzlfLAwEAAwMGDB+Hp6WmQvrSlzRjSdp/pOlYiIiLw5JNPIjU1FULHxwXWdSzo+jm4ePEiAgMDcePGDbz11lvo0KEDLly4gPXr1+P27dswNzfXaWxpcuTIEfTu3RvNmjXD+++/DzMzMyxbtgx9+vTBzp07ERQUhLfffhseHh5ITU3F+PHj0bNnT7i4uFTbZk2ft+7du6vVd3Z2xurVq1XK7t27h3fffVclWajLtpaXl+PkyZN44403atwfj8ZQUlKiVV1HR0eYmGh3nkAIgaKiInTq1EnrWKieGfuaGhnXo3M0kpOTBQAxatQolXqvvPKKaNGihcZ1H56nUN3cBU11b9++rRZPdna2ACC+++67GtfVxN7eXsTFxVW7vKY5F9rGUlMbo0ePFm5ubuLKlSsq5UOGDBH29vYqfQAQISEhNW7Po/bv31/tHJ5OnTqJ5557Tq38yJEjAoBYunSpTn1V0WYOz6PHR5cxpO0+0/b4VPUdHR2t0/bpMy71mcOjqb8RI0YIExMTjfu4au6LLmNLk/DwcGFubi5Onz6tLLt48aKws7MTzz77rLJs+/btAoBYt25dje0JUfvnTYjaP7vjxo0TcrlcbNu2TVlWl23NyckRAMRnn31Wa/xVqrZZm5cuc71Wr14tAIivv/5a63WofvGSFmk0duxYlfe9e/fG1atXUVpaarA+rKyslP9/7949XL16FW3btkXz5s1VTotrq3nz5ti7dy8uXrzY4LEIIfDjjz9i8ODBEELgypUryldYWBhKSkpU2hFCGOzsDgDcuXMHFhYWauWWlpbK5Q2ttjGkyz7T9fg82rcuDD0ua1JZWYlffvkFgwcPRo8ePdSWy2QyncfWoxQKBbZs2YLw8HC0adNGWe7m5oahQ4di165den2u6/J5A4DvvvsOX375JdLT09G3b18Aun+OHnXo0CEAQNeuXbWOw8/PD5mZmVq9tLm8DDy4ZB0XF4fg4GDExMRoHQvVL17SIo1at26t8t7BwQEAcP36dbXLJvq6c+cO0tLSsGrVKly4cEHl0oO2p5gflp6ejpiYGHh6eiIgIAAvvPACRowYofIlX1+xXL58GTdu3MDy5cuxfPlyjXWqJoTWBysrK5SXl6uV3717V7m8odU2hnTZZ7oeHx8fH73jNvS4rMnly5dRWlqKzp0711inLmPr8uXLuH37tsZJvL6+vqisrERBQYHOl17q8nk7ePAgxo4di+joaCQmJqrEWpdt/fPPPwE8SGK05eDggNDQUK3r16awsBCDBg2Cvb29cm4dNQ5MeEij6j6kQsf5EDVJSEjAqlWrMHHiRAQHB8Pe3h4ymQxDhgxBZWWlzu1FRkaid+/e+Pnnn7FlyxbMmTMHs2fPxk8//YSBAwfWayxVdd54441q/0Wny786deXm5oYLFy6olV+6dAkA4O7uXm99V6e2MaTLPtP1+NQlwTP0uKwrY4+t6uj7ebt+/Tpee+01tGvXDl999ZXKsrpu66FDh+Dq6lrtfClNKioqcO3aNa3qOjs715jAlJSUYODAgbhx4wb++9//GuVzR9VjwkMG9ejdFjVZv349YmJi8NlnnynL7t69W6cfa3Nzc8O4ceMwbtw4FBcXo3v37vj0008xcODAGmPTNpbq2nB2doadnR0UCoVB/7WorW7dumH79u0oLS1VOQO3d+9e5fLGRpd9Vh9jpa591TSetP0cODs7o1mzZvjrr79qrFOXseXs7Axra2ucOHFCbdnx48dhYmKi94T2mj5vmlRWVmLYsGG4ceMGtm7dqjbZvK7bevjwYfj7++u0zu7du5WX1Gpz5swZeHt7a1x29+5dDB48GCdPnsTWrVvRsWNHneKg+sc5PGRQVb93os0fIrlcrnbGaOHChVAoFDr3q1Ao1C43tGzZEu7u7spLPTXFpm0s1bUhl8vx2muv4ccff9T4x+vy5csq77W9LV1br7/+OhQKhcplgPLycqxatQpBQUENfoeWNnTZZ4YcK9rEVZexUNuyh5mYmCA8PBy//vqrxl+zFkLoPLYeJZfL0b9/f/zrX/9SuR2+qKgIGRkZ6NWrl86XqbX5vGkyffp0bN68Gd9//73Gy4512dZLly7h8uXLOp/tMsQcHoVCgaioKGRnZ2PdunUIDg7WKQZqGDzDQwYVEBAAAPjoo48wZMgQmJmZYfDgwRrrvvjii1i9ejXs7e3RsWNHZGdnY+vWrWjRooXO/d68eROtWrXC66+/Dj8/P9ja2mLr1q3Yv3+/8l/q1cVmY2OjdSw1tTFr1ixs374dQUFBGDNmDDp27Ihr164hNzcXW7duVTltrstt6YsWLcKNGzeUk0N//fVXnD9/HsCDyy/29vYICgpCREQEpk6diuLiYrRt2xbffvstzp49i6+//lqtTZlMptNt8StXrsSmTZvUyidMmKDV+tXRdp8ZcqzUxhBjQZfPQWpqKrZs2YKQkBC89dZb8PX1xaVLl7Bu3Trs2rULzZs312lsafLJJ58gMzMTvXr1wrhx42Bqaoply5ahvLwc6enpOu8jbT5vjzp8+DBmzpyJZ599FsXFxWo/xld1K7m+21o1YTkvLw+zZs1SWz5ixAiNl5gMMYfnvffew7///W8MHjwY165dq3bbyMga9qYwamyquy398uXLGus9fFtmdbeczpw5U3h4eAgTExPlck11r1+/LmJjY4WTk5OwtbUVYWFh4vjx48LLy0vExMTU2s/DysvLxeTJk4Wfn5+ws7MTNjY2ws/PT3z55Ze1xqZLLDW1IYQQRUVFIi4uTnh6egozMzPh6uoq+vXrJ5YvX67SBnS4Ld3Ly0ur22Tv3LkjJk2aJFxdXYWFhYXo2bOn2LRpk1p7N2/eFADEkCFDau27at9X9yooKKj2tnRtxpC2+0zb41Nd37Vtnz7jUoiax4K2nwMhhDh37pwYMWKEcHZ2FhYWFqJNmzYiLi5OlJeX67SfapKbmyvCwsKEra2tsLa2Fn379hW7d+9WqaPtbenaft4e3t7abv9+mD7bmp6eXmP7hYWFWu0nfYSEhGi9bWQ8MiEMOAuViBq9jRs34sUXX8Sff/6JLl26GDscIqIGwTk8RI+Z7du3Y8iQIUx2iOixwjM8REREJHk8w0NERESSx4SHiIiIJO+xuy29srISFy9ehJ2dnU4/kkdERETGI4TAzZs34e7urvVT6x/22CU8Fy9ebJQ/wkZERES1KygoQKtWrXRe77FLeOzs7AA82GGGeggmERER1a/S0lJ4enoq/47r6rFLeKouYzVr1owJDxERUROj73QUTlomIiIiyWPCQ0RERJLHhIeIiIgk77Gbw0NERNKmUChw7949Y4dBejA3N9frlnNtMOEhIiJJEEKgsLAQN27cMHYopCcTExP4+PjA3Nzc4G0z4SEiIkmoSnZatmwJa2tr/rhsE1P1w8CXLl1C69atDX78mPAQEVGTp1AolMlOixYtjB0O6cnZ2RkXL17E/fv3YWZmZtC2OWmZiIiavKo5O9bW1kaOhOqi6lKWQqEweNtMeIiISDJ4Gatpq8/jx4SHiIiIJI8JDxEREdW78vJyxMfHIyEhAeXl5Q3ev1EnLf/++++YM2cOcnJycOnSJfz8888IDw+vcZ0dO3YgMTERR44cgaenJz7++GOMHDmyQeIlIqKmZ/Q3+xu0v69H9mzQ/urLzZs3kZSUhJ9//hnFxcXw9/fH/Pnz0bOn6vYtXrwYc+bMQWFhIfz8/LBw4UIEBgaqtZeRkYHQ0FCYmJhg9erVePPNNxtqUwAY+QxPWVkZ/Pz8sHjxYq3qnzlzBoMGDULfvn1x8OBBTJw4EW+++SY2b95cz5ESERE9Xt58801kZmZi9erVOHz4MPr374/Q0FBcuHBBWWft2rVITExEcnIycnNz4efnh7CwMBQXF6u1V1lZicrKSgAPfjOpocmEMXrVQCaT1XqGZ8qUKdiwYQP++usvZdmQIUNw48YNbNq0Sat+SktLYW9vj5KSEj4tnYhIIu7evYszZ87Ax8cHlpaWKsuayhmeffv24f3338fevXvh5eWFf/zjH8jNzcV//vMf/Pvf/zZwlDW7c+cO7Ozs8K9//QuDBg1SlgcEBGDgwIH45JNPAABBQUHo2bMnFi1aBOBBUuPp6YmEhAR88MEHKm3evXsXkyZNgkwmw5w5c9SOU1Wd6o5jXf9+N6k5PNnZ2QgNDVUpCwsLQ3Z2drXrlJeXo7S0VOVFRETUmOzZswchISEYNGgQDh06BF9fX8yYMQOzZ8/G9OnTVeqmpqbC1ta2xld+fn6d4rl//z4UCoVa0mFlZYVdu3YBACoqKpCTk6Pyd9nExAShoaEa/y5bWlpi0aJFWLhwocZkp741qR8eLCwshIuLi0qZi4sLSktLcefOHVhZWamtk5aWpjZYiJq6+Kx4nddZ1G9RPURCj9LnbEJjnvOxYfGfOq8zKM6vHiKRtsTERERERGDy5MkAgOjoaERHR+Pll1+Gv7+/St2xY8ciMjKyxvbc3d3rFI+dnR2Cg4Mxc+ZM+Pr6wsXFBd9//z2ys7PRtm1bAMCVK1egUCg0/l0+fvx4nfqvD03qDI8+pk6dipKSEuWroKDA2CEREREpnT9/HtnZ2Rg7dqyyzNTUFEIIjf9gd3R0RNu2bWt8mZpqPp/xwQcfQCaT1fiqSlZWr14NIQQ8PDxgYWGBBQsWIDo6ut4e7lnfmtQZHldXVxQVFamUFRUVoVmzZhrP7gCAhYUFLCwsGiI8IiIinR07dgwA0L17d2XZiRMnEBgYiC5duqjVT01NRWpqao1tHj16FK1bt1Yrf++992q9s7lNmzYAgCeeeAI7d+5EWVkZSktL4ebmhqioKOVyJycnyOVyjX+XXV1da+zDGJpUwhMcHIyNGzeqlGVmZiI4ONhIEREREdVNSUkJ5HK58leGr127hrlz58LPT/Olwbpc0nJ2doazs7NO8dnY2MDGxgbXr1/H5s2bkZ6eDuDBYyACAgKQlZWlvOGosrISWVlZiI/X/bJ7fTNqwnPr1i3k5eUp3585cwYHDx6Eo6MjWrdujalTp+LChQv47rvvADw4yIsWLcL777+PUaNGYdu2bfjhhx+wYcMGY20CERFRnXTr1g0KhQLp6emIiIjAhAkT4O3tjaNHj+LcuXPw8vJSqe/o6AhHR8d6j2vz5s0QQqB9+/bIy8vD5MmT0aFDB8TGxirrJCYmIiYmBj169EBgYCDmzZuHsrIylTqNhVEvxB04cAD+/v7KCVmJiYnw9/fHtGnTAACXLl1SmWnu4+ODDRs2IDMzE35+fvjss8/w1VdfISwszCjxExER1VXbtm0xY8YMzJ8/H/7+/nB3d8eWLVvg4eGBAQMGGC2ukpISxMXFoUOHDhgxYgR69eqFzZs3qzzFPCoqCnPnzsW0adPQrVs3HDx4EJs2bVKbyNwYNJrf4Wko/B0ekgLepdV48S4t49ylVdPvt1DTwd/hISIiIqoDJjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxERERU78rLyxEfH4+EhASUl5c3eP9MeIiIiKhGs2bNgkwmw8SJE1XKU1JSIJPJVF4dOnTQ2EZGRgZCQ0Px/PPPY/Xq1Q0QtSqjPi2diIio3mVENWx/Q9c2bH/1bP/+/Vi2bBm6du2qcXmnTp2wdetW5XtTU82pRWVlJSorK2FiYgJjPMaTZ3iIiIgagX379qFPnz6wsrJChw4dcODAASxfvhwvvfSS0WK6desWhg0bhhUrVsDBwUFjHVNTU7i6uipfTk5OGusNGzYM27ZtQ2ZmJoYPH16fYWvEhIeIiMjI9uzZg5CQEAwaNAiHDh2Cr68vZsyYgdmzZ2P69OkqdVNTU2Fra1vjKz8/3yBxxcXFYdCgQQgNDa22zqlTp+Du7o42bdpg2LBh1fZtaWmJRYsWYeHChUZ5oj0vaRERERlZYmIiIiIiMHnyZABAdHQ0oqOj8fLLL8Pf31+l7tixYxEZGVlje+7u7nWOac2aNcjNzcX+/furrRMUFIRvvvkG7du3x6VLlzB9+nT07t0bf/31F+zs7OocgyEx4SEiIjKi8+fPIzs7G3PnzlWWmZqaQgihdnYHABwdHeHo6KhXXx988AFmz55dY51jx47BxsYGEyZMQGZmZo1nYwYOHKj8/65duyIoKAheXl744YcfMHr0aL1irC9MeIiIiIzo2LFjAIDu3bsry06cOIHAwEB06dJFrX5qaipSU1NrbPPo0aNo3bq1Wvl7772HkSNH1rhumzZtsHHjRhQXF6vEpFAo8Pvvv2PRokUoLy+HXC5XW7d58+Zo164d8vLyauzDGJjwEBERGVFJSQnkcjlkMhkA4Nq1a5g7dy78/Pw01q/LJS1nZ2c4OzvXGlO/fv1w+PBhlbLY2Fh06NABU6ZM0ZjsAA8mOZ8+fdook5Jrw4SHiIjIiLp16waFQoH09HRERERgwoQJ8Pb2xtGjR3Hu3Dl4eXmp1K/LJS1t2dnZoXPnziplNjY2aNGihUr5pEmTMHjwYHh5eeHixYtITk6GXC5HdHR0vcanD96lRUREZERt27bFjBkzMH/+fPj7+8Pd3R1btmyBh4cHBgwYYOzwanT+/HlER0ejffv2iIyMRIsWLbBnzx6tziI1NJ7hISIiMrKkpCQkJSWplOXk5BgpGs127NihVrZmzZqGD0RPTHiIiEjaJPbLx6QfXtIiIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERGrKy8sRHx+PhIQElJeXGzucOuOjJYiISNLis+IbtL9F/RY1aH+6Wrx4MebMmYPCwkL4+flh4cKFCAwMVKuXkZGB0NBQmJiYYPXq1XjzzTeNEK3h8AwPERHRY2Lt2rVITExEcnIycnNz4efnh7CwMBQXF6vVraysRGVlJQBACNHQoRocEx4iIqJGYN++fejTpw+srKzQoUMHHDhwAMuXL8dLL71ksD4+//xzjBkzBrGxsejYsSOWLl0Ka2trrFy5Uq3usGHDsG3bNmRmZmL48OEGi8FYmPAQEREZ2Z49exASEoJBgwbh0KFD8PX1xYwZMzB79mxMnz5dpW5qaipsbW1rfOXn56v1UVFRgZycHISGhirLTExMEBoaiuzsbLX6lpaWWLRoERYuXAhLS0vDb3QD4xweIiIiI0tMTERERAQmT54MAIiOjkZ0dDRefvll+Pv7q9QdO3YsIiMja2zP3d1drezKlStQKBRwcXFRKXdxccHx48fruAWNHxMeIiIiIzp//jyys7Mxd+5cZZmpqSmEEGpndwDA0dERjo6ODRmiJPCSFhERkREdO3YMANC9e3dl2YkTJxAYGIguXbqo1df3kpaTkxPkcjmKiopUyouKiuDq6mrgrWp8eIaHiIjIiEpKSiCXyyGTyQAA165dw9y5c+Hn56exvr6XtMzNzREQEICsrCyEh4cDeHAnVlZWFuLjG/bWfWNgwkNERGRE3bp1g0KhQHp6OiIiIjBhwgR4e3vj6NGjOHfuHLy8vFTq1+WSVmJiImJiYtCjRw8EBgZi3rx5KCsrQ2xsrCE2pVHjJS0iIiIjatu2LWbMmIH58+fD398f7u7u2LJlCzw8PDBgwACD9hUVFYW5c+di2rRp6NatGw4ePIhNmzapTWSWIp7hISIiSWvsv3wMAElJSUhKSlIpy8nJqZe+4uPjH4tLWI/iGR4iIiKSPCY8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREpLPy8nLEx8cjISEB5eXlxg6nVkx4iIiIHkOzZs2CTCbDxIkTVcpTUlIgk8lUXh06dFBbPyMjA6GhoXj++eexevXqBopaf3yWFhERSVrB2HcatD/PpUsatD997N+/H8uWLUPXrl01Lu/UqRO2bt2qfG9qqp4uVFZWorKyEiYmJhBC1FushsIzPERERI3Avn370KdPH1hZWaFDhw44cOAAli9fjpdeesmg/dy6dQvDhg3DihUr4ODgoLGOqakpXF1dlS8nJye1OsOGDcO2bduQmZmJ4cOHGzTG+sCEh4iIyMj27NmDkJAQDBo0CIcOHYKvry9mzJiB2bNnY/r06Sp1U1NTYWtrW+MrPz+/2r7i4uIwaNAghIaGVlvn1KlTcHd3R5s2bTBs2DCN7VlaWmLRokVYuHAhLC0t9d/4BsJLWkREREaWmJiIiIgITJ48GQAQHR2N6OhovPzyy/D391epO3bsWERGRtbYnru7u8byNWvWIDc3F/v376923aCgIHzzzTdo3749Ll26hOnTp6N3797466+/YGdnp+OWNR5MeIiIiIzo/PnzyM7Oxty5c5VlpqamEEKond0BAEdHRzg6OurcT0FBASZMmIDMzMwaz8gMHDhQ+f9du3ZFUFAQvLy88MMPP2D06NE699tYGP2S1uLFi+Ht7Q1LS0sEBQVh3759NdafN28e2rdvDysrK3h6euLdd9/F3bt3GyhaIiIiwzp27BgAoHv37sqyEydOIDAwEF26dFGrr+8lrZycHBQXF6N79+4wNTWFqakpdu7ciQULFsDU1BQKhUJjfM2bN0e7du2Ql5dnoC02DqOe4Vm7di0SExOxdOlSBAUFYd68eQgLC8OJEyfQsmVLtfoZGRn44IMPsHLlSjz99NM4efIkRo4cCZlMhs8//9wIW0BERFQ3JSUlkMvlkMlkAIBr165h7ty58PPz01hf30ta/fr1w+HDh1XKYmNj0aFDB0yZMgVyuVxjW7du3cLp06ebxMTkmhg14fn8888xZswYxMbGAgCWLl2KDRs2YOXKlfjggw/U6u/evRvPPPMMhg4dCgDw9vZGdHQ09u7d26BxExERGUq3bt2gUCiQnp6OiIgITJgwAd7e3jh69CjOnTsHLy8vlfr6XtKys7ND586dVcpsbGzQokULlfJJkyZh8ODB8PLywsWLF5GcnAy5XI7o6Gj9NrCRMNolrYqKCuTk5KjMEjcxMUFoaCiys7M1rvP0008jJydHednr77//xsaNG/HCCy9U2095eTlKS0tVXkRERI1F27ZtMWPGDMyfPx/+/v5wd3fHli1b4OHhgQEDBjR4POfPn0d0dDTat2+PyMhItGjRAnv27IGzs3ODx2JIRjvDc+XKFSgUCri4uKiUu7i44Pjx4xrXGTp0KK5cuYJevXpBCIH79+9j7Nix+PDDD6vtJy0tTeOkLyIiejw0hR8CTEpKQlJSkkpZTk5Ovfe7Y8cOtbI1a9bUe7/GYPRJy7rYsWMHUlNT8eWXXyI3Nxc//fQTNmzYgJkzZ1a7ztSpU1FSUqJ8FRQUNGDERERE1BgY7QyPk5MT5HI5ioqKVMqLiorg6uqqcZ2kpCQMHz4cb775JgCgS5cuKCsrw1tvvYWPPvoIJibq+ZuFhQUsLCwMvwFERETUZBjtDI+5uTkCAgKQlZWlLKusrERWVhaCg4M1rnP79m21pKZqVnlTeI4HERERGYdR79JKTExETEwMevTogcDAQMybNw9lZWXKu7ZGjBgBDw8PpKWlAQAGDx6Mzz//HP7+/ggKCkJeXh6SkpIwePDgam+nIyIiIjJqwhMVFYXLly9j2rRpKCwsRLdu3bBp0yblROb8/HyVMzoff/wxZDIZPv74Y1y4cAHOzs4YPHgwPv30U2NtAhERETUBRn+0RHx8POLj4zUue3T2uKmpKZKTk5GcnNwAkREREZFUNKm7tIiIiIj0wYSHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREpLPy8nLEx8cjISEB5eXlxg6nVka/S4uIiKg+bVj8Z4P2NyjOr0H708XNmzeRlJSEn3/+GcXFxfD398f8+fPRs2dPlXqLFy/GnDlzUFhYCD8/PyxcuBCBgYEqdTIyMhAaGgoTExOsXr1a+RSExopneIiIiB4Tb775JjIzM7F69WocPnwY/fv3R2hoKC5cuKCss3btWiQmJiI5ORm5ubnw8/NDWFgYiouLVdqqrKxEZWUlgKbxtAMmPERERI3Avn370KdPH1hZWaFDhw44cOAAli9fjpdeeskg7d+5cwc//vgj0tPT8eyzz6Jt27ZISUlB27ZtsWTJ/z9R/vPPP8eYMWMQGxuLjh07YunSpbC2tsbKlStV2hs2bBi2bduGzMxMDB8+3CAx1icmPEREREa2Z88ehISEYNCgQTh06BB8fX0xY8YMzJ49G9OnT1epm5qaCltb2xpf+fn5an3cv38fCoUClpaWKuVWVlbYtWsXAKCiogI5OTkIDQ1VLjcxMUFoaCiys7NV1rO0tMSiRYuwcOFCtTYbI87hISIiMrLExERERERg8uTJAIDo6GhER0fj5Zdfhr+/v0rdsWPHIjIyssb23N3d1crs7OwQHByMmTNnwtfXFy4uLvj++++RnZ2Ntm3bAgCuXLkChUKhfMRTFRcXFxw/frwum2h0THiIiIiM6Pz588jOzsbcuXOVZaamphBCqJ3dAQBHR0c4Ojrq1dfq1asxatQoeHh4QC6Xo3v37oiOjkZOTo7e8TcVvKRFRERkRMeOHQMAdO/eXVl24sQJBAYGokuXLmr19b2kBQBPPPEEdu7ciVu3bqGgoAD79u3DvXv30KZNGwCAk5MT5HI5ioqKVNYrKiqCq6uroTbZKHiGh4iIyIhKSkogl8shk8kAANeuXcPcuXPh56f59nZ9L2k9zMbGBjY2Nrh+/To2b96M9PR0AIC5uTkCAgKQlZWF8PBwAA/uxsrKyqr2Qd9NBRMeIiIiI+rWrRsUCgXS09MRERGBCRMmwNvbG0ePHsW5c+fg5eWlUr8ul7Q2b94MIQTat2+PvLw8TJ48GR06dEBsbKyyTmJiImJiYtCjRw8EBgZi3rx5KCsrU6nTFPGSFhERkRG1bdsWM2bMwPz58+Hv7w93d3ds2bIFHh4eGDBggEH7KikpQVxcHDp06IARI0agV69e2Lx5M8zMzJR1oqKiMHfuXEybNg3dunXDwYMHsWnTJrWJzE0Nz/AQEZGkNeZfPq6SlJSEpKQklbL6mEgcGRlZ6+UwAIiPj2/yl7AexTM8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkNERESSx4SHiIgko7Ky0tghUB0IIeqtbd6WTkRETZ65uTlMTExw8eJFODs7w9zcXPnLxdQ0CCFw+fJlyGQyld8FMhQmPERE1OSZmJjAx8cHly5dwsWLF40dDulJJpOhVatWkMvlBm+bCQ8REUmCubk5Wrdujfv370OhUBg7HNKDmZlZvSQ7ABMeIiKSkKrLIfVxSYSaNk5aJiIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPCY8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkNERESSx4SHiIiIJI8JDxEREUkeEx4iIiKSPD4tnagxyIjSrb6Ls85dFIx9R+d1PJcu0XkdIqLGiGd4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPL0Sni2b99u6DiIiIiI6o1eCc+AAQPwxBNP4JNPPkFBQYGhYyIiIiIyKL0SngsXLiA+Ph7r169HmzZtEBYWhh9++AEVFRWGjo+IiIiozvRKeJycnPDuu+/i4MGD2Lt3L9q1a4dx48bB3d0d48ePx59//ql1W4sXL4a3tzcsLS0RFBSEffv21Vj/xo0biIuLg5ubGywsLNCuXTts3LhRn80gIiKix0SdJy13794dU6dORXx8PG7duoWVK1ciICAAvXv3xpEjR2pcd+3atUhMTERycjJyc3Ph5+eHsLAwFBcXa6xfUVGB559/HmfPnsX69etx4sQJrFixAh4eHnXdDCIiIpIwvROee/fuYf369XjhhRfg5eWFzZs3Y9GiRSgqKkJeXh68vLwQERFRYxuff/45xowZg9jYWHTs2BFLly6FtbU1Vq5cqbH+ypUrce3aNfzyyy945pln4O3tjZCQEPj5+em7GURERPQY0CvhSUhIgJubG95++220a9cOf/zxB7Kzs/Hmm2/CxsYG3t7emDt3Lo4fP15tGxUVFcjJyUFoaOj/B2NigtDQUGRnZ2tc59///jeCg4MRFxcHFxcXdO7cGampqVAoFNX2U15ejtLSUpUXERERPV5M9Vnp6NGjWLhwIV599VVYWFhorOPk5FTj7etXrlyBQqGAi4uLSrmLi0u1idLff/+Nbdu2YdiwYdi4cSPy8vIwbtw43Lt3D8nJyRrXSUtLw/Tp07XcMiIiIpIivc7wJCcnIyIiQi3ZuX//Pn7//XcAgKmpKUJCQuoe4UMqKyvRsmVLLF++HAEBAYiKisJHH32EpUuXVrvO1KlTUVJSonzxNnoiIqLHj15nePr27YtLly6hZcuWKuUlJSXo27dvjZeYqjg5OUEul6OoqEilvKioCK6urhrXcXNzg5mZGeRyubLM19cXhYWFqKiogLm5udo6FhYW1Z6FIiIioseDXmd4hBCQyWRq5VevXoWNjY1WbZibmyMgIABZWVnKssrKSmRlZSE4OFjjOs888wzy8vJQWVmpLDt58iTc3Nw0JjtEREREgI5neF599VUAgEwmw8iRI1XOnCgUChw6dAhPP/201u0lJiYiJiYGPXr0QGBgIObNm4eysjLExsYCAEaMGAEPDw+kpaUBAN555x0sWrQIEyZMQEJCAk6dOoXU1FSMHz9el80gIiKix4xOCY+9vT2AB2d47OzsYGVlpVxmbm6Op556CmPGjNG6vaioKFy+fBnTpk1DYWEhunXrhk2bNiknMufn58PE5P9PQnl6emLz5s1499130bVrV3h4eGDChAmYMmWKLptBREREjxmdEp5Vq1YBALy9vTFp0iStL1/VJD4+HvHx8RqX7dixQ60sODgYe/bsqXO/RERE9PjQa9JydbeAExERETVGWic83bt3R1ZWFhwcHODv769x0nKV3NxcgwRHREREZAhaJzwvv/yycpJyeHh4fcVDREREZHBaJzwPX8biJS0iIiJqSur8tHQiIiKixk7rMzwODg41ztt52LVr1/QOiIiIiMjQtE545s2bV49hEBEREdUfrROemJiY+oyDiIiIqN5onfCUlpaiWbNmyv+vSVU9IiIiosZApzk8VU9Ib968ucb5PFUPFdXmaelEREREDUXrhGfbtm1wdHQEAGzfvr3eAiIiIiIyNK0TnpCQEI3/T0RERNTY6fUsLQC4fv06vv76axw7dgwA0LFjR8TGxirPAhERERE1Fnr98ODvv/8Ob29vLFiwANevX8f169exYMEC+Pj44Pfffzd0jERERER1otcZnri4OERFRWHJkiWQy+UAAIVCgXHjxiEuLg6HDx82aJBEREREdaHXGZ68vDy89957ymQHAORyORITE5GXl2ew4IiIiIgMQa+Ep3v37sq5Ow87duwY/Pz86hwUERERkSFpfUnr0KFDyv8fP348JkyYgLy8PDz11FMAgD179mDx4sWYNWuW4aMkIiIiqgOtE55u3bpBJpNBCKEse//999XqDR06FFFRUYaJjoiIiMgAtE54zpw5U59xEBEREdUbrRMeLy+v+oyDiIiIqN7o/cODAHD06FHk5+ejoqJCpfyll16qU1BEREREhqRXwvP333/jlVdeweHDh1Xm9VQ9UJQPDyUiIqLGRK/b0idMmAAfHx8UFxfD2toaR44cwe+//44ePXpgx44dBg6RiIiIqG70OsOTnZ2Nbdu2wcnJCSYmJjAxMUGvXr2QlpaG8ePH448//jB0nERERER60+sMj0KhgJ2dHQDAyckJFy9eBPBgYvOJEycMFx0RERGRAeh1hqdz5874888/4ePjg6CgIKSnp8Pc3BzLly9HmzZtDB0jERERUZ3olfB8/PHHKCsrAwDMmDEDL774Inr37o0WLVpg7dq1Bg2QiIiIqK70SnjCwsKU/9+2bVscP34c165dg4ODg/JOLSIiIqLGok6/wwMABQUFAABPT886B0NERERUH/SatHz//n0kJSXB3t4e3t7e8Pb2hr29PT7++GPcu3fP0DESERER1YleZ3gSEhLw008/IT09HcHBwQAe3KqekpKCq1evYsmSJQYNkoiIiKgu9Ep4MjIysGbNGgwcOFBZ1rVrV3h6eiI6OpoJDxERETUqel3SsrCwgLe3t1q5j48PzM3N6xoTERERkUHplfDEx8dj5syZKC8vV5aVl5fj008/RXx8vMGCIyIiIjIErS9pvfrqqyrvt27dilatWsHPzw8A8Oeff6KiogL9+vUzbIREREREdaR1wmNvb6/y/rXXXlN5z9vSiYiIqLHSOuFZtWpVfcZBREREVG/q9MODly9fVj4stH379nB2djZIUERERESGpNek5bKyMowaNQpubm549tln8eyzz8Ld3R2jR4/G7du3DR0jERERUZ3olfAkJiZi586d+PXXX3Hjxg3cuHED//rXv7Bz50689957ho6RiIiIqE70uqT1448/Yv369ejTp4+y7IUXXoCVlRUiIyP5w4NERETUqOh1huf27dtwcXFRK2/ZsiUvaREREVGjo1fCExwcjOTkZNy9e1dZdufOHUyfPl35bC0iIiKixkKvS1rz5s3DgAED1H540NLSEps3bzZogERERER1pVfC06VLF5w6dQr//Oc/cfz4cQBAdHQ0hg0bBisrK4MGSERERFRXOic89+7dQ4cOHfCf//wHY8aMqY+YiIiIiAxK5zk8ZmZmKnN3iIiIiBo7vSYtx8XFYfbs2bh//76h4yEiIiIyOL3m8Ozfvx9ZWVnYsmULunTpAhsbG5XlP/30k0GCIyIiIjIEvRKe5s2bqz0tnYiIiKix0inhqaysxJw5c3Dy5ElUVFTgueeeQ0pKCu/MIiIiokZNpzk8n376KT788EPY2trCw8MDCxYsQFxcXH3FRkRERGQQOiU83333Hb788kts3rwZv/zyC3799Vf885//RGVlZX3FR0RERFRnOiU8+fn5eOGFF5TvQ0NDIZPJcPHiRYMHRkRERGQoOiU89+/fh6WlpUqZmZkZ7t27Z9CgiIiIiAxJp0nLQgiMHDkSFhYWyrK7d+9i7NixKrem87Z0IiIiakx0SnhiYmLUyt544w2DBUNERERUH3RKeFatWlVfcRARERHVG70eLWFoixcvhre3NywtLREUFIR9+/Zptd6aNWsgk8kQHh5evwESERFRk2b0hGft2rVITExEcnIycnNz4efnh7CwMBQXF9e43tmzZzFp0iT07t27gSIlIiKipsroCc/nn3+OMWPGIDY2Fh07dsTSpUthbW2NlStXVruOQqHAsGHDMH36dLRp06YBoyUiIqKmyKgJT0VFBXJychAaGqosMzExQWhoKLKzs6tdb8aMGWjZsiVGjx5dax/l5eUoLS1VeREREdHjxagJz5UrV6BQKODi4qJS7uLigsLCQo3r7Nq1C19//TVWrFihVR9paWmwt7dXvjw9PescNxERETUtRr+kpYubN29i+PDhWLFiBZycnLRaZ+rUqSgpKVG+CgoK6jlKIiIiamx0ui3d0JycnCCXy1FUVKRSXlRUBFdXV7X6p0+fxtmzZzF48GBlWdVzvExNTXHixAk88cQTKutYWFio/FAiERERPX6MeobH3NwcAQEByMrKUpZVVlYiKysLwcHBavU7dOiAw4cP4+DBg8rXSy+9hL59++LgwYO8XEVEREQaGfUMDwAkJiYiJiYGPXr0QGBgIObNm4eysjLExsYCAEaMGAEPDw+kpaXB0tISnTt3Vlm/efPmAKBWTkRERFTF6AlPVFQULl++jGnTpqGwsBDdunXDpk2blBOZ8/PzYWLSpKYaERERUSNj9IQHAOLj4xEfH69x2Y4dO2pc95tvvjF8QERERCQpPHVCREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikrxGkfAsXrwY3t7esLS0RFBQEPbt21dt3RUrVqB3795wcHCAg4MDQkNDa6xPREREZPSEZ+3atUhMTERycjJyc3Ph5+eHsLAwFBcXa6y/Y8cOREdHY/v27cjOzoanpyf69++PCxcuNHDkRERE1FQYPeH5/PPPMWbMGMTGxqJjx45YunQprK2tsXLlSo31//nPf2LcuHHo1q0bOnTogK+++gqVlZXIysrSWL+8vBylpaUqLyIiInq8GDXhqaioQE5ODkJDQ5VlJiYmCA0NRXZ2tlZt3L59G/fu3YOjo6PG5WlpabC3t1e+PD09DRI7ERERNR1GTXiuXLkChUIBFxcXlXIXFxcUFhZq1caUKVPg7u6ukjQ9bOrUqSgpKVG+CgoK6hw3ERERNS2mxg6gLmbNmoU1a9Zgx44dsLS01FjHwsICFhYWDRwZERERNSZGTXicnJwgl8tRVFSkUl5UVARXV9ca1507dy5mzZqFrVu3omvXrvUZJhERETVxRr2kZW5ujoCAAJUJx1UTkIODg6tdLz09HTNnzsSmTZvQo0ePhgiViIiImjCjX9JKTExETEwMevTogcDAQMybNw9lZWWIjY0FAIwYMQIeHh5IS0sDAMyePRvTpk1DRkYGvL29lXN9bG1tYWtra7TtICIiosbL6AlPVFQULl++jGnTpqGwsBDdunXDpk2blBOZ8/PzYWLy/yeilixZgoqKCrz++usq7SQnJyMlJaUhQyciIqImwugJDwDEx8cjPj5e47IdO3aovD979mz9B0RERESSYvQfHiQiIiKqb0x4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkNYpnaT32MqJ0X2foWp2qF4x9R+cuPJcu0XkdIiLSQwP8HQAe778FPMNDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeSZGjsAIqLHXkaU7usMXavzKgVj39G9ny5jdV+HqBHiGR4iIiKSPCY8REREJHlMeIiIiEjymPAQERGR5DHhISIiIsljwkNERESSx4SHiIiIJK9RJDyLFy+Gt7c3LC0tERQUhH379tVYf926dejQoQMsLS3RpUsXbNy4sYEiJSIioqbI6AnP2rVrkZiYiOTkZOTm5sLPzw9hYWEoLi7WWH/37t2Ijo7G6NGj8ccffyA8PBzh4eH466+/GjhyIiIiaiqMnvB8/vnnGDNmDGJjY9GxY0csXboU1tbWWLlypcb68+fPx4ABAzB58mT4+vpi5syZ6N69OxYtWtTAkRMREVFTYdRHS1RUVCAnJwdTp05VlpmYmCA0NBTZ2dka18nOzkZiYqJKWVhYGH755ReN9cvLy1FeXq58X1JSAgAoLS2tY/QGdPuezqtM+vdbOtWfWKHQuY9GtY+kTscxUFFWoXMXNzkGGkTFnVs6r1N6X/fvAOhxbG5W6D5ubuuzPRw3umuAvwNA0/5bUBWHEEK/BoQRXbhwQQAQu3fvVimfPHmyCAwM1LiOmZmZyMjIUClbvHixaNmypcb6ycnJAgBffPHFF1988SWBV0FBgV45h+QfHjp16lSVM0KVlZW4du0aWrRoAZlMZsTIDK+0tBSenp4oKChAs2bNjB0OGQHHAHEMkFTHgBACN2/ehLu7u17rGzXhcXJyglwuR1FRkUp5UVERXF1dNa7j6uqqU30LCwtYWFiolDVv3lz/oJuAZs2aSWqQk+44BohjgKQ4Buzt7fVe16iTls3NzREQEICsrCxlWWVlJbKyshAcHKxxneDgYJX6AJCZmVltfSIiIiKjX9JKTExETEwMevTogcDAQMybNw9lZWWIjY0FAIwYMQIeHh5IS0sDAEyYMAEhISH47LPPMGjQIKxZswYHDhzA8uXLjbkZRERE1IgZPeGJiorC5cuXMW3aNBQWFqJbt27YtGkTXFxcAAD5+fkwMfn/E1FPP/00MjIy8PHHH+PDDz/Ek08+iV9++QWdO3c21iY0GhYWFkhOTla7hEePD44B4hggjgHNZELoe38XERERUdNg9B8eJCIiIqpvTHiIiIhI8pjwEBERkeQx4SEiIiLJY8LTRC1evBje3t6wtLREUFAQ9u3bp1x29+5dxMXFoUWLFrC1tcVrr72m9mON1PTVNAaWL1+OPn36oFmzZpDJZLhx44bxAiWD+/333zF48GC4u7tDJpOpPUtQCIFp06bBzc0NVlZWCA0NxalTp4wTLNWL2sbATz/9hP79+yufKnDw4EGjxNmYMOFpgtauXYvExEQkJycjNzcXfn5+CAsLQ3FxMQDg3Xffxa+//op169Zh586duHjxIl599VUjR02GVNsYuH37NgYMGIAPP/zQyJFSfSgrK4Ofnx8WL16scXl6ejoWLFiApUuXYu/evbCxsUFYWBju3r3bwJFSfaltDJSVlaFXr16YPXt2A0fWiOn1BC4yqsDAQBEXF6d8r1AohLu7u0hLSxM3btwQZmZmYt26dcrlx44dEwBEdna2McKlelDTGHjY9u3bBQBx/fr1Bo6QGgoA8fPPPyvfV1ZWCldXVzFnzhxl2Y0bN4SFhYX4/vvvjRAh1bdHx8DDzpw5IwCIP/74o0Fjaox4hqeJqaioQE5ODkJDQ5VlJiYmCA0NRXZ2NnJycnDv3j2V5R06dEDr1q2RnZ1tjJDJwGobA/R4O3PmDAoLC1XGh729PYKCgjg+6LHGhKeJuXLlChQKhfKXqKu4uLigsLAQhYWFMDc3V3tAatVyavpqGwP0eKsaAxwfRKqY8BAREZHkMeFpYpycnCCXy9XuuioqKoKrqytcXV1RUVGhdldO1XJq+mobA/R4qxoDHB9EqpjwNDHm5uYICAhAVlaWsqyyshJZWVkIDg5GQEAAzMzMVJafOHEC+fn5CA4ONkbIZGC1jQF6vPn4+MDV1VVlfJSWlmLv3r0cH/RYM/rT0kl3iYmJiImJQY8ePRAYGIh58+ahrKwMsbGxsLe3x+jRo5GYmAhHR0c0a9YMCQkJCA4OxlNPPWXs0MlAahoDAJTzufLy8gAAhw8fhp2dHVq3bg1HR0djhk4GcOvWLeWxBR5MVD548CAcHR3RunVrTJw4EZ988gmefPJJ+Pj4ICkpCe7u7ggPDzde0GRQtY2Ba9euIT8/HxcvXgTw4B++AJRXAh5Lxr5NjPSzcOFC0bp1a2Fubi4CAwPFnj17lMvu3Lkjxo0bJxwcHIS1tbV45ZVXxKVLl4wYLdWHmsZAcnKyAKD2WrVqlfECJoOp+rmBR18xMTFCiAe3piclJQkXFxdhYWEh+vXrJ06cOGHcoMmgahsDq1at0rg8OTnZqHEbk0wIIRo2xSIiIiJqWJzDQ0RERJLHhIeIiIgkjwkPERERSR4THiIiIpI8JjxEREQkeUx4iIiISPKY8BAREZHkMeEhIiIiyWPCQ0RERJLHhIeINBo5ciRkMhnGjh2rtiwuLg4ymQwjR45s+MAkRCaT4ZdffjF2GESPBSY8RFQtT09PrFmzBnfu3FGW3b17FxkZGWjdurURI6tdRUWFsUMgokaECQ8RVat79+7w9PTETz/9pCz76aef0Lp1a/j7+yvLKisrkZaWBh8fH1hZWcHPzw/r169XLlcoFBg9erRyefv27TF//nyVvnbs2IHAwEDY2NigefPmeOaZZ3Du3DkAD842Pfqk74kTJ6JPnz7K93369EF8fDwmTpwIJycnhIWFAQD++usvDBw4ELa2tnBxccHw4cNx5coVlfUSEhIwceJEODg4wMXFBStWrFA+fd7Ozg5t27bFb7/9ptK/Nu2OHz8e77//PhwdHeHq6oqUlBTlcm9vbwDAK6+8AplMpnxPRPWDCQ8R1WjUqFFYtWqV8v3KlSsRGxurUictLQ3fffcdli5diiNHjuDdd9/FG2+8gZ07dwJ4kBC1atUK69atw9GjRzFt2jR8+OGH+OGHHwAA9+/fR3h4OEJCQnDo0CFkZ2fjrbfegkwm0ynWb7/9Fubm5vjf//6HpUuX4saNG3juuefg7++PAwcOYNOmTSgqKkJkZKTaek5OTti3bx8SEhLwzjvvICIiAk8//TRyc3PRv39/DB8+HLdv3wYAndq1sbHB3r17kZ6ejhkzZiAzMxMAsH//fgDAqlWrcOnSJeV7Iqonxn5cOxE1TjExMeLll18WxcXFwsLCQpw9e1acPXtWWFpaisuXL4uXX35ZxMTEiLt37wpra2uxe/dulfVHjx4toqOjq20/Li5OvPbaa0IIIa5evSoAiB07dtQYy8MmTJggQkJClO9DQkKEv7+/Sp2ZM2eK/v37q5QVFBQIAOLEiRPK9Xr16qVcfv/+fWFjYyOGDx+uLLt06ZIAILKzs/VuVwghevbsKaZMmaJ8D0D8/PPPGreZiAzL1KjZFhE1es7Ozhg0aBC++eYbCCEwaNAgODk5KZfn5eXh9u3beP7551XWq6ioULnstXjxYqxcuRL5+fm4c+cOKioq0K1bNwCAo6MjRo4cibCwMDz//PMIDQ1FZGQk3NzcdIo1ICBA5f2ff/6J7du3w9bWVq3u6dOn0a5dOwBA165dleVyuRwtWrRAly5dlGUuLi4AgOLiYr3bBQA3NzdlG0TUsJjwEFGtRo0ahfj4eAAPEpeH3bp1CwCwYcMGeHh4qCyzsLAAAKxZswaTJk3CZ599huDgYNjZ2WHOnDnYu3evsu6qVaswfvx4bNq0CWvXrsXHH3+MzMxMPPXUUzAxMYEQQqXte/fuqcVpY2OjFtvgwYMxe/ZstboPJ1NmZmYqy2QymUpZ1aW1ysrKOrdb1QYRNSwmPERUqwEDBqCiogIymUw5GbhKx44dYWFhgfz8fISEhGhc/3//+x+efvppjBs3Tll2+vRptXr+/v7w9/fH1KlTERwcjIyMDDz11FNwdnbGX3/9pVL34MGDagnFo7p3744ff/wR3t7eMDU13Nedodo1MzODQqEwWFxEVD1OWiaiWsnlchw7dgxHjx6FXC5XWWZnZ4dJkybh3XffxbfffovTp08jNzcXCxcuxLfffgsAePLJJ3HgwAFs3rwZJ0+eRFJSksok3TNnzmDq1KnIzs7GuXPnsGXLFpw6dQq+vr4AgOeeew4HDhzAd999h1OnTiE5OVktAdIkLi4O165dQ3R0NPbv34/Tp09j8+bNiI2NrVOiYah2vb29kZWVhcLCQly/fl3veIiodkx4iEgrzZo1Q7NmzTQumzlzJpKSkpCWlgZfX18MGDAAGzZsgI+PDwDg7bffxquvvoqoqCgEBQXh6tWrKmd7rK2tcfz4cbz22mto164d3nrrLcTFxeHtt98GAISFhSEpKQnvv/8+evbsiZs3b2LEiBG1xuzu7o7//e9/UCgU6N+/P7p06YKJEyeiefPmMDHR/+vPUO1+9tlnyMzMhKenp8p8JyIyPJl49MI4ERERkcTwDA8RERFJHhMeIiIikjwmPERERCR5THiIiIhI8pjwEBERkeQx4SEiIiLJY8JDREREkseEh4iIiCSPCQ8RERFJHhMeIiIikjwmPERERCR5/wes2iZleIL2pQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -325,7 +315,8 @@ " f\"Measurement probabilities at $t={final_time}$, for various field angles $\\\\alpha$\\n\"\n", " f\"Initial state: 10, Linear lattice of size $L=2$\"\n", ")\n", - "plt.legend()" + "plt.legend()\n", + "plt.show()" ] }, { @@ -381,10 +372,10 @@ "outputs": [], "source": [ "from qiskit_algorithms import TrotterQRTE\n", - "from qiskit.primitives import Estimator\n", + "from qiskit.primitives import StatevectorEstimator\n", "\n", "num_timesteps = 60\n", - "trotter = TrotterQRTE(num_timesteps=num_timesteps, estimator=Estimator())" + "trotter = TrotterQRTE(num_timesteps=num_timesteps, estimator=StatevectorEstimator())" ] }, { @@ -506,7 +497,7 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHgCAYAAABJmwJ4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAADyIklEQVR4nOzdd3hTZfsH8G+StulO996ltEALZZa0bFAUXxEXQ8UBrld59XX8fEVloygqLlTEPRFEXIigLIE0bVmlhdICpbuU7qY7TXJ+f8QTkiZpsxPo/bkurouenJzcORnnzvPcz/NwGIZhQAghhBAyAHHtHQAhhBBCiL1QIkQIIYSQAYsSIUIIIYQMWJQIEUIIIWTAokSIEEIIIQMWJUKEEEIIGbAoESKEEELIgEWJECGEEEIGLEqECCGEEDJgUSJEyFVo5cqV4HA4qK+vt3coVlFaWgoOh4M33nij333Zc3G1Y5/zF198YdHjXivnhxBroUSIEAdx5swZ3HPPPQgPDwefz0dYWBjuvvtunDlzxt6hEQfX0dGBlStX4uDBg/YOhZCrDiVChDiAHTt2YNSoUdi3bx8eeOABfPDBB1i8eDEOHDiAUaNG4aeffrJ3iMSBdXR0YNWqVToToZdeegmdnZ22D4qQq4STvQMgZKArLi7GwoULERcXh0OHDiEwMFB125NPPomJEydi4cKFyMvLQ1xcnB0j1aZQKCCVSuHq6mrvUIgeTk5OcHKir3pC9KEWIULs7PXXX0dHRwc2b96skQQBQEBAAD766CO0t7dj/fr1Wvetr6/H3Llz4e3tDX9/fzz55JPo6urS2Oevv/7ChAkT4OPjA09PTyQmJuKFF17Q2Ke7uxsrVqzAoEGDwOfzERkZieeeew7d3d0a+3E4HCxZsgTffvsthg0bBj6fj99++w1+fn544IEHtOKTSCRwdXXFs88+CwCQSqVYvnw5Ro8eDYFAAA8PD0ycOBEHDhzQe37eeustREdHw83NDZMnT8bp06f7PqH/+OabbzB69Gi4ubnBz88P8+fPR0VFhUH3raqqwqJFixAcHAw+n49hw4bhs88+U91++fJlODk5YdWqVVr3LSoqAofDwcaNG1XbLl68iDvvvBN+fn5wd3fH+PHj8fvvv/cbx5QpUzBlyhSt7ffffz9iYmIAKGuL2PfNqlWrwOFwwOFwsHLlSgC6a4RkMhnWrFmD+Ph48Pl8xMTE4IUXXtB6vWNiYvCvf/0LR44cwbhx4+Dq6oq4uDh89dVX/cZOyFWDIYTYVVhYGBMTE9PnPjExMUxERITq7xUrVjAAmJSUFObmm29mNm7cyNxzzz0MAGbhwoWq/U6fPs24uLgwY8aMYd555x1m06ZNzLPPPstMmjRJtY9cLmeuv/56xt3dnfnvf//LfPTRR8ySJUsYJycn5pZbbtGIAwAzZMgQJjAwkFm1ahXz/vvvMydPnmQWLVrE+Pj4MN3d3Rr7f/nllwwA5ujRowzDMExdXR0TGhrKPP3008yHH37IrF+/nklMTGScnZ2ZkydPqu5XUlKien4xMTHMa6+9xqxatYrx8/NjAgMDmZqaGq1zoW7t2rUMh8Nh5s2bx3zwwQfMqlWrmICAACYmJoZpamrq81zX1NQwERERTGRkJLN69Wrmww8/ZGbPns0AYN566y3VftOmTWOGDh2qdf9Vq1YxPB5PFWNNTQ0THBzMeHl5MS+++CKzYcMGZsSIEQyXy2V27Nih9Zw///xz1bbJkyczkydP1nqM++67j4mOjmYYhmHa2tqYDz/8kAHA3HrrrczXX3/NfP3118ypU6f0np/77ruPAcDccccdzPvvv8/ce++9DABmzpw5GvtFR0cziYmJTHBwMPPCCy8wGzduZEaNGsVwOBzm9OnTfZ5HQq4WlAgRYkfNzc0MAK2Eozf2QiyRSBiGuXJxmz17tsZ+jz32GANAdRF86623GABMXV2d3mN//fXXDJfLZQ4fPqyxfdOmTQwARiQSqbYBYLhcLnPmzBmNfffs2cMAYH777TeN7bNmzWLi4uJUf8tkMq1kqampiQkODmYWLVqk2sYmBW5ubkxlZaVqe3Z2NgOAeeqpp1Tbel/oS0tLGR6Px7z88ssaj5Ofn884OTlpbe9t8eLFTGhoKFNfX6+xff78+YxAIGA6OjoYhmGYjz76iAHA5Ofna+w3dOhQZtq0aaq///vf/zIANM5va2srExsby8TExDByuVzjORubCDGMMsEEwKxYsUJr397nJzc3lwHAPPjggxr7PfvsswwAZv/+/apt0dHRDADm0KFDqm21tbUMn89nnnnmGa3HIuRqRF1jhNhRa2srAMDLy6vP/djbJRKJxvbHH39c4+///Oc/AIBdu3YBAHx8fAAAv/zyCxQKhc5j//DDDxgyZAiSkpJQX1+v+jdt2jQA0Oq2mjx5MoYOHaqxbdq0aQgICMDWrVtV25qamvDXX39h3rx5qm08Hg8uLi4AlPVFjY2NkMlkGDNmDE6cOKEV25w5cxAeHq76e9y4cUhLS1M9P1127NgBhUKBuXPnajyfkJAQJCQk9NkNxzAMfvzxR9x8881gGEbj/jNnzkRLS4sqzttuuw1OTk4az/n06dMoKCjQeM67du3CuHHjMGHCBNU2T09PPPzwwygtLUVBQYHeeKyBPXdPP/20xvZnnnkGALS67IYOHYqJEyeq/g4MDERiYiIuXrxo5UgJsQ1KhAixIzbBYRMiffQlTAkJCRp/x8fHg8vlorS0FAAwb948ZGRk4MEHH0RwcDDmz5+Pbdu2aSRF58+fx5kzZxAYGKjxb/DgwQCA2tpajceIjY3Vis/JyQm33347fvnlF1WdyY4dO9DT06ORFADAl19+ieHDh8PV1RX+/v4IDAzE77//jpaWFq3j9n5+ADB48GDV89Pl/PnzYBgGCQkJWs/p7NmzWs9HXV1dHZqbm1X1Wur/2Boo9v4BAQGYPn06tm3bprr/1q1b4eTkhNtuu021raysDImJiVqPNWTIENXttlRWVgYul4tBgwZpbA8JCYGPj49WPFFRUVrH8PX1RVNTk1XjJMRWaCgBIXYkEAgQGhqKvLy8PvfLy8tDeHg4vL29+9yvd1Gsm5sbDh06hAMHDuD333/H7t27sXXrVkybNg1//vkneDweFAoFUlJSsGHDBp3HjIyM1DqmLvPnz8dHH32EP/74A3PmzMG2bduQlJSEESNGqPb55ptvcP/992POnDn4v//7PwQFBYHH42HdunUoLi7u87kZSqFQgMPh4I8//gCPx9O63dPTs8/7AsA999yD++67T+c+w4cPV/1//vz5eOCBB5Cbm4vU1FRs27YN06dPR0BAgJnPQonD4YBhGK3tcrncIsc2hK5zCEBnXIRcjSgRIsTO/vWvf+Hjjz/GkSNHNLpPWIcPH0ZpaSkeeeQRrdvOnz+v0UJz4cIFKBQK1YgiAOByuZg+fTqmT5+ODRs24JVXXsGLL76IAwcOYMaMGYiPj8epU6cwffp0s2YgnjRpEkJDQ7F161ZMmDAB+/fvx4svvqixz/bt2xEXF4cdO3ZoPNaKFSt0HvP8+fNa286dO6fx/HqLj48HwzCIjY1VtWoZKjAwEF5eXpDL5ZgxY0a/+8+ZMwePPPKIqnvs3LlzWLp0qcY+0dHRKCoq0rpvYWGh6nZ9fH19dXZB9W61MeZ1i46OhkKhwPnz51WtUoByJFxzc3Of8RByLaKuMULs7P/+7//g5uaGRx55BA0NDRq3NTY24tFHH4W7uzv+7//+T+u+77//vsbf7733HgDgxhtvVN2/t9TUVABQdWHNnTsXVVVV+Pjjj7X27ezsRHt7u0HPg8vl4o477sBvv/2Gr7/+GjKZTKtbjG1dUG9NyM7Ohlgs1nnMn3/+GVVVVaq/c3JykJ2drXp+utx2223g8XhYtWqVVqsFwzBa57h3fLfffjt+/PFHncP06+rqNP728fHBzJkzsW3bNnz//fdwcXHBnDlzNPaZNWsWcnJyNJ5je3s7Nm/ejJiYGK16K3Xx8fEoLCzUeNxTp05BJBJp7Ofu7g4AaG5u1nss9XgA4O2339bYzrYI3nTTTf0eg5BrCbUIEWJnCQkJ+PLLL3H33XcjJSUFixcvRmxsLEpLS/Hpp5+ivr4eW7ZsQXx8vNZ9S0pKMHv2bNxwww0Qi8X45ptvcNddd6m6o1avXo1Dhw7hpptuQnR0NGpra/HBBx8gIiJC1fq0cOFCbNu2DY8++igOHDiAjIwMyOVyFBYWYtu2bdizZw/GjBlj0HOZN28e3nvvPaxYsQIpKSkaLQ6AsvVrx44duPXWW3HTTTehpKQEmzZtwtChQ9HW1qZ1vEGDBmHChAn497//je7ubrz99tvw9/fHc889pzeG+Ph4rF27FkuXLkVpaSnmzJkDLy8vlJSU4KeffsLDDz+smtdIl1dffRUHDhxAWloaHnroIQwdOhSNjY04ceIE9u7dq5Vczps3D/fccw8++OADzJw5U1Wgznr++eexZcsW3HjjjXjiiSfg5+eHL7/8EiUlJfjxxx/B5er/Pbpo0SJs2LABM2fOxOLFi1FbW4tNmzZh2LBhGoXzbm5uGDp0KLZu3YrBgwfDz88PycnJSE5O1jrmiBEjcN9992Hz5s1obm7G5MmTkZOTgy+//BJz5szB1KlT9cZDyDXJbuPVCCEa8vLymAULFjChoaGMs7MzExISwixYsEBreDbDXBkSXVBQwNxxxx2Ml5cX4+vryyxZsoTp7OxU7bdv3z7mlltuYcLCwhgXFxcmLCyMWbBgAXPu3DmN40mlUua1115jhg0bxvD5fMbX15cZPXo0s2rVKqalpUW1HwDm8ccf1/scFAoFExkZyQBg1q5dq/P2V155hYmOjmb4fD4zcuRIZufOnVrDwdmh5K+//jrz5ptvMpGRkQyfz2cmTpyomhqg97no7ccff2QmTJjAeHh4MB4eHkxSUhLz+OOPM0VFRXrjZ12+fJl5/PHHmcjISNVrMX36dGbz5s1a+0okEsbNzY0BwHzzzTc6j1dcXMzccccdjI+PD+Pq6sqMGzeO2blzp8Y+uobPMwzDfPPNN0xcXBzj4uLCpKamMnv27NE6XwzDMJmZmczo0aMZFxcXjaH0us5PT08Ps2rVKiY2NpZxdnZmIiMjmaVLlzJdXV0a+0VHRzM33XST1vPRN6yfkKsRh2Go4o0QQgghAxPVCBFCCCFkwKJEiBBCCCEDFiVChBBCCBmwKBEihBBCyIBFiRAhhBBCBixKhAghhBAyYFEiRAghhJABixIhQgghhAxYlAgRQgghZMCiRIgQQgghAxYlQoQQQggZsCgRIoQQQsiARYkQIYQQQgYsSoQIIYQQMmBRIkQIIYSQAYsSIUIIIYQMWJQIEUIIIWTAokSIEEIIIQMWJUKEEEIIGbAoESKEEELIgEWJECGEEEIGLEqECCGEEDJgUSJECCGEkAGLEiFCCCGEDFiUCBFCCCFkwKJEiBBCCCEDFiVChBBCCBmwKBEihBBCyIBFiRAhhBBCBixKhAghhBAyYFEiRAghhJABy8neATg6hUKB6upqeHl5gcPh2DscQgghhBiAYRi0trYiLCwMXK7+dh9KhPpRXV2NyMhIe4dBCCGEEBNUVFQgIiJC7+2UCPXDy8sLgPJEent7W/WxstZlgcvlYtz/xmndlvNaDhQKBcYvHW/VGAghhJBrgUQiQWRkpOo6rg8lQv1gu8O8vb2tngh5uXtBtFwED1cPCJcJVdvFa8TIfSUXGaszrB4DIYQQci3pr6yFEiEHwiY/ouUi1d/iNWKIlouQsTpDIzkihBBCiPkoEXIw6smQeI0Yih4FJUGEEEKIldDweQckXCYEh8uBokcBnguPkiBCCCHESigRckDiNWIwCgYAIJfKIV4jtnNEhBBCyLXpqkmEGhsbcffdd8Pb2xs+Pj5YvHgx2tra+rzPlClTwOFwNP49+uijNorYNGxNkKuvK5xcnRB/c7yqm4wQQgghlnXVJEJ33303zpw5g7/++gs7d+7EoUOH8PDDD/d7v4ceegiXLl1S/Vu/fr0NojUNmwSlr0qHrFOGYQ8MQ7ekGxmrMygZIoQQQqzgqiiWPnv2LHbv3o2jR49izJgxAID33nsPs2bNwhtvvIGwsDC993V3d0dISIjBj9Xd3Y3u7m7V3xKJxPTAjaSQKwujUx9PReaKTIx5agw+H/o5bvrmJtXthBBCCLGcq6JFSCwWw8fHR5UEAcCMGTPA5XKRnZ3d532//fZbBAQEIDk5GUuXLkVHR0ef+69btw4CgUD1z5azSmesVI4Oa6tqg4uXC3wTfBExOQKFWwshXCZExsoMm8VCCCGEDARXRSJUU1ODoKAgjW1OTk7w8/NDTU2N3vvddddd+Oabb3DgwAEsXboUX3/9Ne65554+H2vp0qVoaWlR/auoqLDIczBGa2UrPCM8AQBD7hqCwi2FNo/BUKKV+rvsxGvEEK0U2TgiQgghxHB2TYSef/55rWLm3v8KC01PAh5++GHMnDkTKSkpuPvuu/HVV1/hp59+QnFxsd778Pl81SzStphNWpe2qjZ4hSunBE+4LQH1+fVoPNdo8zgMweVxddYvsfVOXN5VkWsTQggZoOxaI/TMM8/g/vvv73OfuLg4hISEoLa2VmO7TCZDY2OjUfU/aWlpAIALFy4gPj7e6Hhtpa2qDZ7hyhYhVx9XxN4Yi8IthUhfkW7nyLTRbNiEEEKuZnZNhAIDAxEYGNjvfkKhEM3NzTh+/DhGjx4NANi/fz8UCoUquTFEbm4uACA0NNSkeG1FPRECgKQFSchckQnhcmG/a6bYA82GTQgh5Gp1VfRbDBkyBDfccAMeeugh5OTkQCQSYcmSJZg/f75qxFhVVRWSkpKQk5MDACguLsaaNWtw/PhxlJaW4tdff8W9996LSZMmYfjw4fZ8Ov1qrWrVSITib45Ha2UranNr+7iXfY1/aTzAAc2GTQgh5KpyVSRCgHL0V1JSEqZPn45Zs2ZhwoQJ2Lx5s+r2np4eFBUVqUaFubi4YO/evbj++uuRlJSEZ555Brfffjt+++03ez0Fg7VVtsErwkv1t7O7MwbNGeTQRdN/3P8HoJwMm2bDJoQQctW4KuYRAgA/Pz989913em+PiYkBwzCqvyMjI/H333/bIjSL6901Bii7x/Y+uheTXp0EDtexusfEa8Qo+KoAUdOicPnEZSTOS9SoGSKEEEIc1VXTIjRQyLpk6GzoVI0aY8VcHwNZpwxVoio7RaYbWxjN4/Nwy45bEJ4RDv8kf5oNmxBCyFXhqmkRGijaqtvAdeLCPchdYzvPmYfBdwzG2S1nETExwk7RaVPIFRDECzDkriHgC/gInxCOysOVuOXHW1S3E0IIIY6KWoQcTGtlKzzCPHR2fyUtSMK5H85B3iO3Q2S6xd0Yh46aDox+UjmaL2JiBKqOVIFhGJoNmxBCiMOjRMjBqE+m2FvExAjw+DyU7S2zcVT6Zb2chdTHUuHm7wYACB4TjO6WbjSdb7JrXDTjNSGEEENQIuRgdBVKszhcDpLmJznM6LHa3FqU7S3DmGeurAHnxHdCyNgQVB2xby0TzXhNCCHEEFQj5GD0JUKilcqLd9KCJGydshU9nT1wdnMGoLy4K+QKm3dDZb2cheEPDYdHsIfG9oiJEag8XImURSk2jUcdzXhNCCHEEJQIOZjWqlaEjNVeNoRt4WAYBp6hnri48yIS70zUuLjbUn1BPYp/K8aDFx7Uui18Qjj2P7nfpvHoIlwmBMMwNOM1IYQQvah/wMH0nkyRJVwmRMbqDGSuyIRnuCcKtxTatYUjZ10Oht03TGesYelhaC5uRntNu01j0iXmuhgANOM1IYQQ3SgRcjC9l9dQxyZDFQcrcP6n83ZLgpqLm1H0QxHG/W+czttdfVwRmBKIyiOVNo1Ll4PPHFT9n2a81o0KywkhAxklQg6EUTBor27XO2oMUCZDPBceAIDrzLVJEtT7Qpn9ajYS5yXCJ85H74UyfGK43QumM1dnolpcjaELh2L8svHwjvamSR51oMJyQshARt9wDqSjrgMKmQIeYR569xGvEUMulQNcZXePLS7q6hdKSbkEBV8XIG1pWp8XyogJEag6bL9ESLxGjMwVmXBydcLMT2di7LNj0dPegyF3D7FbMuSoLS9sS6P6eaHCckLIQEHF0g6kraoNrn6uqtFgvalfnDg8Ds5+d9Yma3qpj8Aq3lmMQXMG4dwP5/q8UIZPCMfvd/8OaasULl4uVotNH4VcgdDxofAf6g+eMw88Zx7GvzQe+Z/kI31lul1mvGYTSkDz9bJXwbs69ddYvFYMhZQKywkhAwO1CDmQ1spWncXHgPYv9NBxoehp67HZml7CZUIIVwhRk1OD8zv6r0/yivCCV5QXqsXVVo1Ln/Tl6Wgtb0Xi3ETVthGPjoC0TQpBrMAuM173bnlhGMahWl7GvzQeAKCQUmE5IWTgoETIgfQ1maJCrvkLPWRsCCTlEgx/eDgyVmfYpIVj2L3DlLEYOAIrYmKE3QqmqzKrIOuSIWpalGqbE98JE9ZOwJFlRyDrktklLvVk6E3emw6TBAG4MuUBhwrLCSEDByVCDqSvRChjpebFki/gwy/RDzU5NTZb00u8Vnlh5LnwDLpQhk8It1ud0LkfziHhtgTwnHka24csGAJXX1fkfpBrl7gAIG1pmvI/jO0K3vsjXiPGyfdOws3fDVweF2kvplFhOSFkQKBEyIH0NXRel9C0UFzKuWTFiK4QrxHjzOdn4B3jjae6nzKoSy58QjguZV9SFnfbEKNgUPRDkUa3GIvD5WDSq5OQ9XIWulu6bRoXa+eCncpYeBybFbz3he2e8xvqh9FPj4YgToDQsaE263YljstRC/wJsSSTEqH2dvtPlHct6mvBVV1CxoXgUrb1EyH2Qhk1LQoRkyIA6B5p1Jv/EH84uzvj8onLVo9RXZWoCgqpAlFTo3TeHjMzBoEjApGzPsemcQHKIf3ntp9D3M1xeLj0YXB4HLsnGwq5Aumr0tFR04GoqVGImRmDkj0lqtfYHoXldAF2DDS1AhkITHoXBwcHY9GiRThy5Iil4xnQWitb4RlhXItQzdEaMArGilFdqU8SxAngHeWt2t7fhZLD4SAsI8zm8wkVbStCwm0J4DrpfntnrsqEb4Ivjr99HG2X2jRus+ZFlh3S7+zpjNnbZsMrwguJdyYidHyoXZOhjJUZGDR7EORSOYLHBCNmZgxK95QCgM26XXujC7BjoKkVyEBg0rfJN998g8bGRkybNg2DBw/Gq6++iupq+4wOupYY2yIUmBIIWacMTeebrBjVlfqk1vJWjUQI6P9CGTExwqaJkEKuwLnt53R2i7G4PC7yNudBECOAeNWVC621L7IKmQJekV4QLhPCyVU5c8Xop0aj/nQ90l5Is0vLC6v8QDkiJkaA58xD5JRItFW2oemCdd9XfRloF2BHbgFTfy02uGy4Zl8DMnCZ9I0/Z84c/Pzzz6iqqsKjjz6K7777DtHR0fjXv/6FHTt2QCazz4icq5m0TQqpRGpUjRDPhYfgUcE2qxOSlEvgFWV4ogb8UzB9pMrqrVasqiNVUMgUiJwSqXcf9ou9oaAB+Z/mo7Go0SYX2ahpUZC2SjHi0RGqbaHjQhGYEgg3fze7tLywyveXq0bYuXi4IHxiuKpVyF40LsD8a/sC7OgtYMJlQnC4HFqzj1yTzPp0BQYG4umnn0ZeXh42bNiAvXv34o477kBYWBiWL1+Ojo4OS8V5zWuragOPz4Orn6tR97NVnRDDMJCUS7RahPoTPCoYPR09aCxqtFJkmop+KMLg2wfr7RZjqbr1ZAp8PvRzm1xks9dlY+TjI8H35mtsH/3UaJx49wQUMvu0CClkClQeqtSYakC9e8yehMuE4DpzoZAqwHVxjBF21uDoLWDiNWLVjxmaWoFca8xKhC5fvoz169dj6NCheP7553HHHXdg3759ePPNN7Fjxw7MmTPHQmFe+9jJFDkcjlH3C00LtUki1NXYBVmHDF6RxrUI8Vx4CE0LReVh688nZEi3mDr2IssoGKv/yr184jIqD1di1JOjtG5LuDUBDMPgwi8XrPb4fbl84jI4XA4CRwSqtsXOjEX5/nKbj/jrTbxGDEWPMkFUSO0/ws6a1JOhN7hvOFQSJFouAteJCyd3Jwy5x37L1BBiDSYlQjt27MDNN9+MyMhIfPfdd3jsscdQVVWFb775BlOnTsXChQvxyy+/4ODBgxYO99rV1xxCfQkdF4q6U3VWnyBQUi6Bq58rXDyNXy7DVguwVh6uBBioRrb1R/0ia+1fudmvZmP4g8PhHuiudRvXiYtR/xmF428dt9rj96X8QDkip0RqdL8EpATAxdsFVSL7rhcnWi6C72BfBI8Khlug2zV/ARYuEypbMx1kjin2NRj5n5HgOnGRND8JHsEeNLUCuaaYlAg98MADCAsLg0gkQm5uLpYsWQIfHx+NfcLCwvDiiy9aIsYBwdRESBAnAN+bj9rcWitEdUVreSu8o43rFmNFTIiwSYtQ0bYiJNyuf7SYOvYLPn1VOtwC3DD84eFW+2JvLGpE8a/FGPPMGL37pDyYgtrcWlw6apt6L3UV+yu0phrgcDiIud5+3WPqr09nfScmvzkZjJxB8qLka/oCLF4jVnWROsIcU+yI0fCMcPgn+yNmZgzK9pbZdWoFQizNpETo0qVL+OijjzB27Fi9+7i5uWHFihUmBzbQGDuZIovD4SBkXAhqcmqsENUVkjLj64NYYcIwtJa3orWy1cJRXaGQKXD+x/MGdYup116kL09H4PBAhIwNsdqv3Jz1OUhakNTn+XP1cUXyA8k48fYJiz52f+RSOSqPVCJymnZxuT3rhNgLcOLcRMg6ZAhPD0fyomT0tPdcsxdg9n3J9+Uj5oYY+CT42D3pY0eM1p2qQ9CIIERNi0J9fj3aa9vtNrUCIZZmUiIkk8kgkUi0/rW2tkIqlVo6xgHB2KHz6mxRJ2TKiDFAOSz4+NvHEZQapNU9Zs6w4N7DjSsPVQIc5XD9/o7be922wOGBqMurs8iv3N5xtVa24uy3ZzHuf+P6jWvUE6Nwbvs5tFZZL2Hs7VLOJTh7OCNgWIDWbdHXRaMurw7tl20/gSp7Aa7OrEbI2BDwXHgY8cgIXPjpAoY/NNxuF2BrDXNnk6DR/x2NnrYepC1NQ2dtJ9JXpds9GQKA2lO1CBwRCPcAdwQOD0TF/gqzj+nIUwaQgcWkRMjHxwe+vr5a/3x8fODm5obo6GisWLECCsW196vNWoydTFGdLZbaMGXEGHBlWDDXhauxAKu5w4J7DzdmR4tlv5Ld73F7r9sWMDwAdafqAJg/gWDvuI69eQxxN8Xh3A/n+o3LN8EXMTNjkPt+rsmPb6zy/eWImhqls0jfPcAdQaOCUPpnqc3i6a1KVIWw9DAAgO8gX0ROjUT+p/l2i8daw9zZ5NxviB/ChGEITw+HQqZAwq0JDtECVneqTlVMHzUjCmX7ysw+pqNPGUAGDidT7vTFF1/gxRdfxP33349x48YBAHJycvDll1/ipZdeQl1dHd544w3w+Xy88MILFg34WmVOi1DI2BA0X2hGZ0Mn3PzdLByZUmt5KwbfMdjo+7EJh2i5CC2lLZixcYZFhgWrH5dRMDj34znE3xxv0nHZFiGGYYwetddXXD0dPcj7OE81yqa/uEQrRXANcMWpj05h/Evj4ezurLpNvEasvFhauCWk4kAFkuYn6b09dmYsSveUYtjCYRZ9XENVZ1Zj8vrJqr9TH0vFviX7MO5/4wyqBbM09deX/dsS72f2df117q+InhENrhMXoeNDUSWqsnvBdGdDJ9qq2hA4XJkIRc+Ixl+P/GX258Va55IQY5mUCH355Zd48803MXfuXNW2m2++GSkpKfjoo4+wb98+REVF4eWXX6ZEyAAKmQIdlztMqhECADd/N/gM8kHN0RrE3hBr4eiUTG0RApRfcNJWKY6+fhQb+BugkCos8kXX+4v09GenTTqu/1B/SCVStFa2wjvStOeoNy4OkPdRnkFxcXlcnPn8DNyD3VHwdQFGPKKceFH94mBJPZ09qM6sxvWbr9e7T8zMGPxy+y9gFAw4XPOSRGN1NnSisagRocJQ1ba4m+Kwb8k+XPz9IgbdMsim8bDUX1/xWrHF3s+MgkH5vnKMeUpZVB+eoRxtmfpoqrkhm6XuVB28o73h6qOc4yx8QjjaL7Wj5WILfOJ9zDq2cJkQDMNY/FwSYgyTflJlZmZi5MiRWttHjhwJsVjZzDlhwgSUl5ebF90A0V7TDoZh4BHqYfIxQsdZr05I1i1D+6V2kxMhAKpf9QqpZWemFS4TgsNTXqBNPa6zmzN8B/uiLq/OIjGxcQEAGMPjYmuUOi534MhLR8AoGKv+Qq7OrIZboDKJ1id0fCjkXXKrj0rUpVpcDb/BfnAPuDLlAJfHxYhHRiD3w1ybx6NOuEwIcGDRiR5rc2uhkCkQMjYEwD+zsltg+gJza3HY+iCWi4cLQoWhKNtrfvcYcGW6C0t/NwwUVGtlPpMSocjISHz66ada2z/99FNERipHnzQ0NMDX19e86AaItqo2uAe5g+fMM/kY1qwTaqtqA9eZC48Q0xM19oPKceJYdM4e8RoxGDkDDs+84wYOD0R9Xr1FYgKAwy8eBgBwXbhGxSVcJoRwuRCd9Z14i/+WVbsJKg5UIGqa7vogFs+Zh6jpUXYZPaZeH6QuZXEKKg5UmLwWmiUuHIdfOAwwUCVDmaszTYpFXelfpYiaGqXq8gsbrxxt2Vbd1s89+2ZuLY56fRAreka0ReqEAOCvR//6J1DD5/Oy18XfEZOOq7HWytHOo0ln6I033sBbb72FESNG4MEHH8SDDz6I1NRUvP3223jzzTcBAEePHsW8efMsGuy1ip1V2hwh40JQk10DhrH8ml6Scoly1msTu0bYD2TI2BCMeWqMxYapq4YbC/i48887zTouWydkCeI1YmS/kg1nD2c83f200XFlrMoA14kLhUxh1Un1yveXI3Kq/jXZWDEzY1Cyp0Tnbdb8QqvOrEZ4RrjWdo8QDwy6dRBObTpl0nHNvXCI14iRvS4b7iHueKz2MfAFfGSuyDT7/Vy+txxRM67M5+Ti5YLA4YEGtQr19ToAQOSUSIiWi5C5OhMMY1xLIzt0Xl30jGiU7ys3ew3B/U/uR1NRE4bdNwxOLk4Y/9J4gz4r9rr4W+txzfkc9bc8i0Kufz4qSt6UTKoRmj17NoqKivDRRx+hqKgIAHDjjTfi559/RkxMDADg3//+t8WCvNaZOpmiuqDUIHRLutFS0gKfOB/LBPYPcyZTVP9A8gV8lO0tw62/3gpAs0jS1OOmvZCG7FeyEZASoFory5TjBo4IxNnvzhodh764Bt0yCN2Sbo04DI2LnVSPw1Mucnn4pcOYuHai2bGpk7ZKUXO0BjdtuanffWNmxmD/f/ajW9KttU4a+4UGaD4vc+ua5D1y1OTU4LpN1+m8PfWxVPxy6y/IWJMBZzdnnfvoY06RLruf/zB/DL59MNwD3DH3wFx8m/atWe/nns4eVB6uxLT3pmlsD8sIQ9WRKiTe2ff8WP29DoPmDEJAcoAyYVutbEU1JAmS98jRUNCg1SIUMiYECpkCtbm1CB4VbMxT1YjtxLsnEJgaiBs+vwGXsi8hcHig6qLe+7mos1ehtbUe19zPkXpc7HHi/hWHxLmJKNxaaJXPqDl6n8dx/xuHnNdy7FYob3Qi1NPTgxtuuAGbNm3CunXrrBHTgGPqZIrqnFydEDgiEJeyL1k8EZKUmTaHEKA5Z0/pn6U4ufEkgCsfBFOHBbPHjZoWhdOfnVYtXWHqcQOHB6KxqBGyLhmcXE36faARV1dzF+TdV9bpMjQu9S+ntBfS8FniZ8h+ORs8Fx7Sl6ebHFdvlUcq4RXlBUG0oN99fWJ9IIgToOJAhVaBsrUuDLUna+Hk7gS/RD+dt0dMjIBHqAeKthUh+b5ko49vasGzQq6AcIUQxzccR/zseABA8Mhg3PjFjdi9eDc66kxbaLo6sxruge5azzdiQgSOvnHUqOcjl8oRmhaKrJezcCnrEsABOi53IOG2BDScbQAjN3xtvcbCRnBduFrfKVwnLiKnRKJsX5nJiVC3pBtcJy5mfTkLHA4Hg28fjHPbz+HmrTcD6P+zou81ZFtAdD0/S4y+FC4TglEwqhYNRY/5Bd6W+BwJlwmVrTsKgMPjQNYhw5cjvoRbgBsCRwRCtFyE7uZuTHlzisHHFq1Uts5Y41yqF8qLVogABnYrlDf6G9/Z2Rl5eXnWiGXAaqtqg/8Qf7OPE5oWipqcGgxZMMQCUV1hzogx9Q+JX5Ifmi82Q9YtgxPfyaw3PHvc3A9zEZCiORmgKcf1ivSCi6cLGs42IHikaV/s6nFtv3E74m+ONyouXV9Od2XdhU8GfYLMFZngcDgW+5KoOKC9rEZf2O4xXSO1hMuE6GzotOiFoTqzGmHCML3dsRwOB6n/TkXuB7kmJUIAIIhVJoHGFOlmrMxA6Z+lyP8kXyMBGHLXENQcq0Hpn6WQtkmNXpOv7K8yRM3QrtcKywhD7T21Bh1TuEwIabsUWWuzVNuS5idhxocz4OrjqqqnA67U4hjSLRaYEqjzdYieEY2LOy9i3P+NM/RpauB78xE5NVI1LD/h9gR8P/F79HT2GPzeGXbfMIiWi6CQKgAO4OzhjNaqVhzfoFy3z1otIF2NXQCUy6BYqlhePRnKWpsFuVRu1Ofo7+f+BhTKukSFVIHIKZG47ffbUJ1ZjfL95ehs6MSxDcdw/J3jBrcIWqvFF1COCr18/LLyDyMGlViDSR1x99xzj85iaWIaS3SNAdYbOdZa3mrWiDGWV4QXeHwemoubzQ/qH3X5daovUnNwOByL1gk1FDTAf6hxyW3vGa8B5aSGd/51J7jOXJOLg3Up31+u6krsC1u7oGu5DfEaMQ4tPYS/n/sbeR/lKQuHeywz8qdKVKWzPkg9rrZLbWg404Ca45rLy/RX98AwDMRrxdjz4B7VNmMK2i/8egHxs+O1khZnT2fIOmTY/cBurVq9/mIq21uG6BnRWtu9I73hGeZp8OfaPcAd+CcsngsP/9ryL1USxF64oqZHIe6mOINqcXqPGFMXPSMalYcrTVrwWdYlw8mNJzHm6Svr7wWlBsE92B1lfxpehL3rnl0AlBd/MMDJD07i5Lsn4RnuCdFyEQ48dQCA7h8Zpsr7JA95HysbAzhcDhRSZfe1JQxdOBTgKN+PxnyOxGvEOPr6UQjiBBp1iUdfP4qoaVGYsHYCHq14FFxnLhg5Y3DtYX/1R/21Jul7f+1evBsfx36MpnPK7zSeC8/qC1/3xeQlNj788EOMGTMGjzzyCJ5++mmNf8Q4liiWBpQtQpdPXIa8R97/zkYwdXmN3jhcDvwS/dBY2GiBqJTq8+u1WoRMFTA8wCKJkLRVitbyVqMTod4zXrNCx4YiZmaMcvkNHeu1GVvw2NXUhdqTtQYVSrO/CC9lXUJbZZsqGctcnQnRchFObjyJS9mXkLwoWTmKCsYlFbowDKNsEdIxYkw9ruyXs+E/1B+nPrxSNN1fsaW8R44/H/oTR9cfhbxb+Ys7eHQw4mfHG5QYMAyD4l+LdbaM8Zx5aClpQelfpch5LcfgmDobOlF7shbR07UTIcDwYfQMwygfl9G8sPS+cMXMjAGHxzGoiF/XiDGWX5If+D58VIur+42tt7PfnoVboBtiZsaotqm6x348Z9AxRCtEqDxciWH3DVNd/FuKWzDmWeWADJ8EHxx/+zje5L1psSSo8nAl9j62F7JOGTJWZ+C/Xf+FzyAfZL+c3e9nsK/EIHN1Jn686Ud8mvip0Z8j9vV19XfFhLUTAOhPYBQ9V2oPD71wyKDnrH6sDS4bDD6XugqiFXIFtk7bitOfnYZHqAcaCxuRsToDT3U/ZbW1Hg1hUjHE6dOnMWrUKADAuXOab1pzZ+YdaBiGsViLkG+CL5xcnVCXV4eQ0SEWiE4ZnzldY735JVkuEWIYBvX59RZpEQKUdULnfjDsS7gvDYUNcPN3U9UtWULI2BBc3HkR3wq/xUPFD4HnopxqwZAm6t79/JWHKuE72BeeoZ799vOrN9cLYgUo3VOKo68fRd7mPLh4u+D6j69HY2EjMldkImN1BpovNqPhTINZhcOSMgk6ajtU8+n0F1ftyVpMfn0yTm48CdFyESKn6E7wuiXd+HrU12ivaVct3ipcJoSrvysKviowqEi39mQtupu7dT5G74LVoNQg1Byt6ffCUX6gHP7D/PVOTxGeEY7iX4v1ngvWn4/8ic76ToxfNh4TVk9QvTcip0RqPH7M9TEQrxZj9vbZAPTX4jAMg9rcWmSs0v3e4HA4qtFjxnSzMgyDYxuOYcwzY7SuF4NvH4ztM7erWkT0Ea8RQ7xaDDd/N9zw+Q0ANM9/xuoMPHjuQdUErhye+d3KLaUt2H7Ddq2u34XHF+LTxE8hXiUGh8vRW8unr5vpwDMHcHzDcfD4PFWdk7OnM469ecygz5FCrkDy4mRc2HEBCbcmqLar1yWqf0+Mf2k8PhvyGXLW5cDJ1cmg2kO2hdOYrsDedU/Ji5KxZcIWSEolCBkbgpqjNRrn0dhBJZZkUiJ04MABS8cxYHU3d0PWKbNIIsThXlmJ3lKJUFdjF2QdMnhFmt8iBFg2EWqtaIW0TWqR+ipAmQiJlpk/lJTtFrPkj4L05elQyBTIWpOF7yd9j7uz7ja4ibr3FzDbLWbKiJR9S/YBgKr+4Nibx1RJkHCZEJdPXMaWiVuQtjTN5C+06sxqBI0M0lhipL+4NvpvBBhg2APD4B3lrfXYrZWt+HrM1+i43IHwieGIuS5GdduQBUPw9zN/Y+anMwH0XaR74dcLiLkhBk583V+d6jH9eOOPAPovAC37S3e3GCs8IxyHlx6GQq7Q26okXiNG/sf5CBkXggmrr7QKsLGod4MGpgTC2cMZ1eLqPuNqr2lHZ31nny2u0TOikftBrqolwhCle0rRWd+JIXdp1zKGjAuBi7cLyvaVIe7GOL3HUMgV8Az3xLj/jdP4nPW++CukyikoFD0K7Lp3F2Z9NcvgONVJ26T4+Zaf4T/UH4NmD9I4b3xvPhYeW4iP4z7G6c9P60wsVD841JLt8S+Nx89zfkbxr8XwCPNAe3W76r0ibZVCvEqM5MXJ/X6OMlZm4I8H/sCQe4ZoDfTQV3R9V+Zd+CTOsNpD8VrxlRZO7pV5swxJoHSNZhv/0nhweBzE3xyv9bjmDqIxlVmD9S9cuIA9e/ags7MTAKwyh821rrWqFc6ezlrDkk1l6TohSbkErn6uRhd/6mPJRKgurw6+g33NGuWlLiA5AB21HWavtm5KfZAhJqyegNFPjcal7EvY4Gx4E3XvZvLyA+Wq4mZjRqRwXZRfF1wXLuYdmAdnd2etuqbgUcEIHhUMV39XkxcL7a8+SGdcjPKHQOkfpTi+4Tj8kvyUNSLPHEDtqVp8PvRzdFzugHCFEAsOLdB4zq6+rki4LQH5n+Urz1Ufo2CKf9HdLdY7JlVrBkf5xd8XffVBLDYRqc/XP+FnT2cPuC5czPhghlYsvV8HDpeDmOti+q3FqTtVB99Bvn1+9qOmR6HmaA26mrv6PJa6Y28ew8glI3V+bjkcDhJuS8D5H8/3eYy4WXHobunGsPu018ATLhOqkv+M1Rl4Wvo0Em5PQMHXBTjwdN8/4nV1XzEKBrsW7kJ3azdib4jV+XnxCvfC8IeGQ1IqwS+3/6Jxm3rXqPpn8U3emyj+tRhDFw7F8IeGa3yOXLxcMOLREeis6+z3c9Qt6UbRtiKkLE7Rebuu2kM3PzfcsecOcJ25aClt0XvsrFeykP1KNmQdyq7AJQ1L4OrratS8WX5JV0ZC8lx4mLBmgt4yAMD8ha9NYVIi1NDQgOnTp2Pw4MGYNWsWLl1SXngXL16MZ555xqIBXuvaKtssUh/EfoB1zTBtzqRZliqUZvkn+aOxsNEiSXN9fj0CUyzTLQYALp4u8In3MbtOyFqJEABM3TBVNdmiMcWU6l/A9fn1KNpaZFTNBPvrmueibL5nvwR1faGNemIUTm48ibQX0kz6QuuvPkhfXIyCwYh/j8D8Q/Mx7L5h8I7xxvENx/FV6leQtkqRvipdbzzJi5JR8HUB5FL99XWScgnqT9cj9sa+1/MTrxFDLpWrErRfbvtF777NF5vRWtGqWmZCFy6PizBhWJ91Qr4JvvAf4q9zKLuuC0vMzBiU/lna5/Poq1Ca5RXuBd/Bvqg4WNHnfurHrBJVYcS/R+jdZ/Dtg3Hh5wtQyPRf/E++fxLD7h2m8wekrhaQW7bfgpBxITj+1nHlUG09dNW1iFaIUPl3JSQlkj6762ZsnIFh9w3D+R3n8ccDf2jEIlwuVLbsvXAYxb/9083JKH9UzPpqls7P0cj/jETpnlIkzk3s83NUtLUI/kP8tSa9ZOmtPUwLxaTXJqHsrzJ0NnZq3Z79ajay1map6qGEy4Rw9XHFvIPzwHXRPSFib4XfF+L3u38HYP+C6L6YlAg99dRTcHZ2Rnl5Odzdr9RBzJs3D7t377ZYcAOBpeqD2A9w5ZFKNBY2ortFOZmfuTN1WqpQmuWT4ANpmxTtl8xrdQGULUKWKpRmWWLkmDUTIXayRcD4omThMqFq+QZjR6SwFxZDihoHzRkERsbg4u8XDY6NJW2Voi6vzqAWIV1xZa7IRPFvxUh7Pg0PlzysasXqbx6mqKlRcPZw7jPmC79eQPjEcLj5uRkU09PdT2PI3UNw4ecLOPjsQZ37l+8rR5gwrN8W17CMvhOh05+dRsqiFIO7Y6NnROPy8cvoqNc/71FfhdK9j1W+z7B1JY+/dRzD7h2msX5cb2HpYeA6c1Hxt+7kqqOuA0Vbi5D6WKrO23W1gADAgsML4BnheSUR0aF362nh1kIcff0oupq6DPrhcOMXN2LQrYNw5oszqlZbQbwAR9cfxa6Fu9Ba1aoqM+j9o6I3r3AvJM1PwrENx/p8zPxP8/W2BvWnu7kbTu5O+OO+PzR+nOasz4F4tRh+Q/20nnfg8EDc+MWN4Lny+pw3q+CbAuy6d5eqpsreBdF9Menq+Oeff+K1115DRITmr5iEhASUlVlm/ZneXn75ZaSnp8Pd3R0+Pj4G3YdhGCxfvhyhoaFwc3PDjBkzcP58302utmaJyRSBKx/go+uPgu/NR82xGosMGZWUS0yeVVoXZzdnCGIEFukes9TQeXXmjhzr6ehBS0mLVRIh9dczICUAifMSjfpSUc1YzTV8XTZd7yFdI1LU8Zx5GPHvETjx7gnjniCAS9mX4BXpBc+wvj8ThsSl3lrU3/PlcDlIfiAZ+Z/m692n+NdiDJqtv1tMV0w3fXMTgkYGKWupdKxHVvpXaZ/dYqyICRGoOqI7EWosakTN0RoMudvw+cM8QjwQkBLQZwKja2kNXaJnROtcgLV3N1NbdRsKvy/E6KdG99lKzeVxMejWQXpHj+V/mo+w9DAEDNP9I0hfCwjPhYe7xXejsagRP8/5Wed92Vqe9JXpEC0XYef8narRhYZ+h87ZMUc5MkumALjA6CdHY+GJhXik8hH4DvLF+R3nDU4MxjwzBgVfFaC9VvcPx7rTdag7VYekBUkGxdYb14mLpqImVB2uUiVcR984iswVmZB1ypBwS4LO5z1kwRCkPpqKioMVkLZLtW4//eVp7F68W6uwvL/vDnsxKRFqb2/XaAliNTY2gs+3TK1Lb1KpFHfeeadRS3esX78e7777LjZt2oTs7Gx4eHhg5syZ6OoyvD/b2tqq2uAVbpkWF/ZN1t3Sje0zt1tkyKikzHIjxlh+SX5oKGww6xiybhkaCxut0iJkzuKrjUWN4Hvz4RFq+gK1uvS+yIZPCIdnmKfBXyrs/T1CPHDTlpsMvp++X9e6ak/UDX9oOKpF1ag/Y9y51LfQqrFxle8vN6oVCwCS709G6Z+lOhc57W7pRsXBCtVs0sbENHf/XLh4u6DmmOZ8R4yCQfm+coMSoZC0ELRVt0FSIdG6Lf+zfAyaMwhu/vpbqnSJuV5/95isS4bGosZ+W4REK0W4lHMJTeeb0FqlObVD1eEqjXN+cuNJxFwfg6JtRf22Ug++fTAu/HRB6/2lkCuQ+2EuRi4ZacAz1OYV4YXEuYm48MsF/PnvPzVuYz8jl7IvIf+zKwmxsfNisRNX8lx4gELZ6uI/xB9Za7OM/lERmBKIiMkRyH0/V+djnf70NAbfMRiuPq4Gx6dO/Zpx+PnD+Ovff0G0TARZl6zfa4ezpzOkEin+evgvjdak/E/z8efDf8IvSbs1Sf0xbV0Q3ReTEqGJEyfiq6++Uv3N4XCgUCiwfv16TJ061WLBqVu1ahWeeuoppKQY1gTIMAzefvttvPTSS7jlllswfPhwfPXVV6iursbPP/+s937d3d2QSCQa/6zJUl1jLOEyITg8jlHT6PeltbzVol1jgGUKphsLG+Hs7mzQEhHGCBweiIaCBpPnYrLGiDFA+yIbnqGcW8aQLxX1ddk6ajsQMTHC4F9mphY1uge6I2lBEk6+d9KIZ6l/oVVj4gKAioMVRv8S9Y7yRtTUKJz58ozWbSW7S+CX6Nfn8jX6YnL1ccXN225G5cFKtJRdKUytza2FQqboc5oAlouHC4JSg1At0pyzR94jx5kvzyBlkfFdI+wkmbrq9erP1MPFy6Xf0aJcHhfZr2TDI9RDo3VJvEasGp0oWi7CkWVHcGrTKbgGuBr0Ay1yciQUPQpUZ2o+34s7LwIK9Nky158bP78R0ddFI29THg4tVc6lc+CZAxAtF4HnwoO0RYowoTIZN7aupa9uZFN/VIx9dixy389FT0ePxnZZtwwFXxcgebFpM6trPb5MgVObThmUBAHKcyMpk6D4t2LV5/zUR6ew97G9UEgVSLwj0aEKovtiUiK0fv16bN68GTfeeCOkUimee+45JCcn49ChQ3jttdcsHaNJSkpKUFNTgxkzroyiEAgESEtLg1is/029bt06CAQC1b/IyP4nnTOHpSZTZKmm0eeYP7EdYN7yGvpYIhGqy6tDQHKA3iUYTOUT5wOOEweNRabFZ636oN4X2fCMcNSeqEVPR0+/XyrsF3B4RjgEsQJ4hioTb2v/Mhv5n5E48/UZdDUZ1gKrkCtQnWV4oXRfxzH1l2jyomTkf5avlRxc+OVCv6PF+hI7MxaJ8xKxZ/Ee1bHL9pYhamqUqm6rP+EZ4ag8UqmxreSPEvD4PERNN3weH/XjdTV2oeGsdussWx/UX0LPntO2yjZV1wqbDIx/aTzGvzQeUdOjkLU2C13NXTjz+RnDJuNz4mLQHO3usZMbT2LEoyMMPmf63LHnDvgl+SHn1Ry8yXsTxzcch/8wf8w7OA+xN8aqBhMYU9fSX3etvjW7VPvp+QxHTY+CV6SXVoJe/Gsx+D58RE42/xqlPtLR0B/Q7HOTtkpx8NmD2LtkL/Y/ud/opUEcgUnvpuTkZJw7dw4TJkzALbfcgvb2dtx22204efIk4uP1Nx3bUk2Nshk6OFhzFEVwcLDqNl2WLl2KlpYW1b+KCsNGQ5jKki1C7AdxzLPKicrGLxtvVl+srFuG9kvtDpkIWXIiRXUcLgeBKaZ3j1mzUFqdd7Q33IPctUYI6sImUZWHK7VGJ1nzl1nwSOVQevVuhr40nGkAo2DMHgloztDcQXMGoauxC5WHryQc8h45SnaV9NktZgi3ADfUHK3BqY+UM2Gz64sBho3sDJ8QrtUilP9pPpLvTzZpMISTqxMiJkfoHEZvaH0QoDynwx4YhrpTdaoCYY8QD2S/ko1dC3fB1dcVHB7H6PWkEm5PwPkd51WJY8PZBlQerkTKQ6YVBqvjcDi4O+tugKPsouS6cPHA6QdQtrfM6O4rljkJeH+xjnl2DI5tOKZxjPxP85G8KNkirc/sSEdjW8BUz61Hgdz3c42up3IUJqfVAoEAL774IrZt24Zdu3Zh7dq1CA0NNeoYzz//PDgcTp//CgsLTQ3RJHw+H97e3hr/rEXWLUNnfadFEiH1XyOT108GX8DHoFsGmVWY1lbVBq4zV++Mt6byS/JTTYZoqrp8y48YY5kzcsxWiRCHw0FYRpjWhbEvVYerED7RsPl5LIUdSm/IRaAqswqhaaFm/9o3hxPfCUPuHoLTn51Wbas8VAkndyeEjDFvklJnd2VNxYEnD6gu6tEzog0e2RmeEY66vDp0S5QjQttr2lHyRwmSHzC9ayTmeuViur0ZMnRe3XUfXgcAymJ8HgdT35mKh0ofwqOVjyJweKCqq96Yi2z09GhIJVLUHFX+cM39IBeJdybCI8gy30cn3j2hSs7Y0VvmJDPWnBsncW4i5F1y1QzjknIJyveX65xHyVjGjgrtzZTWJEdj8kx0zc3NyMnJQW1tLRQKzTfHvffea9AxnnnmGdx///197hMXp3920b6EhCi/tC5fvqyRoF2+fBmpqakmHdPS2qrbwOFx4B5k/lIMvT/A7Ognc2bqlJRL4BXhZfHuJ/dAd7j6uqLpXJPOeU8MUZ9Xj/Ev9D1RnakChgegZJf2xaE/sm4Zmi802yQRApQXxt4LoerT09mDmqM1uOGLG6wblBq2hYORMbi486JG15KupT2qRYbVB1lbyuIUfJf+Haa9Ow18bz6Kfy1G/M3xZn8O1GfZ/Xb8t3ALcEPRtiKNmbn74hnmCa8oL1zKuoSY62Nw5qsziJgUAUGM6XVyMTNjcOTFI5B1yVQTHDIMY/DQedbR9UcBXKmpaSpqQtLcJK3uIvZvoO8Zx9llYeJnx+Pc9nPwH+KPM1+ewR1/3tHvsjCG0BdXX6+DPS/wWS9nwX+YP46+fhQJtybg9BenETMzBl7hXmadD33deYDhS13oak262pIhkxKh3377DXfffTfa2trg7e2t0TTH4XAMToQCAwMRGGj57g0AiI2NRUhICPbt26dKfCQSCbKzs40aeWZNbVVt8Az1NHmOH3W9PwTqo59MfVNao1AaUL5H2O4xUxKhzoZOtFW3ISDZei1COa/m9L9jL03nmuDk7mSx5Uj6E54RjsyVmWAUTL8X6ZqcGrj6ucIn3scmsQFX5raKnhGNE++eUCVC6mtgqX9pVmVWYcg9Q1T7mHuxM1XQiCD4J/mjaGsRUh5MwYVfLmjN2Gwq4TIh5N1yZL2chZ62HoOTIFbEhAhUiaoQfV008j/NR/rK/pc56Iv/EH+4+rkqj/nPoq+tFa2Qtkr1Dk/vTV9SUXGwAuX7y026yLLvnaQFSTj34zl4R3vDd7AvSv8sVZ0zU1ni4m9rXB4XpXtKwePzUHmkEqc/P42pb001eJkcffpqAWNv74upia6jMSkReuaZZ7Bo0SK88sorOofRW0N5eTkaGxtRXl4OuVyO3NxcAMCgQYPg6ansWkpKSsK6detw6623gsPh4L///S/Wrl2LhIQExMbGYtmyZQgLC8OcOXNsEnN/2irb4BlhuRFj6gKHB6Jwi3nditYolGaZM4S+Lr8OXpFecPU1bchofwJTAtFW1YbOhk6jhiQ3FDTAf4jlR4zpEzgiEHKpHPUF9QhM7vsHBVsfZMtFkdUvLlwnLurP1OP8jvMaX9zsl+bwh4ajpaQFYePDzP5yNwfbEpG8WFk0HZoWis76TtXabJZIziasnYCc13NUcxwZcsFg4wrLCMO57edQnVmNjtoOJNyaYFZcHA5HNYyeTYTqTtXBL9HPoKVr+ksqoqZFmXSR1XjvOHORuTIT4RPDjU4cdTH34m8P6ufjp5t/Ao/PQ21uLcSrxGadj77eM4a0BF1tCaU+JiVCVVVVeOKJJ2yWBAHA8uXL8eWXX6r+HjlSOY/EgQMHMGXKFABAUVERWlquDE997rnn0N7ejocffhjNzc2YMGECdu/eDVdX61xAjWWpyRR1CRweiMNLD4NhGJMvfpZeXkOdX5Kf1rwqhqrPr7dafRCgXHvKK9ILdfl1iJpi+GgcW9UHsXjOPISmhaJaVN1vIlR1uApxN5vWzWwO9S/GL4d/CUbBIH1lusYXpGi5CPUF9QhIDsCJd09YZP4rU7EtEWlL01B7shbZ67IRMzMGR18/arHkTNdEj/2OovonrtTHU3Ep6xJOfXQKQ+4eYpG4Yq6PQfar2Zj82mQAxtUHmZpUGDoqCVC+PzrrO3HhpwsWeV+Yc/G3J+EyIbpbunHszWPg8DhmJ0HmuhoTSn1MSoRmzpyJY8eOmVy/Y4ovvvgCX3zxRZ/79B7yyuFwsHr1aqxevdqKkZnOkpMp9uY/zB+dDZ3ouNxhcrGzpFxi0BwnpvBL8kPBNwUm3bcur86ia4zpwnYtGpsIWet86cPOJzTiEf1rNylkClRlVmHS+kk2jOwKtslc0aP8Ysx6OQtnvz0LQZwAgjiBcpK974vA4XIgyrdfEsTGCigvvgEpASj8vhAJtyVYLDkztStBPS4en4eCbwow4tERFokrakYUfr/7d7TXtMMjxAN1p+oQPMawLmtrJxXq752rtRDXkqa8MQUn3jlh9FqD1nC1JpS6mJQI3XTTTfi///s/FBQUICUlBc7Ozhq3z5492yLBXevaqtoQPNq0YuH+uHhcWUDU5ESozLLrjKnzS/JD07kmKOQKo2uk6vPrMeqJUVaJi2XKyLGGggaLjOIwRnhGOM5+d7bPfWpza8Hlca1WU9Uf9QuZXCrHyMdHInZWLFoutqD5YjNcvF1Uw5jt/eUOaDfvs0siWDoJ0vVYhiZD4ACnPjxlkbjcA9wRNCoIZXvLMPSeoag7VWfy2lWW1vu9czUW4loSu0wOnQ/LMikReuihhwBAZ0sLh8OBXG7arLzXOrafn33jtlW1qeYmsUZxKHsxj7k+xuj7Mgxj1RohQawAjIKBpEzS52y9WnEpGNSftm7XGKA8d/0tdqhO3iNH07kmm3aNAUCYMAwtJS2qX/O6VB6uRPiEcIsU5RtLXwuIq5+r6nMgXiPGue3nHOrLXbhMiKy1WarRMJaIxxJdCdZqIYm5XjnL9KBbB6HpQhOCUg2bQ8iarpVCXEuh82E9JiVCvYfLE8Ow/fyA8o3LziptreJQc+bD6WrsgqxDZrURUDxnHnwG+aCxsNGoRKilpAVyqRx+iX5WiYsVMDwA9afrDW6xar7QDK4z16IL1BqCL+AjMCUQVaIqDL59sM597DF/EGBYCwj7f0f7crfGkGBLdCVYq4Uk5voY/DbvN9SdqoN7oLvF5w4z1rVUiGsJdD6sy6hEaNasWdiyZQsEAuW8Fa+++ioeffRR1WrwDQ0NmDhxIgoKTKv9uNapv3EZhkFbdRvO/3QeJ945YZW6iMDhgTj/03mT7ispl8DVzxUuni4WjUmdf5I/GgsbETfL8Fqzurw6+CX5qSbwsha/wX5gFAyai5vhN7j/pKvhbAP8kvzs0uoSlhGmNxFiGAaVhysx5tkxNo+rvxaQ8v3lOtcEA+z75e6ov7ytFRc731NPew8Kvi7QKJS21zQG11IhriXQ+bAuoxKhPXv2oLu7W/X3K6+8grlz56oSIZlMhqKiIosGeK3p/UVvrSQI0FxAlOdsXOJgzRFjLFOW2qjLr7PK0hq9cZ24CBimnJTSoETIxiPG1IVnhOPEOyd03tZY2Iieth6zZ0U2RX8tIAq5wuTh1dbiqL+8rRkX21Ltm+iLM1+cQeqSVK3HtLVrqRDXEuh8WJdRiVDvUVm6Vi0m/RMuE0K8VmzUPCKmEMQKwHPhoelck8GTo7Ek5dYrlGb5Jfkh/xPD1qFi1eXVWX1kFlvLxc7OnXhHouo2fb+QGwoa7FaMHJ4Rjt3370ZPRw+c3TUHLlQerkTo+FCrt6CZwhG/3B31l7c14+qdUAWNCDJopmVCrhUmL7FBTGfKPCKm4HA5CEhWXsxNSYRs0SJk7KSK9fn1Vh/Rwv5CjrkhBt1NV1pA+/qF3FDQgMS5iVrbbUF9Adbew/3tVR90tXLE5AywzTD1zvpOnHj3BHYv2g1Fj+7Ei5BrkVEFDexCqL23EcOZu8CdsUwtmLbW8hrq/BL90FnXic6GToP27+noQfOFZqvPISRcplxgsXR3KSr+rgCgu2uCpZAr0FjYaLeusb4WYK08XImIiRE67kWIpqlvTwXXiUtz9pABx+iusfvvvx98Ph8A0NXVhUcffRQeHsoRBur1Q0SbPeoPAoYHoOQP4xcQlZRLkHB7gkVj6Y0v4MMj1AONRY0IT++/1aKhoAF8Ad9qs3GrEy4Toqe9Bzmv5WADfwMUUv2/kFtKWgAGRo1+szRdC7BKyiVorWxFmDDMPkGRq0rW2iyao4YMSEYlQvfdd5/G3/fcc4/WPoYuuDoQ2aP+IHB4II6+dtTo+9miWBq4UjBtSCJUl1+HgJQAm7VCTnp1EnJe639NqIaCBvgm+oLrZPsRYyxdC7BWHq5E0Mggq478I9cGRx0pR4gtGJUIff7559aKY0CwR/1BYEogWitb0dXUZfAipXKpHG2X2myaCBmiPs/6EymqU++u7OsXsj1HjLF0LcBadbgKEZOoW4z0zVFHyhFiK/b7CUtswtXXFV4RygVEDdVa2QquE9cmk6qxcwkZwlZD54ErF4f0VekIGRuCyCmRemu5HCERUl+AlUX1QcQQfbVUZ6zOoDlqyDWPEqEBgB0GbihJuQReEV6qLhZrMqZFyBaLrQKav5DTl6dj+sbpuJRzCaOfGq0zGXKERAi4sgArAHTUd6DhbAPCJ9CIMdK3jJX6R4cJlwltPpkiIbZGidAAwK6kbihbjBhj+SX5ofliM2Tdsj73a7/cjs66TpvM1dP7F3LouFAkzU+CpFSi9QuZUTBoOOt4iVDVkSr4JfnBPcDdzlERQohjo0RoADB2CL0t5hBieUV4gcfnobm4Wes20corrS91eXUQxArg4qUs/BWvEauWBrA0Xb+QJ66biPL95QhNC9X4hSwpl0AhVcB3kK9VYjFGmDAMklIJ2mvaUXm4EpGTIu0dEiGEODxKhAaAgJQA1OXXgVEYNhO4rUaMAcpJH/0SdXePsRMbiteIUZ9fr6oPYruubLmul0eQB9JXpWP/E/shl8pV2xsKGuCT4OMQMzfzBXwEJAegSlRFEykSQoiBKBEaAPwS/aDoUaD5YrNB+9tieQ11+uqE2GJN0XIRznx9BgEpAXad+j/1sVRwnDg48e6Vdb0cpT6IbT0LywhDye4SXD5xWVUobc3WM0IIudpRIjQA8Jx58B/qj/p8w+qEbNk1BvRdMM0mQ3W5dch5Nceu6x/xnHmY/t50iFeL0XapDYDjJEJs61lHbQcKvi6AZ7gnvKO87dJ6RgghVxP6dhwgDK0TYhhG2TUWbcNESE/XGBsPWxfEznprzzlNKv6ugFeUFw797xCAfxZbHaos4LZnywubMJ7/8Tzk3XJEToqkhTMJIcQAlAgNEH0lQupFyV1NXehp74FXpLJrzBYXd7ZFiGE0a5g6Gzrx8y0/Q7RC+fjqU//bC5fHRcOZBhR+X4gqUZWqRcgRWl6Ey4RIX5UOADj7/VlKggghxACUCA0QASn65xJSL0qWlEng6ucKF08Xq1/c2QTMN8EX0jYp2i+1q27b/eBufBz7MZrON0Eqkdpskdr+qCaZ61Fgx792oKe9B+d+POcwSUf68nRwnblgZIzdW88IIeRqYNQSG+TqFTg8EM3FzZC2SbXWnlKfTr/hbINGbYk1L+5sAgYA3tHeaCxshHuwO7Zfvx3l+8vhM9gHjYWNDjf1v3CZEAqZAuLVYoADiFeLHSIJApQteOzq4bRwJiGE9I8SoQHCI8QDbv5uaDjTgNC0UK3bNRIMLlCbW2v1i7v6Y/oM8kH5gXLseXAPWkpaMOLfI+Ae5A4uj2vTRWoNlbEqA9nrslVJhyMkG7RwJiGEGI8SoQGCw+Eo64Ty63QmQgCQ9kKash5HAZtd3NWToay1WQCA8S+Ox4S1Ewy6n704WssLLZxJCCGmoRqhAaS/kWNbp24FGIDrwrVpUbJwmRBcZ+VbkefC6zcJsjf1pMMR6pYAWjiTEEJMRS1CA0jA8ACc+fKMztt+m/cbqg5XYeR/RmL6u9Nt2q3iaK0rfXHUlpe+FsZ01HNJCCGOgBKhASQwRbn4KsMw4HCurCy/d8leFG0rQtKCJEx/dzoA213cr7a6lr5aXtjbCSGEXD0oERpA/If6o7ulG21VbfCKUM4T1NXchbPfnUXE5Aj867t/aexv7Yu7o7au9IVaXggh5NpCidAA4uzuDN8EX9Tl1cErwguMgsHvd/+OMGEYbvvtNp33sebFnVpXCCGE2BuH6T2dL9EgkUggEAjQ0tICb2/bLTthaaKVyokR6/LrEDw6GGn/S8OR5UdQuKUQiXMTwXXm9tnaQQghhFxNDL1+06ixAYKdvLCroQv1efU4//N5HH/rOGJviEX2K9m0KCchhJABibrGBgj12hsXLxcU7yxG3E1xOLnxpMPMikwIIYTYGiVCA4hwmRBdTV04/tZxcHgcFG0toiSIEELIgEb9IQPMlDengOvEBSOnRTkJIYQQSoQGmKy1WVDINCcvJIQQQgYqSoQGEEdcGoIQQgixJ6oRGiCuxskLCSGEEGujRKgf7DRLEonEzpGYp7WjFakvpGLYk8M0nsuwJ4ehvasdrR2tV/1zJIQQQljsNa2/6RJpQsV+VFZWIjIy0t5hEEIIIcQEFRUViIiI0Hs7JUL9UCgUqK6uhpeXl8ZCpeaSSCSIjIxERUXFVT1jta3Q+TIcnSvD0bkyHJ0rw9G5Mpw1zxXDMGhtbUVYWBi4XP0l0dQ11g8ul9tnJmkub29v+qAYgc6X4ehcGY7OleHoXBmOzpXhrHWuBAJBv/vQqDFCCCGEDFiUCBFCCCFkwKJEyE74fD5WrFgBPp9v71CuCnS+DEfnynB0rgxH58pwdK4M5wjnioqlCSGEEDJgUYsQIYQQQgYsSoQIIYQQMmBRIkQIIYSQAYsSIUIIIYQMWJQIEUIIIWTAokSIEEIIIQMWJUKEEEIIGbAoESKEEELIgEWJECGEEEIGLEqECCGEEDJgUSJECCGEkAGLEiFCCCGEDFiUCBFCCCFkwKJEiBBCCCEDlpO9A3B0CoUC1dXV8PLyAofDsXc4hBBCCDEAwzBobW1FWFgYuFz97T6UCPWjuroakZGR9g6DEEIIISaoqKhARESE3tuv6URo3bp12LFjBwoLC+Hm5ob09HS89tprSExMNPgYXl5eAJQn0tvb26x4stZlgcvlYtz/xmndlvNaDhQKBcYvHW/WYxBCCCEEkEgkiIyMVF3H9bmmE6G///4bjz/+OMaOHQuZTIYXXngB119/PQoKCuDh4WHQMdjuMG9vb7MTIS93L4iWi+Dh6gHhMqFqu3iNGLmv5CJjdYbZj0EIIYSQK/ora7mmE6Hdu3dr/P3FF18gKCgIx48fx6RJk2weD5v8iJaLAACjnhiFE++egGi5CBmrMzSSI0IIIYRY3zWdCPXW0tICAPDz89O7T3d3N7q7u1V/SyQSi8agngyxCRElQYQQQoh9DJjh8wqFAv/973+RkZGB5ORkvfutW7cOAoFA9c8ahdLCZULwXHgAAK4zl5IgQgghxE4GTCL0+OOP4/Tp0/j+++/73G/p0qVoaWlR/auoqLB4LOI1YsilcnC4HCh6FBCvEVv8MYwhWinSG4N4jRiilSIbR0QIIYTYxoDoGluyZAl27tyJQ4cO9TmEDgD4fD74fL7VYhGvEatqgpw9nXHqo1OqLjJ7tQxxeVydMajHSgghhFyLrulEiGEY/Oc//8FPP/2EgwcPIjY21q7xqCcWwmVCXMq+hOyXs5G+Kt2uyVDvIm7hMqFWrIQQQsi1yKEToX379mHfvn2ora2FQqHQuO2zzz7r9/6PP/44vvvuO/zyyy/w8vJCTU0NAEAgEMDNzc0qMfdFIVdoJBZBI4MgbZMiaX4SOBwOFHJFP0ewHvVkKHN1JhgZQ0kQIYSQax6HYRjG3kHosmrVKqxevRpjxoxBaGio1jwAP/30U7/H0Dd3wOeff47777/foDgkEgkEAgFaWlqsMsfPlolbkLI4Bcn36y/gtqU3eW+CUTDgOnPxtPRpe4dDCCGEmMTQ67fDtght2rQJX3zxBRYuXGjyMRw0x9MQlh6GKlGVQyRC4jViMAoG4ACKHgVEK0XIWEn1QYQQQq5dDjtqTCqVIj093d5hWF14ejiqM6vtHYaqJojrxMV9uffBPdgd4lViu49oI4QQQqzJYROhBx98EN999529w7C6UGEoGs42oKupy24xsEnQ6KdGAwD8hvjh9l23g+ukHE1GyRAhhJBrlcN2jXV1dWHz5s3Yu3cvhg8fDmdnZ43bN2zYYKfILMsjyAM+8T6ozqpG3I1xdomBLeIOGRuCkl0l4DnzEDwqGGOfG4vTn5+GXCq3S1yEEEKItTlsIpSXl4fU1FQAwOnTpzVu628BtatNeIaye8xeiRBbB3TsrWPwG3Jl+RHhciEu/HwBzu7O+u5KCCGEXNUcNhE6cOCAvUOwmbD0MBRtLbJ3GGgsbIRf0pVEyInvhBs+uwFbp25F/C3xCBgaYNN4RCtF4PJ0L0EiXiNWtmRRMTchhBAzOGyNkLrKykpUVlbaOwyrCUsPw6XsS1DI7DePEKCdCAFAaFooAlMDsX3mdp3zHFlzCQ52xuveNUpsTVPV4Sqd96NlQQghhBjKYRMhhUKB1atXQyAQIDo6GtHR0fDx8cGaNWu0Jle82gUMDQCHx0Fdfp1d42gsbIR/kr/W9ugZ0WirbMOOWTs0tqtGmvGs8zYSLhMiY3WGRjLEPmbUtCiU7y/XmyRZKyZCCCHXFoftGnvxxRfx6aef4tVXX0VGhrL748iRI1i5ciW6urrw8ssv2zlCy+FwOQgThqE6sxrBI4PtEkNnYyc6ajvgm+irdduE1RPQfqkd+Z/kY/+T+zHtnWk2W4JD14zXwx8ZDuFLQuR9kkfLghBCCDGLw84sHRYWhk2bNmH27Nka23/55Rc89thjqKrS3S1iadaeWZqVuToTjYWN+Nd3/7LaY/SlWlyNX277Bf++9G+9+3wr/BaXsi6B58KDXCq3WcIhbZfiXc93lX9wAPdAd3TUdQAM4OTmBFmnDBweB4yclgUhhBCiZOj122H7DxobG5GUlKS1PSkpCY2NjXaIyLrsPbFiw9kGrfqg3u7ceycAQC6Vg+fCs1nC8fezfwMAeC48gAFGLhmJp7qfwqNVj2LBkQWqJMiWMRFCCLk2OGwiNGLECGzcuFFr+8aNGzFixAg7RGRdIeNC0FrRitaqVrs8fmNho8bQeV2ObzgOAOA6cSGXym0y0aJ4jRinNp2CZ4Qnnup+SlUzlPNqDjzDPHHx94tg5MpGTVvF1BfRSv0TUFIRNyGEOB6HrRFav349brrpJuzduxdCofJXvlgsRkVFBXbt2mXn6CyP781HQEoAqsXVSLwj0eaP31jYiOgZ0XpvZ+tvfBN9MfLxkehu7taoz7EG9jEjJkfAJ85H47FEy0WoOFiB8v3lSF+Zjux12RjxyAirx9QfdqRb7xjU65cIIYQ4DodNhCZPnoxz587h/fffR2FhIQDgtttuw2OPPYawsDA7R2cd7MSK9kqERi4ZqfM29Yt4V1MXmi80Y9o70wDAqokHO+N17alazYkelwlVSRBbE3ThlwsInxgOtwA3uyZD6oka+zcVcRNCiONy2EQIUBZMX0ujw/oTlh6Gk++dtPnjyrplaL7YrLdGiE1IhMuEOPnBSVz8/SKAKxd9XfMLWQI7WeLnwz5H8v3JGreFTwxH5JRIVQwBKQGoz69HxqoMq8ZkCOEyIXo6epTD/teKoZAqKAkihBAH5VCJUF5eHpKTk8HlcpGXl9fnvsOHD7dRVLYTlh6G3Q/sRk9nD5zdbLesRXNxM3h8HrwivHTerj57s+8gXzRfaFb9be2Lu0KmQNP5JvgP0ZzfqPeM0oEpgapic2vG1N9s19I2KbhOXJzcqExoFVIFFXETQogDc6hEKDU1FTU1NQgKCkJqaio4HA50je7ncDiQy6+9hUAFMQK4+bvh8vHLiJgQYbPHbSxshF+iHzjc/tdw84n3QUtJCxQyBbhO1q+1by5uBofLgXdM31MXBKQEIG9z38mzJeirATr0wiHkrMsBz4WHiMkRSJqfhPxP8sHhclRF3JQMEUKI43GoRKikpASBgYGq/w80HA4HYelhqBJV2TYROtuo1eKij3e0N8AAkgoJfGJ9rBsYlEma72DffmeKDkgOQNOFJvR09Fh1kdjeNUCpj6fil9t+QeXflRDECXDjlzei4kAFRMtFGHLXEFw+cRlD7hpi17olWrONEEL0c6hEKDr6yqilsrIypKenw8lJM0SZTIbMzEyNfa8lYelhqDxk23XVdK0xpg/XiQvvGG+0FLfYJBFqONtgUJLmGeYJVx9XNBQ0IGRMiFVjUk+G2AQneXEybvjkBo3C6NTHUvF+4PsY8egI1f7q97cVGslGCCH6Oew8QlOnTtU5cWJLSwumTp1qh4hsg51Y0ZYTfjcU9j+ZojqfQT5outBkxYiuaDjb0O/8RoCyNS0gJcBm67UJlwnB4Sm7EnkuPNzwyQ0ANAvL3fzd4Jfkh+rMatW6afYo4u5rzTYq4iaEDHQO1SKkjmEYcDjaNSsNDQ3w8PCwQ0S2ETQqCFKJFM0XmuGboL3ul6UxDGNUixCgXTBtTY1nGxE3K86gfQNSAlB/ut7KESmJ14jByBlwnDRrgHp3MUVMiEDlkUoMumWQXRMO9VYsGslGCCFXOFwidNtttwFQ/sK///77wefzVbfJ5XLk5eUhPT3dXuFZnRPfCcFjglGVWWWTRKitug097T1GPZbPIB9UHKiwYlRKbJJmaP1SQHIAzu84b+WorrSmOHs6447dd6B8f7nebq/wCeHI/TDX6jEZIu2FNGSuzKSRbIQQosbhusYEAgEEAgEYhoGXl5fqb4FAgJCQEDz88MP45ptv7B2mVbETK9pCY2EjBLECOLkanhPbqmusreqfJG2wYUlaYEog6vOt2yLEJkFjnxuLnrYeBA4P1Nn1xAqfEI7Lxy+jp7PHqnH1h1Ew+GbsN2AUjrMcCSGEOAKHaxH6/PPPAQAxMTF49tlnr+lusN7Y0T1h6WEQLdNck8pao3sMWWy1N594H7QUt4BRMAYNuTdVw9kGo5K0gOQAtNe0o6O+A+4B7laJia0BCk0Lxfkfz8PFywWA/sklBbECuAW4oeZoDSInRVolpv4wDINv0r5B7clajH12LKTtUlw+dtnuy5EQQogjcLgWIdaKFSsGVBIEXBndUy2uRv2ZenQ1dwG40grR3xByUxjT9cQSxAog65ah7VKbxeNRZ2ztEl/Ah1eUl1VbhTJWKutqanNrEZgaqHGbrhohDoeD8AnhqDpSZbWY+sIwDL4TfofLxy5jzDNjMPn1yUian4SWkhYIVwh1tmIRQshA4nAtQuq2b9+Obdu2oby8HFKpVOO2EydO2Ckq61EvaHX1dcWlrEuoOVpj1dE9jYWNSJqfZNR9nPhO8I7yRvOFZniF656N2hIMHTGmLiBZWTAdNTXKSlEp1ebWIig1yKB9wzPCUbqn1Krx6JoriGEYHHz2IC6fvIzQ8aGY8sYUAMoCbp4LD2HCMLuNZCOEEEfhsC1C7777Lh544AEEBwfj5MmTGDduHPz9/XHx4kXceOON9g7Path6k66mLuz41w6rD3E2ttWF5TPIx+ojx4yZ6JFlizohwMhEaIKy5suaCQfbmsi27jAMg8MvHEb+x/lQSBUaI+84XA4S5yWicEuhzlYsQggZSBw2Efrggw+wefNmvPfee3BxccFzzz2Hv/76C0888QRaWlrsHZ5VsXPUMHLGqqN7pK1StFW1mZQI+Q7ytXrBtKGTKaqzxVxCPZ09aCpqQuCIwP53BhA0IggKmQINZxqsFlPvgu3MVZk4ufEkpK1SnYl00oIknP/pPGRdMqvF1B/RSv3dcuI1YohWinTeRgghluSwiVB5eblqmLybmxtaW1sBAAsXLsSWLVvsGZrVsXPUgGPd0T2NRY1w83czqbDY2i1CXU1d6LjcYXTXWGBKIOpP16tGR1lD/el68H34ehep7Y3rxEWYMAyVR6w7Y7hGMrRKjJ62Hr2tiSFjQuAW4IaS3fZbyqZ3KxbLmjVxhBDSm8N+04SEhKhmlo6KikJWVhYA5Rpktpx12dbYi8DwR4bDzc9N77BsSzC1WwxQjhyzZiLUcLYBHiEecPVxNep+fkl+kHfJISmXWCkyoC63DkGpQTon/NQnfEI4qkXWnxIh7YU01f/7ak3kcDhImp+Ewu8LrR6TPjTjNSHEEThssfS0adPw66+/YuTIkXjggQfw1FNPYfv27Th27Jhq0sVrjfpFYOSSkcj7KA+jnhgFwDrrVJlSjMxi5xLSNwO4uRoLG02KjefCg+9gX9Tn10MQI7B4XAB0jhjrT/iEcOR/lm+VeNTtW7IPgPI89LfqfdL8JHyb9i2kbVK4eLpYPTZdaMZrQoi9OWwitHnzZigUyuLSxx9/HP7+/sjMzMTs2bPxyCOP2Dk661BfpwoAXH1d0VzcrHeOGnM1FjYiLD3MpPsK4gToaetBR10HPIIsP82BKfMbsdg6ofib4y0clVJtbq1qIVVDhaaFoq2qDZJyCbyjvK0Sl3iNGKc2nYJvoi8WFy5WJdaA7gQ6MCUQgjgBin8rxpAFQ6wSU38YBYOeDuVkkzTjNSHEHhw2EeJyueByr/TczZ8/H/Pnz7djRNbXe/SOIF6A5uJmBI8KttrQ+eRFySbd18XDBZ5hnmi+0GyVRKjxbCNiZsaYdF9rjhxjFAzq8uoQNMKwEWMsF08XBKUGoUpUZZVEiE16fAb5YORjIwFotrao/62O7R6zRyIk65Lhj/v/QOmfpcoNajVxlAwRQmzFYWuE4uLi8MADD6C7u1tje319PeLiDFuE82rnE++D5uJmqxxbIVOg6XwT/JOMG5WlzpoF06aMGGNZc/HV5ovNUEgVJrVWWXNiRYVcAeEKIdqq2xA57coM1v2tep80Lwmlu0vR1dRllbj06ajvwA8zfkCVqArdTd3IWJ2B+/PvB9dZdwE1IYRYi8MmQqWlpRCJRJg4cSJqampU2+VyOcrKyuwYme1YMxFqKWkBh8OBd4zprRPWWnOsp7MHLSUtJtcvBSQHoLGwEXKp3MKRKbvF/If5g+fCM/q+1kyEMlZmIHp6NFw8XRAwLEDjtr7mCvJN8EVASgDO/2z5xWr1DY9vOt+EzxI/Q2NRI9oq21TdwQHDAjB5/WTwffiUDBFCbMZhEyEOh4Pdu3cjIiICo0ePxtGjR+0dks1ZMxFqLGyE72Bfs4Yo+w7ytUqLUNO5Jrh4KrveTCGIEYDH56GxqNHCkV0ZMWaK8Ixw1OXXqZZOsbTy/eWImhZldPF60oIkFG6x/OgxXcPjq0RV+HLEl+hq7IJ/sr9WYfSoJ0YheFQwgkYF0YzXhBjAUefjctS4dHHYRIhhGHh6emLHjh249957MXny5Gt+1fnerJkImVOMzBLEC6ySCDWeVY4YM3U0GofLUS61YYU6odpThs8o3ZtnqCd84nxwKeuShaNSKt9Xjqjpxi8tkjg3ERUHKtBe227ReHoPjy/cVoitU7dC1ilDxuoMzD8wX6sWiMPl4IYvbkDLxRYEjwy2aDyGuJq+vC1lID7nq01fr1HV4Sq7zMfV3/um8u/Kq2aeMMeJpBf1i+C6deuwefNmPPTQQ1i6dKkdo7Itn3gftFa0QtZt+dl/TR2ers53kK9VErWGQtPrg1jWqhOqy60zeEZpXcIywqzSPSZtl6I6qxpR04xPhLwjvRE6PhTntp+zeFzqydDOeTuh6Ol/eLx3pDdmvD8Dex7ag/bLlk3OAPtdVBw14aCJLa+4Gl8jtiXY1vNx9fe+iZoWddXME+awo8Z6T5p4zz33ID4+HrfeequdIrI9zzBP8Fx4kJRK4JdoXtLSW2NhI6JnRJt1DJ94H3Q1dqGzsRNufm4WikzZIhQ0yrRWF1ZgSiBK/yq1TED/6KjvQGtlq1mJUMSECBR8W2DBqJSqjlTBM1zZ4mSKpAVJKPq+SDXizJKEy4QQrRABTN+TPKprLGqEe7A7/nzoT8z5ZY7GDyPxGrFyqgkT10hjv8DZ2NSPq35RYW+31Jd3X4/LHt8edI0utPcFS9ciwixzX/++9PcaRU6J1Duq0Zpx9fUapb2YhuEPDkfO+hxV0mHIDw5rxqT+2HKpHKLlImStzYJcKne4JAhw4ESInUNInVAoxKlTp1BYaL/ZcG2Jw+VAEKccQm/JRIhhGLNmlWbxBXy4BbqhubjZoolQw9kGDLnLvOHcAckBOLbhmIUiUqo7VQfvGG+jZ7tWFz4hHPuf2A+5VG5SwbU+7AXcFKKVIsi6ZKgWV0NSIYF35JUCekt8ue9evBtgAK4L1+Dh8VwnLhpON6C1rBX5n+Zj+IPDVfGYmzT09wWe+ngq/v6/vyFaLkLmqkwwcsYiX959PW7klEi997PmBVY9NoVc4TATW9oraezvvdH7NlvFxT6eVCKFaLlIFQM4QPbL2chZlwO+Dx8AoOhRgMPjaMwyb82YAOU5yVydCUbGIGiUcpqQz5M/R1tVG7qblSO/5VI5uM66k1t7c9hESJ/g4GAEB9u+dsBerFEn1FHXga6mLvgO9jX7WGzBdOjYUAtEphwG3nSuyexuu4CUAEjKJOiWdIPvzbdIbMasOK+PX5IfnD2ccfnEZYSNN20yS13K95VjzNNjTLovl8fF0deOQhAvQNG2Iox9ZiwAy3y5i9eIcfqz04icEol5B+b1O8kjS/0Ldu/jexE1NQpnvztrsVYKjRmtV4uhkCngk+CDvM15EC0XwSvSC+BCueYfgK7mLnTUd+DkxpNmtVSoJxxskpX2QhqcXJ3s2lp0+cRlXPj5AgDlxJYcHgcjHh1h1ZaZvo4NAJFTIu3SSmXIbOf2iKtkdwlOf3kaHC4HjIIB15mLxecWw9XXFS5eLsh6OUvZlenMhaJHgc8SP8NdWXeZtJakMcIzwgEAjIwBh8tB3E1x8Irwgme4J7zCvVC4tRA5r+aAw+NA0aPA9hu24/Zdt4PDtfyKBKZyqERo1KhR2LdvH3x9fTFy5Mg+i2VPnDhhw8jsxxqJUGNhI7wivSyyrIKl5xJqKWkBGJjcxcNyD3SHe7A7Gs40IExomYSj7pR59UGAsvaNrROyVCLU1dSF2pO1JrcIqX/xH9twDGOfGWuRL3f2GDwXHmb/OFvrsdT/7i+uTxI+ARhY7GIj75HDyU359aeQKcDhcjDqiVEIHB6IwJRAnNx4UhW7XCpH8W/FyP84H8FjglFxoEIrdkMTlprjNSj+pRjgQLWwcva6bAQOD0RoWihEy0WQtkkx+bXJGsdUyBV9dsmU7StD9PRonbdvnboVADDvwDyt20QrRCjfX47Lxy8jdLzyxwx7Id0UvgkhY0JQLa426fn2l0RV/l2JioN9n0u2m7J3t4q1u87ChGEAR5kUAkD2K9nI25wHV39XuPm7wX+Yv0YSbchr1FdMfT0f0UoRyv4qQ11eHWKuj8H5HedV78uCrwt0JmOHXzqM7Jez8Un8J0i8MxHe0d4Wj+vIsiMo3VOK2lO1AK4s68Nz5mHEwyNUx895NUcV156H9yD/43y85/ceUhanYOqbU42OyRocKhG65ZZbwOfzVf+3xhpWVxufeJ8rM+9aSONZ87vFWJaeS6jxbCN8EnzAdTK/QDMwJRB1+XUWS4Rqc2uRcFuC2cdh5xMa++xYC0QFVBysgF+SHzxCTJ/hW7hMCFmXDNmvZGODywaL1Bgo5Ar4DPJB4p2JGl2nxiwZI1wmVF0EOVzDmvv7u0hKyiWoOVqDtqo2AFe+wLubuhE5KVLrosL+nbw4GU1FTXByV7beKGQKZKzKMKh768iyIyjbW4a6U3XKhIO58rhj/28sgscEo/JQJVpKW3B0/VEcff0owAApD6Zg/IvjVb/21c8f+3zYwlR9t7PJRu+L9J6H9iD/k3x4hHkg+YFk5H6Qq/Wcu5q7wHVSdlN1NXVh6oapBifJhnRv9Y77yLIjyFqbhbib4iApk6D2pPIiK5fKAQ7A9+Gj+WKzWV1nfb0/9j+5HyW7SyApk2i8RsMfHo7EeYnoauhCZ0MnOhs6ceh/h6CQKd/D3ZJuyLvkOLnxpN6Y+qovqjpchfL95Vr3PfD0ARx/6zjcQ9yRsigFJ949ofUaVRysQPn+co3XY+LaieC58JC5IhOnPz8NRsGAYRikL0836lzpO8/se8dF4KLRYqbe4gtA630yc/NMeAR7IGttFo5vOA5JqQSzt89WXevtVS/nUInQihUrVP9fuXKl/QJxIJZqEVL/8PeuDzInA/eJ90HpnlKz42NZYsQYy5JD6GVdMmURtxldY+xrEDU9CkfXH9VYsNac16B8v2nD5nub+PJE5LyaA0WPZdb8ipsVh2NvHMPop0dr3WboscVrxMraAhcuFFIFvk37FvccvafPH0n6vrzZX8lcJy4iJkWg7lSdQRcV9Zap9FXpSFuaht2LdkO8Woysl7PAyBmMf2k8eC48nY+7695dKPi6AF5RXkh5MAUn3zup9bgZqzMwY+MMzNg4Axv4G5TdU1wOzv94HsW/FWPQLYMwdOHQPrtkenc76qttGf30aPww4wdcyrqE6OuiEZ4RjsyVmXqfc+rjqag8VInjbx3HiXdOgFEYVjPVV71N+qp0DLlnCOrz6xE1XZkMsQX1zp7OUMgVcA9yh88gH1w+cVnVSnX87eM4+MxB+MT7ICw9TJmQ/vO5MSdB62rqwo6bdqBaXA3PcE/Iu+Va59UtwE21v3iNGIycUSVKpXtK0Xy+GZ7hnhAtV9bcTXx5osH1RbqK9H+b/xuKthYhZFwIYm+IhXi1WO9rFDUtSus5py9PB4fDQXNJM879cA6ZKzKh6FFgwpoJBp+r3q/h2OfGKmeEP1Kl6g3QF1PklEidx5+wZgJ4LjwU/VCE8zvO44vkLzD/0HzkfpBrtwJ9h0qE1MXFxeHo0aPw99e8KDY3N2PUqFG4ePGinSKzLZ94H7RcbAGjYMzqU1X/8DcUNmDQ7EEAzM/ALT2Enp1DyBICUgJw5qszFjlWQ0EDnD2c4R1t+kzc7GugkCkgbZUqa6ES/cx+Dcr2lWHiKxNNjoslXiMGo1DWxFhizS/xGjFSH0s1uUah95f1wWcP4tibx7B1ylbM/1v/uoO9v7zHvzQeOxfsRNHWIghiBYifHY8T75ww6qKi3ooVNysO/67+N97iv6VqEchel42g1CCEjv+ne0sixdjnxmLbjG2oz6tH3M1xCBkTgswV+hMOFrv4rFwqx8gnRiJyUiTO/3weJX+UgMfnadQXJdyWgIDkAJT+WYqoaVFor2nXGDk0dOFQ+A/1h7RNirib4jQKbUc9MQrT3pkG0UrdFx/153x/3v2qlkIA6OnoQVdzF46/fbz/Lqp/hlCzMXtGeOLo60eRtSYLfkl+CEgJAIfHASNnwHXh4snWJ1X3L9pWpJWQpL2YhuBRwSjZVYK6vDqIV4mRtTZLVdRuUBfVPzExCgZugW74+9m/IeuUIWRcCGpyavp9jXQloGlL0+AV6YWsl7OQ/Uo2cl7NAaNgMOyBYRj1xCjwBXyN4+hKZkUrlK9P5spMMAoGifMTcfOWmw16jXRhb5+0bhK+FX6LrLVZyh87RnbnMQyjkayOXDISrv6uOl979Zj0fX8IlwkhXCbEoecPIee1HLwf8D4Ay3V9G4vD9B6n7iC4XC5qamoQFKT5C/zy5cuIjIyEVCq1SRwSiQQCgQAtLS3w9rbOquF9kXXL8Lbb23ik/BF4RXiZdSz2Q8f34eOWHbeg6kiV2Rl4Z0Mn3g94H09InoCLl/k1R98Kv8WoJ0ZZZBHQS0cvYceNO/BY3WNmd7Pmf5aPM1+dwfyD5i38y74GbJ99W3WbWa9B26U2fBTxER5veNys0WzqX8hVoirIOmWoPFRpclyXT1zGlglb8FDJQ/AINr7LTt8v1n1P7MPJ904idlYsbv/9doOOAS4ABZBwWwJmb5+NzFWZZteXqNc/yaVyjHl6DILHBKNKVIXzP55He82V+Y/GPDsGU16f0m+XXfn+clQcrNDZWiRcJgTDMLh84jK+TftWWV/EBSImRqCnrQc97f/8a+vRWDfOb4gfXDxd4OzhDGdPZ5TsKgGjULZkPNX9VJ/Psa/nK4gVoLulGyHjQlC6u1TrdWL3j54RjfbL7aqWWQ6Pg1lfzUJASgD8Ev3Ac+FpHVu99UTfcVXnRMHgLde3VAla0vwk8H34OLXplN77pq9KR9xNcTj4zEFU/l0JcAAwQPqqdGURshGvkb642KSRw+XAM8ITrRWt8Bvsh+Axwehq7ELJHyXgOnGhkCkQMi4EfAEfTeeb0FreqvoxwnXh4unupw1+jfqjkCnwlutbqgEAQ+8ZCkbB4Ox3Z/U+nyH3DIGLhwuKfytGW/WVrmRj3jv9eYv/lmoUrSWPCxh+/Xa4FqFff/1V9f89e/ZAIBCo/pbL5di3bx9iY2PtEZpdOPGd4BXphebiZrMTIeEyIeQ9cmStycL2G7ZbZIisq5+rst++uNnsEVUMw1i0filgWAA6GzvRXtMOz1DTlutg1Z0yfsV5XdR/Xf758J8GdzPoU76/HEGjgiyWBAmXCVF5uBI/3fwT0l5IM6ioWZestVkY8cgIk5IgAKpf7b0fd/q70yHvliPvkzz8OvdXzN42W+fz6W7phqzrn4lIFcqLyi0/3gIA/Y7q6o++Lild3Vs8Fx6mvD6l38cFoHWB1dW1VLKrRKNLpneBdO+kYsiCIRrdORd3XlTdZmiLn77nO3ThUNTm1qrWhmMYBqmPpWL3A7txcedFcLgccJ258B3si/r8etXjNhc3q6bH0Hdsfd0qvVtAsl7OUnXlyqVytJS0oC6/Dt6x3qqY0penI3NVJjJXZiI0LRT5n+Tj2BvHEHdTnCoZ4bnwNOpndBEuU47466/FkG2NU9UXPTgcwx8ejsvHL6PmaA1qjinXzlTIFKpk1jfBF76DfXHx94s49uYxo18jQ2Svy9Z477SUtqC1slXVyth4rhGTXp2EfUv24cLPF8B15qLqSBUGzR6E6OuicebLMxaPi+36tsbzNYbDJUJz5swBoBxdc99992nc5uzsjJiYGLz55pt2iMx+2DqhyMn6izENlXBrArLWZKm+pM1903E4HFXBtLmJUHtNO7ol3RabM8nZ3Rk+8T6oz683OxGqza3FsPuHWSQu9gvfErU45fvLET3dvIkxeycdERMjEDg8EC6eLn2uXK9PXV4dSv4owYPFD5ocU19Jw/UfXQ9ZpwwFXxdg1327MOvLWarb2GJbrgtXNfLQkl+yulqq+uveMuRx9SV+vS+whtYE9Ve4aug0Bv093/SV6fCO8cb+J/Yjc0UmMldkAgDi/hWHGz67Aac2nTI4pt7H1jcKUj2x03XscUvHwcXDBdnrspG5IhPiVcouX2cPZwSOCET6ynRETo3E0fVHVUmQoa9Tf0l0f69R3Kw4rYSUL+BjxCMjIF4jxrE3jxn9GhlCX1zpq9IRe0MsDjx1AGe/OYuz35wFAERNj8LUt6YiIDkAWWuzdBZpmxtXf+fKlhwuEWInUoyNjcXRo0cREBDQzz2ufZYcQp/1chYAy14cLLX4auPZRnhHe8PZ3dnsY7ECkgNQl68cdmoqhmFQm1uLqanaQz1NwSZBgHm1OAzDoHxfOa7ffL1Z8ej6ck97IQ277t2Fh0sfNvr1EK8VI3lxssmL5hpi1lez0NPRg4KvCuDk5oTp703HL7f9gos7L8Ir0gsxM2OQ/0m+xb9k+0tY9HVv9fe4xl5g1Y9nSJE3gH5bm0x5vgq5Asn3JSNxbiLe835PlVjc9ttt/cZsaKuPLv0dO2N1Bh6vfxzveL0DRqacc+cJyROqOktrXIQNTZJ1Pa4hr5+14uJwOLhLdJdGF9XcvXMNfk6mxGWt45rK4RIhVklJier/XV1dcHU1ven/aucT74Pa3FqzjyNeI8b5H88jaHQQ7j12r8UuDpaaS6jhrOVGjLH1GLrWHDN2hFZLaQtkHTL4DzU/NvUvgLbqNlw+ftnk16ClpAVt1W0InxBudly9xcyMgXeUN/I+zsPoJ7VHfbF6173UF9Sj+NdiLD6/2Orzgdyy/Rb8OOtH5H2Uh7zNeQCjXCrEL8mv36JkU9/vlujeMkV/CUnZvjK9t+salq3+d18Jh6HdiMfeOKbVumJIEqXvfFiiBe3o60fByK50BWW9nGVQUmnI45sSk676ot4tYKa8RubGxbY26uqiMuS+1orJphgHJZfLmdWrVzNhYWEMj8djiouLGYZhmJdeeon55JNPjDrWxo0bmejoaIbP5zPjxo1jsrOzDb5vS0sLA4BpaWkx6jEtqXBbIfPVmK/MOkbm6kzmdbzOfJr0KXN0w1Gt7ZmrM00+dv7n+cyWyVvMio9hGGbvkr3M/qf3m30chrnyvH6d+yvz1eivtLYb83zP7TjHfDH8C4vFxD522f4yZmPgRka0UmTSa3Bq8ylmyyTzz7s+RT8WMR+Gf8j0dPXo3af3c9p5105mz8N7LPK+MtQbvDeY1/E6s8FlA8MwDHNkxRG9j5u5OpM5suKIVeKw1+PaW+/X2pavvSkx0ftD+7Ed7fWzFEOv3w7bIrR27Vp8+eWXWL9+PR566CHV9uTkZLz99ttYvHixQcfZunUrnn76aWzatAlpaWl4++23MXPmTBQVFWmNSHNUPvE+aCluMesYbAZe8HWBRsuGJTJwn0HmxwcoW4SS5ieZfRxA85cW14kLhVyB7FeyTRqhVXuq1uwZpQEdtTiTIsDlcRGeEW5SLY6l5g/SJ2FOAo68dAQFXxeo1vrqTf08d9Z34tyP55D6WKrN5gPpPZ+LeI3Y7GJoU9nrce3J0bo4DImpr/flQHt/OOLrZw8Omwh99dVX2Lx5M6ZPn45HH31UtX3EiBFGLbq6YcMGPPTQQ3jggQcAAJs2bcLvv/+Ozz77DM8//7zW/t3d3eju7lb9LZFIzHgWluET74Oupi50NXXB1de0LsKMlRmQdcmQuTJTq4vHEjVCrZWt6OnsgbOb4fUkvbtVGs82qrrGLNGtIlymHF6buTITb7u9bfJsyXW5dYiYFGFyHKzez4XL42LwHYNRuLUQMz+eadSxGIZB+f5ypD6eanZc+nC4HKQtTYN4lRjJ9yfrne2bbUIXrxKDw+Xg+FvHbZYEOUqx5UDlcF0cDhqTo6JzpWT+OgZWUlVVhUGDBmltVygU6OnpMegYUqkUx48fx4wZM1TbuFwuZsyYAbFYrPM+69atg0AgUP2LjDR/pJa5+AI+3PzdzC6YbjqnXB7A3GH4vbkHu8PZwxktF41rFWInGGSHO7dVt8Ev6coEg1ye+W/P9BXpyjWDzBihZYnFVvVJnJeI8zvOQ94jN+p+9afr0dPeg9BxoVaJizVkwRAwCgZF24r07tNW3Yayv8qU62f9M0eNrZMgQPnlzU6UJ16j+/NNLCtjZd+tK7ZcL4rliDE5KjpXSg6bCA0dOhSHDx/W2r59+3aMHDnSoGPU19dDLpdrrVYfHByMmpoanfdZunQpWlpaVP8qKiqMD94KBPECsxOhhoIG+A/1t/gabuwQemMLptUvXH8/9zfcAt0sPs26eI0YYJStG2zXiTG6mrogKZNYpGtMl/D0cDi5OaFsb1mf+4lWal7cy/eXI3xi+JUJ6VaK+ri36bhOXIz73zhkvZKlmuhNXZWoCl+P/ho9HT0aazNZOxHp65esKd2MhJCBy2G7xpYvX4777rsPVVVVUCgU2LFjB4qKivDVV19h586dVntcPp+vWvjVkVhiCH19QT0ChllnOgJTF1/V6I/m9N+Hbwy21WD4I8NRtLUIo/872qCuE/Uuu9pTtfCK9IKbv5vqmJYcCcXhcpA4NxFFW4sQd2Oc3v16r49Uvk85f5C5y3P0R7RSOaV+V2OXas0rQNk199Psn1CyuwSxM2Nx8feLNu2icsR6C0LI1clhE6FbbrkFv/32G1avXg0PDw8sX74co0aNwm+//YbrrrvOoGMEBASAx+Ph8uXLGtsvX76MkJAQa4RtNZZIhBoKGhA23jIrsffmE2/6EHrhMqFqHSJLdauoJwhpL6Th3LZziL0hFhwup9+LtHrS4eLtomoNslbSkTQvCdtnboesWwYnvu6PpHrCyCgYVPxdAc9wT51LCVgSey5ibohB1stZiJ8dD1mXDN9lfIe6k3UIGhWkkQT1jlX9b0IIcUQOmwgBwMSJE/HXX3+ZfH8XFxeMHj0a+/btU81YrVAosG/fPixZssRCUdqGT7wPKg9XmnWMhoIGpCxKsVBEmnwH+aLoB/11JH1hR/5wnbgWm+Sxd9dJ1PQolP5ZalARoPqFPHBkIOJvijd4tWZThIwLAd+Xj9I9parFcPuLC4DVk6Dej+nk5oTTn53GkeVH0F7djjHPjoGzhzMS5iQM+GJLQsjVy6ETIUBZ8FxbW6uacZoVFWXYsOGnn34a9913H8aMGYNx48bh7bffRnt7u2oU2dXC3CH0cqkczeebLTIpoC6mTqrIJhgcLgeLihbh7LdnLdKS0LvrJOb6GBR8XQDhMqFBx1VPABryG1SrNVsj6eBwrnSP9ZUIAcoZn9kVoG1RlAxonos9D+5RblsuRMaqvlvGqCWIEHI1cNhi6fPnz2PixIlwc3NDdHQ0YmNjERsbi5iYGKMWXZ03bx7eeOMNLF++HKmpqcjNzcXu3bu1CqgdnU+8D1qrWq8sJGmkpvNN4Lpw4R2lfwVec/gM8oGkTAK51PDRT2wSlPJgCtwC3CCIFVht5E/0ddGoFldD2io1+D7Ji5IBQDVjrjUv7EnzknDh1wvo6ex7RORPN/9k06JklnCZEDwXHgDlY/eXBBFCyNXCYVuE7r//fjg5OWHnzp0IDQ01a6TTkiVLrrqusN48Qj3g5OqElpIWk5ahaChQLl/BrrVjKWxh8fgXx4PrzEVLaQv8BisXTe2vsJjtvuK58hCWHqZ6ja3RrSKIEcA7xhsVf1cg/l/xBt2Hbf2wxcrIQSOD4BHigZI/SjD4tsE699n/3/0o+aMEyYuTccMnN9h03hxHWSWaEEIszWETodzcXBw/fhxJSZaZafhqx+FwIIhTDqE3ORGyQreYemExWzDtN9jPoMJiNkH65bZfECbULOK2xkU2+rpolP1VZlAiJF4jRunuUgy6ZRDm/DzH6kkHh8NB0rwkFG0t0pkIZa7OxIl3TiB0fChu+OQGjTisnQzRxIWEkGuZwyZCQ4cORX19ff87DiDmjBxrKGhA0CjLTwqofjH2TVSuQm9MYTHDMKgWV2P0U/oX9rSUmOtjcHip9txUvanqlngc3PC57ZKOxHmJ+Hb8t5C2S+Hi4aJxW3VmNVx9XXHn3js1tlu7KJmm4CeEXOscNhF67bXX8Nxzz+GVV15BSkoKnJ01l27w9rZOrYsjMzcRGnrPUMsG9A/1C+OBpw6AUTAGFxZLyiTorO9E8Bjr12xFTY1C0/kmtFa29jm7tkKuQOTUSPC9+RpLmlg76QhIDoB3tDcu7ryIpHlXWkKbLjSh6kgVbtt1m1aCpB6XNdAU/ISQa53DJkLsshjTp0/X2M4wDDgcDuRy45YkuBb4xPvg4q6LRt9PIVOgsajRaiPGAOWFUbxabHRhcXVmNYJGBhm1Rpmp+AI+QseFovSvUqQ8oH8agfQV6fh8yOcY8egIrdusmXSod4+xiRCjYLBn0R4kL0pG5CTbL/dCExcSQq51DpsIHThwwN4hOBxTh9A3XWgCl8eFd4z1WtHEa5RJEACjimmrxdVa9UHWxNYJ9ZUI1ebWorWq1eCiaksRrRShq7ELF3ddRLekG3xvPk5uPInWqlZETI6AaKVowKz9QwghtuKwidDkyZPtHYLD8Yn3QUtJCxRyhVELkjYUNMAvyc8ii5jqol5HUravDC5eLgbXj1SLqzH22bFWiUuXmOtjkPtBLhgFo3cEXeGWQiTMSYCzu/VbqdRxeVycfO8k3IPdUfxrMULHh+LwC4cxeO5gZK3NstoyGoQQMpA5bCKUl5enczuHw4GrqyuioqIcck0wa/KO9oZCpkBbVZtR8wFZa8QYoF1My+PzUHm4UjUXEKA/GZK2S1GbW4tQoXVXUFcXMi4E8m45ak/VInikdl0So2BQuKUQ131k2DIulqRea5W5OhOeoZ7wH+aPM5+fsfoM0oQQMlA5bCKUmpra59xBzs7OmDdvHj766CO4urrq3e9awnPhwSvKC83FzUYnQtZabLV3MW3srFhkrszE7B9mq27X5/Kxy/AI9rDaJI+68Jx5iJwaibK/ynQmQlWiKsg6ZYi+LtpmMakTLhOiq7ELx98+jubzzQBASRAhhFiRw84s/dNPPyEhIQGbN29Gbm4ucnNzsXnzZiQmJuK7777Dp59+iv379+Oll16yd6g2ZcrIMWu2CGWs1LxIBwwLgFugGyr+rlDOEt1HTUu1uBqhQvMmyzQFWyeky9nvzmLwnYPBc+bZNCZ1U9+aquq2s9UyGoQQMlA5bIvQyy+/jHfeeQczZ85UbUtJSUFERASWLVuGnJwceHh44JlnnsEbb7xhx0hty3eQr1GJkEKuQGNhI/yHWW/EmDoOh4O4WXEo2VWC2Jl9L4VSLa5GxKQIm8SlLub6GPz97N/o6ezRGK0m75Hj3A/nMHvHbJvHpE68RgxGwdAszoQQYgMO2yKUn5+P6Gjt7ono6Gjk5+cDUHafXbp0ydah2ZUgXmBUItRS0gIwgE+cj9Vi6i1uVly/w/wZhkF1pm1HjLF8E3zhHuyOqsNVGtvL/iqDk5sTIibYPjljqddcPdX9lFXWXSOEEHKFwyZCSUlJePXVVyGVXlkks6enB6+++qpq2Y2qqqqrbvFUcxk7hL6hoAG+ib7gOtnupY6cFonW8lY0nW/Su09zcTOkEimCR9n+9eNwOIi5Lgalf5VqbC/cUojE+YkWX4/NUPpmcaZkiBBCrMdhu8bef/99zJ49GxERERg+fDgAZSuRXC7Hzp07AQAXL17EY489Zs8wbY6tEWInluxPwxnr1Qfp4+Lhgsgpkbj4+0WM/q/upTOqxdUIGhUEJ1f7vAWjr4tG9rps1d89HT04/9N5zD883y7xADSLMyGE2IPDJkLp6ekoKSnBt99+i3PnzgEA7rzzTtx1113w8lIuj7Bw4UJ7hmgXPnE+6G7pRldjF9z83frd35qF0n2JnRXbdyJkp24xVtT0KPx+1+9ov9wOj2APFO8shleEF4JSLb8em6FoFmdCCLE9h02EAMDLywuPPvqovcNwKC5eLnAPckdzcbPBiVD8LbadIRlQ1gkdeu4QpG1SuHhqr49VLa7G+BfH2zwulnuAO4JGBqFsbxmG3j0UhVsKkXRXks1HsBFCCLEvh06EAKCgoADl5eUatUIAMHu2fUf22BPbPRY6ru+JCBkFg4az9mkR8k3whXe0N8r3l2PQ7EEat0lbpajPr7drixBwZRh93E3KUW6T19Ns5oQQMtA4bCJ08eJF3HrrrcjPzweHwwHDMACg+sU+EBddZfnE+6D5QnO/+7WUtUDRo4Bvgq/1g9IhdlYsSnaVaCVCNUdr4Bnu2ecK8NYkWikCl8dFzHUx2LVwF87/eB4BwwPgm+CrXDNNrqA1vQghZIBw2FFjTz75JGJjY1FbWwt3d3ecOXMGhw4dwpgxY3Dw4EF7h2dzopVXRg31HkIvXiOGaKVI6z4NBQ3wHexrt8kB2WH0bBLLqsqssmtrEJfHhWi5CBV/V6CrqQtZr2RhyIIhqlFb1lqTjRBCiONx2BYhsViM/fv3IyAgAFwuF1wuFxMmTMC6devwxBNP4OTJk/YO0abYizegbBEq31cOQHPIdW/2KpRmRUyKQGdDJ+rP1CMwOVC1vVpcjZjrYuwWl/qaXj6DlN2MbZfacOyNY7ScBSGEDDAO+9NXLperRocFBASguroagHJCxaKiInuGZhfq88lUHqpEc3Gzznln1Nlj6Lw6J1cnRE+PxsXfr0yuyCgYXMq6hLB0+9YHseeT7WKkJIgQQgYmh02EkpOTcerUKQBAWloa1q9fD5FIhNWrVyMuLs7O0dkHe/HO/yQf7Zfa+0yCAPu3CAFX6oRYjecaIeuQ2XWYOku4TAieCw9gaE0vQggZqBw2EXrppZegUCgnkFu1ahVKSkowceJE7Nq1C++8846do7Mf1cUbADjAuP+N07kfwzAOkQjFzYpDlagKXc1dAJTdYsGjg688BzsSrxFDLpVrrOlFCCFkYHHYGiH1xVYTEhJQWFiIxsZG+Pr6Dui5XnpfvH+47gfM/1t7NuTWilbIOmXwHWyfEWMs7yhv+A/xR9lfZUi8MxGXxJcQKux72L8t9O5WZP8GaPJCQggZSBwuEVq0aJFB+3322WdWjsTx9L54712yF7nv52LPQ3sw8+OZGvs2FDTAZ5APnPj2f4ljZ8Xi4q6LSLwzEdXiap2F3bakb00vAJQMEULIAGP/q2QvX3zxBaKjozFy5EitYdcDma6L94yNM9Bc3Iz8T/LhEeyBCWsnqPZvKGhAwLAAe4WrIW5WHH6b9xu6mrpQf8b+EynSml6EEEJYDpcI/fvf/8aWLVtQUlKCBx54APfccw/8/PzsHZbd6bt43/777fh40Me4uOuiViJk7/ogAKr5jWSdMpzadAre0d7wCPEAALtNXkhrehFCCGE5XLH0+++/j0uXLuG5557Db7/9hsjISMydOxd79uwZ0C1EGSt1jw7jcDmYf3A+Wi624MKvF1Tb68/UO0QixOVxIV4lhleEF46+flTVGkSTFxJCCHEEDnkV4vP5WLBgAf766y8UFBRg2LBheOyxxxATE4O2tjZ7h+dwvKO8ETktEjsX7ET75XatEWP6Zp62BXbIf0NBA7qauhCWHtbv/EeEEEKIrThkIqSOy+Wq1hobyOuL9ScoNQiyDhm+n/w92qraIG2VwjfR1yFaXoTLhBj7f2MBAAefPkhJECGEEIfhkIlQd3c3tmzZguuuuw6DBw9Gfn4+Nm7ciPLycnh6eto7PIeUvjwd45aOQ1NRE7bfuB0+cT449sYxh0k6Jq+fDK4zF4oeBU1eSAghxGE4XLH0Y489hu+//x6RkZFYtGgRtmzZgoAAxxj95OgmvTIJbVVtKPiqAODCYZIg4J/C6H+SIHbyQkeIixBCyMDGYRysApnL5SIqKgojR47sc+LEHTt22CQeiUQCgUCAlpYWeHt72+QxzfWm05tg5Ax4Ljw81f2UvcPRO3mhoyRphBBCrj2GXr8drkXo3nvvHdAzR5tLvEasSoIcoeWFJi8khBDiyBwuEfriiy/sHcJVyxGXjaDJCwkhhDgyh0uEiGkcteWFJi8khBDiyCgR6gdbQiWRSOwcSd9aO1qR+kIqhj05TCPWYU8OQ3tXO1o7Wh3+ORBCCCGWwl7z+iuFdrhiaUdTWVmJyMhIe4dBCCGEEBNUVFQgIiJC7+2UCPVDoVCguroaXl5eFi3ilkgkiIyMREVFxVUzGs2e6HwZjs6V4ehcGY7OleHoXBnOmueKYRi0trYiLCwMXK7+aROpa6wfXC63z0zSXN7e3vRBMQKdL8PRuTIcnSvD0bkyHJ0rw1nrXAkEgn73cciZpQkhhBBCbMHqLULt7e149dVXsW/fPtTW1kKh0BwuffHiRWuHQAghhBCik9UToQcffBB///03Fi5ciNDQUJos8R98Ph8rVqwAn8+3dyhXBTpfhqNzZTg6V4ajc2U4OleGc4RzZfViaR8fH/z+++/IyNA/nwwhhBBCiD1YvUbI19cXfn5+1n4YQgghhBCjWT0RWrNmDZYvX46Ojg5rPxQhhBBCiFGs3jU2cuRIFBcXg2EYxMTEwNnZWeP2EydOWPPhCSGEEEL0snqx9Jw5c6z9EIQQQgghJqGZpQkhhBAyYNlsZunjx4/j7NmzAIBhw4Zh5MiRtnpoQgghhBCdrJ4I1dbWYv78+Th48CB8fHwAAM3NzZg6dSq+//57BAYGWjsEQgghhBCdrD5q7D//+Q9aW1tx5swZNDY2orGxEadPn4ZEIsETTzxh7YcnhBBCCNHL6jVCAoEAe/fuxdixYzW25+Tk4Prrr0dzc7M1H54QQgghRC+rtwgpFAqtIfMA4OzsrLXuGCGEEEKILVk9EZo2bRqefPJJVFdXq7ZVVVXhqaeewvTp06398IQQQgghelm9a6yiogKzZ8/GmTNnEBkZqdqWnJyMX3/9FREREdZ8eEIIIYQQvWwyjxDDMNi7dy8KCwsBAEOGDMGMGTOs/bCEEEIIIX2iCRUJIYQQMmBZZR6hd999Fw8//DBcXV3x7rvv9rmvow+hVygUqK6uhpeXFzgcjr3DIYQQQogBGIZBa2srwsLCwOXqL4m2SotQbGwsjh07Bn9/f8TGxup/cA4HFy9etPTDW1RlZaWqtokQQgghV5eKioo+65Gpa6wfLS0t8PHxQUVFBby9ve0dDrmGZa3LApfLxbj/jdO6Lee1HCgUCoxfOt4OkRFCyNVHIpEgMjISzc3NEAgEevez+hIbq1evxrPPPgt3d3eN7Z2dnXj99dexfPlya4dgFrY7zNvbmxIhYlVe7l4QLRfBw9UDwmVC1XbxGjFyX8lFxuoMeg8SQoiR+itrsXqLEI/Hw6VLlxAUFKSxvaGhAUFBQZDL5dZ8eLNJJBIIBAK0tLTQRYhYnXiNGKLlImSszoBwmVDrb0IIIYYx9Ppt9RYhhmF0ZmOnTp2Cn5+ftR+ekKsKm+yIlosgXiuGQqqgJIgQQqzIajNL+/r6ws/PDxwOB4MHD4afn5/qn0AgwHXXXYe5c+cafdz3338fMTExcHV1RVpaGnJycvTu+/HHH2PixInw9fWFr68vZsyY0ef+1iZaKYJ4jVjnbeI1YohWimwcEXFE419U1gEppArwXHiUBBFCiBVZrUXo7bffBsMwWLRoEVatWqVRqOTi4oKYmBgIhcZ9wW/duhVPP/00Nm3ahLS0NLz99tuYOXMmioqKtLreAODgwYNYsGAB0tPT4erqitdeew3XX389zpw5g/DwcLOfo7G4PC5Ey5XJTu8aELb7g5CDzxwEAHB4HMilcojXiCkZIoQQK7F6jdDff/+N9PR0nQuvGistLQ1jx47Fxo0bASjn+ImMjMR//vMfPP/88/3eXy6Xw9fXFxs3bsS9995r0GNaukZIPekZ979xyHkth2pAiAr7/gCAcf8bB2cPZ3p/kKuSaKUIXB5X5/tWvEYMhVyBjJX0449Yj8PUCE2ePFn1/66uLkilUo3bDU0upFIpjh8/jqVLl6q2cblczJgxA2Kx7u6m3jo6OtDT09NnbVJ3dze6u7tVf0skEoOObSj1GhD2gkcXOQJcSYIip0Si4mAF2qrbMOurWQCgsyWREEdGLeDkamH11ec7OjqwZMkSBAUFwcPDQ1Wvw/4zVH19PeRyOYKDgzW2BwcHo6amxqBj/O9//0NYWFif65ytW7cOAoFA9c8akykKlwnBc+EBALjOun8xkYFHIVcWRvN9+PAf6o+2/2/vzOObqNM//snRtM3RJj3T9L64oRQQSEFRQBCRFQ90cVcRj3VVFMXV3+rKobDCqusK3tfququCF7jogkc5lJJylVuu3vfdpEl6pEnm90eYkDTX5Jgmpd/369XXq5mZzHwzmXznmef5PM9TrwNguV6mPT8NZpM5yCMkEJhDX7dFqy5pI0kWJCEUYd0QevLJJ7Fr1y689dZbCA8Px/vvv4/nnnsOCoUCH3/8MduHt7JhwwZs3rwZW7duRUREhMvtnn76aWg0GutfTU1NwMeiWquCyWACOIC5z+xSQE0YWkxbY7k5tBxvQea8TOgb9NZ1ypVKEkYguCRUEzFsjaF/hP+DGEGEkIR1Q2j79u148803ccstt4DP5+PKK6/Es88+ixdeeAGffPIJ4/3ExcWBx+OhqanJbnlTUxPkcrnb97788svYsGEDfvjhB4wbN87ttuHh4dbiiWwUUbR9IsqYm4GsBVl2T0yEoU2vpheaCg0y52VaPUKEywM2jRU6DNV///R8w+WxPtW7RLlSaRX+kyxIQijC+q+jvb0dWVlZACx6oPb2dgDA9OnT8fPPPzPej0AgwMSJE1FYWGhdZjabUVhY6Db77MUXX8TatWuxc+dOTJo0ycdPERj6u4WlWVLEDI9xcB8Thi4tJ1ogVogRPy4evepe9HX3BXtIhADBprESymEo1VoVKBMFcGDNgiQQQgnWxdJZWVmoqKhAWloaRowYgc8//xyTJ0/G9u3bIZVKvdrXihUrsGTJEkyaNAmTJ0/Gq6++Cr1ej6VLlwIA7rrrLiQnJ2P9+vUAgL/97W9YtWoVPv30U2RkZFi1RGKxGGKxOKCfkwm0BoSelKTZUtQV1eHGr260ricMbZqPNyM+Lx6RsZHg8rnQN+ghzZIGbTwk8ydw2CZK0K8DaawoVypBURSKVhWheF0xTAZTSBhBRauKEJ0VDVDAmKVjiPCfEHKwbggtXboUx48fx4wZM/DnP/8ZCxYswOuvv46+vj688sorXu3r9ttvR0tLC1atWoXGxkaMHz8eO3futAqoq6urweVeeqp66623YDAYcOutt9rtZ/Xq1VizZo3fn81b+t8worOicfrj0wDIpECw0HK8BfF58eBwORAliaCr1wXVECKZP4HFrnL4WhXMfYGtHD7yjpHYv3p/SIShbK+R0x+fRmdVp7VYKDGGCKEE64bQ448/bv1/9uzZOHv2LI4cOYKcnByPeh1nLFu2DMuWLXO6bs+ePXavKysrvd7/QCLNlkJTrnHZhoQw9Gg53oJJT1hCuGKFOOg6Iba9GEMR5UolitYUwdwX+Mrh+/6yD4AlG5VpMU62vH60B3zqX6Zajb6u5i7rcYgHnBAqsG4I9Sc9PR3p6ekDfdiQJDozGgatAd2t3RDGC4M9nMuKwRjSMRvNaD3Zivi8eACAKElklzkWLGyNof1r9oMyU8QI8gPVWhVgBsBFQCuHq9aqcO7zcwCAhdsWoulIEyPPC1teP/r3pa3Twmw0I1waDm2tFiK5iFw7hJCCFUNo06ZNjLd99NFH2RjCoEAgFkCYKISmXEMMoQAzGEM6HRc6AA4gy7XU1woFjxCNcqUS+5/bD8pEgSsgta98xSqM5nMROzoWw24ZFpAwEb1faa4U6gtq6Bv1Tr15zmDb66ep0ECSIkFkXCS0NVrIJ7nP8iUQBhpWDKF//OMfjLbjcDhD2hACAGmWFOoyNZKmJAV7KJcVgzGk03K8BXFj4qzZQ2KFGO1n24M8KgvWzB9YmsGS/mfeQ19/k56YhMN/PwxdrY6xseIJOgx17K1jiEqPQldTl93+PIWhlCuVoMwWobVqnQpmQ+C0S52VnYjOiLZ6hAiEUIMVQ6iiooKN3V6WSLOlUJergz2MyxK7kM7z+0EZQzukQ2eM0YiSRKjeXR3EEVmgb+DCBCHMRjPi8+KJ2NUHaGMl+cpknHj3BLrbutHX3RcQzcy0NdOgb9KjaHURxt03DvpG+2KcTBj3h3HYv2Y/zIbAapc0lRpEZURBIBFAW0MMIULoMWBVtgwGA86dOwej0ThQhxwURGdFQ12mDvYwLlvGPzQeAEAZKXC4HEx4dEJwB+SG5mPNSBifYH0dCqEx2giaunIqulu7MfbeseCF80jtKx+gK4erL6ghnywHT8CDrtamjYqfmrXmY82Q5cggzZFC3+S9tkz1vOW7pIsfBuq77azsRFRGFCQpEmIIEUKSAek1du+990IoFGL06NGorrY84T7yyCPYsGED24cPeejMMQI77P2/vQAAroALykzh3Yx3sfO+nSHZjoBOnacRK8QBEUv7U9GY9mJkz89GhCwCwxYNQ0NxA6b+ZSrpf+YjHaUdkOXKIE4RBzRU1HysGfHj4yFMFNp5hJigWqvC8bePAwBGLh4ZUENXU6lBdEY0JKkSEhojhCSsG0JPP/00jh8/jj179tj1+Jo9eza2bNnC9uFDHuIRYg/VWhVOfXAK0dnRWNG7AgXPFaBX3YvTH562hMue2++wfbDaEXS1dEHfoEf8OPvQWK+6F31d/lWX9qeiMe3FaCppQsKEBCTkJcDUY0L7+XbS/8xH1KVqSHOkFg9JAA2DlmMtSBifAJFcZNUIMYG+DrJvzAaXz0VTSZPTStW+QmuEJKnEI0QITVhPn9+2bRu2bNmCqVOn2tXKGT16NMrKytg+fMgjzZZCV6eDsccIfsSAVzO4bKEn96QpSVAoFQCAglUF4HA4KFpVBH4kH/vX7Eefrg8zXpoRdCF1y/EWRGdGIzwq3LosMjYS3LCL1aWzpT7vOxDC8aaSJiROSARPwEPipETUq+oROyLW5zENZdSlaoy+a3TADYPmo80YddcoiBJFXnmEaK8fABg6DajdW4u+rsBol8wmMzqrLaExUICuTgfKbAlTEwihAut33paWFiQkJDgs1+v1pIggAJFcBH4kH5oKDWJHkhtLoKAn95q9NYgddem80pN7X1cfKnZW4NDLh3Bk45GAV/j1lv5CaQCXqks36PwyhIB+FY2fV8Fs9O7zNh9txhVPXQEAUCgVaFA1YOzSsX6NaShCURQ6SjsgzQ2sR8igN6D9fLtVY9ar7oWx1wh+uOcpnvbq/fjQj5BfIUfriVa0nmxF0pQkv38PunodKBMFSaoElJmC2WiGvkkPcdLAtzgiEFzBegxg0qRJ+O6776yvaePn/fffd9ssdajA4XAs4TGSORZQ6JBO269tiB1tb2AqVypx1fqrsOToEnB4HFYq/HoLHdbojzgpcIJp5UoluHwuzEbvPq/JYELryVYkTrC0skmamoR6VX1AxjTY8LeDvL5RD2O3EdIsKcQpYqtY2l9aT7ZCGC+ESC6y1CTjwKvwGADoGywGSsKEBDSVNAVkXJ2VnRCniMEL44EfzocwQUjCY4SQg3VD6IUXXsAzzzyDBx98EEajERs3bsScOXPw4Ycf4q9//Svbhx8USLOk0JQRwXSg6enogb5Bb+cRssW2Nk6wu2I78wgBFwXT9YGpLq1aa/EEAd593rZf28CL4Fl7nimUCrSebkVvZ29AxhVo/DVW3OFvB3l1qRqSFAn4EXxEpUYFzChoPtqMhPwEcDgccPlcRMZFep05pm/UQ5QkQkJ+ApqPNgdkXLRQmibQuigCIRCwbghNnz4dx48fh9FoxNixY/HDDz8gISEBKpUKEydOZPvwgwJSS4gd2n5tg1ghRoQ0wmEdfeOa/OfJAIApf5kStHRwY68R7WfanRpCdGjMX+jPm5Bv8TplzMlg/HmbSposN9mLug5xkhhRaVFoPNjo15jYMlj8NVbc4UxE7I3equNCB6Q5UgAIaNZY/9IL3gqmAYtHSJQkQuKERDQdDZxHKCojyvp6KAum2TTQCf7Bqkaor68PDzzwAFauXIn33nuPzUMNaqKzolH5Q2Wwh3HZ0Xq61ak3qP+N68S7J5B7Uy744fygFApsP9MOvpBv9+RME4jq0raft6qwCnFj48AVcK03dMD9520qaUJifqLdMoVSgXpVPdJn+943kK02KGxXFbfdf/G6YpgMJsb7VZeqIcuxtFCRpEjQ3WopqhgWGebXmJqPNWPS45Osr70VTFMUZQ2NieQitJ5ohanPBF4Yz69x9fcIiVPEQ9YQGoxtf4YKrBpCYWFh+Oqrr7By5Uo2DzPoIbWE2KHt1zanhhAtpKYnI1muDB3nO4LWFbv5WDPix8U7TR4QKUSo3uVfdWnbz3vi/ROY+NhE7F+zHwu3LbSudzu+kmbkPZhntyxpapLfxjubBoudOPxi5/NAiuGVK5UoWl0Ek8Hkld6qo7TD2mtLGC+0FFWs01mNI18wG81oPdFq9fYB3nuEejp6YDKYIJKLECYKA1fAtXgpxzl6Kb1BU6FB8vRk62tJqiRgYbfBxmBs+zNUYD1rbOHChdi2bRsef/xxtg81aInOioamXDMo00pDuct72+k2DFs0zGF5//HIhsksDU8RnJYRLcedC6WBi2JpP0Nj9Oc19Zmgq9Uh96ZcqJ5ToflYs8fPazaZ0Xy82SqUplEoFVA9rwJFUX5lf7LZBoVuFMuGGL7wkUKAAsDxroO8ulSNEb8dAcCSFShOtoTH/DGE2s+3A1xYQ24AvC6qqG/QI0wUBoFEAABIGJ+ApqNNfhtCnZWdiM685BGKSo1C2X+HbtkUtg10gm+wrhHKzc3F888/j1tvvRXr16/Hpk2b7P4IQHRGNIy9Rq+rwYYCbOox/MWVR6g/tEcoWLgSSgOBFUtrq7Xg8DiQpEqQfGUyavfWenxPx/kOgAJihsfYLU8Yn4A+fV9AzptypRLgXGyDwucE7KbwwwM/sCKGV61V4ejrRyFMEEIYL0TBcwWM9FYURVlCY7mXjJ5AtJ1oOdaC+HHxdr81kVzklVia1gfRJOQnoLnEP8+N2WiGtkbrGBob4mLp/GX5ABAS2apEt2SBdY/QBx98AKlUiiNHjuDIkSN260j3eQv8CD4kyRKoy9QQKwZXfY1Qdff2qHugq9cxM4SGyVD2bXCeUimKQsvxFlz1t6ucrhcpROjVWKpLhwn905FoKjSISo8Cl8dF6tWpqNlTg0krJrl9T1NJE+Lz4sHl2xu0PAEPiRMthRX7G0neolqrAihLjyvKSOHrG77Gzd/e7Nc+i1YX4cS7J5A2Kw1tv7Yh64asgOi/rAY+n4sbt96IzVduxrj7xlkLdbrbf1dLFwxaA6KzbLKoUiV+p9A3HW2yC4sBFo9QVyPz0JiuQWdX2ychPwGnPzzt17h09TpQFAVJisS6TJIqga5OB7PJ7NdDUih7oj3x44M/ArB4BL3xJrIB0S1ZYNUQoigKe/bsQUJCAiIjI9k81KAnOttSSyjlypRgD8VrbI2hotVFAIWgu3vbfm2DSC5CZIzn6472CPkb5vEFXZ0OvepexI2Jc7o+UNWlAUBdrraGKVJnpKJ4XbHHGxJdUdoZCqUCDcUNGHP3GJ/HRE+44AD3l98P1ToVTr53El/N/wq3fHeLz/tUPa+CSCHCrTtvxWfTP0P6rHREpUb5bQyZTWakX5sOU68JyQXJkA2XWVtS0OtdoS61POgIRALrskB4SFqOtTiEgP31CCVOSMTu5bv9CtdrKjWQpEjsjGhJsgSUiYK+UQ9JssTNu90zWG/gqrUqnNtyDpHxkYiQRWDU70cFJUGDJlQfZAcaVuMWFEUhNzcXtbWeXfBDHWmWdFD3HEu56qIBZ4lEoFfTC4POEDTXq7NCiq6Q5crQq+5Fd1s3K2NxR/OxZsiGyVxmDXE4F6tLB6CooqZCYzWEEsYngDJTaDnR4n58JY76IBo6c8xX6Al30p8mAZTl5j333bkY94dxqPhfBd7Pfd/1+9xcN51VneDyuVj0wyJw+VxI0izhJzr13R8xvPJZJdrPtmPC8gkALAYDXXzQU+81useYLf6GxiiKckidB7zPGqNrCNHEjoqFqdfk15ykqdDYpc4DFk+iMFHotxfM3zIGwYAenyBKgJmvzkTH+Q7kP5If0Aa3vmB7Lv8e9veQPodswaohxOVykZubi7a2NjYPc1kwmDPHejt7sW3hNgCWiQ4Azn1xDh+O+hAd5zuCoiFqO81MHwQAAokAIrkoKDohd0JpGrEiMNWlNRUaa1iGy+cieXoyavbUuNyeMlPWGkLOUCgVaD3VCoPW4NN46Gy24bcNhzBBaL125rwzB4lXJEJdqsYXc7+we4+n68bYY0RdUR2mrZ2GuNEWL5skVYLO6k4Ano0VT5R+UwpwgJzf5ACwGEJMs6BsawjR+NuRXVenQ097D+LG2nsUhXIhDJ0GGHuMjPbT3yPEC+MhbkycX/WE6Gar/ZGkStBZ0+nzfmlsb+D/CP9HyN/AzSYz8pflw9xnRu7NuZCkSdB0pCkgBrq/KFcqweFbQtPcMOchx8sZ1pWsGzZswJNPPolTp06xfahBzWDuQr/lmi3oVfei4LkCPN77OKY9Pw3aai0SJyai6ocqyIbLBvzJjalQmsY2c2wgcSeUphEniaFv8F8wbesRAoDUq1PdCqY1FRoYu40uPWtihRjiZDEaD/lWWJFug6Kr0zlo4+48eCfyHsxD1Q9V+OJaizHE5Lqhn7iv+NMV1mVRaVHQVgdGoFuysQT5y/Kt4Z6EfObtKGxrCNH4W2m5+VgzYkbEOHgUI2MjweFyGIfHdA06iOQiu2UJE/yrMK2ptL/eaCQp/uuiaEbeMRIAvC5j4Ao2PdjT1kxDdFY0Uq9OBT+CD/kVcutvx18D3V9Ua1WgjBZ3vrnPHNQq+8GAdUPorrvuwsGDB5GXl4fIyEjExMTY/REsDFaP0He//w7NJc2YtGISClYVALj0pFa6rRRj7x+L5GnJ4IZxB/TJrfV0q9UjwATZsOBkjrUcb/FoCIkUAQqNlTsxhH6uBWWmnG7fVNKEuDFxbht3+hseAyyiWpFC5LD82jevxfiHxqPqpyr8nW/vsnd2w6pX1ePoG0eRNDkJqnWX1kWlBaaVRdPRJjQeacS4+8ZZlyXkJ0BbrWUUVu0odeIRSpGgu6WbseemP87CYoBFQyNMYC6Yposp2uJv5lj/qtI0gfIIAcB3v7P0sbQVHvsD21mwld9XImNuBgAgaXKS39XZAwH92URJIkxcMRE8AS+oobpgwHrW2Kuvvsr2IS4LorOi0dVsySqha3mEOl2tXbiw7QJybsrB1X+/2m6drXj0ug+uw5i7x2DzVZsD9uTmjl5NL3R1zDLGaGS5MjQeHthJyaA3oONCBxLyPIfG2n71L7xs0BnQ3dptZwgl5ifCbDSj5YTz8FzzUdf6IBqFUoGqn6r8Gpu+3rVwdvYbs3HivRMw91nCBgadAZoqjYNYtq+7Dzvu3oHkack4+vpRO7GsJO1SaMwfSjaVYPSdoxEhu9SyJUIageisaDQfbXZbZZuiKKgv2KfOA4AwQQhuGBe6Op1PYvjmo81QKBVO1wkThYw9Qv1DY4Dl+ti/Zr/PSQT9q0rTSFIlPnsRbfnlmV/QcKAB6demo/VkK/IezPNbeMymeLivuw+1e2txzavXAADkV8hx9LWjPu8vENCfTblKiQMvHED+snzU7atDZFxkUEXcAw3rhtCSJUvYPsRlQWRsJARRAmgqNH4XMRsIKIrCTw/9hIzZGbjxqxudbmP7A6K1KBwe+ymjbb+2QZgoRGQs80xF2TAZznx6hpXxuKL1ZCsiYyMdbkD9ESWJUF3oX3VpTYUGAonA7pxYdUJ7a5waQk0lTcj+Tbbb/SZNTULxumK/Mu60dVpEpTt6DgBYi87xBDyYDCaUbS9DyaslyJqfhdFLR1sna7rEQNWPVQ43LEnqxVYWfpQg0Dfrcfazs7iz5E6HdXR4zJ0h1NPeg15Nr4OxY1tU0SdD6Fgzxj843uk6poJpg94Ag9bgcB3GjYtDT5ulDIW3GV50DSGnHqEUCUq3lnq1v/6o1qpwYP0BRKVH4ebvbsab8W8ic14mozIGnvCnhYo76n6pQ2RCpLXcROLERGjrtBahutz9HMAWtE4vY04Gjr1xDNEZ0Zjw6ASonlOh4LkCv3RLg6nEwYBUuzOZTPjqq6+wbt06rFu3Dlu3boXJZBqIQw8aOByOX5ljA52ddXbzWdTsqcG1717r8QZIP3UMu3UY4sfGs54l4a0+CLiYQn/BkkI/UNBCaU/nLxBiaVof1P9YdD2h/lAU5TZ1niYhPwEGrQHqUrXPY9PX653Wz7J9Eqe1Z+1n2jF+2XhL7advyiBMEKJoVREO//0wdLU6pzcsYbwQvHCeX+GxE++cQMpVKYgb5Rhutc0cc4W6VA1hotCpt9fXzLFeTS805RrEj3f+4CSUCxm12dA36MEN4zo8OAhEAsiGy3wKj9G6J2cGVCAar5oMJggkAlzz6jXghfGQcV0GyraXBUx4PPXZqdZwW6A82BU7K5A5N9P6GwyPCkfM8BhG3jG25ndap9dwqAGJVySCw+Fg+KLhMGgNSJqc5JehEsrFdvvD+khKS0sxcuRI3HXXXfj666/x9ddf4/e//z1Gjx6NsrKhW2rdGXQtIV9g86Lr/yPU1mnx00M/Yc47c3DinRNuf4S2N7Nr37kWLSdbMOaeMawaQ62/eqcPAiwaLWO3MSBaHKYwEUoDgTWE+pM6w7lOSFenQ09bj0fvJD+cby2s6Cu6eh3EyfaGkLNwBH2TO/LKEYSJwvBAzQO48oUrgYu2nasbFofD8UsnZDKYcOzNY5jw6ASn65lkjnWUdrhso+Fr5ljz8WZIUiQQxgmdrmfqEdI3WDwSzgxyXzvRayo1kKRKHApxAhfF0vU6mI2+GyuxI2MhTBQie4HFY5m9IBvl28sBBEZ4vOXqLdbfRKCqktvqg2jkV8jRcKjB43s9ze91v9Q5fR9TI6nxYCPkV1h64PEEPOT9MQ8lm0o8vs8dg6nEAeuG0KOPPors7GzU1NSgpKQEJSUlqK6uRmZmJqkq3Q9/PEJsXnS2P0KKovD9vd8j+zfZaD3V6tHIsm34GRkTCYVSgfLvyllNGfUmdZ6GH8FHVFoUq4Lp/galrVDa3YQlShLB0GmAQe9bmjrgKJSmSZiQAJPBhNZTrXbLm0qaLNlIDEJJScok/wwhJ1lj/Rvj0theN2HCMIuBSMEaOnN1w/JHJ3T+y/MIE4ch6/osp+sT8hPQcb4DvZ29LvfhLHXeOjYfM8dajrW49AYBzIsq9q8hZEtCvm+ZY65S5wFAnCy2dLv3saUQRVE4/PfDmPjYROvckzkvEy0nWwIiwv56wdeo/bkW+Y/kI+XKFGtVcn+Moc6aTrSfa0farDS75baZY+5wN7+nzUxD9a5qvx6CGw81IumKJOvrvAfyUF1Ybelj5we2435F8EpIGkHAAGiE9u7di+LiYrsMsdjYWGzYsAHTpoVGfDBUkGZLcWHrBZ/fb9fQb50KZkNgGvrZ7rfhUAPaTrchcWIio4u6/5NZ1vwslH9Xjrw/5LGqEZry9BSv30en0Kddk+Z5Yx+wFfhO/ctUS2gsL8FjNVzb6tKCHN+E9JoKjVMNCy+MZ60nZOv9YRIWo1FMVeDACwd8Gldfdx96OnocDCF3T/T0ddPf0LdWqYajPsS2lpA7nOkajmw8ggmPTEDxX4ud6hpEiSKIFWK0HG9xWRleXapGzAjnWbKSFAmqCr0XnLvKGKNh2maD9gg5IzE/0SfPgKvUecByzYnkImhrtHbtN5hS+0stNBUajL57tHVZZEwkkqclo/zbcpeaKSZ8u/hblH9bjrH3jcWsTbNw+B+HUbGjwnozB3zTHlX9UAXFVAUipBF2y+VXyKF6jlnzYrsGxWv2gzJTGLZoGCb/32Rc2HrBZ4F3b2cv2s+1Wz1CgMWIHrZoGI6+fhSzNs3y+vPakrMwB0WrimDuM4dsjSLWPULh4eHQah2fdnQ6HQSCwZEdNVAEopbQpCcmARzAbGDe0M9j/Hl1EdJmpSE+Px7l28uhb9LjwAsHfDKysuZnoeqnKp/ThT3R29kLbY2WcVVpW9huvmr7dLR7xW6YDCac//q8xwmLw+FYmq/6UUvItphif1JnOOqEmkuakTDBfTYbjUKpQMuJFhh03nus9A16cPlcCOOdh3dc4S505uzpnWktof4hiPrierSfaYe+We/26dpTzR1nNYRofO031ny02WWxS4C5R6h/nzFbvCkPYIur1Hkaf+onHXnlCMY9MM6uVQlgCY+VbfddblFXVIfzX53HiMUjMPe9uQCA3JtyUbOnBvnL8v3yYFd8X+EQFgMsFd57Nb3QVDIrnTL+ofEAYG19oq3W4strv8SBvx5AmDjMUh2a71116KYjTZAkSxyM4QmPTsCpD0+59XR6gqIobF2wFYAlUcbcZ8aeJ/b4vD+2YN0QuuGGG/CHP/wBBw4cAEVRoCgKxcXF+OMf/4jf/OY3bB9+UCHNlqKzstOvcNFnV31maXPBYR7bdhV//vnpn1G0qgjH3jqGr6//GskFlnpA/nRNjhsTh8jYSNTsdV3R2B/az7QjMj7SpW7CHQNRVJG+WZdsLIHZaIbqORWjCcufNhsURbnUCAHO6wkxSZ2nkaRIIFb4VlhRV6eDKEnkdT8rJqEzW5hqhPobUyWbShA7OhYH/ure8PdUWNFZew0aX/qNmQwmtJ5u9ewRYiiWdhUai5BFICojCs3HvAuPuUqdp/FVMN1xoQMVOyqsHdxtyV6Qjepd1R5DyM4e/Fp/bcXWBVuRcV0GZMMuGazRGdGIGxOHsm/LfNYemU1mVP9U7dQQ4kfwETc2jvFv5/v7vgdgCQVTZgpZ87OwrH0ZHm59GIt+WGSpDm2iwBUw97w0Hmq08wbRJE1OQtzoOJz+yPfmu/9d9F90VnVi6l+mYkXfCsivkOPwK4fx89M/+7xPNmDdENq0aROys7OhVCoRERGBiIgITJs2DTk5Odi4cSPbhx9USFIloCjK5yelb279Bs1HmjH2/rHgcDiY+uxURrFt28l///P7Ub27Gh+N+wgHNxyEJE2Cq1++Gn+s/yNEiSK7VGZfYuYcDscaHmMDbwsp2sK2R4hmxG9HWP6hXAt8++OPYLq7tRt9+j6XT+iJExNh7DGi9bRFJ6Rv1kNbq/XY+sOWpKlJaCj2LPrsjzOhNBPobBdnOLthMQ2NWd9/8fdw9rOzaChu8Gisussc6+noQXdbt1uNUFdzF4y9zL2kbWfawI/kuzU2RHIRDFoD+rr63O7LnSEEWMJjTKtn0zjrM2aLr4bQkY1HMPy24U6z0WKGxyAqLQpVP7oPM/Z/8NPWafHVdV8hblwcyreXO3j9cm/K9Svdv/FQI8Cx/M6cwVQnpFqrQum2UqTPTrdmUdKfIzI2ElU/VV2qDm1gXh3alSEEWLxCJa+VuCy66o5f/vILLnx1AcNuG4bp66aDw+HgDtUdiBkZg4MbDmLfqn1e75MtWNcISaVSfPPNNygtLcWZM5Y6LSNHjkROTg7bhx508MJ4iEqPgqZMg+h01xOcM3Yt34ULX13AyN+NxJx35qD823KkX5turRIKuI9t9y8kBgD5y/Ix6zVLfNgbPYYnsuZnYdfyXZi5cWbAu737kjpPIxsmg7pM7bEjuz8Ye4wWrx3sBb6ezqE/oTFNuQbCBKFDKIGGF8ZD8rSLOqGx8Wg+2gxpjhTh0eEe901rahRKhUN4jUmtEF29o1CaDSRpEmirtYzrHdHXOFPvZ0J+Atp+bUNfd59Duwt1mRqRcZEO+hAaUaIIXP7FoopZUkafp/moRR/kzpMWGRMJDs/SZkOa6Xq/7kJjgPetNkx9Juhqde49QikSNBzwznDubu/GqQ9PYfEvi11uk3VDFsq2lyF3Ya7LbWznOmOPEeXfliMyLhK1e2udGrw5N+XgwPoDPtehqthZgfRr013OKfIr5Pj1P7+63Qc933J4HMx+c7bD56jZU4PqXdWY9vw06Jv0aDzUyHh+bjzUiLwH8pyuG3brMOx5Yg8qdla4TBZwRVVhFaKzorFg8wLrMi6Pi7tK7sKb8jdx7M1jKFhV4JBZGIwaQwOWyJ+Tk4MFCxZgwYIFxAhygzRL6nUKfV93H85sPoPk6cmY/5/54HA4SJqShIYDDV5lZylXKu1SkV0ZQfS2vqbAp81Mg75ej/Zz/mUkOMObrvP9ic6IBihL93K22HzlZnQ1dkG5WunwVOcOf0Jj7vRBNKlXp1rDle46zveHfrpuO9uGelW9tQ4T04wVZxljbCBJlcDYY0R3KzOtC20EgcssxByVFoXw6HCH7DvAfVgMsC+qyBRPQml6v6JEkUfBtCePkLeZY9parfUzucIXj9CJd08gaXKS22sze0E2yr8r9+jBUK5UouC5Ahx44QBaTrag+WizS69f3Og4SFIkqPy+0qvx0jhLm7dFfoUcTUea3M7RZpMZw24dhthRsXbVyZUrldasMXr8mfMy0d3SjYLnCjzOLV0tXeis6kTiJOfntPiFYsSMjEHJa46CeXeZrs3Hm9F6ohU3f3ezw4MHP4KP/Ifz0dPWg/9M+Y9d7bZg1Rhi/Wi33HIL/va3vzksf/HFF7Fo0SK2Dz/okGZ7n0K/+7HdkOXIcNuu26zLbPvYMI1t71u1D6AAbhjXbvL3Vo/hiTBhGFJnprISHms93eqzR4jL5yI6K5o1ndB/F/0XjYcbMXHFROv3wdSg9Cc05k4fREM3YPXUcb4/9PhPvncSPR09UJepvcpY8TU05i0CkaWqNpObLz1++WQ5Jj42kdH3w+FwLPWEnBQfdFdDiMbboorNx5rdps7TeGqzYeozobu122NorP1cO2MxfGdlJyRpErc3M09i6f46HpPBhKOvHcWkFZPc3oCTpyfD1GNi1C7HmrHmIUTN4XCQc1OOTxm9PR09aDzUiIw5GS63iRsdB8pEuX0wnLZmGiiKwrBbhjmsS74y2e63lnZNGnT1Ooy4fYTH+bnxUCNkuTKX3kouj4ua3TWo+rHKbnzuDBbKTKHw4UJMWD4BsSOcz8VX/vVKTHpiEppLmrHlmi12+wxGej3rhtDPP/+M66+/3mH5vHnz8PPPoSWYCgWis6KdNl91ldl15tMz+PXfv0I+WQ5eGM+6XD5ZjoaDzF3PqrUqFK8tRpg4zMFT4a0egwlZ87NQ/m1gDSGD1gBttdZnQwhgTyfUfr4dpf8txcg7RuKav19jt46JQelXaIyBIZQ4KRF9XX1o/bXVq9R54NL4KROFD0d+6NVkNlChMYCZTsh2MhZIBIgdEcvYWHUlmHZXQ8h2bEwNA4qi0HKsBYn5iZfG7KoGldx9UcWupi6AY+l55gpRkgjCBCFaTrS4/Qw0noTSgOXz6hv0Losq9tfxnPv8HMJEYWg62uTWY8AL4yFzXqbH7LHutm4ULiu0vIeB5jH3plyUbS+Dqc+7jghVP1UhdmSs2xYlXD4XCfkJbnVCfV19qNhRgdybHUN+/efnMGEYUq9ORcWOCo/zc+OhRsgnO9cHAfa/7R1LdgDwbLCc/vdpdFZ3YuqzU13uFwCufvlq5D+Sj9q9tfh7mHeZboGGdUPIVZp8WFgYOjvZC0EMVlx5hJxldrWfb8fOpTth7DYiMsa+PL58khzaGi2jomX0hZ0+Ox2Z11lKwPsT+mJC1vws1O2rQ6/G99TM/rSdaUNkXCRECb737WEjc6yvuw/bF23HhEcnYP4n851u42nC8ic0pi5XuzWEitYU4eCGg0ieloyyb8qgKddYPUJMK9MqVyrB4XJgNnqXUThQoTHgkk7IHbbez/az7dbaP0yMVVcVpj2FxgBL5pi7FHrb37+mUoO+rj7Ejor1GErwlDmma9AhMi7S7iGqPxwOx6vwmCehNACrB8rVNd0/gePwK4chGy7D/tX7Pd4smaTRfzn3Sxi7jSh4roBRiDppchLChGFO29G4w1NYzHb/7jrRV+ysgCRZgrgxzBJBMudlomJHhcft3AmlaZQrlRj3wDg0HGjAK+GXiiKaTY6C7B51D/Y+uReKAgUOvXTI4/FnbZoFbhgXlJFivRm3O1g3hMaOHYstW7Y4LN+8eTNGjRrF9uEHHa48Qv0Nk77uPmyesdllQ8Dw6HDEjIhh5BWiJ3+uwNKEs/8x2aj+HJ0eDdlwGSp/qAzYPv0RStPIhvnnEXLmudv92G6EicIQJgrzuSeQWCH2ubq0J48QfZOlzBSOvnEUklQJhPFCr+L1qrUqa20TphmFFEUNWGgMsOh4PHmE6Kdrg9YAXZ3OrgiiJ2M1YUICWk60OHgN3NUQovEUGrP9/e97Zh9iR8Xi4N8OenyK9tRmQ9+gdyuUpvEmc8xdVWkaa1FFN14w+jPvX70fzUebUf5tOSOPQea8TLSdbnP5XX//h+/RdKQJEx+fiIJVBXbHcmUMcbgc5Cz0LjxGURQqv69E5nWZHrf1lDl24asLyL0ll3FySea8TNTsrXE7X1AUxcgQAoA5b8+x1qfj8DgYe+9Ypw/nRSuLEB4VjnNbzjGeN/zNRA4ErGeNrVy5EjfffDPKysowc+ZMAEBhYSE+++wzfPHFF2wfftAhzZKip6MHPR09iJDZx22dVRZVrla6nBiSplieMnJ+416cPm3NNFBmCq/HvO5Q3ZhNC51Oox++aHhA9td6utVnoTQN3XzVV2yrRytXKnHm0zM4/+V5jLl7jLVmkC9ExESAJ+B5XV3abDJDW611K5bunzGYc2OOV/F6a1PdRcOgrdYia34Wo4wVQ6cBxi7jgHqEmg4zu5m3n2tHREwEIuMiPW98EVmODNwwLtrPtFurdPd29qKruQvSXKn7sTEoMGj7PXG4HLQcb/H4/YjkIreGvSehNE3ChATG1cM7KzuRfq1jFfP+MBFMK1cqrXMdU49BhCwCimkKlH1bhvyH7OsNmY1mlP23DGmz0nDNK44hagAuH/xyb8rF/+76H2a/PptR3au2M23obuu2e7h0hfwKOVqOt1ibvNpi7DWi7Nsy3FZ4m4t3OyLLlUGcLEbN7hpk35DtdBttjaVQJpMyGaq1Kot+lM+F2WjGO6nvIGt+FkbeMdL6W8+6IQvH3z4Os5FZR4NAZiL7C+seoQULFmDbtm0oLS3FQw89hCeeeAK1tbX46aefsHDhQrYPP+gIjw5HZGyky8wx5UoluHwuKLOlaJa7J9SkyUmMU1RbT7fCbDQjIY957Rh/yZqfhYodFT7VqHBGoDxCnZWdXtV0scX2yXLX8l348Y8/InNeJg6/ctiv+DeHw/EpPKattaSMR6W6D1UoVyqhXG0ZW9m3ZV4bQdOen4bJ/zcZHRc6GIdVtXVa8IV8CKIGpsJ8VKpnjxANHRbzprwDh8tBwvgEuyal6jI1ImQRDqHr/jBtvEpndjI1DDyJpXUNOreGEO3hTMxPROupVpgMl7xdrsKmTDRCALNCkvuftxhB/RM4POEqPHbszWMIjw7Hzd/d7PR97rx+KTNSYOoxuZxT+3uDK3dWIvXqVPAj+B5DzNIcKfhCvlMdVnVhNcKl4S7rEDmDw+F4DI81HmpE3Jg4jyUBbH/jK/pWWDRDZgoGrQG1v9RCIBGgaFUR/j3x3z4bQYB/mcj+MiA5avPnz0dRURH0ej1aW1uxa9cuzJgxYyAOPSiJznbdamPX8l0wG80Wy9xD0Sz5ZIu7lYmhUbevDgqlwmm3aLZILkiGycAsw4MJbb+2+VxMkUaSLAFPwHManmSKcqUSo+4ahZJNJejr6sOZT84ERAQoVoihr/dOMK2pcN0FvD/T1kwDh2epTMv06dtWUyPLkaGnvQfd7d2Mwqr6ej0kyZKA15JyBRONEI2tPsgb+meOMdEHAReLKjZ5LqroKrPTFZ7E0p5CY7SH89dPfgU/km8tuukqbGoymKCr03kU5wMWw9SdR0i1VoX9q/eDK+DiUe2jXt0ksxdko2ZXjV2mm65Bh30r92H2G7PBD/c+GMIL4yFrQZbL8Fj/UBGtD2ISYuZwOJBPch4eO//VeQy7eZjXvxPaELJNT7eFSVjMncFSs6cGY+8dixu23GDxkFFgXNE60JnI/sJ6aIzgPdIsqdMb8b5V+1CyqQTJ05KxeN9ij67E+HHxMPYY0X6+3WUaI03dvjpGLtxAwuVzkTE3A+XflSNpcpLnN7jBoDOgs7LTb48Qh8uBNFeKjgsdiB3puC9nTTlpVGtV0NXroKnQoOFAg9dGhSdEChF0Dd55hFx1nXeGaq3KOl6mhR5tn57Do8MRGR9pKSAYE8kodV6k8F3Y7i1RaVHQNeichh/603a2DUlTvL8mE/ITcPKDk9bXTA0hYaLQUlSxXuey+CGd2RkeHY5lHctQvK7YYyjBk1ha36B3K8C1DcdFZURZtTquPIbaWi04PA6jcJskVYK6ojqn66yd1WelQSARgB/Odwjhuru+YobFICrDUmU69yZLptWeJ/Yg6/osp82HmZJ7Uy72PrkXV/3tKgfDxHZ8pj4Tan+uhWy4DEdfO8roQciqE3rw0jKz0Yyyb8pw47YbvR4rnUbfcb4DMcMdjfrGQ40Yfrt7WYI7g4Ve33S4yeqh9GXe6M9lmTVG8B5nmWP0JChJleC23ZZYsSdXIi+Mh8QJiW6zEWhq99UiedrAGkIAkH1DdkDqCbWftWg63KUBM8VdCr2rvmx7n9qLolVFOPn+ScSOikXeg3kORoW/iJO8ryWkqdAwqlZs++TnTaHH/shyZFCXqhltO5AZYwCsPc2YnMP2s54fHpyROCERzcearV7YjlLPqfOA5boSKUQuM8fo7yd5ejJyb85lnNkpkovQp+9zWQNI3+hZI0Qfp7OyEz/c/4PbsKmmQoOotChGQll3oTH6BmzsMiJr/qWKxkw8BnSIyjY8VlVYhfJvyyFJkficsAAAGXMyoKvTWT1j/aHHV7y2GMYeI2MjCHAumK7ZWwNuGBfJBd7PzbZp9P2hzBQaD3v2CHkqnULPh/7OG8GGGEIhSHS2Y+ZYU0kT+JF83LH/DrtUV08TQ9KUJI+ZY53VndDV6Xx6AvaXjOsy0Hys2WtPR3/oHmOBCLO4S6Hvf/Mx6A3YMnMLDr10CLGjY3HP2XsQIYvAwfUHAz45+Boa8+QRCmS8XpojZW4IDWDGGGAxNsTJYo86IbPRDPUFtU+hsZiRMTD3mdFRarl+1Bc8Z4zRuMscow0DU68JabPSrMs9/f4jZBHghnFdeoX0DXqHruPOUK5UWtKcL+p1XN0cPXWdt8VdaGzammnIezAPDQcbHFo7eMreo2/OPR09KP+uHH3dfSh8uBDJ05Nx6OVDflUtDhOGIXNeJi587Tw8RlEUeOGX5mdvvMHyK+Ro+7XNLtPrwtcXkHNTjtdNiWlc6YQ6LnTAbDAzTsd3RqjpfPyBGEIhiDTL3iPU+msrqn6qwm+++s2laqg2uJsY5JPlHgXTdUV1SBifAIFkYESrtgjjhEianISK/3mueeGOQAilaTwVVbT9sW8Sb0LN7hqMvW8slp5aijOfnmFtchAl+RAaY2AIBTJeL82RWo0ATwxkMUWaqLQojzohTaUGFEUxDinawgvjIW5snFUnxNQjBLjPHJu2ZhryH8lH05EmpF2TZrfO3e+fw+G4TKGnzBT0jczS5+k0Zw6XA3Ofa20iU6E0cLGoYqPeToBtS+X3lYgfF+/1NUJft6f+eQqGTgO+u+M79Gh6ULGjIiBaPVdNWI29Ruy4eweK1xUDYFao0RZxshjCBKH12qHMFC5svYBhNztWk2ZK5rxM1OxxTKNvONiA+PHxbutHeSLUdD7+QDRCIQStPxmzdAy0NVqYDCaY+kzYvmg7EvMT0XCgAVnzvGt8lzQ5CS3HW2DsMYIf4fzrrisaeH0QcOnz0mn0Y+8da13nbeO9ttNtjAqXMYFJUUXlSiWKVhdZy/PPfW8uAGYxdV9hyyMUyHi9LEeGyp2VjLYd6NAYwKyWUPvZdshyZT4nDiROSETT0SZkLciCvkHP3BDykDlWu9eiOfH2nLnKHOtu64bZaPYYGrN98h93/zi8k/6OS51OZ2UnZMOZecBEchE4HA50DTqnTabLvyu3C4t5g61ep3SbxWgJhBFUtKYIZoMZradboa5QW/Vc+mY9/jPpP+hR96BP2+dTSjiHw7GGx1KuTEG9qh6mXhNSZqT4PF5ZrgziFMc0eqb1g9wRajoff2DdI2QymfDBBx/gjjvuwOzZszFz5ky7P8IlaJfuyX+eBDeMi86qThQ+XIg+fR9qf6n1yaUbnRWN8KhwtBx3XR4/GEJp4NLn1dXpUPljpTVjhkmWRf9UVVuPENNqyK6Q5cqgq9O5LUb208M/WbMkbJ/62GhHQiNSeJc+39fdB32D3ifPhq947REawNAYcDFzzEPtmvaz7YgZ6X1YjIbOHNOUaSCIEkAYz0y35qmoYlVhFdJmprlc7wpXmWP6Bj0EUQK36dP9wx8iuQhT/zIV4hSxUw+nNx4hLp8LsULs9DObjWZU7qz02RACLoXzAO9CVO7g8rg4sP4AotKirF6hlhMt+GDYB9DWaO2MIHoM3niDbXVC5786j5wbc/zy2rhKow+EIXQ5wbpHaPny5fjoo48wf/58jBkzZsBSZQcjtk8xkXGRlqeZ/5bC2GX0+WmGw+FYw2PONEC9ml60nGgJilDa9vMKJALU/VKHelU9oxo2toULJ66YCE2lBnGj4+wmbl8RJgghiBJAXap2WldJtVaFY28eg/wKOX5/8PcDVghMnCSGQWuAQWeAQOw5jNlZ2Ql+JB/CRP8F5EyR5crQ3dKNXk0vwqPDXW5HmSlL6vYAe4QkqRKPPbN8FUrTJOQn4JdnfkHHBUuzVaZznqe6OtW7qjF97XSvx+Mqc0zXoPMYFnPm4Zz0xCQcf/s4ht02zMHD2VnZ6ZXh7aq1SH1xPTg8jl83a2dVi/39fdrOWUc2HoE0W4rtt22HyWBCytUpSJ+Z7pc3WH6FHKf/dRoUReHC1xcw641Zfo0XsITHdj2yCxRFgcPhwNRnQsuxFmII2cC6IbR582Z8/vnnThuvEhyx/aGd3XwWgP8uXXeC6XpVPaRZUkY6ATaw/bxfzv0SlJli9Hlt36et1yJCGoHj7x5n1IvIExwOx6oT6m8I0UYPh8ex9g3zJq3XH+yqS+d6NoTosNhAPnxEyCIQERMBdZnabePWrpYuRmGZQMNEI9R+th2pV6f6fIy4sXHo1fSienc147AYYBEPu8oa0zfq0X6m3acwiUgucmoIMakq7cyDKRAJMH3ddBSvK8b1H1+a1429RmjrtIzF0sDFRrg1jqHK8u/KkTkv02dhM5tVi+kWLIdeOoRtC7cB8DxHezomLRPIezAP6jI1qgur0dPeg/TZ6V7LBPrTP42+9VQruAIuYob57vW83GA9NCYQCJCT477FA8Ee5UolOHzLzSsQLl13gulghcVssctI4TMryEW/b9rz03Di7RPoUfcExAiicaUTMpvMUExTIOc3OZDlXtJCDIRAkMPheBUeY6IPYgMm4TFdvQ4RMREIi3Rf1TbQMNUI+ZIxRodrwyLDEDsqFue/PG81hJiEa8UpYuibnIuHq3dVIyE/wWOFame4Ekszba/hjNFLRiNMHIZjbxyzLtPWaC3hLi8eqly12fBHHzQQ2UwzXpwBDi9wczTt4T7+1nFEZ0bj56d/RtYNWTj04iHG/f5c0T+NvvFQI+ST5D5nol2OsG4IPfHEE9i4caPL6pYER1RrVdZuvIGoQSO/Qg51qRrd7d0O64JVP8gW2oVN97HZ9dguxu8d8dsRln+owOkAANeZY5Men4TWE62Y9KdJDuv81QAxQZwkhr6BmWDaU9d5tpDlyKC+oHa7TTAyxgCLRsjQaUCvptfp+q7WLnS3dTstQOcJ2xpTCfkJ6GrqgjRHyrh5rUjuus5R9a5qn/RBACCUOxdL6xuZpc47g8vj4uqXr0bxumLrvNJZ2Ymo9CivbrCSFImDF6yzuhPtZ9p9Tn4YiGwmZ8VH/cHWUOOL+NYihUxb3Xgic14myv9nqddG9EGOsG4I7du3D5988gmys7OxYMEC3HzzzXZ/BHsCVdjOFmGcENJsqUOxLpPBhMYDjUH1CPXvY6MoUKBkYwn2rdzn8b36Jj3+M+U/ALxPVfWEK4/QifdOIG5MnE8FzgKBNx6hzopOt81W2YKRRygIGWOApfp1mDjMaTgGsHiDxMlin0pJ2N7MulssxkFdUR3jmxmXd1E87EQnVFVYZVc/yBtceYQ89RnzRMacDMgny1H8V0u6uDdCaRpnobHy/5VDUaBAhDTCxbvcw2bCAsDOHG0d2/PT0HaqDQBwbsu5gHm4M+dlonZvLQx6AzGEnMC6RkgqleKmm25i+zCXBa5cuoD/+hM6PJY5N9O6rKmkCWGiMJ/CAIHA2ef97d7f4v3c91G8rhjcMC4KVhU4fa9BZ8DHEz5Gb0cvCp4rQMGqgoDqAGTDHD1CJoMJR149glmv+S9g9BWxgnl1aU2FBqPuGsXyiByR5khRvava7TbByBgDLOFFWicUPybeYb2vYTGa/r/XUx+c8upm5ixzTF2hhq5O5/MDCy2WpsWyNJ76jDEhOjMaRzcdRf7D+Q7FFJloW5x5hPwJi7ENm3M0/V7VOhXMBnPAPNxFa4rA4XIgThGj4n8VaD3VajWE/NUfXS6wbgh9+OGHbB/isoHNGjRJU5JQ9WOV3bK6fXVQTFMELZPP2efl8rn4XfHv8EHuB6hX1Tt9n6nPhI/zP4a+Xg/laqXVWArkhCTLlaG7tRs9HT2IkFmeTM99fg78SD6yf5Pt4d3sIU4So/WU8/L+/QmWRkiW67nNhr5+4DPGaNyl0PtrCAGW6654XbG1p5k316GzzLHqwmoopiogEPlW8FQkF8HYbYRBa0B41KVMPn80QtbxKsQwG83Y+putSMhLQOxomxIWDLI3JakSqy6KJ+Chr7sP1YXVuGrDVX6Niy3YnKOBi4aJIbCZbnTIVj5ZjgPrDyAyNhKSVElAMmwvF0hBxRCCzQJVSZOTUPzXYrunwmAVUqRx9XlFiSLc+v2t+Oyqz7Dzvp247v3rrOsoisIP9/8AXYMOyVcmO+wjUBNShDQCkfGR6LjQgaTJSaAoCodeOoRJT0zyS7joLyKFCJU/VHrcrqejB72a3qCJpfWNerdp/to6LRLyHUsTDATuBNPtZ9uRcV2GX/tXrVVZb+ze3swkqY4ekupd1Uid6XsWW3h0OHgCHrqauqyGEEVRfofGAMvvrbezF4dfPozOyk5kzc9y6jVxBa2L0tZpIc2UomZPDYQJwoBViQ80bM7RbGW69X9AzJqfZW3YG6jQ22CHFUNowoQJKCwshEwmQ35+vluPQ0lJCRtDIPQjfnw8ejt6oanUQJopBUVRqNtXh8lPTQ720JyiUCqQOTcTpz44hciYSMx4cQYAoGilpVKsUW9ExrUZTt8baMF00uQkVP1UBV29DqOXjA7Ivn1FrGAmllaXqxERE2HnARgoImMjER4dDnWZ8zpMQJA9QqkSdJxzrmFqP9uOiY9N9Hnf/t7MJCkS1P1yqSM7RVGo3lWN8Q+O93lMHA7HIphu1FszHQ1aA4xdxoCUzbj6pavRdLgJNXtqsOPuHTD3OfeaOIPWRelqdZBmSq1hsaFWb24gQm6mPhOK1xajYmcFyr8rJ0aQDawYQjfeeCPCwy0T8MKFC9k4BMFLwiLDEJ8Xj8aDjZBmStFxvgN9uj4kTAjOUzkTbtp+Ez7O/xiHXjoEvpAPUaIIh185DGO37wUmvcFWMH3opUPIX5Y/4One/RElMRNLayo0QRFKA5YbrzRHio4LjnWYaHT1OogUA1tDiCYqLcohTAwAxh4jNBUan0NjgbiZ9e831vZrGwxag98NkUWJIrvMMX2DHrxwHsKlgTGUb9p+EzZFbbIWMPTmt0mn0FMUhfLvyjH7jdkBGdNggu2QGwBMf346DrxwwJrtRoygS7BiCK1evdrp/4TgQgumR9w+AnX76iCfLAc/PHSjoxwOB3fsvwPvZb8H1XOXMjLYNoLo4mayXBlaT7ai+Xgz6vbVYf4n84MuLhQrmFWXDpY+iMZdF3qTwYSu5i5Ikh0bCA8ErjRCHaUd4EfyfRZxB+Jm1r/fWHVhNVKuTAFP4HubBcCxzYauQWft9RUIjvzjiLWEhS/hQG2tFm1n2tDV1IXUa3wPAw5WBqJvl7OUf2IMWRiwu+Dhw4dx5swZAMCoUaMwcaLv7meCbyRNScLJ904CuFg/KMiFFJkQJgzDHfvuwPs57wMIbK0gV9DiwuG3D4e6VI3DLx/G6LtH4/jbx4MuLoyQRYAX7rm6dLANIVmOa8G0vlEPDpcDYcLAtf6wJSotCtpaLcwms53eixZK+2ocBOJmJkm51JGdJ+D5VT/Ilv5tNroauwJW1TsQ4UBtjRbl35UjbWZa0L2ulyNsVtq+HGDdEKqtrcXixYtRVFQEqVQKAFCr1SgoKMDmzZuRkuJ7Z12CdyRNTsJPD/4EU58JdfvqMHPj4Gh6e+ZTiwE9UE8ytuEMLp+L1lOtyPtjXkiICzkcjjU8ZlvZuj+aCg1ybgxeRXdprhS1+2qdrtPV6yBMFPrc3d1fxMlimPvM6GrqstMpBSJjzF9sO7JLkiWo2VODqSunBmS/toYQkz5jTAhIODBVgprdNWg52YLhtw33e0wEe9jWH10OsD4T3Xfffejr68OZM2fQ3t6O9vZ2nDlzBmazGffdd5/X+3vjjTeQkZGBiIgITJkyBQcPHnS7/RdffIERI0YgIiICY8eOxf/+9z9fP8qgJ2Z4DLhhXFQXVkNdpoZCqQj2kDzCVvEyTyhXKjH12akwG80w95lRsrEk6EYQDZNaQppyDaRZ0oEZkBPceYR0dcGpIUTDD+dDJBc5ZI6FgiFEd2TX1erQdLQJ4AAJ4/3X8QkThXahsUCkzgP+VXGmW5JIUiRoPd2K+qJ6a/0gJi1JCMwYiErbgx3WPUJ79+7F/v37MXz4JUt/+PDheO2113DllVd6ta8tW7ZgxYoVePvttzFlyhS8+uqrmDt3Ls6dO4eEBMfJYv/+/Vi8eDHWr1+PG264AZ9++ikWLlyIkpISjBkzxu/PNpigdS/yK+Q4/MphxI2Js9bHCbbuxRXBfpKZvna6peSAOfjiQvr7U65UOmSO9f/+KDPldRfwQCPNkUJXp0NfVx/ChPahjmC117DFqhOycba0n21HzsLg90UUp4ihrdFCU6lB2jVpASnXIJI7iqVlw117FJniTziQDkGP+8M4qEvViB0di+j0aFLfJsAMhP5osMO6Ryg1NRV9fX0Oy00mExQK7zwSr7zyCu6//34sXboUo0aNwttvvw2hUIh//vOfTrffuHEjrrvuOjz55JMYOXIk1q5diwkTJuD11193eYze3l50dnba/V0O0JOO2WBG1Y9VVn0Q0z5IwSDYTzKqtSoHAWiwsO1jZZs55uz70zXoYOozQZIWHDEyAAgThAgTh0FdpnZYFwqGUP9aQhRFhYRHCLiUOeZv/SBb+rfZCFRozB+sTZPfPQEAXtcgIhACBet3v5deegmPPPIIDh8+bF12+PBhLF++HC+//DLj/RgMBhw5cgSzZ19KreRyuZg9ezZUKuc3KJVKZbc9AMydO9fl9gCwfv16REdHW/9SUy+PDAZ60qn9xaLbSJmeEvKTDts9g9wRrJCcK2z7WLWfaYeuXufy+9NUaCBJlgQ1I5DD4bgMjwU7NAZczFSqvpSdpavTwdhthCzHfy+Jv0hSJVCXqVG3rw7ps9IDsk9aI0Q3vw5UaMxflCuVKFhjqQx/5B9HQno+Ily+sD5T3n333ejq6sKUKVPA51sOZzQawefzcc899+Cee+6xbtve3u5yP62trTCZTEhMTLRbnpiYiLNnzzp9T2Njo9PtGxsbnW4PAE8//TRWrFhhfd3Z2XlZGUMGrQGHXjqEHUt3wGxgXvhsKBHskJwr7MbAAUBdKiVgGzrTlNtnjAUr9Omq+aquXofUq4P7m4pKi0LN3hrr6/az7YjOjAY/IjjGo+33J0mR4OCLBxEuDUfMiJiAfH/CRCFMvSb0anoRIY0IGUMIAApWF6D4r8U+1SAiEAIB67/6V199le1DBJTw8HBrMcjLkRkvzsCRjUcC2tTvcmMgipv5im1TRgCo+qnKUjiRumSkUWbKWkwxmHoLVz3HQiE01r+WUNvZtqCGxejQJwDIhsvQ1dSFkb8badcKwR8EEgH4kXx0NXWBH8lHT0cPRPLQMIRUa1VWI4jUtyEEA9YNoSVLlgRkP3FxceDxeGhqarJb3tTUBLlc7vQ9crncq+2HAmw09bvcCGVxYf/vjy/ko3hdMbqau6BQKlC0qgjx4+ORuzA36KFPaY4UDQcaHJaHQmisv0ao/Uxw9UG23r6x948FAPTp+wL2/XE4HGvmGC+CF9Q6TraQ+jaEUIB1jVBJSQlOnjxpff3NN99g4cKFeOaZZ2AwGBjvRyAQYOLEiSgsLLQuM5vNKCwshFLpQkeiVNptDwA//vijy+0vd0JN90LwDmffX+XOSoxYPAI3br0R0VnR4PA4aDnWAtW64Ou/6DYbthh0Bhg6DcH3CKVK0N3Sjb5uSyJHKAilaR0YXfS0dFtpQL8/us2GvkEPYYIw6AkSrkLQZF4iDDSs/xIeeOABnD9/HgBQXl6O22+/HUKhEF988QWeeuopr/a1YsUKvPfee/jXv/6FM2fO4MEHH4Rer8fSpUsBAHfddReefvpp6/bLly/Hzp078fe//x1nz57FmjVrcPjwYSxbtixwH3CQQCadwY2772//6v2o3VuL+f+Zj4eaHgKHzwFlDH7KvyxHBm2N1mpsAJd6XEXERARtXAAgjBeCF86zhsdCwRACLN8p3U4j0N8fLZgOFX1QsLNCCQQa1kNj58+fx/jx4wFYihvOmDEDn376KYqKivDb3/7WKw3R7bffjpaWFqxatQqNjY0YP348du7caRVEV1dXg8u9ZNsVFBTg008/xbPPPotnnnkGubm52LZt25CrIQSEtu6F4Bmm39+xN49ZjaBghz5FSSLwI/nQVGgQNyoOAKCt00KsEAe9uziHy7E2+xTJLeUIQsEQUq1VWdtrBPr7o0NjHB4nJAyhUA5BE4YWrBtCFEXBbLZM0j/99BNuuOEGAJb6Qq2trV7vb9myZS49Onv27HFYtmjRIixatMjr41xukElncMPk+ws1vQXdhV5dqrYaQvp6fdDDYjS0TkgQJUBkbCSEccHVzLD9/YnkIujqdOBwOUGvIUQghBKsG0KTJk3CunXrMHv2bOzduxdvvfUWAKCiosIhtZ1AIPhGqKb8988c09XrIFIE3xsBXKolxOVzg+4NGojvT5goRNMRS/JIKHiECIRQYUDS53/3u99h27Zt+Mtf/oKcHEsJ+y+//BIFBQVsH55AGBKEauizfy0hXZ2lmWgoIEmToLO6EyaDKeiG0EB8f3SbDYqikJDvf/8yAuFygXVDaNy4cXZZYzQvvfQSeDwe24cnEIYEoRr6lOXIcO7zc9bXunodEieFhic4Ki0KDcUN6FX3Br0B8UB8f6JEEboauwAz8QgRCLYELX8yIiICYWFhnjckEAiDFgePUAgUU6ShQ2OhkjHGNrRHSFcf/D5jBEIoEbxmRAQC4bJHmiOFtloLY68R/HB+SBRTpIlKi0JnVSfMJvOQMISEiUKY+8zQN4ZG+jyBECqEXstxAoFw2SBJloAn4KGzshMURYWER6hojaVuliRVAmOPERwOB9EZNi1J1hQFdXxsIRALECayeOFDpb0GgRAKEEOIQCCwBofLQXR2NDpKO9DT0QNTrynohhDd1+vIP44gIiYC0lwpuHyuNXMr2BWXAw1t+AEWr1CELMLaXPZyNvwIBKaQ0BiBQGAVWY4M6gtqRKVFQRAlgEAsCOp4bNPShXIhYkfGBr0vG5vYNnQVyUX2RlCQGvISCKEE64aQyWTCRx99hMLCQjQ3N1uLK9Ls2rWL7SEQCIQgQgumY0bGBN0bRGNrDF3YegHnvzx/WRpBgP1njRkZA3GS+LI2/AgEb2HdEFq+fDk++ugjzJ8/H2PGjAl6aX0CgTCwSHOkKN1WatEHhYhQGoC1erO5zxz0vmxsY2sMdZzrQPWuamIEEQgXYd0Q2rx5Mz7//HNcf/31bB+KQCCEILIcS3VpXV3whdK22BpBwe7LNhAMJcOPQPAG1lWBAoHAWk2aQCAMPaQ5UmgqNeis6gwZQ8g2NPR47+OY9vw0FK26JCq+HHFm+BEIhAEwhJ544gls3LgRFEWxfSgCgRCCSFIl4PK4qFfVh0RozFVfr8vZGBqKhh+BwBTWQ2P79u3D7t27sWPHDowePdqhmvTXX3/N9hAIBEIQ4fK4iM6KRtvptpDwCIVqXza2CNWGvARCqMC6ISSVSnHTTTexfRgCgRBiFK2x1ORRrlRCmiNF+9l2qyGkWquyGCRuemyxRaj2ZWOLoWb4EQjewroh9OGHH7J9CAKBEILY1q+R5cgAAOJkMalfM8AMNcOPQPAWUlCRQCCwgm34JWt+FgDg5D9PQvWciqRuEwiEkGFADKEvv/wSn3/+Oaqrq2EwGOzWlZSUDMQQCARCEOivRSFGEIFACDVYzxrbtGkTli5disTERBw9ehSTJ09GbGwsysvLMW/ePLYPTyAQgoxypRI8AQ8ASP0aAoEQcrBuCL355pt499138dprr0EgEOCpp57Cjz/+iEcffRQajYbtwxMIhCCjWquCyWAi9WsIBEJIwrohVF1djYKCAgBAZGQktFotAODOO+/EZ599xvbhCQRCECH1awgEQqjDukZILpejvb0d6enpSEtLQ3FxMfLy8lBRUUGKLBIIlzGkfg2BQBgMsG4IzZw5E//973+Rn5+PpUuX4vHHH8eXX36Jw4cP4+abb2b78H5DG2udnZ1BHgmBMLjQdmkx/pnxGL18tN3vZ/Ty0dD36KHt0pLfFYFAYA16fvHkdOFQLLtlzGYzzGYz+HyLzbV582bs378fubm5eOCBByAQCNg8vN/U1tYiNTU12MMgEAgEAoHgAzU1NUhJSXG5nnVDaLBjNptRX18PiUQCDocTsP12dnYiNTUVNTU1iIqKCth+L1fI+WIOOVfMIeeKOeRcMYecK+awea4oioJWq4VCoQCX61oSPSB1hH755Re88847KCsrw5dffonk5GT8+9//RmZmJqZPnz4QQ/AZLpfr1pL0l6ioKPJD8QJyvphDzhVzyLliDjlXzCHnijlsnavo6GiP27CeNfbVV19h7ty5iIyMxNGjR9Hb2wsA0Gg0eOGFF9g+PIFAIBAIBIJLWDeE1q1bh7fffhvvvfeeXef5adOmkarSBAKBQCAQggrrhtC5c+dw1VVXOSyPjo6GWq1m+/AhS3h4OFavXo3w8PBgD2VQQM4Xc8i5Yg45V8wh54o55FwxJxTOFeti6aysLLz77ruYPXs2JBIJjh8/jqysLHz88cfYsGEDfv31VzYPTyAQCAQCgeAS1j1C999/P5YvX44DBw6Aw+Ggvr4en3zyCf70pz/hwQcfZPvwBAKBQCAQCC5hPWvsz3/+M8xmM2bNmoWuri5cddVVCA8Px5/+9Cc88sgjbB+eQCAQCAQCwSUDVkfIYDCgtLQUOp0Oo0aNglgsHojDEggEAoFAILiEFFQkEAgEAoEwZGFNI3TPPfcw+huqvPHGG8jIyEBERASmTJmCgwcPBntIIceaNWvA4XDs/kaMGBHsYYUMP//8MxYsWACFQgEOh4Nt27bZracoCqtWrUJSUhIiIyMxe/ZsXLhwITiDDTKeztXdd9/tcK1dd911wRlsEFm/fj2uuOIKSCQSJCQkYOHChTh37pzdNj09PXj44YcRGxsLsViMW265BU1NTUEacfBgcq6uvvpqh+vqj3/8Y5BGHFzeeustjBs3zlo4UalUYseOHdb1wbyuWDOEPvroI+zevRtqtRodHR0u/4YiW7ZswYoVK7B69WqUlJQgLy8Pc+fORXNzc7CHFnKMHj0aDQ0N1r99+/YFe0ghg16vR15eHt544w2n61988UVs2rQJb7/9Ng4cOACRSIS5c+eip6dngEcafDydKwC47rrr7K61zz77bABHGBrs3bsXDz/8MIqLi/Hjjz+ir68Pc+bMgV6vt27z+OOPY/v27fjiiy+wd+9e1NfXD4oG2oGGybkCLAlDttfViy++GKQRB5eUlBRs2LABR44cweHDhzFz5kzceOONOH36NIAgX1cUSzz00EOUTCajxo8fT23cuJFqa2tj61CDjsmTJ1MPP/yw9bXJZKIUCgW1fv36II4q9Fi9ejWVl5cX7GEMCgBQW7dutb42m82UXC6nXnrpJesytVpNhYeHU5999lkQRhg69D9XFEVRS5YsoW688cagjCeUaW5upgBQe/fupSjKcg2FhYVRX3zxhXWbM2fOUAAolUoVrGGGBP3PFUVR1IwZM6jly5cHb1Ahjkwmo95///2gX1eseYTeeOMNNDQ04KmnnsL27duRmpqK2267Dd9//z2oISxLMhgMOHLkCGbPnm1dxuVyMXv2bKhUqiCOLDS5cOECFAoFsrKy8Lvf/Q7V1dXBHtKgoKKiAo2NjXbXWXR0NKZMmUKuMxfs2bMHCQkJGD58OB588EG0tbUFe0hBR6PRAABiYmIAAEeOHEFfX5/ddTVixAikpaUN+euq/7mi+eSTTxAXF4cxY8bg6aefRldXVzCGF1KYTCZs3rwZer0eSqUy6NcVq+nz4eHhWLx4MRYvXoyqqip89NFHeOihh2A0GnH69OkhmTnW2toKk8mExMREu+WJiYk4e/ZskEYVmkyZMgUfffQRhg8fjoaGBjz33HO48sorcerUKUgkkmAPL6RpbGwEAKfXGb2OcInrrrsON998MzIzM1FWVoZnnnkG8+bNg0qlAo/HC/bwgoLZbMZjjz2GadOmYcyYMQAs15VAIIBUKrXbdqhfV87OFQDccccdSE9Ph0KhwIkTJ/B///d/OHfuHL7++usgjjZ4nDx5EkqlEj09PRCLxdi6dStGjRqFY8eOBfW6GpDu84DF68HhcEBRFEwm00AdljCImTdvnvX/cePGYcqUKUhPT8fnn3+Oe++9N4gjI1xu/Pa3v7X+P3bsWIwbNw7Z2dnYs2cPZs2aFcSRBY+HH34Yp06dIro8Brg6V3/4wx+s/48dOxZJSUmYNWsWysrKkJ2dPdDDDDrDhw/HsWPHoNFo8OWXX2LJkiXYu3dvsIfFbmXp3t5efPbZZ7j22msxbNgwnDx5Eq+//jqqq6uHpDcIAOLi4sDj8RzU8E1NTZDL5UEa1eBAKpVi2LBhKC0tDfZQQh76WiLXmW9kZWUhLi5uyF5ry5Ytw7fffovdu3cjJSXFulwul8NgMDj0iRzK15Wrc+WMKVOmAMCQva4EAgFycnIwceJErF+/Hnl5edi4cWPQryvWDKGHHnoISUlJ2LBhA2644QbU1NTgiy++wPXXXw8ul/XOHiGLQCDAxIkTUVhYaF1mNptRWFgIpVIZxJGFPjqdDmVlZUhKSgr2UEKezMxMyOVyu+uss7MTBw4cINcZA2pra9HW1jbkrjWKorBs2TJs3boVu3btQmZmpt36iRMnIiwszO66OnfuHKqrq4fcdeXpXDnj2LFjADDkritXmM1m9Pb2Bv26Yi009vbbbyMtLQ1ZWVnYu3evS/fXUIyVrlixAkuWLMGkSZMwefJkvPrqq9Dr9Vi6dGmwhxZS/OlPf8KCBQuQnp6O+vp6rF69GjweD4sXLw720EICnU5n92RZUVGBY8eOISYmBmlpaXjsscewbt065ObmIjMzEytXroRCocDChQuDN+gg4e5cxcTE4LnnnsMtt9wCuVyOsrIyPPXUU8jJycHcuXODOOqB5+GHH8ann36Kb775BhKJxKrPiI6ORmRkJKKjo3HvvfdixYoViImJQVRUFB555BEolUpMnTo1yKMfWDydq7KyMnz66ae4/vrrERsbixMnTuDxxx/HVVddhXHjxgV59APP008/jXnz5iEtLQ1arRaffvop9uzZg++//z741xVb6WhLliyh7r77bo9/Q5XXXnuNSktLowQCATV58mSquLg42EMKOW6//XYqKSmJEggEVHJyMnX77bdTpaWlwR5WyLB7924KgMPfkiVLKIqypNCvXLmSSkxMpMLDw6lZs2ZR586dC+6gg4S7c9XV1UXNmTOHio+Pp8LCwqj09HTq/vvvpxobG4M97AHH2TkCQH344YfWbbq7u63lUYRCIXXTTTdRDQ0NwRt0kPB0rqqrq6mrrrqKiomJocLDw6mcnBzqySefpDQaTXAHHiTuueceKj09nRIIBFR8fDw1a9Ys6ocffrCuD+Z1RVpsEAgEAoFAGLIMXbEOgUAgEAiEIQ8xhAgEAoFAIAxZiCFEIBAIBAJhyEIMIQKBQCAQCEMWYggRCAQCgUAYshBDiEAgEAgEwpCFGEIEAoFAIBCGLMQQIhAIBAKBMGQhhhCBQLisufvuu4dkWxECgcAM1nqNEQgEAttwOBy361evXo2NGzeCFNAnEAiuIIYQgUAYtDQ0NFj/37JlC1atWoVz585Zl4nFYojF4mAMjUAgDBJIaIxAIAxa5HK59S86OhocDsdumVgsdgiNXX311XjkkUfw2GOPQSaTITExEe+99x70ej2WLl0KiUSCnJwc7Nixw+5Yp06dwrx58yAWi5GYmIg777wTra2tA/yJCQRCoCGGEIFAGHL861//QlxcHA4ePIhHHnkEDz74IBYtWoSCggKUlJRgzpw5uPPOO9HV1QUAUKvVmDlzJvLz83H48GHs3LkTTU1NuO2224L8SQgEgr8QQ4hAIAw58vLy8OyzzyI3NxdPP/00IiIiEBcXh/vvvx+5ublYtWoV2tracOLECQDA66+/jvz8fLzwwgsYMWIE8vPz8c9//hO7d+/G+fPng/xpCASCPxCNEIFAGHKMGzfO+j+Px0NsbCzGjh1rXZaYmAgAaG5uBgAcP34cu3fvdqo3Kisrw7Bhw1geMYFAYAtiCBEIhCFHWFiY3WsOh2O3jM5GM5vNAACdTocFCxbgb3/7m8O+kpKSWBwpgUBgG2IIEQgEggcmTJiAr776ChkZGeDzybRJIFxOEI0QgUAgeODhhx9Ge3s7Fi9ejEOHDqGsrAzff/89li5dCpPJFOzhEQgEPyCGEIFAIHhAoVCgqKgIJpMJc+bMwdixY/HYY49BKpWCyyXTKIEwmOFQpOQqgUAgEAiEIQp5lCEQCAQCgTBkIYYQgUAgEAiEIQsxhAgEAoFAIAxZiCFEIBAIBAJhyEIMIQKBQCAQCEMWYggRCAQCgUAYshBDiEAgEAgEwpCFGEIEAoFAIBCGLMQQIhAIBAKBMGQhhhCBQCAQCIQhCzGECAQCgUAgDFn+H5GT6OrdSF5dAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkIAAAHgCAYAAABJmwJ4AAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAA8iJJREFUeJzs3Xd4U2X7B/BvkrbpTvfepbRAC2WWtGxQFF8RF0PFAa5XefV1/HxFZaMoKi5UxD0RRFyIoCyBNG1ZpYXSAqW7lO6mO01yfn/EE5ImabMT6P25Lq6Lnpyc3DkZ587z3M/zcBiGYUAIIYQQMgBx7R0AIYQQQoi9UCJECCGEkAGLEiFCCCGEDFiUCBFCCCFkwKJEiBBCCCEDFiVChBBCCBmwKBEihBBCyIBFiRAhhBBCBixKhAghhBAyYFEiRMhVaOXKleBwOKivr7d3KFZRWloKDoeDN954o9992XNxtWOf8xdffGHR414r54cQa6FEiBAHcebMGdxzzz0IDw8Hn89HWFgY7r77bpw5c8beoREH19HRgZUrV+LgwYP2DoWQqw4lQoQ4gB07dmDUqFHYt28fHnjgAXzwwQdYvHgxDhw4gFGjRuGnn36yd4jEgXV0dGDVqlU6E6GXXnoJnZ2dtg+KkKuEk70DIGSgKy4uxsKFCxEXF4dDhw4hMDBQdduTTz6JiRMnYuHChcjLy0NcXJwdI9WmUCgglUrh6upq71CIHk5OTnByoq96QvShFiFC7Oz1119HR0cHNm/erJEEAUBAQAA++ugjtLe3Y/369Vr3ra+vx9y5c+Ht7Q1/f388+eST6Orq0tjnr7/+woQJE+Dj4wNPT08kJibihRde0Ninu7sbK1aswKBBg8Dn8xEZGYnnnnsO3d3dGvtxOBwsWbIE3377LYYNGwY+n4/ffvsNfn5+eOCBB7Tik0gkcHV1xbPPPgsAkEqlWL58OUaPHg2BQAAPDw9MnDgRBw4c0Ht+3nrrLURHR8PNzQ2TJ0/G6dOn+z6h//jmm28wevRouLm5wc/PD/Pnz0dFRYVB962qqsKiRYsQHBwMPp+PYcOG4bPPPlPdfvnyZTg5OWHVqlVa9y0qKgKHw8HGjRtV2y5evIg777wTfn5+cHd3x/jx4/H777/3G8eUKVMwZcoUre33338/YmJiAChri9j3zapVq8DhcMDhcLBy5UoAumuEZDIZ1qxZg/j4ePD5fMTExOCFF17Qer1jYmLwr3/9C0eOHMG4cePg6uqKuLg4fPXVV/3GTshVgyGE2FVYWBgTExPT5z4xMTFMRESE6u8VK1YwAJiUlBTm5ptvZjZu3Mjcc889DABm4cKFqv1Onz7NuLi4MGPGjGHeeecdZtOmTcyzzz7LTJo0SbWPXC5nrr/+esbd3Z3573//y3z00UfMkiVLGCcnJ+aWW27RiAMAM2TIECYwMJBZtWoV8/777zMnT55kFi1axPj4+DDd3d0a+3/55ZcMAObo0aMMwzBMXV0dExoayjz99NPMhx9+yKxfv55JTExknJ2dmZMnT6ruV1JSonp+MTExzGuvvcasWrWK8fPzYwIDA5mamhqtc6Fu7dq1DIfDYebNm8d88MEHzKpVq5iAgAAmJiaGaWpq6vNc19TUMBEREUxkZCSzevVq5sMPP2Rmz57NAGDeeust1X7Tpk1jhg4dqnX/VatWMTweTxVjTU0NExwczHh5eTEvvvgis2HDBmbEiBEMl8tlduzYofWcP//8c9W2yZMnM5MnT9Z6jPvuu4+Jjo5mGIZh2tramA8//JABwNx6663M119/zXz99dfMqVOn9J6f++67jwHA3HHHHcz777/P3HvvvQwAZs6cORr7RUdHM4mJiUxwcDDzwgsvMBs3bmRGjRrFcDgc5vTp032eR0KuFpQIEWJHzc3NDACthKM39kIskUgYhrlycZs9e7bGfo899hgDQHURfOuttxgATF1dnd5jf/311wyXy2UOHz6ssX3Tpk0MAEYkEqm2AWC4XC5z5swZjX337NnDAGB+++03je2zZs1i4uLiVH/LZDKtZKmpqYkJDg5mFi1apNrGJgVubm5MZWWlant2djYDgHnqqadU23pf6EtLSxkej8e8/PLLGo+Tn5/PODk5aW3vbfHixUxoaChTX1+vsX3+/PmMQCBgOjo6GIZhmI8++ogBwOTn52vsN3ToUGbatGmqv//73/8yADTOb2trKxMbG8vExMQwcrlc4zkbmwgxjDLBBMCsWLFCa9/e5yc3N5cBwDz44IMa+z377LMMAGb//v2qbdHR0QwA5tChQ6pttbW1DJ/PZ5555hmtxyLkakRdY4TYUWtrKwDAy8urz/3Y2yUSicb2xx9/XOPv//znPwCAXbt2AQB8fHwAAL/88gsUCoXOY//www8YMmQIkpKSUF9fr/o3bdo0ANDqtpo8eTKGDh2qsW3atGkICAjA1q1bVduamprw119/Yd68eaptPB4PLi4uAJT1RY2NjZDJZBgzZgxOnDihFducOXMQHh6u+nvcuHFIS0tTPT9dduzYAYVCgblz52o8n5CQECQkJPTZDccwDH788UfcfPPNYBhG4/4zZ85ES0uLKs7bbrsNTk5OGs/59OnTKCgo0HjOu3btwrhx4zBhwgTVNk9PTzz88MMoLS1FQUGB3nisgT13Tz/9tMb2Z555BgC0uuyGDh2KiRMnqv4ODAxEYmIiLl68aOVICbENSoQIsSM2wWETIn30JUwJCQkaf8fHx4PL5aK0tBQAMG/ePGRkZODBBx9EcHAw5s+fj23btmkkRefPn8eZM2cQGBio8W/w4MEAgNraWo3HiI2N1YrPyckJt99+O3755RdVncmOHTvQ09OjkRQAwJdffonhw4fD1dUV/v7+CAwMxO+//46Wlhat4/Z+fgAwePBg1fPT5fz582AYBgkJCVrP6ezZs1rPR11dXR2am5tV9Vrq/9gaKPb+AQEBmD59OrZt26a6/9atW+Hk5ITbbrtNta2srAyJiYlajzVkyBDV7bZUVlYGLpeLQYMGaWwPCQmBj4+PVjxRUVFax/D19UVTU5NV4yTEVmgoASF2JBAIEBoairy8vD73y8vLQ3h4OLy9vfvcr3dRrJubGw4dOoQDBw7g999/x+7du7F161ZMmzYNf/75J3g8HhQKBVJSUrBhwwadx4yMjNQ6pi7z58/HRx99hD/++ANz5szBtm3bkJSUhBEjRqj2+eabb3D//fdjzpw5+L//+z8EBQWBx+Nh3bp1KC4u7vO5GUqhUIDD4eCPP/4Aj8fTut3T07PP+wLAPffcg/vuu0/nPsOHD1f9f/78+XjggQeQm5uL1NRUbNu2DdOnT0dAQICZz0KJw+GAYRit7XK53CLHNoSucwhAZ1yEXI0oESLEzv71r3/h448/xpEjRzS6T1iHDx9GaWkpHnnkEa3bzp8/r9FCc+HCBSgUCtWIIgDgcrmYPn06pk+fjg0bNuCVV17Biy++iAMHDmDGjBmIj4/HqVOnMH36dLNmIJ40aRJCQ0OxdetWTJgwAfv378eLL76osc/27dsRFxeHHTt2aDzWihUrdB7z/PnzWtvOnTun8fx6i4+PB8MwiI2NVbVqGSowMBBeXl6Qy+WYMWNGv/vPmTMHjzzyiKp77Ny5c1i6dKnGPtHR0SgqKtK6b2Fhoep2fXx9fXV2QfVutTHmdYuOjoZCocD58+dVrVKAciRcc3Nzn/EQci2irjFC7Oz//u//4ObmhkceeQQNDQ0atzU2NuLRRx+Fu7s7/u///k/rvu+//77G3++99x4A4MYbb1Tdv7fU1FQAUHVhzZ07F1VVVfj444+19u3s7ER7e7tBz4PL5eKOO+7Ab7/9hq+//hoymUyrW4xtXVBvTcjOzoZYLNZ5zJ9//hlVVVWqv3NycpCdna16frrcdttt4PF4WLVqlVarBcMwWue4d3y33347fvzxR53D9Ovq6jT+9vHxwcyZM7Ft2zZ8//33cHFxwZw5czT2mTVrFnJycjSeY3t7OzZv3oyYmBiteit18fHxKCws1HjcU6dOQSQSaezn7u4OAGhubtZ7LPV4AODtt9/W2M62CN500039HoOQawm1CBFiZwkJCfjyyy9x9913IyUlBYsXL0ZsbCxKS0vx6aefor6+Hlu2bEF8fLzWfUtKSjB79mzccMMNEIvF+Oabb3DXXXepuqNWr16NQ4cO4aabbkJ0dDRqa2vxwQcfICIiQtX6tHDhQmzbtg2PPvooDhw4gIyMDMjlchQWFmLbtm3Ys2cPxowZY9BzmTdvHt577z2sWLECKSkpGi0OgLL1a8eOHbj11ltx0003oaSkBJs2bcLQoUPR1tamdbxBgwZhwoQJ+Pe//43u7m68/fbb8Pf3x3PPPac3hvj4eKxduxZLly5FaWkp5syZAy8vL5SUlOCnn37Cww8/rJrXSJdXX30VBw4cQFpaGh566CEMHToUjY2NOHHiBPbu3auVXM6bNw/33HMPPvjgA8ycOVNVoM56/vnnsWXLFtx444144okn4Ofnhy+//BIlJSX48ccfweXq/z26aNEibNiwATNnzsTixYtRW1uLTZs2YdiwYRqF825ubhg6dCi2bt2KwYMHw8/PD8nJyUhOTtY65ogRI3Dfffdh8+bNaG5uxuTJk5GTk4Mvv/wSc+bMwdSpU/XGQ8g1yW7j1QghGvLy8pgFCxYwoaGhjLOzMxMSEsIsWLBAa3g2w1wZEl1QUMDccccdjJeXF+Pr68ssWbKE6ezsVO23b98+5pZbbmHCwsIYFxcXJiwsjFmwYAFz7tw5jeNJpVLmtddeY4YNG8bw+XzG19eXGT16NLNq1SqmpaVFtR8A5vHHH9f7HBQKBRMZGckAYNauXavz9ldeeYWJjo5m+Hw+M3LkSGbnzp1aw8HZoeSvv/468+abbzKRkZEMn89nJk6cqJoaoPe56O3HH39kJkyYwHh4eDAeHh5MUlIS8/jjjzNFRUV642ddvnyZefzxx5nIyEjVazF9+nRm8+bNWvtKJBLGzc2NAcB88803Oo9XXFzM3HHHHYyPjw/j6urKjBs3jtm5c6fGPrqGzzMMw3zzzTdMXFwc4+LiwqSmpjJ79uzROl8MwzCZmZnM6NGjGRcXF42h9LrOT09PD7Nq1SomNjaWcXZ2ZiIjI5mlS5cyXV1dGvtFR0czN910k9bz0Tesn5CrEYdhqOKNEEIIIQMT1QgRQgghZMCiRIgQQgghAxYlQoQQQggZsCgRIoQQQsiARYkQIYQQQgYsSoQIIYQQMmBRIkQIIYSQAYsSIUIIIYQMWJQIEUIIIWTAokSIEEIIIQMWJUKEEEIIGbAoESKEEELIgEWJECGEEEIGLEqECCGEEDJgUSJECCGEkAGLEiFCCCGEDFiUCBFCCCFkwKJEiBBCCCEDFiVChBBCCBmwKBEihBBCyIBFiRAhhBBCBixKhAghhBAyYFEiRAghhJABixIhQgghhAxYlAgRQgghZMCiRIgQQgghAxYlQoQQQggZsCgRIoQQQsiARYkQIYQQQgYsSoQIIYQQMmBRIkQIIYSQAcvJ3gE4OoVCgerqanh5eYHD4dg7HEIIIYQYgGEYtLa2IiwsDFyu/nYfSoT6UV1djcjISHuHQQghhBATVFRUICIiQu/tlAj1w8vLC4DyRHp7e1v1sbLWZYHL5WLc/8Zp3ZbzWg4UCgXGLx1v1RgIIYSQa4FEIkFkZKTqOq4PJUL9YLvDvL29rZ4Iebl7QbRcBA9XDwiXCVXbxWvEyH0lFxmrM6weAyGEEHIt6a+shRIhB8ImP6LlItXf4jViiJaLkLE6QyM5IoQQQoj5KBFyMOrJkHiNGIoeBSVBhBBCiJXQ8HkHJFwmBIfLgaJHAZ4Lj5IgQgghxEooEXJA4jViMAoGACCXyiFeI7ZzRIQQQsi16apJhBobG3H33XfD29sbPj4+WLx4Mdra2vq8z5QpU8DhcDT+PfroozaK2DRsTZCrryucXJ0Qf3O8qpuMEEIIIZZ11SRCd999N86cOYO//voLO3fuxKFDh/Dwww/3e7+HHnoIly5dUv1bv369DaI1DZsEpa9Kh6xThmEPDEO3pBsZqzMoGSKEEEKs4Koolj579ix2796No0ePYsyYMQCA9957D7NmzcIbb7yBsLAwvfd1d3dHSEiIwY/V3d2N7u5u1d8SicT0wI2kkCsLo1MfT0XmikyMeWoMPh/6OW765ibV7YQQQgixnKuiRUgsFsPHx0eVBAHAjBkzwOVykZ2d3ed9v/32WwQEBCA5ORlLly5FR0dHn/uvW7cOAoFA9c+Ws0pnrFSODmuraoOLlwt8E3wRMTkChVsLIVwmRMbKDJvFQgghhAwEV0UiVFNTg6CgII1tTk5O8PPzQ01Njd773XXXXfjmm29w4MABLF26FF9//TXuueeePh9r6dKlaGlpUf2rqKiwyHMwRmtlKzwjPAEAQ+4agsIthTaPwVCilfq77MRrxBCtFNk4IkIIIcRwdk2Enn/+ea1i5t7/CgtNTwIefvhhzJw5EykpKbj77rvx1Vdf4aeffkJxcbHe+/D5fNUs0raYTVqXtqo2eIUrpwRPuC0B9fn1aDzXaPM4DMHlcXXWL7H1TlzeVZFrE0IIGaDsWiP0zDPP4P777+9zn7i4OISEhKC2tlZju0wmQ2Njo1H1P2lpaQCACxcuID4+3uh4baWtqg2e4coWIVcfV8TeGIvCLYVIX5Fu58i00WzYhBBCrmZ2TYQCAwMRGBjY735CoRDNzc04fvw4Ro8eDQDYv38/FAqFKrkxRG5uLgAgNDTUpHhtRT0RAoCkBUnIXJEJ4XJhv2um2APNhk0IIeRqdVX0WwwZMgQ33HADHnroIeTk5EAkEmHJkiWYP3++asRYVVUVkpKSkJOTAwAoLi7GmjVrcPz4cZSWluLXX3/Fvffei0mTJmH48OH2fDr9aq1q1UiE4m+OR2tlK2pza/u4l32Nf2k8wAHNhk0IIeSqclUkQoBy9FdSUhKmT5+OWbNmYcKECdi8ebPq9p6eHhQVFalGhbm4uGDv3r24/vrrkZSUhGeeeQa33347fvvtN3s9BYO1VbbBK8JL9bezuzMGzRnk0EXTf9z/B6CcDJtmwyaEEHLVuCrmEQIAPz8/fPfdd3pvj4mJAcMwqr8jIyPx999/2yI0i+vdNQYou8f2ProXk16dBA7XsbrHxGvEKPiqAFHTonD5xGUkzkvUqBkihBBCHNVV0yI0UMi6ZOhs6FSNGmPFXB8DWacMVaIqO0WmG1sYzePzcMuOWxCeEQ7/JH+aDZsQQshV4appERoo2qrbwHXiwj3IXWM7z5mHwXcMxtktZxExMcJO0WlTyBUQxAsw5K4h4Av4CJ8QjsrDlbjlx1tUtxNCCCGOilqEHExrZSs8wjx0dn8lLUjCuR/OQd4jt0NkusXdGIeOmg6MflI5mi9iYgSqjlSBYRiaDZsQQojDo0TIwahPpthbxMQI8Pg8lO0ts3FU+mW9nIXUx1Lh5u8GAAgeE4zulm40nW+ya1w04zUhhBBDUCLkYHQVSrM4XA6S5ic5zOix2txalO0tw5hnrqwB58R3QsjYEFQdsW8tE814TQghxBBUI+Rg9CVCopXKi3fSgiRsnbIVPZ09cHZzBqC8uCvkCpt3Q2W9nIXhDw2HR7CHxvaIiRGoPFyJlEUpNo1HHc14TQghxBCUCDmY1qpWhIzVXjaEbeFgGAaeoZ64uPMiEu9M1Li421J9QT2KfyvGgxce1LotfEI49j+536bx6CJcJgTDMDTjNSGEEL2of8DB9J5MkSVcJkTG6gxkrsiEZ7gnCrcU2rWFI2ddDobdN0xnrGHpYWgubkZ7TbtNY9Il5roYADTjNSGEEN0oEXIwvZfXUMcmQxUHK3D+p/N2S4Kai5tR9EMRxv1vnM7bXX1cEZgSiMojlTaNS5eDzxxU/Z9mvNaNCssJIQMZJUIOhFEwaK9u1ztqDFAmQzwXHgCA68y1SRLU+0KZ/Wo2EuclwifOR++FMnxiuN0LpjNXZ6JaXI2hC4di/LLx8I72pkkedaDCckLIQEbfcA6ko64DCpkCHmEeevcRrxFDLpUDXGV3jy0u6uoXSkm5BAVfFyBtaVqfF8qICRGoOmy/REi8RozMFZlwcnXCzE9nYuyzY9HT3oMhdw+xWzLkqC0vbEuj+nmhwnJCyEBBxdIOpK2qDa5+rqrRYL2pX5w4PA7OfnfWJmt6qY/AKt5ZjEFzBuHcD+f6vFCGTwjH73f/DmmrFC5eLlaLTR+FXIHQ8aHwH+oPnjMPPGcexr80Hvmf5CN9ZbpdZrxmE0pA8/WyV8G7OvXXWLxWDIWUCssJIQMDtQg5kNbKVp3Fx4D2L/TQcaHoaeux2ZpewmVCCFcIUZNTg/M7+q9P8orwgleUF6rF1VaNS5/05eloLW9F4txE1bYRj46AtE0KQazALjNe9255YRjGoVpexr80HgCgkFJhOSFk4KBEyIH0NZmiQq75Cz1kbAgk5RIMf3g4MlZn2KSFY9i9w5SxGDgCK2JihN0KpqsyqyDrkiFqWpRqmxPfCRPWTsCRZUcg65LZJS71ZOhN3psOkwQBuDLlAYcKywkhAwclQg6kr0QoY6XmxZIv4MMv0Q81OTU2W9NLvFZ5YeS58Ay6UIZPCLdbndC5H84h4bYE8Jx5GtuHLBgCV19X5H6Qa5e4ACBtaZryP4ztCt77I14jxsn3TsLN3w1cHhdpL6ZRYTkhZECgRMiB9DV0XpfQtFBcyrlkxYiuEK8R48znZ+Ad442nup8yqEsufEI4LmVfUhZ32xCjYFD0Q5FGtxiLw+Vg0quTkPVyFrpbum0aF2vngp3KWHgcmxW894XtnvMb6ofRT4+GIE6A0LGhNut2JY7LUQv8CbEkkxKh9nb7T5R3LeprwVVdQsaF4FK29RMh9kIZNS0KEZMiAOgeadSb/xB/OLs74/KJy1aPUV2VqAoKqQJRU6N03h4zMwaBIwKRsz7HpnEByiH957afQ9zNcXi49GFweBy7JxsKuQLpq9LRUdOBqKlRiJkZg5I9JarX2B6F5XQBdgw0tQIZCEx6FwcHB2PRokU4cuSIpeMZ0ForW+EZYVyLUM3RGjAKxopRXalPEsQJ4B3lrdre34WSw+EgLCPM5vMJFW0rQsJtCeA66X57Z67KhG+CL46/fRxtl9o0brPmRZYd0u/s6YzZ22bDK8ILiXcmInR8qF2ToYyVGRg0exDkUjmCxwQjZmYMSveUAoDNul17owuwY6CpFchAYNK3yTfffIPGxkZMmzYNgwcPxquvvorqavuMDrqWGNsiFJgSCFmnDE3nm6wY1ZX6pNbyVo1ECOj/QhkxMcKmiZBCrsC57ed0douxuDwu8jbnQRAjgHjVlQuttS+yCpkCXpFeEC4TwslVOXPF6KdGo/50PdJeSLNLywur/EA5IiZGgOfMQ+SUSLRVtqHpgnXfV30ZaBdgR24BU38tNrhsuGZfAzJwmfSNP2fOHPz888+oqqrCo48+iu+++w7R0dH417/+hR07dkAms8+InKuZtE0KqURqVI0Qz4WH4FHBNqsTkpRL4BVleKIG/FMwfaTK6q1WrKojVVDIFIicEql3H/aLvaGgAfmf5qOxqNEmF9moaVGQtkox4tERqm2h40IRmBIIN383u7S8sMr3l6tG2Ll4uCB8YriqVcheNC7A/Gv7AuzoLWDCZUJwuBxas49ck8z6dAUGBuLpp59GXl4eNmzYgL179+KOO+5AWFgYli9fjo6ODkvFec1rq2oDj8+Dq5+rUfezVZ0QwzCQlEu0WoT6EzwqGD0dPWgsarRSZJqKfijC4NsH6+0WY6m69WQKfD70c5tcZLPXZWPk4yPB9+ZrbB/91GicePcEFDL7tAgpZApUHqrUmGpAvXvMnoTLhOA6c6GQKsB1cYwRdtbg6C1g4jVi1Y8ZmlqBXGvMSoQuX76M9evXY+jQoXj++edxxx13YN++fXjzzTexY8cOzJkzx0JhXvvYyRQ5HI5R9wtNC7VJItTV2AVZhwxekca1CPFceAhNC0XlYevPJ2RIt5g69iLLKBir/8q9fOIyKg9XYtSTo7RuS7g1AQzD4MIvF6z2+H25fOIyOFwOAkcEqrbFzoxF+f5ym4/46028RgxFjzJBVEjtP8LOmtSToTe4bzhUEiRaLgLXiQsndycMucd+y9QQYg0mJUI7duzAzTffjMjISHz33Xd47LHHUFVVhW+++QZTp07FwoUL8csvv+DgwYMWDvfa1dccQn0JHReKulN1Vp8gUFIugaufK1w8jV8uw1YLsFYergQYqEa29Uf9ImvtX7nZr2Zj+IPD4R7ornUb14mLUf8ZheNvHbfa4/el/EA5IqdEanS/BKQEwMXbBVUi+64XJ1ougu9gXwSPCoZboNs1fwEWLhMqWzMdZI4p9jUY+Z+R4DpxkTQ/CR7BHjS1ArmmmJQIPfDAAwgLC4NIJEJubi6WLFkCHx8fjX3CwsLw4osvWiLGAcHUREgQJwDfm4/a3ForRHVFa3krvKON6xZjRUyIsEmLUNG2IiTcrn+0mDr2Cz59VTrcAtww/OHhVvtibyxqRPGvxRjzzBi9+6Q8mILa3FpcOmqbei91FfsrtKYa4HA4iLneft1j6q9PZ30nJr85GYycQfKi5Gv6AixeI1Z1kTrCHFPsiNHwjHD4J/sjZmYMyvaW2XVqBUIszaRE6NKlS/joo48wduxYvfu4ublhxYoVJgc20Bg7mSKLw+EgZFwIanJqrBDVFZIy4+uDWGHCMLSWt6K1stXCUV2hkClw/sfzBnWLqddepC9PR+DwQISMDbHar9yc9TlIWpDU5/lz9XFF8gPJOPH2CYs+dn/kUjkqj1Qicpp2cbk964TYC3Di3ETIOmQITw9H8qJk9LT3XLMXYPZ9yfflI+aGGPgk+Ng96WNHjNadqkPQiCBETYtCfX492mvb7Ta1AiGWZlIiJJPJIJFItP61trZCKpVaOsYBwdih8+psUSdkyogxQDks+PjbxxGUGqTVPWbOsODew40rD1UCHOVw/f6O23vdtsDhgajLq7PIr9zecbVWtuLst2cx7n/j+o1r1BOjcG77ObRWWS9h7O1SziU4ezgjYFiA1m3R10WjLq8O7ZdtP4EqewGuzqxGyNgQ8Fx4GPHICFz46QKGPzTcbhdgaw1zZ5Og0f8djZ62HqQtTUNnbSfSV6XbPRkCgNpTtQgcEQj3AHcEDg9Exf4Ks4/pyFMGkIHFpETIx8cHvr6+Wv98fHzg5uaG6OhorFixAgrFtferzVqMnUxRnS2W2jBlxBhwZVgw14WrsQCrucOCew83ZkeLZb+S3e9xe6/bFjA8AHWn6gCYP4Fg77iOvXkMcTfF4dwP5/qNyzfBFzEzY5D7fq7Jj2+s8v3liJoapbNI3z3AHUGjglD6Z6nN4umtSlSFsPQwAIDvIF9ETo1E/qf5dovHWsPc2eTcb4gfwoRhCE8Ph0KmQMKtCQ7RAlZ3qk5VTB81Iwpl+8rMPqajTxlABg4nU+70xRdf4MUXX8T999+PcePGAQBycnLw5Zdf4qWXXkJdXR3eeOMN8Pl8vPDCCxYN+FplTotQyNgQNF9oRmdDJ9z83SwcmVJreSsG3zHY6PuxCYdouQgtpS2YsXGGRYYFqx+XUTA49+M5xN8cb9Jx2RYhhmGMHrXXV1w9HT3I+zhPNcqmv7hEK0VwDXDFqY9OYfxL4+Hs7qy6TbxGrLxYWrglpOJABZLmJ+m9PXZmLEr3lGLYwmEWfVxDVWdWY/L6yaq/Ux9Lxb4l+zDuf+MMqgWzNPXXl/3bEu9n9nX9de6viJ4RDa4TF6HjQ1ElqrJ7wXRnQyfaqtoQOFyZCEXPiMZfj/xl9ufFWueSEGOZlAh9+eWXePPNNzF37lzVtptvvhkpKSn46KOPsG/fPkRFReHll1+mRMgACpkCHZc7TKoRAgA3fzf4DPJBzdEaxN4Qa+HolExtEQKUX3DSVimOvn4UG/gboJAqLPJF1/uL9PRnp006rv9Qf0glUrRWtsI70rTnqDcuDpD3UZ5BcXF5XJz5/Azcg91R8HUBRjyinHhR/eJgST2dPajOrMb1m6/Xu0/MzBj8cvsvYBQMOFzzkkRjdTZ0orGoEaHCUNW2uJvisG/JPlz8/SIG3TLIpvGw1F9f8Vqxxd7PjIJB+b5yjHlKWVQfnqEcbZn6aKq5IZul7lQdvKO94eqjnOMsfEI42i+1o+ViC3zifcw6tnCZEAzDWPxcEmIMk35SZWZmYuTIkVrbR44cCbFY2cw5YcIElJeXmxfdANFe0w6GYeAR6mHyMULHWa9OSNYtQ/uldpMTIQCqX/UKqWVnphUuE4LDU16gTT2us5szfAf7oi6vziIxsXEBABjD42JrlDoud+DIS0fAKBir/kKuzqyGW6AyidYndHwo5F1yq49K1KVaXA2/wX5wD7gy5QCXx8WIR0Yg98Ncm8ejTrhMCHBg0Ykea3NroZApEDI2BMA/s7JbYPoCc2tx2PoglouHC0KFoSjba373GHBlugtLfzcMFFRrZT6TEqHIyEh8+umnWts//fRTREYqR580NDTA19fXvOgGiLaqNrgHuYPnzDP5GNasE2qragPXmQuPENMTNfaDynHiWHTOHvEaMRg5Aw7PvOMGDg9EfV69RWICgMMvHgYAcF24RsUlXCaEcLkQnfWdeIv/llW7CSoOVCBqmu76IBbPmYeo6VF2GT2mXh+kLmVxCioOVJi8FpolLhyHXzgMMFAlQ5mrM02KRV3pX6WImhql6vILG68cbdlW3dbPPftmbi2Oen0QK3pGtEXqhADgr0f/+idQw+fzstfF3xGTjqux1srRzqNJZ+iNN97AW2+9hREjRuDBBx/Egw8+iNTUVLz99tt48803AQBHjx7FvHnzLBrstYqdVdocIeNCUJNdA4ax/JpeknKJctZrE7tG2A9kyNgQjHlqjMWGqauGGwv4uPPPO806LlsnZAniNWJkv5INZw9nPN39tNFxZazKANeJC4VMYdVJ9cr3lyNyqv412VgxM2NQsqdE523W/EKrzqxGeEa41naPEA8MunUQTm06ZdJxzb1wiNeIkb0uG+4h7nis9jHwBXxkrsg0+/1cvrccUTOuzOfk4uWCwOGBBrUK9fU6AEDklEiIlouQuToTDGNcSyM7dF5d9IxolO8rN3sNwf1P7kdTUROG3TcMTi5OGP/SeIM+K/a6+Fvrcc35HPW3PItCrn8+KkrelEyqEZo9ezaKiorw0UcfoaioCABw44034ueff0ZMTAwA4N///rfFgrzWmTqZorqg1CB0S7rRUtICnzgfywT2D3MmU1T/QPIFfJTtLcOtv94KQLNI0tTjpr2QhuxXshGQEqBaK8uU4waOCMTZ784aHYe+uAbdMgjdkm6NOAyNi51Uj8NTLnJ5+KXDmLh2otmxqZO2SlFztAY3bbmp331jZsZg/3/2o1vSrbVOGvuFBmg+L3PrmuQ9ctTk1OC6TdfpvD31sVT8cusvyFiTAWc3Z5376GNOkS67n/8wfwy+fTDcA9wx98BcfJv2rVnv557OHlQersS096ZpbA/LCEPVkSok3tn3/Fj9vQ6D5gxCQHKAMmFbrWxFNSQJkvfI0VDQoNUiFDImBAqZArW5tQgeFWzMU9WI7cS7JxCYGogbPr8Bl7IvIXB4oOqi3vu5qLNXobW1Htfcz5F6XOxx4v4Vh8S5iSjcWmiVz6g5ep/Hcf8bh5zXcuxWKG90ItTT04MbbrgBmzZtwrp166wR04Bj6mSK6pxcnRA4IhCXsi9ZPBGSlJk2hxCgOWdP6Z+lOLnxJIArHwRThwWzx42aFoXTn51WLV1h6nEDhweisagRsi4ZnFxN+n2gEVdXcxfk3VfW6TI0LvUvp7QX0vBZ4mfIfjkbPBce0penmxxXb5VHKuEV5QVBtKDffX1ifSCIE6DiQIVWgbK1Lgy1J2vh5O4Ev0Q/nbdHTIyAR6gHirYVIfm+ZKOPb2rBs0KugHCFEMc3HEf87HgAQPDIYNz4xY3YvXg3OupMW2i6OrMa7oHuWs83YkIEjr5x1KjnI5fKEZoWiqyXs3Ap6xLAAToudyDhtgQ0nG0AIzd8bb3GwkZwXbha3ylcJy4ip0SibF+ZyYlQt6QbXCcuZn05CxwOB4NvH4xz28/h5q03A+j/s6LvNWRbQHQ9P0uMvhQuE4JRMKoWDUWP+QXelvgcCZcJla07CoDD40DWIcOXI76EW4AbAkcEQrRchO7mbkx5c4rBxxatVLbOWONcqhfKi1aIAAZ2K5Q3+hvf2dkZeXl51ohlwGqraoP/EH+zjxOaFoqanBoMWTDEAlFdYc6IMfUPiV+SH5ovNkPWLYMT38msNzx73NwPcxGQojkZoCnH9Yr0gounCxrONiB4pGlf7Opxbb9xO+JvjjcqLl1fTndl3YVPBn2CzBWZ4HA4FvuSqDigvaxGX9juMV0jtYTLhOhs6LTohaE6sxphwjC93bEcDgep/05F7ge5JiVCACCIVSaBxhTpZqzMQOmfpcj/JF8jARhy1xDUHKtB6Z+lkLZJjV6Tr+yvMkTN0K7XCssIQ+09tQYdU7hMCGm7FFlrs1TbkuYnYcaHM+Dq46qqpwOu1OIY0i0WmBKo83WInhGNizsvYtz/jTP0aWrge/MROTVSNSw/4fYEfD/xe/R09hj83hl23zCIlougkCoADuDs4YzWqlYc36Bct89aLSBdjV0AlMugWKpYXj0ZylqbBblUbtTn6O/n/gYUyrpEhVSByCmRuO3321CdWY3y/eXobOjEsQ3HcPyd4wa3CFqrxRdQjgq9fPyy8g8jBpVYg0kdcffcc4/OYmliGkt0jQHWGznWWt5q1ogxlleEF3h8HpqLm80P6h91+XWqL1JzcDgci9YJNRQ0wH+occlt7xmvAeWkhnf+dSe4zlyTi4N1Kd9frupK7Atbu6BruQ3xGjEOLT2Ev5/7G3kf5SkLh3ssM/KnSlSlsz5IPa62S21oONOAmuOay8v0V/fAMAzEa8XY8+Ae1TZjCtov/HoB8bPjtZIWZ09nyDpk2P3Abq1avf5iKttbhugZ0VrbvSO94RnmafDn2j3AHfgnLJ4LD//a8i9VEsReuKKmRyHupjiDanF6jxhTFz0jGpWHK01a8FnWJcPJjScx5ukr6+8FpQbBPdgdZX8aXoS9655dAJQXfzDAyQ9O4uS7J+EZ7gnRchEOPHUAgO4fGabK+yQPeR8rGwM4XA4UUmX3tSUMXTgU4Cjfj8Z8jsRrxDj6+lEI4gQadYlHXz+KqGlRmLB2Ah6teBRcZy4YOWNw7WF/9Uf9tSbpe3/tXrwbH8d+jKZzyu80ngvP6gtf98XkJTY+/PBDjBkzBo888giefvppjX/EOJYolgaULUKXT1yGvEfe/85GMHV5jd44XA78Ev3QWNhogaiU6vPrtVqETBUwPMAiiZC0VYrW8lajE6HeM16zQseGImZmjHL5DR3rtRlb8NjV1IXak7UGFUqzvwgvZV1CW2WbKhnLXJ0J0XIRTm48iUvZl5C8KFk5igrGJRW6MAyjbBHSMWJMPa7sl7PhP9Qfpz68UjTdX7GlvEeOPx/6E0fXH4W8W/mLO3h0MOJnxxuUGDAMg+Jfi3W2jPGceWgpaUHpX6XIeS3H4Jg6GzpRe7IW0dO1EyHA8GH0DMMoH5fRvLD0vnDFzIwBh8cxqIhf14gxll+SH/g+fFSLq/uNrbez356FW6AbYmbGqLapusd+PGfQMUQrRKg8XIlh9w1TXfxbilsw5lnlgAyfBB8cf/s43uS9abEkqPJwJfY+theyThkyVmfgv13/hc8gH2S/nN3vZ7CvxCBzdSZ+vOlHfJr4qdGfI/b1dfV3xYS1EwDoT2AUPVdqDw+9cMig56x+rA0uGww+l7oKohVyBbZO24rTn52GR6gHGgsbkbE6A091P2W1tR4NYVIxxOnTpzFq1CgAwLlzmm9ac2fmHWgYhrFYi5Bvgi+cXJ1Ql1eHkNEhFohOGZ85XWO9+SVZLhFiGAb1+fUWaREClHVC534w7Eu4Lw2FDXDzd1PVLVlCyNgQXNx5Ed8Kv8VDxQ+B56KcasGQJure/fyVhyrhO9gXnqGe/fbzqzfXC2IFKN1TiqOvH0Xe5jy4eLvg+o+vR2NhIzJXZCJjdQaaLzaj4UyDWYXDkjIJOmo7VPPp9BdX7claTH59Mk5uPAnRchEip+hO8Lol3fh61Ndor2lXLd4qXCaEq78rCr4qMKhIt/ZkLbqbu3U+Ru+C1aDUINQcren3wlF+oBz+w/z1Tk8RnhGO4l+L9Z4L1p+P/InO+k6MXzYeE1ZPUL03IqdEajx+zPUxEK8WY/b22QD01+IwDIPa3FpkrNL93uBwOKrRY8Z0szIMg2MbjmHMM2O0rheDbx+M7TO3q1pE9BGvEUO8Wgw3fzfc8PkNADTPf8bqDDx47kHVBK4cnvndyi2lLdh+w3atrt+Fxxfi08RPIV4lBofL0VvLp6+b6cAzB3B8w3Hw+DxVnZOzpzOOvXnMoM+RQq5A8uJkXNhxAQm3Jqi2q9clqn9PjH9pPD4b8hly1uXAydXJoNpDtoXTmK7A3nVPyYuSsWXCFkhKJQgZG4KaozUa59HYQSWWZFIidODAAUvHMWB1N3dD1imzSCLE4V5Zid5SiVBXYxdkHTJ4RZrfIgRYNhFqrWiFtE1qkfoqQJkIiZaZP5SU7Raz5I+C9OXpUMgUyFqThe8nfY+7s+42uIm69xcw2y1myoiUfUv2AYCq/uDYm8dUSZBwmRCXT1zGlolbkLY0zeQvtOrMagSNDNJYYqS/uDb6bwQYYNgDw+Ad5a312K2Vrfh6zNfouNyB8InhiLkuRnXbkAVD8Pczf2PmpzMB9F2ke+HXC4i5IQZOfN1fneox/XjjjwD6LwAt+0t3txgrPCMch5cehkKu0NuqJF4jRv7H+QgZF4IJq6+0CrCxqHeDBqYEwtnDGdXi6j7jaq9pR2d9Z58trtEzopH7Qa6qJcIQpXtK0VnfiSF3adcyhowLgYu3C8r2lSHuxji9x1DIFfAM98S4/43T+Jz1vvgrpMopKBQ9Cuy6dxdmfTXL4DjVSduk+PmWn+E/1B+DZg/SOG98bz4WHluIj+M+xunPT+tMLFQ/ONSS7fEvjcfPc35G8a/F8AjzQHt1u+q9Im2VQrxKjOTFyf1+jjJWZuCPB/7AkHuGaA300Fd0fVfmXfgkzrDaQ/Fa8ZUWTu6VebMMSaB0jWYb/9J4cHgcxN8cr/W45g6iMZVZg/UvXLiAPXv2oLOzEwCsMofNta61qhXOns5aw5JNZek6IUm5BK5+rkYXf+pjyUSoLq8OvoN9zRrlpS4gOQAdtR1mr7ZuSn2QISasnoDRT43GpexL2OBseBN172by8gPlquJmY0akcF2UXxdcFy7mHZgHZ3dnrbqm4FHBCB4VDFd/V5MXC+2vPkhnXIzyh0DpH6U4vuE4/JL8lDUizxxA7alafD70c3Rc7oBwhRALDi3QeM6uvq5IuC0B+Z/lK89VH6Ngin/R3S3WOyZVawZH+cXfF331QSw2EanP1z/hZ09nD7guXMz4YIZWLL1fBw6Xg5jrYvqtxak7VQffQb59fvajpkeh5mgNupq7+jyWumNvHsPIJSN1fm45HA4SbkvA+R/P93mMuFlx6G7pxrD7tNfAEy4TqpL/jNUZeFr6NBJuT0DB1wU48HTfP+J1dV8xCga7Fu5Cd2s3Ym+I1fl58Qr3wvCHhkNSKsEvt/+icZt616j6Z/FN3pso/rUYQxcOxfCHhmt8jly8XDDi0RHorOvs93PULelG0bYipCxO0Xm7rtpDNz833LHnDnCduWgpbdF77KxXspD9SjZkHcquwCUNS+Dq62rUvFl+SVdGQvJceJiwZoLeMgDA/IWvTWFSItTQ0IDp06dj8ODBmDVrFi5dUl54Fy9ejGeeecaiAV7r2irbLFIfxH6Adc0wbc6kWZYqlGb5J/mjsbDRIklzfX49AlMs0y0GAC6eLvCJ9zG7TshaiRAATN0wVTXZojHFlOpfwPX59SjaWmRUzQT765rnomy+Z78EdX2hjXpiFE5uPIm0F9JM+kLrrz5IX1yMgsGIf4/A/EPzMey+YfCO8cbxDcfxVepXkLZKkb4qXW88yYuSUfB1AeRS/fV1knIJ6k/XI/bGvtfzE68RQy6VqxK0X277Re++zReb0VrRqlpmQhcuj4swYVifdUK+Cb7wH+Kvcyi7rgtLzMwYlP5Z2ufz6KtQmuUV7gXfwb6oOFjR537qx6wSVWHEv0fo3Wfw7YNx4ecLUMj0X/xPvn8Sw+4dpvMHpK4WkFu234KQcSE4/tZx5VBtPXTVtYhWiFD5dyUkJZI+u+tmbJyBYfcNw/kd5/HHA39oxCJcLlS27L1wGMW//dPNySh/VMz6apbOz9HI/4xE6Z5SJM5N7PNzVLS1CP5D/LUmvWTprT1MC8Wk1yah7K8ydDZ2at2e/Wo2stZmqeqhhMuEcPVxxbyD88B10T0hYm+F3xfi97t/B2D/gui+mJQIPfXUU3B2dkZ5eTnc3a/UQcybNw+7d++2WHADgaXqg9gPcOWRSjQWNqK7RTmZn7kzdVqqUJrlk+ADaZsU7ZfMa3UBlC1CliqUZlli5Jg1EyF2skXA+KJk4TKhavkGY0eksBcWQ4oaB80ZBEbG4OLvFw2OjSVtlaIur86gFiFdcWWuyETxb8VIez4ND5c8rGrF6m8epqipUXD2cO4z5gu/XkD4xHC4+bkZFNPT3U9jyN1DcOHnCzj47EGd+5fvK0eYMKzfFtewjL4TodOfnUbKohSDu2OjZ0Tj8vHL6KjXP+9RX4XSvY9Vvs+wdSWPv3Ucw+4dprF+XG9h6WHgOnNR8bfu5KqjrgNFW4uQ+liqztt1tYAAwILDC+AZ4XklEdGhd+tp4dZCHH39KLqaugz64XDjFzdi0K2DcOaLM6pWW0G8AEfXH8WuhbvQWtWqKjPo/aOiN69wLyTNT8KxDcf6fMz8T/P1tgb1p7u5G07uTvjjvj80fpzmrM+BeLUYfkP9tJ534PBA3PjFjeC58vqcN6vgmwLsuneXqqbK3gXRfTHp6vjnn3/itddeQ0SE5q+YhIQElJVZZv2Z3l5++WWkp6fD3d0dPj4+Bt2HYRgsX74coaGhcHNzw4wZM3D+fN9NrrZmickUgSsf4KPrj4LvzUfNsRqLDBmVlEtMnlVaF2c3ZwhiBBbpHrPU0Hl15o4c6+noQUtJi1USIfXXMyAlAInzEo36UlHNWM01fF02Xe8hXSNS1PGceRjx7xE48e4J454ggEvZl+AV6QXPsL4/E4bEpd5a1N/z5XA5SH4gGfmf5uvdp/jXYgyarb9bTFdMN31zE4JGBilrqXSsR1b6V2mf3WKsiAkRqDqiOxFqLGpEzdEaDLnb8PnDPEI8EJAS0GcCo2tpDV2iZ0TrXIC1dzdTW3UbCr8vxOinRvfZSs3lcTHo1kF6R4/lf5qPsPQwBAzT/SNIXwsIz4WHu8V3o7GoET/P+VnnfdlanvSV6RAtF2Hn/J2q0YWGfofO2TFHOTJLpgC4wOgnR2PhiYV4pPIR+A7yxfkd5w1ODMY8MwYFXxWgvVb3D8e603WoO1WHpAVJBsXWG9eJi6aiJlQdrlIlXEffOIrMFZmQdcqQcEuCzuc9ZMEQpD6aioqDFZC2S7VuP/3laexevFursLy/7w57MSkRam9v12gJYjU2NoLPt0ytS29SqRR33nmnUUt3rF+/Hu+++y42bdqE7OxseHh4YObMmejqMrw/29raqtrgFW6ZFhf2Tdbd0o3tM7dbZMiopMxyI8ZYfkl+aChsMOsYsm4ZGgsbrdIiZM7iq41FjeB78+ERavoCtbr0vsiGTwiHZ5inwV8q7P09Qjxw05abDL6fvl/XumpP1A1/aDiqRdWoP2PcudS30KqxcZXvLzeqFQsAku9PRumfpToXOe1u6UbFwQrVbNLGxDR3/1y4eLug5pjmfEeMgkH5vnKDEqGQtBC0VbdBUiHRui3/s3wMmjMIbv76W6p0iblef/eYrEuGxqLGfluERCtFuJRzCU3nm9BapTm1Q9XhKo1zfnLjScRcH4OibUX9tlIPvn0wLvx0Qev9pZArkPthLkYuGWnAM9TmFeGFxLmJuPDLBfz57z81bmM/I5eyLyH/sysJsbHzYrETV/JceIBC2eriP8QfWWuzjP5REZgSiIjJEch9P1fnY53+9DQG3zEYrj6uBsenTv2acfj5w/jr339BtEwEWZes32uHs6czpBIp/nr4L43WpPxP8/Hnw3/CL0m7NUn9MW1dEN0XkxKhiRMn4quvvlL9zeFwoFAosH79ekydOtViwalbtWoVnnrqKaSkGNYEyDAM3n77bbz00ku45ZZbMHz4cHz11Veorq7Gzz//rPd+3d3dkEgkGv+syVJdYyzhMiE4PI5R0+j3pbW81aJdY4BlCqYbCxvh7O5s0BIRxggcHoiGggaT52KyxogxQPsiG56hnFvGkC8V9XXZOmo7EDExwuBfZqYWNboHuiNpQRJOvnfSiGepf6FVY+ICgIqDFUb/EvWO8kbU1Cic+fKM1m0lu0vgl+jX5/I1+mJy9XHFzdtuRuXBSrSUXSlMrc2thUKm6HOaAJaLhwuCUoNQLdKcs0feI8eZL88gZZHxXSPsJJm66vXqz9TDxcul39GiXB4X2a9kwyPUQ6N1SbxGrBqdKFouwpFlR3Bq0ym4Brga9AMtcnIkFD0KVGdqPt+LOy8CCvTZMtefGz+/EdHXRSNvUx4OLVXOpXPgmQMQLReB58KDtEWKMKEyGTe2rqWvbmRTf1SMfXYsct/PRU9Hj8Z2WbcMBV8XIHmxaTOraz2+TIFTm04ZlAQBynMjKZOg+Ldi1ef81EensPexvVBIFUi8I9GhCqL7YlIitH79emzevBk33ngjpFIpnnvuOSQnJ+PQoUN47bXXLB2jSUpKSlBTU4MZM66MohAIBEhLS4NYrP9NvW7dOggEAtW/yMj+J50zh6UmU2SpptHnmD+xHWDe8hr6WCIRqsurQ0BygN4lGEzlE+cDjhMHjUWmxWet+qDeF9nwjHDUnqhFT0dPv18q7BdweEY4BLECeIYqE29r/zIb+Z+ROPP1GXQ1GdYCq5ArUJ1leKF0X8cx9Zdo8qJk5H+Wr5UcXPjlQr+jxfoSOzMWifMSsWfxHtWxy/aWIWpqlKpuqz/hGeGoPFKpsa3kjxLw+DxETTd8Hh/143U1dqHhrHbrLFsf1F9Cz57Ttso2VdcKmwyMf2k8xr80HlHTo5C1NgtdzV048/kZwybjc+Ji0Bzt7rGTG09ixKMjDD5n+tyx5w74Jfkh59UcvMl7E8c3HIf/MH/MOzgPsTfGqgYTGFPX0l93rb41u1T76fkMR02Pglekl1aCXvxrMfg+fERONv8apT7S0dAf0Oxzk7ZKcfDZg9i7ZC/2P7nf6KVBHIFJ76bk5GScO3cOEyZMwC233IL29nbcdtttOHnyJOLj9Tcd21JNjbIZOjhYcxRFcHCw6jZdli5dipaWFtW/igrDRkOYypItQuwHccyzyonKxi8bb1ZfrKxbhvZL7Q6ZCFlyIkV1HC4HgSmmd49Zs1BanXe0N9yD3LVGCOrCJlGVhyu1RidZ85dZ8EjlUHr1boa+NJxpAKNgzB4JaM7Q3EFzBqGrsQuVh68kHPIeOUp2lfTZLWYItwA31BytwamPlDNhs+uLAYaN7AyfEK7VIpT/aT6S7082aTCEk6sTIiZH6BxGb2h9EKA8p8MeGIa6U3WqAmGPEA9kv5KNXQt3wdXXFRwex+j1pBJuT8D5HedViWPD2QZUHq5EykOmFQar43A4uDvrboCj7KLkunDxwOkHULa3zOjuK5Y5CXh/sY55dgyObTimcYz8T/ORvCjZIq3P7EhHY1vAVM+tR4Hc93ONrqdyFCan1QKBAC+++CK2bduGXbt2Ye3atQgNDTXqGM8//zw4HE6f/woLC00N0SR8Ph/e3t4a/6xF1i1DZ32nRRIh9V8jk9dPBl/Ax6BbBplVmNZW1QauM1fvjLem8kvyU02GaKq6fMuPGGOZM3LMVokQh8NBWEaY1oWxL1WHqxA+0bD5eSyFHUpvyEWgKrMKoWmhZv/aN4cT3wlD7h6C05+dVm2rPFQJJ3cnhIwxb5JSZ3dlTcWBJw+oLurRM6INHtkZnhGOurw6dEuUI0Lba9pR8kcJkh8wvWsk5nrlYrq9GTJ0Xt11H14HAMpifB4HU9+ZiodKH8KjlY8icHigqqvemIts9PRoSCVS1BxV/nDN/SAXiXcmwiPIMt9HJ949oUrO2NFb5iQz1pwbJ3FuIuRdctUM45JyCcr3l+ucR8lYxo4K7c2U1iRHY/JMdM3NzcjJyUFtbS0UCs03x7333mvQMZ555hncf//9fe4TF6d/dtG+hIQov7QuX76skaBdvnwZqampJh3T0tqq28DhceAeZP5SDL0/wOzoJ3Nm6pSUS+AV4WXx7if3QHe4+rqi6VyTznlPDFGfV4/xL/Q9UZ2pAoYHoGSX9sWhP7JuGZovNNskEQKUF8beC6Hq09PZg5qjNbjhixusG5QatoWDkTG4uPOiRteSrqU9qkWG1QdZW8riFHyX/h2mvTsNfG8+in8tRvzN8WZ/DtRn2f12/LdwC3BD0bYijZm5++IZ5gmvKC9cyrqEmOtjcOarM4iYFAFBjOl1cjEzY3DkxSOQdclUExwyDGPw0HnW0fVHAVypqWkqakLS3CSt7iL2b6DvGcfZZWHiZ8fj3PZz8B/ijzNfnsEdf97R77IwhtAXV1+vgz0v8FkvZ8F/mD+Ovn4UCbcm4PQXpxEzMwZe4V5mnQ993XmA4Utd6GpNutqSIZMSod9++w1333032tra4O3trdE0x+FwDE6EAgMDERho+e4NAIiNjUVISAj27dunSnwkEgmys7ONGnlmTW1VbfAM9TR5jh91vT8E6qOfTH1TWqNQGlC+R9juMVMSoc6GTrRVtyEg2XotQjmv5vS/Yy9N55rg5O5kseVI+hOeEY7MlZlgFEy/F+manBq4+rnCJ97HJrEBV+a2ip4RjRPvnlAlQuprYKl/aVZlVmHIPUNU+5h7sTNV0Igg+Cf5o2hrEVIeTMGFXy5ozdhsKuEyIeTdcmS9nIWeth6DkyBWxIQIVImqEH1dNPI/zUf6yv6XOeiL/xB/uPq5Ko/5z6KvrRWtkLZK9Q5P701fUlFxsALl+8tNusiy752kBUk49+M5eEd7w3ewL0r/LFWdM1NZ4uJva1weF6V7SsHj81B5pBKnPz+NqW9NNXiZHH36agFjb++LqYmuozEpEXrmmWewaNEivPLKKzqH0VtDeXk5GhsbUV5eDrlcjtzcXADAoEGD4Omp7FpKSkrCunXrcOutt4LD4eC///0v1q5di4SEBMTGxmLZsmUICwvDnDlzbBJzf9oq2+AZYbkRY+oChweicIt53YrWKJRmmTOEvi6/Dl6RXnD1NW3IaH8CUwLRVtWGzoZOo4YkNxQ0wH+I5UeM6RM4IhByqRz1BfUITO77BwVbH2TLRZHVLy5cJy7qz9Tj/I7zGl/c7Jfm8IeGo6WkBWHjw8z+cjcH2xKRvFhZNB2aForO+k7V2myWSM4mrJ2AnNdzVHMcGXLBYOMKywjDue3nUJ1ZjY7aDiTcmmBWXBwORzWMnk2E6k7VwS/Rz6Cla/pLKqKmRZl0kdV47zhzkbkyE+ETw41OHHUx9+JvD+rn46ebfwKPz0Ntbi3Eq8RmnY++3jOGtARdbQmlPiYlQlVVVXjiiSdslgQBwPLly/Hll1+q/h45UjmPxIEDBzBlyhQAQFFREVpargxPfe6559De3o6HH34Yzc3NmDBhAnbv3g1XV+tcQI1lqckUdQkcHojDSw+DYRiTL36WXl5DnV+Sn9a8Koaqz6+3Wn0QoFx7yivSC3X5dYiaYvhoHFvVB7F4zjyEpoWiWlTdbyJUdbgKcTeb1s1sDvUvxi+HfwlGwSB9ZbrGF6RouQj1BfUISA7AiXdPWGT+K1OxLRFpS9NQe7IW2euyETMzBkdfP2qx5EzXRI/9jqL6J67Ux1NxKesSTn10CkPuHmKRuGKuj0H2q9mY/NpkAMbVB5maVBg6KglQvj866ztx4acLFnlfmHPxtyfhMiG6W7px7M1j4PA4ZidB5roaE0p9TEqEZs6ciWPHjplcv2OKL774Al988UWf+/Qe8srhcLB69WqsXr3aipGZzpKTKfbmP8wfnQ2d6LjcYXKxs6RcYtAcJ6bwS/JDwTcFJt23Lq/OomuM6cJ2LRqbCFnrfOnDzic04hH9azcpZApUZVZh0vpJNozsCrbJXNGj/GLMejkLZ789C0GcAII4gXKSve+LwOFyIMq3XxLExgooL74BKQEo/L4QCbclWCw5M7UrQT0uHp+Hgm8KMOLRERaJK2pGFH6/+3e017TDI8QDdafqEDzGsC5raycV6u+dq7UQ15KmvDEFJ945YfRag9ZwtSaUupiUCN100034v//7PxQUFCAlJQXOzs4at8+ePdsiwV3r2qraEDzatGLh/rh4XFlA1OREqMyy64yp80vyQ9O5JijkCqNrpOrz6zHqiVFWiYtlysixhoIGi4ziMEZ4RjjOfne2z31qc2vB5XGtVlPVH/ULmVwqx8jHRyJ2VixaLrag+WIzXLxdVMOY7f3lDmg377NLIlg6CdL1WIYmQ+AApz48ZZG43APcETQqCGV7yzD0nqGoO1Vn8tpVltb7vXM1FuJaErtMDp0PyzIpEXrooYcAQGdLC4fDgVxu2qy81zq2n59947ZVtanmJrFGcSh7MY+5Psbo+zIMY9UaIUGsAIyCgaRM0udsvVpxKRjUn7Zu1xigPHf9LXaoTt4jR9O5Jpt2jQFAmDAMLSUtql/zulQerkT4hHCLFOUbS18LiKufq+pzIF4jxrnt5xzqy124TIistVmq0TCWiMcSXQnWaiGJuV45y/SgWweh6UITglINm0PImq6VQlxLofNhPSYlQr2HyxPDsP38gPKNy84qba3iUHPmw+lq7IKsQ2a1EVA8Zx58BvmgsbDRqESopaQFcqkcfol+VomLFTA8APWn6w1usWq+0AyuM9eiC9Qagi/gIzAlEFWiKgy+fbDOfewxfxBgWAsI+39H+3K3xpBgS3QlWKuFJOb6GPw27zfUnaqDe6C7xecOM9a1VIhrCXQ+rMuoRGjWrFnYsmULBALlvBWvvvoqHn30UdVq8A0NDZg4cSIKCkyr/bjWqb9xGYZBW3Ubzv90HifeOWGVuojA4YE4/9N5k+4rKZfA1c8VLp4uFo1JnX+SPxoLGxE3y/Bas7q8Ovgl+akm8LIWv8F+YBQMmoub4Te4/6Sr4WwD/JL87NLqEpYRpjcRYhgGlYcrMebZMTaPq78WkPL95TrXBAPs++XuqL+8rRUXO99TT3sPCr4u0CiUttc0BtdSIa4l0PmwLqMSoT179qC7u1v19yuvvIK5c+eqEiGZTIaioiKLBnit6f1Fb60kCNBcQJTnbFziYM0RYyxTltqoy6+zytIavXGduAgYppyU0qBEyMYjxtSFZ4TjxDsndN7WWNiInrYes2dFNkV/LSAKucLk4dXW4qi/vK0ZF9tS7ZvoizNfnEHqklStx7S1a6kQ1xLofFiXUYlQ71FZulYtJv0TLhNCvFZs1DwiphDECsBz4aHpXJPBk6OxJOXWK5Rm+SX5If8Tw9ahYtXl1Vl9ZBZby8XOzp14R6LqNn2/kBsKGuxWjByeEY7d9+9GT0cPnN01By5UHq5E6PhQq7egmcIRv9wd9Ze3NePqnVAFjQgyaKZlQq4VJi+xQUxnyjwipuBwOQhIVl7MTUmEbNEiZOykivX59VYf0cL+Qo65IQbdTVdaQPv6hdxQ0IDEuYla221BfQHW3sP97VUfdLVyxOQMsM0w9c76Tpx49wR2L9oNRY/uxIuQa5FRBQ3sQqi9txHDmbvAnbFMLZi21vIa6vwS/dBZ14nOhk6D9u/p6EHzhWarzyEkXKZcYLF0dykq/q4AoLtrgqWQK9BY2Gi3rrG+FmCtPFyJiIkROu5FiKapb08F14lLc/aQAcforrH7778ffD4fANDV1YVHH30UHh7KEQbq9UNEmz3qDwKGB6DkD+MXEJWUS5Bwe4JFY+mNL+DDI9QDjUWNCE/vv9WioaABfAHfarNxqxMuE6KnvQc5r+VgA38DFFL9v5BbSloABkaNfrM0XQuwSsolaK1sRZgwzD5BkatK1tosmqOGDEhGJUL33Xefxt/33HOP1j6GLrg6ENmj/iBweCCOvnbU6PvZolgauFIwbUgiVJdfh4CUAJu1Qk56dRJyXut/TaiGggb4JvqC62T7EWMsXQuwVh6uRNDIIKuO/CPXBkcdKUeILRiVCH3++efWimNAsEf9QWBKIForW9HV1GXwIqVyqRxtl9psmggZoj7P+hMpqlPvruzrF7I9R4yxdC3AWnW4ChGTqFuM9M1RR8oRYiv2+wlLbMLV1xVeEcoFRA3VWtkKrhPXJpOqsXMJGcJWQ+eBKxeH9FXpCBkbgsgpkXpruRwhEVJfgJVF9UHEEH21VGeszqA5asg1jxKhAYAdBm4oSbkEXhFeqi4WazKmRcgWi60Cmr+Q05enY/rG6biUcwmjnxqtMxlyhEQIuLIAKwB01Heg4WwDwifQiDHSt4yV+keHCZcJbT6ZIiG2RonQAMCupG4oW4wYY/kl+aH5YjNk3bI+92u/3I7Ouk6bzNXT+xdy6LhQJM1PgqRUovULmVEwaDjreIlQ1ZEq+CX5wT3A3c5REUKIY6NEaAAwdgi9LeYQYnlFeIHH56G5uFnrNtHKK60vdXl1EMQK4OKlLPwVrxGrlgawNF2/kCeum4jy/eUITQvV+IUsKZdAIVXAd5CvVWIxRpgwDJJSCdpr2lF5uBKRkyLtHRIhhDg8SoQGgICUANTl14FRGDYTuK1GjAHKSR/9EnV3j7ETG4rXiFGfX6+qD2K7rmy5rpdHkAfSV6Vj/xP7IZfKVdsbChrgk+DjEDM38wV8BCQHoEpURRMpEkKIgSgRGgD8Ev2g6FGg+WKzQfvbYnkNdfrqhNhiTdFyEc58fQYBKQF2nfo/9bFUcJw4OPHulXW9HKU+iG09C8sIQ8nuElw+cVlVKG3N1jNCCLnaUSI0APCcefAf6o/6fMPqhGzZNQb0XTDNJkN1uXXIeTXHrusf8Zx5mP7edIhXi9F2qQ2A4yRCbOtZR20HCr4ugGe4J7yjvO3SekYIIVcT+nYcIAytE2IYRtk1Fm3DREhP1xgbD1sXxM56a885TSr+roBXlBcO/e8QgH8WWx2qLOC2Z8sLmzCe//E85N1yRE6KpIUzCSHEAJQIDRB9JULqRcldTV3oae+BV6Sya8wWF3e2RYhhNGuYOhs68fMtP0O0Qvn46lP/2wuXx0XDmQYUfl+IKlGVqkXIEVpehMuESF+VDgA4+/1ZSoIIIcQAlAgNEAEp+ucSUi9KlpRJ4OrnChdPF6tf3NkEzDfBF9I2Kdovtatu2/3gbnwc+zGazjdBKpHabJHa/qgmmetRYMe/dqCnvQfnfjznMElH+vJ0cJ25YGSM3VvPCCHkamDUEhvk6hU4PBDNxc2Qtkm11p5Sn06/4WyDRm2JNS/ubAIGAN7R3mgsbIR7sDu2X78d5fvL4TPYB42FjQ439b9wmRAKmQLi1WKAA4hXix0iCQKULXjs6uG0cCYhhPSPEqEBwiPEA27+bmg404DQtFCt2zUSDC5Qm1tr9Yu7+mP6DPJB+YFy7HlwD1pKWjDi3yPgHuQOLo9r00VqDZWxKgPZ67JVSYcjJBu0cCYhhBiPEqEBgsPhKOuE8ut0JkIAkPZCmrIeRwGbXdzVk6GstVkAgPEvjseEtRMMup+9OFrLCy2cSQghpqEaoQGkv5FjW6duBRiA68K1aVGycJkQXGflW5Hnwus3CbI39aTDEeqWAFo4kxBCTEUtQgNIwPAAnPnyjM7bfpv3G6oOV2Hkf0Zi+rvTbdqt4mitK31x1JaXvhbGdNRzSQghjoASoQEkMEW5+CrDMOBwrqwsv3fJXhRtK0LSgiRMf3c6ANtd3K+2upa+Wl7Y2wkhhFw9KBEaQPyH+qO7pRttVW3wilDOE9TV3IWz351FxOQI/Ou7f2nsb+2Lu6O2rvSFWl4IIeTaQonQAOLs7gzfBF/U5dXBK8ILjILB73f/jjBhGG777Tad97HmxZ1aVwghhNgbh+k9nS/RIJFIIBAI0NLSAm9v2y07YWmilcqJEevy6xA8Ohhp/0vDkeVHULilEIlzE8F15vbZ2kEIIYRcTQy9ftOosQGCnbywq6EL9Xn1OP/zeRx/6zhib4hF9ivZtCgnIYSQAYm6xgYI9dobFy8XFO8sRtxNcTi58aTDzIpMCCGE2BolQgOIcJkQXU1dOP7WcXB4HBRtLaIkiBBCyIBG/SEDzJQ3p4DrxAUjp0U5CSGEEEqEBpistVlQyDQnLySEEEIGKkqEBhBHXBqCEEIIsSeqERogrsbJCwkhhBBro0SoH+w0SxKJxM6RmKe1oxWpL6Ri2JPDNJ7LsCeHob2rHa0drVf9cySEEEJY7DWtv+kSaULFflRWViIyMtLeYRBCCCHEBBUVFYiIiNB7OyVC/VAoFKiuroaXl5fGQqXmkkgkiIyMREVFxVU9Y7Wt0PkyHJ0rw9G5MhydK8PRuTKcNc8VwzBobW1FWFgYuFz9JdHUNdYPLpfbZyZpLm9vb/qgGIHOl+HoXBmOzpXh6FwZjs6V4ax1rgQCQb/70KgxQgghhAxYlAgRQgghZMCiRMhO+Hw+VqxYAT6fb+9Qrgp0vgxH58pwdK4MR+fKcHSuDOcI54qKpQkhhBAyYFGLECGEEEIGLEqECCGEEDJgUSJECCGEkAGLEiFCCCGEDFiUCBFCCCFkwKJEiBBCCCEDFiVChBBCCBmwKBEihBBCyIBFiRAhhBBCBixKhAghhBAyYFEiRAghhJABixIhQgghhAxYlAgRQgghZMCiRIgQQgghA5aTvQNwdAqFAtXV1fDy8gKHw7F3OIQQQggxAMMwaG1tRVhYGLhc/e0+lAj1o7q6GpGRkfYOgxBCCCEmqKioQEREhN7br+lEaN26ddixYwcKCwvh5uaG9PR0vPbaa0hMTDT4GF5eXgCUJ9Lb29useLLWZYHL5WLc/8Zp3ZbzWg4UCgXGLx1v1mMQQgghBJBIJIiMjFRdx/W5phOhv//+G48//jjGjh0LmUyGF154Addffz0KCgrg4eFh0DHY7jBvb2+zEyEvdy+Ilovg4eoB4TKhart4jRi5r+QiY3WG2Y9BCCGEkCv6K2u5phOh3bt3a/z9xRdfICgoCMePH8ekSZNsHg+b/IiWiwAAo54YhRPvnoBouQgZqzM0kiNCCCGEWN81nQj11tLSAgDw8/PTu093dze6u7tVf0skEovGoJ4MsQkRJUGEEEKIfQyY4fMKhQL//e9/kZGRgeTkZL37rVu3DgKBQPXPGoXSwmVC8Fx4AACuM5eSIEIIIcROBkwi9Pjjj+P06dP4/vvv+9xv6dKlaGlpUf2rqKiweCziNWLIpXJwuBwoehQQrxFb/DGMIVop0huDeI0YopUiG0dECCGE2MaA6BpbsmQJdu7ciUOHDvU5hA4A+Hw++Hy+1WIRrxGraoKcPZ1x6qNTqi4ye7UMcXlcnTGox0oIIYRci67pRIhhGPznP//BTz/9hIMHDyI2Ntau8agnFsJlQlzKvoTsl7ORvirdrslQ7yJu4TKhVqyEEELItcihE6F9+/Zh3759qK2thUKh0Ljts88+6/f+jz/+OL777jv88ssv8PLyQk1NDQBAIBDAzc3NKjH3RSFXaCQWQSODIG2TIml+EjgcDhRyRT9HsB71ZChzdSYYGUNJECGEkGseh2EYxt5B6LJq1SqsXr0aY8aMQWhoqNY8AD/99FO/x9A3d8Dnn3+O+++/36A4JBIJBAIBWlparDLHz5aJW5CyOAXJ9+sv4LalN3lvglEw4Dpz8bT0aXuHQwghhJjE0Ou3w7YIbdq0CV988QUWLlxo8jEcNMfTEJYehipRlUMkQuI1YjAKBuAAih4FRCtFyFhJ9UGEEEKuXQ47akwqlSI9Pd3eYVhdeHo4qjOr7R2GqiaI68TFfbn3wT3YHeJVYruPaCOEEEKsyWEToQcffBDfffedvcOwulBhKBrONqCrqctuMbBJ0OinRgMA/Ib44fZdt4PrpBxNRskQIYSQa5XDdo11dXVh8+bN2Lt3L4YPHw5nZ2eN2zds2GCnyCzLI8gDPvE+qM6qRtyNcXaJgS3iDhkbgpJdJeA58xA8KhhjnxuL05+fhlwqt0tchBBCiLU5bCKUl5eH1NRUAMDp06c1butvAbWrTXiGsnvMXokQWwd07K1j8BtyZfkR4XIhLvx8Ac7uzvruSgghhFzVHDYROnDggL1DsJmw9DAUbS2ydxhoLGyEX9KVRMiJ74QbPrsBW6duRfwt8QgYGmDTeEQrReDydC9BIl4jVrZkUTE3IYQQMzhsjZC6yspKVFZW2jsMqwlLD8Ol7EtQyOw3jxCgnQgBQGhaKAJTA7F95nad8xxZcwkOdsbr3jVKbE1T1eEqnfejZUEIIYQYymETIYVCgdWrV0MgECA6OhrR0dHw8fHBmjVrtCZXvNoFDA0Ah8dBXX6dXeNoLGyEf5K/1vboGdFoq2zDjlk7NLarRprxrPM2Ei4TImN1hkYyxD5m1LQolO8v15skWSsmQggh1xaH7Rp78cUX8emnn+LVV19FRoay++PIkSNYuXIlurq68PLLL9s5QsvhcDkIE4ahOrMawSOD7RJDZ2MnOmo74Jvoq3XbhNUT0H6pHfmf5GP/k/sx7Z1pNluCQ9eM18MfGQ7hS0LkfZJHy4IQQggxi8POLB0WFoZNmzZh9uzZGtt/+eUXPPbYY6iq0t0tYmnWnlmalbk6E42FjfjXd/+y2mP0pVpcjV9u+wX/vvRvvft8K/wWl7IugefCg1wqt1nCIW2X4l3Pd5V/cAD3QHd01HUADODk5gRZpwwcHgeMnJYFIYQQomTo9dth+w8aGxuRlJSktT0pKQmNjY12iMi67D2xYsPZBq36oN7u3HsnAEAulYPnwrNZwvH3s38DAHguPIABRi4Ziae6n8KjVY9iwZEFqiTIljERQgi5NjhsIjRixAhs3LhRa/vGjRsxYsQIO0RkXSHjQtBa0YrWqla7PH5jYaPG0Hldjm84DgDgOnEhl8ptMtGieI0YpzadgmeEJ57qfkpVM5Tzag48wzxx8feLYOTKRk1bxdQX0Ur9E1BSETchhDgeh60RWr9+PW666Sbs3bsXQqHyV75YLEZFRQV27dpl5+gsj+/NR0BKAKrF1Ui8I9Hmj99Y2IjoGdF6b2frb3wTfTHy8ZHobu7WqM+xBvYxIyZHwCfOR+OxRMtFqDhYgfL95UhfmY7sddkY8cgIq8fUH3akW+8Y1OuXCCGEOA6HTYQmT56Mc+fO4f3330dhYSEA4LbbbsNjjz2GsLAwO0dnHezEivZKhEYuGanzNvWLeFdTF5ovNGPaO9MAwKqJBzvjde2pWs2JHpcJVUkQWxN04ZcLCJ8YDrcAN7smQ+qJGvs3FXETQojjcthECFAWTF9Lo8P6E5YehpPvnbT548q6ZWi+2Ky3RohNSITLhDj5wUlc/P0igCsXfV3zC1kCO1ni58M+R/L9yRq3hU8MR+SUSFUMASkBqM+vR8aqDKvGZAjhMiF6OnqUw/7XiqGQKigJIoQQB+VQiVBeXh6Sk5PB5XKRl5fX577Dhw+3UVS2E5Yeht0P7EZPZw+c3Wy3rEVzcTN4fB68Irx03q4+e7PvIF80X2hW/W3ti7tCpkDT+Sb4D9Gc36j3jNKBKYGqYnNrxtTfbNfSNim4Tlyc3KhMaBVSBRVxE0KIA3OoRCg1NRU1NTUICgpCamoqOBwOdI3u53A4kMuvvYVABTECuPm74fLxy4iYEGGzx20sbIRfoh843P7XcPOJ90FLSQsUMgW4TtavtW8ubgaHy4F3TN9TFwSkBCBvc9/JsyXoqwE69MIh5KzLAc+Fh4jJEUian4T8T/LB4XJURdyUDBFCiONxqESopKQEgYGBqv8PNBwOB2HpYagSVdk2ETrbqNXioo93tDfAAJIKCXxifawbGJRJmu9g335nig5IDkDThSb0dPRYdZHY3jVAqY+n4pfbfkHl35UQxAlw45c3ouJABUTLRRhy1xBcPnEZQ+4aYte6JVqzjRBC9HOoRCg6+sqopbKyMqSnp8PJSTNEmUyGzMxMjX2vJWHpYag8ZNt11XStMaYP14kL7xhvtBS32CQRajjbYFCS5hnmCVcfVzQUNCBkTIhVY1JPhtgEJ3lxMm745AaNwujUx1LxfuD7GPHoCNX+6ve3FRrJRggh+jnsPEJTp07VOXFiS0sLpk6daoeIbIOdWNGWE343FPY/maI6n0E+aLrQZMWIrmg429Dv/EaAsjUtICXAZuu1CZcJweEpuxJ5Ljzc8MkNADQLy9383eCX5IfqzGrVumn2KOLua802KuImhAx0DtUipI5hGHA42jUrDQ0N8PDwsENEthE0KghSiRTNF5rhm6C97pelMQxjVIsQoF0wbU2NZxsRNyvOoH0DUgJQf7reyhEpideIwcgZcJw0a4B6dzFFTIhA5ZFKDLplkF0TDvVWLBrJRgghVzhcInTbbbcBUP7Cv//++8Hn81W3yeVy5OXlIT093V7hWZ0T3wnBY4JRlVllk0SorboNPe09Rj2WzyAfVByosGJUSmySZmj9UkByAM7vOG/lqK60pjh7OuOO3XegfH+53m6v8AnhyP0w1+oxGSLthTRkrsykkWyEEKLG4brGBAIBBAIBGIaBl5eX6m+BQICQkBA8/PDD+Oabb+wdplWxEyvaQmNhIwSxAji5Gp4T26prrK3qnyRtsGFJWmBKIOrzrdsixCZBY58bi562HgQOD9TZ9cQKnxCOy8cvo6ezx6px9YdRMPhm7DdgFI6zHAkhhDgCh2sR+vzzzwEAMTExePbZZ6/pbrDe2NE9YelhEC3TXJPKWqN7DFlstTefeB+0FLeAUTAGDbk3VcPZBqOStIDkALTXtKOjvgPuAe5WiYmtAQpNC8X5H8/DxcsFgP7JJQWxArgFuKHmaA0iJ0VaJab+MAyDb9K+Qe3JWox9diyk7VJcPnbZ7suREEKII3C4FiHWihUrBlQSBFwZ3VMtrkb9mXp0NXcBuNIK0d8QclMY0/XEEsQKIOuWoe1Sm8XjUWds7RJfwIdXlJdVW4UyVirrampzaxGYGqhxm64aIQ6Hg/AJ4ag6UmW1mPrCMAy+E36Hy8cuY8wzYzD59clImp+ElpIWCFcIdbZiEULIQOJwLULqtm/fjm3btqG8vBxSqVTjthMnTtgpKutRL2h19XXFpaxLqDlaY9XRPY2FjUian2TUfZz4TvCO8kbzhWZ4heuejdoSDB0xpi4gWVkwHTU1ykpRKdXm1iIoNcigfcMzwlG6p9Sq8eiaK4hhGBx89iAun7yM0PGhmPLGFADKAm6eCw9hwjC7jWQjhBBH4bAtQu+++y4eeOABBAcH4+TJkxg3bhz8/f1x8eJF3HjjjfYOz2rYepOupi7s+NcOqw9xNrbVheUzyMfqI8eMmeiRZYs6IcDIRGiCsubLmgkH25rItu4wDIPDLxxG/sf5UEgVGiPvOFwOEuclonBLoc5WLEIIGUgcNhH64IMPsHnzZrz33ntwcXHBc889h7/++gtPPPEEWlpa7B2eVbFz1DByxqqje6StUrRVtZmUCPkO8rV6wbShkymqs8VcQj2dPWgqakLgiMD+dwYQNCIICpkCDWcarBZT74LtzFWZOLnxJKStUp2JdNKCJJz/6TxkXTKrxdQf0Ur93XLiNWKIVop03kYIIZbksIlQeXm5api8m5sbWltbAQALFy7Eli1b7Bma1bFz1IBj3dE9jUWNcPN3M6mw2NotQl1NXei43GF011hgSiDqT9erRkdZQ/3pevB9+HoXqe2N68RFmDAMlUesO2O4RjK0Soyeth69rYkhY0LgFuCGkt32W8qmdysWy5o1cYQQ0pvDftOEhISoZpaOiopCVlYWAOUaZLacddnW2IvA8EeGw83PTe+wbEswtVsMUI4cs2Yi1HC2AR4hHnD1cTXqfn5JfpB3ySEpl1gpMqAutw5BqUE6J/zUJ3xCOKpF1p8SIe2FNNX/+2pN5HA4SJqfhMLvC60ekz404zUhxBE4bLH0tGnT8Ouvv2LkyJF44IEH8NRTT2H79u04duyYatLFa436RWDkkpHI+ygPo54YBcA661SZUozMYucS0jcDuLkaCxtNio3nwoPvYF/U59dDECOweFwAdI4Y60/4hHDkf5ZvlXjU7VuyD4DyPPS36n3S/CR8m/YtpG1SuHi6WD02XWjGa0KIvTlsIrR582YoFMri0scffxz+/v7IzMzE7Nmz8cgjj9g5OutQX6cKAFx9XdFc3Kx3jhpzNRY2Iiw9zKT7CuIE6GnrQUddBzyCLD/NgSnzG7HYOqH4m+MtHJVSbW6taiFVQ4WmhaKtqg2Scgm8o7ytEpd4jRinNp2Cb6IvFhcuViXWgO4EOjAlEII4AYp/K8aQBUOsElN/GAWDng7lZJM04zUhxB4cNhHicrngcq/03M2fPx/z58+3Y0TW13v0jiBegObiZgSPCrba0PnkRckm3dfFwwWeYZ5ovtBslUSo8WwjYmbGmHRfa44cYxQM6vLqEDTCsBFjLBdPFwSlBqFKVGWVRIhNenwG+WDkYyMBaLa2qP+tju0es0ciJOuS4Y/7/0Dpn6XKDWo1cZQMEUJsxWFrhOLi4vDAAw+gu7tbY3t9fT3i4gxbhPNq5xPvg+biZqscWyFToOl8E/yTjBuVpc6aBdOmjBhjWXPx1eaLzVBIFSa1VllzYkWFXAHhCiHaqtsQOe3KDNb9rXqfNC8JpbtL0dXUZZW49Omo78APM35AlagK3U3dyFidgfvz7wfXWXcBNSGEWIvDJkKlpaUQiUSYOHEiampqVNvlcjnKysrsGJntWDMRailpAYfDgXeM6a0T1lpzrKezBy0lLSbXLwUkB6CxsBFyqdzCkSm7xfyH+YPnwjP6vtZMhDJWZiB6ejRcPF0QMCxA47a+5gryTfBFQEoAzv9s+cVq9Q2PbzrfhM8SP0NjUSPaKttU3cEBwwIwef1k8H34lAwRQmzGYRMhDoeD3bt3IyIiAqNHj8bRo0ftHZLNWTMRaixshO9gX7OGKPsO8rVKi1DTuSa4eCq73kwhiBGAx+ehsajRwpFdGTFmivCMcNTl16mWTrG08v3liJoWZXTxetKCJBRusfzoMV3D46tEVfhyxJfoauyCf7K/VmH0qCdGIXhUMIJGBdGM14QYwFHn43LUuHRx2ESIYRh4enpix44duPfeezF58uRrftX53qyZCJlTjMwSxAuskgg1nlWOGDN1NBqHy1EutWGFOqHaU4bPKN2bZ6gnfOJ8cCnrkoWjUirfV46o6cYvLZI4NxEVByrQXttu0Xh6D48v3FaIrVO3QtYpQ8bqDMw/MF+rFojD5eCGL25Ay8UWBI8Mtmg8hriavrwtZSA+56tNX69R1eEqu8zH1d/7pvLvyqtmnjDHiaQX9YvgunXrsHnzZjz00ENYunSpHaOyLZ94H7RWtELWbfnZf00dnq7Od5CvVRK1hkLT64NY1qoTqsutM3hGaV3CMsKs0j0mbZeiOqsaUdOMT4S8I70ROj4U57afs3hc6snQznk7oejpf3i8d6Q3Zrw/A3se2oP2y5ZNzgD7XVQcNeGgiS2vuBpfI7Yl2NbzcfX3vomaFnXVzBPmsKPGek+aeM899yA+Ph633nqrnSKyPc8wT/BceJCUSuCXaF7S0ltjYSOiZ0SbdQyfeB90NXahs7ETbn5uFopM2SIUNMq0VhdWYEogSv8qtUxA/+io70BrZatZiVDEhAgUfFtgwaiUqo5UwTNc2eJkiqQFSSj6vkg14syShMuEEK0QAUzfkzyqayxqhHuwO/586E/M+WWOxg8j8RqxcqoJE9dIY7/A2djUj6t+UWFvt9SXd1+Pyx7fHnSNLrT3BUvXIsIsc1//vvT3GkVOidQ7qtGacfX1GqW9mIbhDw5HzvocVdJhyA8Oa8ak/thyqRyi5SJkrc2CXCp3uCQIcOBEiJ1DSJ1QKMSpU6dQWGi/2XBticPlQBCnHEJvyUSIYRizZpVm8QV8uAW6obm42aKJUMPZBgy5y7zh3AHJATi24ZiFIlKqO1UH7xhvo2e7Vhc+IRz7n9gPuVRuUsG1PuwF3BSilSLIumSoFldDUiGBd+SVAnpLfLnvXrwbYACuC9fg4fFcJy4aTjegtawV+Z/mY/iDw1XxmJs09PcFnvp4Kv7+v78hWi5C5qpMMHLGIl/efT1u5JRIvfez5gVWPTaFXOEwE1vaK2ns773R+zZbxcU+nlQihWi5SBUDOED2y9nIWZcDvg8fAKDoUYDD42jMMm/NmADlOclcnQlGxiBolHKakM+TP0dbVRu6m5Ujv+VSObjOupNbe3PYREif4OBgBAfbvnbAXqxRJ9RR14Gupi74DvY1+1hswXTo2FALRKYcBt50rsnsbruAlABIyiTolnSD7823SGzGrDivj1+SH5w9nHH5xGWEjTdtMktdyveVY8zTY0y6L5fHxdHXjkIQL0DRtiKMfWYsAMt8uYvXiHH6s9OInBKJeQfm9TvJI0v9C3bv43sRNTUKZ787a7FWCo0ZrVeLoZAp4JPgg7zNeRAtF8Er0gvgQrnmH4Cu5i501Hfg5MaTZrVUqCccbJKV9kIanFyd7NpadPnEZVz4+QIA5cSWHB4HIx4dYdWWmb6ODQCRUyLt0kplyGzn9oirZHcJTn95GhwuB4yCAdeZi8XnFsPV1xUuXi7IejlL2ZXpzIWiR4HPEj/DXVl3mbSWpDHCM8IBAIyMAYfLQdxNcfCK8IJnuCe8wr1QuLUQOa/mgMPjQNGjwPYbtuP2XbeDw7X8igSmcqhEaNSoUdi3bx98fX0xcuTIPotlT5w4YcPI7McaiVBjYSO8Ir0ssqyCpecSailpARiY3MXDcg90h3uwOxrONCBMaJmEo+6UefVBgLL2ja0TslQi1NXUhdqTtSa3CKl/8R/bcAxjnxlrkS939hg8Fx5m/zhb67HU/+4vrk8SPgEYWOxiI++Rw8lN+fWnkCnA4XIw6olRCBweiMCUQJzceFIVu1wqR/Fvxcj/OB/BY4JRcaBCK3ZDE5aa4zUo/qUY4EC1sHL2umwEDg9EaFooRMtFkLZJMfm1yRrHVMgVfXbJlO0rQ/T0aJ23b526FQAw78A8rdtEK0Qo31+Oy8cvI3S88scMeyHdFL4JIWNCUC2uNun59pdEVf5diYqDfZ9Ltpuyd7eKtbvOwoRhAEeZFAJA9ivZyNucB1d/V7j5u8F/mL9GEm3Ia9RXTH09H9FKEcr+KkNdXh1iro/B+R3nVe/Lgq8LdCZjh186jOyXs/FJ/CdIvDMR3tHeFo/ryLIjKN1TitpTtQCuLOvDc+ZhxMMjVMfPeTVHFdeeh/cg/+N8vOf3HlIWp2Dqm1ONjskaHCoRuuWWW8Dn81X/t8YaVlcbn3ifKzPvWkjjWfO7xViWnkuo8WwjfBJ8wHUyv0AzMCUQdfl1FkuEanNrkXBbgtnHYecTGvvsWAtEBVQcrIBfkh88Qkyf4Vu4TAhZlwzZr2Rjg8sGi9QYKOQK+AzyQeKdiRpdp8YsGSNcJlRdBDlcw5r7+7tISsolqDlag7aqNgBXvsC7m7oROSlS66LC/p28OBlNRU1wcle23ihkCmSsyjCoe+vIsiMo21uGulN1yoSDufK4Y/9vLILHBKPyUCVaSltwdP1RHH39KMAAKQ+mYPyL41W/9tXPH/t82MJUfbezyUbvi/Seh/Yg/5N8eIR5IPmBZOR+kKv1nLuau8B1UnZTdTV1YeqGqQYnyYZ0b/WO+8iyI8ham4W4m+IgKZOg9qTyIiuXygEOwPfho/lis1ldZ329P/Y/uR8lu0sgKZNovEbDHx6OxHmJ6GroQmdDJzobOnHof4egkCnfw92Sbsi75Di58aTemPqqL6o6XIXy/eVa9z3w9AEcf+s43EPckbIoBSfePaH1GlUcrED5/nKN12Pi2ongufCQuSITpz8/DUbBgGEYpC9PN+pc6TvP7HvHReCi0WKm3uILQOt9MnPzTHgEeyBrbRaObzgOSakEs7fPVl3r7VUv51CJ0IoVK1T/X7lypf0CcSCWahFS//D3rg8yJwP3ifdB6Z5Ss+NjWWLEGMuSQ+hlXTJlEbcZXWPsaxA1PQpH1x/VWLDWnNegfL9pw+Z7m/jyROS8mgNFj2XW/IqbFYdjbxzD6KdHa91m6LHFa8TK2gIXLhRSBb5N+xb3HL2nzx9J+r682V/JXCcuIiZFoO5UnUEXFfWWqfRV6Uhbmobdi3ZDvFqMrJezwMgZjH9pPHguPJ2Pu+veXSj4ugBeUV5IeTAFJ987qfW4GaszMGPjDMzYOAMb+BuU3VNcDs7/eB7FvxVj0C2DMHTh0D67ZHp3O+qrbRn99Gj8MOMHXMq6hOjrohGeEY7MlZl6n3Pq46moPFSJ428dx4l3ToBRGFYz1Ve9TfqqdAy5Zwjq8+sRNV2ZDLEF9c6ezlDIFXAPcofPIB9cPnFZ1Up1/O3jOPjMQfjE+yAsPUyZkP7zuTEnQetq6sKOm3agWlwNz3BPyLvlWufVLcBNtb94jRiMnFElSqV7StF8vhme4Z4QLVfW3E18eaLB9UW6ivR/m/8birYWIWRcCGJviIV4tVjvaxQ1LUrrOacvTweHw0FzSTPO/XAOmSsyoehRYMKaCQafq96v4djnxipnhD9SpeoN0BdT5JRIncefsGYCeC48FP1QhPM7zuOL5C8w/9B85H6Qa7cCfYdKhNTFxcXh6NGj8PfXvCg2Nzdj1KhRuHjxop0isy2feB+0XGwBo2DM6lNV//A3FDZg0OxBAMzPwC09hJ6dQ8gSAlICcOarMxY5VkNBA5w9nOEdbfpM3OxroJApIG2VKmuhEv3Mfg3K9pVh4isTTY6LJV4jBqNQ1sRYYs0v8RoxUh9LNblGofeX9cFnD+LYm8ewdcpWzP9b/7qDvb+8x780HjsX7ETR1iIIYgWInx2PE++cMOqiot6KFTcrDv+u/jfe4r+lahHIXpeNoNQghI7/p3tLIsXY58Zi24xtqM+rR9zNcQgZE4LMFfoTDha7+KxcKsfIJ0YiclIkzv98HiV/lIDH52nUFyXcloCA5ACU/lmKqGlRaK9p1xg5NHThUPgP9Ye0TYq4m+I0Cm1HPTEK096ZBtFK3Rcf9ed8f979qpZCAOjp6EFXcxeOv328/y6qf4ZQszF7Rnji6OtHkbUmC35JfghICQCHxwEjZ8B14eLJ1idV9y/aVqSVkKS9mIbgUcEo2VWCurw6iFeJkbU2S1XUblAX1T8xMQoGboFu+PvZvyHrlCFkXAhqcmr6fY10JaBpS9PgFemFrJezkP1KNnJezQGjYDDsgWEY9cQo8AV8jePoSmZFK5SvT+bKTDAKBonzE3HzlpsNeo10YW+ftG4SvhV+i6y1WcofO0Z25zEMo5GsjlwyEq7+rjpfe/WY9H1/CJcJIVwmxKHnDyHntRy8H/A+AMt1fRuLw/Qep+4guFwuampqEBSk+Qv88uXLiIyMhFQqtUkcEokEAoEALS0t8Pa2zqrhfZF1y/C229t4pPwReEV4mXUs9kPH9+Hjlh23oOpIldkZeGdDJ94PeB9PSJ6Ai5f5NUffCr/FqCdGWWQR0EtHL2HHjTvwWN1jZnez5n+WjzNfncH8g+Yt/Mu+BmyffVt1m1mvQdulNnwU8REeb3jcrNFs6l/IVaIqyDplqDxUaXJcl09cxpYJW/BQyUPwCDa+y07fL9Z9T+zDyfdOInZWLG7//XaDjgEuAAWQcFsCZm+fjcxVmWbXl6jXP8mlcox5egyCxwSjSlSF8z+eR3vNlfmPxjw7BlNen9Jvl135/nJUHKzQ2VokXCYEwzC4fOIyvk37VllfxAUiJkagp60HPe3//Gvr0Vg3zm+IH1w8XeDs4QxnT2eU7CoBo1C2ZDzV/VSfz7Gv5yuIFaC7pRsh40JQurtU63Vi94+eEY32y+2qllkOj4NZX81CQEoA/BL9wHPhaR1bvfVE33FV50TB4C3Xt1QJWtL8JPB9+Di16ZTe+6avSkfcTXE4+MxBVP5dCXAAMED6qnRlEbIRr5G+uNikkcPlwDPCE60VrfAb7IfgMcHoauxCyR8l4DpxoZApEDIuBHwBH03nm9Ba3qr6McJ14eLp7qcNfo36o5Ap8JbrW6oBAEPvGQpGweDsd2f1Pp8h9wyBi4cLin8rRlv1la5kY947/XmL/5ZqFK0ljwsYfv12uBahX3/9VfX/PXv2QCAQqP6Wy+XYt28fYmNj7RGaXTjxneAV6YXm4mazEyHhMiHkPXJkrcnC9hu2W2SIrKufq7LfvrjZ7BFVDMNYtH4pYFgAOhs70V7TDs9Q05brYNWdMn7FeV3Uf13++fCfBncz6FO+vxxBo4IslgQJlwlRebgSP938E9JeSDOoqFmXrLVZGPHICJOSIACqX+29H3f6u9Mh75Yj75M8/Dr3V8zeNlvn8+lu6Yas65+JSBXKi8otP94CAP2O6uqPvi4pXd1bPBceprw+pd/HBaB1gdXVtVSyq0SjS6Z3gXTvpGLIgiEa3TkXd15U3WZoi5++5zt04VDU5taq1oZjGAapj6Vi9wO7cXHnRXC4HHCdufAd7Iv6/HrV4zYXN6umx9B3bH3dKr1bQLJezlJ15cqlcrSUtKAuvw7esd6qmNKXpyNzVSYyV2YiNC0U+Z/k49gbxxB3U5wqGeG58DTqZ3QRLlOO+OuvxZBtjVPVFz04HMMfHo7Lxy+j5mgNao4p185UyBSqZNY3wRe+g31x8feLOPbmMaNfI0Nkr8vWeO+0lLagtbJV1crYeK4Rk16dhH1L9uHCzxfAdeai6kgVBs0ehOjronHmyzMWj4vt+rbG8zWGwyVCc+bMAaAcXXPfffdp3Obs7IyYmBi8+eabdojMftg6ocjJ+osxDZVwawKy1mSpvqTNfdNxOBxVwbS5iVB7TTu6Jd0WmzPJ2d0ZPvE+qM+vNzsRqs2txbD7h1kkLvYL3xK1OOX7yxE93byJMXsnHRETIxA4PBAuni59rlyvT11eHUr+KMGDxQ+aHFNfScP1H10PWacMBV8XYNd9uzDry1mq29hiW64LVzXy0JJfsrpaqvrr3jLkcfUlfr0vsIbWBPVXuGroNAb9Pd/0lenwjvHG/if2I3NFJjJXZAIA4v4Vhxs+uwGnNp0yOKbex9Y3ClI9sdN17HFLx8HFwwXZ67KRuSIT4lXKLl9nD2cEjghE+sp0RE6NxNH1R1VJkKGvU39JdH+vUdysOK2ElC/gY8QjIyBeI8axN48Z/RoZQl9c6avSEXtDLA48dQBnvzmLs9+cBQBETY/C1LemIiA5AFlrs3QWaZsbV3/nypYcLhFiJ1KMjY3F0aNHERAQ0M89rn2WHEKf9XIWAMteHCy1+Grj2UZ4R3vD2d3Z7GOxApIDUJevHHZqKoZhUJtbi6mp2kM9TcEmQYB5tTgMw6B8Xzmu33y9WfHo+nJPeyENu+7dhYdLHzb69RCvFSN5cbLJi+YaYtZXs9DT0YOCrwrg5OaE6e9Nxy+3/YKLOy/CK9ILMTNjkP9JvsW/ZPtLWPR1b/X3uMZeYNWPZ0iRN4B+W5tMeb4KuQLJ9yUjcW4i3vN+T5VY3Pbbbf3GbGirjy79HTtjdQYer38c73i9A0amnHPnCckTqjpLa1yEDU2SdT2uIa+fteLicDi4S3SXRhfV3L1zDX5OpsRlreOayuESIVZJSYnq/11dXXB1Nb3p/2rnE++D2txas48jXiPG+R/PI2h0EO49dq/FLg6Wmkuo4azlRoyx9Ri61hwzdoRWS2kLZB0y+A81Pzb1L4C26jZcPn7Z5NegpaQFbdVtCJ8QbnZcvcXMjIF3lDfyPs7D6Ce1R32xete91BfUo/jXYiw+v9jq84Hcsv0W/DjrR+R9lIe8zXkAo1wqxC/Jr9+iZFPf75bo3jJFfwlJ2b4yvbfrGpat/ndfCYeh3YjH3jim1bpiSBKl73xYogXt6OtHwciudAVlvZxlUFJpyOObEpOu+qLeLWCmvEbmxsW2NurqojLkvtaKyaYYByWXy5nVq1czYWFhDI/HY4qLixmGYZiXXnqJ+eSTT4w61saNG5no6GiGz+cz48aNY7Kzsw2+b0tLCwOAaWlpMeoxLalwWyHz1ZivzDpG5upM5nW8znya9ClzdMNRre2ZqzNNPnb+5/nMlslbzIqPYRhm75K9zP6n95t9HIa58rx+nfsr89Xor7S2G/N8z+04x3wx/AuLxcQ+dtn+MmZj4EZGtFJk0mtwavMpZssk88+7PkU/FjEfhn/I9HT16N2n93PaeddOZs/DeyzyvjLUG7w3mNfxOrPBZQPDMAxzZMURvY+buTqTObLiiFXisNfj2lvv19qWr70pMdH7Q/uxHe31sxRDr98O2yK0du1afPnll1i/fj0eeugh1fbk5GS8/fbbWLx4sUHH2bp1K55++mls2rQJaWlpePvttzFz5kwUFRVpjUhzVD7xPmgpbjHrGGwGXvB1gUbLhiUycJ9B5scHKFuEkuYnmX0cQPOXFteJC4VcgexXsk0aoVV7qtbsGaUBHbU4kyLA5XERnhFuUi2OpeYP0idhTgKOvHQEBV8XqNb66k39PHfWd+Lcj+eQ+liqzeYD6T2fi3iN2OxiaFPZ63HtydG6OAyJqa/35UB7fzji62cPDpsIffXVV9i8eTOmT5+ORx99VLV9xIgRRi26umHDBjz00EN44IEHAACbNm3C77//js8++wzPP/+81v7d3d3o7u5W/S2RSMx4FpbhE++DrqYudDV1wdXXtC7CjJUZkHXJkLkyU6uLxxI1Qq2Vrejp7IGzm+H1JL27VRrPNqq6xizRrSJcphxem7kyE2+7vW3ybMl1uXWImBRhchys3s+Fy+Ni8B2DUbi1EDM/nmnUsRiGQfn+cqQ+nmp2XPpwuBykLU2DeJUYyfcn653tm21CF68Sg8Pl4Phbx22WBDlKseVA5XBdHA4ak6Oic6Vk/joGVlJVVYVBgwZpbVcoFOjp6THoGFKpFMePH8eMGTNU27hcLmbMmAGxWKzzPuvWrYNAIFD9i4w0f6SWufgCPtz83cwumG46p1wewNxh+L25B7vD2cMZLReNaxViJxhkhzu3VbfBL+nKBINcnvlvz/QV6co1g8wYoWWJxVb1SZyXiPM7zkPeIzfqfvWn69HT3oPQcaFWiYs1ZMEQMAoGRduK9O7TVt2Gsr/KlOtn/TNHja2TIED55c1OlCdeo/vzTSwrY2XfrSu2XC+K5YgxOSo6V0oOmwgNHToUhw8f1tq+fft2jBw50qBj1NfXQy6Xa61WHxwcjJqaGp33Wbp0KVpaWlT/KioqjA/eCgTxArMToYaCBvgP9bf4Gm7sEHpjC6bVL1x/P/c33ALdLD7NuniNGGCUrRts14kxupq6ICmTWKRrTJfw9HA4uTmhbG9Zn/uJVmpe3Mv3lyN8YviVCelWivq4t+m4TlyM+984ZL2SpZroTV2VqApfj/4aPR09GmszWTsR6euXrCndjISQgcthu8aWL1+O++67D1VVVVAoFNixYweKiorw1VdfYefOnVZ7XD6fr1r41ZFYYgh9fUE9AoZZZzoCUxdf1eiP5vTfh28MttVg+CPDUbS1CKP/O9qgrhP1LrvaU7XwivSCm7+b6piWHAnF4XKQODcRRVuLEHdjnN79eq+PVL5POX+Quctz9Ee0Ujmlfldjl2rNK0DZNffT7J9QsrsEsTNjcfH3izbtonLEegtCyNXJYROhW265Bb/99htWr14NDw8PLF++HKNGjcJvv/2G6667zqBjBAQEgMfj4fLlyxrbL1++jJCQEGuEbTWWSIQaChoQNt4yK7H35hNv+hB64TKhah0iS3WrqCcIaS+k4dy2c4i9IRYcLqffi7R60uHi7aJqDbJW0pE0LwnbZ26HrFsGJ77uj6R6wsgoGFT8XQHPcE+dSwlYEnsuYm6IQdbLWYifHQ9ZlwzfZXyHupN1CBoVpJEE9Y5V/W9CCHFEDpsIAcDEiRPx119/mXx/FxcXjB49Gvv27VPNWK1QKLBv3z4sWbLEQlHahk+8DyoPV5p1jIaCBqQsSrFQRJp8B/mi6Af9dSR9YUf+cJ24FpvksXfXSdT0KJT+WWpQEaD6hTxwZCDib4o3eLVmU4SMCwHfl4/SPaWqxXD7iwuA1ZOg3o/p5OaE05+dxpHlR9Be3Y4xz46Bs4czEuYkDPhiS0LI1cuhEyFAWfBcW1urmnGaFRVl2LDhp59+Gvfddx/GjBmDcePG4e2330Z7e7tqFNnVwtwh9HKpHM3nmy0yKaAupk6qyCYYHC4Hi4oW4ey3Zy3SktC76yTm+hgUfF0A4TKhQcdVTwAa8htUqzVbI+ngcK50j/WVCAHKGZ/ZFaBtUZQMaJ6LPQ/uUW5bLkTGqr5bxqgliBByNXDYYunz589j4sSJcHNzQ3R0NGJjYxEbG4uYmBijFl2dN28e3njjDSxfvhypqanIzc3F7t27tQqoHZ1PvA9aq1qvLCRppKbzTeC6cOEdpX8FXnP4DPKBpEwCudTw0U9sEpTyYArcAtwgiBVYbeRP9HXRqBZXQ9oqNfg+yYuSAUA1Y641L+xJ85Jw4dcL6Onse0TkTzf/ZNOiZJZwmRA8Fx4A5WP3lwQRQsjVwmFbhO6//344OTlh586dCA0NNWuk05IlS666rrDePEI94OTqhJaSFpOWoWgoUC5fwa61YylsYfH4F8eD68xFS2kL/AYrF03tr7CY7b7iufIQlh6meo2t0a0iiBHAO8YbFX9XIP5f8Qbdh239sMXKyEEjg+AR4oGSP0ow+LbBOvfZ/9/9KPmjBMmLk3HDJzfYdN4cR1klmhBCLM1hE6Hc3FwcP34cSUmWmWn4asfhcCCIUw6hNzkRskK3mHphMVsw7TfYz6DCYjZB+uW2XxAm1CzitsZFNvq6aJT9VWZQIiReI0bp7lIMumUQ5vw8x+pJB4fDQdK8JBRtLdKZCGWuzsSJd04gdHwobvjkBo04rJ0M0cSFhJBrmcMmQkOHDkV9fX3/Ow4g5owcayhoQNAoy08KqH4x9k1UrkJvTGExwzCoFldj9FP6F/a0lJjrY3B4qfbcVL2p6pZ4HNzwue2SjsR5ifh2/LeQtkvh4uGicVt1ZjVcfV1x5947NbZbuyiZpuAnhFzrHDYReu211/Dcc8/hlVdeQUpKCpydNZdu8Pa2Tq2LIzM3ERp6z1DLBvQP9QvjgacOgFEwBhcWS8ok6KzvRPAY69dsRU2NQtP5JrRWtvY5u7ZCrkDk1EjwvfkaS5pYO+kISA6Ad7Q3Lu68iKR5V1pCmy40oepIFW7bdZtWgqQelzXQFPyEkGudwyZC7LIY06dP19jOMAw4HA7kcuOWJLgW+MT74OKui0bfTyFToLGo0WojxgDlhVG8Wmx0YXF1ZjWCRgYZtUaZqfgCPkLHhaL0r1KkPKB/GoH0Fen4fMjnGPHoCK3brJl0qHePsYkQo2CwZ9EeJC9KRuQk2y/3QhMXEkKudQ6bCB04cMDeITgcU4fQN11oApfHhXeM9VrRxGuUSRAAo4ppq8XVWvVB1sTWCfWVCNXm1qK1qtXgompLEa0UoauxCxd3XUS3pBt8bz5ObjyJ1qpWREyOgGilaMCs/UMIIbbisInQ5MmT7R2Cw/GJ90FLSQsUcoVRC5I2FDTAL8nPIouY6qJeR1K2rwwuXi4G149Ui6sx9tmxVolLl5jrY5D7QS4YBaN3BF3hlkIkzEmAs7v1W6nUcXlcnHzvJNyD3VH8azFCx4fi8AuHMXjuYGStzbLaMhqEEDKQOWwilJeXp3M7h8OBq6sroqKiHHJNMGvyjvaGQqZAW1WbUfMBWWvEGKBdTMvj81B5uFI1FxCgPxmStktRm1uLUKF1V1BXFzIuBPJuOWpP1SJ4pHZdEqNgULilENd9ZNgyLpakXmuVuToTnqGe8B/mjzOfn7H6DNKEEDJQOWwilJqa2ufcQc7Ozpg3bx4++ugjuLq66t3vWsJz4cErygvNxc1GJ0LWWmy1dzFt7KxYZK7MxOwfZqtu1+fyscvwCPaw2iSPuvCceYicGomyv8p0JkJVoirIOmWIvi7aZjGpEy4ToquxC8ffPo7m880AQEkQIYRYkcPOLP3TTz8hISEBmzdvRm5uLnJzc7F582YkJibiu+++w6effor9+/fjpZdesneoNmXKyDFrtghlrNS8SAcMC4BboBsq/q5QzhLdR01LtbgaoULzJss0BVsnpMvZ785i8J2DwXPm2TQmdVPfmqrqtrPVMhqEEDJQOWyL0Msvv4x33nkHM2fOVG1LSUlBREQEli1bhpycHHh4eOCZZ57BG2+8YcdIbct3kK9RiZBCrkBjYSP8h1lvxJg6DoeDuFlxKNlVgtiZfS+FUi2uRsSkCJvEpS7m+hj8/ezf6Ons0RitJu+R49wP5zB7x2ybx6ROvEYMRsHQLM6EEGIDDtsilJ+fj+ho7e6J6Oho5OfnA1B2n126dMnWodmVIF5gVCLUUtICMIBPnI/VYuotblZcv8P8GYZBdaZtR4yxfBN84R7sjqrDVRrby/4qg5ObEyIm2D45Y6nXXD3V/ZRV1l0jhBByhcMmQklJSXj11VchlV5ZJLOnpwevvvqqatmNqqqqq27xVHMZO4S+oaABvom+4DrZ7qWOnBaJ1vJWNJ1v0rtPc3EzpBIpgkfZ/vXjcDiIuS4GpX+Vamwv3FKIxPmJFl+PzVD6ZnGmZIgQQqzHYbvG3n//fcyePRsREREYPnw4AGUrkVwux86dOwEAFy9exGOPPWbPMG2OrRFiJ5bsT8MZ69UH6ePi4YLIKZG4+PtFjP6v7qUzqsXVCBoVBCdX+7wFo6+LRva6bNXfPR09OP/Tecw/PN8u8QA0izMhhNiDwyZC6enpKCkpwbfffotz584BAO68807cdddd8PJSLo+wcOFCe4ZoFz5xPuhu6UZXYxfc/N363d+ahdJ9iZ0V23ciZKduMVbU9Cj8ftfvaL/cDo9gDxTvLIZXhBeCUi2/HpuhaBZnQgixPYdNhADAy8sLjz76qL3DcCguXi5wD3JHc3GzwYlQ/C22nSEZUNYJHXruEKRtUrh4aq+PVS2uxvgXx9s8LpZ7gDuCRgahbG8Zht49FIVbCpF0V5LNR7ARQgixL4dOhACgoKAA5eXlGrVCADB7tn1H9tgT2z0WOq7viQgZBYOGs/ZpEfJN8IV3tDfK95dj0OxBGrdJW6Woz6+3a4sQcGUYfdxNylFuk9fTbOaEEDLQOGwidPHiRdx6663Iz88Hh8MBwzAAoPrFPhAXXWX5xPug+UJzv/u1lLVA0aOAb4Kv9YPSIXZWLEp2lWglQjVHa+AZ7tnnCvDWJFopApfHRcx1Mdi1cBfO/3geAcMD4Jvgq1wzTa6gNb0IIWSAcNhRY08++SRiY2NRW1sLd3d3nDlzBocOHcKYMWNw8OBBe4dnc6KVV0YN9R5CL14jhmilSOs+DQUN8B3sa7fJAdlh9GwSy6rKrLJraxCXx4VouQgVf1egq6kLWa9kYciCIapRW9Zak40QQojjcdgWIbFYjP379yMgIABcLhdcLhcTJkzAunXr8MQTT+DkyZP2DtGm2Is3oGwRKt9XDkBzyHVv9iqUZkVMikBnQyfqz9QjMDlQtb1aXI2Y62LsFpf6ml4+g5TdjG2X2nDsjWO0nAUhhAwwDvvTVy6Xq0aHBQQEoLq6GoByQsWioiJ7hmYX6vPJVB6qRHNxs855Z9TZY+i8OidXJ0RPj8bF369MrsgoGFzKuoSwdPvWB7Hnk+1ipCSIEEIGJodNhJKTk3Hq1CkAQFpaGtavXw+RSITVq1cjLi7OztHZB3vxzv8kH+2X2vtMggD7twgBV+qEWI3nGiHrkNl1mDpLuEwIngsPYGhNL0IIGagcNhF66aWXoFAoJ5BbtWoVSkpKMHHiROzatQvvvPOOnaOzH9XFGwA4wLj/jdO5H8MwDpEIxc2KQ5WoCl3NXQCU3WLBo4OvPAc7Eq8RQy6Va6zpRQghZGBx2Boh9cVWExISUFhYiMbGRvj6+g7ouV56X7x/uO4HzP9bezbk1opWyDpl8B1snxFjLO8ob/gP8UfZX2VIvDMRl8SXECrse9i/LfTuVmT/BmjyQkIIGUgcLhFatGiRQft99tlnVo7E8fS+eO9dshe57+diz0N7MPPjmRr7NhQ0wGeQD5z49n+JY2fF4uKui0i8MxHV4mqdhd22pG9NLwCUDBFCyABj/6tkL1988QWio6MxcuRIrWHXA5mui/eMjTPQXNyM/E/y4RHsgQlrJ6j2byhoQMCwAHuFqyFuVhx+m/cbupq6UH/G/hMp0ppehBBCWA6XCP373//Gli1bUFJSggceeAD33HMP/Pz87B2W3em7eN/+++34eNDHuLjrolYiZO/6IACq+Y1knTKc2nQK3tHe8AjxAAC7TV5Ia3oRQghhOVyx9Pvvv49Lly7hueeew2+//YbIyEjMnTsXe/bsGdAtRBkrdY8O43A5mH9wPloutuDCrxdU2+vP1DtEIsTlcSFeJYZXhBeOvn5U1RpEkxcSQghxBA55FeLz+ViwYAH++usvFBQUYNiwYXjssccQExODtrY2e4fncLyjvBE5LRI7F+xE++V2rRFj+maetgV2yH9DQQO6mroQlh7W7/xHhBBCiK04ZCKkjsvlqtYaG8jri/UnKDUIsg4Zvp/8Pdqq2iBtlcI30dchWl6Ey4QY+39jAQAHnz5ISRAhhBCH4ZCJUHd3N7Zs2YLrrrsOgwcPRn5+PjZu3Ijy8nJ4enraOzyHlL48HeOWjkNTURO237gdPnE+OPbGMYdJOiavnwyuMxeKHgVNXkgIIcRhOFyx9GOPPYbvv/8ekZGRWLRoEbZs2YKAAMcY/eToJr0yCW1VbSj4qgDgwmGSIOCfwuh/kiB28kJHiIsQQsjAxmEcrAKZy+UiKioKI0eO7HPixB07dtgkHolEAoFAgJaWFnh7e9vkMc31ptObYOQMeC48PNX9lL3D0Tt5oaMkaYQQQq49hl6/Ha5F6N577x3QM0ebS7xGrEqCHKHlhSYvJIQQ4sgcLhH64osv7B3CVcsRl42gyQsJIYQ4ModLhIhpHLXlhSYvJIQQ4sgoEeoHW0IlkUjsHEnfWjtakfpCKoY9OUwj1mFPDkN7VztaO1od/jkQQgghlsJe8/orhXa4YmlHU1lZicjISHuHQQghhBATVFRUICIiQu/tlAj1Q6FQoLq6Gl5eXhYt4pZIJIiMjERFRcVVMxrNnuh8GY7OleHoXBmOzpXh6FwZzprnimEYtLa2IiwsDFyu/mkTqWusH1wut89M0lze3t70QTECnS/D0bkyHJ0rw9G5MhydK8NZ61wJBIJ+93HImaUJIYQQQmzB6i1C7e3tePXVV7Fv3z7U1tZCodAcLn3x4kVrh0AIIYQQopPVE6EHH3wQf//9NxYuXIjQ0FCaLPEffD4fK1asAJ/Pt3coVwU6X4ajc2U4OleGo3NlODpXhnOEc2X1YmkfHx/8/vvvyMjQP58MIYQQQog9WL1GyNfXF35+ftZ+GEIIIYQQo1k9EVqzZg2WL1+Ojo4Oaz8UIYQQQohRrN41NnLkSBQXF4NhGMTExMDZ2Vnj9hMnTljz4QkhhBBC9LJ6sfScOXOs/RCEEEIIISahmaUJIYQQMmDZbGbp48eP4+zZswCAYcOGYeTIkbZ6aEIIIYQQnayeCNXW1mL+/Pk4ePAgfHx8AADNzc2YOnUqvv/+ewQGBlo7BEIIIYQQnaw+auw///kPWltbcebMGTQ2NqKxsRGnT5+GRCLBE088Ye2HJ4QQQgjRy+o1QgKBAHv37sXYsWM1tufk5OD6669Hc3OzNR+eEEIIIUQvq7cIKRQKrSHzAODs7Ky17hghhBBCiC1ZPRGaNm0annzySVRXV6u2VVVV4amnnsL06dOt/fCEEEIIIXpZvWusoqICs2fPxpkzZxAZGanalpycjF9//RURERHWfHhCCCGEEL1sMo8QwzDYu3cvCgsLAQBDhgzBjBkzrP2whBBCCCF9ogkVCSGEEDJgWWUeoXfffRcPP/wwXF1d8e677/a5r6MPoVcoFKiuroaXlxc4HI69wyGEEEKIARiGQWtrK8LCwsDl6i+JtkqLUGxsLI4dOwZ/f3/Exsbqf3AOBxcvXrT0w1tUZWWlqraJEEIIIVeXioqKPuuRqWusHy0tLfDx8UFFRQW8vb3tHQ65hmWtywKXy8W4/43Tui3ntRwoFAqMXzreDpERQsjVRyKRIDIyEs3NzRAIBHr3s/oSG6tXr8azzz4Ld3d3je2dnZ14/fXXsXz5cmuHYBa2O8zb25sSIWJVXu5eEC0XwcPVA8JlQtV28Roxcl/JRcbqDHoPEkKIkfora7F6ixCPx8OlS5cQFBSksb2hoQFBQUGQy+XWfHizSSQSCAQCtLS00EWIWJ14jRii5SJkrM6AcJlQ629CCCGGMfT6bfUWIYZhdGZjp06dgp+fn7UfnpCrCpvsiJaLIF4rhkKqoCSIEEKsyGozS/v6+sLPzw8cDgeDBw+Gn5+f6p9AIMB1112HuXPnGn3c999/HzExMXB1dUVaWhpycnL07vvxxx9j4sSJ8PX1ha+vL2bMmNHn/tYmWimCeI1Y523iNWKIVopsHBFxRONfVNYBKaQK8Fx4lAQRQogVWa1F6O233wbDMFi0aBFWrVqlUajk4uKCmJgYCIXGfcFv3boVTz/9NDZt2oS0tDS8/fbbmDlzJoqKirS63gDg4MGDWLBgAdLT0+Hq6orXXnsN119/Pc6cOYPw8HCzn6OxuDwuRMuVyU7vGhC2+4OQg88cBABweBzIpXKI14gpGSKEECuxeo3Q33//jfT0dJ0LrxorLS0NY8eOxcaNGwEo5/iJjIzEf/7zHzz//PP93l8ul8PX1xcbN27Evffea9BjWrpGSD3pGfe/cch5LYdqQIgK+/4AgHH/GwdnD2d6f5CrkmilCFweV+f7VrxGDIVcgYyV9OOPWI/D1AhNnjxZ9f+uri5IpVKN2w1NLqRSKY4fP46lS5eqtnG5XMyYMQNise7upt46OjrQ09PTZ21Sd3c3uru7VX9LJBKDjm0o9RoQ9oJHFzkCXEmCIqdEouJgBdqq2zDrq1kAoLMlkRBHRi3g5Gph9dXnOzo6sGTJEgQFBcHDw0NVr8P+M1R9fT3kcjmCg4M1tgcHB6OmpsagY/zvf/9DWFhYn+ucrVu3DgKBQPXPGpMpCpcJwXPhAQC4zrp/MZGBRyFXFkbzffjwH+qPtv9v78zjm6jTP/7J0bTN0SY90/S+uKEUEEhBUUAQkRUPdHFXEY91VRTF1d/qyqGwwqrrCt7X6rqrghe46IJHOZSScpVbrt733aRJeqRJ5vdHmJA01+SYJqXf9+vV16uZmcx8M5l855nn+TzPU68DYLlepj0/DWaTOcgjJBCYQ1+3RasuaSNJFiQhFGHdEHryySexa9cuvPXWWwgPD8f777+P5557DgqFAh9//DHbh7eyYcMGbN68GVu3bkVERITL7Z5++mloNBrrX01NTcDHolqrgslgAjiAuc/sUkBNGFpMW2O5ObQcb0HmvEzoG/TWdcqVShJGILgkVBMxbI2hf4T/gxhBhJCEdUNo+/btePPNN3HLLbeAz+fjyiuvxLPPPosXXngBn3zyCeP9xMXFgcfjoampyW55U1MT5HK52/e+/PLL2LBhA3744QeMGzfO7bbh4eHW4olsFFG0fSLKmJuBrAVZdk9MhKFNr6YXmgoNMudlWj1ChMsDNo0VOgzVf//0fMPlsT7Vu0S5UmkV/pMsSEIowvqvo729HVlZWQAseqD29nYAwPTp0/Hzzz8z3o9AIMDEiRNRWFhoXWY2m1FYWOg2++zFF1/E2rVrsXPnTkyaNMnHTxEY+ruFpVlSxAyPcXAfE4YuLSdaIFaIET8uHr3qXvR19wV7SIQAwaaxEsphKNVaFSgTBXBgzYIkEEIJ1sXSWVlZqKioQFpaGkaMGIHPP/8ckydPxvbt2yGVSr3a14oVK7BkyRJMmjQJkydPxquvvgq9Xo+lS5cCAO666y4kJydj/fr1AIC//e1vWLVqFT799FNkZGRYtURisRhisTign5MJtAaEnpSk2VLUFdXhxq9utK4nDG2ajzcjPi8ekbGR4PK50DfoIc2SBm08JPMncNgmStCvA2msKFcqQVEUilYVoXhdMUwGU0gYQUWrihCdFQ1QwJilY4jwnxBysG4ILV26FMePH8eMGTPw5z//GQsWLMDrr7+Ovr4+vPLKK17t6/bbb0dLSwtWrVqFxsZGjB8/Hjt37rQKqKurq8HlXnqqeuutt2AwGHDrrbfa7Wf16tVYs2aN35/NW/rfMKKzonH649MAyKRAsNByvAXxefHgcDkQJYmgq9cF1RAimT+Bxa5y+FoVzH2BrRw+8o6R2L96f0iEoWyvkdMfn0ZnVae1WCgxhgihBOuG0OOPP279f/bs2Th79iyOHDmCnJwcj3odZyxbtgzLli1zum7Pnj12rysrK73e/0AizZZCU65x2YaEMPRoOd6CSU9YQrhihTjoOiG2vRhDEeVKJYrWFMHcF/jK4fv+sg+AJRuVaTFOtrx+tAd86l+mWo2+ruYu63GIB5wQKrBuCPUnPT0d6enpA33YkCQ6MxoGrQHdrd0QxguDPZzLisEY0jEbzWg92Yr4vHgAgChJZJc5FixsjaH9a/aDMlPECPID1VoVYAbARUArh6vWqnDu83MAgIXbFqLpSBMjzwtbXj/696Wt08JsNCNcGg5trRYiuYhcO4SQghVDaNOmTYy3ffTRR9kYwqBAIBZAmCiEplxDDKEAMxhDOh0XOgAOIMu11NcKBY8QjXKlEvuf2w/KRIErILWvfMUqjOZzETs6FsNuGRaQMBG9X2muFOoLaugb9U69ec5g2+unqdBAkiJBZFwktDVayCe5z/IlEAYaVgyhf/zjH4y243A4Q9oQAgBplhTqMjWSpiQFeyiXFYMxpNNyvAVxY+Ks2UNihRjtZ9uDPCoL1swfWJrBkv5n3kNff5OemITDfz8MXa2OsbHiCToMdeytY4hKj0JXU5fd/jyFoZQrlaDMFqG1ap0KZkPgtEudlZ2Izoi2eoQIhFCDFUOooqKCjd1elkizpVCXq4M9jMsSu5DO8/tBGUM7pENnjNGIkkSo3l0dxBFZoG/gwgQhzEYz4vPiidjVB2hjJfnKZJx49wS627rR190XEM3MtDXToG/So2h1EcbdNw76RvtinEwY94dx2L9mP8yGwGqXNJUaRGVEQSARQFtDDCFC6DFgVbYMBgPOnTsHo9E4UIccFERnRUNdpg72MC5bxj80HgBAGSlwuBxMeHRCcAfkhuZjzUgYn2B9HQqhMdoImrpyKrpbuzH23rHghfNI7SsfoCuHqy+oIZ8sB0/Ag67Wpo2Kn5q15mPNkOXIIM2RQt/kvbZM9bzlu6SLHwbqu+2s7ERURhQkKRJiCBFCkgHpNXbvvfdCKBRi9OjRqK62POE+8sgj2LBhA9uHD3nozDECO+z9v70AAK6AC8pM4d2Md7Hzvp0h2Y6ATp2nESvEARFL+1PRmPZiZM/PRoQsAsMWDUNDcQOm/mUq6X/mIx2lHZDlyiBOEQc0VNR8rBnx4+MhTBTaeYSYoFqrwvG3jwMARi4eGVBDV1OpQXRGNCSpEhIaI4QkrBtCTz/9NI4fP449e/bY9fiaPXs2tmzZwvbhQx7iEWIP1VoVTn1wCtHZ0VjRuwIFzxWgV92L0x+etoTLntvvsH2w2hF0tXRB36BH/Dj70Fivuhd9Xf5Vl/anojHtxWgqaULChAQk5CXA1GNC+/l20v/MR9SlakhzpBYPSQANg5ZjLUgYnwCRXGTVCDGBvg6yb8wGl89FU0mT00rVvkJrhCSpxCNECE1YT5/ftm0btmzZgqlTp9rVyhk9ejTKysrYPnzII82WQleng7HHCH7EgFczuGyhJ/ekKUlQKBUAgIJVBeBwOChaVQR+JB/71+xHn64PM16aEXQhdcvxFkRnRiM8Kty6LDI2Etywi9Wls6U+7zsQwvGmkiYkTkgET8BD4qRE1KvqETsi1ucxDWXUpWqMvmt0wA2D5qPNGHXXKIgSRV55hGivHwAYOg2o3VuLvq7AaJfMJjM6qy2hMVCArk4HymwJUxMIoQLrd96WlhYkJCQ4LNfr9aSIIACRXAR+JB+aCg1iR5IbS6CgJ/eavTWIHXXpvNKTe19XHyp2VuDQy4dwZOORgFf49Zb+QmkAl6pLN+j8MoSAfhWNn1fBbPTu8zYfbcYVT10BAFAoFWhQNWDs0rF+jWkoQlEUOko7IM0NrEfIoDeg/Xy7VWPWq+6FsdcIfrjnKZ726v340I+QXyFH64lWtJ5sRdKUJL9/D7p6HSgTBUmqBJSZgtlohr5JD3HSwLc4IhBcwXoMYNKkSfjuu++sr2nj5/3333fbLHWowOFwLOExkjkWUOiQTtuvbYgdbW9gKlcqcdX6q7Dk6BJweBxWKvx6Cx3W6I84KXCCaeVKJbh8LsxG7z6vyWBC68lWJE6wtLJJmpqEelV9QMY02PC3g7y+UQ9jtxHSLCnEKWKrWNpfWk+2QhgvhEgustQk48Cr8BgA6BssBkrChAQ0lTQFZFydlZ0Qp4jBC+OBH86HMEFIwmOEkIN1Q+iFF17AM888gwcffBBGoxEbN27EnDlz8OGHH+Kvf/0r24cfFEizpNCUEcF0oOnp6IG+QW/nEbLFtjZOsLtiO/MIARcF0/WBqS6tWmvxBAHefd62X9vAi+BZe54plAq0nm5Fb2dvQMYVaPw1Vtzhbwd5dakakhQJ+BF8RKVGBcwoaD7ajIT8BHA4HHD5XETGRXqdOaZv1EOUJEJCfgKajzYHZFy0UJom0LooAiEQsG4ITZ8+HcePH4fRaMTYsWPxww8/ICEhASqVChMnTmT78IMCUkuIHdp+bYNYIUaENMJhHX3jmvznyQCAKX+ZErR0cGOvEe1n2p0aQnRozF/oz5uQb/E6ZczJYPx5m0qaLDfZi7oOcZIYUWlRaDzY6NeY2DJY/DVW3OFMROyN3qrjQgekOVIACGjWWP/SC94KpgGLR0iUJELihEQ0HQ2cRygqI8r6eigLptk00An+wapGqK+vDw888ABWrlyJ9957j81DDWqis6JR+UNlsIdx2dF6utWpN6j/jevEuyeQe1Mu+OH8oBQKbD/TDr6Qb/fkTBOI6tK2n7eqsApxY+PAFXCtN3TA/edtKmlCYn6i3TKFUoF6VT3SZ/veN5CtNihsVxW33X/xumKYDCbG+1WXqiHLsbRQkaRI0N1qKaoYFhnm15iajzVj0uOTrK+9FUxTFGUNjYnkIrSeaIWpzwReGM+vcfX3CIlTxEPWEBqMbX+GCqwaQmFhYfjqq6+wcuVKNg8z6CG1hNih7dc2p4YQLaSmJyNZrgwd5zuC1hW7+Vgz4sfFO00eEClEqN7lX3Vp28974v0TmPjYROxfsx8Lty20rnc7vpJm5D2YZ7csaWqS38Y7mwaLnTj8YufzQIrhlSuVKFpdBJPB5JXeqqO0w9prSxgvtBRVrNNZjSNfMBvNaD3RavX2Ad57hHo6emAymCCSixAmCgNXwLV4Kcc5eim9QVOhQfL0ZOtrSaokYGG3wcZgbPszVGA9a2zhwoXYtm0bHn/8cbYPNWiJzoqGplwzKNNKQ7nLe9vpNgxbNMxhef/xyIbJLA1PEZyWES3HnQulgYtiaT9DY/TnNfWZoKvVIfemXKieU6H5WLPHz2s2mdF8vNkqlKZRKBVQPa8CRVF+ZX+y2QaFbhTLhhi+8JFCgALA8a6DvLpUjRG/HQHAkhUoTraEx/wxhNrPtwNcWENuALwuqqhv0CNMFAaBRAAASBifgKajTX4bQp2VnYjOvOQRikqNQtl/h27ZFLYNdIJvsK4Rys3NxfPPP49bb70V69evx6ZNm+z+CEB0RjSMvUavq8GGAmzqMfzFlUeoP7RHKFi4EkoDgRVLa6u14PA4kKRKkHxlMmr31np8T8f5DoACYobH2C1PGJ+APn1fQM6bcqUS4Fxsg8LnBOym8MMDP7AihletVeHo60chTBBCGC9EwXMFjPRWFEVZQmO5l4yeQLSdaDnWgvhx8Xa/NZFc5JVYmtYH0STkJ6C5xD/PjdlohrZG6xgaG+Ji6fxl+QAQEtmqRLdkgXWP0AcffACpVIojR47gyJEjdutI93kL/Ag+JMkSqMvUECsGV32NUHX39qh7oKvXMTOEhslQ9m1wnlIpikLL8RZc9bernK4XKUTo1ViqS4cJ/dORaCo0iEqPApfHRerVqajZU4NJKya5fU9TSRPi8+LB5dsbtDwBD4kTLYUV+xtJ3qJaqwIoS48rykjh6xu+xs3f3uzXPotWF+HEuyeQNisNbb+2IeuGrIDov6wGPp+LG7feiM1Xbsa4+8ZZC3W6239XSxcMWgOis2yyqFIlfqfQNx1tsguLARaPUFcj89CYrkFnV9snIT8Bpz887de4dPU6UBQFSYrEukySKoGuTgezyezXQ1Ioe6I98eODPwKweAS98SayAdEtWWDVEKIoCnv27EFCQgIiIyPZPNSgJzrbUkso5cqUYA/Fa2yNoaLVRQCFoLt7235tg0guQmSM5+uO9gj5G+bxBV2dDr3qXsSNiXO6PlDVpQFAXa62hilSZ6SieF2xxxsSXVHaGQqlAg3FDRhz9xifx0RPuOAA95ffD9U6FU6+dxJfzf8Kt3x3i8/7VD2vgkghwq07b8Vn0z9D+qx0RKVG+W0MmU1mpF+bDlOvCckFyZANl1lbUtDrXaEutTzoCEQC67JAeEhajrU4hID99QglTkjE7uW7/QrXayo1kKRI7IxoSbIElImCvlEPSbLEzbvdM1hv4Kq1Kpzbcg6R8ZGIkEVg1O9HBSVBgyZUH2QHGlbjFhRFITc3F7W1nl3wQx1plnRQ9xxLueqiAWeJRKBX0wuDzhA016uzQoqukOXK0KvuRXdbNytjcUfzsWbIhslcZg1xOBerSwegqKKmQmM1hBLGJ4AyU2g50eJ+fCWO+iAaOnPMV+gJd9KfJgGU5eY99925GPeHcaj4XwXez33f9fvcXDedVZ3g8rlY9MMicPlcSNIs4Sc69d0fMbzyWSXaz7ZjwvIJACwGA1180FPvNbrHmC3+hsYoinJInQe8zxqjawjRxI6KhanX5NecpKnQ2KXOAxZPojBR6LcXzN8yBsGAHp8gSoCZr85Ex/kO5D+SH9AGt75gey7/Hvb3kD6HbMGqIcTlcpGbm4u2tjY2D3NZMJgzx3o7e7Ft4TYAlokOAM59cQ4fjvoQHec7gqIhajvNTB8EAAKJACK5KCg6IXdCaRqxIjDVpTUVGmtYhsvnInl6Mmr21LjcnjJT1hpCzlAoFWg91QqD1uDTeOhstuG3DYcwQWi9dua8MweJVyRCXarGF3O/sHuPp+vG2GNEXVEdpq2dhrjRFi+bJFWCzupOAJ6NFU+UflMKcICc3+QAsBhCTLOgbGsI0fjbkV1Xp0NPew/ixtp7FIVyIQydBhh7jIz2098jxAvjIW5MnF/1hOhmq/2RpErQWdPp835pbG/g/wj/R8jfwM0mM/KX5cPcZ0buzbmQpEnQdKQpIAa6vyhXKsHhW0LT3DDnIcfLGdaVrBs2bMCTTz6JU6dOsX2oQc1g7kK/5Zot6FX3ouC5Ajze+zimPT8N2motEicmouqHKsiGywb8yY2pUJrGNnNsIHEnlKYRJ4mhb/BfMG3rEQKA1KtT3QqmNRUaGLuNLj1rYoUY4mQxGg/5VliRboOiq9M5aOPuPHgn8h7MQ9UPVfjiWosxxOS6oZ+4r/jTFdZlUWlR0FYHRqBbsrEE+cvyreGehHzm7ShsawjR+FtpuflYM2JGxDh4FCNjI8HhchiHx3QNOojkIrtlCRP8qzCtqbS/3mgkKf7romhG3jESALwuY+AKNj3Y09ZMQ3RWNFKvTgU/gg/5FXLrb8dfA91fVGtVoIwWd765zxzUKvvBgHVD6K677sLBgweRl5eHyMhIxMTE2P0RLAxWj9B3v/8OzSXNmLRiEgpWFQC49KRWuq0UY+8fi+RpyeCGcQf0ya31dKvVI8AE2bDgZI61HG/xaAiJFAEKjZU7MYR+rgVlppxu31TShLgxcW4bd/obHgMsolqRQuSw/No3r8X4h8aj6qcq/J1v77J3dsOqV9Xj6BtHkTQ5Cap1l9ZFpQWmlUXT0SY0HmnEuPvGWZcl5CdAW61lFFbtKHXiEUqRoLulm7Hnpj/OwmKARUMjTGAumKaLKdrib+ZY/6rSNIHyCAHAd7+z9LG0FR77A9tZsJXfVyJjbgYAIGlykt/V2QMB/dlESSJMXDERPAEvqKG6YMB61tirr77K9iEuC6KzotHVbMkqoWt5hDpdrV24sO0Ccm7KwdV/v9puna149LoPrsOYu8dg81WbA/bk5o5eTS90dcwyxmhkuTI0Hh7YScmgN6DjQgcS8jyHxtp+9S+8bNAZ0N3abWcIJeYnwmw0o+WE8/Bc81HX+iAahVKBqp+q/Bqbvt61cHb2G7Nx4r0TMPdZwgYGnQGaKo2DWLavuw877t6B5GnJOPr6UTuxrCTtUmjMH0o2lWD0naMRIbvUsiVCGoHorGg0H212W2WboiioL9inzgOAMEEIbhgXujqdT2L45qPNUCgVTtcJE4WMPUL9Q2OA5frYv2a/z0kE/atK00hSJT57EW355Zlf0HCgAenXpqP1ZCvyHszzW3jMpni4r7sPtXtrcc2r1wAA5FfIcfS1oz7vLxDQn025SokDLxxA/rJ81O2rQ2RcZFBF3AMN64bQkiVL2D7EZUFkbCQEUQJoKjR+FzEbCCiKwk8P/YSM2Rm48asbnW5j+wOitSgcHvspo22/tkGYKERkLPNMRdkwGc58eoaV8bii9WQrImMjHW5A/REliVBd6F91aU2FBgKJwO6cWHVCe2ucGkJNJU3I/k222/0mTU1C8bpivzLutHVaRKU7eg4AWIvO8QQ8mAwmlG0vQ8mrJcian4XRS0dbJ2u6xEDVj1UONyxJ6sVWFn6UINA363H2s7O4s+ROh3V0eMydIdTT3oNeTa+DsWNbVNEnQ+hYM8Y/ON7pOqaCaYPeAIPW4HAdxo2LQ0+bpQyFtxledA0hpx6hFAlKt5Z6tb/+qNaqcGD9AUSlR+Hm727Gm/FvInNeJqMyBp7wp4WKO+p+qUNkQqS13ETixERo67QWobrc/RzAFrROL2NOBo69cQzRGdGY8OgEqJ5ToeC5Ar90S4OpxMGAVLszmUz46quvsG7dOqxbtw5bt26FyWQaiEMPGjgcjl+ZYwOdnXV281nU7KnBte9e6/EGSD91DLt1GOLHxrOeJeGtPgi4mEJ/wZJCP1DQQmlP5y8QYmlaH9T/WHQ9of5QFOU2dZ4mIT8BBq0B6lK1z2PT1+ud1s+yfRKntWftZ9oxftl4S+2nb8ogTBCiaFURDv/9MHS1Oqc3LGG8ELxwnl/hsRPvnEDKVSmIG+UYbrXNHHOFulQNYaLQqbfX18yxXk0vNOUaxI93/uAklAsZtdnQN+jBDeM6PDgIRALIhst8Co/RuidnBlQgGq+aDCYIJAJc8+o14IXxkHFdBsq2lwVMeDz12anWcFugPNgVOyuQOTfT+hsMjwpHzPAYRt4xtuZ3WqfXcKgBiVckgsPhYPii4TBoDUianOSXoRLKxXb7w/pISktLMXLkSNx11134+uuv8fXXX+P3v/89Ro8ejbKyoVtq3Rl0LSFfYPOi6/8j1NZp8dNDP2HOO3Nw4p0Tbn+Etjeza9+5Fi0nWzDmnjGsGkOtv3qnDwIsGi1jtzEgWhymMBFKA4E1hPqTOsO5TkhXp0NPW49H7yQ/nG8trOgrunodxMn2hpCzcAR9kzvyyhGEicLwQM0DuPKFK4GLtp2rGxaHw/FLJ2QymHDszWOY8OgEp+uZZI51lHa4bKPha+ZY8/FmSFIkEMYJna5n6hHSN1g8Es4Mcl870WsqNZCkShwKcQIXxdL1OpiNvhsrsSNjIUwUInuBxWOZvSAb5dvLAQRGeLzl6i3W30SgqpLb6oNo5FfI0XCoweN7Pc3vdb/UOX0fUyOp8WAj5FdYeuDxBDzk/TEPJZtKPL7PHYOpxAHrhtCjjz6K7Oxs1NTUoKSkBCUlJaiurkZmZiapKt0PfzxCbF50tj9CiqLw/b3fI/s32Wg91erRyLJt+BkZEwmFUoHy78pZTRn1JnWehh/BR1RaFKuC6f4Gpa1Q2t2EJUoSwdBpgEHvW5o64CiUpkmYkACTwYTWU612y5tKmizZSAxCSUnKJP8MISdZY/0b49LYXjdhwjCLgUjBGjpzdcPyRyd0/svzCBOHIev6LKfrE/IT0HG+A72dvS734Sx13jo2HzPHWo61uPQGAcyLKvavIWRLQr5vmWOuUucBQJwstnS797GlEEVROPz3w5j42ETr3JM5LxMtJ1sCIsL+esHXqP25FvmP5CPlyhRrVXJ/jKHOmk60n2tH2qw0u+W2mWPucDe/p81MQ/Wuar8eghsPNSLpiiTr67wH8lBdWG3pY+cHtuN+RfBKSBpBwABohPbu3Yvi4mK7DLHY2Fhs2LAB06aFRnwwVJBmS3Fh6wWf32/X0G+dCmZDYBr62e634VAD2k63IXFiIqOLuv+TWdb8LJR/V468P+SxqhGa8vQUr99Hp9CnXZPmeWMfsBX4Tv3LVEtoLC/BYzVc2+rSghzfhPSaCo1TDQsvjGetJ2Tr/WESFqNRTFXgwAsHfBpXX3cfejp6HAwhd0/09HXT39C3VqmGoz7EtpaQO5zpGo5sPIIJj0xA8V+LneoaRIkiiBVitBxvcVkZXl2qRswI51mykhQJqgq9F5y7yhijYdpmg/YIOSMxP9Enz4Cr1HnAcs2J5CJoa7R27TeYUvtLLTQVGoy+e7R1WWRMJJKnJaP823KXmikmfLv4W5R/W46x943FrE2zcPgfh1Gxo8J6Mwd80x5V/VAFxVQFIqQRdsvlV8iheo5Z82K7BsVr9oMyUxi2aBgm/99kXNh6wWeBd29nL9rPtVs9QoDFiB62aBiOvn4UszbN8vrz2pKzMAdFq4pg7jOHbI0i1j1C4eHh0Godn3Z0Oh0EgsGRHTVQBKKW0KQnJgEcwGxg3tDPY/x5dRHSZqUhPj8e5dvLoW/S48ALB3wysrLmZ6Hqpyqf04U90dvZC22NlnFVaVvYbr5q+3S0e8VumAwmnP/6vMcJi8PhWJqv+lFLyLaYYn9SZzjqhJpLmpEwwX02G41CqUDLiRYYdN57rPQNenD5XAjjnYd3XOEudObs6Z1pLaH+IYj64nq0n2mHvlnv9unaU80dZzWEaHztN9Z8tNllsUuAuUeof58xW7wpD2CLq9R5Gn/qJx155QjGPTDOrlUJYAmPlW33XW5RV1SH81+dx4jFIzD3vbkAgNybclGzpwb5y/L98mBXfF/hEBYDLBXeezW90FQyK50y/qHxAGBtfaKt1uLLa7/Egb8eQJg4zFIdmu9ddeimI02QJEscjOEJj07AqQ9PufV0eoKiKGxdsBWAJVHG3GfGnif2+Lw/tmDdELrhhhvwhz/8AQcOHABFUaAoCsXFxfjjH/+I3/zmN2wfflAhzZais7LTr3DRZ1d9ZmlzwWEe23YVf/756Z9RtKoIx946hq+v/xrJBZZ6QP50TY4bE4fI2EjU7HVd0dgf2s+0IzI+0qVuwh0DUVSRvlmXbCyB2WiG6jkVownLnzYbFEW51AgBzusJMUmdp5GkSCBW+FZYUVengyhJ5HU/KyahM1uYaoT6G1Mlm0oQOzoWB/7q3vD3VFjRWXsNGl/6jZkMJrSebvXsEWIolnYVGouQRSAqIwrNx7wLj7lKnafxVTDdcaEDFTsqrB3cbclekI3qXdUeQ8jOHvxaf23F1gVbkXFdBmTDLhms0RnRiBsTh7Jvy3zWHplNZlT/VO3UEOJH8BE3No7xb+f7+74HYAkFU2YKWfOzsKx9GR5ufRiLflhkqQ5tosAVMPe8NB5qtPMG0SRNTkLc6Dic/sj35rv/XfRfdFZ1YupfpmJF3wrIr5Dj8CuH8fPTP/u8TzZg3RDatGkTsrOzoVQqERERgYiICEybNg05OTnYuHEj24cfVEhSJaAoyucnpW9u/QbNR5ox9v6x4HA4mPrsVEaxbdvJf//z+1G9uxofjfsIBzcchCRNgqtfvhp/rP8jRIkiu1RmX2LmHA7HGh5jA28LKdrCtkeIZsRvR1j+oVwLfPvjj2C6u7Ubffo+l0/oiRMTYewxovW0RSekb9ZDW6v12PrDlqSpSWgo9iz67I8zoTQT6GwXZzi7YTENjVnff/H3cPazs2gobvBorLrLHOvp6EF3W7dbjVBXcxeMvcy9pG1n2sCP5Ls1NkRyEQxaA/q6+tzuy50hBFjCY0yrZ9M46zNmi6+G0JGNRzD8tuFOs9FihscgKi0KVT+6DzP2f/DT1mnx1XVfIW5cHMq3lzt4/XJvyvUr3b/xUCPAsfzOnMFUJ6Raq0LptlKkz063ZlHSnyMyNhJVP1Vdqg5tYF4d2pUhBFi8QiWvlbgsuuqOX/7yCy58dQHDbhuG6eumg8Ph4A7VHYgZGYODGw5i36p9Xu+TLVjXCEmlUnzzzTcoLS3FmTOWOi0jR45ETk4O24cedPDCeIhKj4KmTIPodNcTnDN2Ld+FC19dwMjfjcScd+ag/NtypF+bbq0SCriPbfcvJAYA+cvyMes1S3zYGz2GJ7LmZ2HX8l2YuXFmwLu9+5I6TyMbJoO6TO2xI7s/GHuMFq8d7AW+ns6hP6ExTbkGwgShQyiBhhfGQ/K0izqhsfFoPtoMaY4U4dHhHvdNa2oUSoVDeI1JrRBdvaNQmg0kaRJoq7WM6x3R1zhT72dCfgLafm1DX3efQ7sLdZkakXGRDvoQGlGiCFz+xaKKWVJGn6f5qEUf5M6TFhkTCQ7P0mZDmul6v+5CY4D3rTZMfSboanXuPUIpEjQc8M5w7m7vxqkPT2HxL4tdbpN1QxbKtpchd2Guy21s5zpjjxHl35YjMi4StXtrnRq8OTfl4MD6Az7XoarYWYH0a9NdzinyK+T49T+/ut0HPd9yeBzMfnO2w+eo2VOD6l3VmPb8NOib9Gg81Mh4fm481Ii8B/Kcrht26zDseWIPKnZWuEwWcEVVYRWis6KxYPMC6zIuj4u7Su7Cm/I3cezNYyhYVeCQWRiMGkMDlsifk5ODBQsWYMGCBcQIcoM0S+p1Cn1fdx/ObD6D5OnJmP+f+eBwOEiakoSGAw1eZWcpVyrtUpFdGUH0tr6mwKfNTIO+Xo/2c/5lJDjDm67z/YnOiAYoS/dytth85WZ0NXZBuVrp8FTnDn9CY+70QTSpV6daw5XuOs73h366bjvbhnpVvbUOE9OMFWcZY2wgSZXA2GNEdyszrQttBIHLLMQclRaF8Ohwh+w7wH1YDLAvqsgUT0Jper+iRJFHwbQnj5C3mWPaWq31M7nCF4/QiXdPIGlykttrM3tBNsq/K/fowVCuVKLguQIceOEAWk62oPlos0uvX9zoOEhSJKj8vtKr8dI4S5u3RX6FHE1HmtzO0WaTGcNuHYbYUbF21cmVK5XWrDF6/JnzMtHd0o2C5wo8zi1dLV3orOpE4iTn57T4hWLEjIxByWuOgnl3ma7Nx5vReqIVN393s8ODBz+Cj/yH89HT1oP/TPmPXe22YNUYYv1ot9xyC/72t785LH/xxRexaNEitg8/6JBme59Cv/ux3ZDlyHDbrtusy2z72DCNbe9btQ+gAG4Y127y91aP4YkwYRhSZ6ayEh5rPd3qs0eIy+ciOiuaNZ3Qfxf9F42HGzFxxUTr98HUoPQnNOZOH0RDN2D11HG+P/T4T753Ej0dPVCXqb3KWPE1NOYtApGlqjaTmy89fvlkOSY+NpHR98PhcCz1hJwUH3RXQ4jG26KKzcea3abO03hqs2HqM6G7tdtjaKz9XDtjMXxnZSckaRK3NzNPYun+Oh6TwYSjrx3FpBWT3N6Ak6cnw9RjYtQux5qx5iFEzeFwkHNTjk8ZvT0dPWg81IiMORkut4kbHQfKRLl9MJy2ZhooisKwW4Y5rEu+Mtnut5Z2TRp09TqMuH2Ex/m58VAjZLkyl95KLo+Lmt01qPqxym587gwWykyh8OFCTFg+AbEjnM/FV/71Skx6YhKaS5qx5ZotdvsMRno964bQzz//jOuvv95h+bx58/Dzz6ElmAoForOinTZfdZXZdebTM/j1379CPlkOXhjPulw+WY6Gg8xdz6q1KhSvLUaYOMzBU+GtHoMJWfOzUP5tYA0hg9YAbbXWZ0MIYE8n1H6+HaX/LcXIO0bimr9fY7eOiUHpV2iMgSGUOCkRfV19aP211avUeeDS+CkThQ9HfujVZDZQoTGAmU7IdjIWSASIHRHL2Fh1JZh2V0PIdmxMDQOKotByrAWJ+YmXxuyqBpXcfVHFrqYugGPpeeYKUZIIwgQhWk60uP0MNJ6E0oDl8+ob9C6LKvbX8Zz7/BzCRGFoOtrk1mPAC+Mhc16mx+yx7rZuFC4rtLyHgeYx96ZclG0vg6nPu44IVT9VIXZkrNsWJVw+Fwn5CW51Qn1dfajYUYHcmx1Dfv3n5zBhGFKvTkXFjgqP83PjoUbIJzvXBwH2v+0dS3YA8GywnP73aXRWd2Lqs1Nd7hcArn75auQ/ko/avbX4e5h3mW6BhnVDyFWafFhYGDo72QtBDFZceYScZXa1n2/HzqU7Yew2IjLGvjy+fJIc2hoto6Jl9IWdPjsdmddZSsD7E/piQtb8LNTtq0OvxvfUzP60nWlDZFwkRAm+9+1hI3Osr7sP2xdtx4RHJ2D+J/OdbuNpwvInNKYuV7s1hIrWFOHghoNInpaMsm/KoCnXWD1CTCvTKlcqweFyYDZ6l1E4UKEx4JJOyB223s/2s+3W2j9MjFVXFaY9hcYAS+aYuxR629+/plKDvq4+xI6K9RhK8JQ5pmvQITIu0u4hqj8cDser8JgnoTQAqwfK1TXdP4Hj8CuHIRsuw/7V+z3eLJmk0X8590sYu40oeK6AUYg6aXISwoRhTtvRuMNTWMx2/+460VfsrIAkWYK4McwSQTLnZaJiR4XH7dwJpWmUK5UY98A4NBxowCvhl4oimk2OguwedQ/2PrkXigIFDr10yOPxZ22aBW4YF5SRYr0ZtztYN4TGjh2LLVu2OCzfvHkzRo0axfbhBx2uPEL9DZO+7j5snrHZZUPA8OhwxIyIYeQVoid/rsDShLP/Mdmo/hydHg3ZcBkqf6gM2D79EUrTyIb55xFy5rnb/dhuhInCECYK87knkFgh9rm6tCePEH2TpcwUjr5xFJJUCYTxQq/i9aq1KmttE6YZhRRFDVhoDLDoeDx5hOina4PWAF2dzq4IoidjNWFCAlpOtDh4DdzVEKLxFBqz/f3ve2YfYkfF4uDfDnp8ivbUZkPfoHcrlKbxJnPMXVVpGmtRRTdeMPoz71+9H81Hm1H+bTkjj0HmvEy0nW5z+V1//4fv0XSkCRMfn4iCVQV2x3JlDHG4HOQs9C48RlEUKr+vROZ1mR639ZQ5duGrC8i9JZdxcknmvEzU7K1xO19QFMXIEAKAOW/Psdan4/A4GHvvWKcP50UrixAeFY5zW84xnjf8zUQOBKxnja1cuRI333wzysrKMHPmTABAYWEhPvvsM3zxxRdsH37QIc2SoqejBz0dPYiQ2cdtnVUWVa5WupwYkqZYnjJyfuNenD5tzTRQZgqvx7zuUN2YTQudTqMfvmh4QPbXerrVZ6E0Dd181Vdsq0crVypx5tMzOP/leYy5e4y1ZpAvRMREgCfgeV1d2mwyQ1utdSuW7p8xmHNjjlfxemtT3UXDoK3WImt+FqOMFUOnAcYu44B6hJoOM7uZt59rR0RMBCLjIj1vfBFZjgzcMC7az7Rbq3T3dvaiq7kL0lyp+7ExKDBo+z1xuBy0HG/x+P2I5CK3hr0noTRNwoQExtXDOys7kX6tYxXz/jARTCtXKq1zHVOPQYQsAoppCpR9W4b8h+zrDZmNZpT9twxps9JwzSuOIWoALh/8cm/Kxf/u+h9mvz6bUd2rtjNt6G7rtnu4dIX8CjlajrdYm7zaYuw1ouzbMtxWeJuLdzsiy5VBnCxGze4aZN+Q7XQbbY2lUCaTMhmqtSqLfpTPhdloxjup7yBrfhZG3jHS+lvPuiELx98+DrORWUeDQGYi+wvrHqEFCxZg27ZtKC0txUMPPYQnnngCtbW1+Omnn7Bw4UK2Dz/oCI8OR2RspMvMMeVKJbh8LiizpWiWuyfUpMlJjFNUW0+3wmw0IyGPee0Yf8man4WKHRU+1ahwRqA8Qp2VnV7VdLHF9sly1/Jd+PGPPyJzXiYOv3LYr/g3h8PxKTymrbWkjEelug9VKFcqoVxtGVvZt2VeG0HTnp+Gyf83GR0XOhiHVbV1WvCFfAiiBqbCfFSqZ48QDR0W86a8A4fLQcL4BLsmpeoyNSJkEQ6h6/4wbbxKZ3YyNQw8iaV1DTq3hhDt4UzMT0TrqVaYDJe8Xa7Cpkw0QgCzQpL7n7cYQf0TODzhKjx27M1jCI8Ox83f3ez0fe68fikzUmDqMbmcU/t7gyt3ViL16lTwI/geQ8zSHCn4Qr5THVZ1YTXCpeEu6xA5g8PheAyPNR5qRNyYOI8lAWx/4yv6Vlg0Q2YKBq0Btb/UQiARoGhVEf498d8+G0GAf5nI/jIgOWrz589HUVER9Ho9WltbsWvXLsyYMWMgDj0oic523Wpj1/JdMBvNFsvcQ9Es+WSLu5WJoVG3rw4KpcJpt2i2SC5IhsnALMODCW2/tvlcTJFGkiwBT8BzGp5kinKlEqPuGoWSTSXo6+rDmU/OBEQEKFaIoa/3TjCtqXDdBbw/09ZMA4dnqUzL9OnbVlMjy5Ghp70H3e3djMKq+no9JMmSgNeScgUTjRCNrT7IG/pnjjHRBwEXiyo2eS6q6Cqz0xWexNKeQmO0h/PXT34FP5JvLbrpKmxqMpigq9N5FOcDFsPUnUdItVaF/av3gyvg4lHto17dJLMXZKNmV41dppuuQYd9K/dh9huzwQ/3PhjCC+Mha0GWy/BY/1ARrQ9iEmLmcDiQT3IeHjv/1XkMu3mY178T2hCyTU+3hUlYzJ3BUrOnBmPvHYsbttxg8ZBRYFzROtCZyP7CemiM4D3SLKnTG/G+VftQsqkEydOSsXjfYo+uxPhx8TD2GNF+vt1lGiNN3b46Ri7cQMLlc5ExNwPl35UjaXKS5ze4waAzoLOy02+PEIfLgTRXio4LHYgd6bgvZ005aVRrVdDV66Cp0KDhQIPXRoUnRAoRdA3eeYRcdZ13hmqtyjpepoUebZ+ew6PDERkfaSkgGBPJKHVepPBd2O4tUWlR0DXonIYf+tN2tg1JU7y/JhPyE3Dyg5PW10wNIWGi0FJUsV7nsvghndkZHh2OZR3LULyu2GMowZNYWt+gdyvAtQ3HRWVEWbU6rjyG2lotODwOo3CbJFWCuqI6p+usndVnpUEgEYAfzncI4bq7vmKGxSAqw1JlOvcmS6bVnif2IOv6LKfNh5mSe1Mu9j65F1f97SoHw8R2fKY+E2p/roVsuAxHXzvK6EHIqhN68NIys9GMsm/KcOO2G70eK51G33G+AzHDHY36xkONGH67e1mCO4OFXt90uMnqofRl3ujPZZk1RvAeZ5lj9CQoSZXgtt2WWLEnVyIvjIfECYlusxFoavfVInnawBpCAJB9Q3ZA6gm1n7VoOtylATPFXQq9q75se5/ai6JVRTj5/knEjopF3oN5DkaFv4iTvK8lpKnQMKpWbPvk502hx/7IcmRQl6oZbTuQGWMArD3NmJzD9rOeHx6ckTghEc3Hmq1e2I5Sz6nzgOW6EilELjPH6O8neXoycm/OZZzZKZKL0Kfvc1kDSN/oWSNEH6ezshM/3P+D27CppkKDqLQoRkJZd6Ex+gZs7DIia/6lisZMPAZ0iMo2PFZVWIXyb8shSZH4nLAAABlzMqCr01k9Y/2hx1e8thjGHiNjIwhwLpiu2VsDbhgXyQXez822afT9ocwUGg979gh5Kp1Cz4f+zhvBhhhCIUh0tmPmWFNJE/iRfNyx/w67VFdPE0PSlCSPmWOd1Z3Q1el8egL2l4zrMtB8rNlrT0d/6B5jgQizuEuh73/zMegN2DJzCw69dAixo2Nxz9l7ECGLwMH1BwM+OfgaGvPkEQpkvF6aI2VuCA1gxhhgMTbEyWKPOiGz0Qz1BbVPobGYkTEw95nRUWq5ftQXPGeM0bjLHKMNA1OvCWmz0qzLPf3+I2QR4IZxXXqF9A16h67jzlCuVFrSnC/qdVzdHD11nbfFXWhs2pppyHswDw0HGxxaO3jK3qNvzj0dPSj/rhx93X0ofLgQydOTcejlQ35VLQ4ThiFzXiYufO08PEZRFHjhl+Znb7zB8ivkaPu1zS7T68LXF5BzU47XTYlpXOmEOi50wGwwM07Hd0ao6Xz8gRhCIYg0y94j1PprK6p+qsJvvvrNpWqoNribGOST5R4F03VFdUgYnwCBZGBEq7YI44RImpyEiv95rnnhjkAIpWk8FVW0/bFvEm9Cze4ajL1vLJaeWoozn55hbXIQJfkQGmNgCAUyXi/NkVqNAE8MZDFFmqi0KI86IU2lBhRFMQ4p2sIL4yFubJxVJ8TUIwS4zxybtmYa8h/JR9ORJqRdk2a3zt3vn8PhuEyhp8wU9I3M0ufpNGcOlwNzn2ttIlOhNHCxqGKj3k6AbUvl95WIHxfv9TVCX7en/nkKhk4DvrvjO/RoelCxoyIgWj1XTViNvUbsuHsHitcVA2BWqNEWcbIYwgSh9dqhzBQubL2AYTc7VpNmSua8TNTscUyjbzjYgPjx8W7rR3ki1HQ+/kA0QiEErT8Zs3QMtDVamAwmmPpM2L5oOxLzE9FwoAFZ87xrfJc0OQktx1tg7DGCH+H8664rGnh9EHDp89Jp9GPvHWtd523jvbbTbYwKlzGBSVFF5UolilYXWcvzz31vLgBmMXVfYcsjFMh4vSxHhsqdlYy2HejQGMCsllD72XbIcmU+Jw4kTkhE09EmZC3Igr5Bz9wQ8pA5VrvXojnx9py5yhzrbuuG2Wj2GBqzffIfd/84vJP+jkudTmdlJ2TDmXnARHIROBwOdA06p02my78rtwuLeYOtXqd0m8VoCYQRVLSmCGaDGa2nW6GuUFv1XPpmPf4z6T/oUfegT9vnU0o4h8OxhsdSrkxBvaoepl4TUmak+DxeWa4M4hTHNHqm9YPcEWo6H39g3SNkMpnwwQcf4I477sDs2bMxc+ZMuz/CJWiX7sl/ngQ3jIvOqk4UPlyIPn0fan+p9cmlG50VjfCocLQcd10ePxhCaeDS59XV6VD5Y6U1Y4ZJlkX/VFVbjxDTasiukOXKoKvTuS1G9tPDP1mzJGyf+thoR0IjUniXPt/X3Qd9g94nz4aveO0RGsDQGHAxc8xD7Zr2s+2IGel9WIyGzhzTlGkgiBJAGM9Mt+apqGJVYRXSZqa5XO8KV5lj+gY9BFECt+nT/cMfIrkIU/8yFeIUsVMPpzceIS6fC7FC7PQzm41mVO6s9NkQAi6F8wDvQlTu4PK4OLD+AKLSoqxeoZYTLfhg2AfQ1mjtjCB6DN54g211Que/Oo+cG3P88tq4SqMPhCF0OcG6R2j58uX46KOPMH/+fIwZM2bAUmUHI7ZPMZFxkZanmf+Wwthl9PlphsPhWMNjzjRAvZpetJxoCYpQ2vbzCiQC1P1Sh3pVPaMaNraFCyeumAhNpQZxo+PsJm5fESYIIYgSQF2qdlpXSbVWhWNvHoP8Cjl+f/D3A1YITJwkhkFrgEFngEDsOYzZWdkJfiQfwkT/BeRMkeXK0N3SjV5NL8Kjw11uR5kpS+r2AHuEJKkSjz2zfBVK0yTkJ+CXZ35BxwVLs1Wmc56nujrVu6oxfe10r8fjKnNM16DzGBZz5uGc9MQkHH/7OIbdNszBw9lZ2emV4e2qtUh9cT04PI5fN2tnVYv9/X3azllHNh6BNFuK7bdth8lgQsrVKUifme6XN1h+hRyn/3UaFEXhwtcXMOuNWX6NF7CEx3Y9sgsURYHD4cDUZ0LLsRZiCNnAuiG0efNmfP75504brxIcsf2hnd18FoD/Ll13gul6VT2kWVJGOgE2sP28X879EpSZYvR5bd+nrdciQhqB4+8eZ9SLyBMcDseqE+pvCNFGD4fHsfYN8yat1x/sqkvnejaE6LDYQD58RMgiEBETAXWZ2m3j1q6WLkZhmUDDRCPUfrYdqVen+nyMuLFx6NX0onp3NeOwGGARD7vKGtM36tF+pt2nMIlILnJqCDGpKu3MgykQCTB93XQUryvG9R9fmteNvUZo67SMxdLAxUa4NY6hyvLvypE5L9NnYTObVYvpFiyHXjqEbQu3AfA8R3s6Ji0TyHswD+oyNaoLq9HT3oP02eleywT60z+NvvVUK7gCLmKG+e71vNxgPTQmEAiQk+O+xQPBHuVKJTh8y80rEC5dd4LpYIXFbLHLSOEzK8hFv2/a89Nw4u0T6FH3BMQIonGlEzKbzFBMUyDnNzmQ5V7SQgyEQJDD4XgVHmOiD2IDJuExXb0OETERCIt0X9U20DDVCPmSMUaHa8MiwxA7KhbnvzxvNYSYhGvFKWLom5yLh6t3VSMhP8FjhWpnuBJLM22v4YzRS0YjTByGY28csy7T1mgt4S4vHqpctdnwRx80ENlMM16cAQ4vcHM07eE+/tZxRGdG4+enf0bWDVk49OIhxv3+XNE/jb7xUCPkk+Q+Z6JdjrBuCD3xxBPYuHGjy+qWBEdUa1XWbryBqEEjv0IOdaka3e3dDuuCVT/IFtqFTfex2fXYLsbvHfHbEZZ/qMDpAADXmWOTHp+E1hOtmPSnSQ7r/NUAMUGcJIa+gZlg2lPXebaQ5cigvqB2u00wMsYAi0bI0GlAr6bX6fqu1i50t3U7LUDnCdsaUwn5Cehq6oI0R8q4ea1I7rrOUfWuap/0QQAglDsXS+sbmaXOO4PL4+Lql69G8bpi67zSWdmJqPQor26wkhSJgxess7oT7WfafU5+GIhsJmfFR/3B1lDji/jWIoVMW914InNeJsr/Z6nXRvRBjrBuCO3btw+ffPIJsrOzsWDBAtx88812fwR7AlXYzhZhnBDSbKlDsS6TwYTGA41B9Qj172OjKFCgZGMJ9q3c5/G9+iY9/jPlPwC8T1X1hCuP0In3TiBuTJxPBc4CgTceoc6KTrfNVtmCkUcoCBljgKX6dZg4zGk4BrB4g8TJYp9KSdjezLpbLMZBXVEd45sZl3dRPOxEJ1RVWGVXP8gbXHmEPPUZ80TGnAzIJ8tR/FdLurg3QmkaZ6Gx8v+VQ1GgQIQ0wsW73MNmwgLAzhxtHdvz09B2qg0AcG7LuYB5uDPnZaJ2by0MegMxhJzAukZIKpXipptuYvswlwWuXLqA//oTOjyWOTfTuqyppAlhojCfwgCBwNnn/e3e3+L93PdRvK4Y3DAuClYVOH2vQWfAxxM+Rm9HLwqeK0DBqoKA6gBkwxw9QiaDCUdePYJZr/kvYPQVsYJ5dWlNhQaj7hrF8ogckeZIUb2r2u02wcgYAyzhRVonFD8m3mG9r2Exmv6/11MfnPLqZuYsc0xdoYauTufzAwstlqbFsjSe+owxITozGkc3HUX+w/kOxRSZaFuceYT8CYuxDZtzNP1e1ToVzAZzwDzcRWuKwOFyIE4Ro+J/FWg91Wo1hPzVH10usG4Iffjhh2wf4rKBzRo0SVOSUPVjld2yun11UExTBC2Tz9nn5fK5+F3x7/BB7geoV9U7fZ+pz4SP8z+Gvl4P5Wql1VgK5IQky5Whu7UbPR09iJBZnkzPfX4O/Eg+sn+T7eHd7CFOEqP1lPPy/v0JlkZIluu5zYa+fuAzxmjcpdD7awgBluuueF2xtaeZN9ehs8yx6sJqKKYqIBD5VvBUJBfB2G2EQWtAeNSlTD5/NELW8SrEMBvN2PqbrUjIS0DsaJsSFgyyNyWpEqsuiifgoa+7D9WF1bhqw1V+jYst2JyjgYuGiSGwmW50yFY+WY4D6w8gMjYSklRJQDJsLxdIQcUQgs0CVUmTk1D812K7p8JgFVKkcfV5RYki3Pr9rfjsqs+w876duO7966zrKIrCD/f/AF2DDslXJjvsI1ATUoQ0ApHxkei40IGkyUmgKAqHXjqESU9M8ku46C8ihQiVP1R63K6nowe9mt6giaX1jXq3af7aOi0S8h1LEwwE7gTT7WfbkXFdhl/7V61VWW/s3t7MJKmOHpLqXdVInel7Flt4dDh4Ah66mrqshhBFUX6HxgDL7623sxeHXz6MzspOZM3Pcuo1cQWti9LWaSHNlKJmTw2ECcKAVYkPNGzO0WxluvV/QMyan2Vt2Buo0NtghxVDaMKECSgsLIRMJkN+fr5bj0NJSQkbQyD0I358PHo7eqGp1ECaKQVFUajbV4fJT00O9tCcolAqkDk3E6c+OIXImEjMeHEGAKBopaVSrFFvRMa1GU7fG2jBdNLkJFT9VAVdvQ6jl4wOyL59RaxgJpZWl6sRERNh5wEYKCJjIxEeHQ51mfM6TECQPUKpEnScc65haj/bjomPTfR53/7ezCQpEtT9cqkjO0VRqN5VjfEPjvd5TBwOxyKYbtRbMx0NWgOMXcaAlM24+qWr0XS4CTV7arDj7h0w9zn3mjiD1kXpanWQZkqtYbGhVm9uIEJupj4TitcWo2JnBcq/KydGkA2sGEI33ngjwsMtE/DChQvZOATBS8IiwxCfF4/Gg42QZkrRcb4Dfbo+JEwIzlM5E27afhM+zv8Yh146BL6QD1GiCIdfOQxjt+8FJr3BVjB96KVDyF+WP+Dp3v0RJTETS2sqNEERSgOWG680R4qOC451mGh09TqIFANbQ4gmKi3KIUwMAMYeIzQVGp9DY4G4mfXvN9b2axsMWoPfDZFFiSK7zDF9gx68cB7CpYExlG/afhM2RW2yFjD05rdJp9BTFIXy78ox+43ZARnTYILtkBsATH9+Og68cMCa7UaMoEuwYgitXr3a6f+E4EILpkfcPgJ1++ognywHPzx0o6McDgd37L8D72W/B9VzlzIy2DaC6OJmslwZWk+2ovl4M+r21WH+J/ODLi4UK5hVlw6WPojGXRd6k8GEruYuSJIdGwgPBK40Qh2lHeBH8n0WcQfiZta/31h1YTVSrkwBT+B7mwXAsc2GrkFn7fUVCI7844i1hIUv4UBtrRZtZ9rQ1dSF1Gt8DwMOVgaib5ezlH9iDFkYsLvg4cOHcebMGQDAqFGjMHGi7+5ngm8kTUnCyfdOArhYPyjIhRSZECYMwx377sD7Oe8DCGytIFfQ4sLhtw+HulSNwy8fxui7R+P428eDLi6MkEWAF+65unSwDSFZjmvBtL5RDw6XA2HCwLX+sCUqLQraWi3MJrOd3osWSvtqHATiZiZJudSRnSfg+VU/yJb+bTa6GrsCVtU7EOFAbY0W5d+VI21mWtC9rpcjbFbavhxg3RCqra3F4sWLUVRUBKlUCgBQq9UoKCjA5s2bkZLie2ddgnckTU7CTw/+BFOfCXX76jBz4+BoenvmU4sBPVBPMrbhDC6fi9ZTrcj7Y15IiAs5HI41PGZb2bo/mgoNcm4MXkV3aa4Utftqna7T1esgTBT63N3dX8TJYpj7zOhq6rLTKQUiY8xfbDuyS5IlqNlTg6krpwZkv7aGEJM+Y0wISDgwVYKa3TVoOdmC4bcN93tMBHvY1h9dDrA+E913333o6+vDmTNn0N7ejvb2dpw5cwZmsxn33Xef1/t74403kJGRgYiICEyZMgUHDx50u/0XX3yBESNGICIiAmPHjsX//vc/Xz/KoCdmeAy4YVxUF1ZDXaaGQqkI9pA8wlbxMk8oVyox9dmpMBvNMPeZUbKxJOhGEA2TWkKacg2kWdKBGZAT3HmEdHXBqSFEww/nQyQXOWSOhYIhRHdk19Xq0HS0CeAACeP91/EJE4V2obFApM4D/lVxpluSSFIkaD3divqiemv9ICYtSQjMGIhK24Md1j1Ce/fuxf79+zF8+CVLf/jw4Xjttddw5ZVXerWvLVu2YMWKFXj77bcxZcoUvPrqq5g7dy7OnTuHhATHyWL//v1YvHgx1q9fjxtuuAGffvopFi5ciJKSEowZM8bvzzaYoHUv8ivkOPzKYcSNibPWxwm27sUVwX6Smb52uqXkgDn44kL6+1OuVDpkjvX//igz5XUX8EAjzZFCV6dDX1cfwoT2oY5gtdewxaoTsnG2tJ9tR87C4PdFFKeIoa3RQlOpQdo1aQEp1yCSO4qlZcNdexSZ4k84kA5Bj/vDOKhL1YgdHYvo9GhS3ybADIT+aLDDukcoNTUVfX19DstNJhMUCu88Eq+88gruv/9+LF26FKNGjcLbb78NoVCIf/7zn06337hxI6677jo8+eSTGDlyJNauXYsJEybg9ddfd3mM3t5edHZ22v1dDtCTjtlgRtWPVVZ9ENM+SMEg2E8yqrUqBwFosLDtY2WbOebs+9M16GDqM0GSFhwxMgAIE4QIE4dBXaZ2WBcKhlD/WkIURYWERwi4lDnmb/0gW/q32QhUaMwfrE2T3z0BAF7XICIQAgXrd7+XXnoJjzzyCA4fPmxddvjwYSxfvhwvv/wy4/0YDAYcOXIEs2dfSq3kcrmYPXs2VCrnNyiVSmW3PQDMnTvX5fYAsH79ekRHR1v/UlMvjwwGetKp/cWi20iZnhLykw7bPYPcEayQnCts+1i1n2mHrl7n8vvTVGggSZYENSOQw+G4DI8FOzQGXMxUqr6UnaWr08HYbYQsx38vib9IUiVQl6lRt68O6bPSA7JPWiNEN78OVGjMX5QrlShYY6kMf+QfR0J6PiJcvrA+U959993o6urClClTwOdbDmc0GsHn83HPPffgnnvusW7b3t7ucj+tra0wmUxITEy0W56YmIizZ886fU9jY6PT7RsbG51uDwBPP/00VqxYYX3d2dl5WRlDBq0Bh146hB1Ld8BsYF74bCgR7JCcK+zGwAFAXSolYBs605TbZ4wFK/Tpqvmqrl6H1KuD+5uKSotCzd4a6+v2s+2IzowGPyI4xqPt9ydJkeDgiwcRLg1HzIiYgHx/wkQhTL0m9Gp6ESGNCBlDCAAKVheg+K/FPtUgIhACAeu/+ldffZXtQwSU8PBwazHIy5EZL87AkY1HAtrU73JjIIqb+YptU0YAqPqpylI4kbpkpFFmylpMMZh6C1c9x0IhNNa/llDb2baghsXo0CcAyIbL0NXUhZG/G2nXCsEfBBIB+JF8dDV1gR/JR09HD0Ty0DCEVGtVViOI1LchBAPWDaElS5YEZD9xcXHg8XhoamqyW97U1AS5XO70PXK53KvthwJsNPW73AhlcWH/748v5KN4XTG6mrugUCpQtKoI8ePjkbswN+ihT2mOFA0HGhyWh0JorL9GqP1McPVBtt6+sfePBQD06fsC9v1xOBxr5hgvghfUOk62kPo2hFCAdY1QSUkJTp48aX39zTffYOHChXjmmWdgMBgY70cgEGDixIkoLCy0LjObzSgsLIRS6UJHolTabQ8AP/74o8vtL3dCTfdC8A5n31/lzkqMWDwCN269EdFZ0eDwOGg51gLVuuDrv+g2G7YYdAYYOg3B9wilStDd0o2+bksiRygIpWkdGF30tHRbaUC/P7rNhr5BD2GCMOgJEq5C0GReIgw0rP8SHnjgAZw/fx4AUF5ejttvvx1CoRBffPEFnnrqKa/2tWLFCrz33nv417/+hTNnzuDBBx+EXq/H0qVLAQB33XUXnn76aev2y5cvx86dO/H3v/8dZ8+exZo1a3D48GEsW7YscB9wkEAmncGNu+9v/+r9qN1bi/n/mY+Hmh4Ch88BZQx+yr8sRwZtjdZqbACXelxFxEQEbVwAIIwXghfOs4bHQsEQAizfKd1OI9DfHy2YDhV9ULCzQgkEGtZDY+fPn8f48eMBWIobzpgxA59++imKiorw29/+1isN0e23346WlhasWrUKjY2NGD9+PHbu3GkVRFdXV4PLvWTbFRQU4NNPP8Wzzz6LZ555Brm5udi2bduQqyEEhLbuheAZpt/fsTePWY2gYIc+RUki8CP50FRoEDcqDgCgrdNCrBAHvbs4h8uxNvsUyS3lCELBEFKtVVnbawT6+6NDYxweJyQMoVAOQROGFqwbQhRFwWy2TNI//fQTbrjhBgCW+kKtra1e72/ZsmUuPTp79uxxWLZo0SIsWrTI6+NcbpBJZ3DD5PsLNb0F3YVeXaq2GkL6en3Qw2I0tE5IECVAZGwkhHHB1cyw/f2J5CLo6nTgcDlBryFEIIQSrBtCkyZNwrp16zB79mzs3bsXb731FgCgoqLCIbWdQCD4Rqim/PfPHNPV6yBSBN8bAVyqJcTlc4PuDRqI70+YKETTEUvySCh4hAiEUGFA0ud/97vfYdu2bfjLX/6CnBxLCfsvv/wSBQUFbB+eQBgShGros38tIV2dpZloKCBJk6CzuhMmgynohtBAfH90mw2KopCQ73//MgLhcoF1Q2jcuHF2WWM0L730Eng8HtuHJxCGBKEa+pTlyHDu83PW17p6HRInhYYnOCotCg3FDehV9wa9AfFAfH+iRBG6GrsAM/EIEQi2BC1/MiIiAmFhYZ43JBAIgxYHj1AIFFOkoUNjoZIxxja0R0hXH/w+YwRCKBG8ZkQEAuGyR5ojhbZaC2OvEfxwfkgUU6SJSotCZ1UnzCbzkDCEhIlCmPvM0DeGRvo8gRAqhF7LcQKBcNkgSZaAJ+Chs7ITFEWFhEeoaI2lbpYkVQJjjxEcDgfRGTYtSdYUBXV8bCEQCxAmsnjhQ6W9BoEQChBDiEAgsAaHy0F0djQ6SjvQ09EDU68p6IYQ3dfryD+OICImAtJcKbh8rjVzK9gVlwMNbfgBFq9QhCzC2lz2cjb8CASmkNAYgUBgFVmODOoLakSlRUEQJYBALAjqeGzT0oVyIWJHxga9Lxub2DZ0FclF9kZQkBryEgihBOuGkMlkwkcffYTCwkI0NzdbiyvS7Nq1i+0hEAiEIEILpmNGxgTdG0Rjawxd2HoB5788f1kaQYD9Z40ZGQNxkviyNvwIBG9h3RBavnw5PvroI8yfPx9jxowJeml9AoEwsEhzpCjdVmrRB4WIUBqAtXqzuc8c9L5sbGNrDHWc60D1rmpiBBEIF2HdENq8eTM+//xzXH/99WwfikAghCCyHEt1aV1d8IXSttgaQcHuyzYQDCXDj0DwBtZVgQKBwFpNmkAgDD2kOVJoKjXorOoMGUPINjT0eO/jmPb8NBStuiQqvhxxZvgRCIQBMISeeOIJbNy4ERRFsX0oAoEQgkhSJeDyuKhX1YdEaMxVX6/L2RgaioYfgcAU1kNj+/btw+7du7Fjxw6MHj3aoZr0119/zfYQCARCEOHyuIjOikbb6baQ8AiFal82tgjVhrwEQqjAuiEklUpx0003sX0YAoEQYhStsdTkUa5UQpojRfvZdqshpFqrshgkbnpssUWo9mVji6Fm+BEI3sK6IfThhx+yfQgCgRCC2NavkeXIAADiZDGpXzPADDXDj0DwFlJQkUAgsIJt+CVrfhYA4OQ/T0L1nIqkbhMIhJBhQAyhL7/8Ep9//jmqq6thMBjs1pWUlAzEEAgEQhDor0UhRhCBQAg1WM8a27RpE5YuXYrExEQcPXoUkydPRmxsLMrLyzFv3jy2D08gEIKMcqUSPAEPAEj9GgKBEHKwbgi9+eabePfdd/Haa69BIBDgqaeewo8//ohHH30UGo2G7cMTCIQgo1qrgslgIvVrCARCSMK6IVRdXY2CggIAQGRkJLRaLQDgzjvvxGeffcb24QkEQhAh9WsIBEKow7pGSC6Xo729Henp6UhLS0NxcTHy8vJQUVFBiiwSCJcxpH4NgUAYDLBuCM2cORP//e9/kZ+fj6VLl+Lxxx/Hl19+icOHD+Pmm29m+/B+QxtrnZ2dQR4JgTC40HZpMf6Z8Ri9fLTd72f08tHQ9+ih7dKS3xWBQGANen7x5HThUCy7ZcxmM8xmM/h8i821efNm7N+/H7m5uXjggQcgEAjYPLzf1NbWIjU1NdjDIBAIBAKB4AM1NTVISUlxuZ51Q2iwYzabUV9fD4lEAg6HE7D9dnZ2IjU1FTU1NYiKigrYfi9XyPliDjlXzCHnijnkXDGHnCvmsHmuKIqCVquFQqEAl+taEj0gdYR++eUXvPPOOygrK8OXX36J5ORk/Pvf/0ZmZiamT58+EEPwGS6X69aS9JeoqCjyQ/ECcr6YQ84Vc8i5Yg45V8wh54o5bJ2r6Ohoj9uwnjX21VdfYe7cuYiMjMTRo0fR29sLANBoNHjhhRfYPjyBQCAQCASCS1g3hNatW4e3334b7733nl3n+WnTppGq0gQCgUAgEIIK64bQuXPncNVVVzksj46OhlqtZvvwIUt4eDhWr16N8PDwYA9lUEDOF3PIuWIOOVfMIeeKOeRcMScUzhXrYumsrCy8++67mD17NiQSCY4fP46srCx8/PHH2LBhA3799Vc2D08gEAgEAoHgEtY9Qvfffz+WL1+OAwcOgMPhoL6+Hp988gn+9Kc/4cEHH2T78AQCgUAgEAguYT1r7M9//jPMZjNmzZqFrq4uXHXVVQgPD8ef/vQnPPLII2wfnkAgEAgEAsElA1ZHyGAwoLS0FDqdDqNGjYJYLB6IwxIIBAKBQCC4hBRUJBAIBAKBMGRhTSN0zz33MPobqrzxxhvIyMhAREQEpkyZgoMHDwZ7SCHHmjVrwOFw7P5GjBgR7GGFDD///DMWLFgAhUIBDoeDbdu22a2nKAqrVq1CUlISIiMjMXv2bFy4cCE4gw0yns7V3Xff7XCtXXfddcEZbBBZv349rrjiCkgkEiQkJGDhwoU4d+6c3TY9PT14+OGHERsbC7FYjFtuuQVNTU1BGnHwYHKurr76aofr6o9//GOQRhxc3nrrLYwbN85aOFGpVGLHjh3W9cG8rlgzhD766CPs3r0barUaHR0dLv+GIlu2bMGKFSuwevVqlJSUIC8vD3PnzkVzc3OwhxZyjB49Gg0NDda/ffv2BXtIIYNer0deXh7eeOMNp+tffPFFbNq0CW+//TYOHDgAkUiEuXPnoqenZ4BHGnw8nSsAuO666+yutc8++2wARxga7N27Fw8//DCKi4vx448/oq+vD3PmzIFer7du8/jjj2P79u344osvsHfvXtTX1w+KBtqBhsm5AiwJQ7bX1YsvvhikEQeXlJQUbNiwAUeOHMHhw4cxc+ZM3HjjjTh9+jSAIF9XFEs89NBDlEwmo8aPH09t3LiRamtrY+tQg47JkydTDz/8sPW1yWSiFAoFtX79+iCOKvRYvXo1lZeXF+xhDAoAUFu3brW+NpvNlFwup1566SXrMrVaTYWHh1OfffZZEEYYOvQ/VxRFUUuWLKFuvPHGoIwnlGlubqYAUHv37qUoynINhYWFUV988YV1mzNnzlAAKJVKFaxhhgT9zxVFUdSMGTOo5cuXB29QIY5MJqPef//9oF9XrHmE3njjDTQ0NOCpp57C9u3bkZqaittuuw3ff/89qCEsSzIYDDhy5Ahmz55tXcblcjF79myoVKogjiw0uXDhAhQKBbKysvC73/0O1dXVwR7SoKCiogKNjY1211l0dDSmTJlCrjMX7NmzBwkJCRg+fDgefPBBtLW1BXtIQUej0QAAYmJiAABHjhxBX1+f3XU1YsQIpKWlDfnrqv+5ovnkk08QFxeHMWPG4Omnn0ZXV1cwhhdSmEwmbN68GXq9HkqlMujXFavp8+Hh4Vi8eDEWL16MqqoqfPTRR3jooYdgNBpx+vTpIZk51traCpPJhMTERLvliYmJOHv2bJBGFZpMmTIFH330EYYPH46GhgY899xzuPLKK3Hq1ClIJJJgDy+kaWxsBACn1xm9jnCJ6667DjfffDMyMzNRVlaGZ555BvPmzYNKpQKPxwv28IKC2WzGY489hmnTpmHMmDEALNeVQCCAVCq123aoX1fOzhUA3HHHHUhPT4dCocCJEyfwf//3fzh37hy+/vrrII42eJw8eRJKpRI9PT0Qi8XYunUrRo0ahWPHjgX1uhqQ7vOAxevB4XBAURRMJtNAHZYwiJk3b571/3HjxmHKlClIT0/H559/jnvvvTeIIyNcbvz2t7+1/j927FiMGzcO2dnZ2LNnD2bNmhXEkQWPhx9+GKdOnSK6PAa4Old/+MMfrP+PHTsWSUlJmDVrFsrKypCdnT3Qwww6w4cPx7Fjx6DRaPDll19iyZIl2Lt3b7CHxW5l6d7eXnz22We49tprMWzYMJw8eRKvv/46qqurh6Q3CADi4uLA4/Ec1PBNTU2Qy+VBGtXgQCqVYtiwYSgtLQ32UEIe+loi15lvZGVlIS4ubshea8uWLcO3336L3bt3IyUlxbpcLpfDYDA49IkcyteVq3PljClTpgDAkL2uBAIBcnJyMHHiRKxfvx55eXnYuHFj0K8r1gyhhx56CElJSdiwYQNuuOEG1NTU4IsvvsD1118PLpf1zh4hi0AgwMSJE1FYWGhdZjabUVhYCKVSGcSRhT46nQ5lZWVISkoK9lBCnszMTMjlcrvrrLOzEwcOHCDXGQNqa2vR1tY25K41iqKwbNkybN26Fbt27UJmZqbd+okTJyIsLMzuujp37hyqq6uH3HXl6Vw549ixYwAw5K4rV5jNZvT29gb9umItNPb2228jLS0NWVlZ2Lt3r0v311CMla5YsQJLlizBpEmTMHnyZLz66qvQ6/VYunRpsIcWUvzpT3/CggULkJ6ejvr6eqxevRo8Hg+LFy8O9tBCAp1OZ/dkWVFRgWPHjiEmJgZpaWl47LHHsG7dOuTm5iIzMxMrV66EQqHAwoULgzfoIOHuXMXExOC5557DLbfcArlcjrKyMjz11FPIycnB3Llzgzjqgefhhx/Gp59+im+++QYSicSqz4iOjkZkZCSio6Nx7733YsWKFYiJiUFUVBQeeeQRKJVKTJ06NcijH1g8nauysjJ8+umnuP766xEbG4sTJ07g8ccfx1VXXYVx48YFefQDz9NPP4158+YhLS0NWq0Wn376Kfbs2YPvv/8++NcVW+loS5Ysoe6++26Pf0OV1157jUpLS6MEAgE1efJkqri4ONhDCjluv/12KikpiRIIBFRycjJ1++23U6WlpcEeVsiwe/duCoDD35IlSyiKsqTQr1y5kkpMTKTCw8OpWbNmUefOnQvuoIOEu3PV1dVFzZkzh4qPj6fCwsKo9PR06v7776caGxuDPewBx9k5AkB9+OGH1m26u7ut5VGEQiF10003UQ0NDcEbdJDwdK6qq6upq666ioqJiaHCw8OpnJwc6sknn6Q0Gk1wBx4k7rnnHio9PZ0SCARUfHw8NWvWLOqHH36wrg/mdUVabBAIBAKBQBiyDF2xDoFAIBAIhCEPMYQIBAKBQCAMWYghRCAQCAQCYchCDCECgUAgEAhDFmIIEQgEAoFAGLIQQ4hAIBAIBMKQhRhCBAKBQCAQhizEECIQCAQCgTBkIYYQgUC4rLn77ruHZFsRAoHADNZ6jREIBALbcDgct+tXr16NjRs3ghTQJxAIriCGEIFAGLQ0NDRY/9+yZQtWrVqFc+fOWZeJxWKIxeJgDI1AIAwSSGiMQCAMWuRyufUvOjoaHA7HbplYLHYIjV199dV45JFH8Nhjj0EmkyExMRHvvfce9Ho9li5dColEgpycHOzYscPuWKdOncK8efMgFouRmJiIO++8E62trQP8iQkEQqAhhhCBQBhy/Otf/0JcXBwOHjyIRx55BA8++CAWLVqEgoIClJSUYM6cObjzzjvR1dUFAFCr1Zg5cyby8/Nx+PBh7Ny5E01NTbjtttuC/EkIBIK/EEOIQCAMOfLy8vDss88iNzcXTz/9NCIiIhAXF4f7778fubm5WLVqFdra2nDixAkAwOuvv478/Hy88MILGDFiBPLz8/HPf/4Tu3fvxvnz54P8aQgEgj8QjRCBQBhyjBs3zvo/j8dDbGwsxo4da12WmJgIAGhubgYAHD9+HLt373aqNyorK8OwYcNYHjGBQGALYggRCIQhR1hYmN1rDodjt4zORjObzQAAnU6HBQsW4G9/+5vDvpKSklgcKYFAYBtiCBEIBIIHJkyYgK+++goZGRng88m0SSBcThCNEIFAIHjg4YcfRnt7OxYvXoxDhw6hrKwM33//PZYuXQqTyRTs4REIBD8ghhCBQCB4QKFQoKioCCaTCXPmzMHYsWPx2GOPQSqVgssl0yiBMJjhUKTkKoFAIBAIhCEKeZQhEAgEAoEwZCGGEIFAIBAIhCELMYQIBAKBQCAMWYghRCAQCAQCYchCDCECgUAgEAhDFmIIEQgEAoFAGLIQQ4hAIBAIBMKQhRhCBAKBQCAQhizEECIQCAQCgTBkIYYQgUAgEAiEIQsxhAgEAoFAIAxZ/h+Rk+jq3UheXQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -606,7 +597,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAHbCAYAAAB1DF0xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3xT1fsH8E+S7r0XTSerLatltkW2ICBLEZAhIEMFXID6BW0pFERBwR+KIoqCIirKUPaebdpCaSlltIyWLrroSHeb5Pz+iAlNZ9pmQZ/368XrRW5ubp7cpMl57jnPORzGGAMhhBBCCCGkXeJqOwBCCCGEEEKI9lBCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o5RQkDIUywsLAwcDgf5+fnaDkUtUlNTweFw8MUXXzS7r+xcPO1kr3nnzp0qPe6zcn4IIYSoHiUEhOiYmzdvYubMmejQoQMMDQ3h4uKCGTNm4ObNm9oOjei48vJyhIWF4fz589oOhRBCyFOEEgJCdMj+/fsREBCAM2fOYO7cufj2228xb948nDt3DgEBAThw4IC2QyQ6rLy8HKtXr24wIfjkk09QUVGh+aAIIYToPD1tB0AIkbp//z5mzZoFLy8vXLx4Efb29vL73n33XTz33HOYNWsWEhIS4OXlpcVI65NIJKiuroaRkZG2QyGN0NPTg54efeUTQgipj3oICNERGzduRHl5ObZv366QDACAnZ0dvv/+e5SVlWHDhg31Hpufn48pU6bAwsICtra2ePfdd1FZWamwz6lTpzBw4EBYWVnBzMwMXbp0wcqVKxX2qaqqwqpVq9CxY0cYGhqCz+fjww8/RFVVlcJ+HA4HS5YswW+//QY/Pz8YGhri0KFDsLGxwdy5c+vFJxQKYWRkhOXLlwMAqqurERoait69e8PS0hKmpqZ47rnncO7cuUbPz+bNm+Hu7g5jY2MMHjwYiYmJTZ/Q/+zevRu9e/eGsbExbGxsMG3aNKSnpyv12MzMTLz++utwdHSEoaEh/Pz88NNPP8nvz8nJgZ6eHlavXl3vsUlJSeBwOPjmm2/k2x48eIBXXnkFNjY2MDExwYABA3DkyJFm4xgyZAiGDBlSb/ucOXPg4eEBQFp7IPvcrF69GhwOBxwOB2FhYQAariEQiUQIDw+Ht7c3DA0N4eHhgZUrV9Z7vz08PPDiiy/i8uXL6NevH4yMjODl5YVffvml2dgJIYToPrpcRIiOOHToEDw8PPDcc881eP+gQYPg4eHRYANyypQp8PDwwPr16xEVFYUtW7agsLBQ3mC7efMmXnzxRfTo0QNr1qyBoaEh7t27h4iICPkxJBIJxo8fj8uXL2PhwoXw8fHBjRs3sHnzZiQnJ+PgwYMKz3n27Fns3bsXS5YsgZ2dHTp16oRJkyZh//79+P7772FgYCDf9+DBg6iqqsK0adMASBOEH3/8Ea+++ioWLFiAkpIS7NixA6NGjUJMTAx69eql8Fy//PILSkpKsHjxYlRWVuL//u//MGzYMNy4cQOOjo6NntN169YhJCQEU6ZMwfz585GXl4evv/4agwYNQlxcHKysrBp9bE5ODgYMGCBPfuzt7XHs2DHMmzcPQqEQ7733HhwdHTF48GDs3bsXq1atUnj8n3/+CR6Ph1deeUV+vKCgIJSXl+Odd96Bra0tdu3ahfHjx+Pvv//GpEmTGo1FGfb29vjuu+/w1ltvYdKkSXjppZcAAD169Gj0MfPnz8euXbswefJkLFu2DNHR0Vi/fj1u375db3javXv3MHnyZMybNw+zZ8/GTz/9hDlz5qB3797w8/NrU+yEEEK0jBFCtK6oqIgBYBMmTGhyv/HjxzMATCgUMsYYW7VqFQPAxo8fr7DfokWLGAB2/fp1xhhjmzdvZgBYXl5eo8f+9ddfGZfLZZcuXVLYvm3bNgaARUREyLcBYFwul928eVNh3xMnTjAA7NChQwrbx4wZw7y8vOS3RSIRq6qqUtinsLCQOTo6stdff12+LSUlhQFgxsbGLCMjQ749OjqaAWDvv/++fJvsXMikpqYyHo/H1q1bp/A8N27cYHp6evW21zVv3jzm7OzM8vPzFbZPmzaNWVpasvLycsYYY99//z0DwG7cuKGwn6+vLxs2bJj89nvvvccAKJzfkpIS5unpyTw8PJhYLFZ4zT///LN8v8GDB7PBgwfXi3H27NnM3d1dfjsvL48BYKtWraq3b93zEx8fzwCw+fPnK+y3fPlyBoCdPXtWvs3d3Z0BYBcvXpRvy83NZYaGhmzZsmX1nosQQsjThYYMEaIDSkpKAADm5uZN7ie7XygUKmxfvHixwu23334bAHD06FEAkF8J/+effyCRSBo89l9//QUfHx907doV+fn58n/Dhg0DgHrDeQYPHgxfX1+FbcOGDYOdnR3+/PNP+bbCwkKcOnUKU6dOlW/j8XjyHgSJRIKCggKIRCL06dMH165dqxfbxIkT0aFDB/ntfv36oX///vLX15D9+/dDIpFgypQpCq/HyckJnTp1anJ4EmMM+/btw7hx48AYU3j8qFGjUFxcLI/zpZdegp6ensJrTkxMxK1btxRe89GjR9GvXz8MHDhQvs3MzAwLFy5Eamoqbt261Wg86iA7d0uXLlXYvmzZMgCo1xPl6+ur0Htlb2+PLl264MGDB2qOlBBCiLpRQkCIDpA19GWJQWMaSxw6deqkcNvb2xtcLhepqakAgKlTpyI4OBjz58+Ho6Mjpk2bhr179yokB3fv3sXNmzdhb2+v8K9z584AgNzcXIXn8PT0rBefnp4eXn75Zfzzzz/ycej79+9HTU2NQuMYAHbt2oUePXrAyMgItra2sLe3x5EjR1BcXFzvuHVfHwB07txZ/voacvfuXTDG0KlTp3qv6fbt2/VeT215eXkoKiqS13PU/ierkZA93s7ODsOHD8fevXvlj//zzz+hp6cnH7YDAA8fPkSXLl3qPZePj4/8fk16+PAhuFwuOnbsqLDdyckJVlZW9eJxc3Ordwxra2sUFhaqNU5CCCHqRzUEhOgAS0tLODs7IyEhocn9EhIS0KFDB1hYWDS5X93iUWNjY1y8eBHnzp3DkSNHcPz4cfz5558YNmwYTp48CR6PB4lEgu7du2PTpk0NHpPP59c7ZkOmTZuG77//HseOHcPEiROxd+9edO3aFT179pTvs3v3bsyZMwcTJ07EBx98AAcHB/B4PKxfvx73799v8rUpSyKRgMPh4NixY+DxePXuNzMza/KxADBz5kzMnj27wX1qj82fNm0a5s6di/j4ePTq1Qt79+7F8OHDYWdn18ZXIcXhcMAYq7ddLBar5NjKaOgcAmgwLkIIIU8XSggI0REvvvgifvjhB1y+fFlhWInMpUuXkJqaijfeeKPefXfv3lW4Yn/v3j1IJBL5DDQAwOVyMXz4cAwfPhybNm3Cp59+io8//hjnzp3DiBEj4O3tjevXr2P48OFtWtF20KBBcHZ2xp9//omBAwfi7Nmz+PjjjxX2+fvvv+Hl5YX9+/crPFfdwtzar6+u5ORkhddXl7e3Nxhj8PT0lPdyKMve3h7m5uYQi8UYMWJEs/tPnDgRb7zxhnzYUHJyMlasWKGwj7u7O5KSkuo99s6dO/L7G2Ntbd3g0Jy6V/Fb8r65u7tDIpHg7t278l4KQFr8XFRU1GQ8hBBCni00ZIgQHfHBBx/A2NgYb7zxBh4/fqxwX0FBAd58802YmJjggw8+qPfYrVu3Ktz++uuvAQCjR4+WP74u2Uw+sqE9U6ZMQWZmJn744Yd6+1ZUVKCsrEyp18HlcjF58mQcOnQIv/76K0QiUb3hQrKrzbWvLkdHR0MgEDR4zIMHDyIzM1N+OyYmBtHR0fLX15CXXnoJPB4Pq1evrncVmzFW7xzXje/ll1/Gvn37GpzeNC8vT+G2lZUVRo0ahb179+KPP/6AgYEBJk6cqLDPmDFjEBMTo/Aay8rKsH37dnh4eNSrx6jN29sbd+7cUXje69evK8wSBQAmJiYAgKKiokaPVTseAPjqq68Utst6iMaOHdvsMQghhDwbqIeAEB3RqVMn7Nq1CzNmzED37t0xb948eHp6IjU1FTt27EB+fj5+//13eHt713tsSkoKxo8fjxdeeAECgQC7d+/G9OnT5cN01qxZg4sXL2Ls2LFwd3dHbm4uvv32W7i6usp7I2bNmoW9e/fizTffxLlz5xAcHAyxWIw7d+5g7969OHHiBPr06aPUa5k6dSq+/vprrFq1Ct27d1e4Ag1Ie0P279+PSZMmYezYsUhJScG2bdvg6+uL0tLSesfr2LEjBg4ciLfeegtVVVX46quvYGtriw8//LDRGLy9vbF27VqsWLECqampmDhxIszNzZGSkoIDBw5g4cKF8nURGvLZZ5/h3Llz6N+/PxYsWABfX18UFBTg2rVrOH36dL0ka+rUqZg5cya+/fZbjBo1qt6Upv/73//w+++/Y/To0XjnnXdgY2ODXbt2ISUlBfv27QOX2/j1mddffx2bNm3CqFGjMG/ePOTm5mLbtm3w8/NTKDA3NjaGr68v/vzzT3Tu3Bk2Njbo1q0bunXrVu+YPXv2xOzZs7F9+3YUFRVh8ODBiImJwa5duzBx4kQMHTq00XgIIYQ8Y7Q2vxEhpEEJCQns1VdfZc7OzkxfX585OTmxV199td60low9mUry1q1bbPLkyczc3JxZW1uzJUuWsIqKCvl+Z86cYRMmTGAuLi7MwMCAubi4sFdffZUlJycrHK+6upp9/vnnzM/PjxkaGjJra2vWu3dvtnr1alZcXCzfDwBbvHhxo69BIpEwPp/PALC1a9c2eP+nn37K3N3dmaGhIfP392eHDx+uN42mbArOjRs3si+//JLx+XxmaGjInnvuOfmUqnXPRV379u1jAwcOZKampszU1JR17dqVLV68mCUlJTUav0xOTg5bvHgx4/P58vdi+PDhbPv27fX2FQqFzNjYmAFgu3fvbvB49+/fZ5MnT2ZWVlbMyMiI9evXjx0+fFhhn4amHWWMsd27dzMvLy9mYGDAevXqxU6cOFHvfDHGWGRkJOvduzczMDBQmIK0ofNTU1PDVq9ezTw9PZm+vj7j8/lsxYoVrLKyUmE/d3d3Nnbs2Hqvp7HpUAkhhDxdOIxRRRghhBBCCCHtFdUQEEIIIYQQ0o5RQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o5RQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO6an7QB0nUQiQVZWFszNzcHhcLQdDiGEEELaGcYYSkpK4OLiAi6XruUS1aOEoBlZWVng8/naDoMQQggh7Vx6ejpcXV21HQZ5BlFC0Axzc3MA0j9CCwsLjT1v1PoocLlc9PuoX737Yj6PgUQiwYAVAzQWDyGEEEK0QygUgs/ny9skhKgaJQTNkA0TsrCw0GhCYG5ijojQCJgamSIwJFC+XRAuQPyn8QheE6zReAghhBCiXTR0magLJQQ6SpYERIRGyG8LwgWICI1A8JpghSSBEEIIIYSQ1qKEQIfVTgoE4QJIaiSUDBBCCCGEEJWiUnUdFxgSCA6PA0mNBDwDHiUDhBBCCCFEpZ6ahKCgoAAzZsyAhYUFrKysMG/ePJSWljb5mCFDhoDD4Sj8e/PNNzUUsWoIwgVgYgYAEFeLIQgXaDkiQgghhBDyLHlqhgzNmDEDjx49wqlTp1BTU4O5c+di4cKF2LNnT5OPW7BgAdasWSO/bWJiou5QVUZWM2DWwQySGgksPCwUagoIIYQQQghpq6eih+D27ds4fvw4fvzxR/Tv3x8DBw7E119/jT/++ANZWVlNPtbExAROTk7yf0/LzDy1C4iZhKHvB31RdLcIgaGB8poCQgghhBBC2uqpSAgEAgGsrKzQp08f+bYRI0aAy+UiOjq6ycf+9ttvsLOzQ7du3bBixQqUl5erO1yVkIilBcT9PuqHsuwydJnaBcZ2xrDrZofgNcGQiCXaDpEQQgghhDwDnoohQ9nZ2XBwcFDYpqenBxsbG2RnZzf6uOnTp8Pd3R0uLi5ISEjARx99hKSkJOzfv7/Rx1RVVaGqqkp+WygUtv0FtEJwWDAAoCilCBwuB2YuZvCb44fEnYl4+cjLWomJEEIIIYQ8e7TaQ/C///2vXtFv3X937txp9fEXLlyIUaNGoXv37pgxYwZ++eUXHDhwAPfv32/0MevXr4elpaX8H5/Pb/Xzq0JJegnMOpiBy+PCd5YvHp56iNKspoupdUlEWOPDmwThAkSERWg4IkIIIYQQUptWE4Jly5bh9u3bTf7z8vKCk5MTcnNzFR4rEolQUFAAJycnpZ+vf//+AIB79+41us+KFStQXFws/5eent66F6ciJWklsHCT1j1Y8C3AH8LHrd23tBpTS3B53AZrHmQ1ElzeUzFqjRBCCCHkmaXVIUP29vawt7dvdr/AwEAUFRUhNjYWvXv3BgCcPXsWEolE3shXRnx8PADA2dm50X0MDQ1haGio9DHVrSS9BOZ8c/ntbnO7QbBGgL4f9H0qljCnFZcJIYQQQnTbU3F51sfHBy+88AIWLFiAmJgYREREYMmSJZg2bRpcXFwAAJmZmejatStiYmIAAPfv30d4eDhiY2ORmpqKf//9F6+99hoGDRqEHj16aPPltIgwTaiQEHSc2BFlj8qQHdN47YSuCQwJRPCaYESERmCz4WZKBgghhBBCdMhTkRAA0tmCunbtiuHDh2PMmDEYOHAgtm/fLr+/pqYGSUlJ8lmEDAwMcPr0aYwcORJdu3bFsmXL8PLLL+PQoUPaegmtUpL+ZMgQAOgb66PrtK5I/DlRi1G1XMC7AQCki6vRisuEEEIIIbrjqZhlCABsbGyaXITMw8MDjDH5bT6fjwsXLmgiNLWqO2QIAPzm+GHfC/swZPMQ6Bvraymyljk48aD0P9wnKy5TUkAIIYQQon1PTQ9BeyVMEyr0EACAc39nmDqb4t7BxoujdcnFFReRfi4dnqM9YWhuiKCwIFpcjRBCCCFER1BCoMOqS6pRVVRVr4eAw+HAb44fbu68qaXIlCcIFyDmsxhYdbLCpEOTAA7gNdZLXlNASQEhhBBCiHY9NUOG2iNhuhB6xnowsjGqd5/fLD9EhERAmC6EBd+igUfrhsrCSnD1uBj35zhweVzwB/ORdjZNPlyIVlwmhBBCCNEu6iHQYbKC4oamFzVzMYP7CHfc+lW31yQQlYvQ6aVOcPR3BADwh/KRdi4NwH+zD/23IjMhhBBCCNEOSgh0WEMFxbV1m9sNiT8nKhRT65LCe4VI3JmI4DVPGv1uQ92QeSkT4hqxFiNTRKspE0IIIaQ9o4RAhwnThDB3azwh8B7njcrHlciMyNRgVMqLDIuEzwwf2HSxkW+z62YHPSM9ZF/RnXUUaDVlQgghhLRnVEOgw0rSS2Dh3nB9QESYtKHa9dWuuLnzJlwHusrvE4QLIBFLtDocJ+9GHu7uu4u5d+YqbOdwOeAP5SP9XDo6BHXQUnSKaDVlQgghhLRndOlTh5WkldSbclRGdlVbIpbgzp93UF1WDUB3rmpf/uQyeizsAUt3y3r31a4j0BW1V1PeZLCJkgFCCCGEtBuUEOiwpmoIZA3YhO8ToGesh7v77+rMVe2sqCyknUlD/5X9G7zfbagbsiKyIKoSaTiypgWGBILD40BSIwFXn0vJACGEEELaBUoIdBRjrNmiYllSUJFXgWOzj+lEMgAAlz++jN7v9Yapo2mD99t0tYGhlSEeRT3ScGRNi1wTCSZmAAeQ1EhojQRCCCGEtAuUEOioivwKiCpFTSYEgDQp4BpwAQZwDTR/VbvuDD0PzzxEzrUc9Fnep9EZejgcjs4NGxKECxC5KhI8Qx7eSHsDPCMeLZzWCjRjEyGEEPL0oYRAR5Wkl8DIxggGpgZN7icIF0BSLV3cS1Kt+avatWfoYYzh0spL6PdRP8R9HddkLYPbUDekn0vXaKyNkQ21curnBL/X/GDuao5Bnw2CsZ2xTiUFT0Njm2ZsIoQQQp4+NMuQjhKmCRstKJapXTOQfzMfFXkVCjPlaELtGXoe334M4UMhaspqELU2qsnhS27D3HB68WnUlNdA30RfI7E2RiKWIHBVIOK/icfgjYMBAL0W9ULC9gQ49XXSmdWUZY1tQPH9rf050DaasYkQQgh5+lBCoKOaqx+o28i6tuUaHhx7IJ8pB9BsUsAYQ+SqSHD0OM0mAwBg6WUJUydTZEVmwX2Eu0bibExwWDDu/XsP+mb68ulbefo8DP1qKA69cgijd43WanwyT0tju3ackWGRYBKmU/ERQgghRBH13+uo5hICiVii0MhyCXbBI8EjDPh4AILXBGv8qna3ud0AAEzEwDPgNdv407U6glu/3oLvTF9wuBz5No/nPcAfwsflTy5rMTJFCtOjGuru9KiBIYEAF2AS5T4PhBBCCNEeSgh0VHOrFAeHKTYCHXo6QCKSIP9mvrTRqOFFySJXRwIAeAY8iKvFSo27dxvmhrSz2k8IKosqcf/QffjM9Kl335Avh+DWr7eQE5ejhcga1nFCRwDSmhFdbWxHhEUA/+Wkyn4eCCGEEKIdlBDoqJL0Eljwm64hqI2rx4Vzf2dkRmSqMaqGCcIFSNyRCAt3C7xf9b78CnZzjUC3oW7IvpKN6pJqDUXasOS/kmHX3Q62XW3r3WflbYWAdwNw9p2zYIxpIbr6Dk09JP+/Lja2BeECCFYLoG+mD/8l/nDq46RTxdmEEEIIUdSqhKCsrEzVcZA6StJKmuwhaIhLsAuyIrLUFFHDZGPY+UP5cB0sHX9fe1hLU41ACzcLWLhbIONyhqbCbdCt3bfgN8uv0fsHrByAovtFSPozSYNRNezkWydRcKcAfT/oiw4DO8B9hLtONbZln4cOAzug88ud4T3OG6WPShG0Okin4iRPj6dhdi1CCHnatSohcHR0xOuvv47Ll3VnbPWzRCKSoDSrtNk1COrqENxB4z0EsloGC3cLWHpayrfLkoLmahm0PWyoOLUYWYIsdJnWpdF9DMwN4NzfGSffOIma8pp692uqUSIIFyBhWwJcglwweMNg9F/ZH7nXczEgZIDONLZln4eashp4jPKA62BXVBVXwXuct1ZqWxpDjcynB01lSwgh6teqb9Ldu3ejoKAAw4YNQ+fOnfHZZ58hK0uzV6afZaWPSgEAZi5mLXqcywAXFKcWyx+vCbJaBmGqEJYelgr3KVPLoO31CG7/dhseIz1g6tDwqsoyDv4OqBZWY//Y/QrbNdkoKU4tBlefi4kHJwIAPF/whHkHc5g4mOhMYzs4LBg9FvZA3vU8uD/vDj1DPXiM8sD9Q/e1UtvSGGpkSj0NiVFDPY66OLsWIYQ8zVr1qzdx4kQcPHgQmZmZePPNN7Fnzx64u7vjxRdfxP79+yESiVQdZ7tSklYCU2dT8PR5LXqcoaUh7Lvba6WOoDilWKGHQFn8oXzkxuWisqhSDVE1jTEmn12oOUGhQeixsAfSz6fj3LJzADTfKClJK0Hf5X1hYm8CQDpTU78V/XBl4xX0+18/nWlsPzz1EA4BDjCxk8bpPc4b9w/d13JUiqiRKfW0JEa1368vuF+0u/eJEELUrU3f9vb29li6dCkSEhKwadMmnD59GpMnT4aLiwtCQ0NRXl6uqjjbleamHG2KNuoIxDViaRG0h/JF0DJmzmaw7myNjIuaryPIvpqN0qxSeE/wVmr/kd+PhL2/PWI3xWKz4WaNNkrSL6bjUcwj9FneR2F755c7Q89QD7f33FZ7DMpKPZEKj5Ee8tteY7yQG5eL0izN9Vwpo3YjU9Pvp654mhKjwJBAcPQ4AAO4+lydio0QQp52bUoIcnJysGHDBvj6+uJ///sfJk+ejDNnzuDLL7/E/v37MXHiRBWF2b4os0pxY7RRR1CSUQIOlwPzDq1LYvhD+VqpI7i9+zY6T+4MfWPlV0qefHQyAOnsPpqa8pMxhoiQCPR+vzeMbYwV7uPyuOj3UT/EfBYDJtH+LEhMwpB6MhUeozzk20zsTeDc3xkPjjzQXmCN6Pa6dP0MTb6fuuZpSYwE4QIwkfQzLqmR6ETNDCGEPCtalRDs378f48aNA5/Px549e7Bo0SJkZmZi9+7dGDp0KGbNmoV//vkH58+fV3G47UObegiCXJAbl9tg8au6CFOEMOebg6vXuvxSG3UE4hoxbv9+G76zmh8uVFvCDwkApNO8amrKz7Szaci/kY8+7/dp8H7fWb6oKa3B3YN31R5Lc3Kv50JUIYJLoIvCdu8XvXH/sG4NGwKAc+9Jh3+Bo5tTuGpKYEig/BzoYmIk67Uw62AGlyAXWHpZ6kwhPSGEPAta1YKbO3cuXFxcEBERgfj4eCxZsgRWVlYK+7i4uODjjz9WRYztTkl6Sat7CCw9LGFsb4zsK9kqjqpxxamtqx+Q4Q/hIz8xH+X5mhtilnoyFXqGeuAP5iv9GFmjxL6XvXTMvpLrLbSFrHegz/I+MLQ0bHAfngEPfZb3QfSn0VpfKyH1RCrchrnVq3/xGueFh6ceoqZCc4lqcwThAiT/nQynfk4wsTeB7yzfdtvIvBxyGWDQycRI9ncXuCoQFfkVGPDJAJSkl2DAJ7ozuxYhhDztWpUQPHr0CN9//z369u3b6D7GxsZYtWpVqwNrz4Rpwlb3EHA4HI0PGypOKW5V/YCMib0JbP1skX5ec70Et369BZ8ZPuBwOUrtX3tcdfe53ZFzLUfp9RbaIuV4CgrvFiLgnYAm9+s+vzuEqUI8PP1QLXEoK/WE4nAhGTs/O5g4mujEytTAk/fT2NYYAz4egF6Le6Esu0wjSZ6uEYQLELU2CnrGeuDqcXVqGlvgyVS2nSZ2As+AB89RnrD0sIRTHyedmV2LEEKednqteZBIJIJQKKy3ncPhwNDQEAYGBm0OrD1ry5AhQFpHkHoqVXUBNUOYKoR1F+s2HUM2bKjL5MbXA1CVquIq3P/nPmZenan0Y2SNksCQQGRczkD0Z9EAIB9aoY5GCWMMEaER6PdRPxiYNf03ZWBqgID3AhD9aTQ8nvdQeSzKqC6tRmZEJkbtGFXvPg6HA+9x3nhw6AG8xypXxK1OErEEfT/oiytfXIHrc65wCXRBzGcxGPLlEPn97YEsMXLs44gOwR1wd/9d8AfzwdPnISJUOuWotocPyWbPurHjBhwCHMDhcuA52hMpx1Lw/LbntRobIYQ8K1rVQ2BlZQVra+t6/6ysrGBsbAx3d3esWrUKEkn7+FFVpZryGlTkV7R4leLaXIJdkBWZpbEi0+KU4nprEChLNg+62zA3pJ1TvHqsqnnQ6861nrwvGTY+NrDzs1P6OWTrLQCAQ08HlGWXydd7UMX8+g3NB3//3/soSS9BlbBKqRj9F/sjJzYHWQLtrAmSfi4dFu4WsPKyavB+73HSOgJtD2sCpO+nYx9HOPR0gJG1kXzIUOzmWJ1ZL0ETawRIxBIErQ5CeU45vMZ4gT+Ej/Tz6UovLKhJ2bHZcOztCADwHO2JB8ceqOyz9DSsx0AIIerUqoRg586dcHFxwcqVK3Hw4EEcPHgQK1euRIcOHfDdd99h4cKF2LJlCz777DNVx/vMK8koAc+QJ59rvjUcejlAXC3G49uPVRhZ49pSQyCbB/1R9CMUJhXKG9mqnAe97lzrt3bfgu8s31Y/h4G5Aaw7WSM3LrfNsTUWI5NIewccAxwRFR6lVIyx/xcL+572iF4fXe8+TTRqUk6kNDhcSIY/mI9qYTVy41V33toi/Xw6XAe7ym/3fq83bu+5jbLsMi1G9YQm1ggIDgtGp5c6oeJxBVwHuUoTgv8K/HUlMZLJvZYLp95OAADXwa6oyK1Q2Xfc07IeAyGEqEurhgzt2rULX375JaZMmSLfNm7cOHTv3h3ff/89zpw5Azc3N6xbtw4rV65UWbDtgWy4EIej3Nj2hvD0eXDu54zMiEzY+dmpMLr6RFUilGaVtrqGQHbVPSI0AqbOpkg/n46ie0Uqnfqw9nNUFVch81ImnPo44crGK61+DscAR+Rcy4HXGK82x1c3RgCw6WqD4pRi5CXkKR0jl8dF5uVMcPW4yLuRB/vu9gAU6x/U6eHJhxj8xeBG7+cZ8OSrFjv6O6o1FmVkXMjAwLUD5bdtfWzhNtwNcVvjMDB8YBOP1Iy6n4nAkEC1rBGQcjQF7sPdoWekB/4QPk69eQrVZdUwMNWdoZ8SkQR51/PkPQT6xvrgD+Mj5VgK7Hzb/h2nqXNNCCG6qlUJQWRkJLZt21Zvu7+/PwQC6RWWgQMHIi1NNwoInyZtKSiuTVZY3HNhTxVE1biStBLw9HkwczZr9TFq/xgfnXkUTMJU/iOs8IPPQZuSAQBwCHDAo6hHKosPqB8jGFoUY+3HH5lxBHMS5misUVOUUoTi1GK4DXVrcj+vF70Q900cgkKD1BaLMsrzyvH49mN0eK6Dwva+y/ri0JRD6L+iP/RNlF+fQl1qv6eCcAEkNRKVv5cPjj5A16ldAQCWnpYwdTLFI8EjuI9wV8nxI8KkV9gbilkQLpDW5zTTE/H41mNw9Diw7vSkVslztCfuHbiHvssan9yiJWqf68jVkWBi1X8PEUKIrmpVPyifz8eOHTvqbd+xYwf4fOk0jo8fP4a1ddsKTdujthYUy2hqxeLilGJYuFsoPVtPYwJDAsHV44JJmNrmQZfNtQ6GNj+HrIdA1QJDAsHV57Y6xsCQQPR+vzfyb+Rjk8EmjV3hTD2RCpcgFxiYN31VWVdWLc64mCGd+chOcWgefygfZq5muPXrLS1FVl9gSCDAlS7GpeoVequKq5AVkQXP0Z4ApMXfsjoCVVHFcJzs2Gw4+jsqfM94jfZCxqUMVJdUqyxW2XcEEzNwDWg1ZHWgeg1CdFOrEoIvvvgCmzdvRs+ePTF//nzMnz8fvXr1wldffYUvv/wSAHDlyhVMnTpVpcG2ByVprV+DoDaXQBcUPShCWY56x0O3dQ0CGUG4ABKRtIBRXfOgR66JBBjA1W/7omIO/g4QpgpRUVChwgghvwrclvngh24aCg6XA0mNRGOLTKWeSIXnKM9m99OVVYvTLyjWD8hwOBz0WdoHsZtj21SUr8pGz6WPLwESyN/T88vPtzquuh6efgjrztYKkwKoOiFoaHrelvZc5cTmyIcLyVh5W8HSw1KlU9meWHhCvh6DpLplqyHrQkNXF2JozrNSr/E0nGtCWqJVf3njx49HUlISxowZg4KCAhQUFGD06NG4c+cOXnzxRQDAW2+9hU2bNqk02PZAVT0ERlZGsPW1Vft6BMUpbU8I5AsPhQaCw5M2yFQ9D7ogXIDIVZEAgCUFS9o837yxjTEs3C1UWlgsOw/OA5wR8HZAq2MUhAukjVkNLTIlrhEj7UxakwXFtXmP88b9Q42vWqyJH9qMCxngD2l4Ubqu07qiSliFB0dbn7SoqtEjCBcg+tNomDqZYqloKRx6O+Dql1dx+ZPLrY6ttgdHH8h7B2T4Q/h4FPMI1WXNX3lX9r2qnRRsNtzc4p6rhhICAPLpR1VBEC7AjR9uoMPADhi6eSgsPC1a9PenCw1dTcTQ1r/Pugkik7B6CeLT0NjWhfebEFVqcQ1BTU0NXnjhBWzbtg3r169XR0ztmjBdqJIeAuBJHUHnlzqr5HgNEaYKYd/TvtWPr/tDkLQ3CW4j3GBoZaiyedBlz+Ezwwc5V3NgYGbQYBFhSzkGOCI3Lhfuw9s+1rr2eUg7mwb7HvboPq97i2OsfRyf6T7Y2X2n2ueTfxT1CDwjHhx6OSi1v/c4bwjWCFBTUQN94/rj9GU/tIBizKoqjq54XIG8G3lwHVS/hwCQDtXyX+KPq5uuwvvF1q2ZoIoiVdn+1l2s4feaHzgcDmYIZuBnn58RtS4KXH0ugla1vhaDMYaUYykYu3uswvaW1BE09171+18/3D1wF2nn0uS9DuJqcYt6ruoWFNfmOcYTJxeeBGOsTRMxyBtxelyM3zceTMxwYfkF9FneR+m/H10oTNZEDKr4+6wdp+xYLoEusPWzRXleudq/A1Sh7rnus6wPrn55lQrRyVOrxQmBvr4+EhIS1BFLu8cYQ0maanoIAGlCEP9tvEqO1ZjilGJ0nNix1Y+vveAXANj62SI/MV+lC37JnkM2Nlimrc/hEOCgsjoCWYwDPhmAa/93DXbd7VocY0M//C8ffxl/jfhLrUlB6olUeIz0ULqOxNbXFqZOpkg7m9bgImXqbtRkXMqATVcbmDqYNrpPzzd7ImpdFHLiclo9I5JCQfAa6ZC4lsQvEUvQf2V/XP3iKrq8Il2wj6fPw6zYWdjReQfuH7ov7VVrZUM473oeqkuq0WGgYmF17TqC5hKCuu9Vr8W9cGbJGdz5/Q5MHE0Q83kMbH1twR/Ch62vLfJv5IPD5ch7rpQ5F4/vPAaHy4F15/o1afzBfFTkVeDxrcdtmlFNIpbAxtcGHs97yD8X/CF8mDmbtWg9hqaKwFVRXN3SGCLXRIKJVFscraq/z8CQQESGRYJJGLh6XNj3skfkqkjk38yHTRcbOPZxlM4MV1SFIV8OadFzaPJc15TXSM/1f6+FkgHytGrVLEMzZ87Ejh07aJ0BFasqqkJNWY1KE4IT8080eiVWFdqyKBmAel/Kdn52eHxTOre4qr5UZc/xz8v/wLm/s8J9bS0svr37dptik5HFWPqoFBUFFbD1s5Xf15IGZN0fI/4gPkZuH4lTb51SWz1JyokUBLwToPT+HA4HXi96NblqcWBIIIpTi9Uyu07GhQzwBzc8XEjG2MYY3eZ0Q+zmWIz5ZUyrn8tvjh8iVkVAImp5QXBwWDBu7b4FGx8bhdl1DC0NMfPKTPzW/zdc/fIq+i5v3Sw7D44+gMfzHuAZ8Ordxx/KR+KORKWO09DVXqd+Tuj7QV+4DnKFqYMpBOECxG+NR483eiDpjyQEvBegdJKaE5sDh14ODQ7B0DPSA3/of9OPtiEh6PJKF1z5/IrCuew6vSvit8Zj1tVZLTpW7/d6IyI0QloLBOkw0PuH70vXFlmtmavehtaGAAAmYuDocVTeQK39nketjYK4Wtziv8+LKy5KkwF9LiQ1Epg5m2HOjTmoeFyBzIhMZFzMQNmjMlzddBWxW2JblNhoqofh3r/3kPhzIsCFWifEIEQTWpUQiEQi/PTTTzh9+jR69+4NU1PFK21UO9A6wjQhDC0NYWhhqJLjWXpZwsjGCDlXc+D6XMPDI9qiprwG5bnlsPBUzRAnQNpD0Jax203JjctFzzdVNw2rg78DCpILUF1aDQMz1czZnpeQBytvq1bNAd/YFa9uc7qh4E4Bkvclo+JxBYxtjdsaplx5fjlyr+XC43kPpfaXXbnzHueN43OPYwQbIb/CLbty1/mlzri44iIyL2dKiztVXBydfiEd/T7s13ycelwk7U3Cc+ufg3mHJ0m6slcYMy5lYN/ofQB7UhCs7FVxmaS/ktB5cv0hfxZuFvAa54VLH1+ChYcFukzuonC/MjGmHE2B32y/Bu/jD+Hj1BvKr0cQGBIon6qTZ8DDzOiZCrHIGmEDPh6A+//cB38Iv9FGW12N1Q/IyKcfbWViBADR66PhN9sP5q5P3ufOL3XG6bdOoyCpADZdbJQ+1qGphwBIh56Jq8XIT8zHw9MPUZZdBpuuNogIjUB1aTUGfz5YLUOKkvcn4/zS8wAgb2wfmnYI4/4Yp5LjA9KLD4ZW0t+plg4BA6SfiZjPYmDhYYGFKQvl5wGQfhY6ju+IjuM7YsgXQ7DJYFOLZ9hSRS9GU70Mlz6+hAdHHkD4UAi34W64u++u/P1u6d84IbqiVVUviYmJCAgIgLm5OZKTkxEXFyf/Fx8fr+IQ2w9VFRTLcDgceR2BOhSnFkPPRK9NqyrXZednh8e3HrdphpeGVBZWojilGA7+yo1zV4aZsxlMHU2Rdz1PZcfMv5EvX1BMlZ779DlweBz82udXiKvF9e5vbaHew1MPYdfdDqZOjQ+/qU3WCMyMyJSuWvxfUbbsx/reP/fwW//fYNPFBr0W9ZLO+ALVFUdXFlUi73pegzMM1Y3z2pZrsPCwQNw3cfLtyhQMMsYQ/1089g7fi5qyGgSvCcbshNng6jVchNiYKmEVUk+kyocL1WXBt4CkWoIj048gK+rJFMPKxFhRUIGsqKx6BcUylh6WMHU2RVakclMXR6yKkE7V2cAMXrV7rjhcDrzGeuHB4Qfy4tLmhuM0lxC0dfrRwnuFSP47GX0/UkwoDC0N4TXWC7d/V74XMHJ1JFKOpaDzlM54v+p9BK8JRpYgC35z/DDzykz4veYHc745rmy4gi95X6o8Gci4nIHD0w7Le9SWVi+FzwwfJP2ZhKOvHVXJc+Rcy8FvA36TT9IAtOzvU/b5NLQyxOCN0oUMG5qJSravpEYCjl7LZ9iqfcwv9Vt+rhsrGj46+yiiP41GTVkNus/rjrv77iJ4TbD8/Vb1hBiEaEqregjOnTun6jgI/ksI3FSXEADSYUNp59SzQJwwVQhLD8s2FfPVZd3JGpIaCYofFsPK00plx82Nz4W5q3m9eefbSlZH0CG4Q/M7KyEvIQ92PVS/ujSHy0GXV7ogam0Ufgv8DbOuzlK4Mt/abvTUk6lKzy4EKF65s/W1xf3D95H0VxJiPouRjiPubo+JBybi1q+35DEVpxQj93quSuogMi9lwqqjVbML6dWOM/arWAz4eABiN8fKY5KIG77aL6oS4ffg35GXkFdvmJNLsAt4hjylX8eDww9g3dm60avTtWPcO3wv5tyYg9u/3Vaq4fPw1EPY+dkpXBGvrXYdQXO9P4JwAQRrBDC2M8ai3EWIWhul8Brr9lJ4veiFS/+7hCFfDGn2HEjEEuTG5zaZEFh5W8HSUzr9aMcJLa9nivksBl2ndW3w+8Znug8urbiEoFVBzX7PCcIFiAyLhKGVIV78TTrbXu33iMORDt3pv6I/NhlugqRaAg5PdcN58m/l4+/n/673uRu7eyzE1WLc+vUWuPpcvLDjhSaP09iV8SphFf4e9Teyr2ajQ3AHVBZWImh1EFKOpsDA0kDpz7VELIHPDB+kn0tXeL/q1ksp9Cx9MgC7++7G1S+vQs9EDwPXKLeSuPd4b0SERrRq6FTdXobe7/fG3mF7kX0lG97jveHY2xGRqyIVzrUqJqsgRFvaNC/WvXv3cOLECVRUSOdiZ0y1V3XbG2GaEBZ81Q2/AaQJQVZklsqvuAP/LUrmodp4eQY8WHe2ltcRqEpuXC4cAlTXOyCj6gXK1NVDAAADwweiz7I+yL2WKx3KgpbPB197OkDGGB6efChff0DZXgbZlbvHtx4jclUkYj6LgVVHK8y8OhNjfhmjkAwEhgSi7wd98fjmY/Rd3rfNV9/SL6Q3Wz9QO86g1UEQV4qxxWILIkIj4DfXD30/6Nvg1cPSR6XY0WmH9Ip2H8d657TXol4ouluEoNVBShWpJv2V1GjvQO0Yg9cEQ1Quwo8df1T6vXxw9AE8xzS9boQy6xHIPj9mHcwQuCpQ3uht6kqp+wh3FKcUo/BuYZPHBoCCOwUAAJuuTQ/Zae30o8I0IW7tvoX+K/o3fNwxnijLKUNObPN/4xKRBKbOpgheEwyu3pOf1ro9IYJwASTV0iEwTMzw7yv/tjjuukoyS7DvhX1w7Ff/cwcA4/eOR8cJHXFr9y1kX81u8lh1P9uMMST9nYTvXb/Ho6hHcOrthIwLGQheE4yg0CAMCBmAvPg8DAgZoNTfZ3BYMCoeV6DHGz3A01esX5ElkHW/lzgcDqZHToc53xxR4VHSNWWakRmRid8G/CZ9TfpcMBHDkVlHmn1cvXj++yxvMd+C7CvZ6P1+b0z6Z1KjBcTK9nwRomtalRA8fvwYw4cPR+fOnTFmzBg8evQIADBv3jwsW7ZMpQG2J+roIXDwd4CoXISCpAKVHhdQ3aJkddn52SE/MV+lx8yNy1XpcCEZB38H5F5TzVoEEpFEOltKd9X3EMgM+WIIerzRA6knUrFJv+UrGdduLOQn5qOyqBIuwS4tnns7MCQQXAPpvlx9LubfnQ+HntL3p97MUz628HzBE+CizT+0jS1I1pig0CBpnP/VAaQeT8U31t8g42IG3Ee4S2cXWR2JR9GPsKPzDpSkl2BAyADMiJxR75x2mtQJogoRnPo6NVt/UF1SLR168krzUwYHhgRKC4P/i7G595JJpNONNjZcSIY/hI/smOwm1yOQiCXo8UYPVBVVwe+1J/UITTWKDMwMwB/KV2pxuqYKimvzHO2JB0cftPiiVMyGGHSc2LHRXhh9Y310eqkTbu9pftgQfygf4koxus3tVu++hhq6S6uXwmemD5L/TpYuiKaEhubnryquwv4x+2FsZwy3IW6Nvv8TD04Efwgffwz6A3mJ9Yc5yhL62o3gc0vPYf+L+3Fs9jFUl1QjaHUQPF7wUPj79BrjBXNXcxjbGCv191l4txDpZ9PRY0GPRvdpaIIEngEPM2NmwsDcQFpf1ISU4yn4c9ifEFeK5ee68+TOuL37Nk4vOd3kY+uqnYzyDHgYumkoAGli09i5bqhnjBBd16qE4P3334e+vj7S0tJgYvJkCMbUqVNx/PhxlQXX3qhyylFA+uMR83kMnPo51asjUMXiLm2dYagxtn62Ku8haMv0kU1xDHDE41uPIaoUtflYBckF4PA4sPK2antgTRi5baR0TK6o5cW6tRsLF5ZfgNtQN1zZcKXFiYXsKinPgCcvtpVp6Ie274d9cX3bdQS8E9DqH9oqYRVyr+Uq3UNQN04mYej5Zk/MipuFjhM7wsDcADwjHiLDIvHbgN9QU1qDoNVBjQ5n4Onz0GNhD8RvjW/2ee8fvg/rTtaw7Wrb7L6CcAHE1WJwDbhgEoZ/pzZ9xTk7NhuSaglcAl2a3M/SwxKmLk3XEQSHBUNSLYHvLN96kyE01SjyetEL9w83vjidTM61pusHZPiD+ajIl04/qqyy7DIk/pSIASsHNLmfz3Qf3PnjTrMN3Ssbr6DnWz0bnWCgod64sb+OhedoT9z44QbOLzvfbMx1r96LqkQ4OOkgasprkBuXq9Az0RDXga4QVYiwJ3APiu4X1YuNiRhSjqdAVCGCOd8csZtjkXo8FaJykbxHoO7fJ4fDwYCQAYjZEIO+H/Rt9u8z/rt4dJzUsclhe401tk2dTDHl7BRkRWYh5UTDPUJ39t7BgfEHIKlWTCrG/zUe/KF8xG+Nx4UPLzQZo0zct3E4MlPaq1C7aJiQZ1GrEoKTJ0/i888/h6ur4pW2Tp064eHDhyoJrK5169YhKCgIJiYmsLKyUuoxjDGEhobC2dkZxsbGGDFiBO7evauW+FRBmC5UaUIg+/FgjCkkBKpaSVGYKlRfD8FN1fUQ1FTUoOBOgVp6CCzcLWBgbqCSHo38G/mw9bNV+wqXgnABmEh6JbU1P3CypCD1ZCpSjqe0KhmQPUbZQrwOQR1g38Me8dviWxRrbZkRmbDwsGh03LwycUauikTyX8nwX+yPCfsn4N3Sd8HVl75fPAMegkKbXiisx8IeeHjqIYpSiprcL/mvZKV6BxSuOFctRZdpXZC8NxnnljZe55VyLAXuI93rDdeoq3YdQWMqCipw5/c76LW4V7Ox1uY11gsZFzNQJaxqcr+c2Bw4BjSfEOgZ6cFtmFuLhg1d+fIKPEZ6wL5H00P03Ia6gUkYMi5kNLpP/s18pJ1JQ8DbjU+/29BVbwB46chLcOrrhFu7bzVbGF07IY9cE4njc4+jIKkARfeKlPoblA2Dqymtwa99fkX+zXwcmXFEPuwr+rNonF50GqWPShG0OkieZDZ34aDj+I4wsTfBjR03mnz+mvIaJP6cCP/F/k3u1xSnPk5wf94dByceROE9xWFnCT8k4OjMo7DuYt3g+ZhyZgrse9jj1m+3UFNR0+hzMMYQsSoCF5ZdkCcWVDRMnnWtanmUlZUp9AzIFBQUwNBQNVNm1lVdXY1XXnkFb731ltKP2bBhA7Zs2YJt27YhOjoapqamGDVqFCorK9USY1tIxBKUZpaqbJVi4MmPR+alTNz/V3o1TpXT3KmjhgAA7LrZoeB2gcrGYObfyIehpaFKky0ZDoejsgXK8m/kN9s4aava73+H4A7oOLFjq37g+n4onZFFNs1ka5KB2oV4yvzQ9vuwH659dQ2iqtb1xmRcyAB/iHK9A8rGGf1ptHxaVGWSK/MO5vAa54Xr2643uk916X/DhRqYbrS5GMf9Pg5OfZ0QuzkWkasbHmedcrT54UIyzSUEiT8nwqmfE+y7texza+VpBevO1kg9mdroPhKxBLlxTRcU19ZUHUHdoTbl+eW4/t119P+4f7O9pVw9LrpO7drksKGrm67Cd6Zvk7NtNXbVm8Ph4NWIV2HX3Q6Hpx9u9nsvMCQQ/Vf2R+SqSNz5/Q7Ksspa9H0eFBqEoNVBqCqqws5uO3F7z2049nbEoM8HYUHKAix4sACjfx6N0oxSee9Yc59tDpeDAZ8MQMxnMU3+fd7ecxvmfPN6i+G1lGOAI8SVYuwJ3CNPKmM2xODM22cgqZGg65SujZ7rGTEzYOVphWOzjzVYWycRS3D6rdOI/SoWokpRq76rCHkatSoheO655/DLL7/Ib3M4HEgkEmzYsAFDhw5VWXC1rV69Gu+//z66d++u1P6MMXz11Vf45JNPMGHCBPTo0QO//PILsrKycPDgQbXE2BblOeXSxVk6ND37SUsFhgSi34p+qCyoxCbDlo8Zb0yVsAqVBZVq6SGw8rYCkzAUpxSr5Hiy+gFVzoZUm6rqCPIS8tRWUAzUb0Dyh/BhYGHQqh+404uk43Bb2o3e2FVSZQrxvMZ6wcjGCLd+vaV0nLWln1e+oFiZOFvT0wEA/ov8kbgjsdFhZg8OP4CllyXsfJuuJWksxqnnp8LY3hgPz9bvrS3PK0f2lWxpTYYS3Ia6NVpHwCQM17+7Lp0ethW8X/TGg8ON1xEUJheCSRhsfZofNgVIE4LGph+tO9Tm2v9dQ4eBHZB6PFWp3lKf6dKx/g01dksfleL2b7fRZ1kfpeJsCE+fB8fejsgSZOHiRxfr3S9LWnLjc3Fy4UnEfhUL/Pd11po1OoJCg+QL0vEMeJh1dRZ8Z/jKJ7VozWe788udYWBhgJu7bjZ4P2MM8Vvj4b/Ev83fxYEhgQgKC0JFfgV299uNiysuInJ1JMRVzS+QpmeohwkHJuDhqYf4c+ifCveJKkU4NOUQkvclw8bHhoqGSbvSqoRgw4YN2L59O0aPHo3q6mp8+OGH6NatGy5evIjPP/9c1TG2SkpKCrKzszFixAj5NktLS/Tv3x8CQeNfalVVVRAKhQr/NKEkvQSmTqbQM2zVTLBNGvTpIOkCT9WqW+BJmCqEgbkBjKyNVBChIq4eFzZdbVRWWJxzLUctw4VkHAMckRPX9h6CvBt5ai0ortuAlF39HfDJgBb9wAnCBUj8KRF23e1a3I3elkI8DpeDvh/2xZWNV1r8Y1xdWo3sq9lKFxQ3F6esgdmaq4f8oXwY2xsj6a+kBu9P+jtJqeFCjcWob6KPKWemIOdqDtIvKF7dTz2ZCodeDs1Ouypj6WEJsw5mDdYRpJ5MRU1ZDTpN6qTUseryetELD44+aPS9zInNgX1P+2bHxQPSHoDbv92GpaclHp5RTITki7T9995c+vgS4r6Og5mrmdIXSJz6OcHI1qjBHoi4r+Pg/ry70olLYwzMDFD5uBLx38Yj4ceEJ69tlXQF6Bs7bmBP8B4wxqQF3Kz149pldScNPb61vXgcLgcDPh6A6PXRENfUX+skS5CF4pRi+MzwaVGsjQlaFYR+K/qhMKlQ2jNRLlL6YpeJvQl8Z/ki42IGDr50EIC0OHvf6H14FPMIFfkV8B7rTUXDpF1pVULQrVs3JCcnY+DAgZgwYQLKysrw0ksvIS4uDt7e3qqOsVWys6VTqzk6KnY3Ozo6yu9ryPr162FpaSn/x+crX4DYFsI01dYP1CYIF0hnIOFxVFYUJZthSF1X3VVZWJwbl6uWgmIZxwBH5F3Pa/BHUFlVwioIU4VqHTJUtwHpHOiMskdlKE4tVvoHTtZYMHczR+93ewPQbDe6z6s+EJWL5EPglJUVmQVzV3NYuqumR6stPR0cDge9FvVqsLi4uqwaKUdTmp1utDn23e0xeMNgHJ15FBWPK+TbU46mNDvdaF2NDRuK/zYe3Rd0l19pbimXAS5gIobsKw1/Hze3IFltsgTNyEax0S77vHK4HPjM9EHnKZ0R/Wk0qoRVSNyRqHQDksPhwGe6T71hQ9Ul1Yj/Lr5NqyTLyKeQrRDh9KLTuPXbLfw+8Hf5Gg/9PuiHNzPfhIWbBa5vu97qce3NXf1vy2e7y9Qu4BnwcGt3/V68+K3x8Jvj16pV2Bsz6NNB8tnKWnqxa/iW4fCb7Yd7B+7h36n/4s8hf6IkswSlGaUqXSyOkKdFqy9HW1pa4uOPP27Tk//vf/9rtkfh9u3b6Nq1a5uepyVWrFiBpUuXym8LhUKNJAWqXqVYRvbl7/68OwzMDeDQy0Eli6YUp6hnylEZVRUWS0QS5N/IV8saBDLWnazB1eei4E5Bq4f85Cfmw8TRRKWrPjfHwNQATn2dkH4+XelF4CRiiXysMH/Yk7+LuosKqQvPgIfe7/dGzOfS6SKVTUhbOt1oc5pKnpT5u/J7zQ+XVlxCdmw2nHo7ybc/OPIAFh4WsPNre09Rr0W9cG3LNfw+8HfMvTVXOt3o8RRMOjQJQK0r580kgvwhfCT8kKCwrTi1GKknUjHi2xGNPKp5XD2udLrQww/gMqD+jEc5sTnwm+vXwCPrq70g1ONbjxEUFoTzy8/jzp47sOpohbgtcYgKj4JddztwuBylCmXr8pnug18DfkWVsEo+o9KNn27AupM1XAep5rNV+3UcnSldWdhvrh9e2PECOBxOo1fvZY+pfbshyjy+LZ9tLo+L/iv7I2ptFPxm+cl7d8pyypC8LxmzE2Y3fQJaqPYsYLKLXS15T0fvHI3Kwkok702Wfy4oGSDtVaunMykqKsLJkyexe/du/PLLLwr/lLVs2TLcvn27yX9eXl6tis/JSfojm5OjOJQjJydHfl9DDA0NYWFhofBPE0rSS1RaUAwofvn3+7Afcq7lqOxqrjBVqJaCYhm7bnYq6SF4fOcxwJU22tWFw+XAoWfbCos1UVDcEGUWn6otOCwYHQZ2gJmrWb0kQlPd6D0W9EBBUgEyLjU+60tdGRcyWjTdqLoZWhrCd6Yvrn+nWFyc/Fdym3sHZDgcDjq91AkFdwpwYMIBZMdIr8Q793du0Uxj8vUISp+Mzb/+/XV4veil9IxNjWls+lEmYdKpgpWYYUgmMCQQgaGBqBZWY5vLNtzZcwf2vewR8G4AXjryEt4peQedJnWSJwMt7S219bGFTVcb3Dt4D4D0YkPs5lj0Wd5HpT2l8nUlIE2AR/80Wn78tly9V8XjleEz3QdMwnDnjzvybTd+vAHXQa6w6dz0AnMt0doanrom/TNJunBZK5JEQp4lreohOHToEGbMmIHS0lJYWFgofBlyOBy89tprSh3H3t4e9vbqaQR5enrCyckJZ86cQa9evQBIr/ZHR0e3aKYiTRGmCdEhuG0zL9RV+8u/4nEFhKlCVBZWquRqbnFKMfhD1dfAsvWzRcGdAkhEEqXGEDcmNy4XDj2bX9iorRwCHJAblwu08gJYXoJ66wcawx/Cx8kFJ1v0mLSzaXAb5qamiJpnYG6AXot6IebzGPAHNf8ZrCmvwaOYRxj9y2gNRKe8nm/1xJ7APRi8cTCMrI1QXVaNB0ceIHCV6hokg9YPQllOGW7+fBPF94vhMcoD0Z9Gt2hygdp1BB4jPSCqFOHGjzcw7s9xbY7PY5QHjs46CmG64irthXcLIamRwNa3ZePyg1cHI/qzaPlV49lxT/4g614dl90GlOvViQiLgLGDMW7vuQ2/1/yQ/HcywAE6v9RZ6d4WZTQ0vl8WX1t7ptr6eGVErZP2xESti0LXV7sCDLi+7TqGfzNcZeeprT0ldY9Vd6YwSgpIe9SqVtKyZcvw+uuvo7S0FEVFRSgsLJT/KyhQ/Yq4AJCWlob4+HikpaVBLBYjPj4e8fHxKC0tle/TtWtXHDhwAIA0MXnvvfewdu1a/Pvvv7hx4wZee+01uLi4YOLEiWqJsS3UsUpx7THjxrbGMHczlzZa0faruepalEzG0tMSHC6n3jzTLaWuFYrrcgxwbNNMQ/k38tU6w1BjXIJcUJpZiuJU5Wd0Sjuj3YQgIiwCEpEE6WfTkXdDccXVhqaQzBJkwdTRVK1D3FrDoacDHAMckbgzEYB0fL+Fm2qGC9U2+qfRcB3kise3HiPpr6RWzTRWuycp+e9kGNsZq+SCgLGNMToEd6i3arGsoLi5tRLqamgIiWx7a4vAZbg8Lh6efIiHpx6iLKcMVzZeQZ+lfRC9Plol67rUjfNpnfeey+Pi/j/3UfqoFMl/J+P+ofsAF8iNz1XZeVJVT8ezcL4JUZVW9RBkZmbinXfeaXAtAnUJDQ3Frl275Lf9/aULm5w7dw5DhgwBACQlJaG4+EnD5sMPP0RZWRkWLlyIoqIiDBw4EMePH4eRkepnxmkrYZriFTJ1cPSXzobT1sYcY0xeVKwuXB4XNj42eHzzsVKrtTYmNy5XZbNaNMUxwBFn3j4DJmHgcFs2fIAxhrwbeVoZMmRgagCnftI6Ass5zb+flYWVyI3LhdtQ7SUEXB4XVzZcgVMfJ1zZeAVjfhkD4MmPO38IX+Eqn6x+QDYGW1VXctsqIiwCps6miP82Hr3f7Y2kv6SzC6kjzldOv4KvjL8CE7VsWEREmLQBxx/CR8J2aR1B3NY49FrUC1Fro1QSo9eLXnhw+AF6vdlLvi07NlvpgmKZpnoAmmpAyu5vTu0r0H8O+xPlj8pRnluOqLVRKhl3rsqr3tpUO+az75yFXTc72HS2QWRYpMrG56uip+NZOd+EqEqrUvVRo0bh6tWrqo6lSTt37gRjrN4/WTIASBtWc+bMkd/mcDhYs2YNsrOzUVlZidOnT6Nz5+an89M0UZUI5TnlKu8hqMshQDXz5VcWVqJaWK3WGgKg7YXFjDHkxmumh8DGxwaSGkmrejRKMkpQLayGjY/qxte2REvqCNIvpMO6izXMXFS7XkZLyK4CZl/Nxu09tyFMEyr8uLsNc1O4yierH1DVCt2qwuVxkfx3MsoeleHev/fw4MgDdHmli1rijPksRr6IXEvGzstm78lLyEP2lWxkXMpA/o18lGWXqSxG7xe9kXYmDTXlT1aOzYnNUSi2bk5zPQBcHlclU0gGhgTCa5wXCm4VoEpYpbJkANDM+H5NkdVzlOeWI+1sGh6efqhzxbrP0vkmRBVa1UMwduxYfPDBB7h16xa6d+8OfX19hfvHjx+vkuDai9LMUnD1uTB1bHyVS1VwDHBUKPRqLWGqEEY2RvKZNtTFtpttmxKY4tRi1JTWwK6b+sfm8/R5sOtuh9y43BYXzuXfyId1Z2voG+s3v7MatKSOQNv1AzK1r+Rtd98OALDvYQ9xtRiWHpbwm+2HiNAIiCpFeBT9CA69HHBtyzWdapTUfg1HZhyBuas57h68i8hVqruSCrRt7HztGA0tDXFi/gnY+tgi+tNolcVo09UGpi6mSDuXBu+x3mAShtxruRj21TClj6GKHgBljf55NLbab23xKt3N0cT4fk0KXh0sXclbpLr1b1TpWTvfhLRVqxKCBQsWAADWrFlT7z4OhwOxuPXzsbdHwjQhzDqYtXioSUs5+Dug4E4Bqsuq2zQXtLrrB2Ts/OxavSotAORey4Wtr61aFntriGOAI3Ku5aDr1JZNk6utgmKZ2nUEzb2vaWfTELxG+8NtAOmPdtTaKIirxeDocdB5cmcIHwqRJciCMFUIDpeD6E+jAUDnkgGZwJBAVBVV4eqmqyi6X6T2ZED2nIDywyJq719VXAUAKo2Rw+HIVy32HuuNwnuFEFeJYeun/FBBTTbu4r+Nr7comK59rnSBIFwgTwboPBGi+1rV3yuRSBr9R8mAciLCngxpqDvlaEOFkapg5mIGE3sT5Ce0bX7/4tRiWHiqfzpWWz9bFCYVQlzdus+UpgqKZVpbWKytgmIZ+XoEF5oeNlSWXYaC2wU6M31n7dlYmIgBAEb9OApTTk/B/HvzsbRmaasXLdKkIV8OAUePo/IrzoDqhkUEhgTKZ/tSx7mU1REwJu0dsOth1+KCYk2gIlTl0Hki5OnTooRgzJgxCkW7n332GYqKiuS3Hz9+DF9fX5UF9yyTjc0VhAtQkvZkUTJ1jnPmcDhw8G/bfPmA5noILN0twTXgovBu62Yaauk85m3lECA9t4yxFj1OWwXFtSlTR5B2Lg32Pe1hbGusoagap0yDI2pdVIMzzugaQbhAXuyr6jjrrk5dW0vGzjd0tVeVXAe5orKoUlqrUGexNl2hipmK2gM6T4Q8nVo0luLEiROoqqqS3/70008xZcoUWFlZAQBEIhGSkpJUGuCzqnY3vFMfJzgMdsDZkLOIXRuLgWsGIjAkENXV1aipqYGenh4MDZ+M1y8rKwMAGBsbg8uVJg41NTWorq4Gj8dTmEWp7r6OAY7Iis1C57LO9fYtLy8HYwxGRkbg8aRX50QiEaqqqsDlcmFsLG0IClOFcBruhLKysmb3BYCKigpIJBIYGhpCT0/6kROLxaisrGx2X1tfW+TcyIGxhzE4HI7CzFaVlZUQi8UwMDCQ17HIjsvhcJAbl4v+/+vf6L4SiQQVFRUAAFPTJ/UbVVVVEIlE0NfXh4GBgdL72ne3R1VxFYRpQujZSV+niYmJfJ0O2ftZ+7iiKhEe3XoEY29jMMbq7avMe6+Kz4ndADvEvx0PsVgsfz/r7iurH1D2c1L7/Wzr56T2ey8IF+B86Hn0/6Q/+q7oC0D69ySWiHEu9BwqqythZGAkb5T4f+CPyHWRuBh6Ub5vY+9nWz8njDGUl5crve+50HOIWhuFIauHICg0CIJwAS6EXkBFdQWCPwlu8P1s6DOlyu+IuvvGbYyTn8uey3oian0ULoVekp/Lxt5PZT8nEWERqJHUwGmYE5L/SUZObA58XvWBWCzGhbALgAQYtu5JPYGyn5PG3s+W7Fv7va/d21L7/ZR9l4tEIvm5bMnnpLnviOb21dR3REPvZ0P7SsQS9P6kN3os7aHwfdJ3RV9UVFegorICtanjO6Kl+7bk776xfWXnj5CnFmsBDofDcnJy5LfNzMzY/fv35bezs7MZl8ttySF1XnFxMQPAiouL1XL8yDWRbCM2MgAMADvy0RH5fWvXrmUA2Pz58xUeY2JiwgCwlJQU+bbNmzczAGz69OkK+9rZ2TEALDExkTHG2J29d9hc/lwGgE2YMEFhX3d3dwaAxcTEyLft3r2bAWAjRoyQb/vJ9yfW0a0jA8DOnTsn337gwAEGgAUFBSkct0+fPgwAO3z4sHzbyZMnGQDWs2dPhX0HDx7MALC9e/cyxhg7Ouco+3bOtwwA69ixo8K+Y8aMYQDYzz//LN8WFxfHADBnJ2e2ERtZZXElY4yxyZMnMwDsm2++ke+bnJzMADBLS0uF486ePZsBYBs2bJBvy8jIYACYnp6ewr6LFi1iANiqVasYY4z93P1ndnX3Vfn7WV1dLd93+fLlDABbvny5fFtmbKZ838LCQvn2VatWMQBs0aJFCs+np6fHALCMjAz5tg0bNjAAbPbs2Qr7WlpaMgAsOTlZvu2bb75hANjkyZMV9nVxdmEA2MUjF+Xbfv75ZwaAjRkzhjHG2Hav7ez+0fusY0fpe3/58mX5vnv37mUA2ODBgxWO27NnTwaAnTx5Ur7t8OHDDADr06ePwr5BQUEMADtw4IB827lz5xgA5uvrK992edVl1terLwPAdu/eLd8eExPDADA7Qzu2ERtZ5JpIxhhjEyZMYADYR+M/km9PTEyU7mtnpxDD9OnTGQC2efNm+baUlBQGgJmYmCjsO3/+fAaArV27Vr4tNzdX/n7W9u677zIAbOXKlfJtZz45I9+3tLRUvv21Qa8xAGzKgCkKx5Dtm5ubK9+mju8Ixhjbvn07A8Ce6/qcwrmUfUf8+MaP8u0NfUcwxpivr69S3xGRayKZK1wZALas8zK2xXILy47NZl+99hUDwDo5dVI4bt3vCMYYu3z5cou/I1xcXBT21dR3BGOMFRYWKv0dUV1drRvfES7S74i4uDj5trrfETLa/o5gjLERI0Y0+h3h7u6usK/sO2L79u3ybS39jlA3dbdFCKGUVssCQwIVion7Luur1udzDHBEaVZp8zs2gv23BoGmxvfa+dmhOEX5RbNkJDUSWHW0UvtMSHU5Bjgi97rydQT5iW2r51CZ/z6COVcbHk5WnFqMkrQSuA501WBQDQsOC4alV+ND1vSM9BocN+/9ordOTSfYWByyc8xaOPRMLVjDBcQ95vVQ2bkMDAmUT2NbmFwIUYUI9/69h5u/3AQAmDhqbr0bQghprzisBb86PB4P2dnZsLeXjnc2NzdHQkICPD09AQA5OTlwcXF5pgqLhUIhLC0tUVxcDAsL1RfSysZbivRFkNRI5EMHAPUMB2AShq+svsKE4xPgEuDS4iFDZbll+M7xO8zPnQ99E321Dxl6cOwBzr53Fq9ee7VFwwGufnEVxTeLMX7v+Eb3VeWQoSufXYGhgSEMLQ2RciIFL+x9AYC0i1+2gFPflX3rDQe48NEFFOcWY/g3w7U+HOBSyCWIHoswdufYevve/f0ubvx4A9Mjpmt9yFBL91XFcAB1DRlqzVAQTQ8Zas2wwpbuW1FRAcGnAlxZewU8Dg9gwICwAfBf7t+mz4kqhwypYlhhexgy1Jr3/ln4jlD3kCF1t0UIaVENAftv4S/ZF0plZSXefPNN+R9L7foC0rzG5gfncDgIDAmEgYGB/EehttpfTjL6+vr11oNoaF8OlwPnAGeU3SmDUZDiis0NrTytp6cn/zIFpPUDJg4msLK3anZfmdpf6DI8Hq/B11F3Xzs/OxTfL4ahnmG96UMbWnFadtzim8Vw9Hdscl8ul9tgDIaGhgo/msrsa2hgiIjQCHSb1w158XnyfWu/xw29n/mJ+fAc7Vnv2C1571XxOTExMUHnkZ1x+q3TDe6bdubJ+gPKfE5kGnrv1fE5aWrflrz3bf2ccDicNu+r6fe+pZ+Tuhp7P1v6ORkWPgxxn8XJC6wHrhpYbz/ZvnW15L1XxeekNd8RtbXkvdeVz0lD76cqPifPyncEIU+7Fn2KZ8+eDQcHB1haWsLS0hIzZ86Ei4uL/LaDgwNee+01dcX6TNHmTAyO/o6tnmmoOKUYlp7qn2FIxpxvDn0TfRQmtWymodxrmp1yVPbeJe5IRGlWKcqyyxp8j+vKT9DulKO1dQjuAGGaEMUPFYdoMcZ0ZkEy8uxS52xLhBBCmtaiHoKff/5ZXXG0O5pcWbMuhwAHXN92vVWPLU4thoWH5rorORwObP1skX8zX+mpOauKq1B0v0ijCQGgOHPU9/zvIRE1/B7LVBZWoiSjRKuLktVmYCZdjyDjQgYsX3uS9BUkFaCqsAougS5ajI48y9qymjIhhJC208wSrqQebS6b7uDvgNz4XEjEkhavdyBMEWq0hwCQDht6fPOx0vvnXs+FmYsZTB3rd/eqW2BIICJXR8rnbG/qvcxPzIdZBzMY22h/Xn8Z2XoEfq/5ybelnU2DS7AL9Izo64KonipWUyaEENI2NPCtHbLtagtI0KoFvzS1KFlttn62LZqNR9MrFNcmCBeAiaV1+s0Ne8hLyNOZ3gGZhhYoo+FCRJ1UtZoyIYSQ1qNLfu0QV48Lux52yL2WK00OWqA4VbM1BIC0hyD+23il99dWQlD7SqdLkAv2j9nf5BXO/BvKD4PSlA5B0joCYZoQFm4WYBKG9HPp6LtcvdPhkvZLm72lhBBCpKiHoJ1yDHBETlzLCouZhEGYKtRoDQEg7SEoul+EmooapfbXRkJQd9iD+3B3dJ3eFdadrRstEs+7kaczBcUyBuYGcOrjhPQL0l6C3Ou5kNRI4NTHScuREUIIIURdKCFopxz8HZB7TfkFtACgLLsM4moxLNw1mxCYuZjB0NIQBXcKmt1XVCXC41uPNZ4QNDTsYcgXQ1BVVIXOUzrXG/bAGNPJHgJAcdhQ2tk0uA5yBVePvioIIYSQZxX9yrdTjgGOyI3LbdFqqMUpxTBzMau3HoC6cTicJguLI8KeXIHPT8yHvpm+vM5BEC5ARFiE2mMMDqs/BtrY1hjD/m8YMs5nIOCdAIX7hA+FEFWIYNPVRu2xtVTdhMBtONUPEEIIIc8ySgjaKbtudqgSVkH4UKj0Y7RRPyDTVGExl8eVD8vJvZYLh14O4HA48mE8LZ1JSZW6TO0Cp75OuPDBBYXteQl5sO5iDZ4BT0uRNa5DcAcIHwpRlFKEjIsZVFBMCCGEPOOoqLid0jPSg52fHXLjcpWeNag4RbNrENRm52eH1FOpDd5Xe4pCp75O6DCwg1KLgmkCh8PBiG9H4Ge/n+E7w1feuNbV4UIRYdIEyqmPE65svAI9Qz15nYMgXCAdGtVEESghhBBCnj7UQ9COOfg7tGjFYmGq5tcgkLH1s21yLYLAkEAErQ5C9pVsXPv6mk4kAzIWbhZ4bt1zOLnwpLwwWhcLioEnvS1cfS5u/HgD/KF8cLi60dtCCCGEEPWgX/d2TFZHoCxtrEEgY9fNDsUpxaguq27w/tJHpciOyQYAMBFrdlEwTSvPL4eoSgTBammtQ15CHux6SNcg0FSdgzJkc79nXs6EpEYCt2FuOtPbQgghhBD1oISgHXMIaLqHoHaxLqBYQ6DpRqyJgwmMbY1RcLv+TEN3/ryDnd12QpgurYfgGfCaXRRM03j6PJRmlOLql1fxKPoRCpMLYd/dXievvAeGBGLAxwMAAGffPUvJACGEEPKM051WCNE4h54OKMsuQ1l2WYP31y7WlYglKEkrgYWHhUYbsbKkhMPh1CssvrjiIn7u9jPOLD4D9+fdkZ+Qj+A1wXi/6n0ErwludP5/bZCvuiqS4K/n/4KBmQESdybqbGN74NqB4BpwIamR6FxvCyGEEEJUi4qK2zEDcwNYd7JGTlwOvEZ71bu/drFuVVEVmITh5i83IVgt0FgjVpaUAP/NNHRTmhAcmXkEt3+7Desu1uj2ejdc2XhFIabasde+rU2BIYGQiCQQrBEAHCByVaROJgPAfwXE1RKF3hZdjJMQQgghbUcJQTvn4O+A3LjcBhMCoH7DWpPJQN3n9xrrheqSavzS+xfkXstFx0kdMWHfBESubrhhLbtdd1EwbQpeHYzo9dE6feW9bs2A7DagG4kVIYQQQlSLEoJ2zjHAEY9iHjW5T/+V/aX1AhJopRFbNykBgD5L+2DIl0MAoMlpMHWtASsIF8iTAV288t5QAbEu9rYQQgghRHWohqCdk/UQNOX3gb8DEoBrwNVasW5gSKB8ES+eAU+eDDxNaje2dbHOAZD2pjTW2xK8JlinelsIIYQQohrUQ9DOOfg7oPhBMSqLKmFkZVTv/n1j9+FR1CP0fq83hm4eqrXhI4JwAcTVYp29st6cp+XK+9PU20IIIYQQ1aCEoJ0zsTOBOd8cufG5cBvipnDfkRlHkHI0Bd0XdMfQzUMBaKcR+yyMaW/qyrvsfkIIIYQQbaCEgEgXKLummBBkx2Yj6a8kdJnaBaO2j1LYX5ON2Kflynpz6Mo7IYQQQnQVJQSkXh2BMF2IA+MOYODagej3Yb8GH6OpRixdWSeEEEIIUS9KCNqxiDDp4mKOAY5I2psEAKgSVmH/2P0wczFDTVmNliOkK+uEEEIIIepGswy1Y7JFv9IvpKPgTgGqhFU4NOUQROUi5MTmgKtHHw9CCCGEkGcd9RC0Y7XH4uuZ6OHAiwdQkFSA8txynV1BlxBCCCGEqBYlBO1c7aQg41IGAFAyQAghhBDSjtCYEILAkEBw9aUfBW2sREwIIYQQQrSHEgICQbgAkhqJwqJfhBBCCCGkfaCEoJ2rPc//+1XvI3hNMCJCIygpIIQQQghpJ6iGoB17Vhb9IoQQQgghrUcJQTMYYwAAoVCo5UhUr6S8BL1W9oLfu34Kr8/vXT+UVZahpLzkmXzdhBBCyNNE9lssa5MQomocRp+uJmVkZIDP52s7DEIIIYS0c+np6XB1ddV2GOQZRAlBMyQSCbKysmBubg4Oh6OW5xAKheDz+UhPT4eFhYVanqO9oHOpOnQuVYPOo+rQuVQdOpeqo4lzyRhDSUkJXFxcwOVS+SdRPRoy1Awul6uxbNzCwoK+mFWEzqXq0LlUDTqPqkPnUnXoXKqOus+lpaWl2o5NCKWZhBBCCCGEtGOUEBBCCCGEENKOUUKgAwwNDbFq1SoYGhpqO5SnHp1L1aFzqRp0HlWHzqXq0LlUHTqX5FlARcWEEEIIIYS0Y9RDQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o5RQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjulpOwBdJ5FIkJWVBXNzc3A4HG2HQwghhJB2hjGGkpISuLi4gMula7lE9SghaEZWVhb4fL62wyCEEEJIO5eeng5XV1dth0GeQc90QrB+/Xrs378fd+7cgbGxMYKCgvD555+jS5cuSh/D3NwcgPSP0MLCQmWxRa2PApfLRb+P+tW7L+bzGEgkEgxYMUBlz0cIIYSQp5NQKASfz5e3SQhRtWc6Ibhw4QIWL16Mvn37QiQSYeXKlRg5ciRu3boFU1NTpY4hGyZkYWGh0oTA3MQcEaERMDUyRWBIoHy7IFyA+E/jEbwmWKXPRwghhJCnGw1dJuryTCcEx48fV7i9c+dOODg4IDY2FoMGDdJSVFKyJCAiNEJ+WxAuQERoBILXBCskCYQQQgghhKjLM50Q1FVcXAwAsLGxaXSfqqoqVFVVyW8LhUK1xVM7KRCsFUBSLaFkgBBCCCGEaFS7KVWXSCR47733EBwcjG7dujW63/r162FpaSn/p+6C4h5Le+AszuKb6m8AfVAyQAghhBBCNKrdJASLFy9GYmIi/vjjjyb3W7FiBYqLi+X/0tPT1RpX7IZYXMRFpCAFN2tuQhAuUOvzqZJEItF2CIQQQgghpI3axZChJUuW4PDhw7h48WKz03UZGhrC0NBQI3EJwgWIWRODOf3moPxhOWYumKlQU6BtEWER4PK49WJ5+PAhZoycgazCLNzPuU9FToQQQgghT7FnOiFgjOHtt9/GgQMHcP78eXh6emo7JLnaBcRL3l6CrbZb0W9RPxgbGOtMUsDlcRViEYlESEhIQNGBIkQnR0MEEe7cuQMfHx+txkkIIYQQQlrvmU4IFi9ejD179uCff/6Bubk5srOzAQCWlpYwNjbWamwSsWIBsX1Pe2RcyJDfloi1Pxyn7kxI0ebRWLp0KYawIfhk8id4KfQldO3aVZshEkIIIYSQNuIwxpi2g1CXxoay/Pzzz5gzZ45SxxAKhbC0tERxcbFa1wU49c4pXLxzEVn8LPz44486NQxH1pvxD+cfXGaX8eH4D/H5P59rOyxCCCGkXdBUW4S0XzqdEJw5cwZnzpxBbm5uvQLWn376SSMxaOqPMH5PPAbMGoAqSRUuXLig9XUS6vpS70swMUM6Lx2bqzeDy2039eiEEEKIVlFCQNRNZ1t1q1evxsiRI3HmzBnk5+ejsLBQ4d+zpvPIzgiWBGP5u8vh5eWl7XAUCMIFYGIGcAC+mI9z754DAMTFxeGjjz7CoUOHtBwhIYQQQghpLZ2tIdi2bRt27tyJWbNmaTsUjTCxM8GsbrMQ9FxQszMhadK5kHNYt3YdRjuMxrjvxiH2q1jEfRMHIxsjnGAnsGHDBty/fx/jxo3TdqgNSk5OhpubG4yMjLQdCiGEEEKITtLZHoLq6moEBQVpOwyNch3sivQL6l33oCUE4QL839r/wxmcwdd5X8PW1xZTTk+BqYspBGsE8Mr3wowZMzBz5kxthyqXmZmJqVOnYufOnSgrK8Po0aPh7++PpKQkbYdGCCGEEKKTdDYhmD9/Pvbs2aPtMDSKP5iPjAsZuH79OjZs2KDtcCARS9Dz5Z54bsBz8Of6w7qjNXgGPEw9OxVcAy7sS+yxe/duTJw4Uduhyp08eRJ79+7Fd999h7t376K8vBxlZWVwdnbWdmiEEEIIITpJZ4cMVVZWYvv27Th9+jR69OgBfX19hfs3bdqkpcjUx/U5VzxMeIgFfRegpqYGL7zwAnr06KG1eILDghGMYMzYPwOCNQJw9aT5o00XG4zYOgIRoREozy+HiZ2J1mKsa8CAAQgNDQWfz0evXr1w8+ZNPHz4kIqwCCGEEEIaobMJQUJCAnr16gUASExMVLhPl6bkVCVTJ1O4dnHFC44vwNDBEDweT9shAQAe33wMu252Ctu6z+uOlKMpODn/JIK2B+HMmTOYNm2aVt6b2isq+/j4YPXq1fL7krYmSdd08Nd4WIQQQgghTwWdTQjOnTun7RC0wnWwK94zfQ/DNg3TdigQiUTg8XjIT8yHQy8Hhfs4HA5G/jAS37p/i1ddXkWluBJ+fn4KPRqCcIF0AbawYLXGWXdF5drPHxEaAf4QPn57+zf8dv83iEQinDx5UuMxEkIIIYToKp2tIagtIyMDGRkZ2g5DI/iD+ci8mKntMAAABw8ehKWlJb44+QVs/Wzr3W9sawzfyb7wEnvB285bYTpYWWOcy1P/RywwJBDBa4KxO3Q3dryxA2KxWP78wWuC4TbMDbe+uYVjx47h3LlzKC8v13iMzbl9+zaWLVuGgwcPajsUQgghhLQz2m8JNUIikWDNmjWwtLSEu7s73N3dYWVlhfDw8HqLlD1LXAe7IjcuF1XFVSgvL0dlZaXWYklMTERJSQkqiyvrDRmSGb1zND4K/Ahv5r8JvXPSDqfajfHaV+zVKTAkEAIPAeZvn49pBtMQERqBoLAgBIYEIjAkEGNXj8XLeBnb52+HoaGhVmKsq7S0FEePHgUA/PXXX9i0aRO++eYbrcRCCCGEkPZLZ1cqXrFiBXbs2IHVq1cjOFg6nOPy5csICwvDggULsG7dOo3EoY3VAX/s+CN+t/0dZ2PO4uDBg5gwYYJGnreu6upqRB+NxrFXj2Fd2TpwuA3XB4iqRPjB4weUZZeBZ8CDuFqs8YY2YwzTp0/HwT8O4l28CzvYgcPlwNjeGCYOJjB1NEVZThnyb+SDq8+FpEai1WSgoqICo0aNwuXLl/Hrr79i4MCBeP/99/H666/jxRdf1EpMhBBCdBOtVEzUTWdrCHbt2oUff/wR48ePl2/r0aMHOnTogEWLFmksIdAG10Gu4EZLO2/u3buntTgMDAxgX20PHz+fRpMBANAz1MOUs1Oww3cHyqvLYW5grvGGNofDwRuub6AXesHAwADiajEC3gtA16ldUZ5bjvKccpTllOFy4mVIaiTgGfC0lgwAgKGhIbp164aEhAR06tQJ7u7u2L9/v9biIYQQQkj7pbNDhgoKCtC1a9d627t27YqCggItRKQ5roNdMc5wHPLy8rBs2TKtxtLQDEMN+X7191iLtTjCOQJxtXQMvyYJwgW4+sVVmNqY4v2q9xG8Jhixm2KReiIV3i96o/u87qiprkESS8IZnIGoWqTxGGvjcrnYunUrrl27hn79+iEiLKLReAThAkSERWg4QkIIIYS0FzrbQ9CzZ09888032LJli8L2b775Bj179tRSVJrBH8yHaL4IFsba6xa8d+8edu7cCXaGYcJLTQ9ZEoQLcPPPmyhBCWo61iB4VnCDs/6oiyBcgLOhZ9FlVBfom+orPK8sDgCIWB2BXbxdqBHXYM7bczQaY0M4HA68vLwAPJkpqaSiBCnuKejduzf69OmjUOtACCGEEKIOOpsQbNiwAWPHjsXp06cRGChtsAkEAqSnp8sLMZ9Vlh6WMHUxRVZkFjye99BKDJGRkVi3bh26GHfBvNB5je4na7DO+t8sBCYFwsvNq15jXN0N7szHmVjFXQW/6374ev7X8u2y5007m4b08+kYvGYwXr71Mu79dQ/uI93hZu+m8aTg8uXL+PHHHzF27Fi88sor9WJdGroUUYjC7Nmz8Yb3G1ovfK4rNzcXdnZ24HJ1tnOREEIIIS2kswnB4MGDkZycjK1bt+LOnTsAgJdeegmLFi2Ci4uLlqNTP/5gPr764iuU/1WO8PBwODo6avT5vb29MX/efOT+lAs7v8aHDEnET4pzr26+ioyL0ulhZQ1YiVj9M0JV9a2CWCJGZWklHHsonqfAkEBIxBK4DXOTzjiEQOx5uAcWRRbwDfHVWIwyp06dwq5du8AYU0gIZLHOTZuLlB9TULK7BBFi3UgGKisrYWRkhNLSUgwdOhReXl7YvXs3LC0ttRoXIYQQQlRDZ2cZ0hXaquxP+DEBo94ZheyKbJw+fRrDhw/X2HPL5F7PxR/P/YG3i99WagXiB0cf4Pzy83j91usaiE7Rvbv38F3377AybiVsfeqvmVDbqUWnoGesh6FfDtVQdE9WU+aO5OLw4cPo37+/fDYh2eJoAz4egNu/38ax2cfAAQc8Ax7er3pfYzE2JCsrCz4+PpgyZQqmTJmCcePGwdraGteuXYOzs7NWYyOEkPaCZhki6qZTPQQJCQno1q0buFwuEhISmty39oq4zyL+YD56V/dGj496wNXVVSsxPL75GLZ+tkolAwCQVJKEfUn74HXOC0OGDlFrbHXZcmzhylxh1dGq2X0d/R0R80sMgqqCYGhoqP7g8KRGIBjBCA8Pl2+XDbnyHO2JH71/RE1ZDTiQnm9ZcbY2ewj27dsHoVCIO3fu4Pnnn0dERASqq6spGSCEEEKeITqVEPTq1QvZ2dlwcHBAr169wOFw0FAHBofDgVgs1kKEmmPV0QpjHcZi7Atj4dbFTaPPXVVVheLiYuQn5jc5XKiuo5eO4qjkKLz3eGs8IchPzIdNVxvw9HnN7vv2jrdxMfoi3C+64/nnn9dAdPWLnANDAnHxfxcR83kM9Iz0UJ5XDpcgFyT9mYTgNcF4nPQYUTeicCT0iMLjNW3JkiXo1auXvGagd+/eCveLxWJwOByqKSCEEEKeYjqVEKSkpMDe3l7+//aMw+GAP5iPjAsZcBui2YTgypUreO655+Bp6Ym/wv5S+nFDhg7B1V+vorNdZ/UFV8d3332HxMREBIgD4NTdSanHuHi4ANFAXGScxhICADCfZA67R3a4GHoRkWGRYBIGq45WGLl9JDIuZSByVaS8ZmB88HgcSjiE1wa9ptXZkDgcDp577jn5bdnQp8CQQCxfvhy7du3C3r17MXToUPnQp+AwmhGJEEIIeZroVELg7u4u///Dhw8RFBQEPT3FEEUiESIjIxX2fVa5DnZF4h+JsJlq0+CaDOqSmpoKDocDsxoz2Po1PR6/tpdffhm83Ty4OmhuiNOBAwdw6tQpLOq9CK9Nfk2px3z2+WcIig/CaP/Rao5O0YYNG/Drr7/iec7zGCkZCa4+F/PvzgcApF9IVyggnjRtEk5FngI/mI/gEcEaLXyWkUgk9a78y4Y+AUB+fj7y8/Nx9OhRGF02oulRCSGEkKeUzvbzDx06tMEFyIqLizF0qOaKQbXJqrcVZl+YDR8fHwiFQo0978yZM1GQU4AJ5RNaNGQIAKw7W6MwqVBNkdX3xhtv4KOPPoJLsYtSC6gB0sTTq48XcuNy1RydIgMDA5gamsKNuYGjx4GkRiJfjCw4THE2oRlvzMAG1w1YMGwBAkMCNX7V/fr16+jYsSO++uorhe2BIYEIXiNdZ2KY6TCcPXsW403H69z0qIQQQghRns4mBIyxBotZHz9+DFNTUy1EpHnufdxhxjWDmYkZ0tPTNfrclWmVcLR2hKlzy861TRcbZN3MQmVlpZoiU/Tyyy9j3Zp1ME41VjohAAAHfwfkxms2IZjnPg+hVaHwMfbBq5delTesG1qh2MDAAB2Hd0TauTSNxijz448/IiUlBQJB/dgCQwIRtDoIud/mIm5UHKJXR+tcMiCRaL5HhRBCCHla6dSQIUC61gAgHbs8Z84chVlgxGIxEhISEBQUpK3wNIrD4WDr2K3w7u8NPz8/jT53fmJ+i2YYknnvx/dwVnAWlsctMXHiRPUEV0dBUgF4RjxYuCk/Fdv18uv48dSPEP0twuTJk9UYnZRsNqG+S/vi2v9dg31Pe7gMkK6n0ViNAH8IHwnbEyAWi8HjNV8srUqff/45/P39G5zNSyKSoOh+kfT/NRLwDHg6kwxUVVXho48+Qnl5ObZv367tcAghhJCngs4lBLLFjhhjMDc3h7Gxsfw+AwMDDBgwAAsWLNBWeBojK970fd4XDw4/AD5+cp86izezs7Px3nvvweKRBV7p9krzD6jDzkV6lf7u7bvARBUHV0dGRgbKy8tRdb0Kdn524HCVT16SC5MRXRaNQwcOaSQhEIvECF4TDFtfW6SdSYO+sT6AphdwK3EpwUeCj/C5/+e4nnBd7THWZmJigtdfr7+ehKhKhCPTjyDjknQBunKUI6Y6Bud6n8O/sf9qNMaGxMbGYsuWLWCM4a233oK/vz8iIyPRo0cPmJmZaTs8QgghRCfpXELw888/AwA8PDywfPnydjM8qC5Z8WavRb2QGZEJcY0YPH2e/Eqzuoo3ExIS8Oeff8LF1AVvvvJmix//5VdfIuB0AGaNnKWG6BR9++23WL9+PSYGTMSb/i2L9eWpL+PWjlsYP2C8mqJTFB4VjoqKCsx6MAv83nyF+xq7uu7dyxsZyEBmYiaKi4u1vjJwTXkN/nn5H+Ql5KEirwLBa4Jx/fB1HI05CnaN4eDyg5j4xUStxhgUFITPP/8cPj4+8Pf3x//93/9h6dKlmD17Nn766SetxkYIIYToKp1LCGRWrVql7RC0StZIPBJ6BBd4FxA5KRLv9X9P7cWbHTt2xIYNGxC7PrbFBcUA4OrqClcfVxQmFcKpt3LTgLZWZWUljI2NYVttC7vuLYu1f//+mDd4HvgifvM7t1F1dTUuXryIyspKvCx+GU4zlTsvDg4OWDV8Ffw6+2lsZcobN25g3bp1GDVqFObOnSvfXiWswoFxByB8KERZVpn8M2jqbIpRqaPg188PN768AUdLR40PHyoqKoKlpaV8eNsHH3wgv69Xr14ApD2OIpGo3qxlhBBCpCQSyTO/xlN7w+PxlF4nSKd/Hf/++2/s3bsXaWlpqK6uVrjv2rVrWopKcwJDApFTnIN1X64D9wgXAUcCMGjNILU2uLy8vPDum+9iy4dbWlSkW5tNFxsUJNefIUrVNm3ahC+++ALbOm5rVaz2vew1Ulisr6+PuLg4CAQClC4thWMfR6Uf+8rsVxC/Nb7FtRyttePDHfjz+J8oKSmRJwQVjyuwb/Q+VBZWwpxvju7zuss/g11e6YJRb4/CzM9m4m6/u1qZHnXKlCnIyMjADz/8gOBgxZ6zwYMH4/r16+jWrZvG4yKEkKcBYwzFxcUoLy/XdihEDUxMTBQumjVGZxOCLVu24OOPP8acOXPwzz//YO7cubh//z6uXLmCxYsXazs8jZmwcQKGbxoOW2YLjj5HI1dfH996DGN7Y5jYm7Tq8cfzjuP2pdvYs2QP7Oxal1QoS1QhQnlKeasSAgtfC5z+/TTcEt3U2mDkcDjo2rUrnAyd8FPpT7Dvbq/0Y/lD+Dg+9ziqS6phYG6gthhl+nj3wSiMwgDTAQCAsuwy/PX8X5CIJSi6VwS/1/wUPoOGlobo9FIn3Nx1E4M3DFZ7fHUVFhZKE63SUri4uDS4T933trEZzAghpD2SJQMWFhYwMDCg78dnBGMM1dXV8mnrraysmtxfZxOCb7/9Ftu3b8err76KnTt34sMPP4SXlxdCQ0MbXJ/gWRW1NgovsBcADoAaaUGxupICiUSCqKgocK5xWjVcSGb/1f3IyM3ArVu3MGjQIBVGWN/jW49hbGcME4eWJy97r+7FunvrcG/9Pez+bbcaolOUczUHdt3toGek/J+dvp0+btrexKLZi/DDvh/U/kU985uZ8Hb0RkRoBM4tO4f7/96Hvqk+ChILGh2q5jfbD/+89g+Kgorg6OSIAQMGqDXG2qytrZGRkYHz58/D09MTgOJqyrVVVFRgxuAZcDB3wLYz2zQWIyGE6CqJRCJPBmjihWePgYH0QqJQKISFhUWTw4d0dh2CtLQ0+fSixsbGKCkpAQDMmjULv//+uzZD0xhZAbH/En/oGeshaHVQo/PWq8KDBw8QHByMoe8PhbWvdauPM+fVORilPwrOzs4qjE7RqVOnMHr0aGzetBl23exa1VDuHdwbZhwz8KrUO6Xn6tWrsW/fPjyMeginPi2rq+BwOPg1/1fsOLADqamp6gmwjsCQQASuCkTsplgUPyhG3vW8JutW3Ia74Xj5cUycNBGbN2/WSIy1WVpaYsKECfLbsoL8un8nX875EgeuHMBfMX/VG4JICCHtkaxmQNZwJM8e2XvbXH2IziYETk5O8p4ANzc3REVFAQBSUlLAGNNmaBpRezah4M+C8aj8EcT9xE0uZtVWubm56NChA1yMXeDQ3aHVx1n12SqMEI2Ak4n6ioqvXLmC48ePIy4+rtW1DhMnTsQPg37A8tHLVRzdExkZGQgLC8PUqVORHZsNx97K1w8AgJGRESYNnoTRjqPVvhbBzZs3ERUVherqargNcwMAMAlrdp0BLo+LCZMmwM7EDt7e3mqNsbbGvtxqr6Ys+zsRhAugv1cfI7qPwI5fd2h8XYfGSCSSdvF9RgjRbTRM6Nml7Hurs0OGhg0bhn///Rf+/v6YO3cu3n//ffz999+4evWqfPGyZ5lELJFfld2/fz82YANOvHcC8Xfi5ferWlBQEDIyMvC1y9etbmQDgJ6RHiw9LFGYVAjzDuYqjPCJl156Cfb29kjbltbqWDkcDhx6qXfFYrFYjDfffBNFRUUoPl4Mxy9blhAAwE+7f8L3/O/haNnyx7bEli1bsH37dnzwwQcIiAoAAPAMeBBXi5sdqjb5f5NR/kc5Fn2wSK0x1jZp0iRwuVx8+umn8PX1VbhPFmtEaAQiwyLBJAyD1gzCRyEfaSy+phw7dgzTpk2DUCjEnTt30KVLFwBAfn4+jh49itdee03LERJCCGlPdLaHYPv27fj4Y+lqXIsXL8ZPP/0EHx8frFmzBt99952Wo1O/4LAnQzS6du0KA64B9CTS/C0wJFAti5IBQGVhJaoeVbWphgAATL1NcfX8VRVFVV/Xrl2xYMECuDxyafGUo7U5+Ks3IXB3d8d3332H79Z+h5qymlYlL2YuZrDqaIWMixlqiPAJExMT2NnZwTbDFhmXMtB5cme8X/W+Ur1Sdj52cOjlgKS9SWqNUSY7OxtHjhzBP//8o7CauYxELEF1iXRYEJMwcHiaKchX1vPPPy9fybuqqgoAUF5ejhEjRmD27Nn49ttvtRgdIYQ8vYYMGYL33ntP22G0SGpqKjgcDuLj47UWg872EHC5XIXih2nTpmHatGlajEh7fHx8cPitw9AzVP/blX8zH6bOpjCyNmr9MfLzMfP0TOA0UL6yHEZGrT9WUyoeV6DsUVmbkpczqWfwVeRXeLTpEZYuXarC6BRlX82GfQ/7Vr+HHQZ3wOX9l+H2ghv09fVVHJ3U5s2b8Yr1K7i86jLAAUZ8OwKA4tX22rfr6janG27uugnr0dbg8/lq7YJ2cnJCYmIizp49W2+YUkVBBQ5PO4zcOGmix9XnQlIjweHph/HinhdRVlaGP/74A+Xl5Xj77bfVFmNT9PT0sHXrVmzcuBE2NjYApLVSEyZMQHZ2NoYOHaqVuAhpjyQSCXJzc+HkpN61c4jqzJkzB7t27aq3/e7du9i/f3+bfyc5HA4OHDggv3DTHuhsD4GXlxfmzp0rv3omk5+fDy8vLy1FpR0cDge2XWxRdLdIrc8zZswYvLn8Teh1alviYWtrCzNjM5jomSAjQ/VXtYuKinD8+HHEn4mHOd8chpb1rxArq0K/AqmSVFw+e1mFEUqJxWJkZ2eDMYbsq9ktLiiu7a3Db2HOzjmIi4tTYYT1MQlDl5e6wKmPk8K0s7Jx+U0NVev0Sid8GPUh3N3dcevWLbXFGBEm7a3w8fGpNwXx6SWn8aP3jyhJL0FFvnQ15aXVS9FlShfc+f0Ozi09h4sXL2L+/PkIDQ1FRUWF2uKs69y5c1i/fr28ZsDMzAwODg7yxdI4HA5Wr16NGzduwMfHR2NxEaIOT0ttTFJSEszMzODr6/vUxKxLZN/HDRGECxARFqG2537hhRfw6NEjhX+enp6wsbGBuXnjw5W1OamEOp+7rcfW2YQgNTUVEREReO6555CdnS3fLhaL8fDhQy1Gph3Wna1RmFyotuMLhUIcO3YMR6KPwNmvbbMDcTgcXN5zGZv4m9CxY0cVRfjElStXMHr0aEx/Z3qbah0AYNLLk7DIYxHeGPmGiqJ7IikpCc7OzujYsSOyr7a8oLi2rn5doQc9JN1Qz5AciUTa0A8OC4aekR48XvCot09zQ9VM7Uzh4OAAHoeH69evqyVOoPFZhP6d+i/it8bD0NoQBXcUp0kd9+c4OPVzQuzmWJgKTDF8+HCsXLlSY6tyPnr0CBMmTMDKlSuxc+fOJve1t3+yTsXNmzdp+BB56sTGxsLQ0BCOjo64d++efLtIJNL6tOE//fQTTp06Jb/t5uaGyspKlJWVobDwyW/ssWPHkJ+fr40QnyqNfR/LJkbh8tTXzDQ0NISTk5PCPx6PV2/IkIeHB8LDw/Haa6/BwsICCxcuRHV1NZYsWQJnZ2cYGRnB3d0d69evl+8PSOvUOByO/HZDbty4gWHDhsHY2Bi2trZYuHAhSktL5ffPmTMHEydOxLp16+Di4iKvF4uJiYG/vz+MjIzQp0+fBi/2JSYmYvTo0TAzM4OjoyNmzZql8JkcMmQIlixZgvfeew92dnYYNWpUG86mDicEHA4Hx48fh6urK3r37o0rV65oOyStik6PxsbkjVgVukotx9fX18dff/2FWR1nwb23e5uP59HbAyUPSyCqEqkgOkU1NTXw8/ODu5l7mxOCLl26YNzQcTDJad0ibE25f/8+uFwuHB0dkXstt0UrFNe1c/dObO2yFYF26hkHP2LECPTv3x/RUdFIPZEKzxc8W3WcL9Z+gY3OGzFtqvqG921/sB1xwXE4GnoUgnABJGIJfn/udyTvTUbX6V3h95pfg9OkTrswDabOpkg7mYbTp0/jgw8+0Ni8287OzggPD8ewYcPw6quvKvWY3NxcDB06FIsXL8Yvv/yi5ggJaZvajaCAgAD06NEDubm5CotTfvvtt/By9cLqV1Y3eAx1X1H+5ZdfMG/ePEyfPh05OTkApEP17t+/j7KyMvnwvaysLLw04SV48j1x9+5djcf5NGlsVjfZLIm6Urv1xRdfoGfPnoiLi0NISAi2bNmCf//9F3v37kVSUhJ+++03ecNf1t78+eef8ejRo0bbn2VlZRg1ahSsra1x5coV/PXXXzh9+jSWLFmisN+ZM2eQlJSEU6dO4fDhwygtLcWLL74IX19fxMbGIiwsDMuXK852WFRUhGHDhsHf3x9Xr17F8ePHkZOTgylTpijst2vXLhgYGCAiIgLbtrVxfR2mozgcDsvJyWGMMfa///2PGRsbs19//ZVlZ2czLpersTiKi4sZAFZcXKyx52zITz/9xACwQYGD1Po8Wx22skxBZpuPIxFL2GaTzSwvMU8FUTXst+DfWOKuxDYfJ3ZLLPt7zN8qiKi+srIydv3cdbbJcBMTVYnadKyTb51kZ949o6LInqisrGSGhoYMALv892W2xWoLE9eIW3UscY2YbXXcylJPpao4Sqm0tDTG5XIZAPbHO3+wjdjINnI2so3YyE6/fbrZxxfeK2RbLLew5P3JaomvOSLRk8/A5VWXWeSayAb3i1wTyS6vusw++eQTFhgYyB49eqSpEJXy3XffsQ4dOrB33nmnzcdS5jy0Z8nJySwwMJD17NmTpaeny7cfO3aM/d///R97/PixFqNj7MGDB2zChAmsU6dOrKamRv5+5ubmsri4OCaRSBhjjEkkEtbDrQcDwF7CS/Xe88g1kWwjNjb6WVCFiooK1rt3b7Z27Vp2MfRio8/16+JfmYeZB3OHO4tYHaHxOBuirrZIdXU1y8zMZNXV1QrbJRIJqyyuVPrfxY8vso3YyL40+JJtxEZ28eOLLXp8ZXGl/LOijNmzZzMej8dMTU3l/yZPnswYY2zw4MHs3Xffle/r7u7OJk6cqPD4t99+mw0bNqzR5wTADhw40GQM27dvZ9bW1qy0tFS+7ciRI4zL5bLs7Gx5nI6Ojqyqqkq+z/fff89sbW1ZRUWFfNt3333HALC4uDjGGGPh4eFs5MiRCs+Xnp7OALCkpCT56/T3928yRsYaf4/r0tmi4toFievXr4efnx8WLFig9NW1Z83QoUMx22k2xk8er7bnKM8rR3luOWx9bdt8rAcpD/Cv8b+IXhqN30+ofiE5xhge33zcphmGZMrsynA08ig63+iM7t27qyC6J0xMTKD/SB/2PezBM2jb3PduQ90QtTZKRZE9YWBggKSkJAgEAnBucuA+wh1cvdZ1HnL1uPCd6Yubu27CfUTbe5rqcnBwwL59+xAfH4+pYVPxxTdfABKAa8DF8C3Dm328lbcVRv44EsdfPw67HnZIzErE3bt38frrr6s0TtlqyXov6MHf319eJ8Dj8eS9GrKudkCxULv21bU1q9YgJCSk1YsGNbZqs+x5JGJJszOWCQQChISE4Pfff5cPZxKJRMjMzERmZqZ8P7FYjMmTJ2PcuHGYMWNGg7M/NUSZ86AqJ0+exJIlS2Bubo7Y2Fj59k8//VQ6GcLMmQgICFDZ86mCu7s7MjMzkZaWhiubriDdOh2BIYFITEzEBx98gOPHj+Po0aNKv5+qxuPxEBkZifz8fERGRkKfp9/g+xm1NgrT06Zj/KTxGNVzlHwfxxmOSPkpBXHr4tRyRfn69evo2bMnAOm6LgKBAPr6+vLPV904BeECZG/Nxu6w3SgqL0LkqkhwONJZynTxyre6VJdU42vLr1v8OEm1dPhp9LpoRK+LbtFj3y5+G4YWytcEDh06VGHWSVNT00b37dOnj8LtOXPm4Pnnn0eXLl3wwgsv4MUXX8TIkSNbFO/t27fRs2dPhecNDg6GRCJBUlISHB2lowK6d++u8B1++/Zt9OjRQ2HClcBAxc/T9evXce7cuQZ7se/fv4/OnTsDAHr37t2imJuiswkBq1PcM3PmTHh7e2PSpElaiki7PDw8MLH/RPC5fLUcPzo6GnnxeTBwNWjRH2Rjqqurce7xOZicNwFjTOUzzpRmlaJaWA2brjZtPtZPx37CzqKdcNjpgPVfrldBdIqyr2a3abiQzLGUY/gu4TvY7bfD2JfGqiAyKQ6HA3d3d7i7u2NP8B50f71tSZHQT4iQzSGIdI3E2vVrVRSllKGhISZOnIiJEyfixMIT8mRAUi1pdq0EmS6Tu+DKhiv4dMCn+CL/C5iammLy5MmwsLAAoHxDuSlcHhcHQw/iqzVfoXvP7jhx4gRsbW0bbFDUbpQ0dH/tH5LIyEh069ZNHqsycbSlsc0Yw5IlS3Dt2jWsXr0a33zzDQBg8uTJCAwMhIuLi3zf48eP4+DBg7h48SKmT5+ucIym/v6VPQ+tkZWVBS6XK589xsnJCXfv3oW/v7/CfidOnMDFixfRt29feUKQmZmJgwcP4uWXX4aTk5NKkqvmiEQibN26FZcvX8bevXvB4XBgYGCAffv24fHjxzCKNJKfp4DgAPTq1QuzZ8+Wny/nQc44En8Eq/5cVS8hU1fC4ObmhsOHD8Pc3FxaDD9Iur32+xkRFgHBagH6vtsXvjN9UVVchcKphbgUegnfhH6DalTj63e/Vnkje9u2bVi0aBF27dqFWbNmAYB89pnmPncDPh6A8vxyGJYaIiI0Ap+t/gwV4gqsXrP6mU8GAMDA3ABvFys/C1vMhhhEr4uWfx/3/7g/+n3Yr8XP2RKmpqZK1ynWTRYCAgKQkpKCY8eO4fTp05gyZQpGjBiBv//+u0UxtOa5lVFaWopx48bh888/r3efs/OTOs/WHLsxOpsQyIocawsMDMT169dx584dLUSkfdadrVGQrJ6CrKVLlyIyMhJLe6lm6k1vb2/MDJ4JR64jxGKx/AppWxUVFaFv377wsPPAK96vQN+47VNwBg4MxKW9l2Bao7o/rKKiIixcuBA9e/aE5xVPdJ/T9p6H67evIxnJOPL7EZUmBDKVhZV4FP0I4/4c1+pjRIRF4MbtG0iQJKDslzKFhECVDZLINZG48cMNuA52xbTz0xq92tcYz9GeeLTmETxNPTH81eEoLy+HhYWFyq5KB4YEQpAsAG83D9xCLmxsbBSO3ffDvshLzIN1Z2vwh/ClC6itiQQTsUYbwb/99hvmzJmDkSNH4t9//1VqteXmGj0Scf1EqqamBnp6eohaGwWJWIItW7Zgx44dCAkJke8jK+CrrW/fvvjss8/A5XIVrnyNHj0ajo6OCAsLg6dnw7UpteMUrBFAIpK0ORnYuXMnFi1ahHfffVdeLNi9e3f8888/6Natm8K+b7/9Nrp164bg4Cfv+4ULF7BkyRJ8++23uHnzpkZ6MhITE7F8+XKIRCJcvHgRgwcPBlDr6uYowEDPQP58cXFxiFwTiYhV0tuHYg9h/T/rsd9zP25n3pYnYqqMsaqqCu+99x7mzZsnj6tfP8WGX2BIIESVIkSERsjPGQDEfxuPO7/fgaGlIQytDCGEEEUogggidJyo+gkoUlNTwRhDbGysPCGoG6e4SqywgKFZBzMkbE+Qfw4NrQyRhjT8K/4XAPDxoI9VHqcu4nA4Sl8cFIQLEL0uWv43K/u86Rnq6XTyZGFhgalTp2Lq1KmYPHkyXnjhBRQUFMDGxgb6+vrNTjrh4+ODnTt3oqysTN4wj4iIAJfLlRcPN/a4X3/9FZWVlfLvyqgoxd7/gIAA7Nu3Dx4eHiprPzVHZxOCxjg6Osq7YdqbKrsqnD91Hh53PdCpUyeVHtve3h7Wxtbo0r3xD3FLGBgYYMVbKxC/NV6lH+bbt2/j3r17EOYJsWT4kuYfoISFCxfC8aQjnDqobg7qhIQE/PXXX4iOjsbSgqVw/Lrtn9nXXnsN5inmCDBU3ZAGiUSCDz74AH369EE3dIOtjy3MXVu/ujSXx4V4rxhTOk1BN9MnjS5VNEh+/fVXVFRUwD3FHTc+uwE9Yz1M+kfaY6jsWgkywauDUS2sxptfvQmfEh84OTmpfDjA0l+XopNzJ0RvjMZmg82QiCSw8bHB7T23Ebk6EnpGerD1tYWtry04PA6YSNoramRjBFGlCNGfRStcke7SpQv09PRgYWGBS6svQZ+rr1RyFRgSiJKsEoVGT++lvTHgkwGIWhulcM4uXbqERYsWYWKnibA8YCk9F8GBCg3lxjg4OOCjjxRXgn748CFOnDgBLpercKXrs88+ww8//IBXX30Va9euhTBdiNzr0nUjJKL/LgZxgPL8csR9E9eqK/OmpqaoqKhAcnKyfBuHw8H48fWHXTonOmOm00y4ubnJt9nZ2aF///7wM/ZDRFiE/DnCQsMwN38upv3fNJV/Znr16oWtW7dCIpHUG0Igo5A8hQsgqZEgMDQQgSGBePjHQ9ifs0enR50QtTZK3ji7FHoJz615TiUxhoWFYdu2bTh27BiSkpIaHBqWejIVN3fdBDgAmLQX7+2it6FnpKeQpGRfycYy/WXIrcnF+RfOw3CHIXxn+NY7XmutX78e/fv3b3Qu+Xv/3pPHKVvAcOhXQ2HmbAZTZ1OYOpvi6hdXURVahdHc0RBLxEienwz/M/6wcFOul+5Z19DfQEu/j7Vh06ZNcHZ2hr+/P7hcLv766y84OTnBysoKgHRUxpkzZxAcHAxDQ0NYW1vXO8aMGTOwatUqzJ49G2FhYcjLy8Pbb7+NWbNmNdlOnT59Oj7++GMsWLAAK1asQGpqKr744guFfRYvXiz/jvzwww9hY2ODe/fu4Y8//sCPP/6o1AWhltKphCAgIABnzpyBtbU1/P39m+xmvnbtmgYj0w3bz27Hvvh9MPvLDCtXrlTpsQ8ePIg/Bv2BbsO7Nb+zkmy62KAgSbU9Gt26dcOZM2dwbu25Ns8wVJujvyPy4vNUdjx3d3ds2LABlY8rwf6PqaQuY+jQoehQ0AGRYZEqiFAqKSkJmzZtgrGxMfZO3dvgdKMtIfviNwk1AYfLQdGDItz+7XabG02MMaxduxbJyckInRQKJ2cn9FnWR2ENCtmxm1orobahm4ei9FEpkv5Mwt39dyGpaftV6br8hvoh6YskSEQScLgcdJvbDXZ+drD1tYWFmwU4XA4E4QIwMQPPgAdxtRiCNQJErYuCQy8HpBxLkb+2Pn364MqVKxDuFyJyVaRSyVV5Xjkuf3wZt3bfkiYdYgZwgGv/dw13fr8DlyAXeIzyQERoBCQiCQSmAiQmJiI3MRf7w/Y32IMgIwgX4OGZh3Af7t7o/SKRCFvnbkVydrJCj8K9e/fw4MEDPI56jL3P78WjqEcw8zLDPuxDN71u6CTqhMSfExH9aTTs/OyQfTVbfh5qH79ukllSUiKff/yVV17BsWPHMHLkyGaH+2RcyED6+XSF5xg5ciTMo81xKfQSuMOkNTXFfYtxEidxfst5PPjuAQxqDOSfmdYMKWKMYfv27Rg3bpx8+NXChQsbeivl8hLzkBMrnSFHUiP9rAvWCHBlwxUY2RhhbYe1qLGqkSaAqyORIk7Bv7b/wtnDGZIwSZuHPQ1hQ3CEfwRfbP+iXjJwOeQyUo6noDCpEPyhfJRmlso/11e/uCp/3rqNSNntkwtP4tyec9h7by+WjV+G8RvrJ29NxVlVVYWffvoJ3bK7QU9PenW67jBjQbgAlYWVED4UIv18OlwHuaIko0QeZ8HtAnSZ3KVenMtDluPiyouIWR+DHZ12wHWY6/+zd97hUVTfH35303uvJAQICQk9QIBQpRdpCoogRVGUIigoKnwhQECqoCCIggVQmiBVFJAmkARIQu8hhJKE9J6QuvP7Y3+7ZEkPaeh9n4eH7OzMnTN3Znfvufecz6GOTx06+HaocF/+G1DkF/29Wd7v4+rGxMSEZcuWERoaipaWFt7e3vz555/qgrgrVqxg+vTpbNiwgTp16nD//v1CbRgaGnL48GE+/PBDvL29MTQ0ZOjQoaxcubLEcxsbG3PgwAEmTJiAl5cXjRs3ZunSpQwdOlS9j6OjI/7+/nz22Wf07t2b7OxsXFxc6Nu3r0bR3sqkVjkEgwcPVn/BDB48uEornb6ItGrXCv/D/hjqV75EpiRJxF+Pf66qv89iXN+YB4kPOPfPOdp1bVcpbZqYmNC9e3ciP4usVIfApqUNN365gUKhqJQPm4uLCzNmzODGrze42PIiWjqV4807dXUi4UYCmXGZGoXDKoqenh4fffQRWVlZRByIoN+mfs/dZsHZoR/df0TKLz4Mpqzk5eUxbtw49uzZw6DBgwg6H0TLSS2LPXdZGbh9IHd23SEpN4lAeSBTPi1bzGxxgz9JkhjRcQQv1X0JmzQbHh5/CBLqwUZ+Vj4N+j8trFjcwMhjhAdJt5PQMVImaOZn59NpYSfS9qSpnYH8vHz6tuzL+DnjNX5IAALmBxB1NorHZx/j1MWJFu+3IOTrELUd7Wa2w7m7M0d3HiUmOgZDQ0NliAQKetKTie9MpINvh0IrCM/aXbd73VLDaLzqe5H5c6aGY7Fw4UIaRTUi7a804m3jaTS8Eft+3MdZznLD8AY7J+/kyuIrtJzUkpz0HGIuxuDv609yeDJ9f+yrtkvVb8nJyUyfPp2zZ88SHByMoaHys9G3b1+gbLkUz15LgF8AAXMDaPJmE+Tacv4Y+QdXgq7QWNYYa8ka3VxdZHIZxnWMSXmYUqGQorlz57JgwQJ++eUXvuj2Bbq6usUO1jPjM8lOyubOzjvYtFQmd6vuZ9vP2tJ0XFOyErOU/5Ky+GvsX0j5Ev748yjhEbvW7mJ6l+kELQ8q0cZnn+3Lly9z8OBBZs2aReCCQJLPJTP60WhMzplAgRzMQ+8e4tqP1zB1MaXZu80I+Sqk0HOtorgZ5dO+p1lxdAURORHkfpmLjalNucKzhg4dysGDBxnZcSRe/l6FrjNgfgAB8wLQ0tWi0euNaD6+OeeXni+znV0WdUHHQIfTvqdZfmQ59Q7V40ncE3p881TQoCqS4WszJTk9VbkyUFI9l5MnT2q8LmowP378eMaPH19sGwMHDmTgwNLDZ5s1a8bx48eLfb84O9u3b8+lS5c0tj2bO+vm5sbu3buLbfvZ63xeapVDMHfuU439efPm1ZwhtZSZ82ZitNKIkb1Glr5zGSj4xZ8RnUFWUhaWnsok3cqY4di5fydf8iVnPznL6aDTlWIzKGccEq4nVKpDsGLPCjbf3ozWRi3Gjhtbae3GhMQ8V0GygvjP8yczN5PIupHsX7+fN/73VOu/overQYMGfPXVV8Rdi2PL5i3U6VSnUmxt9792bJ+/nTv5d+iu0/25fxh0dHT47LPP+GT6J2xsspEO8zpUSv5I4IJA8vPzWcc6EhQJfNr3U1adWFXqccUN/ua+MpcdgTvYG7iXVa1WkZ+VX+Rgo7jE2YLOVIf5HejYpiNH3j/C2S/Ocm7xOWW4z0fKcJ+Fwxdy+PJhTrxxgvAH4eoZ5r/G/cX1n6+jb6XPgG0DiA6Kxt/XH595PrSd1ZbgJcH4+/qz//J+lh9YTteuXTmRfoKv9L5CO1ebPvI+PNz6kA3HNtCgfwM8R3mWaHdZrkt1TQDN3m3GoT6HkF2V0bxvcxzaORA4P5CuU7uiiy6Ojo70/qw3JgYm+Pv6YzbejPH3x/Pnm39y/efrXN94HSToML+Dun0DAwOOHDlCVFQUR44cKRQiUlIuRYf5HWj6dlMSbiRQv199Zdz7XH+QABnEXIhBkafAppkNr7/xOj4nfQj6Kgi5jhxFroI/Zv/ByndW0s+uH73b9tZw4EoLKRo9ejTffvstQ4cORSetaHWefz79h6DlQci15XiO8qTFpBaErCw82NYx0tGYgVetOg3LGUaLJi1oSUtCvgrBrIEZh3wPsWL/Ct774j1MzpkUez9d3nGhbdu25OTkYHzHmJxNOYWcJ+8Z3uzsuZNI/0jq9a2Ho4+j2mkt6rl2fsm5xBllu0g7vjv5HX3ClEpEkkKizcw2BC8JLtTuswwbNgx/f3/emvsWxmeNNfrz6OSjXPr2EvoW+gzYMYDHZx+X+Pkryc7Dlw8T9HsQF2UXcVvjRvz1eIYdGsb5pef/MypEgn8ftcohKEiDBg0ICgrCykoz1CI5OZlWrVpx7969GrKs5pDJZFi6W5J0JwmbZjalH1AKqkHNjsAdnHlwhiZWTdA10q20GQ5PT0/0tfSR51be8tamTZswk5mRk5eDhVvhmL6KIulIZJBB8Mng53YIFAoFgYGBNGvWjOjgaJq9UzlSpnItOV/O/5IjHOGljS+pHYLKuF/3D92nbre6aOtVzleCv58/G/I38IQnuOa6llkBqDSub1TG+zZ96/lD21T91tmvMwbmBqydvZa8k3kc//A43Vd1L/HYZweY7Wa1Y9/QfWjv06aFYQvatGhDWmBaiXG1ZVlqb9C/Ae8/fJ+v9L5ShofI4OLai9z49QZubdx4td6r5NzPIWxNGMYTjdncezNLby3FysqKoIgggpcrB/8nvU7yv0X/Y53zOsbNUUqsHvA9gJGeEY6OjgT4BaDIVahnnNt80gZHH0fC/wwnyj8KubZcHYIi5Uu4DnLF3NWc0L2hOLRzoNm7zTRi2pu+0xR7b3vu7L5DbkYuBjYG6tAk1fW3+aQNLy1/SRmf///98AZvaPRDeGw4o9aMYl3wOi5cuMBKvZUochSEE07I9yHYtrTFdaArwYuDmdp1Kh0ndSyU71DQWZYUksZ1GNcxJvjLYALnB2Luao6lp6U6tEquI2dq6lS09bU12gr5KkQdjx+4IJAZvjOIJ55Q21DGtBlD8t1kDQdO5bj4z/PnyqMr6Pjo8O677wLKGcB79+5xfdV1FAqFusATgNcHXuwdvJeI0xFYeloyaNcgQn8PLTVeW/V3wQG+nq8e7fza0fT3ptzecZudvjv5O/hvQvuEMprReLzhgUl3E1555RWSkpJY7LdY3d57773HjRM3iN8UTz+/fvjM8UGSJHLScjScJ68pXvRY3UPjfhb3XBf3XeAzxwcffBjLWOKuxPFbz98ImBfAjPkziJAi+PLDL9V9GZEUwb64fYwfP55u3boBSgfL/rY9hv6G+Mx72i+q++3U2Ymhh4eiY6BDpH9khe2cu3MuKdNT6Ny5M8ZHjLny/RW+NvgaSfH8q6ECQU1Rax2C+/fvF5nhnZ2dTURERA1YVDuwcLcg6U5S6TuWAdWX1hTfKYQQQiOPRpWaJNe2bVv2jtuLgaVBZZhLVlYW48aNQ6FQ8HXjryuslV8UH374IS4XXOjaqutztxUeHk6nTp3Q19fnC9kX9FzXsxIsVN6vweGDufDzBbQjlR/d57lfKSkpREVF4eHhQfih8EpT+QhcEMi5+efo1boXeUZ56AbqPldyWWhoKFFRUbRr3Y6AeQF0+7rbc9/7Z/utbX5bJk+ezI6uO7iw+gLIoPvXpTsFkiRpDore8GL2ltn4z/dHu19hhY2Cg42yLrWfXXhWY7DebmY7pUrSuce8bfE24SnhnFt8jnOLzxFLLBFEkJaXho6+jtrpCI0IJedijnrpXNV+n5w+yiqXRcwQd/TrSI9vetB9dXcSbyeyselGpHwJmVxGfnY+l9ZdIi8zj9yMXHIzc5XX9f8x7Q/+fkBUQBQ6RjroGOqgY6SDrokyxEZSKGeuX1r+ElByyIF+N31MfzHF3NxcObDPUfbDgZwDPIp6hN1bdrRu0BpLD0vkW+XIPeRQoDnVtTQe05gj7x0hdK+y6qyUr0wgfWnFS1g1tsLCzQJtfW0CFwQStj9M3ddBy4OKjXtX9ePC3IV8veBrXm7/Mj3X9qTn2p4s1VnKnrw92GOP1Q4rDKwNuPbgGpM2TkJ3sy49e/ZUV0W9vur60/CqKV7EX4vXcJyav9ec3t8rY3Nu/3a7xEHsw+MPeXTyUakJnh82+pCMQRnUV9RHJpeRcCOBS10vsTd/LwAJTRJwe9VNGRamVReXfBcc2jsQHRTNz01+JiU8hbwn/1+F/v9D4lR1QCorhMSmuQ3vPXiPxcaLCVIEkUsukZcjubbxGvnZ+exevZvf+I3Q0FDOnz+PTCbj/KLzXFtyjabjmnJq5inuH7qvvt9yHTlvnHrqcD6PnTKZjK+++kr54lW4/vN1cnNy0dHVEc6A4IWl1jkE+/fvV/99+PBhzMzM1K/z8/M5duxYsdJ1/wXW3VrH5T8vs7fX3kKFNiqCzxwfPo77mIPfHMThjkOlLnfK5XKsPKyIPBNZ+s5lIDU1lQEDBnAn+A6uLV0rpU0VHh4e+LzkQ9rNtOduKyYmBmdnZyxMLJCHK/ugspj440Sa2jfl/OLz6tnSit6vP/74g1GjRtGndx/6nO5Dr+96Pbd9zybhAfzW8zcUuYoKOwVr1qxh9erVDPUZymCHwbgPdX9uO5+dnVcpNrxx6g22ddrGpXWXkMlkdPuqW6FjAxco5Qiduzrz8OhDJCSipCjq6tZl4DZlzGnn+Z2LPXd5rr+48By5tmb+gupZsNCx4I89f/DkyRPg6aDH6ZETs2bNok6dpyFhZQlbUr2+s/OORuJznY51ioztVr3f/N3mha4zcEEgd3bdeZo8XYZVo1dffZU+ffpweM5hDTu3NNiCUbgRzYY2w8PDg6BlQRg5GilDTCSJtp+15fA7h7m55Sba+to8PPoQt6FuuA505dpP19Q2JN1JwmO4R4l9reqD4lZ0XvJ7CT0dPXXyZOCCQALzAjnHOTzwwNLDkms/XyPrVhZNTZtinGrMre9vUW9xPXWegksvFx4ce0CgXyAWjSzUqxRaulpqZ6Dg/SwKlY11u9ctNcHT8oIlryheUfeD+zB33jz3JnoL9LDItkCeISc1OhUAWb4M5ODY3hGzBma0mNACswZm3Np2i0C/wHLdz/IS/GUwhgpDPtX5lGu51zBVmHLp20vEXIjB1taWVrGtGNdwHKkPUjk29Rj3DtxDrivn3sF71O9bH3M3c2IvxVapjYELAsnIySBJOwmHHIcqOYdAUB3UOodAFfspk8kYO1YzdENHR4d69eqxYsWKGrCsdhCXHUdkaiS3bt2qFIcAYMTqEUSuiQSFcqanMr/MLNwtuPrj1Uppy9bWln379nHgjQOVEjJVqP2WtoR8FVL6jqXQoUMHHj58yIUfLnDr51uVupIhk8nosqgL55ecV8+WVvR+RUZGoqenh4uJCybOJlg0fP4QrKIGTZ0WdmJnr514f+ZdIcUJAwMDzEzNsLlqQ+fdnZHJn19soLiBVW5uLmlj0giNCUXxtTJEp9vKp06BapBo6mLKhdUXsGtlRwAB7GMfvXJ60X5B+0r7/JR1sF5w5pwc5WDvWRucnYsuaFiWsKXy5gwUVROiLPsUx5WVV7j31T0NO4PvBavbyPPL491773J53WX85/oTMFc5yAZw7OBI1+VdcWzvyNkvzuL/TdE2qPq0pL4uy4yyqk3v173xbu6N4rKC0J2hdPTrSL219WiwugF3tt/h2pJrXF92HUkhIdeWo6WnhdsrbvTb1I8bm29oOFflGWCWx8ai+mHGFzPU+wcuCCQqIEpth76lPq2mtFK/F+gXWKH7WVaKs7OjX0cG7xlM2P4wWqxoQfL2ZDZs3wCAS08Xui7vik1zG+X9ruAzV14bm33cjMFfDq6ScwgE1UWtcwhUBcnq169PUFAQ1taVlzj6b2DmhzM58dkJ+vfvX2ltBvgFKLWideSVPotyOvw0S24uIXpRNDNnzayUNuOvxdN4VOVpVau4ln6NrRe34n3Tm0aez1+PIelKUqUlFBckcEEgSJBNNno5ehW+X59++ilTpkzh0NRDmPSteO2BghQ1IDH0MMSwnaFyNWNJ+fMclixZQm96E302GpeeLpVhZrFs3bqVCRMmYG9vzxdtviDkqxBkMmVoyaF3Dilnl/W0aDquKfnZ+ZxbdA7d9rpIZyU8+npU6mCgMgbrpVHaALI0p+TRyUc8PP6wXDHtRe1Tkq1l6QddI128P/GmxYQWfGPxDVKecnZ9pL9SgKG06ygt0bUsjmxx4XsF78nAXweSsTKD7xy/U4axaMuZkjpFnSD/vPezIjYW52QWZ4dq36rUnS+rnS0ntlSvjmnpavHa36+V6/jqsFEgeFGodQ6BivDwcPXfBau5VYS1a9eyfPlyoqOjadGiBd98802hyoovCv2G9yNsQhiGssqRHt0/Yz87v9yJncyOpRlLOb/kfKV+mWWQwR3pDqeOnXpuh0ChUCDlSSTdTqpUhSGV2tL3J7/nWN4x+u7uS6P/PdWhrqjaUkxIDC3eb1Fpdqrs+d33d3ZY7OBJ0hN2frTzue6XgYEBCScTaP5V80q1U8WqVav4+OOPGT5wOBnfZdDm4zaY1CnZ+XhW9jAjOoOra67y+rHX1dVzq0rfe+TIkXz//feMGDGCke+NZFeXXQSvDCb4q2CQwPklZwbvGczFby5ybtE5dWjUxJMT6dq1a7EynRXheQfrlWFDaYPxB8celGkg/TyD7fLEeod8FaJ2BgpObpTFqSiur8rah2XVY7/y/RWN8CuVPn9tuJ9FOZnP2lEZzlNl2AlorI6V935Xl40CwQuDVEvJz8+X/Pz8JEdHR0lLS0sKCwuTJEmSZs+eLf3www9lbmf79u2Srq6u9NNPP0nXr1+Xxo8fL5mbm0sxMTFlOj4lJUUCpJSUlApdR1WwxmaNFHUu6rnbCfALkN7kTQmQ3A3dNbYvZ7kU4Bfw3Oe4c+eO9Jb9W9L+b/Y/d1stW7aUPFw9pE8MPpEUCsVzt6dCdb1T+kyROll3kn6a9ZPG9vL0Q1pamtS6dWtp7Jix0nL95VLc9bhKt/PvWX9LcrlckiGTDnxy4LnuV2JoorRSd6WUnZZdaXYW5NChQxIgDRs2TNr32j7pyIQjpR6jup5Tc09JERER0t+T/5b2DNlTqc9lSRR8thT5CmmhfKG0nOXSCt0VkiRJ0pMnT6TJvSZL+2cU/UwH+AVIZ+aeqVIbJUmSzsw9U2xfVJcNtYlnn4/qel7KQ0k21pb7WVvsKI0X4X5XJlU1FsnJyZEiIyOlnJycSm1XUHso6z2utQ7B/PnzpQYNGki//vqrZGBgoHYItm/fLrVv377M7bRt21aaPHmy+nV+fr7k6OgoLV68uEzH1zaHICcnR5rZZKbk+5bvcw+Kz8w9Iy0ZsURq6txUGuIxROO9yvzi3z1otxT8VfBztZGdnS1pa2tLgLTKa1Wl2FUQ1Y/JL96/SCc+OVHhH5ezZ89KgGRrbSt9bfS1lJ+XX2k2Fvyh/ueff6SgTUHS+gbrJYVCUe77NWbMGKlfv37Sxo83Sjt67Kg0G58lLy9POn/+vCRJkhR/I15aqbdSSgpLKvW4AL8AaTSjJRkyqaW8pXT0g6M18mP/1+d/SaaYSl3kXaRFLJIC/AKk1157TQKk8ePHV6stguIp7vNamwaJL4KNLwr/xb4UDoGgopT1HtfakKHNmzezfv16evTowYQJE9TbW7Rowa1bt8rURk5ODiEhIcyc+TRURS6X07NnTwIDA4s8Jjs7m+zsbPXr1NTUCl5B1SBJEktvLEVxXcGERRNwcHCocFsd53WkIx3xGOaBQ1vNdioz9tGykSWJtxMrdKwqfKT97Pbcu3eP7TO2426sVJmpzPLwBZfEo4OjQSo6zKE03N3d2b17Nzf/vIntLVvkWpWXUFzwOrt06UJeuzwCP1Qm/pXHzvz8fA4cOEBSUhJdUrvQfXDJ8prPg6okPICVpxWNhjci0C+Qfhv7lXiczxwf1h9dD6fAWmHNxTUXq13fO3BBID8t+YlUUolrFIfPMB/8ff3p+W5PAuoEFNK7F9QcL0L4xotg44uC6EuBoPKptQ5BZGQkDRsW1kVXKBTk5uaWqY34+Hjy8/Oxs9NM7LSzsyvWqVi8eDHz588vv8HVhK6uLt4NvSFTmVtRGcRfjaf5u1UTQw6QY5PD34f+xvmWMx4eHuU69tmKsA2fNMTGx6ZKysOr4ngzczPR09Gr0ODTwsKCV155BZNjJmi10ao024pCW08bjzc8uL75OnU6lr3CsFwu58SJE/x95G9kc2XUX1c9Mr5ZWVnYj7Xn1MunaPtZW6w8i5djTX2YSm9FbyyxxBzzSle/Kg3V8zXNbxrjvMdhbW1NmzZt0NPRw9/Xn62+W+kytku12SMomcrSvq9KXgQbXxREXwoA3nrrLTZt2lRoe58+fTh06FCVn3/evHns3buXS5cuVfm5qoPKm76sZBo3bszp06cLbd+1axdeXl5Vdt6ZM2eSkpKi/vfo0aMqO1dF2bxkM5PtJldKPYbczFySQpOwblZ1ak4//vMjy68uZ/v27eU+1meOj7p6Z+CCQOKvxRN7KbZKysMHLghkde5q5jCH+7n3lWo+FSQmJKZKFIZUSJLEunXrWHt3LSHbQsjLyiv1GP95yj6UyWS0aNGC11q9hpGFEdZNrZUD4Hn+pbZRUQIDA6lfvz5vT3ubxmMbKwt5FUPo3lA2t9xM3pM8HHDAWNdYnTBYXRScgezbt69a4lf1PGrJqtbZEwgEAkHp9O3bl8ePH2v827ZtW02b9UJSax0CX19fPvjgA5YuXYpCoWD37t2MHz+eL774Al9f3zK1YW1tjZaWFjExMRrbY2JisLe3L/IYPT09TE1NNf7VNizcLUi8k4gkSc/VTnJyMk51nfhe63v0bPQqybrCtOnQBgccMDGsmLSlzxwfYgbEsMJ3BY/uPeL6xutV4gz4+/pT16MuANn1s9VOSFnwn+dPgF8Av/zyC0Hng4i5GINdG7unbVfyYFsmk7FmzRr2Hd1HhFEEYQfCSj1Gtdqiuqb7h+9Tr289tTJOZYY3PYuHhwfp6elE348mSZHEvT/uEXspVmMf/7n+/Nr2V9a8uQaLLhbEhMTQ0a8j07KnaTiF1UHHecU/Xz5zfKpM5UggEAgEZUdPTw97e3uNfxYWFpw8eRJdXV2NieVly5Zha2urHhMeOnSITp06YW5ujpWVFQMGDCAsTPO3NCIighEjRmBpaYmRkRFt2rTh3LlzbNy4kfnz53P58mVkMhkymYyNGzdW56VXOrU2ZGjw4MEcOHAAPz8/jIyM8PX1pVWrVhw4cIBevcpWUVVXV5fWrVtz7NgxdcEzhULBsWPH+OCDD6rQ+qrF3NWc3PRc0h+nY+JYcf340NBQYhNiydHNQVdXtxIt1OTjmR+jt1yP13u+XuE2tl/aTgQR2GGHha5FlTgDHf06MnTUUJKCkgj+NJim85uWWe5PriXnoO9BvuALtLW1WaK3BEt3yyoJbVIxYcIEkpOTcY935/rm6zR6reTaCT5zfMjOzWa272wGhw3GOMQYm8Y2VbLa8iwWFhacOHGCzAOZnPc7j6OPI2fmnOHVA68CcPzD41xYfQFtB202SZtYv2893038Tuh7CwQCQQ2RkZEBgKGhITKZsiBkTk4Oubm5aGtro6enV2hfAwMD5HLl5FJubi45OTloaWlpSMcXtW9l89JLL/HRRx8xevRoLl++zL1795gzZw47d+5Uh5FnZGQwffp0mjdvTnp6Or6+vrzyyitcunQJuVxOeno6Xbt2pU6dOuzfvx97e3suXLiAQqFg+PDhXLt2jUOHDnH06FEAzMzMquRaqo3qyHCuSbZv3y7p6elJGzdulG7cuCG99957krm5uRQdHV2m42ubypAkSdLFixcle217qalb0+dqJzMzU/r2jW+lpYOXVpJlxfNru1+lG1tvVOjY/Px86c2Ob0ruuEsLZAsqXUXiWZm9nMwc6SuDr6S4a3HlUu/Z8sEWyRVXqbFVY2lbl23VpniRdC9JWqGzQkqPSS913+PHj0uAZIKJtIxlNaLIoeqXFTorpMjASGnPK3uk5SyXtnbcKl27fE1ytXWVnK2ci1REqE2yhwKBQFBd1ITKECABUmxsrHrbwoULJUB69913NfY1NDSUACk8PFy97auvvpIAaeTIkRr7WltbS4B07dq157J97NixkpaWlmRkZKTx74svvpAkSalO2LJlS+n111+XGjduXKoyXFxcnARIV69elSRJkr7//nvJxMRESkhIKHL/uXPnSi1atHiua6gOXniVIRU5OTnExsaqKxirqFu3bpmOHz58OHFxcfj6+hIdHU3Lli05dOhQoUTjFwlzc3Oi86JJCE8gPz8fLa2KxTMbGBhgFWtFxxFVH/5g0ciCpDtJFTr23BfnaOnfkpfcXsJrshc5qTmVOlP8bPiHjoEOdbvX5d6f98rV/shvRlLftj7+vv5E+kcScSqiWpRxzOub4+jjyO3tt2k1tVXJ+5qbM2bMGO5vvo8MWbUn64Lynt2Pu0/kN5Fs9dkKQOPRjem/WVl9+87jO0RERKCjo1PksQKBQCAQAHTr1o1169ZpbLO0tASUUSJbtmyhefPmuLi48NVXX2nsFxoaiq+vL+fOnSM+Pl49znz48CFNmzbl0qVLeHl5qdv7t1NrHYLQ0FDGjRtHQECAxnZJkpDJZOTn55e5rQ8++OCFDhF6FmdnZxYNWER9x/rPtdwmSRJxV+LovKhzJVpXNJtCN/HP7//wQ+sfGDBgQJmPU4XcdJjXgeCVwTh1ccLOS+nMVVX4yP79+/kh9gfcN7rTdkb5Klq3n90e/7n+6kqkVT2Azc3NJSQkBNO+plzffL1Uh8DLy4th2cO4zW3kunKN6p7VQXZ2Nj179sTf359PdT7FOtcaua5c7QyAUgWprA6/QCAQCKqG9PR0QBkypGLGjBl89NFHaGtrDh9jY5U5YQYGBuptkydPZvz48YUmLe/fv19o34piZGRUpCKlCtUYMjExkcTERIyMjNTvDRw4EBcXFzZs2ICjoyMKhYKmTZuSk5NTafa9SNTapOK33noLuVzOH3/8QUhICBcuXODChQtcvHiRCxcu1LR5NYqWlha9e/ZGP0ZfHddXEX745gfOxZ9Dq07VKaaolG0y5BnEZMRw48YN9XtlSbZV5Cto8lkT6r1cDwCb5jbAU7WXqtCbPnfuHH8F/UXAzQCykssu7ZqVlcWR946ABFq6WtWijDNx4kR8fHz4J+EfEq4nEH89vsT9T35ykts7btNoeCOmZ0+v9mRdPT09LC0t0ZZr8yD3AVq6WihyFNiZ2TFnzpxCK4ECgUAgqBmMjIwwMjLSGGfo6upiZGSkkT9QcN+Ck5Q6OjoYGRlp5A8Ut29VEBYWxrRp09iwYQPt2rVj7Nix6t+YhIQEbt++zezZs+nRoweenp4kJWlGMTRv3pxLly6RmFh0HSVdXd1yTU7XdmrtCsGlS5cICQkpt279fwULdwsuf3/5udr4bM5nJJHExwkfY+tkW0mWaaJStun/Wn/qG9TnnXfeAShzsm3HeR3p2LEjIStD+KTlJxpKOFU1qz148GB0dXXJ3ZzL/SP38Xi99GcwKiqK+i71qZ9Xn5ltZjI2aKz6GqvS1g4dOrB371509HVoOKQhN365QZclRevj7/t4HxdWXsC1tSsDtw/UsKs6k3VHNRhFi/wW9PPrp679MMN3BgsXLiQlJYXVq1dXuQ0CgUAgePHJzs4mOjpaY5u2tjYWFhaMGjWKPn368Pbbb9O3b1+aNWvGihUrmDFjBhYWFlhZWbF+/XocHBx4+PAhn3/+uUY7I0aMYNGiRQwZMoTFixfj4ODAxYsXcXR0xMfHh3r16hEeHs6lS5dwcnLCxMSkkKP0QlEtGQ0VoE2bNtLp06dr2oxamVQsSZIUcjREGiYfJu3atatCx+fk5Eh9W/WV3CzcpLS0tEq2ThNVEulylktpkWnlSrZVKBSSvb29BEhbPtpSpXY+yz+f/SMdHHOwTPvOGzZPAqS6srpS1Pko9faqTizOycmR8vPzJUmSpLA/w6R1ddZJ+Xn5Re7bt05fCZB8/+db6L3qStYtrj82jN8gTWGKdGLOiSq3QSAQCF40aiKpuLYzduxYdeJzwX+NGjWS5s+fLzk4OEjx8fHq/X///XdJV1dXunTpkiRJkvT3339Lnp6ekp6entS8eXPp5MmTEiDt2bNHfcz9+/eloUOHSqamppKhoaHUpk0b6dy5c5IkSVJWVpY0dOhQydzcXAKkn3/+uTovv8y88EnFS5cu5dNPP2XRokU0a9asUIJhbawPUJ2EhIWwS7GLpFVJDB06tNzH6+joMKXpFMwGmGFsbFwFFj6l4Cz0+nrrUeQWXXa+KGQyGY8ePcLP1o+Or1av9nuDlxuwb+g+JIWETF5yaFaPxj2w6mXF49DH2Ld5WuNCdY1VEdoEaHwu6vWqhyJPwaMTj3Dp6aKx3+Nzj3kc/RiA5l6Fq1JXVw5BwYJfBXl3/bsEOgdWWT8JBAKB4N/Fxo0bS9T+f7Zm1auvvkp2drb6dc+ePTXCmIFC9Z1cXFzYtWtXke3r6ekV+96LSK11CHr27AlAjx49NLZLFUgq/jfi1cqL5kbN8XKteNXm+KvxNBxUfDJOZeIzx4ef5/5MTG4MbXTalGsAmhKagmWWJU7tnKrQQk1yc3OJ1I7kduZtooOjcWjrUOL+neZ3IqpHFO0mtyuU11Fdg+3zwefR663H9c3XNRyC7NRs/hj5BxuWbKDe2HoaSVXVTUkFvYSCkEAgEAgENUOtdQhOnDhR0ybUatq0acO87vNw8XIpdd+iyEjLIOFGAtbNrCvXsGIIXBDIXmkvccRhl2tXLmWbiFMROLR3QEu36pKfn2XXrl2MHDmShhYNGX5weKkOQcqDFCJOR/DylperyUJNvvvuOyZOnEjblm154/Yb9Py2J7rGymJzxz44hnkDc9pMb1PqSodAIBAIBIL/HrXWIejatWtNm1DrsXC3ICm0Ytr+fXv15VrONZqEN6G3e+9KtkwTVXJtl9ZduBNyh5YjWpY5iXXZsmWc23iOIS8NqVIbn6VTp05YWFhQt0Fd7v5xl47zi5/ZXrduHad+OYW3jzdG9jUz+z5gwACmfzgdG5kNRq5GhO4OpcmYJlz75Rrf7PqGd996lwC/gBJn6AUCgUAgEPw3qbUOwZUrV4rcLpPJ0NfXp27dui92NnclYOFuwe1dt8nOzi5XX0iSxJVrV0iVUnFwLHnm+3kpqCb0yZxP2P7Sdhp1akSWZ1aZnILNmzdz/eZ1Bo4eWKV2PouzszPx8fFkJWSxzmEd6Y/TMXYoOtfi559/JigoiBaTW1SrjQVxcnJi17Rd3Fh6A8vellzffJ06neowZ/wcDmUf4uy6s+z13Vtj9gkEAoFAIKi91FqHoGXLliVq7Ovo6DB8+HC+//77Qhq3/xXWHV/HT0d/4ovVXzBjxowyHyeTydg5cSeXrl/C09OzCi0snETqNsSNu3vv8tqR19Tvl8T7o99nx8wddH+9e5XaWRRyuRxDG0Psve0JPxROs7ebFbnfuJfHoX1Fmzc/ebOaLdSk/5L+WBhZ4O/rj0wuY98r++jg3oHzV88zatAous4Xq24CgUAgKMyzybSCfw9lvbe1tjDZnj17cHNzY/369Vy6dIlLly6xfv16GjVqxNatW/nxxx85fvw4s2fPrmlTawxzB3NypVxu37pd7mMzbmfQo3ePQtUGK5uO8zQVZVwHu3L/xH2ykrOUxcVKCWHp7tCdSe0nUde15irX1u1Tl3sH7xX7vku4CwvfX4hzPedqtKpofOb40OzzZuxT7OPOlTvIrsrY5ruNJXuX1LRpAoFAIKhlqKoIq6rzCv59qO7tsxWjn6XWrhB88cUXrFq1ij59+qi3NWvWDCcnJ+bMmcP58+cxMjLi448/5ssvv6xBS2uOKZ9MQfs7bT6Y+kG5j427Gkfrj1pXgVXFk5OTg09/H0LzQun0Wyd83is9qTjiVAROXapPXaggsbGxDBkyhFs3bjEnfw75OfmFEptz0nK4vfM2I/1H1oiNRbHu5jqCCUYLLQbpDqLL/KILlQkEAoHgv41cLsfQ0JDU1FRAWX23pOgMwYuDJEnk5OSQmpqKoaFhqZWha61DcPXqVVxcCivouLi4cPXqVUAZVvT48ePqNq3WUKdOHdw93Em7l4Z9C/vSD/h/PvnoE27dv0Vv+6pNJn4WXV1dMjIyyCefU9tOleoQ3LlzhyvHrvDqmleryUJNrK2tuXHjBikpKcRaxxJ5JpK63Z+uVCgUCpZPW45xfWNsW1ZNpeeK8IrjKxzmMI5ajuTn5JdL0UkgEAgE/y3MzMwA1E6B4N+FoaGh+h6XRK11CDw8PFiyZAnr169HV1cpn5ibm8uSJUvw8PAAIDIyEjs7u5o0s8axcLcg8U5imffPyspi1ZpV5JHHWqO1VWhZ0ezduxd5nJyTr54kLysPbf3iH8EpE6dw5P4RDO8aMpnJ1WilErlczq5du6hfvz6hi0IJOxim4RBcvHiR2T/OxkjPiMl5k6s8/KosBC4IJG5dHCveXkHzcc3ROqFVZkUngUAgEPz3kMlkmJubY2pq+p+v8fRvQ0tLq9SVARU1P4IphrVr1zJo0CCcnJxo3lxZWfXq1avk5+fzxx9/AHDv3j0mTZpUk2bWODHGMfz8y8/0tejLe++9V+r+ubm5TBo4icvnLlO3bvXH5bdq1QpJkjhvc54Hxx7g+rJrsfumxaUhR06L1jWn3qMqkKcYoOD0rNN0W9FN/V707WicZc606tmq1jgDKkUn9eC/k/I/4RQIBAKBoCTkcnmZB4+Cfx81P4ophg4dOhAeHs6WLVu4c+cOAK+99hojR47ExMQEgNGjR9ekibWCSCLZc30P8b/Gl8khMDExYaDjQF4Z+UqNxQnKZDIaDmnI3b13S3QI/Lr4kdc5j/bt21ejdUXj0tOFA8MPkHwvGfMG5gCY3TTjmyHfMGDngJo17v95VtFJhep1aYpOAoFAIBAI/pvUWocAlIPXCRMm1LQZtZq+A/pydNtRPvzwwzIfE3cljubjm1ehVSVz7Ngxvrr8FY4XHOn1XS/kWkXPSESciqDD3A41Pvu+Z88eDhw4QK5LLvcO3qPVlFYo8hVc33Sdnmt7lpq5X12UpNgkVgYEAoFAIBAUR612CABu3LjBw4cPC0liDRo0qIYsql0079qcwU8GM6Bn2Wapz58/T9SVKLo3q35dfxUnTpzg4MmDNNVpyuOzj6nTsU6hfZ4kPiH+Wjx1Ohd+r7rZtm0bO3fupFfLXmqH4NqBa+Rm51Kvb72aNk8gEAgEAoHguai1DsG9e/d45ZVXuHr1KjKZTF1YQRXmIhJflBhYGmBgZUBSaBL2bUpWGkpKSqJdu3bIkfOW41vVY2ARjBo1iqysLFzuuBC6N7RIh+Cj8R8RbBRMyyst1XH8NcXGjRtxSHWgqVVTHv3+iJyMHKZ8NIVTsacw32GOa7irMlynlJoKAoFAIBAIBLWRWps98uGHH1K/fn1iY2MxNDTk+vXrnDp1ijZt2nDy5MmaNq/G8Z/nT+CCQECpNHTN/xqHDx8G/j+5dJ5/oWMePHiAjYUN1jrWWNlZVau9BfHw8ODLL7+k3zv9uLvnbqEqesnJyWzev5kL6RfQ0dGpISufYmhoyBsd3yBlawo6Rjrc3XMXrQhlmFDi0UT8ff2LDXsSCAQCgUAgqO3U2hWCwMBAjh8/jrW1tTrzvVOnTixevJipU6dy8eLFmjaxRpFrydXKMRl2GfT6qBcGBgYcmnGI837n6ehXeLa6ZcuW7P9kP+HB4dVtbpG49HIhPSqdhBsJWDexVm83NzdnYeOFRHhE0LVr1xq08CmqGHx/X3+OvH+EVg1a0aFpB7I3ZdPJr5OI0RcIBAKBQPDCUmunNfPz89VqQtbW1kRFRQHKwmS3b9+uSdNqBT5zfOjo1xF/X39MU02xNLCkgVUDDvsdLlJpRkX81Xjqt65fzdYWzZ3wOwQ4BxC4OVBje056DlyH+V/OryHLisZnjg+NxzQmLzMPh3AHzPeYC2dAIBAIBALBC0+tXSFo2rQply9fpn79+rRr145ly5ahq6vL+vXradCgQU2bVysoOGv9KZ+iFaFVojMAEHc1Ds+RntVlYom89957BNwJQGebDgOXDgQgPT2d+MB4TJxNMHU2rWELC9N7fW9u/HoDKU9CS1dLOAMCgUAgEAheeGrtCsHs2bNRKJS66fPnzyc8PJzOnTvz559/smrVqhq2rvbgM8cHua4cLbSQ68iLHaA+evSIVq1a8eONH7FqWnP5AwUZO3Ys/fv0xzjSmNRHqVy7dg1HR0fmzJtDnU41ry5UFEHLgkABWrpa5Ofkq/M4BAKBQCAQCF5Uau0KQZ8+fdR/u7m5cevWLRITE7GwsKixglq1kcAFgShyFMi0ZChyFZz8/CRdFnUpVG3w/PnzXLx4kTryOpjVM6shazV57733eO+999jRbQd3993lt4jfSEtLI/ROKM5vO9e0eYV4thKw6jUInX+BQCAQCAQvLrXOIRg3blyZ9vvpp5+q2JLaT8EBavvZ7eli0YW5S+eyKnEV765/V2PfLl26sPKDlTz4+0Gtc6jcXnHj7t67LP57Me2923NuxDmcujjVtFkaPOsMgGbIVsHXAoFAIBAIBC8Stc4h2LhxIy4uLnh5eRWSoxQ8pagBqnkHczL/ymTvhr00cW6iMUC1sbGhlUErmnZrWlMmF4ttD1tWT1vNwKSBtLFtQ5RlFBZuFjVtlgaKfEWR+Rmq14p8RU2YJRAIBAKBQPDc1DqHYOLEiWzbto3w8HDefvttRo0ahaWlZU2bVesoaoA6Z94c3h/2Pjfev0FyeHKhY+KuxOE6yLUarSyd7OxsnJsqw4MGfzcYB8kBpy5OtW4Vo6SiY2JlQCAQCAQCwYtMrUsqXrt2LY8fP+bTTz/lwIEDODs78/rrr3P48GGxYlCAjvMKz1a3bduWAeMG0HNlTx4ceUBmXCYA4eHhrF+/nmsXr2HT3KYmzC2W4MXBdPbojJGeEVf+ukLEqQh1uFBxBdYEAoFAIBAIBJVHrXMIAPT09BgxYgR///03N27coEmTJkyaNIl69eqRnp5e0+bVerw+8MLRx5E/R/+JpJBYuHAh77//Pr/E/oJ1U+vSG6hG5Fpyut7qyug2o9EP0SfSPxLnLs7qkChRAVggEAgEAoGgaqn1oy25XI5MJkOSJPLz82vanFrP1atX6d+/P7da3uLxucfs7L2T6dOnY2NpQz+bfuib6wO1Z/bdZ44P/f364+rviqGeIXIdOaF7QwvlRwgEAoFAIBAIqoZa6RBkZ2ezbds2evXqhbu7O1evXmXNmjU8fPgQY2PjmjavVvPnn39y6NAhTgWewuMNDx4ee8ijlY/4Y/YfdG/bHaDWzb6rqi5nJ2eTnZpNwNwA4QwIBAKBQCAQVBO1Lql40qRJbN++HWdnZ8aNG8e2bduwtq5dYS61mffee4/r16/TunVren3Yi7SINK79dA2LRha4v+pepDpRbcBnjg+BC5U1FUQFYIFAIBAIBILqQybVskxduVxO3bp18fLyKlFpZvfu3dViT2pqKmZmZqSkpGBqalot56xMJEliY/ONJFxLQK4tR5FXtHxmTaNyVFQVgGujjQKBQCAQ1AQv+lhEUPupdSsEY8aMqXWSky8yMpmMkf4j+cbiGxR5tXP2XVQAFggEAoFAIKg5ap1DsHHjxpo24V/HhVUXQIF69j1wQWCtGWiLCsACgUAgEAgENUutcwgElUttn30XFYAFAoFAIBAIahbhEPyLeRFm30UFYIFAIBAIBIKaRTgEpaDKuU5NTa1hS8pPWmYaLWe1pMmHTTTsb/JhEzKyMkjLTHshr0sgEAgEgv8Sqt/qWqYDI/gXUetUhmobERERODs717QZAoFAIBAI/uM8evQIJyenmjZD8C9EOASloFAoiIqKwsTEpMrUj1JTU3F2dubRo0dCTuw5EX1ZeYi+rBxEP1Yeoi8rD9GXlUd19KUkSaSlpeHo6IhcXjuKigr+XYiQoVKQy+XV5o2bmpqKL+ZKQvRl5SH6snIQ/Vh5iL6sPERfVh5V3ZdmZmZV1rZAINxMgUAgEAgEAoHgP0yVrxBkZGSwZMkSjh07RmxsLAqFpozkvXv3qtoEgUAgEAgEAoFAUAxV7hC8++67/PPPP4wePRoHBwdRhbgI9PT0mDt3Lnp6ejVtyguP6MvKQ/Rl5SD6sfIQfVl5iL6sPERfCv4NVHlSsbm5OQcPHqRjx+L15gUCgUAgEAgEAkHNUOU5BBYWFlhaWlb1aQQCgUAgEAgEAkEFqHKHYMGCBfj6+pKZmVnVpxIIBAKBQCAQCATlpMpDhry8vAgLC0OSJOrVq4eOjo7G+xcuXKjK0wsEAoFAIBAIBIISqPKk4iFDhlT1KQQCgUAgEAgEAkEFEZWKBQKBQCAQCASC/zDVVqk4JCSEmzdvAtCkSRO8vLyq69QCgUAgEAgEAoGgGKrcIYiNjeWNN97g5MmTmJubA5CcnEy3bt3Yvn07NjY2VW2CQCAQCAQCgUAgKIYqVxmaMmUKaWlpXL9+ncTERBITE7l27RqpqalMnTq1qk8vEAgEAoFAIBAISqDKcwjMzMw4evQo3t7eGtvPnz9P7969SU5OrsrTCwQCgUAgEAgEghKo8hUChUJRSGoUQEdHB4VCUdWnFwgEAoFAIBAIBCVQ5Q5B9+7d+fDDD4mKilJvi4yMZNq0afTo0aOqTy8QCAQCgUAgEAhKoMpDhh49esSgQYO4fv06zs7O6m1NmzZl//79ODk5VeXpBQKBQCAQCAQCQQlUSx0CSZI4evQot27dAsDT05OePXtW9WkFAoFAIBAIBAJBKYjCZKWgUCiIiorCxMQEmUxW0+YIBAKBQCD4jyFJEmlpaTg6OiKXV3m0t+A/SJXUIVi9ejXvvfce+vr6rF69usR9a7v0aFRUlDrUSSAQCAQCgaCmePTokQi1FlQJVbJCUL9+fYKDg7GysqJ+/frFn1wm4969e5V9+kolJSUFc3NzHj16hKmpaU2bIxAUy9nFZ5HL5bT9rG2h984vPY9CoaD9zPY1YJlAIBAInofU1FScnZ1JTk7GzMysps0R/AupkhWC8PDwIv9+EVGFCZmamgqHQFCrMTE0wd/XHyN9I3zm+Ki3By4I5NKiS3T06yieYYFAIHiBEaHLgqqiygPR/Pz8yMzMLLT9yZMn+Pn5VfXpBYL/DD5zfOjo1xF/X38CFwQCSmfA39efjn4dNZwEgUAgEAgEAhVV7hDMnz+f9PT0QtszMzOZP39+udtbu3Yt9erVQ19fn3bt2nH+/Pli992wYQOdO3fGwsICCwsLevbsWeL+1Yn/vKeDtmcJXBCI/zz/arZI8G+goFOwUmelcAYEAoFAIBCUSpU7BJIkFbnEdfnyZSwtLcvV1o4dO5g+fTpz587lwoULtGjRgj59+hAbG1vk/idPnmTEiBGcOHGCwMBAnJ2d6d27N5GRkRW6lspEriXXmMlVoZrRlWsJFQFBxfCZ4wMyUOQp0NLVEs6AQCAQCASCEqky2VELCwtkMhkpKSmYmppqOAX5+fmkp6czYcIE1q5dW+Y227Vrh7e3N2vWrAGUkqDOzs5MmTKFzz//vNTj8/PzsbCwYM2aNYwZM6ZM50xNTcXMzEx9HZXJs+EcIrxDUBkE+AUQMDcAZIBErXyeTp06hZubGw4ODjVtikAgENR6qnIsIhBAFSUVA3z99ddIksS4ceOYP3++Rla8rq4u9erVw8en7IOUnJwcQkJCmDlzpnqbXC6nZ8+eBAYWHXrzLJmZmeTm5pa4MpGdnU12drb6dWpqapltLC+qQZq/rz+BCwNR5Chq5eBN8OKwauwqrm6+ihtu2Hra4vGGB/6+yvCz2vJcnT9/nq5du2JlZUV8fHxNmyP4D+A/T7nqWtRnIHBBIIp8BR3ndawBywQCgaB2UGUOwdixYwGlBGmHDh3Q0dF5rvbi4+PJz8/Hzs5OY7udnZ26AnJpfPbZZzg6OpZYJXnx4sUVym2oKA3ea8Ac3zlk5GTwuu7rtWbQ9l8lNDSU8+fPM3z4cLS1q+zjUWk8ePCArVu30rx5cywvWLJi8woe8YihukPpEtFFw+mE2uEUqEQGEhISyMnJQVdXt4YtEvzbUYVoAoUUuFSrsgKBQPBfpspHPF27dlX/nZWVRU5Ojsb71bX0tWTJErZv387JkyfR19cvdr+ZM2cyffp09WuV9m9VEbQiiGMcQ4aMgTkDCVwQWCsGbf9Vxo4dS1RUFN26dcPR0bGmzSmV8+fPM2vWLNq3b8+SXkto164dGdcyGPjSQOIOxpGdmq1+nhT5ihq2VslLL72EQqEQ8nmCaqMox1iEaAoEAsFTqtwhyMzM5NNPP+W3334jISGh0Pv5+fllasfa2hotLS1iYmI0tsfExGBvb1/isV9++SVLlizh6NGjNG/evMR99fT00NPTK5NNz0vggkBuLb9Ff+f+uDi40K5Xu1o1k/tfQ6FQqMPPMjIyatiasuHg4MCoUaNwc3Ojq29Xuvp1ZXv37XgO9OTE8ROkR6ajZ6pX654n4Qz8O3iRQnEKOgVnF54lPydfOAMCgUDw/1S5lM2MGTM4fvw469atQ09Pjx9++IH58+fj6OjI5s2by9yOrq4urVu35tixY+ptCoWCY8eOlZiLsGzZMhYsWMChQ4do06bNc11LZVJwdmrFshV0lHWkx8IehXTkBdWHXC4nNjaWkydP0qBBAwD279/PokWLUChqx+z6s3Tq1IlffvkFX19fQKnqFXchDrs2dug66hJ/r/bF6CclJan/vn79OqGhoTVozb+bqpY3ftHU0nzm+CCTy8jPyRcKXAKBQFCAKv+2PnDgAN9++y1Dhw5FW1ubzp07M3v2bBYtWsSWLVvK1db06dPZsGEDmzZt4ubNm0ycOJGMjAzefvttAMaMGaORdLx06VLmzJnDTz/9RL169YiOjiY6OrrIugjVjSL/aQKxhbsFSaHKQZJKR762hHf817CxsaFr165oaWkRGxvLmDFj+N///sePP/5Y06aVieSwZPKe5DF25lgmh01m/x/7a9okDZ48eYKVlRXW1tZMnz6dpk2bsmTJkpo2619LVQ/YX7RieIELApEUktopEBMvAoFAoKTKQ4YSExPVs62mpqYkJiYCypnNiRMnlqut4cOHExcXh6+vL9HR0bRs2ZJDhw6pE40fPnyIXP70B27dunXk5OQwbNgwjXbmzp3LvHnznuOqnp+Cy+gWbhbEJ8bzz+F/6Nqna637Ef2vYmtry8qVK9m6dStvvfVWTZtTJJmZmRgaGqpfx4TEYN3MGnMLcwCiHkbVkGVF8/snvyNJEgqFgsGDB7NmzRpyc3OB2hdi8m+gOmLnC54jwC8AKU+qtc6Av68/2gbaOPo44vySswjRFAgEgv+nyh2CBg0aEB4eTt26dfHw8OC3336jbdu2HDhwAHNz83K398EHH/DBBx8U+d7Jkyc1Xt+/f7/8BtcAD6IfMJ/5LBuyjLT0NLS0tGrapP8kP/30E6mpqQwaNEjtxI4bN4633367Vsa8q3SpHR0duXv3LgYGBkQHR2Pfxp61C9cyzmkcsvTaZbervStf8AWuo13p3Lkzjx8/xsrKSqi9VCHVIW+scjQUuQrkukXnFNQkquer3ax2nFt0jpT7Kbw+53WgdilwCQQCQU1R5SFDb7/9NpcvXwbg888/Z+3atejr6zNt2jRmzJhR1ad/IWjQoAEGWgbYmdsVW3VZUPWsXbuWadOmceXKFY3ttdEZAAgLCwOUifkGBgaAcoXArrUd1tbW2LrakhaRVpMmFsJnjg/d/LrxaPUjzn1xrpAz8F8elGVlZXHx4sUqadtrihcAipzKrV69adMmpk2bhv98fxS5CvU5yhOKU9V5DvA0RNPtVTeQQdqjNCSFJEI0BQKB4P+p8hWCadOmqf/u2bMnt27dIiQkhIYNG5aq+PNfQUtLix2jdmDhZCEqt9YAKqWUoUOH4uLiQosWLdTvBS4IJDY5llCHUDIzM9XJu7UBLy8vEhISiI6OBkBSSMSExPDSipcAMHEyIT2y5vNlnqXgjLX/XH+QoOWsljSf/t/+Pti5cyfTp09n6dKljBs3rlLbPvXZKQBk2k9j5yvDKTh79izfffcdeeTh3cqb2AuxeI7yLNese3XUCFCFod3acQvbFrbEXool/XE6JnVM/tNOqEAgEKiodgkIFxcXXn31VeEMPINdYzsS7yTWtBn/SVQDkm753di9ezf169cHng5IMnIymDFjBsuXL0eSpBq2VhNLS0saN24MKBOK87PysW5iTVRUFN//+T077uyoYQs1mTNnDn5+fji/7YxcWw4SHJYfZuDKgfzyyy81bV6N8vjxY+Lj49m9e3elthu4IJAr65WrXh18O1Sqklngn8o27F63Q8qXkGnJqPtS3XKdQzVLf8b3DG1d2+Lt7c3peaefe9Xo6tWrjB49mlWrVqm3JYclY+lpiZGDEakPqq4KvUAgELxoVMkKwerVq8u879SpU6vChBcOC3cLbm0rW8VlQeVSWuJl689asz9uP56enmRnZ5dY2K4miQ6OxqaFDVq6WqSkpPDl919igAG5T3LRMXi+SuGVgSRJrF69mtTUVFzjXFHkKcM09BX6ZGVlcebMGSZMmFDDVtYc/fv35+DBg/Tq1avS2lQ9x06dnYg4HUHqg1T6/NAHqHjsfFZWFomJiTg6OjLn1TkY6RvRfXZ3vjH7hjqd6pD+OL3cxfB85vhw9eFVgn4IgntwMvgkPf16Ptfs/eXLl/n111959OgRb7zxBnZ2diSHJWPuak7q/VRSH6RSp0OdCrcvEAgE/yaqxCH46quvyrSfTCYTDsH/k2ORw9dXv2Z9p/WcOXOmps35z9FociNy83I1wlgKzk5u3769hi0szOLFi9HS0uLNN9+kTp066vwBACcnJ959910e/vSQtIg0LN0sa9hayMvLY9asWZzacYqHax5iVc8KbX1teub1xPWuK6+7v17TJhbLhQsXaNmypYaKWWXTtGlT/vnnn0ppS5Ik1q9fj1G0ER3mdyDuchyWHpbqWfHnqV49depU9u7dy44dOxj61VAAIgMiMbAywKGtA+lR6RrnKCuvLXuNIz8e4Yn0BGNd4+cO5fHy8qJfv3789ddfvPzyywQHB5McloxTZyeS7yaTel+sEAgEAoGKKnEIwsPDq6LZfzXOzZy5lH8JyV/i8ePHIpegmvnoo4/YunUrg2SD6CB1AECuI0eRp1CGttRCvvzySxITE+nTp4/aIWg8Shk+ZGJiwoYNG9hwbAPpkem1wiHQ0dGhS04XtC5q0WFeB4KWB9Ht626c/vw0r89/nYC5AchksloX0x0WFkbr1q0BGDBgADt37qz0VaIrV64wZswY2rVrx/fff//c7d28eZMJEyagr69PUlIS29pso17veoT/9fS7uSL9nJ6ezvnz54mPjycvL0+9PSY4Bntve4wdjXn0z6MK2XxrzS3aS+0BKiXPoUmTJvzwww/UqVOH0FBlDlBKWArmDc0xvWUqQoYEAoGgANU20snJyeH27dsaPyKCp5hamjLSaiSbl26ukByr4Pm4f/8++fn5mEgmyLSUqkLBK4LZ4rOF+Ovx+M/z56TvSSIiIgodW1lKKOUhPz+fDz74gBEjRtCwYUN1QrFqhUCFiZMJ6RGVl1j8vIowGmovQONRjcl9kov7UPdaq/Zy+/ZtTE1NAfjjjz/UqmmVya1bt7h8+TLXrl0jNzcXf3//58pXefLkCR07dsTKyopzZ8+RHJpMvT71SH2YiqSoeLvGxsYEBgayb98+evXqxcOHD1myZAnfbvoWe297jByN1CsE5UEV2mTkaEQuuTR4u0Gl5Dk4OjqqHRhduS5pkWmYu5pj6mJKyoOU52pbIBAI/k1UuUOQmZnJO++8g6GhIU2aNOHhw4cATJkyRVQofYbBrQbT3Ly5WkJSUH0s6bmE//E/Wli3YMieIXT068iT+Cdo62vzq/evHNh7gO4LutPXp6/GcZVV8bW8aGlpMX/+fLZu3YqRkRFJd5PIz8nHqomVxn5yOzkxYTGVdt7nqXwbERFB02lN8ZnjQ/T5aOza2KGtrywSFbQ3iO/DvmfD/Q2VZmtl0b9/f+Lj45k6dSorVqygTp3Kjzvv1q0bf/zxBzNnzsTJyYlOnTpx586dCrfXunVr/Pz8iIyM5N1x7yJJEk5dnMjPziczNvO5bDUwMGDgwIEAREVFMXPmTPZc2YNdGzuMHY3JeJxRrvYCFwSyzHcZipEK9qfsZxaz2BG247mTn69cuUJycjLe3t7o6OiQEp6CtoE2RvZGmLqIFQKBQCAoSJWPYmbOnMnly5c5efKkxjJ7z5492bGjdimg1DQW7hYkhSbVtBn/OQIXBBIwN4B+vv2QkiSsm1urlU8iz0TSeHRjDFMNkZB4HPFYPUCpTfr5McExyoRinadF7UaPHs3wXcPZeXRnpZ1H1S8FB2pl7YcJEyZgbm7OTz/9xONzj3FopwyLc+riRERgBJs2bWLnzsqztTLR0dFh1apVTJ8+HScnp0pv38bGhpdffpkBAwbQokULrK2tuXfv3nO16e7ujo2NDZZGlpi5mqFrrIuhnWGFB8I3btwgNjYWheLpKk6DBg148403aZXXShky5KB0CMqzCpHxJIPDuof5bOtnxGXEARD1IOq5agRkZ2fTsmVLLCws1LVdksOSMW9gjkwmw7Se0iGobaphAoFAUFNUeR0CVfJZ+/btNQo8NWnSRF1YSaDEpIEJx/cc59Evjxg9enRNm/OfQRXG0mBAAy6suoBpXWV4SMHEy0+vfErzWc0J+zYMf19/zi48S35Ofo05A/Hx8RgbG6ud7OgQZYXiglhZKVcL4mLjKvXcFa18m5SkdHbr16/Pw9UP1fs7dXEi+LtgFi9ejJ2dHQqFotKSd48dO4arqyv16tWr0PGSJFV7YbotW7ZgaWlZ4Yrl6enp6Orq4uTkRGxsLMErg4k4rQx1U4XKqJyxspKbm0uTJk0AiI2NxcbGBgBbW1sWvbeIvwL+wsjWiFzjXBR5CjLjMzGyNSpT214fezExeyKBpwN5Ofhlvt/8PZcXKcOyKvrZio2NxdbWloyMDGxsbFiyZAm///Q779d/H1D2Q15mHk/in2BoY1ihcwgEAsG/iSpfIYiLi8PW1rbQ9oyMjFpbAbamkNnLmHVmFmPHjiU9vfYVlPq3EuEZwdbYrezfuh+b5jYaz6XPHB86zuuIvrE+Q1YPYWTASECZ9FiZFV/Ly9SpUzE0NOTbb78FlCsEz+YPzJs3j5BfQxhkMqjSz+8zxwdk5at86+/vT0pKCt4tvYm/Fo99W6UD49DOgbz4PCa8PoG333670pyBnJwcRo8ejaura4XVeyZOnEjXrl05duwYAKmpqZw4caLSP59bt27lzJkz5OTkYGNjg5aWVoXzNb755hssLS1ZsGABAIm3E7H0UCaVm9atWKhMcnIy1tbWaGtrqx1NFdFBT51RHUMd9Mz0yhU2ZGVlxYoVK9i1aheW9pZ49PQg8VYi2anZ5bZThbOzM9HR0cTFxSGTydi9ezfBocGEyZWTULpGuhhYGYiwIYFAIPh/qtwhaNOmDQcPHlS/Vg22fvjhB3x8apeaSE3j3s4dJ5kTffv2Vc+mCqqeP//8kzVr1hAYEIh1c+sS971/+D4Acm25WgmlJnj8+DGSJOHg4KBMKL4QU2iFwNzcHAc3B9Ii0ir9/IELAkECZJSrH0xNTUm+loyhrSEmTiYA6BjoYO9tT8Spwgnbz0NcXBxNmzbFwcGhQt81kiSxf/9+Tp06pQ6TadWqFd27d+fHST8+V3J1QVJTU3nzzTfp3LkzT548UW+Xa8k57Xu63PkawcHBZGRkqMUJEm8lYtno/x0CF1PSHpb/ebCxsSEuLo4nT54Uctiig6Kx9LJU217RxOK0yDSM6xhjZG+EiZMJMSHPn/uiWkH76KOPeLfJu3Tp1EX9nsgjEAgEgqdUecjQokWL6NevHzdu3CAvL49Vq1Zx48YNAgICKk1z+9+CqYsp07SmMW7NOMydzWvanP8Mr7/+OnZ2dpgcN8GmuU2x+214bwM/bfiJurZ1+fjjj8nPzq9wcafn5fjx48THx2NoaEjinUSkPAmrxlaF9jNxMiEzJlO9olEZqAakoHTwvT/1Llc/PD7/GIe2DhorMU5dnLhx5Aa0AXt7e6ytS3bMSsJ/nj8yuYwOvh04cuQISUlJ6OrqKt+b709EQgTDVw8vtR2ZTIa/vz9//vknXbooB5KtW7cmNzeXzNzMIq+5YD5FWUlNTaVXr14kJiZiZmYGwF9//cXcA3Op06YOcl+5+jxlydfYuXMn165dw97ent27dzM7cDYvN3iZVW+twtTFlAd/Pyizbc+irV34J2PJX0sI3BXIN+bf8MEHH5QrsTgoKAgTExM8PDxIj0zHpI4Jy5Yt44T2CVxOuFC3W90K21qQkSNH8mT+EzzaeKi3CYegaPznKZ3Nop6vwAWByhDLeWV/vgUCwYtBla8QdOrUicuXL5OXl0ezZs04cuQItra2BAYGqrW9BUrk2nLMXc3/1YnFWVlZHDx4kOzsiocDVDYvv/wyS5cuxfKBJbYtCoe3gfKH8OSGk5zlLDf1bpJwM6HIBNvqQiaTYWNjg5GRETEhMdi0tClULyE5OZkvv/+S/bL9FZqxLQrVgLT5hOboW+pj09wG25a2pfbD1q1beeutt9i/fz+Pzz1WhwupcOrixMJ9C2nWrBn79+9/LhvlWnJGzB2Bvbk9Z86cwcLCAoC9n+yl97zevPXdW2V+/urXr8/kyZPR09MD4JdffuHBgwfM3DazwsnVz+Lk5MSRI0cIDg5+eg1yOUFBQQRHB9Nhfgf8ff35Su+rMrUvl8tp3rw5tra2xD+OJyw3jGvh14DKHwRnxmWilaF0NKOiogAwdjAu8/M2Y8YMPD09+fHHH0mPTMe4jjFr167lUPghrpy+UmG75syZw9ixYzl37hygzANKCU/B3NVcvY8qsVigyfMoiQkEgheXKl0hyM3N5f3332fOnDls2FD75ARrIxbuFiTdScKll0uVVkWtKQICAhg9ejQdOnRg3759FU6crGwyojN4kvCkkGynCkW+glc+eoV6hvWwzbQlMTAReL6Kr5VFUfkDoAx5me83H4C4sDjM6pk997lUCdgW7hbEXojFuasz9/++T98f+6rfL4pjx46xadMm6tevj8N5B1q830Lj/Tod6qCfqY+lheVz1yrxmeND2tI0klKSCNsaRqdOnQhcEEjoilD0jPTIk+cRGhpK06ZNy922aqVBdR4of3J1WejatSs//vgj/fr1w8HBgcD5gRXKW/Gq48VbJm8xbfU0oOIOwe+//86+ffvo168fI0aMUG+PDo5maIOh7Avap3a8jByNyrRCkJeXh4mJCTo6OvTu3ZvLxy5j3dSa999/n5hbMeQczSm3nSoOHjzIxYsXee211wBIi0jjSf4TTl07hVW0FZ06dcLUxZSHxx9W+Bz/Vgo+16rXtUlRTSAQVA1V6hDo6Ojw+++/M2fOnKo8zb+LOjBiwQji5sYRGxtb5BL9i8Szy88tWrSgXr16HD58mJ3Td+Js4Vyjy88xMTGkpqYiC5Vh7mqOrrFukfupbBzGMGIvxbL9p+1qBZrq/oE8cuQIe/bsoWfPngwdOpSYkBiajis8uDU3N2fixInEHIgh5VHlFGFS9cPZL85i0dCCer3rcejtQ0iSVGI/jBo1ivr169PBqwMX5l8olO+gZ6bHB14f0PbTtni84VFMK2Xn2p1rHJx3kKh1UaxYvwIpX6KTXyfOvXGO+vXrl/q5iomJYd68eQwYMICXX3652P3az26P/zz/ciVXlwV9fX3GjRsHwD+f/qOU8ZSVXsH33XffxcrKiilTpuDk5IRhqiF9WvahefPmgNIhyE7JJjslGz0zvTLbc+7cOX755Resra01HYKgaNzau2Fp+bQStrFD2aoVa2trc+DAAVJSUjAzM8M/0p96feoxa+wsctJyWG22mvTH6Rg7GJfZThW+vr7cvHmTli1bApASlkKQWRCzX5nNq6++qnYIKmOFIDc3lwcPHtCwYcPnbqu24DPHB0kh1QpFNYFAUD1U+RT0kCFD2Lt3b1Wf5l9Dveb1eJD4gKSkpOcqTFRbeHb52crKigULFvDrpF+JWB1R48vPmzZtwt3dnQ/+9wE2LYrPHyiIRSMLctJyyl2AqbL4559/+O677zh69CiKfAUxF4peIZDJZHz77beM9RmLIr5yVzCS7iZh3tCcOp3q8CT+CYm3E0vcv1u3bsyePRsXhQuWHpZFDkaduzqr5TGfF0dHR8avH4+eth5SvnIw3WpqK9zc3MrkZP/111989913+Pr6FnrPz8+PZs2aceDAAXYP3A3/37UVTTJ/+eWXad26Nf7+hRORAxcEErQ8CCNHI2RyGe3ntC82NCs1NZWNGzeybNky8vPzAWVCsUUjC/U++ub66JrqlnsgPGjQIJYuXcqAAQM0tscEx2DvrenclTepWJU3kR6Zrk401zXRxcrTiuig6HLZqWLIkCHqIm+grEHg3dAbV1dX9cC9og7Bo0ePOHPmDKAstmdkZESTJk2ee2WrtlGvdz2g5hXViuJ5K6YLBILCVPn0s5ubG35+fvj7+9O6dWuMjDS1qadOnVrVJrxQWHlYMdlmMpPOTKJ+/fo1bc5z4zPHB0mSmOk7kzGRYxj33TgsL1hyc/VN9YxTZerOl5f09HT09fWxVliXmFCsIjc3l7v375JdJ5uEmwkYO5Z/9vJ56d27NzKZjPbt25N0JwlJIWHlWXSoEygTiytbaSj5bjIuPVzQ1tfGqYsTD/5+gJVH8TaoUCUUF0WdznUImBtQaTYGLghEkacAGSDBjx4/MubCmDLNODdr1oyJEyfi4VF4teLhw4dcu3aNbfO20epCK9yGunF3z131YB3Kl2R+4cIFoqOj1XkKKgL8Alg3dx235bf5+cef+eetf6jfpz5aOlpFnkdLS4uff/6Zy5cv4+LiAiglR/Pc8vj9999p2rQpjRo1Ug+Ey/K8q+jUqROdOnXS2CZJEtFB0TSZ0oTFixcTHR3N119/rS5OVh4kSVLnEICywr1eMz2iz0fTcNDzz7wnhyXj3cqb/333P/U2UxdTspOzyU7NRs+0bKslJ0+epE+fPtjb23Pnzh0cHR3R1dVFLpez95O91LGq869Jxv3nM6Xoh0xLVurKVHWjmmiC50/qFwgESqrcIfjxxx8xNzcnJCSEkJAQjfdkMplwCJ7Bws0Cx1hHXJz+PTkEER4R/MM/BHwfwKMNjzBSGKmdgWvXrjFy5Ei2bt1aoZju58XPz4+5c+fyY4sfyzRAmjt3LosXL6Z33d70u9kPlx4u1WClJl27dqVr164AXP/lOrYtbQslFBdEbi0n8lxkpdqQFKpcIQBw6eXC/SP3aTWlVZH7xsXF8ejRI9zd3Yk+H43rYNci98t0yOSba98QMC6A9T+tr7BtQUFBbPHdQu6hXDq074BDOwf0zPUInB/Iz41/RvGJgj1/72HatGkMHjy4yDZat25drOjB+++/j2uqK1k7s3Du5szA7QP52uBrmoxpUuxApSSOHz9OaGgonp6eGtslhcQ/Rv/wKOMR11Ku4dDOgcfnHhebt2JkZMTo0aM1ihom3kpkb+Je9i/dz5IlS/jss8/Uxcmel/TIdDJjM7FvZc+s3rMAZaiOSmVIUkjI5EXXmgkPD8fb2xt3d3cCAgLISsoiLysPkzom7Ny5k9dff51WDVvxeeLn5bYrIiKCuLg4GjRooF59SA5LLlSMTd9CH10T5WqJTbOyOUft2rXDxsaG+vXrExcXh5OTE2FhYdja2nJ24dl/zSA1cEEgkacjMXI0wrG9I7YtbWtMUa0oRJ6DQFD5VKlDIEkSJ0+exNbWFgMDg6o81b8GY0djtPS1SLmXUuKs74tEt27d6O3VG+mihJFCuUJk4W6BJElMHDaRq7evMm3aNP7++2+N46ptVi0f0m+nl8khaNy4McbGxuiZ65F4s+QwmeogJiQGuzaFw4VUfPzxx6xcuZKBjgMZychKOWdOWg6ZMZkaDkHA/IBipU0PHjzI22+/TY8ePRgcMphOizoV2gdAoafgAheI2BvxXA7Bhs83sOH4Bga2GohxHWNMnE3w/tgbmVxGwNwA9s/bz+m801hkWBTpEJT23Hl7e3Mj9AbZLtm89vdryLXkmDibkHo/tUJJ5p6enoWcAYC2n7Wl/Yr29H61N+7u7mS3zebx+cdA2QZlinwFyXeT8R7kTcyTGHVBsYqEyty8eRNLS0tsbGzUExXRQdFYNbHC1MqUSZMmYWFhgUwmw8jBCEWegicJxVcBfvjwIQkJCcTHxwNK50LXRBddE13s7ZUhSJlSJtFB0eWuFr1lyxY+//xz3nzzTX799VdA6RB4jnzaxwkJCVhZWSn74n7ZHQIDAwOCg4Oxs7NT22Rnp/z8/VsGqSqbZXIZvdf35si7Rxi0S1ncsLY6BYELAlHkVl5Sv0DwX6TKHQI3NzeuX7+Om5tbVZ7qX4NMLkOvgR7r165H7izns88+q2mTnpu8e3n0udaHPPLQ0tUiPyefw+8e5sLqC3zY7kOybmfxcZuPNY6pzlm1xFuJaBtol0mF54033uDNN9/k2k/XuLHlRpXb9iyZmZk8ePCABg0aoKenR0xwDM3GNyt2fxsb5UAnKbnypGyTw5LRM9PDwErp5Ns0s0HHSIeos1E4d3EutH9WVhY2Nja42LmQ9ySv2MFX/fr1ebfdu1hbVLwGAUBdq7r0aNqDIZOHkPZ9GiavK+PSO/h2QCaTkXcwD9tgW9yC3QqFQQQuCGSV7ypem/Zase3f2n6LtIdpjL08Vp0DY1bfjJRw5ax7ZQ1Irv10jZddX2bMrjHIZDLux9/n6o9Xi9w3ISGBw4cP0717d/WAOvV+KpIkMWvBLGZrz1bva1rXlOjgssfmKxQKmjdvTl5eHg8fPsTZWXmPo4Oj1fkDa9eu1ThGz0yP9Kj0Yh2Cdu3aceXKFTIylKFFBcOF2rVrR3JyMkb6Rnxj9g3Jd5OxcLMosp2ikCQJW1tbGjRooH6dHJaMuas50dHRdOnShaioKNLS0iq0WqLq36IoOEh9UZNxFfkK6verjyJPQd3udXkS/4TUBxVzdqsanzk+BMwLQJFbuUn9AsF/kSqNSZHL5bi5uZGQkFCVp/nXYeBiwKy1s5g1axY5ORWX3qtpoqOjyUrKYlefXShyFXT268y07Gl09OtIbnouch05EbsimNx8MteWXHtuPffycvLkSfr168eXS7/Eupl1seENBdHW1kYmk2HpaVkjKwQhISE0btyYJk2aKBOKLxadUKxi8uTJRN6IZEjWEGU8fQU5fvw469at49SpU8qEYjdz9QypTC7DpadLsQWvJkyYQGxsLFN7TcWulV2xBdIsLCyYPnU6jeMbV9hOgNm/zebo1aOMGzeOtEdpmDqbqt/zmePD52c/Z8HmBdjo2BSqI3DA9wC75LsYvno44eHhhdpOvpfMkfeP0GhBI3Yc2sHZs2cBpaZ9yv3yh+GcOnWKzZs3FxIQyM/NJ2h5EO0+b6fuZ/s29qSEp5AZl1monSNHjvDmm2/Sr18/9baEWwmYNzQvFE5W3mrFaWlpWFhYIJfLsbV9WqcjOii6kFqUitKkR/X19WnWrBnt27cHNB0CXV1dzMzM0NbTxralrXpVpKx8/vnnapUogCcJT8hJzcGsgRmWlpbcvXuXjIwMYmJiyrVacuDAAX7//XeiozWdqcjISD788EPeeustANp+3haoncm4ZaHjvI7kZ+fjOsgVHQMdbL1siQpQ1pjwmeNTq/IgAvwClApcVDypXyAQKKnyIPUlS5YwY8YMrl27VtWn+tfQoHkD2tdtz4QJE3jy5ElNm1Mhbt68ibu7O682fJUnKU/oML+D+odRVdAr4p8IWk5siU0zG+Q6ytjrFborqm2JPSgoiEOHDhEUElSuBEsASw9LMqIzyErOqiLriiYhIQFjY2NcXV1JvKV0SEpK5jUxMcGuoR2SJJERXTFVpOjoaIYNG8akSZPYsmULyaHJWDS0IDMzk6NHjyJJEvV61yu1Am58SHyhgmTPUqdzHWIvxJKT9vyOcH5OPhnRGRg7FU4i9hzpyat/vIqWrpZG0a9mU5rRo2cPunXrViipPz83n4MjD9JkTBMO3jnI+PHj2bZtGwBm9cxIvV9+xZpNmzYxduxYtm/frrH99o7byLXluA9zR6FQcOvWLVJyUrBwtyhSeUdHRwcvLy969eql3pZ0O6nIZ6O8IUNmZmbExsaSnZ2tTnyWJKmQwlBWVhbJyclA+YqTgbJOgMohKIh9W3uiz1dMaUgV2pQSloKhnSG6xrro6uoSEhJCbGwsdnZ25SpO9sUXXzBs2LBCalAymYzVq1fz66+/kpWVxYHhB/7/jecbpGZmFnb8qkNdJyspi4hTEbgOVOb6OHZwJDKgcnOQKoPABYEEzA1AJpfhNcULi0YWNVIkUiD4t1DlDsGYMWM4f/48LVq0wMDAAEtLS41/gsJYulvyYf0PWbt2rTop7kXj0KFDpKWlEZoSSpsZbejg20HjfZVToGOsw8u/vkzrza35lV/Zmru12mbVBg0axPfff08How5llhwF+OGHHxg0fBBXTa5W+yrBkCFDSE1NZffu3cSExJSaUAygpaOFkb1RhZWG7O3tiYuL48MPP6RVq1Yk3U3CqL4RDg4O9OrVi9DQUFx6uhAdpFwRKo6SFIZU5BjkkGqfys0jNytkqyRJasnN9MfpyGSyIlWFMjIyuJJ1BenTp7OLMi0Zg2YN4vDhw8xsO7PQwMJ/jj95T/LQt9TH9rEt3bt3V8f+FwwZKg+NGzeme/fuar18UCYTn1tyDu9PvZFry3nzzTfx9PRky5YtOLR1KHLGfNiwYVy4cIGlS5eqtxWUHH399ddxcnIiJCQEUxdTMqIzyMsqn0xmQbnWlHsp5Gbkqh3pFStWYGBgwMcfK0P/jB1Ldgi2bdvGL7/8wuPHymtJj0zHpI6J+v0ffviBCRMmkGiTWO4VgmdJupukUaHYy8sLGxsbZDJZuZyj1q1b065du0LKUw4ODsycOZMffviBwIWB3N1zl7rd6yKTy/D+zLtCg9SQkBAaNGjAwYMHNbZXRxXh8EPhWDW2wsxF+dvj2MFRvUJQW1Bdr9tQN+za2NFuZjvSHqTh9YGXcAoEggpS5SpDX3/9dVWf4l+HhbsFyaHJFT4+KiqKWbNmsXLlyhpzut7o9AZXdK/w0e6PaPFyiyL3KTjof3j6IZe5jBZaDM4ZXC0Sd40aNaJRo0Z86/ttuVYI7t69y9GjR+nl2IuEWwk4+jhWoZWFkclkGBkZKWO4iwnZUJGbm8vChQs5lXeKTuGdcGxfMVu1tLTUn+XtW7fTtEtTvL29CQ0NVSoI9XDHqrEVD48/xH2ou/q4+/fvM3r0aJo1bYbbJbdCSi/PMnjwYAKiAtDZpkOLoUU/NyWRnJyMjY0NderU4cTGExg7GhfpMF25coXBgwdjYmDCbGajra2NIk/Bd3W+o+HghmgbaXPh1wuA8jm9//d9Lq65SNNxTQn0C6SbXzdmzZmlbq+iIUMff/yxehCtIuyPMLISsmgypgmgLOa3b98+kpKSsG9nz72D94ptr2DybeLtRHXBusePHxMZGcmdO3do5dUKLV0t0h6llSs2vyDRQdHYtLBRh3+pEpZV4TSlhQwtWLCAmzdv8vfff+Pg4EBaZBo2LZ9+Bvfs2cOff/6J50JPFBcVxSasP8ujR48YNWoUHh4efP/99wDq/IGiMHMp+8rOs3kSKmQyGYsWLVIOUr/wR9dMl6GHhrKj6w7MG5jT0a9jmZJxc3NzGT9+PL169eLgwYPExMTwzTff0L9/f/V9rY7E5bADYbgOeqoEVqdDHeIux5GTnlNs4cbqRlUxPSM6A1NnU4wdjGk8pjHZqdl09OtYKXkOzxbVLMiLKCMrEJRGlTsEY8eOrepT/OuwcLcgPSqd7LRsFNqKcis0DRs2jMDAQGQyGT///HMVWVk8WclZ/DH8Dyb4TSjWGShI4IJAYr6NYULPCdjetsWrg1e1qVlkxGSQGZOJddOyJ7IOGzYMd3d38g/n16jSUExIDC3eL7l/tbW1Wbp0KdnZ2Ty4+YBmFJ+AXFaS7ypDhn7//XdMTU3VgxWV/GhBh+D06dOcOXOGpNgkGhs3xqxBySte9vb2WBhbEHMtpkK2PXz4kPz8fDIzM8mOzsbE2aTI/by9vWnk0AjLx5Z4zfLCe4Y3C0ctxOqgFU8SnpB8LhldU138ff1Ji0zj7t67uPR04eI3F4sceJnVNyM9Kp287Dy09Sr+tSpJEucWn6P19NZo6yvb+eCDD/j444/R0dHh8fnHBMwN0FDeSU1NxcTEpJAST+LtRCwbKScEli1bhlwup3HjxsjkMkzqmpD6ILVMDsH+/fvZuXMnvXr1YsyYMQA8DnqsoW41bNgwBg0ahIWFsr3SqhV3794dR0dHXF2VA89nVwiGDx9O69at6dCrA2e/PEv8tXjsWhWfK6Pi7t27nDp1SiPO/1mH4MaNGxw8eBBHR0eG9BhCZmwmuU9y0THQKbX9klDkKTC0NaTDvA5o6WjhPsyd0N9DGXZ4mPL9Ugap/v7+bNq0iYMHD/Lo0SMaNWrEtGnTCt1Xnzk+5KTnVIm6Tn5uPuF/hjPsyDD1NhMnE4zrGBN9Ppq63euW2kZ1DKRVx2/22ky7We0A8J7hzcamG3nnzjuY1jUt6fAyIWodCP5rVIvQfX5+Pr///jsLFy5k4cKF7NmzR72sLyiMgZUBVw2vYmVvxZtvvlnu41euXEn79u3pbtC9yuNNC8a07t+/nxEjRrDvrX1YeliSn51f6jkKfrmu+3sdPUb2QEtHSz2rVlVLv1lZWfz999+EHA7BrL5ZmQsTAbRp04Zx48bRumNrEm5WX8K8QqFgwIABTJ48meTEZGIvxpYoOQrK2cvp06cztt1YcuNzK3ReX19f3n//fS5dukRORg7pUemYu5ljZmamMVhROQSSJKm3vfLKK+zYsYNRHUZh39a+VPnIXbt2EXYhjAbhDcod0gLKgmKRkZEcO3ZMGZdeRP4AQNDiIN59/C4r/FbQ64terF27lhUHV/B7/d+JOBVB8/ea8/KvL2PRyIIr31/hSdwT7u67W2jglZ+fT0pKCsYOxmjpaJUrWVehKDxAjDgVQeKtRA1Hz9jYGB0d5WDVpoUNOWk5pNx7uhrx1ltv4ejoyL59+9TbspKzyIzJVDsEPj4+tGvXDhMT5aC7PKEyQUFB/Prrr5w/f169LSZIM3/A2NgYS0tL9f0tbYVgzZo1HD16VJ2nUTCpGJShpn5+fni39ca+jX2Zw4YaN27M1q1b1QnFoMwhKOgQBAcH8+mnn/Lzzz9jaGuIll7p963gM10UCoWCLPss7ivu0/Rt5aqM21A3Hh5/yJOEJ2VKxq1bty6zZs1i8uTJ6OvrM3fuXExNCw9sM+MzCf9TmfBeEXWd5cuXExFRdEXwyDORaBtoF1p5LE8eQWlhTRH/RFTK71JOWg5xV+LUK7QWDS1wHeRK8MrgMh1fGqqw1meFB140GVmBoKxUuUNw9+5dPD09GTNmDLt372b37t2MGjWKJk2aEBYWVtWnfyGRyWTYONmQkZnBvXvFhwc8S25uLkOHDuXw4cOcOHGChg4NqzzeVPXlf2z2McaNG8f27dvZenwrNs1tCJgbUOo5VEu/qi9Xt1fdCDsQRtvP2lba0m9R3Llzh969ezNo4qBy5Q8UpLqVhnZM3cHBgwf56aefePLwCTK5TD3gK+mHdNGiRUx6dRLaiRWbud61axfr168nLi6OlLAUdE10C8lJ5uXl4dTFiYyoDJLDktXbjY2Nef3112me17zUcCFQPvvmDc3Rt9SvUOy4XC7H0dGR5s2bk/YordgVgmefOxcXF+rVq8f0hdPp6NcRSZJwHejKO7feQa4rR1JIhQZe69atw9zcnNmzZyOTK+PRy5NHsHv3biwtLXnnnXfU284tPofXZK9iHdRnlXckSeLcuXNER0fj4PC0f5NuJ2Foa4i+hX6R7ZRHbrN///4sW7ZMXbNBka8g5oKmQ/As5UkqzsvO40n8kyKTiqF8icV2dnaMGDGCESNGqLc9u0LQvHlzRowYwcsvv6y+b6U5R4sWLcLJyYklS5YU+f7p06fpOaknv+b/ql7ZMXMxw9bLlrv775bJ9gYNGvDFF19oODMA8fHxTJkyhS5dupCZkMmuXrs0HJTyJC7//vvvfPrpp7Rs2ZK0tMJOUNj+MFwHuhZSXKvToQ5RgWXLIyhtIF23e91K+V16fP4xxk7GmDg9/Yy3/awtVzZcITO+cEJ2RSh4LSv1VgpnQPCvpspDhqZOnYqrqytnz55Vx7MnJCQwatQopk6dWihpSqCkvVd7tvXdxpClQ8p8zI0bN9i9ezfHjh3D19dX/aV1xPcIULnxppIk4e/vT5MPlHHO/r7+/G/w/9j0xybGDx3P+aXny3SOZ2fNsm2yOaQ4RNSkKBb/sLjC9pVGZmYmnp6eyBPk5VYYAoiJicH/vj93790lLytPPQioSixNLRnOcGy62pBwKQFbL1vkWvIyLWGbOJkQtr9iDvjs2bO5desWTZs2JSlQWaFYNRP822+/MX/+fPr27cuKFStw7OjIg78fYNFQMxTl8fnHeIzwKKr5QshkMpy6OBFxKqLIugZlJe1RGs5diz6+4HN3//59hg0bxhtvvIFMJkNL62mseuCCQBQ5CnX9jIK5LQqFgvT0dCIjlTOn5c0jOLruKElJSWpp4ZiLMUSciqD/L/0LhVb88ccfrFmzho4dO+LT1ofo89F4jvBEJpMRFhZGQECARmXlhFsJamcRIDs7m0OHDnHv3j0++ugjTF1MNRy3kvDx8cHH5+nnOPFWIpIkFVIw+vrrrwkNDVVWQ3ZUJi4XVa342UJj6VHpyLRkGNpqOpkZGRnEx8fj0NaB0/87XSZbnyUnI4eM6AzMXJ+GqrVs2ZKtW7eqX5fFIbhz5w6RkZFFruoAGEcbo4MO9i725OTkoKurjLV3H+bOnV13aPZ2xUP1jIyM+PHHH3ny5AlfdfkKB4UDibcS8fH14cLqC7i/5l7mEEsPDw/at29Pjx49MDEx4cSJE+zatYs1a9YAcHf/Xbp/3b3QcQ4+DgTMCyix+nRBCuY6BPgFIOVJtP6oNW0/b4uWjpb6PdW+5f1devz4MXP95vKqz6vqbTt37uT777/H0MYQ7zXelRbf33x8c/x9/VHkKJDrFh0KJRD8G6jyUcw///yj4QyAMgFtyZIldOwoYvCKw7GxI8l3k9HXL3qGryhsbW356quvyMzMVP/gXrO/xjLdZTz0fVjueNPiYkHv3LlDD58eRCRG8O233/LO9HeIvRxL6O+hjNYaza2NtyrscFy+cpk/0/4kcGsgC75boKFsUpm0b9+eGzdusNlrc4UcgqlTp/Lbb7/xsu7LJN1JqlAb5aXPoj6YGpji7+vP5eTLOLR3KNMPqSRJSBYSjx9UTK1l5MinFY4f3X2krlCs4saNG2qJR5X8aMuJLVmyZAn29vb069aPpDtJpUqOAly6dImVK1dCAgw8NbDctm7ZsoW4uDj69+9P2qPiQ4ZU9OjRg+PHj/Pnn39qaPhD4fAA1WtQDmKGDx9Onz59cHRUhiyY1S+f9OgbHd/A6LgRbSzaAHB+yXmavduMy99dLuTgxcfHc/jwYTIzM3n13Ve5/P1l9Xv6+vp07645iEu6nYSlx9PvXIVCwSuvvIIkSYwaNQpTF1MeHn9YZlsLEh0UjV0ru0LJ2hs2bODGjRu88sordO3QFUVu0dWKv/32W+bOnctbb73Fl19+SXpEOsYOxhozw9euXaNZs2ZYWVlx/+p9Em4kkJOWg65JyUmtJ06cwMLCAk9PT/T09Ei5l4KOsU6xBdLg/1dLSnHkvvrqKyZNmlRkUTJJkri96jYnF52kw0xNNTX3oe6cmX2GrOQs9M2L/y739/fHwMAALy+vQmF1BgYGLPJbxMMNDzHPNicxLFH9TKZFpKFjqFPmxOUmTZpw5swZ8vPziY2N5eWXX+bJkyd4eXkxpMMQMh5nULdH4TwB25a25GXlkXg7ESvPwlK2igQ+pwAAZdVJREFUZ86cYdOmTTRu3Jhp06ap7fCf64+UJ4EMLq69yIVvLmBa1xRzV3Ps2thVKA8iJycHHx8fHjx4gMVgCwahrKJ88+ZNjh07xqhBo7j4zUW8Z3ija6TLtWvXaNKkSbmqXauQJIkd3XcAynorihwFp2aeosviLuVuSyCo7VS5Q6Cnp1fk0mR6erp6FkVQGEt3S8L/KlwYqSQcHBz46KOPNLZdv3qdzJxMggnGM9ezXPGmxSVVxW2Lo3dib46ZH+Pc+nPkzMjBtJ4pMi0ZUn7h0Iry0L9/fwa8NADbC7bk5+VXmUMAygS6hBsJFQoZ6tSpEzdv3sQqxYqEmwnV4hCA8j5IkkTA3ABiQmJQ5JX+Q7p8+XI+++wzvGXeTFNMK9MMX3E8WzW2d+/e/Pbbb/Ts2RNQ5hGcW3yO1ORU5s+fT1ZWFn+s/QOzBmYYWhc/KFORmJjIL7/8gnsDd1rHtEaRpyhVVrUg33//PadPn1Yq10RoFiUrirp16+Lt7U1urmZ+RVGOVlEKL9bWT5PRzeqZEXclrsy2vuT3Eno6evj7+nNcfpy7++7ScnLLIh28Hj16sHbtWjp06ICDgQN/v/83+bn56tnWZ0m8nYhjh6eKUgYGBrz88suYmJiQlZVVrhyCmzdvYmFhga2tLXK5XKNCcUHefvttkpOTcXZ2RsdQp9hqxQ8fPiQhIeGpPOwz+QOA2snKzs5G10oXkzomRIdEU/elkpNahw8fTlxcHBcuXMDLy4vkMGUCfFGDwezsbCRJwtTFVF3TozgsLS1p165dke89OvGIxFuJ6uThgpi7mmPdxJqwA2E0Gd2k2PY///xzzpw5w+eDP2fxXs2V0ZyMHAzXGOKp5YnHCA+09bTVz4bnCE/+HP0n70e8DxSfuKxQKNROu5aWFlpaWtja2vL1119z8uRJRo0axeWvL+PS0wUdw8LJ1Vo6Wth72xMVEFWkQxAWFsYPP/zASy+9xLRp00hLS2NK/yn8Lf3NR9ofIcuT0f5/7WnyVhNSwlJIvpdMclgysRdiUeSWb+ZdV1eXWTNn4TfJj1dHPV0heO2113B1dcXb25vzo85z9YerWA6ypFmzZjRp0oT9+/erq1eXlT/e+IPEm4m0/awtnRZ2YlPLTZxfch5k0GWRcAoE/y6qPIdgwIABvPfee5w7d045UylJnD17lgkTJjBo0KCqPv0Li4W7BWeunWH27NmFCuGUFUmS6BzTmTct3uRN3kQml5Ur3vTZWFBJkjg66SiB8wJpZtSMafrTeKvHW4w4M4JGrzdSOwPPU4xHR0eHfX/vo5VuK+KCyj64qghJd5KQacswb2Be7mM/+OADrly5wvCXhldLYrEkSezevZvw8HD0zJXx5Yq8siUU2tgonZVMKZPM2PLF1kZERHDz5k2yspT1BZJCkzRWCMzNzXnttdfU6jJ2XnZo6WgReT6SmTNnMmDAACwSLEqtP6DC09OTZcuWMX/hfOQ6cmIulk9tqH///rz++uu4ubqRGZNZbA6BiqlTp5KSklIoefPZHAMVqs9EUQOvikiPqtq7sOoCilwFIStDijyvs7MzkyZNomXLlli4WaClp8WDcw/o168fy5cvJy9PMwE78VaiRsgQKCvtbt26FWdnZ0zrmpIekV6mHB1vb28cHBzU+UzRQUU7BJ988gkLFy6kUaNGQPGJxbNnz+bq1atMnToVgLTIwis5FhYWJCcnk5qaiq6uLvbe9kUWZCtIbm4uDRo0wNraWp2snByWrBEupOLNN9/EwMCAbdu2lbtQ27MELgyk1Uetil29UIUNFUd+fj52dnYY6BqgtU9L47sz90kum5ptIvVBKp5vetJ5YWeNZ8P5JWckhUTEPxHFJi5nZmbSunVrvv3220IhT++99x5btmxBX1+/kNzos5SUWNyhQwdmz56tXh248OUFfj/zO1FE4bLFhY5+HQmYF8CNzTeo270uzd9tjo6hjrLKsAwUOYoSfzPu37+vUTn8lU6v8JHuR3QY/HRFxtPTkzfffBN3d3faft6W4BXBXAy+iJ6eHm5uburvwbJy6vNT3P7tNu6vudNlSRfk2nLGXByDpacl5xefr3AYm0BQW6nyFYLVq1czduxYfHx81EoZeXl5DBo0iFWrVlX16V9YLNwsCE4PJviLYPT19UsNr1IoFJw8eRIvLy/14CxoeRCRhyJpmdqSJm814eGxh+p4SCibpGfBWVH/uf4gKZVOui7rSt0eddUx7AFzA4oNrSgvcm05DQc3JHR3KE6dncp9fFkYPHgwqY9S6d+wf4VmzFUzjlaeVsRejK1s8wpx7949hg4diq6OLgulhciQFRnXXhRvvPEGr732GpsabCItIg0je6Myn3fDhg34+fkxfvx41q9fr5YcLQ6ZXEbdnnVJCkzCd64vALsH7salh0uZzufg4ECHjA7I78rR66xHxKkIHLyfOhOlyRZ+/vnnACTfS+ak9kkM7UpelfDy8uL27duFtpcUf1ywr3/44QcePHjAtGnTylWcLDMzk2XLluHm5saI/43A39e/yMTlopDJZdh723Nw+0EOHTrErVu3+OSTT9TvK/IVJN9N1ggZehYTJxMU+QoyHmdoJGU+S1ZWFkZGRjx58gQ7Ozvyc/KJuxRXav0LKD6x2MTEhKZNm6pfPys5CsrPV8GijGVJLNbR0eHs2bMa24qrQWBiYoIkSTx48IBePXqV6BA8ePCA3377jWbNmtG3b1+N9yL9I4kJjmHw74MJDg5m7ty5WFpa8ssvv6j3cR/mTuCCQLJTs4tMFtfS0mLXrl3k5OQQsjRE/d3pPcObTc03kRKeQvvZ7XEZ78J3331HkyZN6Ny5M6D8rmz0eiNubb9VrCToDz/8wKVLl1i8eDGjR49WK02pkMlkZMRm8PjcY1wXuBbK8VBRp0Md/vn0nyLP4ebmxoIFCwDlZzTIL4g3HN6gXud6DB06VJ2Xo7o21d8d/Toi05Jx45cbxf5m5OTkMGjQIPT19Tlz5gy6uro8DnyMUzunYlfIGg5uyOmZp3HPdCciIgJLS0v1CklZCTsYhqWHJQN3PA1d1NLRYuylsWxsvpFrG6/R9tO26JmVXaFOIKjNVPkKgbm5Ofv27ePOnTvs2rWLXbt2cfv2bfbs2fPCVuGtDnRNdGlm1ozRr4ymTZs2pe5/9+5devToQZ06dcjPz+fen/c4M/sMOak5dPTrSI9vepAelU6Tt5qUW9LTZ44PMi0ZaVIaX8u+JntSNnV71i2U0FowtOJ5ZUPr9K/D5l828+uvv1bo+JKQJIkjR45w8uJJbBo/X6iPlacV0dfLpoDyPCQlJdGiSQvq5NVBliejo19HpmVPK1M/GxgYYGysVOMob7Xi3NxcjI2NcXV1JfdJLmkRaYVyCHJycvj5558ZO3YseXl51OulzCMAZV9Hn48uU/6AClWoWn52PhGnnsojlkeFJO1RGkaORpWipFUSc+fOZeHChdy7dw+zemZkxig17UsjNDSU+fPn8+GHH3Jm9hkA5LryElfXUlNT+euvv/j999+xb2uPeZw5X3/9NZ988onGAC71fiqSJGFWr+jv17y8PLR0tTB2NC51ZlxfX5+YmBhycnIwNjYm7moc2obahZ4BFVlZWeoaAMaOxiVKj6ooKmToWYqr0Fwaz0qOqpg7dy4xMTFKaU8XU9Ij08nPLVoK+/z583z66af4+fkVei9wYSBeU7zQt9BHoVDw559/cvToUY19LBtZYuFmUWJBOVCGwhT87vza6GuS7ybT7n/t6LSgE9988w0TJ07khx9+0DjOY4QHd3bdIT+naPs/+OAD1qxZw/r16ws5AyrC/ghjh+kO2vdoX8h+FQ4+DiTeTuRJwhNAGfY7cuRITp8+raF6pMhX0G5mOxonNGbigolqZ0B1bQ+PP9T4zWg4pCGpD1JpP6d9kd9lN2/eJDIykvDwcJKSkgCICoiiToc6xfalXEtO20/bcn7peawsrTScgdDQ0GKPU3F3313SI9J5/fjrGp+ty5cvI9eRM/byWHQMddjYbCM5aTmFjq8sWW+BoDqpljoEAA0bNmTgwIEMHDiQhg0bVtdpX2h6N+/NZ0M+KzQrVRRxcXHUr1+f5s2bkxyazMGRB3Ed6Kr+0p05dyZr9NZwfOvxEsMeiiJwQSBSvsRZ+VkipUhWL1it/oKtSGhFWQhODmZjwkYmvD+Bx48rlgxbHAqFgv379/Nek/do7NO4wu1s376dlya+xA83f6gyeVQVzdybMT5mPBOliRV2viriECxatIjU1FQ+/vhjZYKmkU6hFQYtLS0++eQTNm/ezLlz50hzSuPs2bM8SX5C6oNUshKzsPWyLfM5Xd93xX6yPbeO3OLBkQdICqlMydO5ubnq0Jmy5A9UBm+88QYTJ07E1NQUQztDtPW1y5RYbGBgwDvvvEOXBl04v/g8uia6TM+eXuK9DAgIoH///sycOROHtg7kXc/jww8/ZPLkyRr7JdxKwMLNolDuxblz53BxcVFPMJQnVEZLSwuZTEZMcAz2bYquJ3HkyBEMDAzUydlGDkaFVghUlbM3b96sztsoziHYu3cvEyZMYM+ePdi1tiPtURoZ0aU7GAVJuptUpEPg4OCAra0tMpkMY0djkFHsZ0MlZeqp66lxXx4HPSbydCStP2pN4IJAUvemsm7dOnbu3FmobkFxYUO5ubmkpGiuKqkmYFAoncTOC5WrAQMGDKBjx46Fchkc2zuiY6LD/SP3i7RfLpczefLkQknzBQn/I5wGng3Q0tLiwoULRe5jaG2IhZsFUWeV8qM///wz27Zt45133tG43o7zOipzJ5pbY+muuUrlM8cHp65OGp9jK08rjOsYY9/avsjfjBYtWnD9+nXlc2CnrLsSFRClkSPzLP7z/El9mEpOSg5hB5TqapIk4evri0cjD5aPXF7ssVlJWfw98W+6fd0NY4enz+Uvv/xCq1at8PX1RVtPm0YjGnHo0SHWN1lPTvpTp6AyZb0FguqkykOGhg4dStu2bfnss880ti9btoygoCB27txZ1Sa8sFi4W5AUmlSmfTt27Mi9e/dIiUlhV5ddtJjYQkMJ4eLFi9zPvM+ZI2cY8tmQMofyqL7cZHIZP1z+gS9nfEnGoQx1mEpZQyvKy5i3xvDN/76hQ9MOGomblYGWlha9evUiLCkMR6/if1RKw8TEhMjHkeTJ8kgJTykxlOZ5UOQrODjyILqmunh94FWk86Xarzi++OIL/EP9ec/lPVrRqlznl8lkaGtrk3w3WUNyVIWWlhYffPABoEwG/d///se2/G1IEyQmvToJm+Y25aoC261bN27cuMHXo78m95dcvtL/qkwqJHv27GHkyJEMHjyYT70/LTV/oDJYsWKFxmtVHkFRiZcFcXd35x2Xd/D/0Z8GAxqgyFHeu6ISl1W0bdsWd3d32rdvj3Ur62KVd5JuJxXKHwBlYuzDhw+Ji4tDoVCUySF4VmksOihaXQzv2fAtlQJPQoIyp8bY0VhjhQcgMjKSOXPmoKury6hRo4D/zyEowiEICAjg+++/R19fn1deeQVLD0uig6JxHVh0nLufnx/Hjx9n8uTJvPbaa+Tn5pP6ILVIh6Agcm05Jk7Kys3m9Qvv26VLF7p06VIoFPLcF+doMaGFhirUhAkTijyH+zB3zi85T056DrrGT+/X8ePHGThwIMOHD1eHGR2dfBQpX0KuI1fH1vvM8aFLly6cOXOmUNsyuQyPNzy4tf0WrgOe9k1xoT/PkpeVR/jhcHz/8GWh88ISJ+wcfRx5HPgY15dd6dOnD++//z5t27YtFI5zY8sNGr+pnGzZunUrK1asYMuWLXh4eBT6zZDJZDQc0pDQvaH0+7lop8Xe3l79fGXGZ5J4JxGH9sXnJalWGev1qce5JedwHeSKTCbj2qFrKCQFN6JuFHvsyY9PYtPChiZjNJPAk5OTUSgUREdHI0kSf2T/wV72cv3RdXSa6vD29bcJWRkiahUIXliq3CE4depUoUIrAP369Sv0YyrQxMLdgujgaOLj4zE3N9dQ3ClKElSRr+Dvt/4GQK6j+QU9Y8YMhngNgcNlP7/qB9BzlCdRAVE4N3Vm1V+rnjtHoCzI5XK2rN5CwNwAde5JZZIZn0l6VDrWzSrubHTu3Jnjx49za9ItEm8mVplDcGb2GZLuJDE6eHSxhaZKuw/r16/n4cOH9HTpWWE7nk0oLsj8+fPVf5uYmGCgY0DDvIblDhcC5extXFwcrq+7cuvXW2Wuxvro0SPy8/OVymYlFCWrSsojPapaXcuIzkBL/2ksdHEOnqWlpTrfISQkhIdWDwn3D6dR30Ya+yXeSiwyf6B+/fqcOXMGd3d3ZLKyFeQ6F3aOX3/9lX4X+vHFni+IDorGZ66mbryKxo0bk5iYiLm5OaBMKn52hUAul/P222+Tm5uLXK4s+JYRlVEohwCgT58+GBgYqOPl7b2VFYuLcwiCgoL4559/1EXJ0h6mIZPLinwO8vLyWLVqFeHh4Xz55Zdl6ouCzlpGdAb3D9/Hy92rTANAq8ZWmNYzJfyvcBq99vR+BQYGkpubi6GhMtfFf54/l769hFNXJ944+UaZv2s9R3iyrdM2cjNz1SpBGzdu5Mcff+STTz5hyJAhxR778MRDDG0M8XzJs1QHwrGDI7e23wKUTu13331XaJ+0yDQiT0fy8paXAdixYwcXLlxg9erVfPvtt0W26zbEjb2D92qoiv300080a9YMb29vjX0fn32MpbtliaplBe+Vlr4WEacjiPgngrZBbenwZgc++fWTIo8LPxzOnV13eOvaW4X6YsqUKXh6etK9e3dkMhn9+vXju+++47Wur5F2II1vTL9BUkjCGRC8sFS5Q1CcvKiOjg6pqRVXdvgvYOFmQb/Z/UjcmcjNmzfx8Hha2KkoSdBTn58iJjiGJ/FPCiVb9evXj07NO7H+6/XFJrc9i2rAkpOWQ91uTxPWyjIjXRk06NeAQ2MOkXAzAUsPSyRJKndiWFFcvHiRm8dvghMlaoOXhqmpKd26dSO1SSoJNxOKHaiUheJqPtzcdpMjK4+wTnsdf43/i507d1ZIT3vSpEk8OvcInaiyO1e3b99m6tSptGzZkqVLl5aaUKy6jrec3uLDbR/i/7k/j2Me0+wdZVGm0hKCVfz999/IZDJleIYEMi1ZmZKnP/roI0aMGEF+fj7Bk4Nx6Vm2RObnRZIksrOz0dfXV64QlCGxOCcnR90P21/aTpOxmrORpQ0oVq1axS/xv5CyNIVNfTdpvJd4O5GmHZsWOkZbW1tDnMDUxZS7l0quovvE4wkXuYjOXh36+fYj/no8UQFRBK8ILjTw0dbWVgsaQNFJxXXr1uWnn35Sv86MzyQ/J7/IFYIePXrQo0cP9WuHtg4lFtdbuHAhI0aMUIfUJIclY1bPrMjQDS0tLebOnUtGRgZTp07FtF7xDkF2djZ6esrvy4IDTZlcRtDyII1+SExMJCgoCC0tLbUULyhnwd2HuXPn9zsaDsG8efMYOXIkcrkyHytwfiCGtoZqCdOiVozy8vK4fPmyRiE6mxY2yuKDf4Th8bryd2LTpk34+/szYMCAYvsMClQnLvC9EhcXR0JCgsZvDigdghPTTpQoB3x7x22cujqpw20+//xz2rVrx/vvv1+sDQ7tHZBpyYgMiMS5izPXr19n4sSJ5OXlERISQsuWLdX7RgVG4eBTumpZwb7b8dIOkKDz3M7qz53/PH+QQdtZbdHR0SE7NZsj44/QdXlXrm+6jiJfQWwLZa0G1Rim4D196aWXCAsLw9rampV6K9UFDIUzIHhRqfIgt2bNmrFjx45C27dv307jxhWP3/4vYOFugX6+csD66NEjjfcKxo7vn7EfNyc3PvvqMzLjM4udoTCpY4JJXRMeny1bTH7Hecp2/tj7B8suLdOQPy0tXKgy0DXWpV6fevy17i+6devG+vXrK6Xd1atX8+Ynb3LBqOhY2fJi5Wn13NKjKgevYIxydHA0f439i4c5D0nMTCQ8PLxCzgDAZ599xozJMzCINyjzMTdv3uTIkSMcP34c+P947GJWCECZm3E7+ja7fHeReDGRtPtpPD77GPu29uWKq1U5A/6+/rj0csHtFbcy5UloaWnh6OiIs7MzaRHVs0Lw+++/Y2RkpJZQNqtvVibp0VatWmFpaYm/vz8J1xKwblK+lSpTU1PszOxomFc4vCPxdmHJ0SLbKMOseO/evVm+fDnDRw3n7IKzSPlSkc5AURg7GqurFRdHemQ6euZ6RWrfP4t9W6X06LPx+SpatGjByJEjcXVVOubFSY6C8hmbNGkSM2fOxNDQUNkXRazsZGZmYmhoSN26dUlPVzo3Td9WOltFqUL99ddf9O3bV2PFTIX7MHfu/XGvUNK5u7s7DRs2JD0qHbm2nFf/fBVtvadzdQXzsdLT07Gzs6NNmzbq5G3V9XiM8OD29qeKWVu2bGHJkiWMHj26yD4ApTP7rNzogQMHqFevHu+++26hvrZubM197jPlnSnqCt3PcnPLTTzf9Hxqv48Ps2bNwsqq+DA6uZYc10Gu3N2rdFDt7OwYOnQo/fv3p0WLFhr7lpZQXBCfOT7IdeXw/5dxac0ljk4+SlRgFDn5OXww7wNeaacs2Hfq81OYNzQnIyYDf19/tgRs4dVXX2X48OHqmhnPYm1tXWQ1c4HgRaTKVwjmzJnDq6++SlhYmLqa5rFjx9i2bZvIHygFc1dzxinGMfXuVGxcC6vhqH6INvhu4C53sceeTn6div2hvn79OrccbmF/2J56veuVyYas5Cz2h+7nDndo8XuLaq8u7faqG0tmL+GfR/8QFhbGO++889whRHZ2djibOePZxLP0nUshJiaG/ff2c+fkHfpRfNJeaTw7E9js3Wb81v03FLkK3p79Nu/3fZ/s7OznslWVVFzW2OLWrVvz008/YWCgdCKeLUr2LP/73/9Y8v0S+rboi8MXDpi6mJKVmMWdnXcImBdQ5qX0guEoNi1sOPO/MwzaqRxwlzVUrbpChkxNTXny5Il6cGRWz4zbvxWWMX2WiIgIUlJS0M/X50nCE6wal5xzoOLRo0d0796duLg4Lu2+xKExhzTez0rOIjMms1iHIDg4mFOnTtG0aVNaubQi9UFqic+Dt7e3OmRjxbb/a+++45o6uziA/8IeIWFPZQuIoiIURBT33hOttc7WWvV129pWHPXVqtXWVlvrbmsdddetdTMUFdFq2SB7yCZskvv+kTdXIhsSAnK+nw+fD7m55D65udzcc5/nOWd7nYUHjx49ioCAAPj6+sLL3atKteKKigqpoY+CZEGtaU8LCwvx1+d/wdLQEp6fe6K8sJwtNgbU3utUU8pRia1bt7K/51jlICUgpco6MTExEInEF+JcrviO9/VPrgNAtWl/u3Tpgo4dO7K1GCoz6mIEbTNtvLr2Ch3GdpB6TlguRFpwGjw+84CpW9UhdpX3t6S4VkREhFTlZKcpTni4+SFK80qhzleHhYVFlbl7b/dEZjzNQFl+Gdr3ac/uS/d57hCJRCgtLUVOTg709d8cSxwlDvy1/fHktycQagqrDBnKCs9C5stMOIx3qPIe6mI/xh63/nMLfbf3haGhIY4ePYrS0lKpY1NYLkRqcCoG7BpQyyu98fbFut0YO4jKRTg97DQStRPxDM/w/Olz/DTuJ1T8XYEuH3VhU2h38+qGA3cPoHv37jX2TNdVzZyQ1kTuAcGoUaNw7tw5bNq0CadOnYKmpia6dOmCv//+G3369JH35ls1FQ0VtLdqj5KkEqCG0Sguc1xg7WeNWZgFjgqn1pPQzJkz8fjxY6AAbLn3uiTdS8J06+lIGpLEFhJqTrYjbdFldhcs/GghVn61UibzCb755ht0+rsTPKZ4NPm1cnJysO3oNqhCVWpoQWNUV/Oh5/qe6OnXs46/rBvDMBDpiJBTmiO+QKtH1eD27dtj1qxZAMQTD/MT8mvtIRg8eDC++eYbCHQE7B19cNCgYAAAnr96jr+7/g2BUID/OP4HOVE5EAlFdQ5V++qrr2BgYIDpU6ejOLO41gtNWenZsyeio6PZyro86+rvNL8tPj4eycnJUE1QBd+GLzXRtDZmZmZISUlBUVERBLoCCFLEP1xz8cVqTkQOtIy1apxrcunSJaxbtw4fffQR+u7oi4qiinodD5JMYxyV2odvXblyBUeOHIG1tTV8fHygzldHYWohGxCMGTMGDx8+xN69ezF+/PhaU45WVFSAx+NBJBJhDdZASUkJRt2MkBacBj17PamLseTkZAQHB8PJyQkdO4oD/dyYXLTzqV8dk5p6Szp37oyMjAw201nQ10GIuxQHm+E2mHBpQpULQBcXF/z7b/UTVtlhQ6ci0WFsB/j6+sLU1BQrVqxA0q9JqCitQI81Peps67lz52Bqasqm85TQd9SHgbMBos5GofPMqkPGgKpDTaP/iob1UGsEbwlm96WZmRlCQkLg5OTEXoyXlZWxFY6nDJ6CshtlbBGyysKPhcN2hG21ufmfPn2KrVu3on379tiyZUuVINRygCVi02KR+U8mW/n97fPp6+evoayqXOekfaDmi3XvDd6YnzYfsZdjUbSxCBXPKlB8vhgcZQ6efC9dGDAsLKzG6sb1rWZOSGsh94AAAEaMGIERI0Y0x6beOXoOesiJzEH7Pu2rPFdeXI4jHkegBS24qLnUOc7ax8cHqowqBC8EtY4BrSzxdiI8h3riq5+/avJ7aQxNfU1Y97dGf+f+sLSsvvBOQ4kqRMh6mcV+6TSFo6MjfCf5ouBkAXISc2BqX/0E2prmCABv7nJ2X9Qd5YX/H07AiO9AyiIYAIDffvsNM2fOREeVjliYtLBeAUFleXF5UNFQkUrD97Z+/frh1KlTcHBwgIuLCx5sfABhmbDB42qNRxrj2sFryNfKx5ov14ARMuIMMLa6Nb5OcXEx/vvf/wIAxvQeAyVVJWgZN+w9Noa2tjY7RAUQDxkqziyukk3mbXw+H3w+H09uPIFBp/r1DgDicfq3bt2Cg4MD9PT08Mj5EdIepcF+jHjoUFZ4Vq0Fydzd3TFlyhR4enpCjasGDX0NFCQU1Hg8hIeHI+pgFMK2hUFZSRlzIucg7EhYjRc8Y8aMgbW1NXr2FB+3konFkv+1hIQEZGVlsfnwa8owJHmvJiYmKCgogMMMBwT4BcDUQzyxODcmV+pi7MiRI5g+fTr69evHDnHLjcllh/fUpLS0FLm5ueBZ8VCQWABGxEgVKuRwODAyMoKRkZFUxrVBewZJvf/6XgA6THTAn/3+RHJCMpuedO7ouXi46SGm3JsiNVSoJhYWNQ+XcZrqhNO7T2P73e34+OOP4eVVfUYySXtjL8SCZ8OrcmErCaoAoFevXnjw4AEePHgAd3d3TJo5CTx/XpVeEIZhEHY0DD5bfFCd58+f4/jx4zA0NMTSpUthZiY9D+Dq31extWQrkhcm49e7v1bba5USKJ4/UFcxyfperO8avwvF2cX42eRnlFeU44bSDXw470P2dWoKBoDaU25LniekNWmWgIA0ntBCiG8PfguzaDNs2bKFXc4wDP7o8QcEyQJ4+XnBe713nd2V27dvByNisEt/FzKeZVTbNf22hFsJ6PFV3Xet5KnD+A4IPxoOtyXiSXT1HfJSk5xocSrX2u521xeHw8HxP49jr81elCWUATVk7KtuEjjw5ourXZ92eLLjCVtZV9LFfXHVRbzQfwEPDw92yF1jSPJ3l6uJi4sZd6u7LsCdO3dgZmYGOzs7ccpRO906v4gnTJjAvi9JMFCfCcGVdevWDdu2bYOdnR2UVZWha6eL7Ihs6Nrq1vg35eXlWLFiBVJTU6GcrwyddjqNqkDdVJoGmlDVVkXeqzwYda474Mx8kQnDzg2bP1A5D72Zp7hglyQgqCnlqMTbN2ckd8ZNuptUv63unsgvzseuYbugGasJXRvdWi+CJ06ciIkTJ7KPuWZcCFLfTCy+f/8+EhMTYW1tDaDuomTR0dFsBp4gE/H/StqjNICB1MWYhoYG3nvvPbi6ugIQnyPyYvNq/R+/cuUKRowYATc3NwT5i4/XwrRCtrflbSKhCPZj7SFIFkjVuKjpArC685RJdxNoGGgg73Eezpw5g6chTxG6KhRuS93qVf35bW9vw8nXCZ989gmePn4KLS2tKgFB5fZKPr/0kPRae/CUlJQgFAoRGRkJd3d3mHqYIj8hX6pnChCnpC3KKILt8OovomfMmIHy8nJ07969SjAAAJGRkRAxIsS9jKvx/dZ3/kBDLtZDd4dCVCFCuko6blbcRB/XPniR8KJKD8zb5JVymxBFocoZLZy6hTp+f/A7du3aJTXB69SQU8h8ngmnRU54afEST548qVeRKo4SB+Y9zasdL/u2+PB4HP/nONJ56TJ7P41hP8YeyYHJSAhLwJw5c9CxY0e2AFVD3b59Gz0G9cBl3mWZFo6pa2Lx258NwzC4/+V9cVo8dWUoqSjB0dcRudG5UlWIT247idWrV2P58uVNal///v1RWFiIzT6b61WcTCgUYsiQIXByckJSUhJyonNqnT9QWeW7c/WtplyZjY0NVqxYgXHjxgEA9J30kRNRez0OHo+Hbdu24ciRIxAkCZo15eiJEyewZs0ahIeHg8Ph1Jl6NCgoCBs3bsSNGzeQ9TKrwQFBZWYeZkh9+CZJQHZE9SlHa1LbxGKhUAhVZVUocZRgZGgEm2E27HP1LTzINeeiMOVNMTFdXV24uLiwPQSCZEG1KUclJMGAZJuSCaJKqkpVApHg4GA2lXVRehHKC8vBt6l+UjEgrpnBMAzS09Ohoq4CbTPtKhPCv//+e+zYsQOJiYnwXucNUYUIHcZ3qPJalZMsnDhxAo6Ojvjoo4+k1glYF4AHGx/AYYID4v+Kx9ixYzFMYxgqSiqgpKLUoMq258+fh5eXF8aOHcsWeAMAniUPY1zGYIzXGMyZM6fGv3ea4gT8P46oqwdv7969SEpKYtO5qvPUYeRihJQg6e+QsKNhcJjgABWNmu8zzp07F927v6mDEhsby86NWr58Oc7/eR6j80ajILH6c1RyYHKtBckkJAkxqlP5s6p8rsqfkQ8tNS30SOmB4E3BdW6DkHcNBQQtXEePjvDR9YGfnx974o+5GIPEO4no+klXaIzWwLx58+Dr6wugfl/U5j3NEX8/vs5tn9pzCleZq1iyeolM3ktjcc24MO9hjow7GTh//jwiIiJw9+7dRr1WREQEopOika8h25S32vbauHvrbo0ZUIA3n42fnx+MlIxwY9MN8Kx4mHhtItr3aY9/9v9TpYu7x+we6Iqu6MrrWuPr1oeamhq0tLSg004HgiRBnevn5ubCyckJenp6aN++PVuUrC41ddU3NCioTM9RD9nh2fVevyCxoFnmD0js2bMHGzduZCu81pV69ObNm1izZg2OHTsm7iFoYIahytjMO//P5JMdng09x7oDt4qKijqLkykrKyOzIBOlZaXIvpMN66HWUs/XlGmspKQEcXHiu7zVVSuurCCp5iFDb5NMEOUocyAqFyFwfWCN6+bG5IJrwa21IJ6zszPS09MRHy8+F1a3L3bs2IHly5cjMTERZQVliL8RX21AUJmKigoiIyMRGxsrtVzSS1iaX4ro89FIf5qOBxsfwKK3BYI2BDXoBoWamhoePHiA7OzsKneyR388Gr7KvlIX3pVFnonEYZfD7LDEujLjODk5wcLCQqonwrynOZID32QZEglFCD8ejo7v1z9RQ0xMDFxdXbF48WKIROLvq9GTRsOqjxWiz1dNh1uQVABBkgBmHnWnHK2Pt89V+/btQ1ZeFj7e8HGjz1WEtGY0ZKiFM3E2wdiisVi8YjGUlJWQ+TITl6ZdwvAjw+E02Qn37t3D4MGD2S54oPbuylmzZuHMyTP4UP1DjGXG1jr0hnnFoLddbwyZMESWb6lBJGPvO4zvgFfnX+GHH36AhYUFevXqVe+89pWNGzcOyYeSYeNlU/fK9VRWVoZxv4xDSVkJxiWMg5VVzfnvvdZ4wXKtJf5m/sZfnL/wNO4pOBwOEm4nVNvFPf/AfHSz7iaz8ag67XTqlSffwMAAz549Y4ck5ETlwGFi3ZlDZDWuNi0tDenp6XBwcIC+oz7+/b3myqKAuN6JhoYGVFRUmi3lqMTo0aPRsWNH2NiIj6m6Uo9269YNc+bMgUdnDxT8WtCgO/pvM+xsCFGZCNmR4sJ4udG5daYcdXZ2RkREBF6+fAmeFQ/J96tPHymRG5mLksySaucxvS09PR2mpqbgcDgoLS2Vqlb8/PlzXLhwAa6urhg+fDiAuocMBQQE4Pfff4dGvAbaXW0H7w3ecF/hjj3mexC4LhAcpeoTKeRE59RZoVhVVRXGxm+Gzr0dEDAMgxkzZiAyMhIODg6IvRILXTtd6DvUvn99fHxw4MABTJs2TWq5pJ0n/E4gVSMVeQPyYOduh+e/PG9wMathw4bhxIkTcHFxYTPgCIVCCAQCOExywO0lt5GfmC81tElYLsS9z+4h9KdQCEuFTcqMY97THKE/hbKPE24lgMPhoH2/uo8R9m8SElBRUYHU1FSUlpay2czsx9oj+lw0ui+SDmhSglJg6GJYpTJ3Y719ruJwONDQ0KA5AKTNooCghZJcCHuu9gQjYpCfkA91njrOjj4LY1djZP0rHp7i4+MDH5/qJ3FVp6SkBPmF+YgtjkV+fD741jV3qetH6uPAtweqpMhrTpK7am5L3ZBwKwGfHv8UGroa1VZKrQ8TExO0S2uHgWMbX7H3bWpqanC0c8SriFdISEiQCgiEQiH27t2L1NRUbNiwAXdW3AGf4cOWY4tBzCA82PigzpoOshqPeuDAAVy8cRFupW71TpEqCRjrU5QMkN24Wnd3dyQnJ+PRo0cwczKrs4dg6dKlOHToELZu3QrrROsmDcNpqLezrfCt+Uj2r/kie+TIkRg5ciRir8TiToc7tQ6xqIuyqjKMuxsjLTiNTRJQ2/80IP5MRSIRkpKSYGllibAjYbWu/+rqK7Tv275e7TQyMoKKigrU1NSQmZkp1UPg7++Pr776CmPGjMHw4cNRXlSO0tzSWgOCmJgY/PLLL+iADvh1w6/sMTT8yHBcmHhBfMe9vBQzf5sJGxsbXLp0CVpaWnWmHK3O2wEBh8PB119/zT4OOhNUZ++AZB/Mnj272ue81nhhx6UdOPXwFF6VvMKk+5MaXdl28uTJUo9XrlyJ7777DqeXnoZlf0tEnIjAeyvEKWMLkgpwtOdRlGSXSAUDkjYBDcuMY9HTAtfmXENFSQVUNFQQdjQMTlOcGtTL0a9fP9y9exenT59Gfn7+m4BgjD3uLLuDkpwSqWxZKUEp9RouVF80B4AQaXIPCIRCIQ4fPoybN28iIyOD7RqUkGSEINIqT0Ll2/IR8yAGj3c/hqq6KpLuJsFqQOOqsH755Zf4/PPP8XTuUyT7J9d48VCYVoiciOqzGzWnyl9W2mbaiL0Yi7y4vCrDUmpTOcNPSU4JChIK2KwnjellqM7Vy1fxu83v8Ogincr033//xaeffgolJSU4ZDsgbXcaXDq5YMeLHXXemSspKUFFRQWb/7ypLl++jHMB56Bh3LDqzMIyoTjLjwwmYdeXmZkZysvLUVhYCP3O+ihMK2Tzq1cnOTkZQqEQenp6zVaDoCY8ax7+PVJ7jwYgnlDckAxDNTHzEE8s1jDQgK69bp3Zw86cOQMejwdjY2O8Dn1d45Chv//+G4cOHYJ2iDY++fSTerVFSUkJmZmZ4PF44HA4EJoL2UnFDg4OmD17NjuURZAsgLKacq0Zr9zd3TGrzyzYmdpJ/Y/YjbCD9RBr5CfmIyU7BfHx8cjOzmYvKvNi8upV2+HixYu4evUqBg8eDEtrS8RcqL4SckVJBWIvxWLKvSn12g+VlZWVsZVuAWDQ7EF4HPwYnZhOMqtsKxKJcO/ePQDA+u/WY/3Y9Qg/Fo73VryHV9df4dy4c6goqoCFjwWsB1o3uQePb8uHhp4G0p+kw7i7MaJOR2HSzUkNbre7uzvc3d2llvEseTDqYoTYS7Fw/uBN8dKUwBS4LnRt8DYIIfUj94Bg8eLFOHz4MEaMGIHOnTs3KTtMW1L5QjjYMBhz358LTw1PTCyZyF4IS6on1pUNobLOncVp+LJ7ZyM5IFnqhFtZ4IlA6Ljo1JjPvDlV3hdXZlxBnigPmYMyIRAK4IW6v0wrB1dBRUFINkyGMle50b0M1TG1NoW2sTaSniYhVycXbm7ijEguLi7w9fVFO0E7pOxOgYqKCkYeGyn1vm743ZB6LHH9+nWMHTsWo0ePxrlz55rcRl9fXzhYOKBsX1mdmZpWrFiBFy9eYMWKFehu2R1KqkrNOi4/ODhYqn2ahprIjsiucfzwhQsXkJ6eDm1tbfy+/PdmbSsgHl5SWFgILpcrHjJUy7AsSfXbxmQYqo6Zpxke73gMXVvdeg0/qpwukmfFQ3FWMcoKy6CmLT0UIzQ0FEePHkV3pe6wGVr/IXZ8/pubDFxzLgpTC8EwDAYOHIiBA9/0zBUkF0DbXLvWbFDOzs44eOdgtc/1+74fDnU6hFHbRyHg/QBkZ2e/6dGKyYXdqBqKt1Ry79497N69GyoqKvjP4P9IDfXKy8uDpqYm1NTUEP93PDQNNeuVnUsiODgYK1euRIcOHbB//352uUu6CxYwCxqVgasmSkpK8Pf3x61bt6AWqIbQ/4aCo8zBjU9v4J/9/0BUXv1Qvsoa0gYOh8POIxCkCqBtqt2oLEk1sRtjh6hzUez3U3lxOdJD0mXaQ0AIkSb3gOD48eP4888/2TGjpP4kJ+hnfs8AAAUlBVIn9fv372PEiBEYPHgwzp4926DXtuhlgcB1NU/K+2r7V3ic9Bjaf2hXGQurCJKxrqJyEfKU8/DzjZ/BDeLis88+Y+8K1va3APC339/wgx8AYNTXoxCyMaTR3fXV0XbQxsz/zER4ajji4+PZDCnHjh1D4PpAvMp8BW47Loxc3qSjDNEPwRa1LeBH8asEN+Hh4WAYBrq6ujJp3+TJkzFmyBj8+OOPKM0rhYZuzcHe/fv3ERwcjHnz5tU75agsvR2s6Dvq1xoQKCsrw9zcHGWFZSjJKWnWHoKnT5/C29sbxsbGePXqFfjWfJTmlqIkt6TKPi4pKYG2tjZ0dXWxxXoL7EbWfdFaF1MPU2SEZkC/o36d8wfepmmgCRUtFeTH58PQWTo46d+/Pz6f/TkElwX1zjBVmUgkAqPDvKlW/FZPQF0ZhurCt+ajxxc9ELA0AB88+kCqZyQ3Jhd8u9qHTgHAoEGDoKysjH79+oFnwZOq3Lx69Wr88ssv2LRpE7pGdkWHcR0adEOroqIC9+7dQ0hICL777jvo6OjItbKthoaG+Ht2OKCtro0AvwA82/OsSorWppL0uJr3NEdKYApSg1Lh9L64iJmselw7jO2AR1sfsUOS0p+kQ0Nfo9asUYSQppF7liE1NTXY29eQnJ3UyWuNFzqrdsZ/8V/MVZsrdVKPjo5GcXFxg6v3Xr9+HQf9D+LFPy9QkltS5XmGYZCangoRI2J7FBRNEgxwVDhoJ2yHfg79xHUVasnqU5nXGi90WtwJjnCENaxlHgwAQKAwEGnpadDS0kJ09JssGRwOB10/7orXz15XKTQWHh6OorIiPGYeV3m9VatWIS0tDevXr5dZG9V4alDlqtaZenTHjh3Yv38/PDw8kBOV06zDhaqj76Rfr0xDgiQBlNWVoWlYe5AoSwYGBiguLkZqaipEIhE09DSgzlevdihOcrJ4bkFZWRkKwwubNGQoYJ04Ewrfhg91njpizsewGYaCvg6qMY1lbGwsduzYgV9++QUcDqfGTEPdu3fHAM0BGDNhTIPbdunSJTg6OuKzrz4TVytOKURxcbHUOnVNKJYoLy/HP//8g4yMjCrPua9wR3lhOUL3hLLLSvNLUZxZXK85BIMGDcLmzZsxePBg8Kx4bOVmAEhMTIRIJIKhgSFizsfUa/5AZT179sQPP/yAsLAwNhj40+9PeK71lFkGrppUTtEqq2FJEpIe1+yIbCTdS0Ls5Vh0fL8jG9zIIp2zoYshtIy1EH9TnAFKUn+ARhgQIj9yDwiWL1+OnTt31vvCjUgL+joIyuXK0FTTrJIebu7cubh27Rq2bt3aoNf88ccfseW7LUgxTKmSSxoQT0BbLFyM8OfhcHFxafJ7aKrKd9WWly9Hu17tMDxyOJzinKTylNemoqQConAR5nLmYgEWyPxLEgBGDByBqTZTER0djS5dukg9F7wlGDbDbKpUR960aRP279+PX3/9FYB46MvEiROxc+dOAOJJ0LVlLWoogUCAXMNc5CfUnnbV29sbc+bMgYWFRb1TjsrSrVu38MEHH2Dbtm0A/p96NKL6gCAuLg7Lli3Dvn372JSjzXnhYGFhgZiYGOTm5rIZX2pKPWpnZ4e8vDzcPX8XjJBp1J13CcmF2YOND2DqYYrSvFIYOBnUeWEWFRWF5cuXY9euXeK2WvFQkFA1QGQYBnFX4qTqD9QXl8tFdHQ0Ll26BA1TDeQm5UJHRweGhobIzMwEUP+UoxMmTECXLl1w+vTpKs+pqKtA+L4QP3/2M+L/FV885sbkQl1XHZr6DQsKJZWbJcHRX3/9hdTUVHiaeIKjwoG5V8OHqyxatAjt2rUDAGQXZOMHzg8Y++NY5ObmsuvUt6ZDQ0hStNYnrWhDSdr74sALlOaWwtDFEBEnIho0r6suHA6HzTYEiAMCGi5EiHzJPSDw9/fHH3/8ATs7O4waNQrjx4+X+iE1q0+Bp0GDBkmlHK2PkSNHYvbs2XDp7lJtgbLE24kwdTeFo4sje4GjKNXltZ9ydwr0O+oj+JtgBKytu5iPsEyIvyb9hcyXmfXOvd0YXXp1gWWmZZUeG0GqAM/3PYeXX9UvSh0dHcyZM4fdz3FxcTh9+jQ7QVCWKioqoK+vj3Wv1iH2RWzdf/B/DSlKJivx8fH4448/2KQDBk4GNRYne/nyJb777jvs2bOn2VOOAuLhSra2tlJD12orTsbj8aBbKB7vr6xa//k/b6t8d7miWFyoL/qv6DovzBwcHDBlyhS2ojDPsvoeguBrwUhOSoZ574ZfiPn4+OCPP/5AREQE+BZ8xP0bB6FQiPz8fOjri4c11beHoFOnTuDxeBAIqq9nsOvMLuwv2o9f/yMOqhuaYaisrAzR0dEoLS0F35rP7gsOhwNTU1Ok30hHh7EdmnznW3u4Nvi6fLRv377KMMC6Mo01RFMLA9aH5NhjRAwynmbINBiQsB9rj5i/YiASisQFyRoRkBFC6k/ucwh0dXXZiqOk/qormnI/6j4cJztisd9ifF30NYZsblx9gHnz5mHevHl4vu85wo5WTTmYcDuhQfmk5am6vPYcJQ6mP56On+1/xolfT0A4QFhj6lVhuRAXp15Eekg6ClMK5TJ2V0K/oz7y4vLYca8Sj7Y+gvVg63pNSOzfvz927tyJbt26yaRNlamoqMDS0hKZyZlIjEmscb2YmBhERUWhY8eOsLKyqnfKUVnq0aMHtm3bho4dxYWO9Bz1kBOVA5FQVOXCzNraGitXroShoaHCMwxJ8K1rn1jc1IJkEm+njHy46WGdF2Y2NjY4duwY+5hnxUPWy6pVtkdNGYXXZa8xKmoUO0m+vjgcDt5//30A4onFvFIecnNzkZqayga/9Z1D4Ofnh02bNtXY6+Pm5oayjDKU3CtB0v2kKgFBXePa7ezskJSUhEePHomHT73Kx8uXL+Hs7AwwQNSZKAw50PhaLFlZWfjiiy9w9+5dpKSk4PXr141+rbrUVBgQaFha0frwWuOFoI1veiJkGQwErAsAh8MBI2Tw75F/UZpbChM3EwCyywxHCJEm94Dg0KFD8t7EO+ntC+Hr16/j1KlT7PNfn2l8QCBh7m2OW4tvQVguZO9UZmVlYdaRWRg0bBB6VvSEiopiS1XUdNJX1VJF+vvp+HH7jwj5KAT+Ef5V1hEJRbjy4RUkBySjKL0Ilztdxm8nf8P2HtsxaM0gALL9ktRppwMVLRXkROawQ4MK0wrx7JdnmOo/tV6v0blzZ7nO23jx4gWebHqCwtTCGtc5e/YsVq5cialTp+L3X39HXlxesw8Z6tixIxsMAOI77oyIEac/tZVuS+fOndlhc9c/vq6QgODKlSsICAjAoEGD0KdPH/Bt+Oz458pOnDiByMhI6PjroIdPD5ls22uNFx5sfABhmbBRF2Y8Kx7iLsdJLWMYBqJSEZSVlGFiYtKk9mmbaSM/JR98Pl8qA1F9ewjqShpw6NAh9kL4r4l/wXaELXu81ieTmKWlJbKysvD69WvwrHjwD/TH5198jmnTpmHdnHUoF5TDsp9l/d5sNbS0tHD27Fm8fv0aN2/exIgRIxr9WnWRVWHA+qhuWJKsggLJcDgjVyME+AXAxM0EKhoqMs0MRwiRRoXJWqi3L4SnTp0KNzc3GBkZYdeuXThw/ECTt8EYMqjQqEDG0ww2e8vF4xeRXpGOJ9FPFB4M1GXa7Gk4fOQw1KPV8dekvzD65Gj2OUbE4Orsq4i/GQ9de124LnDFviP7EBkZyb4vWX9Jcjgc6DvpIyssiw0IgrcFw2qgFUy6N+2iSlY0NTWh004HaY/SalyHy+Wic+fO6NSpE/Lj88FR4ij8rruyqjJ07XSRHZ5dJSCoLD8xH8au9U8NKSvnz5/HL7/8AmVlZfTp06fGOQQnTpzA2bNnMd18OkZ+OlIm2w76OogNBhpyYVZRUQGRSFTtpOKKkgp8ha8w7fk0GFo0vifj0aNH+OLiF+AWczEYg9nlIqEIglQBuO1kU2PDa40XREIRgtYH4eWvLzF43+Bq75ZX5+rVq+ByueBwOHgS8QSxd2NRXl6OrKwsRJ2Lgt0oOyirNX5ol6amJnbv3g1TU1P06tWr0a9TH81VbEue2ZIqv4bkNR0mOtT78ySENI5crvi6d++OmzdvQk9PD66urrVO8AsJCZFHE945ledbzJ49u8mTJidOnIjTp09jYdeFSA5IZgMCRzhiecfl8Pq65Z9wnZ2dkZiSiCszriDsSBiufXQNQ/YNASNicH3edcRejEVJdgm6L+oOrzVeuDjlImJiYuDq+qa4jay/WAw6GrDZcArTC/Fsz7NGFTOSJ247bq1Zhj755BN88om4EFXc1Tjo2urKJHNIQ6WkpCAjIwPOzs5QU1MTZxqKyIbtcNsq6xkbG0NFRQWCJIFCgpf+/ftDWVkZnp6eAMRDhvJf5Vep9zB8+HDo6epB+zdtmRQla+yF2QcffIBjx45h3759mDhoIgQpAqmewqS7SdAy0YKhs2GTzjUlJSUIDBOnN/7qq68wYcIEuLq6oiijCIyQAde8fgHBzp07ce7cOaxYsaLGO+ze67yRn5CPl4de4sYnN+qVex8Qz+OR4Fnx4M644+bNm/Dw8MCxbsfgs6X+leBrMmlSw4t2tVTNNSzJa40XhOVCPPj6AZ7+8BSiivp9noSQxpFLQDBmzBioq4srio4dO1Yem2jTZJFBpX178RyBUqNSJPsnw32puFpkVmAWxk0aB+8JraNLVklJCSN+H4HS3FL8s/8fqHHVICwXIvJ0JEpzSqW+QDp06IAOHRqWOrChDDoaIOOZOD3io28fwbKfJUzdZFewp6kiIyOxbv86JEQlYBZm1bl+TnQOdDvoyr9h1XB0dIRAIEBkZCQ6dOggrkXwVupRhmHg6OiIkpIShIeHK2wOweTJkzF58mT2Mc+ah7ICcU2Eytlu5s6di7E9x+LI8SNNzqnelAszTU1NiEQiJCUlgWvOBUeJg4KkAuja6AIQB4I2Q22afK7p1asXvvjkCxzYfwD//e9/YWVlBVdXVwiSBdA01ISKev2+gv755x/cuXMHvXr1kgoINm/ejL1792L+/PlYtWoVhh0chrAjYRCVN2xce05ODjQ1NcGzFveW9O3bF5kvM1GQVADrIdaNeevvrOYcltRrQy8EfxPc4M+TENJwcgkI1q5dW+3vpOX44osvsGHDBuQ9y8NfE/9CSUkJ5s2bB50rOlh1ZpWim9dgLjtckJ+RjyffP2GXNefdJEmxHkMXQ4QfD0dhRiFCfwqF7x3fFjUJrri4GMfOHYMWtFBWUAY1HbVa11fEhGIJMzMz5Ofns9ll9J308eLwC6l1cnJyUFZWBqFQCCOeEUrzShU+vAkA1Hnq0NDXQF5cXpX0l1kvs2DgbNDkXpemXJitX78eGzZsgImJCZSUlMBtxxXPz/h/QHD19FWE24YjcnckFixY0Og2cjgcrFyxEhF7I6AzU4edLF/f+QMSM2bMQK9evaoMuYmKisKrV69QVlYG4E29koYMn0pKSmJvkKTEpqAkpwSl+aWIOhMFm6E2UNVqWJ2Xd11zDUsCGvd5EkIap9kGiT9+/BhhYeKMNs7Ozg3OWkFky8hIPMZd010TpTmlOPPrGfz2228YpDwI5WblCm5dw/Tv3x+3b9/G5UuXkTU6C4yQqXI3KSQkBE+fPoWbm5tcMvhIJsF1/093ZEdk49G2R2jfpz1eXX3VoibB2dvbY926dYj+bzTyk/Jh2FF6fHhsbCyGDx8OZ2dnnDlzBjlROVWG6DSXiIgIqTvU1fUQ6Ovro7i4GGlpaSh7XQYVTRVo6NVcgVmeGIZBbm4u9PTEAZQk9aikh6i8vBxlZWXIfJEpk+FCTbkwMzeXTuFYeR5BbmwuolOicSHpAtSN1ZsUEADiScU9RD3w6bZP2WrF9a1BING7d2/07t27yvJvvvkGc+bMgbm5eaOHT6mpqUFdXR0cDgc5xTlQ5aoiPz4fUWei4L7cvYHvlsiKvOcpEEKkyX1gcFJSEnr37g0PDw8sXrwYixcvxnvvvYdevXohKSmpwa+3e/duWFtbQ0NDA56enggODq51/ZMnT8LJyQkaGhpwcXHB5cuXG/tW3kkqGiowcTMBP5ePDwd+iHjteMQm1D9HfUtgb28PVVVVXN99nQ0G3q4zcP78ecydOxc//fSTXNogycsd8kMIROUihHwfAp32Oi1uEpy2tjbWrl2LPlZ9UJhcNdNQUFAQIiIikJIirk+hiKJkEm8PV9Fz1ENRehFK80qllispKcHc3JydP6CIaqZ5eXnQ0tKCvr4+SkrE1b/fnlj86NEjcLlcfLDzAxh2bnrKUVmqHBDEXY1DD7ce2L59O6ZNm9bk11bVUmWrFUvUN+VoXYyNjeHt7Y20I2nVDp+qTw5+Y2NjHJhzACcXnYSzszN4Vjwk3klE5stM2I60rbXqM5GPmobDyaOmAiFETO4Bwdy5c1FeXo6wsDBkZ2cjOzsbYWFhEIlEmDt3boNe68SJE1i2bBnWrl2LkJAQdO3aFUOGDKm2pD0ABAYGYurUqZgzZw6ePn2KsWPHYuzYsXjx4kW167c1AevEJ1aLXhZQjVHFBL0JOLzyMAYNGtSqvgTXrVuHSysvweKyRY3FeGxtbTFkyBC89957cmtH5WI9IqEIz/c+b1HBQGU67XSqnVg8btw43LlzBxs3boSoQoS8uLxmL0pWE019TWgaadZYsViRNQh4PB5bjT0tTZzBiW/DR96rNwGBJMhSLVNVeEBQUFCAHTt24PPPPwcgXa047koc+k7si2XLlslsDpi2mTYEqW8KixUkN6yHABAXqzt37hzi4uKqPFfb8Kn6VAG2NbVF+LZwBH0dBJ4VDyE/hMCynyWe/vi01qrPRD6a+nkSQhqBkTMNDQ0mJCSkyvLHjx8zmpqaDXotDw8PZsGCBexjoVDImJubM5s3b652/cmTJzMjRoyQWubp6cnMmzev3tvMy8tjADB5eXkNamtrELghkNmGbcyFqReYAx0PMLuMdjFJ/kns8sANgYpuYr3U1F5FvY/tKtuZbdjG7FDb0azbrYv/Wn8mcEMgIxAImN0jdjMnlpxgnwvcEMj4r/WXWj8nNofZrrKdEZYLm7upDMMwzMWLF5n333+f2b17N7vsaK+jzItfX7CPf/zxR2bJkiXMw4cPGf+1/szlGZcV0VSGYRgmPj6eKS4uZh+H7AphTg0/JbVOVnoWs4azhsmLV+z5JD8/nwHAAGDy8/OZZ/ueMX8O/JMpLylnvtP6jsl4niHT7Z3of4J5fvD5m8cDTjDP9j1r0GuMHj2aAcDs3LmTYRiGSU1NZb777jvm6tWrMmmj5Hzxu8fvzDZsY86MOtOqzoPk3fYuX4uQlkHutz3at2+P8vKqY9KFQmGVcay1KSsrw5MnTzBw4EB2mZKSEgYOHIigoOq7D4OCgqTWB4AhQ4bUuD4AlJaWIj8/X+rnXSW52xJ+LBzZYdmoKKrAqxuvWtwwl7pUvpvE/P8uLaCYu0lBXwdBVCGqdtiSoknmOSwasQgLLi3A4auHAbzpnn/7LmhuVC74NnwoqSjm7mhUVBSOHj2K+/fvs8skqUclTp8+je+//x5RUVEKr1JsaWkJDY038xckcwgqq0ipgCHXUOETn3V0dDBz5kysXLkSQqGQHTKUfD8ZGnoayFLNQnJyMioqKmSyPW0zbalieIJkAXTaNWwfeHh4wNXVFVyuuGchNDQUS5cuxcqVK2XSRsn5Ii1Y3MMTcyGmVZ0HCSGkKeT+Tb9t2zYsWrQIjx8/Zpc9fvwYixcvxrffflvv18nMzIRQKKxSNdPExITton9bWlpag9YHxGnsJBU1+Xw+m33iXSX5EgSA8qJyBK0PanVfgt7rvKE/WR/jxo3DkCHS1Zt7fNUD8Q7xKCoqkns7Ko97rW7YkqJJPuuiu0XgqnIhKhJJtVl1mCq2bduGp0+fAvh/ylEFzR8AgL59+2L79u2YPXs2u+zticVz5szB8uXL4ebmprAaBDXhWfOQ9ypPKkjNfJkJw85Ny+0vK4cOHcLWrVuhq6srDggS8hF7ORbtB7eHh4cH2rVrJ7PhlVxzLgQpb4YMNTTLEAB8+eWXCAkJYY8HPp+PiRMnYtCgQTJpIyD+H1FSFX8tUppLQkhbIvcsQzNnzkRRURE8PT3ZCrEVFRVQUVHB7Nmzpb7ss7OrHxvcnFavXo1ly5axj/Pz89tEUBC4PrDa7DytBZfLxblz58DhcJCRkQFjY3G12tu3b2PatGmwtLREdHQ0VFXlk0KwuYr1NJXXGi+IRCK4r3MHEsRt675YXLjtiy++wObNmzGy+0hceHJBnHK00vyB5k6f2q1btyoZod5OPfrBBx/ggw8+AAAEJgYqNCAIDAzEpUuX0KVLF/j6+oJnxUNFUQWKXhdB21gbW7ZsQeSlSPhYNr3QlaxI0uW+t/I9CEuFCDsaBqe1TrAMtkRSXBIKzhYA3Zq+Ha45F0n3xUkkSvNLUVZQ1uCA4G1eXl44efJk0xtXCaW5JIS0VXIPCL7//nuZvI6hoSGUlZWRnp4utTw9PR2mptUXfjI1NW3Q+gCgrq7OFlVrK4K+DqqSnae1fQlaWFjgp59+gqenJ5tSFRDn3be1tcWwYcPkFgwAzVusp6m813ojeFMwhGVCQAkI/SkUaY/SoOusi94OvaEboougr4OQG50Lq0FWAKQDHkXSd9RHblQuREKR1BAnhmHEQ4YaOAxFlh48eIBNmzZhypQp8PX1hZq2GrSMtZD/Kh/axtr46aefkJCQAJ8lLScgEEGE2363AQBaJloozixGz6k9sS9zH2763WRv4jSVtpk220MgSBZARaNp6WGZtypAywKluSSEtGVyDwhmzJghk9dRU1ODm5sbbt68yWa+EIlEuHnzJhYuXFjt33h5eeHmzZtYsmQJu+zGjRvw8qKTu8S79CU4f/78KstGjBiBoUOHyn3IUHMW62mqoK+DICwTsgGg+yp36LTTAfM7g3GvxoHvzEeAXwA0DDTQdX7Xans/motAIMDz589hamoKW1tb8G34YBgG+a/yIdIToaCgAO3atUOFoALlgnKF9hB4enpiwYIFUucXSepRMw8zfPzxx7j6zVV09u6ssDZWtn37dqz6ehVGuo2Ehp8GuBZcmHuZs5l1BmwYILPPu/KQIclwocZc0H/22Wc4evQotm7dCl9fXygpyWbUa2vp4SOEEHmR+xyCkJAQ/PPPP+zj8+fPY+zYsfjiiy/Y6pL1tWzZMuzbtw+//vorwsLCMH/+fBQWFmLWrFkAgA8//BCrV69m11+8eDGuXr2K7du3Izw8HOvWrcPjx49rDCDamraS61lZWRk6Oi1nbLkiST7ziH4RuNjrIrRmayH4m2CUZJdg2oNpmPF8BhzGOUCNr4aSrBKcG3tOoZPMFy5cCG9vb/z2228AACUVJeja6yIrPAvHjx+HtbU1Jk6ciPzEfKhyxfnuFcXb2xu7du2Syt1fOfXoysUrMUYwBk69nBTVRCl6enoQiUSoMKmA9wZvCJIFSApMgr+fv8w/b8mkYoZhGpVyVCI/Px9JSUl49uwZjIyMYGdnh8TExCa3j9JcEkLaOrkHBPPmzUNkZCQAcRVUX19faGlp4eTJk1i1alWDXsvX1xfffvst/Pz80K1bN4SGhuLq1avsxOGEhASkpqay6/fs2RNHjx7F3r170bVrV5w6dQrnzp1D584t4w6dor2LX4IhISH48ssvcfr0ady8eVNqQmdbVzkAzNDJwK1bt8B0Z+C9wRuX/C7h1ppb0HfUR6+NvbAoexGUVJUgKhMpdF6Jq6srzMzMoKyszC4zcDJATkQO8vLyoKqqChsbGzbDUEuYrFsZ35qP/DhxpqGsf7OgaaAJLRMtBbdKbOLEiUhNTcWFCxfgtcYLymrK+Ff0LzZhE66UX5HptrTNtCEqF6E4q7hRE4olFixYgPv37+Pjjz9GdnY2YmNjpYYINpb3upoDIK81Xs02b4YQQhSFw8j5ionP5yMkJAR2dnbYsmULbt26hWvXriEgIABTpkyRyd0decrPzwefz0deXh54PJ6im0Pq8NFHH2H//v3s43nz5mHPnj0KbFHLIZlA6rXGC9euXUNGRga8vb1ha2uL3h17IygyCIcOH8L06dPZ4EEyrEhRPQRCoVAqGACAe6vvoSS7BIN/GQyhUIjS0lJEHYlC5KlITLo+qdnbWBnDMMjOzgafz4eKigqe/fIMUWejMPTUULz8/SXiTsRhyp0pCm1jdSSf93ml8/AX+WPce+NwJviMTLfxo+6PmHJ/Cp7teQYVLRX03da30a8lEomQlpaGhIQE9OjRQ3aNJKSFomsRIm9y7yFgGAYikfhO899//43hw4cDENcnyMzMlPfmSRszceJETJ48GZ07d4ampiZGjx6t6Ca1GJXvgg4ZMgTTp0+Hra0tAECgIYBQJISDg0OLSp/6djAA/L8Wwf9TjyorK0NLSwsFSYqtQSBhaWkJQ0NDhIWFAXgzh+DQoUPo8WkP7E/ZX8crNL/Kn/e1gmvYMX0HrB9Zy/zzlkwsbkwNgrcpKSnB3NycggFCCJERuU8qdnd3x8aNGzFw4EDcvXsXP//8MwAgLi6uSo0AQppqyJAhbC2CrKws6OvrK7hFrcPTp0+RkJCA+IPxeLj+YYueXKnvKF2cDAAKEgvAs1L8XTN9fX0kJSUhPT0dLi4u4uJk8fnITBPf/DBp17LOeStHrcTDiw+xbPky9nNd+ttSBHWQfXIBrjkXhamFTZpDAAABAQEIDAzE0KFD4eLiIpO2EUJIWyf3HoLvv/8eISEhWLhwIb788kvY29sDAE6dOoWePXvKe/OkDTMwMGhxY8pbCqFQiJcvX+LChQvsPAtLS0soQanFzSv55Zdf4O7ujp07dwIQBwSv019j9MjRWLFiRYtIOSpx/fp1lJSUsBXSeZY8CEuFWL1wNXaY7cDnyz9XcAulnX54GvdxH9pDtKWWy+PzluohsGj8Z/Xdd99h1apVGDVqFDs/jRBCSNPIvYegS5cuUlmGJLZt21btcABCiPwJhUK4uLiAYRipit4tMX1qVlYWnjx5AgcHBwCAhp4GCvUKceHSBViEWuDbb79lJxUr2tu9nioaKtA200bG0wwIU4Ww97JXUMuq9/Ey8eRcCwsLbN++HSoqKpg0aRLMzc1l/nlzzbkoSChAYVphk3oIBg0ahNOnTyM+Ph7BwcHscUEIIaTx5B4Q1ERDo/FFaQghTaOmpoYuXbpAWVkZPj4+GDBgANasWQMzMzNFN62KCRMmwMHBAe+99x67zLqDNb5w+AKmHqbiHoIWModAori4GOnp6bC2tgbfho/YS7HQNtOGpr6mopsm5fPPxT0WIpEIffv2xevXr+Hq6gpzc3OZb0vbTBuJdxLZ3xtr3rx5yM3NxaNHjyhjHCGEyIjCAgJCiGKFhoYiLS0NZmZmiIqKwubNmxXdpGo5OjrC0dFRapl9V3u4GLqg96LeKM4uRkVRBXjtFT+HAABevnyJ8ePHQ11dHY8ePQLPiocNv22AmbEZPiz8ENrajb8YlpeysjKsXLkS9+7dk9tEXa45F6+fvYaWsRaUVZvWO/zZZ5/JqFWEEEIACggIadN0dHRw+vRpREVFgc/nK7o59abnqIeUgBQA4gnFajw1qOmoKbhVYsbGxshIyoCKsgpiY2PBmDC4L7gPCIDfVX9H0NdB4hogLSS3fUVFBQQCAVauXImVK1fKbTtccy6EZcImzR8ghBAiHxQQENKGaWtrY/z48YpuRp1iY2Ph7+8PW1tb9OrVC+lq6Yh6EQWhUNhi5g9IGBkZYdu0bUjZl4LcU7nQtdbFIAyCyUATPNnyhE3x2RLcuXMHAwYMgLOzc7VzvWRBUv/Caaq4QnPl+QMtLTgihJC2Su5ZhgghLdOTJ08wcOBATJ48WdFNqdPBgwcxY8YMHD58GAAw/5v5WBm1EkEBQS1u/gAAzN07F4M2DEKAXwAEoQIMxmBMt53OBgOKTt0qYWxsDJFIhBcvXqC0tFQu21BSVkKAXwBe/voSAMBtJw4IJPUPlJTpa4gQQhRN7j0EQqEQhw8fxs2bN5GRkcEWKZO4deuWvJtACKlGRUUFbt68CSMjIzAM06JTtHp5ecHHxwfOzs4QCoXQ4mpBCUowVDXE68TXLWb+QGWSi/7f/H5DClKAvWhRwQAAODg44I8//sC0adPQqVMnREdHy3wbletYKKsrQ8dCR6oYWkvaH4QQ0lbJPSBYvHgxDh8+jBEjRqBz584t+qKDkLakW7du6NatG8zNzVv8/+WIESMwYsQI9nFERAQOOB+ASpYKChILoGuvq7jG1UJ7jDb2+O0BF1y4qbq1uItfFRUVKCsrw9TUVK51YSoHBQHrAsBUMBQMEEJICyL3gOD48eP4888/MXz4cHlvihDSAOrq6nj69Kmim9Fohh0NkRORg4KkArTv117RzalW4flCuMAF/+Af/Fv+L4K+DmpxF8G+vr6YPHkyBAKBXLfjtcYLQRuCIKoQQVlNucXtB0IIacvkHhCoqamx1YkJIaQpGIZBSUkJNDU1oe+oLw4IEgta5JAhybCYn9b9BM2Rmii+WIwAvwAAiivyVhMOhwMdHfnOwwj6+k0wICwTtsjgiBBC2iq5z+Zavnw5du7cCYZh5L0pQsg7bPfu3dDX14eWlhbGjx+P0KJQZIVlQZAkYCeqthSVx8j3WtsLbm5u6LW2F7w3eCPALwBBXwcpuonNqvL+WFq6tM3uB0IIaank3kPg7++P27dv48qVK+jUqRNUVVWlnj9z5oy8m0AIeQfo6OggNzcXAHD27Fl0X9YdwidCVJRUtLgsQyKhqNox8pLHIqGouj97J1U3gbjynILKjwkhhCiG3AMCXV1djBs3Tt6bIYS840aMGIHQ0FDc3XEXrzJfYfjE4bi14xY09DSgpi0uStZS8trXtv22dvFLwREhhLR8cg8IDh06JO9NEELaAAMDAxgYGKDIvghlv5WhtEcptEy0oG2iDUD6TjRpOSg4IoSQlo8qFRNCWpXKw014Vjxw23Eprz0hhBDSBM0SEJw6dQp//vknEhISUFZWJvVcSEhIczSBEPIOuH79OjZt2oRhw4bBZ4MPAvwCUJBYgLjLcRQMEEIIIY0k9yxDP/zwA2bNmgUTExM8ffoUHh4eMDAwQGxsLIYNGybvzRNC3iEXLlzA3bt38fnnn8NrjReU1JTAiBjKa08IIYQ0gdwDgp9++gl79+7Fjz/+CDU1NaxatQo3btzAf/7zH+Tl5cl784SQd8jGjRsxa9Ys/P333+IJxGXSee0JIYQQ0nByDwgSEhLQs2dPAICmpiYKCgoAANOnT8exY8fkvXlCyDuEz+fj4MGD0ArUorz2hBBCiIzIfQ6BqakpsrOzYWVlBUtLSzx48ABdu3ZFXFwcFSsjhDQY5bUnhBBCZEvuAUH//v3x119/wdXVFbNmzcLSpUtx6tQpPH78GOPHj5f35gkh7xjKa08IIYTIFoeR8216kUgEkUgEFRVx7HH8+HEEBgaiQ4cOmDdvHtTU1OS5+SbLy8uDrq4uEhMTwePxFN0cQgghhLQx+fn5aN++PXJzc8Hn8xXdHPIOkntA0NolJSWhffv2im4GIYQQQtq4xMREtGvXTtHNIO+gZgkI7t+/j19++QUxMTE4deoULCws8Pvvv8PGxga9evWS9+abRCQSISUlBTo6OuBwOHLZhiTyp16IpqN9KTu0L2WD9qPs0L6UHdqXstMc+5JhGBQUFMDc3BxKSnLPB0PaILnPITh9+jSmT5+OadOm4enTpygtLQUgHoqzadMmXL58Wd5NaBIlJaVmi8Z5PB6dmGWE9qXs0L6UDdqPskP7UnZoX8qOvPclDRUi8iT3MHPjxo3Ys2cP9u3bB1VVVXa5t7c3VSkmhBBCCCFEweQeEERERMDHx6fKcj6fj9zcXHlvnhBCCCGEEFILuQcEpqamiI6OrrLc398ftra28t58q6Curo61a9dCXV1d0U1p9Whfyg7tS9mg/Sg7tC9lh/al7NC+JO8CuU8q3rx5M44cOYKDBw9i0KBBuHz5MuLj47F06VKsWbMGixYtkufmCSGEEEIIIbWQ+6Tizz//HCKRCAMGDEBRURF8fHygrq6OFStWUDBACCGEEEKIgjVbHYKysjJER0dDIBDA2dkZXC63OTZLCCGEEEIIqQUVJiOEEEIIIaQNk9uQodmzZ9drvYMHD8qrCYQQQgghhJA6yC3L0OHDh3H79m3k5uYiJyenxp+2bvfu3bC2toaGhgY8PT0RHBys6Ca1OuvWrQOHw5H6cXJyUnSzWoV79+5h1KhRMDc3B4fDwblz56SeZxgGfn5+MDMzg6amJgYOHIioqCjFNLaFq2tfzpw5s8pxOnToUMU0toXbvHkz3nvvPejo6MDY2Bhjx45FRESE1DolJSVYsGABDAwMwOVyMWHCBKSnpyuoxS1TffZj3759qxyXn3zyiYJa3HL9/PPP6NKlC1t8zMvLC1euXGGfp+ORtHZyCwjmz5+PvLw8xMXFoV+/fjhw4ADOnj1b5actO3HiBJYtW4a1a9ciJCQEXbt2xZAhQ5CRkaHoprU6nTp1QmpqKvvj7++v6Ca1CoWFhejatSt2795d7fNbt27FDz/8gD179uDhw4fQ1tbGkCFDUFJS0swtbfnq2pcAMHToUKnj9NixY83Ywtbj7t27WLBgAR48eIAbN26gvLwcgwcPRmFhIbvO0qVLceHCBZw8eRJ3795FSkoKxo8fr8BWtzz12Y8A8NFHH0kdl1u3blVQi1uudu3a4ZtvvsGTJ0/w+PFj9O/fH2PGjMHLly8B0PFI3gGMHJWUlDBHjx5lBg4cyGhpaTGTJk1irl69yohEInluttXw8PBgFixYwD4WCoWMubk5s3nzZgW2qvVZu3Yt07VrV0U3o9UDwJw9e5Z9LBKJGFNTU2bbtm3sstzcXEZdXZ05duyYAlrYery9LxmGYWbMmMGMGTNGIe1p7TIyMhgAzN27dxmGER+HqqqqzMmTJ9l1wsLCGABMUFCQoprZ4r29HxmGYfr06cMsXrxYcY1qxfT09Jj9+/fT8UjeCXItTKauro6pU6fixo0b+Pfff9GpUyd8+umnsLa2hkAgkOemW7yysjI8efIEAwcOZJcpKSlh4MCBCAoKUmDLWqeoqCiYm5vD1tYW06ZNQ0JCgqKb1OrFxcUhLS1N6hjl8/nw9PSkY7SR7ty5A2NjYzg6OmL+/PnIyspSdJNahby8PACAvr4+AODJkycoLy+XOjadnJxgaWlJx2Yt3t6PEn/88QcMDQ3RuXNnrF69GkVFRYpoXqshFApx/PhxFBYWwsvLi45H8k6Qex0CCSUlJXA4HDAMA6FQ2FybbbEyMzMhFAphYmIitdzExATh4eEKalXr5OnpicOHD8PR0RGpqalYv349evfujRcvXkBHR0fRzWu10tLSAKDaY1TyHKm/oUOHYvz48bCxsUFMTAy++OILDBs2DEFBQVBWVlZ081oskUiEJUuWwNvbG507dwYgPjbV1NSgq6srtS4dmzWrbj8CwPvvvw8rKyuYm5vj+fPn+OyzzxAREYEzZ84osLUt0z///AMvLy+UlJSAy+Xi7NmzcHZ2RmhoKB2PpNWTa0BQWlqKM2fO4ODBg/D398fIkSOxa9cuDB06FEpKcu2cIG3IsGHD2N+7dOkCT09PWFlZ4c8//8ScOXMU2DJC3pgyZQr7u4uLC7p06QI7OzvcuXMHAwYMUGDLWrYFCxbgxYsXNC+oiWrajx9//DH7u4uLC8zMzDBgwADExMTAzs6uuZvZojk6OiI0NBR5eXk4deoUZsyYgbt37yq6WYTIhNyuyj/99FOYmZnhm2++wciRI5GYmIiTJ09i+PDhFAwAMDQ0hLKycpUsBOnp6TA1NVVQq94Nurq6cHBwQHR0tKKb0qpJjkM6RuXD1tYWhoaGdJzWYuHChbh48SJu376Ndu3asctNTU1RVlaG3NxcqfXp2KxeTfuxOp6engBAx2U11NTUYG9vDzc3N2zevBldu3bFzp076Xgk7wS5XZnv2bMHPB4Ptra2uHv3Lj7++GOMHz++yk9bpaamBjc3N9y8eZNdJhKJcPPmTXh5eSmwZa2fQCBATEwMzMzMFN2UVs3GxgampqZSx2h+fj4ePnxIx6gMJCUlISsri47TajAMg4ULF+Ls2bO4desWbGxspJ53c3ODqqqq1LEZERGBhIQEOjYrqWs/Vic0NBQA6LisB5FIhNLSUjoeyTtBbkOGPvzwQ3A4HHm9/Dth2bJlmDFjBtzd3eHh4YHvv/8ehYWFmDVrlqKb1qqsWLECo0aNgpWVFVJSUrB27VooKytj6tSpim5aiycQCKTuBMbFxSE0NBT6+vqwtLTEkiVLsHHjRnTo0AE2NjZYs2YNzM3NMXbsWMU1uoWqbV/q6+tj/fr1mDBhAkxNTRETE4NVq1bB3t4eQ4YMUWCrW6YFCxbg6NGjOH/+PHR0dNhx2Hw+H5qamuDz+ZgzZw6WLVsGfX198Hg8LFq0CF5eXujRo4eCW99y1LUfY2JicPToUQwfPhwGBgZ4/vw5li5dCh8fH3Tp0kXBrW9ZVq9ejWHDhsHS0hIFBQU4evQo7ty5g2vXrtHxSN4NCs5y1Ob9+OOPjKWlJaOmpsZ4eHgwDx48UHSTWh1fX1/GzMyMUVNTYywsLBhfX18mOjpa0c1qFW7fvs0AqPIzY8YMhmHEqUfXrFnDmJiYMOrq6syAAQOYiIgIxTa6haptXxYVFTGDBw9mjIyMGFVVVcbKyor56KOPmLS0NEU3u0Wqbj8CYA4dOsSuU1xczHz66aeMnp4eo6WlxYwbN45JTU1VXKNboLr2Y0JCAuPj48Po6+sz6urqjL29PbNy5UomLy9PsQ1vgWbPns1YWVkxampqjJGRETNgwADm+vXr7PN0PJLWjsMwDNOcAQghhBBCCCGk5aDZvYQQQgghhLRhFBAQQgghhBDShlFAQAghhBBCSBtGAQEhhBBCCCFtGAUEhBBCCCGEtGEUEBBCCCGEENKGUUBACCGEEEJIG0YBASGENNHMmTOpejMhhJBWS0XRDSCEkJaMw+HU+vzatWuxc+dOUI1HQgghrRUFBIQQUovU1FT29xMnTsDPzw8RERHsMi6XCy6Xq4imEUIIITJBQ4YIIaQWpqam7A+fzweHw5FaxuVyqwwZ6tu3LxYtWoQlS5ZAT08PJiYm2LdvHwoLCzFr1izo6OjA3t4eV65ckdrWixcvMGzYMHC5XJiYmGD69OnIzMxs5ndMCCGkraGAgBBC5ODXX3+FoaEhgoODsWjRIsyfPx+TJk1Cz549ERISgsGDB2P69OkoKioCAOTm5qJ///5wdXXF48ePcfXqVaSnp2Py5MkKfieEEELedRQQEEKIHHTt2hVfffUVOnTogNWrV0NDQwOGhob46KOP0KFDB/j5+SErKwvPnz8HAOzatQuurq7YtGkTnJyc4OrqioMHD+L27duIjIxU8LshhBDyLqM5BIQQIgddunRhf1dWVoaBgQFcXFzYZSYmJgCAjIwMAMCzZ89w+/btaucjxMTEwMHBQc4tJoQQ0lZRQEAIIXKgqqoq9ZjD4Ugtk2QvEolEAACBQIBRo0Zhy5YtVV7LzMxMji0lhBDS1lFAQAghLUD37t1x+vRpWFtbQ0WFTs2EEEKaD80hIISQFmDBggXIzs7G1KlT8ejRI8TExODatWuYNWsWhEKhoptHCCHkHUYBASGEtADm5uYICAiAUCjE4MGD4eLigiVLlkBXVxdKSnSqJoQQIj8chsprEkIIIYQQ0mbRbSdCCCGEEELaMAoICCGEEEIIacMoICCEEEIIIaQNo4CAEEIIIYSQNowCAkIIIYQQQtowCggIIYQQQghpwyggIIQQQgghpA2jgIAQQgghhJA2jAICQgghhBBC2jAKCAghhBBCCGnDKCAghBBCCCGkDaOAgBBCCCGEkDbsf8eMvXM6oqFZAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwQAAAHbCAYAAAB1DF0xAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8U9X7B/BPku69F00nqy2rZbZFtiAgSxGQISBDBVyA+gVtKRREQcEfiiKKgiIqylD2nm3aQmkpZbSMli666Eh3m+T8/ogJTWfaZkGf9+vF60Vubm6e3KTJee45zzkcxhgDIYQQQgghpF3iajsAQgghhBBCiPZQQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJAyFMsLCwMHA4H+fn52g5FLVJTU8HhcPDFF180u6/sXDztZK95586dKj3us3J+CCGEqB4lBITomJs3b2LmzJno0KEDDA0N4eLighkzZuDmzZvaDo3ouPLycoSFheH8+fPaDoUQQshThBICQnTI/v37ERAQgDNnzmDu3Ln49ttvMW/ePJw7dw4BAQE4cOCAtkMkOqy8vByrV69uMCH45JNPUFFRofmgCCGE6Dw9bQdACJG6f/8+Zs2aBS8vL1y8eBH29vby+959910899xzmDVrFhISEuDl5aXFSOuTSCSorq6GkZGRtkMhjdDT04OeHn3lE0IIqY96CAjRERs3bkR5eTm2b9+ukAwAgJ2dHb7//nuUlZVhw4YN9R6bn5+PKVOmwMLCAra2tnj33XdRWVmpsM+pU6cwcOBAWFlZwczMDF26dMHKlSsV9qmqqsKqVavQsWNHGBoags/n48MPP0RVVZXCfhwOB0uWLMFvv/0GPz8/GBoa4tChQ7CxscHcuXPrxScUCmFkZITly5cDAKqrqxEaGorevXvD0tISpqameO6553Du3LlGz8/mzZvh7u4OY2NjDB48GImJiU2f0P/s3r0bvXv3hrGxMWxsbDBt2jSkp6cr9djMzEy8/vrrcHR0hKGhIfz8/PDTTz/J78/JyYGenh5Wr15d77FJSUngcDj45ptv5NsePHiAV155BTY2NjAxMcGAAQNw5MiRZuMYMmQIhgwZUm/7nDlz4OHhAUBaeyD73KxevRocDgccDgdhYWEAGq4hEIlECA8Ph7e3NwwNDeHh4YGVK1fWe789PDzw4osv4vLly+jXrx+MjIzg5eWFX375pdnYCSGE6D66XESIjjh06BA8PDzw3HPPNXj/oEGD4OHh0WADcsqUKfDw8MD69esRFRWFLVu2oLCwUN5gu3nzJl588UX06NEDa9asgaGhIe7du4eIiAj5MSQSCcaPH4/Lly9j4cKF8PHxwY0bN7B582YkJyfj4MGDCs959uxZ7N27F0uWLIGdnR06deqESZMmYf/+/fj+++9hYGAg3/fgwYOoqqrCtGnTAEgThB9//BGvvvoqFixYgJKSEuzYsQOjRo1CTEwMevXqpfBcv/zyC0pKSrB48WJUVlbi//7v/zBs2DDcuHEDjo6OjZ7TdevWISQkBFOmTMH8+fORl5eHr7/+GoMGDUJcXBysrKwafWxOTg4GDBggT37s7e1x7NgxzJs3D0KhEO+99x4cHR0xePBg7N27F6tWrVJ4/J9//gkej4dXXnlFfrygoCCUl5fjnXfega2tLXbt2oXx48fj77//xqRJkxqNRRn29vb47rvv8NZbb2HSpEl46aWXAAA9evRo9DHz58/Hrl27MHnyZCxbtgzR0dFYv349bt++XW942r179zB58mTMmzcPs2fPxk8//YQ5c+agd+/e8PPza1PshBBCtIwRQrSuqKiIAWATJkxocr/x48czAEwoFDLGGFu1ahUDwMaPH6+w36JFixgAdv36dcYYY5s3b2YAWF5eXqPH/vXXXxmXy2WXLl1S2L5t2zYGgEVERMi3AWBcLpfdvHlTYd8TJ04wAOzQoUMK28eMGcO8vLzkt0UiEauqqlLYp7CwkDk6OrLXX39dvi0lJYUBYMbGxiwjI0O+PTo6mgFg77//vnyb7FzIpKamMh6Px9atW6fwPDdu3GB6enr1ttc1b9485uzszPLz8xW2T5s2jVlaWrLy8nLGGGPff/89A8Bu3LihsJ+vry8bNmyY/PZ7773HACic35KSEubp6ck8PDyYWCxWeM0///yzfL/BgwezwYMH14tx9uzZzN3dXX47Ly+PAWCrVq2qt2/d8xMfH88AsPnz5yvst3z5cgaAnT17Vr7N3d2dAWAXL16Ub8vNzWWGhoZs2bJl9Z6LEELI04WGDBGiA0pKSgAA5ubmTe4nu18oFCpsX7x4scLtt99+GwBw9OhRAJBfCf/nn38gkUgaPPZff/0FHx8fdO3aFfn5+fJ/w4YNA4B6w3kGDx4MX19fhW3Dhg2DnZ0d/vzzT/m2wsJCnDp1ClOnTpVv4/F48h4EiUSCgoICiEQi9OnTB9euXasX28SJE9GhQwf57X79+qF///7y19eQ/fv3QyKRYMqUKQqvx8nJCZ06dWpyeBJjDPv27cO4cePAGFN4/KhRo1BcXCyP86WXXoKenp7Ca05MTMStW7cUXvPRo0fRr18/DBw4UL7NzMwMCxcuRGpqKm7dutVoPOogO3dLly5V2L5s2TIAqNcT5evrq9B7ZW9vjy5duuDBgwdqjpQQQoi6UUJAiA6QNfRliUFjGkscOnXqpHDb29sbXC4XqampAICpU6ciODgY8+fPh6OjI6ZNm4a9e/cqJAd3797FzZs3YW9vr/Cvc+fOAIDc3FyF5/D09KwXn56eHl5++WX8888/8nHo+/fvR01NjULjGAB27dqFHj16wMjICLa2trC3t8eRI0dQXFxc77h1Xx8AdO7cWf76GnL37l0wxtCpU6d6r+n27dv1Xk9teXl5KCoqktdz1P4nq5GQPd7Ozg7Dhw/H3r175Y//888/oaenJx+2AwAPHz5Ely5d6j2Xj4+P/H5NevjwIbhcLjp27Kiw3cnJCVZWVvXicXNzq3cMa2trFBYWqjVOQggh6kc1BIToAEtLSzg7OyMhIaHJ/RISEtChQwdYWFg0uV/d4lFjY2NcvHgR586dw5EjR3D8+HH8+eefGDZsGE6ePAkejweJRILu3btj06ZNDR6Tz+fXO2ZDpk2bhu+//x7Hjh3DxIkTsXfvXnTt2hU9e/aU77N7927MmTMHEydOxAcffAAHBwfweDysX78e9+/fb/K1KUsikYDD4eDYsWPg8Xj17jczM2vysQAwc+ZMzJ49u8F9ao/NnzZtGubOnYv4+Hj06tULe/fuxfDhw2FnZ9fGVyHF4XDAGKu3XSwWq+TYymjoHAJoMC5CCCFPF0oICNERL774In744QdcvnxZYViJzKVLl5Camoo33nij3n13795VuGJ/7949SCQS+Qw0AMDlcjF8+HAMHz4cmzZtwqeffoqPP/4Y586dw4gRI+Dt7Y3r169j+PDhbVrRdtCgQXB2dsaff/6JgQMH4uzZs/j4448V9vn777/h5eWF/fv3KzxX3cLc2q+vruTkZIXXV5e3tzcYY/D09JT3cijL3t4e5ubmEIvFGDFiRLP7T5w4EW+88YZ82FBycjJWrFihsI+7uzuSkpLqPfbOnTvy+xtjbW3d4NCculfxW/K+ubu7QyKR4O7du/JeCkBa/FxUVNRkPIQQQp4tNGSIEB3xwQcfwNjYGG+88QYeP36scF9BQQHefPNNmJiY4IMPPqj32K1btyrc/vrrrwEAo0ePlj++LtlMPrKhPVOmTEFmZiZ++OGHevtWVFSgrKxMqdfB5XIxefJkHDp0CL/++itEIlG94UKyq821ry5HR0dDIBA0eMyDBw8iMzNTfjsmJgbR0dHy19eQl156CTweD6tXr653FZsxVu8c143v5Zdfxr59+xqc3jQvL0/htpWVFUaNGoW9e/fijz/+gIGBASZOnKiwz5gxYxATE6PwGsvKyrB9+3Z4eHjUq8eozdvbG3fu3FF43uvXryvMEgUAJiYmAICioqJGj1U7HgD46quvFLbLeojGjh3b7DEIIYQ8G6iHgBAd0alTJ+zatQszZsxA9+7dMW/ePHh6eiI1NRU7duxAfn4+fv/9d3h7e9d7bEpKCsaPH48XXngBAoEAu3fvxvTp0+XDdNasWYOLFy9i7NixcHd3R25uLr799lu4urrKeyNmzZqFvXv34s0338S5c+cQHBwMsViMO3fuYO/evThx4gT69Omj1GuZOnUqvv76a6xatQrdu3dXuAINSHtD9u/fj0mTJmHs2LFISUnBtm3b4Ovri9LS0nrH69ixIwYOHIi33noLVVVV+Oqrr2Bra4sPP/yw0Ri8vb2xdu1arFixAqmpqZg4cSLMzc2RkpKCAwcOYOHChfJ1ERry2Wef4dy5c+jfvz8WLFgAX19fFBQU4Nq1azh9+nS9JGvq1KmYOXMmvv32W4waNarelKb/+9//8Pvvv2P06NF45513YGNjg127diElJQX79u0Dl9v49ZnXX38dmzZtwqhRozBv3jzk5uZi27Zt8PPzUygwNzY2hq+vL/7880907twZNjY26NatG7p161bvmD179sTs2bOxfft2FBUVYfDgwYiJicGuXbswceJEDB06tNF4CCGEPGO0Nr8RIaRBCQkJ7NVXX2XOzs5MX1+fOTk5sVdffbXetJaMPZlK8tatW2zy5MnM3NycWVtbsyVLlrCKigr5fmfOnGETJkxgLi4uzMDAgLm4uLBXX32VJScnKxyvurqaff7558zPz48ZGhoya2tr1rt3b7Z69WpWXFws3w8AW7x4caOvQSKRMD6fzwCwtWvXNnj/p59+ytzd3ZmhoSHz9/dnhw8frjeNpmwKzo0bN7Ivv/yS8fl8ZmhoyJ577jn5lKp1z0Vd+/btYwMHDmSmpqbM1NSUde3alS1evJglJSU1Gr9MTk4OW7x4MePz+fL3Yvjw4Wz79u319hUKhczY2JgBYLt3727wePfv32eTJ09mVlZWzMjIiPXr148dPnxYYZ+Gph1ljLHdu3czLy8vZmBgwHr16sVOnDhR73wxxlhkZCTr3bs3MzAwUJiCtKHzU1NTw1avXs08PT2Zvr4+4/P5bMWKFayyslJhP3d3dzZ27Nh6r6ex6VAJIYQ8XTiMUUUYIYQQQggh7RXVEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o5RQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o5RQkAIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDump+0AdJ1EIkFWVhbMzc3B4XC0HQ4hhBBC2hnGGEpKSuDi4gIul67lEtWjhKAZWVlZ4PP52g6DEEIIIe1ceno6XF1dtR0GeQZRQtAMc3NzANI/QgsLC409b9T6KHC5XPT7qF+9+2I+j4FEIsGAFQM0Fg8hhBBCtEMoFILP58vbJISoGiUEzZANE7KwsNBoQmBuYo6I0AiYGpkiMCRQvl0QLkD8p/EIXhOs0XgIIYQQol00dJmoCyUEOkqWBESERshvC8IFiAiNQPCaYIUkgRBCCCGEkNaihECH1U4KBOECSGoklAwQQgghhBCVolJ1HRcYEggOjwNJjQQ8Ax4lA4QQQgghRKWemoSgoKAAM2bMgIWFBaysrDBv3jyUlpY2+ZghQ4aAw+Eo/HvzzTc1FLFqCMIFYGIGABBXiyEIF2g5IkIIIYQQ8ix5aoYMzZgxA48ePcKpU6dQU1ODuXPnYuHChdizZ0+Tj1uwYAHWrFkjv21iYqLuUFVGVjNg1sEMkhoJLDwsFGoKCCGEEEIIaaunoofg9u3bOH78OH788Uf0798fAwcOxNdff40//vgDWVlZTT7WxMQETk5O8n9Py8w8tQuImYSh7wd9UXS3CIGhgfKaAkIIIYQQQtrqqUgIBAIBrKys0KdPH/m2ESNGgMvlIjo6usnH/vbbb7Czs0O3bt2wYsUKlJeXqztclZCIpQXE/T7qh7LsMnSZ2gXGdsaw62aH4DXBkIgl2g6REEIIIYQ8A56KIUPZ2dlwcHBQ2KanpwcbGxtkZ2c3+rjp06fD3d0dLi4uSEhIwEcffYSkpCTs37+/0cdUVVWhqqpKflsoFLb9BbRCcFgwAKAopQgcLgdmLmbwm+OHxJ2JePnIy1qJiRBCCCGEPHu02kPwv//9r17Rb91/d+7cafXxFy5ciFGjRqF79+6YMWMGfvnlFxw4cAD3799v9DHr16+HpaWl/B+fz2/186tCSXoJzDqYgcvjwneWLx6eeojSrKaLqXVJRFjjw5sE4QJEhEVoOCJCCCGEEFKbVhOCZcuW4fbt203+8/LygpOTE3JzcxUeKxKJUFBQACcnJ6Wfr3///gCAe/fuNbrPihUrUFxcLP+Xnp7euhenIiVpJbBwk9Y9WPAtwB/Cx63dt7QaU0twedwGax5kNRJc3lMxao0QQggh5Jml1SFD9vb2sLe3b3a/wMBAFBUVITY2Fr179wYAnD17FhKJRN7IV0Z8fDwAwNnZudF9DA0NYWhoqPQx1a0kvQTmfHP57W5zu0GwRoC+H/R9KpYwpxWXCSGEEEJ021NxedbHxwcvvPACFixYgJiYGERERGDJkiWYNm0aXFxcAACZmZno2rUrYmJiAAD3799HeHg4YmNjkZqain///RevvfYaBg0ahB49emjz5bSIME2okBB0nNgRZY/KkB3TeO2ErgkMCUTwmmBEhEZgs+FmSgYIIYQQQnTIU5EQANLZgrp27Yrhw4djzJgxGDhwILZv3y6/v6amBklJSfJZhAwMDHD69GmMHDkSXbt2xbJly/Dyyy/j0KFD2noJrVKS/mTIEADoG+uj67SuSPw5UYtRtVzAuwEApIur0YrLhBBCCCG646mYZQgAbGxsmlyEzMPDA4wx+W0+n48LFy5oIjS1qjtkCAD85vhh3wv7MGTzEOgb62spspY5OPGg9D/cJysuU1JACCGEEKJ9T00PQXslTBMq9BAAgHN/Z5g6m+LewcaLo3XJxRUXkX4uHZ6jPWFoboigsCBaXI0QQgghREdQQqDDqkuqUVVUVa+HgMPhwG+OH27uvKmlyJQnCBcg5rMYWHWywqRDkwAO4DXWS15TQEkBIYQQQoh2PTVDhtojYboQesZ6MLIxqnef3yw/RIREQJguhAXfooFH64bKwkpw9bgY9+c4cHlc8AfzkXY2TT5ciFZcJoQQQgjRLuoh0GGyguKGphc1czGD+wh33PpVt9ckEJWL0OmlTnD0dwQA8IfykXYuDcB/sw/9tyIzIYQQQgjRDkoIdFhDBcW1dZvbDYk/JyoUU+uSwnuFSNyZiOA1Txr9bkPdkHkpE+IasRYjU0SrKRNCCCGkPaOEQIcJ04Qwd2s8IfAe543Kx5XIjMjUYFTKiwyLhM8MH9h0sZFvs+tmBz0jPWRf0Z11FGg1ZUIIIYS0Z1RDoMNK0ktg4d5wfUBEmLSh2vXVrri58yZcB7rK7xOECyARS7Q6HCfvRh7u7ruLuXfmKmzncDngD+Uj/Vw6OgR10FJ0img1ZUIIIYS0Z3TpU4eVpJXUm3JURnZVWyKW4M6fd1BdVg1Ad65qX/7kMnos7AFLd8t699WuI9AVtVdT3mSwiZIBQgghhLQblBDosKZqCGQN2ITvE6BnrIe7++/qzFXtrKgspJ1JQ/+V/Ru8322oG7IisiCqEmk4sqYFhgSCw+NAUiMBV59LyQAhhBBC2gVKCHQUY6zZomJZUlCRV4Fjs4/pRDIAAJc/voze7/WGqaNpg/fbdLWBoZUhHkU90nBkTYtcEwkmZgAHkNRIaI0EQgghhLQLlBDoqIr8CogqRU0mBIA0KeAacAEGcA00f1W77gw9D888RM61HPRZ3qfRGXo4HI7ODRsShAsQuSoSPEMe3kh7AzwjHi2c1go0YxMhhBDy9KGEQEeVpJfAyMYIBqYGTe4nCBdAUi1d3EtSrfmr2rVn6GGM4dLKS+j3UT/EfR3XZC2D21A3pJ9L12isjZENtXLq5wS/1/xg7mqOQZ8NgrGdsU4lBU9DY5tmbCKEEEKePjTLkI4SpgkbLSiWqV0zkH8zHxV5FQoz5WhC7Rl6Ht9+DOFDIWrKahC1NqrJ4Utuw9xwevFp1JTXQN9EXyOxNkYiliBwVSDiv4nH4I2DAQC9FvVCwvYEOPV10pnVlGWNbUDx/a39OdA2mrGJEEIIefpQQqCjmqsfqNvIurblGh4ceyCfKQfQbFLAGEPkqkhw9DjNJgMAYOllCVMnU2RFZsF9hLtG4mxMcFgw7v17D/pm+vLpW3n6PAz9aigOvXIIo3eN1mp8Mk9LY7t2nJFhkWASplPxEUIIIUQR9d/rqOYSAolYotDIcgl2wSPBIwz4eACC1wRr/Kp2t7ndAABMxMAz4DXb+NO1OoJbv96C70xfcLgc+TaP5z3AH8LH5U8uazEyRQrToxrq7vSogSGBABdgEuU+D4QQQgjRHkoIdFRzqxQHhyk2Ah16OkAikiD/Zr600ajhRckiV0cCAHgGPIirxUqNu3cb5oa0s9pPCCqLKnH/0H34zPSpd9+QL4fg1q+3kBOXo4XIGtZxQkcA0poRXW1sR4RFAP/lpMp+HgghhBCiHZQQ6KiS9BJY8JuuIaiNq8eFc39nZEZkqjGqhgnCBUjckQgLdwu8X/W+/Ap2c41At6FuyL6SjeqSag1F2rDkv5Jh190Otl1t691n5W2FgHcDcPads2CMaSG6+g5NPST/vy42tgXhAghWC6Bvpg//Jf5w6uOkU8XZhBBCCFHUqoSgrKxM1XGQOkrSSprsIWiIS7ALsiKy1BRRw2Rj2PlD+XAdLB1/X3tYS1ONQAs3C1i4WyDjcoamwm3Qrd234DfLr9H7B6wcgKL7RUj6M0mDUTXs5FsnUXCnAH0/6IsOAzvAfYS7TjW2ZZ+HDgM7oPPLneE9zhulj0oRtDpIp+IkT4+nYXYtQgh52rUqIXB0dMTrr7+Oy5d1Z2z1s0QikqA0q7TZNQjq6hDcQeM9BLJaBgt3C1h6Wsq3y5KC5moZtD1sqDi1GFmCLHSZ1qXRfQzMDeDc3xkn3ziJmvKaevdrqlEiCBcgYVsCXIJcMHjDYPRf2R+513MxIGSAzjS2ZZ+HmrIaeIzygOtgV1QVV8F7nLdWalsaQ43MpwdNZUsIIerXqm/S3bt3o6CgAMOGDUPnzp3x2WefIStLs1emn2Wlj0oBAGYuZi16nMsAFxSnFssfrwmyWgZhqhCWHpYK9ylTy6Dt9Qhu/3YbHiM9YOrQ8KrKMg7+DqgWVmP/2P0K2zXZKClOLQZXn4uJBycCADxf8IR5B3OYOJjoTGM7OCwYPRb2QN71PLg/7w49Qz14jPLA/UP3tVLb0hhqZEo9DYlRQz2Ouji7FiGEPM1a9as3ceJEHDx4EJmZmXjzzTexZ88euLu748UXX8T+/fshEolUHWe7UpJWAlNnU/D0eS16nKGlIey722uljqA4pVihh0BZ/KF85MblorKoUg1RNY0xJp9dqDlBoUHosbAH0s+n49yycwA03ygpSStB3+V9YWJvAkA6U1O/Ff1wZeMV9PtfP51pbD889RAOAQ4wsZPG6T3OG/cP3ddyVIqokSn1tCRGtd+vL7hftLv3iRBC1K1N3/b29vZYunQpEhISsGnTJpw+fRqTJ0+Gi4sLQkNDUV5erqo425XmphxtijbqCMQ1YmkRtIfyRdAyZs5msO5sjYyLmq8jyL6ajdKsUnhP8FZq/5Hfj4S9vz1iN8Vis+FmjTZK0i+m41HMI/RZ3kdhe+eXO0PPUA+399xWewzKSj2RCo+RHvLbXmO8kBuXi9IszfVcKaN2I1PT76eueJoSo8CQQHD0OAADuPpcnYqNEEKedm1KCHJycrBhwwb4+vrif//7HyZPnowzZ87gyy+/xP79+zFx4kQVhdm+KLNKcWO0UUdQklECDpcD8w6tS2L4Q/laqSO4vfs2Ok/uDH1j5VdKnnx0MgDp7D6amvKTMYaIkAj0fr83jG2MFe7j8rjo91E/xHwWAybR/ixITMKQejIVHqM85NtM7E3g3N8ZD4480F5gjej2unT9DE2+n7rmaUmMBOECMJH0My6pkehEzQwhhDwrWpUQ7N+/H+PGjQOfz8eePXuwaNEiZGZmYvfu3Rg6dChmzZqFf/75B+fPn1dxuO1Dm3oIglyQG5fbYPGrughThDDnm4Or17r8Uht1BOIaMW7/fhu+s5ofLlRbwg8JAKTTvGpqys+0s2nIv5GPPu/3afB+31m+qCmtwd2Dd9UeS3Nyr+dCVCGCS6CLwnbvF71x/7BuDRsCgHPvSYd/gaObU7hqSmBIoPwc6GJiJOu1MOtgBpcgF1h6WepMIT0hhDwLWtWCmzt3LlxcXBAREYH4+HgsWbIEVlZWCvu4uLjg448/VkWM7U5JekmrewgsPSxhbG+M7CvZKo6qccWprasfkOEP4SM/MR/l+ZobYpZ6MhV6hnrgD+Yr/RhZo8S+l710zL6S6y20hax3oM/yPjC0NGxwH54BD32W90H0p9FaXysh9UQq3Ia51at/8RrnhYenHqKmQnOJanME4QIk/50Mp35OMLE3ge8s33bbyLwcchlg0MnESPZ3F7gqEBX5FRjwyQCUpJdgwCe6M7sWIYQ87VqVEDx69Ajff/89+vbt2+g+xsbGWLVqVasDa8+EacJW9xBwOByNDxsqTiluVf2AjIm9CWz9bJF+XnO9BLd+vQWfGT7gcDlK7V97XHX3ud2Rcy1H6fUW2iLleAoK7xYi4J2AJvfrPr87hKlCPDz9UC1xKCv1hOJwIRk7PzuYOJroxMrUwJP309jWGAM+HoBei3uhLLtMI0merhGECxC1Ngp6xnrg6nF1ahpb4MlUtp0mdgLPgAfPUZ6w9LCEUx8nnZldixBCnnZ6rXmQSCSCUCist53D4cDQ0BAGBgZtDqw9a8uQIUBaR5B6KlV1ATVDmCqEdRfrNh1DNmyoy+TG1wNQlariKtz/5z5mXp2p9GNkjZLAkEBkXM5A9GfRACAfWqGORgljDBGhEej3UT8YmDX9N2VgaoCA9wIQ/Wk0PJ73UHksyqgurUZmRCZG7RhV7z4OhwPvcd54cOgBvMcqV8StThKxBH0/6IsrX1yB63OucAl0QcxnMRjy5RD5/e2BLDFy7OOIDsEdcHf/XfAH88HT5yEiVDrlqLaHD8lmz7qx4wYcAhzA4XLgOdoTKcdS8Py257UaGyGEPCta1UNgZWUFa2vrev+srKxgbGwMd3d3rFq1ChJJ+/hRVaWa8hpU5Fe0eJXi2lyCXZAVmaWxItPilOJ6axAoSzYPutswN6SdU7x6rKp50OvOtZ68Lxk2Pjaw87NT+jlk6y0AgENPB5Rll8nXe1DF/PoNzQd//9/7KEkvQZWwSqkY/Rf7Iyc2B1kC7awJkn4uHRbuFrDysmrwfu9x0joCbQ9rAqTvp2MfRzj0dICRtZF8yFDs5lidWS9BE2sESMQSBK0OQnlOObzGeIE/hI/08+lKLyyoSdmx2XDs7QgA8BztiQfHHqjss/Q0rMdACCHq1KqEYOfOnXBxccHKlStx8OBBHDx4ECtXrkSHDh3w3XffYeHChdiyZQs+++wzVcf7zCvJKAHPkCefa741HHo5QFwtxuPbj1UYWePaUkMgmwf9UfQjFCYVyhvZqpwHve5c67d234LvLN9WP4eBuQGsO1kjNy63zbE1FiOTSHsHHAMcERUepVSMsf8XC/ue9oheH13vPk00alJOpDQ4XEiGP5iPamE1cuNVd97aIv18OlwHu8pv936vN27vuY2y7DItRvWEJtYICA4LRqeXOqHicQVcB7lKE4L/Cvx1JTGSyb2WC6feTgAA18GuqMitUNl33NOyHgMhhKhLq4YM7dq1C19++SWmTJki3zZu3Dh0794d33//Pc6cOQM3NzesW7cOK1euVFmw7YFsuBCHo9zY9obw9Hlw7ueMzIhM2PnZqTC6+kRVIpRmlba6hkB21T0iNAKmzqZIP5+OontFKp36sPZzVBVXIfNSJpz6OOHKxiutfg7HAEfkXMuB1xivNsdXN0YAsOlqg+KUYuQl5CkdI5fHReblTHD1uMi7kQf77vYAFOsf1OnhyYcY/MXgRu/nGfDkqxY7+juqNRZlZFzIwMC1A+W3bX1s4TbcDXFb4zAwfGATj9SMup+JwJBAtawRkHI0Be7D3aFnpAf+ED5OvXkK1WXVMDDVnaGfEpEEedfz5D0E+sb64A/jI+VYCux82/4dp6lzTQghuqpVCUFkZCS2bdtWb7u/vz8EAukVloEDByItTTcKCJ8mbSkork1WWNxzYU8VRNW4krQS8PR5MHM2a/Uxav8YH515FEzCVP4jrPCDz0GbkgEAcAhwwKOoRyqLD6gfIxhaFGPtxx+ZcQRzEuZorFFTlFKE4tRiuA11a3I/rxe9EPdNHIJCg9QWizLK88rx+PZjdHiug8L2vsv64tCUQ+i/oj/0TZRfn0Jdar+ngnABJDUSlb+XD44+QNepXQEAlp6WMHUyxSPBI7iPcFfJ8SPCpFfYG4pZEC6Q1uc00xPx+NZjcPQ4sO70pFbJc7Qn7h24h77LGp/coiVqn+vI1ZFgYtV/DxFCiK5qVT8on8/Hjh076m3fsWMH+HzpNI6PHz+GtXXbCk3bo7YWFMtoasXi4pRiWLhbKD1bT2MCQwLB1eOCSZja5kGXzbUOhjY/h6yHQNUCQwLB1ee2OsbAkED0fr838m/kY5PBJo1d4Uw9kQqXIBcYmDd9VVlXVi3OuJghnfnITnFoHn8oH2auZrj16y0tRVZfYEggwJUuxqXqFXqriquQFZEFz9GeAKTF37I6AlVRxXCc7NhsOPo7KnzPeI32QsalDFSXVKssVtl3BBMzcA1oNWR1oHoNQnRTqxKCL774Aps3b0bPnj0xf/58zJ8/H7169cJXX32FL7/8EgBw5coVTJ06VaXBtgclaa1fg6A2l0AXFD0oQlmOesdDt3UNAhlBuAASkbSAUV3zoEeuiQQYwNVv+6JiDv4OEKYKUVFQocIIIb8K3Jb54IduGgoOlwNJjURji0ylnkiF5yjPZvfTlVWL0y8o1g/IcDgc9FnaB7GbY9tUlK/KRs+ljy8BEsjf0/PLz7c6rroenn4I687WCpMCqDohaGh63pb2XOXE5siHC8lYeVvB0sNSpVPZnlh4Qr4eg6S6Zash60JDVxdiaM6zUq/xNJxrQlqiVX9548ePR1JSEsaMGYOCggIUFBRg9OjRuHPnDl588UUAwFtvvYVNmzapNNj2QFU9BEZWRrD1tVX7egTFKW1PCOQLD4UGgsOTNshUPQ+6IFyAyFWRAIAlBUvaPN+8sY0xLNwtVFpYLDsPzgOcEfB2QKtjFIQLpI1ZDS0yJa4RI+1MWpMFxbV5j/PG/UONr1qsiR/ajAsZ4A9peFG6rtO6okpYhQdHW5+0qKrRIwgXIPrTaJg6mWKpaCkcejvg6pdXcfmTy62OrbYHRx/Iewdk+EP4eBTzCNVlzV95V/a9qp0UbDbc3OKeq4YSAgDy6UdVQRAuwI0fbqDDwA4YunkoLDwtWvT3pwsNXU3E0Na/z7oJIpOwegni09DY1oX3mxBVanENQU1NDV544QVs27YN69evV0dM7ZowXaiSHgLgSR1B55c6q+R4DRGmCmHf077Vj6/7Q5C0NwluI9xgaGWosnnQZc/hM8MHOVdzYGBm0GARYUs5BjgiNy4X7sPbPta69nlIO5sG+x726D6ve4tjrH0cn+k+2Nl9p9rnk38U9Qg8Ix4cejkotb/3OG8I1ghQU1EDfeP64/RlP7SAYsyqKo6ueFyBvBt5cB1Uv4cAkA7V8l/ij6ubrsL7xdatmaCKIlXZ/tZdrOH3mh84HA5mCGbgZ5+fEbUuClx9LoJWtb4WgzGGlGMpGLt7rML2ltQRNPde9ftfP9w9cBdp59LkvQ7ianGLeq7qFhTX5jnGEycXngRjrE0TMcgbcXpcjN83HkzMcGH5BfRZ3kfpvx9dKEzWRAyq+PusHafsWC6BLrD1s0V5XrnavwNUoe657rOsD65+eZUK0clTq8UJgb6+PhISEtQRS7vHGENJmmp6CABpQhD/bbxKjtWY4pRidJzYsdWPr73gFwDY+tkiPzFfpQt+yZ5DNjZYpq3P4RDgoLI6AlmMAz4ZgGv/dw123e1aHGNDP/wvH38Zf434S61JQeqJVHiM9FC6jsTW1xamTqZIO5vW4CJl6m7UZFzKgE1XG5g6mDa6T883eyJqXRRy4nJaPSOSQkHwGumQuJbELxFL0H9lf1z94iq6vCJdsI+nz8Os2FnY0XkH7h+6L+1Va2VDOO96HqpLqtFhoGJhde06guYSgrrvVa/FvXBmyRnc+f0OTBxNEPN5DGx9bcEfwoetry3yb+SDw+XIe66UOReP7zwGh8uBdef6NWn8wXxU5FXg8a3HbZpRTSKWwMbXBh7Pe8g/F/whfJg5m7VoPYamisBVUVzd0hgi10SCiVRbHK2qv8/AkEBEhkWCSRi4elzY97JH5KpI5N/Mh00XGzj2cZTODFdUhSFfDmnRc2jyXNeU10jP9X+vhZIB8rRq1SxDM2fOxI4dO2idARWrKqpCTVmNShOCE/NPNHolVhXasigZgHpfynZ+dnh8Uzq3uKq+VGXP8c/L/8C5v7PCfW0tLL69+3abYpORxVj6qBQVBRWw9bOV39eSBmTdHyP+ID5Gbh+JU2+dUls9ScqJFAS8E6D0/hwOB14vejW5anFgSCCKU4vVMrtOxoUM8Ac3PFxIxtjGGN3mdEPs5liM+WVMq5/Lb44fIlZFQCJqeUFwcFgwbu2+BRsfG4XZdQwtDTHzykz81v83XP3yKvoub90sOw+OPoDH8x7gGfDq3ccfykfijkSljtPQ1V6nfk7o+0FfuA5yhamDKQThAsRvjUePN3og6Y8kBLwXoHSSmhObA4deDg0OwdAz0gN/6H/Tj7YhIejyShdc+fyKwrnsOr0r4rfGY9bVWS06Vu/3eiMiNEJaCwTpMND7h+9L1xZZrZmr3obWhgAAJmLg6HFU3kCt/Z5HrY2CuFrc4r/PiysuSpMBfS4kNRKYOZthzo05qHhcgcyITGRczEDZozJc3XQVsVtiW5TYaKqH4d6/95D4cyLAhVonxCBEE1qVEIhEIvz00084ffo0evfuDVNTxSttVDvQOsI0IQwtDWFoYaiS41l6WcLIxgg5V3Pg+lzDwyPaoqa8BuW55bDwVM0QJ0DaQ9CWsdtNyY3LRc83VTcNq4O/AwqSC1BdWg0DM9XM2Z6XkAcrb6tWzQHf2BWvbnO6oeBOAZL3JaPicQWMbY3bGqZceX45cq/lwuN5D6X2l1258x7njeNzj2MEGyG/wi27ctf5pc64uOIiMi9nSos7VVwcnX4hHf0+7Nd8nHpcJO1NwnPrn4N5hydJurJXGDMuZWDf6H0Ae1IQrOxVcZmkv5LQeXL9IX8WbhbwGueFSx9fgoWHBbpM7qJwvzIxphxNgd9svwbv4w/h49Qbyq9HEBgSKJ+qk2fAw8zomQqxyBphAz4egPv/3Ad/CL/RRltdjdUPyMinH21lYgQA0euj4TfbD+auT97nzi91xum3TqMgqQA2XWyUPtahqYcASIeeiavFyE/Mx8PTD1GWXQabrjaICI1AdWk1Bn8+WC1DipL3J+P80vMAIG9sH5p2COP+GKeS4wPSiw+GVtLfqZYOAQOkn4mYz2Jg4WGBhSkL5ecBkH4WOo7viI7jO2LIF0OwyWBTi2fYUkUvRlO9DJc+voQHRx5A+FAIt+FuuLvvrvz9bunfOCG6olVVL4mJiQgICIC5uTmSk5MRFxcn/xcfH6/iENsPVRUUy3A4HHkdgToUpxZDz0SvTasq12XnZ4fHtx63aYaXhlQWVqI4pRgO/sqNc1eGmbMZTB1NkXc9T2XHzL+RL19QTJWe+/Q5cHgc/NrnV4irxfXub22h3sNTD2HX3Q6mTo0Pv6lN1gjMjMiUrlr8X1G27Mf63j/38Fv/32DTxQa9FvWSzvgC1RVHVxZVIu96XoMzDNWN89qWa7DwsEDcN3Hy7coUDDLGEP9dPPYO34uashoErwnG7ITZ4Oo1XITYmCphFVJPpMqHC9VlwbeApFqCI9OPICvqyRTDysRYUVCBrKisegXFMpYeljB1NkVWpHJTF0esipBO1dnADF61e644XA68xnrhweEH8uLS5objNJcQtHX60cJ7hUj+Oxl9P1JMKAwtDeE11gu3f1e+FzBydSRSjqWg85TOeL/qfQSvCUaWIAt+c/ww88pM+L3mB3O+Oa5suIIveV+qPBnIuJyBw9MOy3vUllYvhc8MHyT9mYSjrx1VyXPkXMvBbwN+k0/SALTs71P2+TS0MsTgjdKFDBuaiUq2r6RGAo5ey2fYqn3ML/Vbfq4bKxo+Ovsooj+NRk1ZDbrP6467++4ieE2w/P1W9YQYhGhKq3oIzp07p+o4CP5LCNxUlxAA0mFDaefUs0CcMFUISw/LNhXz1WXdyRqSGgmKHxbDytNKZcfNjc+Fuat5vXnn20pWR9AhuEPzOyshLyEPdj1Uv7o0h8tBl1e6IGptFH4L/A2zrs5SuDLf2m701JOpSs8uBCheubP1tcX9w/eR9FcSYj6LkY4j7m6PiQcm4tavt+QxFacUI/d6rkrqIDIvZcKqo1WzC+nVjjP2q1gM+HgAYjfHymOSiBu+2i+qEuH34N+Rl5BXb5iTS7ALeIY8pV/Hg8MPYN3ZutGr07Vj3Dt8L+bcmIPbv91WquHz8NRD2PnZKVwRr612HUFzvT+CcAEEawQwtjPGotxFiFobpfAa6/ZSeL3ohUv/u4QhXwxp9hxIxBLkxuc2mRBYeVvB0lM6/WjHCS2vZ4r5LAZdp3Vt8PvGZ7oPLq24hKBVQc1+zwnCBYgMi4ShlSFe/E06217t94jDkQ7d6b+iPzYZboKkWgIOT3XDefJv5ePv5/+u97kbu3ssxNVi3Pr1Frj6XLyw44Umj9PYlfEqYRX+HvU3sq9mo0NwB1QWViJodRBSjqbAwNJA6c+1RCyBzwwfpJ9LV3i/6tZLKfQsfTIAu/vuxtUvr0LPRA8D1yi3krj3eG9EhEa0auhU3V6G3u/3xt5he5F9JRve473h2NsRkasiFc61KiarIERb2jQv1r1793DixAlUVEjnYmdMtVd12xthmhAWfNUNvwGkCUFWZJbKr7gD/y1K5qHaeHkGPFh3tpbXEahKblwuHAJU1zsgo+oFytTVQwAAA8MHos+yPsi9lisdyoKWzwdfezpAxhgennwoX39A2V4G2ZW7x7ceI3JVJGI+i4FVRyvMvDoTY34Zo5AMBIYEou8HffH45mP0Xd63zVff0i+kN1s/UDvOoNVBEFeKscViCyJCI+A31w99P+jb4NXD0kel2NFph/SKdh/Heue016JeKLpbhKDVQUoVqSb9ldRo70DtGIPXBENULsKPHX9U+r18cPQBPMc0vW6EMusRyD4/Zh3MELgqUN7obepKqfsIdxSnFKPwbmGTxwaAgjsFAACbrk0P2Wnt9KPCNCFu7b6F/iv6N3zcMZ4oyylDTmzzf+MSkQSmzqYIXhMMrt6Tn9a6PSGCcAEk1dIhMEzM8O8r/7Y47rpKMkuw74V9cOxX/3MHAOP3jkfHCR1xa/ctZF/NbvJYdT/bjDEk/Z2E712/x6OoR3Dq7YSMCxkIXhOMoNAgDAgZgLz4PAwIGaDU32dwWDAqHlegxxs9wNNXrF+RJZB1v5c4HA6mR06HOd8cUeFR0jVlmpEZkYnfBvwmfU36XDARw5FZR5p9XL14/vssbzHfguwr2ej9fm9M+mdSowXEyvZ8EaJrWpUQPH78GMOHD0fnzp0xZswYPHr0CAAwb948LFu2TKUBtifq6CFw8HeAqFyEgqQClR4XUN2iZHXZ+dkhPzFfpcfMjctV6XAhGQd/B+ReU81aBBKRRDpbSnfV9xDIDPliCHq80QOpJ1KxSb/lKxnXbizkJ+ajsqgSLsEuLZ57OzAkEFwD6b5cfS7m350Ph57S96fezFM+tvB8wRPgos0/tI0tSNaYoNAgaZz/1QGkHk/FN9bfIONiBtxHuEtnF1kdiUfRj7Cj8w6UpJdgQMgAzIicUe+cdprUCaIKEZz6OjVbf1BdUi0devJK81MGB4YESguD/4uxufeSSaTTjTY2XEiGP4SP7JjsJtcjkIgl6PFGD1QVVcHvtSf1CE01igzMDMAfyldqcbqmCopr8xztiQdHH7T4olTMhhh0nNix0V4YfWN9dHqpE27vaX7YEH8oH+JKMbrN7VbvvoYaukurl8Jnpg+S/06WLoimhIbm568qrsL+MfthbGcMtyFujb7/Ew9OBH8IH38M+gN5ifWHOcoS+tqN4HNLz2H/i/txbPYxVJdUI2h1EDxe8FD4+/Qa4wVzV3MY2xgr9fdZeLcQ6WfT0WNBj0b3aWiCBJ4BDzNjZsLA3EBaX9SElOMp+HPYnxBXiuXnuvPkzri9+zZOLznd5GPrqp2M8gx4GLppKABpYtPYuW6oZ4wQXdeqhOD999+Hvr4+0tLSYGLyZAjG1KlTcfz4cZUF196ocspRQPrjEfN5DJz6OdWrI1DF4i5tnWGoMbZ+tirvIWjL9JFNcQxwxONbjyGqFLX5WAXJBeDwOLDytmp7YE0YuW2kdEyuqOXFurUbCxeWX4DbUDdc2XClxYmF7Copz4AnL7aVaeiHtu+HfXF923UEvBPQ6h/aKmEVcq/lKt1DUDdOJmHo+WZPzIqbhY4TO8LA3AA8Ix4iwyLx24DfUFNag6DVQY0OZ+Dp89BjYQ/Eb41v9nnvH74P607WsO1q2+y+gnABxNVicA24YBKGf6c2fcU5OzYbkmoJXAJdmtzP0sMSpi5N1xEEhwVDUi2B7yzfepMhNNUo8nrRC/cPN744nUzOtabrB2T4g/moyJdOP6qssuwyJP6UiAErBzS5n890H9z5406zDd0rG6+g51s9G51goKHeuLG/joXnaE/c+OEGzi8732zMda/ei6pEODjpIGrKa5Abl6vQM9EQ14GuEFWIsCdwD4ruF9WLjYkYUo6nQFQhgjnfHLGbY5F6PBWicpG8R6Du3yeHw8GAkAGI2RCDvh/0bfbvM/67eHSc1LHJYXuNNbZNnUwx5ewUZEVmIeVEwz1Cd/bewYHxByCpVkwqxv81HvyhfMRvjceFDy80GaNM3LdxODJT2qtQu2iYkGdRqxKCkydP4vPPP4erq+KVtk6dOuHhw4cqCayudevWISgoCCYmJrCyslLqMYwxhIaGwtnZGcbGxhgxYgTu3r2rlvhUQZguVGlCIPvxYIwpJASqWklRmCpUXw/BTdX1ENRU1KDgToFaeggs3C1gYG6gkh6N/Bv5sPWzVfsKl4JwAZhIeiW1NT9wsqQg9WQqUo6ntCoZkD1G2UK8DkEdYN/DHvHb4lsUa22ZEZmw8LBodNy8MnFGropE8l/J8F/sjwn7J+Dd0nfB1Ze+XzwDHoJCm14orMfCHnh46iGKUoqa3C/5r2SlegcUrjhXLUWXaV2QvDcZ55Y2XueVciwF7iPd6w3XqKt2HUFjKgoqcOf3O+i1uFezsdbmNdYLGRczUCWsanK/nNgcOAY0nxDoGenBbZhbi4YNXfnyCjxGesC+R9ND9NyGuoFJGDIuZDS6T/7NfKSdSUPA241Pv9vQVW8AeOnIS3Dq64Rbu281WxhdOyGPXBOJ43OPoyCpAEX3ipT6G5QNg6sprcGvfX5F/s18HJlxRD7sK/qzaJxedBqlj0oRtDpInmQ2d+Gg4/iOMLE3wY0dN5p8/pryGiT+nAj/xf5N7tcUpz5OcH/eHQcnHkThPcVhZwk/JODozKOw7mLd4PmYcmYK7HvY49Zvt1BTUdPoczDGELEqAheWXZAnFlQ0TJ51rWp5lJWVKfQMyBQUFMDQUDVTZtZVXV2NV155BW+99ZbSj9mwYQO2bNmCbdu2ITo6Gqamphg1ahQqKyvVEmNbSMQSlGaWqmyVYuDJj0fmpUzc/1d6NU6V09ypo4YAAOy62aHgdoHKxmDm38iHoaWhSpMtGQ6Ho7IFyvJv5DfbOGmr2u9/h+AO6DixY6t+4Pp+KJ2RRTbNZGuSgdqFeMr80Pb7sB+ufXUNoqrW9cZkXMgAf4hyvQPKxhn9abR8WlRlkivzDubwGueF69uuN7pPdel/w4UamG60uRjH/T4OTn2dELs5FpGrGx5nnXK0+eFCMs0lBIk/J8KpnxPsu7Xsc2vlaQXrztZIPZna6D4SsQS5cU0XFNfWVB1B3aE25fnluP7ddfT/uH+zvaVcPS66Tu3a5LChq5uuwnemb5OzbTV21ZvD4eDViFdh190Oh6cfbvZ7LzAkEP1X9kfkqkjc+f0OyrLKWvR9HhQahKDVQagqqsLObjtxe89tOPZ2xKDPB2FBygIseLAAo38ejdKMUnnvWHOfbQ6XgwGfDEDMZzFN/n3e3nMb5nzzeovhtZRjgCPElWLsCdwjTypjNsTgzNtnIKmRoOuUro2e6xkxM2DlaYVjs481WFsnEUtw+q3TiP0qFqJKUau+qwh5GrUqIXjuuefwyy+/yG9zOBxIJBJs2LABQ4cOVVlwta1evRrvv/8+unfvrtT+jDF89dVX+OSTTzBhwgT06NEDv/zyC7KysnDw4EG1xNgW5Tnl0sVZOjQ9+0lLBYYEot+KfqgsqMQmw5aPGW9MlbAKlQWVaukhsPK2ApMwFKcUq+R4svoBVc6GVJuq6gjyEvLUVlAM1G9A8ofwYWBh0KofuNOLpONwW9qN3thVUmUK8bzGesHIxgi3fr2ldJy1pZ9XvqBYmThb09MBAP6L/JG4I7HRYWYPDj+ApZcl7HybriVpLMap56fC2N4YD8/W760tzytH9pVsaU2GEtyGujVaR8AkDNe/uy6dHrYVvF/0xoPDjdcRFCYXgkkYbH2aHzYFSBOCxqYfrTvU5tr/XUOHgR2QejxVqd5Sn+nSsf4NNXZLH5Xi9m+30WdZH6XibAhPnwfH3o7IEmTh4kcX690vS1py43NxcuFJxH4VC/z3ddaaNTqCQoPkC9LxDHiYdXUWfGf4yie1aM1nu/PLnWFgYYCbu242eD9jDPFb4+G/xL/N38WBIYEICgtCRX4FdvfbjYsrLiJydSTEVc0vkKZnqIcJBybg4amH+HPonwr3iSpFODTlEJL3JcPGx4aKhkm70qqEYMOGDdi+fTtGjx6N6upqfPjhh+jWrRsuXryIzz//XNUxtkpKSgqys7MxYsQI+TZLS0v0798fAkHjX2pVVVUQCoUK/zShJL0Epk6m0DNs1UywTRr06SDpAk/VqlvgSZgqhIG5AYysjVQQoSKuHhc2XW1UVliccy1HLcOFZBwDHJET1/YegrwbeWotKK7bgJRd/R3wyYAW/cAJwgVI/CkRdt3tWtyN3pZCPA6Xg74f9sWVjVda/GNcXVqN7KvZShcUNxenrIHZmquH/KF8GNsbI+mvpAbvT/o7SanhQo3FqG+ijylnpiDnag7SLyhe3U89mQqHXg7NTrsqY+lhCbMOZg3WEaSeTEVNWQ06Teqk1LHq8nrRCw+OPmj0vcyJzYF9T/tmx8UD0h6A27/dhqWnJR6eUUyE5Iu0/ffeXPr4EuK+joOZq5nSF0ic+jnByNaowR6IuK/j4P68u9KJS2MMzAxQ+bgS8d/GI+HHhCevbZV0BegbO25gT/AeMMakBdys9ePaZXUnDT2+tb14HC4HAz4egOj10RDX1F/rJEuQheKUYvjM8GlRrI0JWhWEfiv6oTCpUNozUS5S+mKXib0JfGf5IuNiBg6+dBCAtDh73+h9eBTzCBX5FfAe601Fw6RdaVVC0K1bNyQnJ2PgwIGYMGECysrK8NJLLyEuLg7e3t6qjrFVsrOlU6s5Oip2Nzs6Osrva8j69ethaWkp/8fnK1+A2BbCNNXWD9QmCBdIZyDhcVRWFCWbYUhdV91VWVicG5erloJiGccAR+Rdz2vwR1BZVcIqCFOFah0yVLcB6RzojLJHZShOLVb6B07WWDB3M0fvd3sD0Gw3us+rPhCVi+RD4JSVFZkFc1dzWLqrpkerLT0dHA4HvRb1arC4uLqsGilHU5qdbrQ59t3tMXjDYBydeRQVjyvk21OOpjQ73WhdjQ0biv82Ht0XdJdfaW4plwEuYCKG7CsNfx83tyBZbbIEzchGsdEu+7xyuBz4zPRB5ymdEf1pNKqEVUjckah0A5LD4cBnuk+9YUPVJdWI/y6+Tasky8inkK0Q4fSi07j12y38PvB3+RoP/T7ohzcz34SFmwWub7ve6nHtzV39b8tnu8vULuAZ8HBrd/1evPit8fCb49eqVdgbM+jTQfLZylp6sWv4luHwm+2Hewfu4d+p/+LPIX+iJLMEpRmlKl0sjpCnRasvR1taWuLjjz9u05P/73//a7ZH4fbt2+jatWubnqclVqxYgaVLl8pvC4VCjSQFql6lWEb25e/+vDsMzA3g0MtBJYumFKeoZ8pRGVUVFktEEuTfyFfLGgQy1p2swdXnouBOQauH/OQn5sPE0USlqz43x8DUAE59nZB+Pl3pReAkYol8rDB/2JO/i7qLCqkLz4CH3u/3Rszn0ukilU1IWzrdaHOaSp6U+bvye80Pl1ZcQnZsNpx6O8m3PzjyABYeFrDza3tPUa9FvXBtyzX8PvB3zL01Vzrd6PEUTDo0CUCtK+fNJIL8IXwk/JCgsK04tRipJ1Ix4tsRjTyqeVw9rnS60MMP4DKg/oxHObE58Jvr18Aj66u9INTjW48RFBaE88vP486eO7DqaIW4LXGICo+CXXc7cLgcpQpl6/KZ7oNfA35FlbBKPqPSjZ9uwLqTNVwHqeazVft1HJ0pXVnYb64fXtjxAjgcTqNX72WPqX27Ico8vi2fbS6Pi/4r+yNqbRT8ZvnJe3fKcsqQvC8ZsxNmN30CWqj2LGCyi10teU9H7xyNysJKJO9Nln8uKBkg7VWrpzMpKirCyZMnsXv3bvzyyy8K/5S1bNky3L59u8l/Xl5erYrPyUn6I5uToziUIycnR35fQwwNDWFhYaHwTxNK0ktUWlAMKH759/uwH3Ku5ajsaq4wVaiWgmIZu252KukheHznMcCVNtrVhcPlwKFn2wqLNVFQ3BBlFp+qLTgsGB0GdoCZq1m9JEJT3eg9FvRAQVIBMi41PutLXRkXMlo03ai6GVoawnemL65/p1hcnPxXcpt7B2Q4HA46vdQJBXcKcGDCAWTHSK/EO/d3btFMY/L1CEqfjM2//v11eL3opfSMTY1pbPpRJmHSqYKVmGFIJjAkEIGhgagWVmObyzbc2XMH9r3sEfBuAF468hLeKXkHnSZ1kicDLe0ttfWxhU1XG9w7eA+A9GJD7OZY9FneR6U9pfJ1JSBNgEf/NFp+/LZcvVfF45XhM90HTMJw54878m03frwB10GusOnc9AJzLdHaGp66Jv0zSbpwWSuSREKeJa3qITh06BBmzJiB0tJSWFhYKHwZcjgcvPbaa0odx97eHvb26mkEeXp6wsnJCWfOnEGvXr0ASK/2R0dHt2imIk0RpgnRIbhtMy/UVfvLv+JxBYSpQlQWVqrkam5xSjH4Q9XXwLL1s0XBnQJIRBKlxhA3JjcuFw49m1/YqK0cAhyQG5cLtPICWF6CeusHGsMfwsfJBSdb9Ji0s2lwG+ampoiaZ2BugF6LeiHm8xjwBzX/Gawpr8GjmEcY/ctoDUSnvJ5v9cSewD0YvHEwjKyNUF1WjQdHHiBwleoaJIPWD0JZThlu/nwTxfeL4THKA9GfRrdocoHadQQeIz0gqhThxo83MO7PcW2Oz2OUB47OOgphuuIq7YV3CyGpkcDWt2Xj8oNXByP6s2j5VePZcU/+IOteHZfdBpTr1YkIi4CxgzFu77kNv9f8kPx3MsABOr/UWeneFmU0NL5fFl9be6ba+nhlRK2T9sRErYtC11e7Agy4vu06hn8zXGXnqa09JXWPVXemMEoKSHvUqlbSsmXL8Prrr6O0tBRFRUUoLCyU/ysoUP2KuACQlpaG+Ph4pKWlQSwWIz4+HvHx8SgtLZXv07VrVxw4cACANDF57733sHbtWvz777+4ceMGXnvtNbi4uGDixIlqibEt1LFKce0x48a2xjB3M5c2WtH2q7nqWpRMxtLTEhwup9480y2lrhWK63IMcGzTTEP5N/LVOsNQY1yCXFCaWYriVOVndEo7o92EICIsAhKRBOln05F3Q3HF1YamkMwSZMHU0VStQ9xaw6GnAxwDHJG4MxGAdHy/hZtqhgvVNvqn0XAd5IrHtx4j6a+kVs00VrsnKfnvZBjbGavkgoCxjTE6BHeot2qxrKC4ubUS6mpoCIlse2uLwGW4PC4ennyIh6ceoiynDFc2XkGfpX0QvT5aJeu61I3zaZ33nsvj4v4/91H6qBTJfyfj/qH7ABfIjc9V2XlSVU/Hs3C+CVGVVvUQZGZm4p133mlwLQJ1CQ0Nxa5du+S3/f2lC5ucO3cOQ4YMAQAkJSWhuPhJw+bDDz9EWVkZFi5ciKKiIgwcOBDHjx+HkZHqZ8ZpK2Ga4hUydXD0l86G09bGHGNMXlSsLlweFzY+Nnh887FSq7U2JjcuV2WzWjTFMcARZ94+AyZh4HBbNnyAMYa8G3laGTJkYGoAp37SOgLLOc2/n5WFlciNy4XbUO0lBFweF1c2XIFTHydc2XgFY34ZA+DJjzt/CF/hKp+sfkA2BltVV3LbKiIsAqbOpoj/Nh693+2NpL+kswupI85XTr+Cr4y/AhO1bFhERJi0AccfwkfCdmkdQdzWOPRa1AtRa6NUEqPXi154cPgBer3ZS74tOzZb6YJimaZ6AJpqQMrub07tK9B/DvsT5Y/KUZ5bjqi1USoZd67Kq97aVDvms++chV03O9h0tkFkWKTKxueroqfjWTnfhKhKq1L1UaNG4erVq6qOpUk7d+4EY6zeP1kyAEgbVnPmzJHf5nA4WLNmDbKzs1FZWYnTp0+jc+fmp/PTNFGVCOU55SrvIajLIUA18+VXFlaiWlit1hoCoO2FxYwx5MZrpofAxscGkhpJq3o0SjJKUC2sho2P6sbXtkRL6gjSL6TDuos1zFxUu15GS8iuAmZfzcbtPbchTBMq/Li7DXNTuMonqx9Q1QrdqsLlcZH8dzLKHpXh3r/38ODIA3R5pYta4oz5LEa+iFxLxs7LZu/JS8hD9pVsZFzKQP6NfJRll6ksRu8XvZF2Jg015U9Wjs2JzVEotm5Ocz0AXB5XJVNIBoYEwmucFwpuFaBKWKWyZADQzPh+TZHVc5TnliPtbBoenn6oc8W6z9L5JkQVWtVDMHbsWHzwwQe4desWunfvDn19fYX7x48fr5Lg2ovSzFJw9bkwdWx8lUtVcAxwVCj0ai1hqhBGNkbymTbUxbabbZsSmOLUYtSU1sCum/rH5vP0ebDrbofcuNwWF87l38iHdWdr6BvrN7+zGrSkjkDb9QMyta/kbXffDgCw72EPcbUYlh6W8Jvth4jQCIgqRXgU/QgOvRxwbcs1nWqU1H4NR2YcgbmrOe4evIvIVaq7kgq0bex87RgNLQ1xYv4J2PrYIvrTaJXFaNPVBqYupkg7lwbvsd5gEobca7kY9tUwpY+hih4AZY3+eTS22m9t8SrdzdHE+H5NCl4dLF3JW6S69W9U6Vk734S0VasSggULFgAA1qxZU+8+DocDsbj187G3R8I0Icw6mLV4qElLOfg7oOBOAarLqts0F7S66wdk7PzsWr0qLQDkXsuFra+tWhZ7a4hjgCNyruWg69SWTZOrrYJimdp1BM29r2ln0xC8RvvDbQDpj3bU2iiIq8Xg6HHQeXJnCB8KkSXIgjBVCA6Xg+hPowFA55IBmcCQQFQVVeHqpqsoul+k9mRA9pyA8sMiau9fVVwFACqNkcPhyFct9h7rjcJ7hRBXiWHrp/xQQU027uK/ja+3KJiufa50gSBcIE8G6DwRovta1d8rkUga/UfJgHIiwp4Maag75WhDhZGqYOZiBhN7E+QntG1+/+LUYlh4qn86Vls/WxQmFUJc3brPlKYKimVaW1isrYJiGfl6BBeaHjZUll2GgtsFOjN9Z+3ZWJiIAQBG/TgKU05Pwfx787G0ZmmrFy3SpCFfDgFHj6PyK86A6oZFBIYEymf7Use5lNURMCbtHbDrYdfigmJNoCJU5dB5IuTp06KEYMyYMQpFu5999hmKiorktx8/fgxfX1+VBfcsk43NFYQLUJL2ZFEydY5z5nA4cPBv23z5gOZ6CCzdLcE14KLwbutmGmrpPOZt5RAgPbeMsRY9TlsFxbUpU0eQdi4N9j3tYWxrrKGoGqdMgyNqXVSDM87oGkG4QF7sq+o4665OXVtLxs43dLVXlVwHuaKyqFJaq1BnsTZdoYqZitoDOk+EPJ1aNJbixIkTqKqqkt/+9NNPMWXKFFhZWQEARCIRkpKSVBrgs6p2N7xTHyc4DHbA2ZCziF0bi4FrBiIwJBDV1dWoqamBnp4eDA2fjNcvKysDABgbG4PLlSYONTU1qK6uBo/HU5hFqe6+jgGOyIrNQueyzvX2LS8vB2MMRkZG4PGkV+dEIhGqqqrA5XJhbCxtCApThXAa7oSysrJm9wWAiooKSCQSGBoaQk9P+pETi8WorKxsdl9bX1vk3MiBsYcxOByOwsxWlZWVEIvFMDAwkNexyI7L4XCQG5eL/v/r3+i+EokEFRUVAABT0yf1G1VVVRCJRNDX14eBgYHS+9p3t0dVcRWEaULo2Ulfp4mJiXydDtn7Wfu4oioRHt16BGNvYzDG6u2rzHuvis+J3QA7xL8dD7FYLH8/6+4rqx9Q9nNS+/1s6+ek9nsvCBfgfOh59P+kP/qu6AtA+vcklohxLvQcKqsrYWRgJG+U+H/gj8h1kbgYelG+b2PvZ1s/J4wxlJeXK73vudBziFobhSGrhyAoNAiCcAEuhF5ARXUFgj8JbvD9bOgzpcrviLr7xm2Mk5/Lnst6Imp9FC6FXpKfy8beT2U/JxFhEaiR1MBpmBOS/0lGTmwOfF71gVgsxoWwC4AEGLbuST2Bsp+Txt7Pluxb+72v3dtS+/2UfZeLRCL5uWzJ56S574jm9tXUd0RD72dD+0rEEvT+pDd6LO2h8H3Sd0VfVFRXoKKyArWp4zuipfu25O++sX1l54+QpxZrAQ6Hw3JycuS3zczM2P379+W3s7OzGZfLbckhdV5xcTEDwIqLi9Vy/Mg1kWwjNjIADAA78tER+X1r165lANj8+fMVHmNiYsIAsJSUFPm2zZs3MwBs+vTpCvva2dkxACwxMZExxtidvXfYXP5cBoBNmDBBYV93d3cGgMXExMi37d69mwFgI0aMkG/7yfcn1tGtIwPAzp07J99+4MABBoAFBQUpHLdPnz4MADt8+LB828mTJxkA1rNnT4V9Bw8ezACwvXv3MsYYOzrnKPt2zrcMAOvYsaPCvmPGjGEA2M8//yzfFhcXxwAwZydnthEbWWVxJWOMscmTJzMA7JtvvpHvm5yczAAwS0tLhePOnj2bAWAbNmyQb8vIyGAAmJ6ensK+ixYtYgDYqlWrGGOM/dz9Z3Z191X5+1ldXS3fd/ny5QwAW758uXxbZmymfN/CwkL59lWrVjEAbNGiRQrPp6enxwCwjIwM+bYNGzYwAGz27NkK+1paWjIALDk5Wb7tm2++YQDY5MmTFfZ1cXZhANjFIxfl237++WcGgI0ZM4Yxxth2r+3s/tH7rGNH6Xt/+fJl+b579+5lANjgwYMVjtuzZ08GgJ08eVK+7fDhwwwA69Onj8K+QUFBDAA7cOCAfNu5c+cYAObr6yvfdnnVZdbXqy8DwHbv3i3fHhMTwwAwO0M7thEbWeSaSMYYYxMmTGAA2EfjP5JvT0xMlO5rZ6cQw/Tp0xkAtnnzZvm2lJQUBoCZmJgo7Dt//nwGgK1du1a+LTc3V/5+1vbuu+8yAGzlypXybWc+OSPft7S0VL79tUGvMQBsyoApCseQ7Zubmyvfpo7vCMYY2759OwPAnuv6nMK5lH1H/PjGj/LtDX1HMMaYr6+vUt8RkWsimStcGQC2rPMytsVyC8uOzWZfvfYVA8A6OXVSOG7d7wjGGLt8+XKLvyNcXFwU9tXUdwRjjBUWFir9HVFdXa0b3xEu0u+IuLg4+ba63xEy2v6OYIyxESNGNPod4e7urrCv7Dti+/bt8m0t/Y5QN3W3RQihlFbLAkMCFYqJ+y7rq9bncwxwRGlWafM7NoL9twaBpsb32vnZoThF+UWzZCQ1Elh1tFL7TEh1OQY4Ive68nUE+Yltq+dQmf8+gjlXGx5OVpxajJK0ErgOdNVgUA0LDguGpVfjQ9b0jPQaHDfv/aK3Tk0n2FgcsnPMWjj0TC1YwwXEPeb1UNm5DAwJlE9jW5hcCFGFCPf+vYebv9wEAJg4am69G0IIaa84rAW/OjweD9nZ2bC3l453Njc3R0JCAjw9PQEAOTk5cHFxeaYKi4VCISwtLVFcXAwLC9UX0srGW4r0RZDUSORDBwD1DAdgEoavrL7ChOMT4BLg0uIhQ2W5ZfjO8TvMz50PfRN9tQ8ZenDsAc6+dxavXnu1RcMBrn5xFcU3izF+7/hG91XlkKErn12BoYEhDC0NkXIiBS/sfQGAtItftoBT35V96w0HuPDRBRTnFmP4N8O1PhzgUsgliB6LMHbn2Hr73v39Lm78eAPTI6ZrfchQS/dVxXAAdQ0Zas1QEE0PGWrNsMKW7ltRUQHBpwJcWXsFPA4PYMCAsAHwX+7fps+JKocMqWJYYXsYMtSa9/5Z+I5Q95AhdbdFCGlRDQH7b+Ev2RdKZWUl3nzzTfkfS+36AtK8xuYH53A4CAwJhIGBgfxHobbaX04y+vr69daDaGhfDpcD5wBnlN0pg1GQ4orNDa08raenJ/8yBaT1AyYOJrCyt2p2X5naX+gyPB6vwddRd187PzsU3y+GoZ5hvelDG1pxWnbc4pvFcPR3bHJfLpfbYAyGhoYKP5rK7GtoYIiI0Ah0m9cNefF58n1rv8cNvZ/5ifnwHO1Z79gtee9V8TkxMTFB55Gdcfqt0w3um3bmyfoDynxOZBp679XxOWlq35a89239nHA4nDbvq+n3vqWfk7oaez9b+jkZFj4McZ/FyQusB64aWG8/2b51teS9V8XnpDXfEbW15L3Xlc9JQ++nKj4nz8p3BCFPuxZ9imfPng0HBwdYWlrC0tISM2fOhIuLi/y2g4MDXnvtNXXF+kzR5kwMjv6OrZ5pqDilGJae6p9hSMacbw59E30UJrVspqHca5qdclT23iXuSERpVinKsssafI/ryk/Q7pSjtXUI7gBhmhDFDxWHaDHGdGZBMvLsUudsS4QQQprWoh6Cn3/+WV1xtDuaXFmzLocAB1zfdr1Vjy1OLYaFh+a6KzkcDmz9bJF/M1/pqTmriqtQdL9IowkBoDhz1Pf87yERNfwey1QWVqIko0Sri5LVZmAmXY8g40IGLF97kvQVJBWgqrAKLoEuWoyOPMvaspoyIYSQttPMEq6kHm0um+7g74Dc+FxIxJIWr3cgTBFqtIcAkA4benzzsdL7517PhZmLGUwd63f3qltgSCAiV0fK52xv6r3MT8yHWQczGNtof15/Gdl6BH6v+cm3pZ1Ng0uwC/SM6OuCqJ4qVlMmhBDSNjTwrR2y7WoLSNCqBb80tShZbbZ+ti2ajUfTKxTXJggXgImldfrNDXvIS8jTmd4BmYYWKKPhQkSdVLWaMiGEkNajS37tEFePC7sedsi9litNDlqgOFWzNQSAtIcg/tt4pffXVkJQ+0qnS5AL9o/Z3+QVzvwbyg+D0pQOQdI6AmGaEBZuFmAShvRz6ei7XL3T4ZL2S5u9pYQQQqSoh6CdcgxwRE5cywqLmYRBmCrUaA0BIO0hKLpfhJqKGqX210ZCUHfYg/twd3Sd3hXWna0bLRLPu5GnMwXFMgbmBnDq44T0C9JegtzruZDUSODUx0nLkRFCCCFEXSghaKcc/B2Qe035BbQAoCy7DOJqMSzcNZsQmLmYwdDSEAV3CprdV1QlwuNbjzWeEDQ07GHIF0NQVVSFzlM61xv2wBjTyR4CQHHYUNrZNLgOcgVXj74qCCGEkGcV/cq3U44BjsiNy23RaqjFKcUwczGrtx6AunE4nCYLiyPCnlyBz0/Mh76ZvrzOQRAuQERYhNpjDA6rPwba2NYYw/5vGDLOZyDgnQCF+4QPhRBViGDT1UbtsbVU3YTAbTjVDxBCCCHPMkoI2im7bnaoElZB+FCo9GO0UT8g01RhMZfHlQ/Lyb2WC4deDuBwOPJhPC2dSUmVukztAqe+TrjwwQWF7XkJebDuYg2eAU9LkTWuQ3AHCB8KUZRShIyLGVRQTAghhDzjqKi4ndIz0oOdnx1y43KVnjWoOEWzaxDUZudnh9RTqQ3eV3uKQqe+TugwsINSi4JpAofDwYhvR+Bnv5/hO8NX3rjW1eFCEWHSBMqpjxOubLwCPUM9eZ2DIFwgHRrVRBEoIYQQQp4+1EPQjjn4O7RoxWJhqubXIJCx9bNtci2CwJBABK0OQvaVbFz7+ppOJAMyFm4WeG7dczi58KS8MFoXC4qBJ70tXH0ubvx4A/yhfHC4utHbQgghhBD1oF/3dkxWR6AsbaxBIGPXzQ7FKcWoLqtu8P7SR6XIjskGADARa3ZRME0rzy+HqEoEwWpprUNeQh7sekjXINBUnYMyZHO/Z17OhKRGArdhbjrT20IIIYQQ9aCEoB1zCGi6h6B2sS6gWEOg6UasiYMJjG2NUXC7/kxDd/68g53ddkKYLq2H4Bnwml0UTNN4+jyUZpTi6pdX8Sj6EQqTC2Hf3V4nr7wHhgRiwMcDAABn3z1LyQAhhBDyjNOdVgjROIeeDijLLkNZdlmD99cu1pWIJShJK4GFh4VGG7GypITD4dQrLL644iJ+7vYzziw+A/fn3ZGfkI/gNcF4v+p9BK8JbnT+f22Qr7oqkuCv5/+CgZkBEncm6mxje+DageAacCGpkehcbwshhBBCVIuKitsxA3MDWHeyRk5cDrxGe9W7v3axblVRFZiE4eYvNyFYLdBYI1aWlAD/zTR0U5oQHJl5BLd/uw3rLtbo9no3XNl4RSGm2rHXvq1NgSGBkIgkEKwRABwgclWkTiYDwH8FxNUShd4WXYyTEEIIIW1HCUE75+DvgNy43AYTAqB+w1qTyUDd5/ca64Xqkmr80vsX5F7LRcdJHTFh3wRErm64YS27XXdRMG0KXh2M6PXROn3lvW7NgOw2oBuJFSGEEEJUixKCds4xwBGPYh41uU//lf2l9QISaKURWzcpAYA+S/tgyJdDAKDJaTB1rQErCBfIkwFdvPLeUAGxLva2EEIIIUR1qIagnZP1EDTl94G/AxKAa8DVWrFuYEigfBEvngFPngw8TWo3tnWxzgGQ9qY01tsSvCZYp3pbCCGEEKIa1EPQzjn4O6D4QTEqiyphZGVU7/59Y/fhUdQj9H6vN4ZuHqq14SOCcAHE1WKdvbLenKflyvvT1NtCCCGEENWghKCdM7EzgTnfHLnxuXAb4qZw35EZR5ByNAXdF3TH0M1DAWinEfssjGlv6sq77H5CCCGEEG2ghIBIFyi7ppgQZMdmI+mvJHSZ2gWjto9S2F+Tjdin5cp6c+jKOyGEEEJ0FSUEpF4dgTBdiAPjDmDg2oHo92G/Bh+jqUYsXVknhBBCCFEvSgjasYgw6eJijgGOSNqbBACoElZh/9j9MHMxQ01ZjZYjpCvrhBBCCCHqRrMMtWOyRb/SL6Sj4E4BqoRVODTlEETlIuTE5oCrRx8PQgghhJBnHfUQtGO1x+LrmejhwIsHUJBUgPLccp1dQZcQQgghhKgWJQTtXO2kIONSBgBQMkAIIYQQ0o7QmBCCwJBAcPWlHwVtrERMCCGEEEK0hxICAkG4AJIaicKiX4QQQgghpH2ghKCdqz3P//tV7yN4TTAiQiMoKSCEEEIIaSeohqAde1YW/SKEEEIIIa1HCUEzGGMAAKFQqOVIVK+kvAS9VvaC37t+Cq/P710/lFWWoaS85Jl83YQQQsjTRPZbLGuTEKJqHEafriZlZGSAz+drOwxCCCGEtHPp6elwdXXVdhjkGUQJQTMkEgmysrJgbm4ODoejlucQCoXg8/lIT0+HhYWFWp6jvaBzqTp0LlWDzqPq0LlUHTqXqqOJc8kYQ0lJCVxcXMDlUvknUT0aMtQMLpersWzcwsKCvphVhM6l6tC5VA06j6pD51J16FyqjrrPpaWlpdqOTQilmYQQQgghhLRjlBAQQgghhBDSjlFCoAMMDQ2xatUqGBoaajuUpx6dS9Whc6kadB5Vh86l6tC5VB06l+RZQEXFhBBCCCGEtGPUQ0AIIYQQQkg7RgkBIYQQQggh7RglBIQQQgghhLRjlBAQQgghhBDSjlFCQAghhBBCSDtGCQEhhBBCCCHtGCUEhBBCCCGEtGOUEBBCCCGEENKOUUJACCGEEEJIO0YJASGEEEIIIe0YJQSEEEIIIYS0Y5QQEEIIIYQQ0o7paTsAXSeRSJCVlQVzc3NwOBxth0MIIYSQdoYxhpKSEri4uIDLpWu5RPUoIWhGVlYW+Hy+tsMghBBCSDuXnp4OV1dXbYdBnkHPdEKwfv167N+/H3fu3IGxsTGCgoLw+eefo0uXLkofw9zcHID0j9DCwkJlsUWtjwKXy0W/j/rVuy/m8xhIJBIMWDFAZc9HCCGEkKeTUCgEn8+Xt0kIUbVnOiG4cOECFi9ejL59+0IkEmHlypUYOXIkbt26BVNTU6WOIRsmZGFhodKEwNzEHBGhETA1MkVgSKB8uyBcgPhP4xG8Jlilz0cIIYSQpxsNXSbq8kwnBMePH1e4vXPnTjg4OCA2NhaDBg3SUlRSsiQgIjRCflsQLkBEaASC1wQrJAmEEEIIIYSoyzOdENRVXFwMALCxsWl0n6qqKlRVVclvC4VCtcVTOykQrBVAUi2hZIAQQgghhGhUuylVl0gkeO+99xAcHIxu3bo1ut/69ethaWkp/6fuguIeS3vgLM7im+pvAH1QMkAIIYQQQjSq3SQEixcvRmJiIv74448m91uxYgWKi4vl/9LT09UaV+yGWFzERaQgBTdrbkIQLlDr86mSRCLRdgiEEEIIIaSN2sWQoSVLluDw4cO4ePFis9N1GRoawtDQUCNxCcIFiFkTgzn95qD8YTlmLpipUFOgbRFhEeDyuPViefjwIWaMnIGswizcz7lPRU6EEEIIIU+xZzohYIzh7bffxoEDB3D+/Hl4enpqOyS52gXES95egq22W9FvUT8YGxjrTFLA5XEVYhGJREhISEDRgSJEJ0dDBBHu3LkDHx8frcZJCCGEEEJa75lOCBYvXow9e/bgn3/+gbm5ObKzswEAlpaWMDY21mpsErFiAbF9T3tkXMiQ35aItT8cp+5MSNHm0Vi6dCmGsCH4ZPIneCn0JXTt2lWbIRJCCCGEkDbiMMaYtoNQl8aGsvz888+YM2eOUscQCoWwtLREcXGxWtcFOPXOKVy8cxFZ/Cz8+OOPOjUMR9ab8Q/nH1xml/Hh+A/x+T+fazssQgghpF3QVFuEtF86nRCcOXMGZ86cQW5ubr0C1p9++kkjMWjqjzB+TzwGzBqAKkkVLly4oPV1Eur6Uu9LMDFDOi8dm6s3g8ttN/XohBBCiFZRQkDUTWdbdatXr8bIkSNx5swZ5Ofno7CwUOHfs6bzyM4IlgRj+bvL4eXlpe1wFAjCBWBiBnAAvpiPc++eAwDExcXho48+wqFDh7QcISGEEEIIaS2drSHYtm0bdu7ciVmzZmk7FI0wsTPBrG6zEPRcULMzIWnSuZBzWLd2HUY7jMa478Yh9qtYxH0TByMbI5xgJ7Bhwwbcv38f48aN03aoDUpOToabmxuMjIy0HQohhBBCiE7S2R6C6upqBAUFaTsMjXId7Ir0C+pd96AlBOEC/N/a/8MZnMHXeV/D1tcWU05PgamLKQRrBPDK98KMGTMwc+ZMbYcql5mZialTp2Lnzp0oKyvD6NGj4e/vj6SkJG2HRgghhBCik3Q2IZg/fz727Nmj7TA0ij+Yj4wLGbh+/To2bNig7XAgEUvQ8+WeeG7Ac/Dn+sO6ozV4BjxMPTsVXAMu7EvssXv3bkycOFHbocqdPHkSe/fuxXfffYe7d++ivLwcZWVlcHZ21nZohBBCCCE6SWeHDFVWVmL79u04ffo0evToAX19fYX7N23apKXI1Mf1OVc8THiIBX0XoKamBi+88AJ69OihtXiCw4IRjGDM2D8DgjUCcPWk+aNNFxuM2DoCEaERKM8vh4mdidZirGvAgAEIDQ0Fn89Hr169cPPmTTx8+JCKsAghhBBCGqGzCUFCQgJ69eoFAEhMTFS4T5em5FQlUydTuHZxxQuOL8DQwRA8Hk/bIQEAHt98DLtudgrbus/rjpSjKTg5/ySCtgfhzJkzmDZtmlbem9orKvv4+GD16tXy+5K2JknXdPDXeFiEEEIIIU8FnU0Izp07p+0QtMJ1sCveM30PwzYN03YoEIlE4PF4yE/Mh0MvB4X7OBwORv4wEt+6f4tXXV5FpbgSfn5+Cj0agnCBdAG2sGC1xll3ReXazx8RGgH+ED5+e/s3/Hb/N4hEIpw8eVLjMRJCCCGE6CqdrSGoLSMjAxkZGdoOQyP4g/nIvJip7TAAAAcPHoSlpSW+OPkFbP1s691vbGsM38m+8BJ7wdvOW2E6WFljnMtT/0csMCQQwWuCsTt0N3a8sQNisVj+/MFrguE2zA23vrmFY8eO4dy5cygvL9d4jM25ffs2li1bhoMHD2o7FEIIIYS0M9pvCTVCIpFgzZo1sLS0hLu7O9zd3WFlZYXw8PB6i5Q9S1wHuyI3LhdVxVUoLy9HZWWl1mJJTExESUkJKosr6w0Zkhm9czQ+CvwIb+a/Cb1z0g6n2o3x2lfs1SkwJBACDwHmb5+PaQbTEBEagaCwIASGBCIwJBBjV4/Fy3gZ2+dvh6GhoVZirKu0tBRHjx4FAPz111/YtGkTvvnmG63EQgghhJD2S2dXKl6xYgV27NiB1atXIzhYOpzj8uXLCAsLw4IFC7Bu3TqNxKGN1QF/7Pgjfrf9HWdjzuLgwYOYMGGCRp63rurqakQfjcaxV49hXdk6cLgN1weIqkT4weMHlGWXgWfAg7harPGGNmMM06dPx8E/DuJdvAs72IHD5cDY3hgmDiYwdTRFWU4Z8m/kg6vPhaRGotVkoKKiAqNGjcLly5fx66+/YuDAgXj//ffx+uuv48UXX9RKTIQQQnQTrVRM1E1nawh27dqFH3/8EePHj5dv69GjBzp06IBFixZpLCHQBtdBruBGSztv7t27p7U4DAwMYF9tDx8/n0aTAQDQM9TDlLNTsMN3B8qry2FuYK7xhjaHw8Ebrm+gF3rBwMAA4moxAt4LQNepXVGeW47ynHKU5ZThcuJlSGok4BnwtJYMAIChoSG6deuGhIQEdOrUCe7u7ti/f7/W4iGEEEJI+6WzQ4YKCgrQtWvXetu7du2KgoICLUSkOa6DXTHOcBzy8vKwbNkyrcbS0AxDDfl+9fdYi7U4wjkCcbV0DL8mCcIFuPrFVZjamOL9qvcRvCYYsZtikXoiFd4veqP7vO6oqa5BEkvCGZyBqFqk8Rhr43K52Lp1K65du4Z+/fohIiyi0XgE4QJEhEVoOEJCCCGEtBc620PQs2dPfPPNN9iyZYvC9m+++QY9e/bUUlSawR/Mh2i+CBbG2usWvHfvHnbu3Al2hmHCS00PWRKEC3Dzz5soQQlqOtYgeFZwg7P+qIsgXICzoWfRZVQX6JvqKzyvLA4AiFgdgV28XagR12DO23M0GmNDOBwOvLy8ADyZKamkogQp7ino3bs3+vTpo1DrQAghhBCiDjqbEGzYsAFjx47F6dOnERgobbAJBAKkp6fLCzGfVZYeljB1MUVWZBY8nvfQSgyRkZFYt24duhh3wbzQeY3uJ2uwzvrfLAQmBcLLzateY1zdDe7Mx5lYxV0Fv+t++Hr+1/LtsudNO5uG9PPpGLxmMF6+9TLu/XUP7iPd4WbvpvGk4PLly/jxxx8xduxYvPLKK/ViXRq6FFGIwuzZs/GG9xtaL3yuKzc3F3Z2duBydbZzkRBCCCEtpLMJweDBg5GcnIytW7fizp07AICXXnoJixYtgouLi5ajUz/+YD6++uIrlP9VjvDwcDg6Omr0+b29vTF/3nzk/pQLO7/GhwxJxE+Kc69uvoqMi9LpYWUNWIlY/TNCVfWtglgiRmVpJRx7KJ6nwJBASMQSuA1zk844hEDsebgHFkUW8A3x1ViMMqdOncKuXbvAGFNICGSxzk2bi5QfU1CyuwQRYt1IBiorK2FkZITS0lIMHToUXl5e2L17NywtLbUaFyGEEEJUQ2dnGdIV2qrsT/gxAaPeGYXsimycPn0aw4cP19hzy+Rez8Ufz/2Bt4vfVmoF4gdHH+D88vN4/dbrGohO0b279/Bd9++wMm4lbH3qr5lQ26lFp6BnrIehXw7VUHRPVlPmjuTi8OHD6N+/v3w2IdniaAM+HoDbv9/GsdnHwAEHPAMe3q96X2MxNiQrKws+Pj6YMmUKpkyZgnHjxsHa2hrXrl2Ds7OzVmMjhJD2gmYZIuqmUz0ECQkJ6NatG7hcLhISEprct/aKuM8i/mA+elf3Ro+PesDV1VUrMTy++Ri2frZKJQMAkFSShH1J++B1zgtDhg5Ra2x12XJs4cpcYdXRqtl9Hf0dEfNLDIKqgmBoaKj+4PCkRiAYwQgPD5dvlw258hztiR+9f0RNWQ04kJ5vWXG2NnsI9u3bB6FQiDt37uD5559HREQEqqurKRkghBBCniE6lRD06tUL2dnZcHBwQK9evcDhcNBQBwaHw4FYLNZChJpj1dEKYx3GYuwLY+HWxU2jz11VVYXi4mLkJ+Y3OVyorqOXjuKo5Ci893hrPCHIT8yHTVcb8PR5ze779o63cTH6ItwvuuP555/XQHT1i5wDQwJx8X8XEfN5DPSM9FCeVw6XIBck/ZmE4DXBeJz0GFE3onAk9IjC4zVtyZIl6NWrl7xmoHfv3gr3i8VicDgcqikghBBCnmI6lRCkpKTA3t5e/v/2jMPhgD+Yj4wLGXAbotmE4MqVK3juuefgaemJv8L+UvpxQ4YOwdVfr6KzXWf1BVfHd999h8TERASIA+DU3Umpx7h4uADRQFxknMYSAgAwn2QOu0d2uBh6EZFhkWASBquOVhi5fSQyLmUgclWkvGZgfPB4HEo4hNcGvabV2ZA4HA6ee+45+W3Z0KfAkEAsX74cu3btwt69ezF06FD50KfgMJoRiRBCCHma6FRC4O7uLv//w4cPERQUBD09xRBFIhEiIyMV9n1WuQ52ReIfibCZatPgmgzqkpqaCg6HA7MaM9j6NT0ev7aXX34ZvN08uDpobojTgQMHcOrUKSzqvQivTX5Nqcd89vlnCIoPwmj/0WqOTtGGDRvw66+/4nnO8xgpGQmuPhfz784HAKRfSFcoIJ40bRJORZ4CP5iP4BHBGi18lpFIJPWu/MuGPgFAfn4+8vPzcfToURhdNqLpUQkhhJCnlM728w8dOrTBBciKi4sxdKjmikG1yaq3FWZfmA0fHx8IhUKNPe/MmTNRkFOACeUTWjRkCACsO1ujMKlQTZHV98Ybb+Cjjz6CS7GLUguoAdLE06uPF3LjctUcnSIDAwOYGprCjbmBo8eBpEYiX4wsOExxNqEZb8zABtcNWDBsAQJDAjV+1f369evo2LEjvvrqK4XtgSGBCF4jXWdimOkwnD17FuNNx+vc9KiEEEIIUZ7OJgSMsQaLWR8/fgxTU1MtRKR57n3cYcY1g5mJGdLT0zX63JVplXC0doSpc8vOtU0XG2TdzEJlZaWaIlP08ssvY92adTBONVY6IQAAB38H5MZrNiGY5z4PoVWh8DH2wauXXpU3rBtaodjAwAAdh3dE2rk0jcYo8+OPPyIlJQUCQf3YAkMCEbQ6CLnf5iJuVByiV0frXDIgkWi+R4UQQgh5WunUkCFAutYAIB27PGfOHIVZYMRiMRISEhAUFKSt8DSKw+Fg69it8O7vDT8/P40+d35ifotmGJJ578f3cFZwFpbHLTFx4kT1BFdHQVIBeEY8WLgpPxXb9fLr+PHUjxD9LcLkyZPVGJ2UbDahvkv74tr/XYN9T3u4DJCup9FYjQB/CB8J2xMgFovB4zVfLK1Kn3/+Ofz9/RuczUsikqDofpH0/zUS8Ax4OpMMVFVV4aOPPkJ5eTm2b9+u7XAIIYSQp4LOJQSyxY4YYzA3N4exsbH8PgMDAwwYMAALFizQVngaIyve9H3eFw8OPwA+fnKfOos3s7Oz8d5778HikQVe6fZK8w+ow85FepX+7u27wEQVB1dHRkYGysvLUXW9CnZ+duBwlU9ekguTEV0WjUMHDmkkIRCLxAheEwxbX1uknUmDvrE+gKYXcCtxKcFHgo/wuf/nuJ5wXe0x1mZiYoLXX6+/noSoSoQj048g45J0AbpylCOmOgbnep/Dv7H/ajTGhsTGxmLLli1gjOGtt96Cv78/IiMj0aNHD5iZmWk7PEIIIUQn6VxC8PPPPwMAPDw8sHz58nYzPKguWfFmr0W9kBmRCXGNGDx9nvxKs7qKNxMSEvDnn3/CxdQFb77yZosf/+VXXyLgdABmjZylhugUffvtt1i/fj0mBkzEm/4ti/XlqS/j1o5bGD9gvJqiUxQeFY6KigrMejAL/N58hfsau7ru3csbGchAZmImiouLtb4ycE15Df55+R/kJeShIq8CwWuCcf3wdRyNOQp2jeHg8oOY+MVErcYYFBSEzz//HD4+PvD398f//d//YenSpZg9ezZ++uknrcZGCCGE6CqdSwhkVq1ape0QtErWSDwSegQXeBcQOSkS7/V/T+3Fmx07dsSGDRsQuz62xQXFAODq6gpXH1cUJhXCqbdy04C2VmVlJYyNjWFbbQu77i2LtX///pg3eB74In7zO7dRdXU1Ll68iMrKSrwsfhlOM5U7Lw4ODlg1fBX8OvtpbGXKGzduYN26dRg1ahTmzp0r314lrMKBcQcgfChEWVaZ/DNo6myKUamj4NfPDze+vAFHS0eNDx8qKiqCpaWlfHjbBx98IL+vV69eAKQ9jiKRqN6sZYQQQqQkEskzv8ZTe8Pj8ZReJ0infx3//vtv7N27F2lpaaiurla479q1a1qKSnMCQwKRU5yDdV+uA/cIFwFHAjBozSC1Nri8vLzw7pvvYsuHW1pUpFubTRcbFCTXnyFK1TZt2oQvvvgC2zpua1Ws9r3sNVJYrK+vj7i4OAgEApQuLYVjH0elH/vK7FcQvzW+xbUcrbXjwx348/ifKCkpkScEFY8rsG/0PlQWVsKcb47u87rLP4NdXumCUW+PwszPZuJuv7tamR51ypQpyMjIwA8//IDgYMWes8GDB+P69evo1q2bxuMihJCnAWMMxcXFKC8v13YoRA1MTEwULpo1RmcTgi1btuDjjz/GnDlz8M8//2Du3Lm4f/8+rly5gsWLF2s7PI2ZsHEChm8aDltmC44+RyNXXx/fegxje2OY2Ju06vHH847j9qXb2LNkD+zsWpdUKEtUIUJ5SnmrEgILXwuc/v003BLd1Npg5HA46Nq1K5wMnfBT6U+w726v9GP5Q/g4Pvc4qkuqYWBuoLYYZfp498EojMIA0wEAgLLsMvz1/F+QiCUoulcEv9f8FD6DhpaG6PRSJ9zcdRODNwxWe3x1FRYWShOt0lK4uLg0uE/d97axGcwIIaQ9kiUDFhYWMDAwoO/HZwRjDNXV1fJp662srJrcX2cTgm+//Rbbt2/Hq6++ip07d+LDDz+El5cXQkNDG1yf4FkVtTYKL7AXAA6AGmlBsbqSAolEgqioKHCucVo1XEhm/9X9yMjNwK1btzBo0CAVRljf41uPYWxnDBOHlicve6/uxbp763Bv/T3s/m23GqJTlHM1B3bd7aBnpPyfnb6dPm7a3sSi2Yvww74f1P5FPfObmfB29EZEaATOLTuH+//eh76pPgoSCxodquY32w//vPYPioKK4OjkiAEDBqg1xtqsra2RkZGB8+fPw9PTE4Diasq1VVRUYMbgGXAwd8C2M9s0FiMhhOgqiUQiTwZo4oVnj4GB9EKiUCiEhYVFk8OHdHYdgrS0NPn0osbGxigpKQEAzJo1C7///rs2Q9MYWQGx/xJ/6BnrIWh1UKPz1qvCgwcPEBwcjKHvD4W1r3WrjzPn1TkYpT8Kzs7OKoxO0alTpzB69Ghs3rQZdt3sWtVQ7h3cG2YcM/Cq1Dul5+rVq7Fv3z48jHoIpz4tq6vgcDj4Nf9X7DiwA6mpqeoJsI7AkEAErgpE7KZYFD8oRt71vCbrVtyGu+F4+XFMnDQRmzdv1kiMtVlaWmLChAny27KC/Lp/J1/O+RIHrhzAXzF/1RuCSAgh7ZGsZkDWcCTPHtl721x9iM4mBE5OTvKeADc3N0RFRQEAUlJSwBjTZmgaUXs2oeDPgvGo/BHE/cRNLmbVVrm5uejQoQNcjF3g0N2h1cdZ9dkqjBCNgJOJ+oqKr1y5guPHjyMuPq7VtQ4TJ07ED4N+wPLRy1Uc3RMZGRkICwvD1KlTkR2bDcfeytcPAICRkREmDZ6E0Y6j1b4Wwc2bNxEVFYXq6mq4DXMDADAJa3adAS6PiwmTJsDOxA7e3t5qjbG2xr7caq+mLPs7EYQLoL9XHyO6j8COX3dofF2HxkgkknbxfUYI0W00TOjZpex7q7NDhoYNG4Z///0X/v7+mDt3Lt5//338/fffuHr1qnzxsmeZRCyRX5Xdv38/NmADTrx3AvF34uX3q1pQUBAyMjLwtcvXrW5kA4CekR4sPSxRmFQI8w7mKozwiZdeegn29vZI25bW6lg5HA4ceql3xWKxWIw333wTRUVFKD5eDMcvW5YQAMBPu3/C9/zv4WjZ8se2xJYtW7B9+3Z88MEHCIgKAADwDHgQV4ubHao2+X+TUf5HORZ9sEitMdY2adIkcLlcfPrpp/D19VW4TxZrRGgEIsMiwSQMg9YMwkchH2ksvqYcO3YM06ZNg1AoxJ07d9ClSxcAQH5+Po4ePYrXXntNyxESQghpT3S2h2D79u34+GPpalyLFy/GTz/9BB8fH6xZswbfffedlqNTv+CwJ0M0unbtCgOuAfQk0vwtMCRQLYuSAUBlYSWqHlW1qYYAAEy9TXH1/FUVRVVf165dsWDBArg8cmnxlKO1OfirNyFwd3fHd999h+/WfoeasppWJS9mLmaw6miFjIsZaojwCRMTE9jZ2cE2wxYZlzLQeXJnvF/1vlK9UnY+dnDo5YCkvUlqjVEmOzsbR44cwT///KOwmrmMRCxBdYl0WBCTMHB4minIV9bzzz8vX8m7qqoKAFBeXo4RI0Zg9uzZ+Pbbb7UYHSGEPL2GDBmC9957T9thtEhqaio4HA7i4+O1FoPO9hBwuVyF4odp06Zh2rRpWoxIe3x8fHD4rcPQM1T/25V/Mx+mzqYwsjZq/THy8zHz9EzgNFC+shxGRq0/VlMqHleg7FFZm5KXM6ln8FXkV3i06RGWLl2qwugUZV/Nhn0P+1a/hx0Gd8Dl/Zfh9oIb9PX1VRyd1ObNm/GK9Su4vOoywAFGfDsCgOLV9tq36+o2pxtu7roJ69HW4PP5au2CdnJyQmJiIs6ePVtvmFJFQQUOTzuM3DhposfV50JSI8Hh6Yfx4p4XUVZWhj/++APl5eV4++231RZjU/T09LB161Zs3LgRNjY2AKS1UhMmTEB2djaGDh2qlbgIaY8kEglyc3Ph5KTetXOI6syZMwe7du2qt/3u3bvYv39/m38nORwODhw4IL9w0x7obA+Bl5cX5s6dK796JpOfnw8vLy8tRaUdHA4Htl1sUXS3SK3PM2bMGLy5/E3odWpb4mFrawszYzOY6JkgI0P1V7WLiopw/PhxxJ+JhznfHIaW9a8QK6tCvwKpklRcPntZhRFKicViZGdngzGG7KvZLS4oru2tw29hzs45iIuLU2GE9TEJQ5eXusCpj5PCtLOycflNDVXr9EonfBj1Idzd3XHr1i21xRgRJu2t8PHxqTcF8eklp/Gj948oSS9BRb50NeWl1UvRZUoX3Pn9Ds4tPYeLFy9i/vz5CA0NRUVFhdrirOvcuXNYv369vGbAzMwMDg4O8sXSOBwOVq9ejRs3bsDHx0djcRGiDk9LbUxSUhLMzMzg6+v71MSsS2Tfxw0RhAsQERahtud+4YUX8OjRI4V/np6esLGxgbl548OVtTmphDqfu63H1tmEIDU1FREREXjuueeQnZ0t3y4Wi/Hw4UMtRqYd1p2tUZhcqLbjC4VCHDt2DEeij8DZr22zA3E4HFzecxmb+JvQsWNHFUX4xJUrVzB69GhMf2d6m2odAGDSy5OwyGMR3hj5hoqieyIpKQnOzs7o2LEjsq+2vKC4tq5+XaEHPSTdUM+QHIlE2tAPDguGnpEePF7wqLdPc0PVTO1M4eDgAB6Hh+vXr6slTqDxWYT+nfov4rfGw9DaEAV3FKdJHffnODj1c0Ls5liYCkwxfPhwrFy5UmOrcj569AgTJkzAypUrsXPnzib3tbd/sk7FzZs3afgQeerExsbC0NAQjo6OuHfvnny7SCTS+rThP/30E06dOiW/7ebmhsrKSpSVlaGw8Mlv7LFjx5Cfn6+NEJ8qjX0fyyZG4fLU18w0NDSEk5OTwj8ej1dvyJCHhwfCw8Px2muvwcLCAgsXLkR1dTWWLFkCZ2dnGBkZwd3dHevXr5fvD0jr1Dgcjvx2Q27cuIFhw4bB2NgYtra2WLhwIUpLS+X3z5kzBxMnTsS6devg4uIirxeLiYmBv78/jIyM0KdPnwYv9iUmJmL06NEwMzODo6MjZs2apfCZHDJkCJYsWYL33nsPdnZ2GDVqVBvOpg4nBBwOB8ePH4erqyt69+6NK1euaDskrYpOj8bG5I1YFbpKLcfX19fHX3/9hVkdZ8G9t3ubj+fR2wMlD0sgqhKpIDpFNTU18PPzg7uZe5sTgi5dumDc0HEwyWndImxNuX//PrhcLhwdHZF7LbdFKxTXtXP3TmztshWBduoZBz9ixAj0798f0VHRSD2RCs8XPFt1nC/WfoGNzhsxbar6hvdtf7AdccFxOBp6FIJwASRiCX5/7nck701G1+ld4feaX4PTpE67MA2mzqZIO5mG06dP44MPPtDYvNvOzs4IDw/HsGHD8Oqrryr1mNzcXAwdOhSLFy/GL7/8ouYICWmb2o2ggIAA9OjRA7m5uQqLU3777bfwcvXC6ldWN3gMdV9R/uWXXzBv3jxMnz4dOTk5AKRD9e7fv4+ysjL58L2srCy8NOElePI9cffuXY3H+TRpbFY32SyJulK79cUXX6Bnz56Ii4tDSEgItmzZgn///Rd79+5FUlISfvvtN3nDX9be/Pnnn/Ho0aNG259lZWUYNWoUrK2tceXKFfz11184ffo0lixZorDfmTNnkJSUhFOnTuHw4cMoLS3Fiy++CF9fX8TGxiIsLAzLlyvOdlhUVIRhw4bB398fV69exfHjx5GTk4MpU6Yo7Ldr1y4YGBggIiIC27a1cX0dpqM4HA7LyclhjDH2v//9jxkbG7Nff/2VZWdnMy6Xq7E4iouLGQBWXFyssedsyE8//cQAsEGBg9T6PFsdtrJMQWabjyMRS9hmk80sLzFPBVE17Lfg31jirsQ2Hyd2Syz7e8zfKoiovrKyMnb93HW2yXATE1WJ2nSsk2+dZGfePaOiyJ6orKxkhoaGDAC7/PdltsVqCxPXiFt1LHGNmG113MpST6WqOEqptLQ0xuVyGQD2xzt/sI3YyDZyNrKN2MhOv3262ccX3itkWyy3sOT9yWqJrzki0ZPPwOVVl1nkmsgG94tcE8kur7rMPvnkExYYGMgePXqkqRCV8t1337EOHTqwd955p83HUuY8tGfJycksMDCQ9ezZk6Wnp8u3Hzt2jP3f//0fe/z4sRajY+zBgwdswoQJrFOnTqympkb+fubm5rK4uDgmkUgYY4xJJBLWw60HA8Bewkv13vPINZFsIzY2+llQhYqKCta7d2+2du1adjH0YqPP9eviX5mHmQdzhzuLWB2h8Tgboq62SHV1NcvMzGTV1dUK2yUSCassrlT638WPL7KN2Mi+NPiSbcRGdvHjiy16fGVxpfyzoozZs2czHo/HTE1N5f8mT57MGGNs8ODB7N1335Xv6+7uziZOnKjw+LfffpsNGzas0ecEwA4cONBkDNu3b2fW1tastLRUvu3IkSOMy+Wy7OxseZyOjo6sqqpKvs/333/PbG1tWUVFhXzbd999xwCwuLg4xhhj4eHhbOTIkQrPl56ezgCwpKQk+ev09/dvMkbGGn+P69LZouLaBYnr16+Hn58fFixYoPTVtWfN0KFDMdtpNsZPHq+25yjPK0d5bjlsfW3bfKwHKQ/wr/G/iF4ajd9PqH4hOcYYHt983KYZhmTK7MpwNPIoOt/ojO7du6sguidMTEyg/0gf9j3swTNo29z3bkPdELU2SkWRPWFgYICkpCQIBAJwbnLgPsIdXL3WdR5y9bjwnemLm7tuwn1E23ua6nJwcMC+ffsQHx+PqWFT8cU3XwASgGvAxfAtw5t9vJW3FUb+OBLHXz8Oux52SMxKxN27d/H666+rNE7Zasl6L+jB399fXifA4/HkvRqyrnZAsVC79tW1NavWICQkpNWLBjW2arPseSRiSbMzlgkEAoSEhOD333+XD2cSiUTIzMxEZmamfD+xWIzJkydj3LhxmDFjRoOzPzVEmfOgKidPnsSSJUtgbm6O2NhY+fZPP/1UOhnCzJkICAhQ2fOpgru7OzIzM5GWloYrm64g3TodgSGBSExMxAcffIDjx4/j6NGjSr+fqsbj8RAZGYn8/HxERkZCn6ff4PsZtTYK09OmY/yk8RjVc5R8H8cZjkj5KQVx6+LUckX5+vXr6NmzJwDpui4CgQD6+vryz1fdOAXhAmRvzcbusN0oKi9C5KpIcDjSWcp08cq3ulSXVONry69b/DhJtXT4afS6aESvi27RY98ufhuGFsrXBA4dOlRh1klTU9NG9+3Tp4/C7Tlz5uD5559Hly5d8MILL+DFF1/EyJEjWxTv7du30bNnT4XnDQ4OhkQiQVJSEhwdpaMCunfvrvAdfvv2bfTo0UNhwpXAQMXP0/Xr13Hu3LkGe7Hv37+Pzp07AwB69+7dopiborMJAatT3DNz5kx4e3tj0qRJWopIuzw8PDCx/0TwuXy1HD86Ohp58XkwcDVo0R9kY6qrq3Hu8TmYnDcBY0zlM86UZpWiWlgNm642bT7WT8d+ws6inXDY6YD1X65XQXSKsq9mt2m4kMyxlGP4LuE72O23w9iXxqogMikOhwN3d3e4u7tjT/AedH+9bUmR0E+IkM0hiHSNxNr1a1UUpZShoSEmTpyIiRMn4sTCE/JkQFItaXatBJkuk7vgyoYr+HTAp/gi/wuYmppi8uTJsLCwAKB8Q7kpXB4XB0MP4qs1X6F7z+44ceIEbG1tG2xQ1G6UNHR/7R+SyMhIdOvWTR6rMnG0pbHNGMOSJUtw7do1rF69Gt988w0AYPLkyQgMDISLi4t83+PHj+PgwYO4ePEipk+frnCMpv7+lT0PrZGVlQUulyufPcbJyQl3796Fv7+/wn4nTpzAxYsX0bdvX3lCkJmZiYMHD+Lll1+Gk5OTSpKr5ohEImzduhWXL1/G3r17weFwYGBggH379uHx48cwijSSn6eA4AD06tULs2fPlp8v50HOOBJ/BKv+XFUvIVNXwuDm5obDhw/D3NxcWgw/SLq99vsZERYBwWoB+r7bF74zfVFVXIXCqYW4FHoJ34R+g2pU4+t3v1Z5I3vbtm1YtGgRdu3ahVmzZgGAfPaZ5j53Az4egPL8chiWGiIiNAKfrf4MFeIKrF6z+plPBgDAwNwAbxcrPwtbzIYYRK+Lln8f9/+4P/p92K/Fz9kSpqamStcp1k0WAgICkJKSgmPHjuH06dOYMmUKRowYgb///rtFMbTmuZVRWlqKcePG4fPPP693n7PzkzrP1hy7MTqbEMiKHGsLDAzE9evXcefOHS1EpH3Wna1RkKyegqylS5ciMjISS3upZupNb29vzAyeCUeuI8RisfwKaVsVFRWhb9++8LDzwCver0DfuO1TcAYODMSlvZdgWqO6P6yioiIsXLgQPXv2hOcVT3Sf0/aeh+u3ryMZyTjy+xGVJgQylYWVeBT9COP+HNfqY0SEReDG7RtIkCSg7JcyhYRAlQ2SyDWRuPHDDbgOdsW089MavdrXGM/Rnni05hE8TT0x/NXhKC8vh4WFhcquSgeGBEKQLABvNw/cQi5sbGwUjt33w77IS8yDdWdr8IfwpQuorYkEE7FGG8G//fYb5syZg5EjR+Lff/9VarXl5ho9EnH9RKqmpgZ6enqIWhsFiViCLVu2YMeOHQgJCZHvIyvgq61v37747LPPwOVyFa58jR49Go6OjggLC4OnZ8O1KbXjFKwRQCKStDkZ2LlzJxYtWoR3331XXizYvXt3/PPPP+jWrZvCvm+//Ta6deuG4OAn7/uFCxewZMkSfPvtt7h586ZGejISExOxfPlyiEQiXLx4EYMHDwZQ6+rmKMBAz0D+fHFxcYhcE4mIVdLbh2IPYf0/67Hfcz9uZ96WJ2KqjLGqqgrvvfce5s2bJ4+rXz/Fhl9gSCBElSJEhEbIzxkAxH8bjzu/34GhpSEMrQwhhBBFKIIIInScqPoJKFJTU8EYQ2xsrDwhqBunuEqssIChWQczJGxPkH8ODa0MkYY0/Cv+FwDw8aCPVR6nLuJwOEpfHBSECxC9Llr+Nyv7vOkZ6ul08mRhYYGpU6di6tSpmDx5Ml544QUUFBTAxsYG+vr6zU464ePjg507d6KsrEzeMI+IiACXy5UXDzf2uF9//RWVlZXy78qoKMXe/4CAAOzbtw8eHh4qaz81R2cTgsY4OjrKu2Hamyq7Kpw/dR4edz3QqVMnlR7b3t4e1sbW6NK98Q9xSxgYGGDFWysQvzVepR/m27dv4969exDmCbFk+JLmH6CEhQsXwvGkI5w6qG4O6oSEBPz111+Ijo7G0oKlcPy67Z/Z1157DeYp5ggwVN2QBolEgg8++AB9+vRBN3SDrY8tzF1bv7o0l8eFeK8YUzpNQTfTJ40uVTRIfv31V1RUVMA9xR03PrsBPWM9TPpH2mOo7FoJMsGrg1EtrMabX70JnxIfODk5qXw4wNJfl6KTcydEb4zGZoPNkIgksPGxwe09txG5OhJ6Rnqw9bWFra8tODwOmEjaK2pkYwRRpQjRn0UrXJHu0qUL9PT0YGFhgUurL0Gfq69UchUYEoiSrBKFRk/vpb0x4JMBiFobpXDOLl26hEWLFmFip4mwPGApPRfBgQoN5cY4ODjgo48UV4J++PAhTpw4AS6Xq3Cl67PPPsMPP/yAV199FWvXroUwXYjc69J1IySi/y4GcYDy/HLEfRPXqivzpqamqKioQHJysnwbh8PB+PH1h106JzpjptNMuLm5ybfZ2dmhf//+8DP2Q0RYhPw5wkLDMDd/Lqb93zSVf2Z69eqFrVu3QiKR1BtCIKOQPIULIKmRIDA0EIEhgXj4x0PYn7NHp0edELU2St44uxR6Cc+teU4lMYaFhWHbtm04duwYkpKSGhwalnoyFTd33QQ4AJi0F+/torehZ6SnkKRkX8nGMv1lyK3JxfkXzsNwhyF8Z/jWO15rrV+/Hv379290Lvl7/96TxylbwHDoV0Nh5mwGU2dTmDqb4uoXV1EVWoXR3NEQS8RInp8M/zP+sHBTrpfuWdfQ30BLv4+1YdOmTXB2doa/vz+4XC7++usvODk5wcrKCoB0VMaZM2cQHBwMQ0NDWFtb1zvGjBkzsGrVKsyePRthYWHIy8vD22+/jVmzZjXZTp0+fTo+/vhjLFiwACtWrEBqaiq++OILhX0WL14s/4788MMPYWNjg3v37uGPP/7Ajz/+qNQFoZbSqYQgICAAZ86cgbW1Nfz9/ZvsZr527ZoGI9MN289ux774fTD7ywwrV65U6bEPHjyIPwb9gW7DuzW/s5JsutigIEm1PRrdunXDmTNncG7tuTbPMFSbo78j8uLzVHY8d3d3bNiwAZWPK8H+j6mkLmPo0KHoUNABkWGRKohQKikpCZs2bYKxsTH2Tt3b4HSjLSH74jcJNQGHy0HRgyLc/u12mxtNjDGsXbsWycnJCJ0UCidnJ/RZ1kdhDQrZsZtaK6G2oZuHovRRKZL+TMLd/XchqWn7Vem6/Ib6IemLJEhEEnC4HHSb2w12fnaw9bWFhZsFOFwOBOECMDEDz4AHcbUYgjUCRK2LgkMvB6QcS5G/tj59+uDKlSsQ7hciclWkUslVeV45Ln98Gbd235ImHWIGcIBr/3cNd36/A5cgF3iM8kBEaAQkIgkEpgIkJiYiNzEX+8P2N9iDICMIF+DhmYdwH+7e6P0ikQhb525FcnayQo/CvXv38ODBAzyOeoy9z+/Fo6hHMPMywz7sQze9bugk6oTEnxMR/Wk07PzskH01W34eah+/bpJZUlIin3/8lVdewbFjxzBy5Mhmh/tkXMhA+vl0hecYOXIkzKPNcSn0ErjDpDU1xX2LcRIncX7LeTz47gEMagzkn5nWDClijGH79u0YN26cfPjVwoULG3or5fIS85ATK50hR1Ij/awL1ghwZcMVGNkYYW2HtaixqpEmgKsjkSJOwb+2/8LZwxmSMEmbhz0NYUNwhH8EX2z/ol4ycDnkMlKOp6AwqRD8oXyUZpbKP9dXv7gqf966jUjZ7ZMLT+LcnnPYe28vlo1fhvEb6ydvTcVZVVWFn376Cd2yu0FPT3p1uu4wY0G4AJWFlRA+FCL9fDpcB7miJKNEHmfB7QJ0mdylXpzLQ5bj4sqLiFkfgx2ddsB1mOv/s3fe4VFU3x9+d9N7ryQECAkJPUCAUKUXaQqKIEVRlCIoKCp8IUBAqqAgiIIFUJogVRSQJpAESELvIYSShPSekLrz+2N/u2RJD2nofZ+Hh+zszJ0zd2Z377n3nM+hjk8dOvh2qHBf/htQ5Bf9vVne7+PqxsTEhGXLlhEaGoqWlhbe3t78+eef6oK4K1asYPr06WzYsIE6depw//79Qm0YGhpy+PBhPvzwQ7y9vTE0NGTo0KGsXLmyxHMbGxtz4MABJkyYgJeXF40bN2bp0qUMHTpUvY+joyP+/v589tln9O7dm+zsbFxcXOjbt69G0d7KpFY5BIMHD1Z/wQwePLhKK52+iLRq1wr/w/4Y6le+RKYkScRfj3+uqr/PYlzfmAeJDzj3zznadW1XKW2amJjQvXt3Ij+LrFSHwKalDTd+uYFCoaiUD5uLiwszZszgxq83uNjyIlo6lePNO3V1IuFGAplxmRqFwyqKnp4eH330EVlZWUQciKDfpn7P3WbB2aEf3X9Eyi8+DKas5OXlMW7cOPbs2cOgwYMIOh9Ey0ktiz13WRm4fSB3dt0hKTeJQHkgUz4tW8xscYM/SZIY0XEEL9V9CZs0Gx4efwgS6sFGflY+Dfo/LaxY3MDIY4QHSbeT0DFSJmjmZ+fTaWEn0vakqZ2B/Lx8+rbsy/g54zV+SAAC5gcQdTaKx2cf49TFiRbvtyDk6xC1He1mtsO5uzNHdx4lJjoGQ0NDZYgECnrSk4nvTKSDb4dCKwjP2l23e91Sw2i86nuR+XOmhmOxcOFCGkU1Iu2vNOJt42k0vBH7ftzHWc5yw/AGOyfv5MriK7Sc1JKc9BxiLsbg7+tPcngyfX/sq7ZL1W/JyclMnz6ds2fPEhwcjKGh8rPRt29foGy5FM9eS4BfAAFzA2jyZhPk2nL+GPkHV4Ku0FjWGGvJGt1cXWRyGcZ1jEl5mFKhkKK5c+eyYMECfvnlF77o9gW6urrFDtYz4zPJTsrmzs472LRUJner7mfbz9rSdFxTshKzlP+Ssvhr7F9I+RL++PMo4RG71u5iepfpBC0PKtHGZ5/ty5cvc/DgQWbNmkXggkCSzyUz+tFoTM6ZQIEczEPvHuLaj9cwdTGl2bvNCPkqpNBzraK4GeXTvqdZcXQFETkR5H6Zi42pTbnCs4YOHcrBgwcZ2XEkXv5eha4zYH4AAfMC0NLVotHrjWg+vjnnl54vs51dFnVBx0CH076nWX5kOfUO1eNJ3BN6fPNU0KAqkuFrMyU5PVW5MlBSPZeTJ09qvC5qMD9+/HjGjx9fbBsDBw5k4MDSw2ebNWvG8ePHi32/ODvbt2/PpUuXNLY9mzvr5ubG7t27i2372et8XmqVQzB37lON/Xnz5tWcIbWUmfNmYrTSiJG9Rpa+cxko+MWfEZ1BVlIWlp7KJN3KmOHYuX8nX/IlZz85y+mg05ViMyhnHBKuJ1SqQ7Bizwo2396M1kYtxo4bW2ntxoTEPFdBsoL4z/MnMzeTyLqR7F+/nzf+91Trv6L3q0GDBnz11VfEXYtjy+Yt1OlUp1Jsbfe/dmyfv507+XfortP9uX8YdHR0+Oyzz/hk+idsbLKRDvM6VEr+SOCCQPLz81nHOhIUCXza91NWnVhV6nHFDf7mvjKXHYE72Bu4l1WtVpGflV/kYKO4xNmCzlSH+R3o2KYjR94/wtkvznJu8TlluM9HynCfhcMXcvjyYU68cYLwB+HqGea/xv3F9Z+vo2+lz4BtA4gOisbf1x+feT60ndWW4CXB+Pv6s//yfpYfWE7Xrl05kX6Cr/S+QjtXmz7yPjzc+pANxzbQoH8DPEd5lmh3Wa5LdU0Azd5txqE+h5BdldG8b3Mc2jkQOD+QrlO7oosujo6O9P6sNyYGJvj7+mM23ozx98fz55t/cv3n61zfeB0k6DC/g7p9AwMDjhw5QlRUFEeOHCkUIlJSLkWH+R1o+nZTEm4kUL9ffWXc+1x/kAAZxFyIQZGnwKaZDa+/8To+J30I+ioIuY4cRa6CP2b/wcp3VtLPrh+92/bWcOBKCykaPXo03377LUOHDkUnrWh1nn8+/Yeg5UHIteV4jvKkxaQWhKwsPNjWMdLRmIFXrToNyxlGiyYtaElLQr4KwayBGYd8D7Fi/wre++I9TM6ZFHs/Xd5xoW3btuTk5GB8x5icTTmFnCfvGd7s7LmTSP9I6vWth6OPo9ppLeq5dn7JucQZZbtIO747+R19wpRKRJJCos3MNgQvCS7U7rMMGzYMf39/3pr7FsZnjTX68+jko1z69hL6FvoM2DGAx2cfl/j5K8nOw5cPE/R7EBdlF3Fb40b89XiGHRrG+aXn/zMqRIJ/H7XKIShIgwYNCAoKwspKM9QiOTmZVq1ace/evRqyrOaQyWRYuluSdCcJm2Y2pR9QCqpBzY7AHZx5cIYmVk3QNdKttBkOT09P9LX0kedW3vLWpk2bMJOZkZOXg4Vb4Zi+iiLpSGSQQfDJ4Od2CBQKBYGBgTRr1ozo4GiavVM5UqZyLTlfzv+SIxzhpY0vqR2Cyrhf9w/dp263umjrVc5Xgr+fPxvyN/CEJ7jmupZZAag0rm9Uxvs2fev5Q9tU/dbZrzMG5gasnb2WvJN5HP/wON1XdS/x2GcHmO1mtWPf0H1o79OmhWEL2rRoQ1pgWolxtWVZam/QvwHvP3yfr/S+UoaHyODi2ovc+PUGbm3ceLXeq+TczyFsTRjGE43Z3HszS28txcrKiqCIIIKXKwf/J71O8r9F/2Od8zrGzVFKrB7wPYCRnhGOjo4E+AWgyFWoZ5zbfNIGRx9Hwv8MJ8o/Crm2XB2CIuVLuA5yxdzVnNC9oTi0c6DZu800YtqbvtMUe2977uy+Q25GLgY2BurQJNX1t/mkDS8tf0kZn////fAGb2j0Q3hsOKPWjGJd8DouXLjASr2VKHIUhBNOyPch2La0xXWgK8GLg5nadSodJ3UslO9Q0FmWFJLGdRjXMSb4y2AC5wdi7mqOpaelOrRKriNnaupUtPW1NdoK+SpEHY8fuCCQGb4ziCeeUNtQxrQZQ/LdZA0HTuW4+M/z58qjK+j46PDuu+8CyhnAe/fucX3VdRQKhbrAE4DXB17sHbyXiNMRWHpaMmjXIEJ/Dy01Xlv1d8EBvp6vHu382tH096bc3nGbnb47+Tv4b0L7hDKa0Xi84YFJdxNeeeUVkpKSWOy3WN3ee++9x40TN4jfFE8/v374zPFBkiRy0nI0nCevKV70WN1D434W91wX913gM8cHH3wYy1jirsTxW8/fCJgXwIz5M4iQIvjywy/VfRmRFMG+uH2MHz+ebt26AUoHy/62PYb+hvjMe9ovqvvt1NmJoYeHomOgQ6R/ZIXtnLtzLinTU+jcuTPGR4y58v0Vvjb4Gknx/KuhAkFNUWsdgvv37xeZ4Z2dnU1EREQNWFQ7sHC3IOlOUuk7lgHVl9YU3ymEEEIjj0aVmiTXtm1b9o7bi4GlQWWYS1ZWFuPGjUOhUPB1468rrJVfFB9++CEuF1zo2qrrc7cVHh5Op06d0NfX5wvZF/Rc17MSLFTer8Hhg7nw8wW0I5Uf3ee5XykpKURFReHh4UH4ofBKU/kIXBDIufnn6NW6F3lGeegG6j5XclloaChRUVG0a92OgHkBdPu623Pf+2f7rW1+WyZPnsyOrju4sPoCyKD716U7BZIkaQ6K3vBi9pbZ+M/3R7tfYYWNgoONsi61n114VmOw3m5mO6VK0rnHvG3xNuEp4ZxbfI5zi88RSywRRJCWl4aOvo7a6QiNCCXnYo566VzVfp+cPsoql0XMEHf060iPb3rQfXV3Em8nsrHpRqR8CZlcRn52PpfWXSIvM4/cjFxyM3OV1/X/Me0P/n5AVEAUOkY66BjqoGOkg66JMsRGUihnrl9a/hJQcsiBfjd9TH8xxdzcXDmwz1H2w4GcAzyKeoTdW3a0btAaSw9L5FvlyD3kUKA51bU0HtOYI+8dIXSvsuqslK9MIH1pxUtYNbbCws0CbX1tAhcEErY/TN3XQcuDio17V/XjwtyFfL3ga15u/zI91/ak59qeLNVZyp68Pdhjj9UOKwysDbj24BqTNk5Cd7MuPXv2VFdFvb7q+tPwqilexF+L13Ccmr/XnN7fK2Nzbv92u8RB7MPjD3l08lGpCZ4fNvqQjEEZ1FfURyaXkXAjgUtdL7E3fy8ACU0ScHvVTRkWplUXl3wXHNo7EB0Uzc9NfiYlPIW8J/9fhf7/Q+JUdUAqK4TEprkN7z14j8XGiwlSBJFLLpGXI7m28Rr52fnsXr2b3/iN0NBQzp8/j0wm4/yi81xbco2m45pyauYp7h+6r77fch05b5x66nA+j50ymYyvvvpK+eJVuP7zdXJzctHR1RHOgOCFpdY5BPv371f/ffjwYczMzNSv8/PzOXbsWLHSdf8F1t1ax+U/L7O3195ChTYqgs8cHz6O+5iD3xzE4Y5DpS53yuVyrDysiDwTWfrOZSA1NZUBAwZwJ/gOri1dK6VNFR4eHvi85EPazbTnbismJgZnZ2csTCyQhyv7oLKY+ONEmto35fzi8+rZ0orerz/++INRo0bRp3cf+pzuQ6/vej23fc8m4QH81vM3FLmKCjsFa9asYfXq1Qz1Gcpgh8G4D3V/bjufnZ1XKTa8ceoNtnXaxqV1l5DJZHT7qluhYwMXKOUInbs68/DoQyQkoqQo6urWZeA2Zcxp5/mdiz13ea6/uPAcubZm/oLqWbDQseCPPX/w5MkT4Omgx+mRE7NmzaJOnachYWUJW1K9vrPzjkbic52OdYqM7Va93/zd5oWuM3BBIHd23XmaPF2GVaNXX32VPn36cHjOYQ07tzTYglG4Ec2GNsPDw4OgZUEYORopQ0wkibafteXwO4e5ueUm2vraPDz6ELehbrgOdOXaT9fUNiTdScJjuEeJfa3qg+JWdF7yewk9HT118mTggkAC8wI5xzk88MDSw5JrP18j61YWTU2bYpxqzK3vb1FvcT11noJLLxceHHtAoF8gFo0s1KsUWrpaameg4P0sCpWNdbvXLTXB0/KCJa8oXlH3g/swd9489yZ6C/SwyLZAniEnNToVAFm+DOTg2N4RswZmtJjQArMGZtzadotAv8By3c/yEvxlMIYKQz7V+ZRrudcwVZhy6dtLxFyIwdbWllaxrRjXcBypD1I5NvUY9w7cQ64r597Be9TvWx9zN3NiL8VWqY2BCwLJyMkgSTsJhxyHKjmHQFAd1DqHQBX7KZPJGDtWM3RDR0eHevXqsWLFihqwrHYQlx1HZGokt27dqhSHAGDE6hFErokEhXKmpzK/zCzcLbj649VKacvW1pZ9+/Zx4I0DlRIyVaj9lraEfBVS+o6l0KFDBx4+fMiFHy5w6+dblbqSIZPJ6LKoC+eXnFfPllb0fkVGRqKnp4eLiQsmziZYNHz+EKyiBk2dFnZiZ6+deH/mXSHFCQMDA8xMzbC5akPn3Z2RyZ9fbKC4gVVubi5pY9IIjQlF8bUyRKfbyqdOgWqQaOpiyoXVF7BrZUcAAexjH71yetF+QftK+/yUdbBecOacHOVg71kbnJ2LLmhYlrCl8uYMFFUToiz7FMeVlVe499U9DTuD7wWr28jzy+Pde+9yed1l/Of6EzBXOcgGcOzgSNflXXFs78jZL87i/03RNqj6tKS+LsuMsqpN79e98W7ujeKygtCdoXT060i9tfVosLoBd7bf4dqSa1xfdh1JISHXlqOlp4XbK27029SPG5tvaDhX5RlglsfGovphxhcz1PsHLggkKiBKbYe+pT6tprRSvxfoF1ih+1lWirOzo19HBu8ZTNj+MFqsaEHy9mQ2bN8AgEtPF7ou74pNcxvl/a7gM1deG5t93IzBXw6uknMIBNVFrXMIVAXJ6tevT1BQENbWlZc4+m9g5oczOfHZCfr3719pbQb4BSi1onXklT6Lcjr8NEtuLiF6UTQzZ82slDbjr8XTeFTlaVWruJZ+ja0Xt+J905tGns9fjyHpSlKlJRQXJHBBIEiQTTZ6OXoVvl+ffvopU6ZM4dDUQ5j0rXjtgYIUNSAx9DDEsJ2hcjVjSfnzHJYsWUJvehN9NhqXni6VYWaxbN26lQkTJmBvb88Xbb4g5KsQZDJlaMmhdw4pZ5f1tGg6rin52fmcW3QO3fa6SGclPPp6VOpgoDIG66VR2gCyNKfk0clHPDz+sFwx7UXtU5KtZekHXSNdvD/xpsWEFnxj8Q1SnnJ2faS/UoChtOsoLdG1LI5sceF7Be/JwF8HkrEyg+8cv1OGsWjLmZI6RZ0g/7z3syI2FudkFmeHat+q1J0vq50tJ7ZUr45p6Wrx2t+vlev46rBRIHhRqHUOgYrw8HD13wWruVWEtWvXsnz5cqKjo2nRogXffPNNocqKLwr9hvcjbEIYhrLKkR7dP2M/O7/ciZ3MjqUZSzm/5HylfpllkMEd6Q6njp16bodAoVAg5Ukk3U6qVIUhldrS9ye/51jeMfru7kuj/z3Voa6o2lJMSAwt3m9RaXaq7Pnd93d2WOzgSdITdn6087nul4GBAQknE2j+VfNKtVPFqlWr+Pjjjxk+cDgZ32XQ5uM2mNQp2fl4VvYwIzqDq2uu8vqx19XVc6tK33vkyJF8//33jBgxgpHvjWRXl10Erwwm+KtgkMD5JWcG7xnMxW8ucm7ROXVo1MSTE+natWuxMp0V4XkH65VhQ2mD8QfHHpRpIP08g+3yxHqHfBWidgYKTm6Uxakorq/K2odl1WO/8v0VjfArlT5/bbifRTmZz9pRGc5TZdgJaKyOlfd+V5eNAsELg1RLyc/Pl/z8/CRHR0dJS0tLCgsLkyRJkmbPni398MMPZW5n+/btkq6urvTTTz9J169fl8aPHy+Zm5tLMTExZTo+JSVFAqSUlJQKXUdVsMZmjRR1Luq52wnwC5De5E0JkNwN3TW2L2e5FOAX8NznuHPnjvSW/VvS/m/2P3dbLVu2lDxcPaRPDD6RFArFc7enQnW9U/pMkTpZd5J+mvWTxvby9ENaWprUunVraeyYsdJy/eVS3PW4Srfz71l/S3K5XJIhkw58cuC57ldiaKK0UnellJ2WXWl2FuTQoUMSIA0bNkza99o+6ciEI6Ueo7qeU3NPSREREdLfk/+W9gzZU6nPZUkUfLYU+QppoXyhtJzl0grdFZIkSdKTJ0+kyb0mS/tnFP1MB/gFSGfmnqlSGyVJks7MPVNsX1SXDbWJZ5+P6npeykNJNtaW+1lb7CiNF+F+VyZVNRbJycmRIiMjpZycnEptV1B7KOs9rrUOwfz586UGDRpIv/76q2RgYKB2CLZv3y61b9++zO20bdtWmjx5svp1fn6+5OjoKC1evLhMx9c2hyAnJ0ea2WSm5PuW73MPis/MPSMtGbFEaurcVBriMUTjvcr84t89aLcU/FXwc7WRnZ0taWtrS4C0ymtVpdhVENWPyS/ev0gnPjlR4R+Xs2fPSoBka20rfW30tZSfl19pNhb8of7nn3+koE1B0voG6yWFQlHu+zVmzBipX79+0saPN0o7euyoNBufJS8vTzp//rwkSZIUfyNeWqm3UkoKSyr1uAC/AGk0oyUZMqmlvKV09IOjNfJj/9fnf0mmmEpd5F2kRSySAvwCpNdee00CpPHjx1erLYLiKe7zWpsGiS+CjS8K/8W+FA6BoKKU9R7X2pChzZs3s379enr06MGECRPU21u0aMGtW7fK1EZOTg4hISHMnPk0VEUul9OzZ08CAwOLPCY7O5vs7Gz169TU1ApeQdUgSRJLbyxFcV3BhEUTcHBwqHBbHed1pCMd8RjmgUNbzXYqM/bRspElibcTK3SsKnyk/ez23Lt3j+0ztuNurFSZqczy8AWXxKODo0EqOsyhNNzd3dm9ezc3/7yJ7S1b5FqVl1Bc8Dq7dOlCXrs8Aj9UJv6Vx878/HwOHDhAUlISXVK70H1wyfKaz4OqJDyAlacVjYY3ItAvkH4b+5V4nM8cH9YfXQ+nwFphzcU1F6td3ztwQSA/LfmJVFKJaxSHzzAf/H396fluTwLqBBTSuxfUHC9C+MaLYOOLguhLgaDyqbUOQWRkJA0bFtZFVygU5ObmlqmN+Ph48vPzsbPTTOy0s7Mr1qlYvHgx8+fPL7/B1YSuri7eDb0hU5lbURnEX42n+btVE0MOkGOTw9+H/sb5ljMeHh7lOvbZirANnzTExsemSsrDq+J4M3Mz0dPRq9Dg08LCgldeeQWTYyZotdGqNNuKQltPG483PLi++Tp1Opa9wrBcLufEiRP8feRvZHNl1F9XPTK+WVlZ2I+159TLp2j7WVusPIuXY019mEpvRW8sscQc80pXvyoN1fM1zW8a47zHYW1tTZs2bdDT0cPf15+tvlvpMrZLtdkjKJnK0r6vSl4EG18URF8KAN566y02bdpUaHufPn04dOhQlZ9/3rx57N27l0uXLlX5uaqDypu+rGQaN27M6dOnC23ftWsXXl5eVXbemTNnkpKSov736NGjKjtXRdm8ZDOT7SZXSj2G3MxckkKTsG5WdWpOP/7zI8uvLmf79u3lPtZnjo+6emfggkDir8UTeym2SsrDBy4IZHXuauYwh/u595VqPhUkJiSmShSGVEiSxLp161h7dy0h20LIy8or9Rj/eco+lMlktGjRgtdavYaRhRHWTa2VA+B5/qW2UVECAwOpX78+b097m8ZjGysLeRVD6N5QNrfcTN6TPBxwwFjXWJ0wWF0UnIHs27evWuJX9TxqyarW2RMIBAJB6fTt25fHjx9r/Nu2bVtNm/VCUmsdAl9fXz744AOWLl2KQqFg9+7djB8/ni+++AJfX98ytWFtbY2WlhYxMTEa22NiYrC3ty/yGD09PUxNTTX+1TYs3C1IvJOIJEnP1U5ycjJOdZ34Xut79Gz0Ksm6wrTp0AYHHDAxrJi0pc8cH2IGxLDCdwWP7j3i+sbrVeIM+Pv6U9ejLgDZ9bPVTkhZ8J/nT4BfAL/88gtB54OIuRiDXRu7p21X8mBbJpOxZs0a9h3dR4RRBGEHwko9RrXaorqm+4fvU69vPbUyTmWGNz2Lh4cH6enpRN+PJkmRxL0/7hF7KVZjH/+5/vza9lfWvLkGiy4WxITE0NGvI9Oyp2k4hdVBx3nFP18+c3yqTOVIIBAIBGVHT08Pe3t7jX8WFhacPHkSXV1djYnlZcuWYWtrqx4THjp0iE6dOmFubo6VlRUDBgwgLEzztzQiIoIRI0ZgaWmJkZERbdq04dy5c2zcuJH58+dz+fJlZDIZMpmMjRs3VuelVzq1NmRo8ODBHDhwAD8/P4yMjPD19aVVq1YcOHCAXr3KVlFVV1eX1q1bc+zYMXXBM4VCwbFjx/jggw+q0PqqxdzVnNz0XNIfp2PiWHH9+NDQUGITYsnRzUFXV7cSLdTk45kfo7dcj9d7vl7hNrZf2k4EEdhhh4WuRZU4Ax39OjJ01FCSgpII/jSYpvObllnuT64l56DvQb7gC7S1tVmitwRLd8sqCW1SMWHCBJKTk3GPd+f65us0eq3k2gk+c3zIzs1mtu9sBocNxjjEGJvGNlWy2vIsFhYWnDhxgswDmZz3O4+jjyNn5pzh1QOvAnD8w+NcWH0BbQdtNkmbWL9vPd9N/E7oewsEAkENkZGRAYChoSEymbIgZE5ODrm5uWhra6Onp1doXwMDA+Ry5eRSbm4uOTk5aGlpaUjHF7VvZfPSSy/x0UcfMXr0aC5fvsy9e/eYM2cOO3fuVIeRZ2RkMH36dJo3b056ejq+vr688sorXLp0CblcTnp6Ol27dqVOnTrs378fe3t7Lly4gEKhYPjw4Vy7do1Dhw5x9OhRAMzMzKrkWqqN6shwrkm2b98u6enpSRs3bpRu3Lghvffee5K5ubkUHR1dpuNrm8qQJEnSxYsXJXtte6mpW9PnaiczM1P69o1vpaWDl1aSZcXza7tfpRtbb1To2Pz8fOnNjm9K7rhLC2QLKl1F4lmZvZzMHOkrg6+kuGtx5VLv2fLBFskVV6mxVWNpW5dt1aZ4kXQvSVqhs0JKj0kvdd/jx49LgGSCibSMZTWiyKHqlxU6K6TIwEhpzyt7pOUsl7Z23Cpdu3xNcrV1lZytnItURKhNsocCgUBQXdSEyhAgAVJsbKx628KFCyVAevfddzX2NTQ0lAApPDxcve2rr76SAGnkyJEa+1pbW0uAdO3ateeyfezYsZKWlpZkZGSk8e+LL76QJEmpTtiyZUvp9ddflxo3blyqMlxcXJwESFevXpUkSZK+//57ycTEREpISChy/7lz50otWrR4rmuoDl54lSEVOTk5xMbGqisYq6hbt26Zjh8+fDhxcXH4+voSHR1Ny5YtOXToUKFE4xcJc3NzovOiSQhPID8/Hy2tisUzGxgYYBVrRccRVR/+YNHIgqQ7SRU69twX52jp35KX3F7Ca7IXOak5lTpT/Gz4h46BDnW71+Xen/fK1f7Ib0ZS37Y+/r7+RPpHEnEqolqUcczrm+Po48jt7bdpNbVVyfuamzNmzBjub76PDFm1J+uC8p7dj7tP5DeRbPXZCkDj0Y3pv1lZffvO4ztERESgo6NT5LECgUAgEAB069aNdevWaWyztLQElFEiW7ZsoXnz5ri4uPDVV19p7BcaGoqvry/nzp0jPj5ePc58+PAhTZs25dKlS3h5eanb+7dTax2C0NBQxo0bR0BAgMZ2SZKQyWTk5+eXua0PPvjghQ4RehZnZ2cWDVhEfcf6z7XcJkkScVfi6LyocyVaVzSbQjfxz+//8EPrHxgwYECZj1OF3HSY14HglcE4dXHCzkvpzFVV+Mj+/fv5IfYH3De603ZG+Spat5/dHv+5/upKpFU9gM3NzSUkJATTvqZc33y9VIfAy8uLYdnDuM1t5Lpyjeqe1UF2djY9e/bE39+fT3U+xTrXGrmuXO0MgFIFqawOv0AgEAiqhvT0dEAZMqRixowZfPTRR2hraw4fY2OVOWEGBgbqbZMnT2b8+PGFJi3v379faN+KYmRkVKQipQrVGDIxMZHExESMjIzU7w0cOBAXFxc2bNiAo6MjCoWCpk2bkpOTU2n2vUjU2qTit956C7lczh9//EFISAgXLlzgwoULXLx4kQsXLtS0eTWKlpYWvXv2Rj9GXx3XVxF++OYHzsWfQ6tO1SmmqJRtMuQZxGTEcOPGDfV7ZUm2VeQraPJZE+q9XA8Am+Y2wFO1l6rQmz537hx/Bf1FwM0AspLLLu2alZXFkfeOgARaulrVoowzceJEfHx8+CfhHxKuJxB/Pb7E/U9+cpLbO27TaHgjpmdPr/ZkXT09PSwtLdGWa/Mg9wFauloochTYmdkxZ86cQiuBAoFAIKgZjIyMMDIy0hhn6OrqYmRkpJE/UHDfgpOUOjo6GBkZaeQPFLdvVRAWFsa0adPYsGED7dq1Y+zYserfmISEBG7fvs3s2bPp0aMHnp6eJCVpRjE0b96cS5cukZhYdB0lXV3dck1O13Zq7QrBpUuXCAkJKbdu/X8FC3cLLn9/+bna+GzOZySRxMcJH2PrZFtJlmmiUrbp/1p/6hvU55133gEoc7Jtx3kd6dixIyErQ/ik5ScaSjhVNas9ePBgdHV1yd2cy/0j9/F4vfRnMCoqivou9amfV5+ZbWYyNmis+hqr0tYOHTqwd+9edPR1aDikITd+uUGXJUXr4+/7eB8XVl7AtbUrA7cP1LCrOpN1RzUYRYv8FvTz66eu/TDDdwYLFy4kJSWF1atXV7kNAoFAIHjxyc7OJjo6WmObtrY2FhYWjBo1ij59+vD222/Tt29fmjVrxooVK5gxYwYWFhZYWVmxfv16HBwcePjwIZ9//rlGOyNGjGDRokUMGTKExYsX4+DgwMWLF3F0dMTHx4d69eoRHh7OpUuXcHJywsTEpJCj9EJRLRkNFaBNmzbS6dOna9qMWplULEmSFHI0RBomHybt2rWrQsfn5ORIfVv1ldws3KS0tLRKtk4TVRLpcpZLaZFp5Uq2VSgUkr29vQRIWz7aUqV2Pss/n/0jHRxzsEz7zhs2TwKkurK6UtT5KPX2qk4szsnJkfLz8yVJkqSwP8OkdXXWSfl5+UXu27dOXwmQfP/nW+i96krWLa4/NozfIE1hinRizokqt0EgEAheNGoiqbi2M3bsWHXic8F/jRo1kubPny85ODhI8fHx6v1///13SVdXV7p06ZIkSZL0999/S56enpKenp7UvHlz6eTJkxIg7dmzR33M/fv3paFDh0qmpqaSoaGh1KZNG+ncuXOSJElSVlaWNHToUMnc3FwCpJ9//rk6L7/MvPBJxUuXLuXTTz9l0aJFNGvWrFCCYW2sD1CdhISFsEuxi6RVSQwdOrTcx+vo6DCl6RTMBphhbGxcBRY+peAs9Pp661HkFl12vihkMhmPHj3Cz9aPjq9Wr/Z7g5cbsG/oPiSFhExecmhWj8Y9sOplxePQx9i3eVrjQnWNVRHaBGh8Lur1qociT8GjE49w6emisd/jc495HP0YgOZehatSV1cOQcGCXwV5d/27BDoHVlk/CQQCgeDfxcaNG0vU/n+2ZtWrr75Kdna2+nXPnj01wpiBQvWdXFxc2LVrV5Ht6+npFfvei0itdQh69uwJQI8ePTS2SxVIKv434tXKi+ZGzfFyrXjV5vir8TQcVHwyTmXiM8eHn+f+TExuDG102pRrAJoSmoJlliVO7Zyq0EJNcnNzidSO5HbmbaKDo3Fo61Di/p3mdyKqRxTtJrcrlNdRXYPt88Hn0eutx/XN1zUcguzUbP4Y+Qcblmyg3th6GklV1U1JBb2EgpBAIBAIBDVDrXUITpw4UdMm1GratGnDvO7zcPFyKXXfoshIyyDhRgLWzawr17BiCFwQyF5pL3HEYZdrVy5lm4hTETi0d0BLt+qSn59l165djBw5koYWDRl+cHipDkHKgxQiTkfw8paXq8lCTb777jsmTpxI25ZteeP2G/T8tie6xspic8c+OIZ5A3PaTG9T6kqHQCAQCASC/x611iHo2rVrTZtQ67FwtyAptGLa/n179eVazjWahDeht3vvSrZME1VybZfWXbgTcoeWI1qWOYl12bJlnNt4jiEvDalSG5+lU6dOWFhYULdBXe7+cZeO84uf2V63bh2nfjmFt483RvY1M/s+YMAApn84HRuZDUauRoTuDqXJmCZc++Ua3+z6hnffepcAv4ASZ+gFAoFAIBD8N6m1DsGVK1eK3C6TydDX16du3bovdjZ3JWDhbsHtXbfJzs4uV19IksSVa1dIlVJxcCx55vt5Kagm9MmcT9j+0nYadWpElmdWmZyCzZs3c/3mdQaOHlildj6Ls7Mz8fHxZCVksc5hHemP0zF2KDrX4ueffyYoKIgWk1tUq40FcXJyYte0XdxYegPL3pZc33ydOp3qMGf8HA5lH+LsurPs9d1bY/YJBAKBQCCovdRah6Bly5Ylauzr6OgwfPhwvv/++0Iat/8V1h1fx09Hf+KL1V8wY8aMMh8nk8nYOXEnl65fwtPTswotLJxE6jbEjbt77/LakdfU75fE+6PfZ8fMHXR/vXuV2lkUcrkcQxtD7L3tCT8UTrO3mxW537iXx6F9RZs3P3mzmi3UpP+S/lgYWeDv649MLmPfK/vo4N6B81fPM2rQKLrOF6tuAoFAICjMs8m0gn8PZb23tbYw2Z49e3Bzc2P9+vVcunSJS5cusX79eho1asTWrVv58ccfOX78OLNnz65pU2sMcwdzcqVcbt+6Xe5jM25n0KN3j0LVBiubjvM0FWVcB7ty/8R9spKzlMXFSglh6e7QnUntJ1HXteYq19btU5d7B+8V+75LuAsL31+Icz3narSqaHzm+NDs82bsU+zjzpU7yK7K2Oa7jSV7l9S0aQKBQCCoZaiqCKuq8wr+faju7bMVo5+l1q4QfPHFF6xatYo+ffqotzVr1gwnJyfmzJnD+fPnMTIy4uOPP+bLL7+sQUtrjimfTEH7O20+mPpBuY+NuxpH649aV4FVxZOTk4NPfx9C80Lp9FsnfN4rPak44lQETl2qT12oILGxsQwZMoRbN24xJ38O+Tn5hRKbc9JyuL3zNiP9R9aIjUWx7uY6gglGCy0G6Q6iy/yiC5UJBAKB4L+NXC7H0NCQ1NRUQFl9t6ToDMGLgyRJ5OTkkJqaiqGhYamVoWutQ3D16lVcXAor6Li4uHD16lVAGVb0+PHj6jat1lCnTh3cPdxJu5eGfQv70g/4fz756BNu3b9Fb/uqTSZ+Fl1dXTIyMsgnn1PbTpXqENy5c4crx67w6ppXq8lCTaytrblx4wYpKSnEWscSeSaSut2frlQoFAqWT1uOcX1jbFtWTaXnivCK4ysc5jCOWo7k5+SXS9FJIBAIBP8tzMzMANROgeDfhaGhofoel0StdQg8PDxYsmQJ69evR1dXKZ+Ym5vLkiVL8PDwACAyMhI7O7uaNLPGsXC3IPFOYpn3z8rKYtWaVeSRx1qjtVVoWdHs3bsXeZyck6+eJC8rD2394h/BKROncOT+EQzvGjKZydVopRK5XM6uXbuoX78+oYtCCTsYpuEQXLx4kdk/zsZIz4jJeZOrPPyqLAQuCCRuXRwr3l5B83HN0TqhVWZFJ4FAIBD895DJZJibm2Nqavqfr/H0b0NLS6vUlQEVNT+CKYa1a9cyaNAgnJycaN5cWVn16tWr5Ofn88cffwBw7949Jk2aVJNm1jgxxjH8/MvP9LXoy3vvvVfq/rm5uUwaOInL5y5Tt271x+W3atUKSZI4b3OeB8ce4Pqya7H7psWlIUdOi9Y1p96jKpCnGKDg9KzTdFvRTf1e9O1onGXOtOrZqtY4AypFJ/Xgv5PyP+EUCAQCgaAk5HJ5mQePgn8fNT+KKYYOHToQHh7Oli1buHPnDgCvvfYaI0eOxMTEBIDRo0fXpIm1gkgi2XN9D/G/xpfJITAxMWGg40BeGflKjcUJymQyGg5pyN29d0t0CPy6+JHXOY/27dtXo3VF49LThQPDD5B8LxnzBuYAmN0045sh3zBg54CaNe7/eVbRSYXqdWmKTgKBQCAQCP6b1FqHAJSD1wkTJtS0GbWavgP6cnTbUT788MMyHxN3JY7m45tXoVUlc+zYMb66/BWOFxzp9V0v5FpFz0hEnIqgw9wONT77vmfPHg4cOECuSy73Dt6j1ZRWKPIVXN90nZ5re5aauV9dlKTYJFYGBAKBQCAQFEetdggAbty4wcOHDwtJYg0aNKiGLKpdNO/anMFPBjOgZ9lmqc+fP0/UlSi6N6t+XX8VJ06c4ODJgzTVacrjs4+p07FOoX2eJD4h/lo8dToXfq+62bZtGzt37qRXy15qh+DagWvkZudSr2+9mjZPIBAIBAKB4LmotQ7BvXv3eOWVV7h69SoymUxdWEEV5iISX5QYWBpgYGVAUmgS9m1KVhpKSkqiXbt2yJHzluNb1WNgEYwaNYqsrCxc7rgQuje0SIfgo/EfEWwUTMsrLdVx/DXFxo0bcUh1oKlVUx79/oicjBymfDSFU7GnMN9hjmu4qzJcp5SaCgKBQCAQCAS1kVqbPfLhhx9Sv359YmNjMTQ05Pr165w6dYo2bdpw8uTJmjavxvGf50/ggkBAqTR0zf8ahw8fBv4/uXSef6FjHjx4gI2FDdY61ljZWVWrvQXx8PDgyy+/pN87/bi7526hKnrJycls3r+ZC+kX0NHRqSErn2JoaMgbHd8gZWsKOkY63N1zF60IZZhQ4tFE/H39iw17EggEAoFAIKjt1NoVgsDAQI4fP461tbU6871Tp04sXryYqVOncvHixZo2sUaRa8nVyjEZdhn0+qgXBgYGHJpxiPN+5+noV3i2umXLluz/ZD/hweHVbW6RuPRyIT0qnYQbCVg3sVZvNzc3Z2HjhUR4RNC1a9catPApqhh8f19/jrx/hFYNWtGhaQeyN2XTya+TiNEXCAQCgUDwwlJrpzXz8/PVakLW1tZERUUBysJkt2/frknTagU+c3zo6NcRf19/TFNNsTSwpIFVAw77HS5SaUZF/NV46reuX83WFs2d8DsEOAcQuDlQY3tOeg5ch/lfzq8hy4rGZ44Pjcc0Ji8zD4dwB8z3mAtnQCAQCAQCwQtPrV0haNq0KZcvX6Z+/fq0a9eOZcuWoaury/r162nQoEFNm1crKDhr/SmfohWhVaIzABB3NQ7PkZ7VZWKJvPfeewTcCUBnmw4Dlw4EID09nfjAeEycTTB1Nq1hCwvTe31vbvx6AylPQktXSzgDAoFAIBAIXnhq7QrB7NmzUSiUuunz588nPDyczp078+eff7Jq1aoatq724DPHB7muHC20kOvIix2gPnr0iFatWvHjjR+xalpz+QMFGTt2LP379Mc40pjUR6lcu3YNR0dH5sybQ51ONa8uVBRBy4JAAVq6WuTn5KvzOAQCgUAgEAheVGrtCkGfPn3Uf7u5uXHr1i0SExOxsLCosYJatZHABYEochTItGQochWc/PwkXRZ1KVRt8Pz581y8eJE68jqY1TOrIWs1ee+993jvvffY0W0Hd/fd5beI30hLSyP0TijObzvXtHmFeLYSsOo1CJ1/gUAgEAgELy61ziEYN25cmfb76aefqtiS2k/BAWr72e3pYtGFuUvnsipxFe+uf1dj3y5durDyg5U8+PtBrXOo3F5x4+7euyz+ezHtvdtzbsQ5nLo41bRZGjzrDIBmyFbB1wKBQCAQCAQvErXOIdi4cSMuLi54eXkVkqMUPKWoAap5B3My/8pk74a9NHFuojFAtbGxoZVBK5p2a1pTJheLbQ9bVk9bzcCkgbSxbUOUZRQWbhY1bZYGinxFkfkZqteKfEVNmCUQCAQCgUDw3NQ6h2DixIls27aN8PBw3n77bUaNGoWlpWVNm1XrKGqAOmfeHN4f9j433r9BcnhyoWPirsThOsi1Gq0snezsbJybKsODBn83GAfJAacuTrVuFaOkomNiZUAgEAgEAsGLTK1LKl67di2PHz/m008/5cCBAzg7O/P6669z+PBhsWJQgI7zCs9Wt23blgHjBtBzZU8eHHlAZlwmAOHh4axfv55rF69h09ymJswtluDFwXT26IyRnhFX/rpCxKkIdbhQcQXWBAKBQCAQCASVR61zCAD09PQYMWIEf//9Nzdu3KBJkyZMmjSJevXqkZ6eXtPm1Xq8PvDC0ceRP0f/iaSQWLhwIe+//z6/xP6CdVPr0huoRuRacrre6sroNqPRD9En0j8S5y7O6pAoUQFYIBAIBAKBoGqp9aMtuVyOTCZDkiTy8/Nr2pxaz9WrV+nfvz+3Wt7i8bnH7Oy9k+nTp2NjaUM/m37om+sDtWf23WeOD/39+uPq74qhniFyHTmhe0ML5UcIBAKBQCAQCKqGWukQZGdns23bNnr16oW7uztXr15lzZo1PHz4EGNj45o2r1bz559/cujQIU4FnsLjDQ8eHnvIo5WP+GP2H3Rv2x2g1s2+q6ouZydnk52aTcDcAOEMCAQCgUAgEFQTtS6peNKkSWzfvh1nZ2fGjRvHtm3bsLauXWEutZn33nuP69ev07p1a3p92Iu0iDSu/XQNi0YWuL/qXqQ6UW3AZ44PgQuVNRVEBWCBQCAQCASC6kMm1bJMXblcTt26dfHy8ipRaWb37t3VYk9qaipmZmakpKRgampaLeesTCRJYmPzjSRcS0CuLUeRV7R8Zk2jclRUFYBro40CgUAgENQEL/pYRFD7qXUrBGPGjKl1kpMvMjKZjJH+I/nG4hsUebVz9l1UABYIBAKBQCCoOWqdQ7Bx48aaNuFfx4VVF0CBevY9cEFgrRloiwrAAoFAIBAIBDVLrXMIBJVLbZ99FxWABQKBQCAQCGoW4RD8i3kRZt9FBWCBQCAQCASCmkU4BKWgyrlOTU2tYUvKT1pmGi1ntaTJh0007G/yYRMysjJIy0x7Ia9LIBAIBIL/Eqrf6lqmAyP4F1HrVIZqGxERETg7O9e0GQKBQCAQCP7jPHr0CCcnp5o2Q/AvRDgEpaBQKIiKisLExKTK1I9SU1Nxdnbm0aNHQk7sORF9WXmIvqwcRD9WHqIvKw/Rl5VHdfSlJEmkpaXh6OiIXF47iooK/l2IkKFSkMvl1eaNm5qaii/mSkL0ZeUh+rJyEP1YeYi+rDxEX1YeVd2XZmZmVda2QCDcTIFAIBAIBAKB4D9Mla8QZGRksGTJEo4dO0ZsbCwKhaaM5L1796raBIFAIBAIBAKBQFAMVe4QvPvuu/zzzz+MHj0aBwcHUYW4CPT09Jg7dy56eno1bcoLj+jLykP0ZeUg+rHyEH1ZeYi+rDxEXwr+DVR5UrG5uTkHDx6kY8fi9eYFAoFAIBAIBAJBzVDlOQQWFhZYWlpW9WkEAoFAIBAIBAJBBahyh2DBggX4+vqSmZlZ1acSCAQCgUAgEAgE5aTKQ4a8vLwICwtDkiTq1auHjo6OxvsXLlyoytMLBAKBQCAQCASCEqjypOIhQ4ZU9SkEAoFAIBAIBAJBBRGVigUCgUAgEAgEgv8w1VapOCQkhJs3bwLQpEkTvLy8quvUAoFAIBAIBAKBoBiq3CGIjY3ljTfe4OTJk5ibmwOQnJxMt27d2L59OzY2NlVtgkAgEAgEAoFAICiGKlcZmjJlCmlpaVy/fp3ExEQSExO5du0aqampTJ06tapPLxAIBAKBQCAQCEqgynMIzMzMOHr0KN7e3hrbz58/T+/evUlOTq7K0wsEAoFAIBAIBIISqPIVAoVCUUhqFEBHRweFQlHVpxcIBAKBQCAQCAQlUOUOQffu3fnwww+JiopSb4uMjGTatGn06NGjqk8vEAgEAoFAIBAISqDKQ4YePXrEoEGDuH79Os7OzuptTZs2Zf/+/Tg5OVXl6QUCgUAgEAgEAkEJVEsdAkmSOHr0KLdu3QLA09OTnj17VvVpBQKBQCAQCAQCQSmIwmSloFAoiIqKwsTEBJlMVtPmCAQCgUAg+I8hSRJpaWk4Ojoil1d5tLfgP0iV1CFYvXo17733Hvr6+qxevbrEfWu79GhUVJQ61EkgEAgEAoGgpnj06JEItRZUCVWyQlC/fn2Cg4OxsrKifv36xZ9cJuPevXuVffpKJSUlBXNzcx49eoSpqWlNmyMQFMvZxWeRy+W0/axtoffOLz2PQqGg/cz2NWCZQCAQCJ6H1NRUnJ2dSU5OxszMrKbNEfwLqZIVgvDw8CL/fhFRhQmZmpoKh0BQqzExNMHf1x8jfSN85viotwcuCOTSokt09OsonmGBQCB4gRGhy4KqosoD0fz8/MjMzCy0/cmTJ/j5+VX16QWC/ww+c3zo6NcRf19/AhcEAkpnwN/Xn45+HTWcBIFAIBAIBAIVVe4QzJ8/n/T09ELbMzMzmT9/frnbW7t2LfXq1UNfX5927dpx/vz5YvfdsGEDnTt3xsLCAgsLC3r27Fni/tWJ/7yng7ZnCVwQiP88/2q2SPBvoKBTsFJnpXAGBAKBQCAQlEqVOwSSJBW5xHX58mUsLS3L1daOHTuYPn06c+fO5cKFC7Ro0YI+ffoQGxtb5P4nT55kxIgRnDhxgsDAQJydnenduzeRkZEVupbKRK4l15jJVaGa0ZVrCRUBQcXwmeMDMlDkKdDS1RLOgEAgEAgEghKpMtlRCwsLZDIZKSkpmJqaajgF+fn5pKenM2HCBNauXVvmNtu1a4e3tzdr1qwBlJKgzs7OTJkyhc8//7zU4/Pz87GwsGDNmjWMGTOmTOdMTU3FzMxMfR2VybPhHCK8Q1AZBPgFEDA3AGSARK18nk6dOoWbmxsODg41bYpAIBDUeqpyLCIQQBUlFQN8/fXXSJLEuHHjmD9/vkZWvK6uLvXq1cPHp+yDlJycHEJCQpg5c6Z6m1wup2fPngQGFh168yyZmZnk5uaWuDKRnZ1Ndna2+nVqamqZbSwvqkGav68/gQsDUeQoauXgTfDisGrsKq5uvoobbth62uLxhgf+vsrws9ryXJ0/f56uXbtiZWVFfHx8TZsj+A/gP0+56lrUZyBwQSCKfAUd53WsAcsEAoGgdlBlDsHYsWMBpQRphw4d0NHRea724uPjyc/Px87OTmO7nZ2dugJyaXz22Wc4OjqWWCV58eLFFcptqCgN3mvAHN85ZORk8Lru67Vm0PZfJTQ0lPPnzzN8+HC0tavs41FpPHjwgK1bt9K8eXMsL1iyYvMKHvGIobpD6RLRRcPphNrhFKhEBhISEsjJyUFXV7eGLRL821GFaAKFFLhUq7ICgUDwX6bKRzxdu3ZV/52VlUVOTo7G+9W19LVkyRK2b9/OyZMn0dfXL3a/mTNnMn36dPVrlfZvVRG0IohjHEOGjIE5AwlcEFgrBm3/VcaOHUtUVBTdunXD0dGxps0plfPnzzNr1izat2/Pkl5LaNeuHRnXMhj40kDiDsaRnZqtfp4U+YoatlbJSy+9hEKhEPJ5gmqjKMdYhGgKBALBU6rcIcjMzOTTTz/lt99+IyEhodD7+fn5ZWrH2toaLS0tYmJiNLbHxMRgb29f4rFffvklS5Ys4ejRozRv3rzEffX09NDT0yuTTc9L4IJAbi2/RX/n/rg4uNCuV7taNZP7X0OhUKjDzzIyMmrYmrLh4ODAqFGjcHNzo6tvV7r6dWV79+14DvTkxPETpEemo2eqV+ueJ+EM/Dt4kUJxCjoFZxeeJT8nXzgDAoFA8P9UuZTNjBkzOH78OOvWrUNPT48ffviB+fPn4+joyObNm8vcjq6uLq1bt+bYsWPqbQqFgmPHjpWYi7Bs2TIWLFjAoUOHaNOmzXNdS2VScHZqxbIVdJR1pMfCHoV05AXVh1wuJzY2lpMnT9KgQQMA9u/fz6JFi1Aoasfs+rN06tSJX375BV9fX0Cp6hV3IQ67NnboOuoSf6/2xegnJSWp/75+/TqhoaE1aM2/m6qWN37R1NJ85vggk8vIz8kXClwCgUBQgCr/tj5w4ADffvstQ4cORVtbm86dOzN79mwWLVrEli1bytXW9OnT2bBhA5s2beLmzZtMnDiRjIwM3n77bQDGjBmjkXS8dOlS5syZw08//US9evWIjo4mOjq6yLoI1Y0i/2kCsYW7BUmhykGSSke+toR3/NewsbGha9euaGlpERsby5gxY/jf//7Hjz/+WNOmlYnksGTynuQxduZYJodNZv8f+2vaJA2ePHmClZUV1tbWTJ8+naZNm7JkyZKaNutfS1UP2F+0YniBCwKRFJLaKRATLwKBQKCkykOGEhMT1bOtpqamJCYmAsqZzYkTJ5arreHDhxMXF4evry/R0dG0bNmSQ4cOqRONHz58iFz+9Adu3bp15OTkMGzYMI125s6dy7x5857jqp6fgsvoFm4WxCfG88/hf+jap2ut+xH9r2Jra8vKlSvZunUrb731Vk2bUySZmZkYGhqqX8eExGDdzBpzC3MAoh5G1ZBlRfP7J78jSRIKhYLBgwezZs0acnNzgdoXYvJvoDpi5wueI8AvAClPqrXOgL+vP9oG2jj6OOL8krMI0RQIBIL/p8odggYNGhAeHk7dunXx8PDgt99+o23bthw4cABzc/Nyt/fBBx/wwQcfFPneyZMnNV7fv3+//AbXAA+iHzCf+Swbsoy09DS0tLRq2qT/JD/99BOpqakMGjRI7cSOGzeOt99+u1bGvKt0qR0dHbl79y4GBgZEB0dj38aetQvXMs5pHLL02mW3q70rX/AFrqNd6dy5M48fP8bKykqovVQh1SFvrHI0FLkK5LpF5xTUJKrnq92sdpxbdI6U+ym8Pud1oHYpcAkEAkFNUeUhQ2+//TaXL18G4PPPP2ft2rXo6+szbdo0ZsyYUdWnfyFo0KABBloG2JnbFVt1WVD1rF27lmnTpnHlyhWN7bXRGQAICwsDlIn5BgYGgHKFwK61HdbW1ti62pIWkVaTJhbCZ44P3fy68Wj1I859ca6QM/BfHpRlZWVx8eLFKmnba4oXAIqcyq1evWnTJqZNm4b/fH8UuQr1OcoTilPVeQ7wNETT7VU3kEHaozQkhSRCNAUCgeD/qfIVgmnTpqn/7tmzJ7du3SIkJISGDRuWqvjzX0FLS4sdo3Zg4WQhKrfWACqllKFDh+Li4kKLFi3U7wUuCCQ2OZZQh1AyMzPVybu1AS8vLxISEoiOjgZAUkjEhMTw0oqXADBxMiE9subzZZ6l4Iy1/1x/kKDlrJY0n/7f/j7YuXMn06dPZ+nSpYwbN65S2z712SkAZNpPY+crwyk4e/Ys3333HXnk4d3Km9gLsXiO8izXrHt11AhQhaHd2nEL2xa2xF6KJf1xOiZ1TP7TTqhAIBCoqHYJCBcXF1599VXhDDyDXWM7Eu8k1rQZ/0lUA5Ju+d3YvXs39evXB54OSDJyMpgxYwbLly9HkqQatlYTS0tLGjduDCgTivOz8rFuYk1UVBTf//k9O+7sqGELNZkzZw5+fn44v+2MXFsOEhyWH2bgyoH88ssvNW1ejfL48WPi4+PZvXt3pbYbuCCQK+uVq14dfDtUqpJZ4J/KNuxet0PKl5Bpyaj7Ut1ynUM1S3/G9wxtXdvi7e3N6Xmnn3vV6OrVq4wePZpVq1aptyWHJWPpaYmRgxGpD6quCr1AIBC8aFTJCsHq1avLvO/UqVOrwoQXDgt3C25tK1vFZUHlUlriZevPWrM/bj+enp5kZ2eXWNiuJokOjsamhQ1aulqkpKTw5fdfYoABuU9y0TF4vkrhlYEkSaxevZrU1FRc41xR5CnDNPQV+mRlZXHmzBkmTJhQw1bWHP379+fgwYP06tWr0tpUPcdOnZ2IOB1B6oNU+vzQB6h47HxWVhaJiYk4Ojoy59U5GOkb0X12d74x+4Y6neqQ/ji93MXwfOb4cPXhVYJ+CIJ7cDL4JD39ej7X7P3ly5f59ddfefToEW+88QZ2dnYkhyVj7mpO6v1UUh+kUqdDnQq3LxAIBP8mqsQh+Oqrr8q0n0wmEw7B/5NjkcPXV79mfaf1nDlzpqbN+c/RaHIjcvNyNcJYCs5Obt++vYYtLMzixYvR0tLizTffpE6dOur8AQAnJyfeffddHv70kLSINCzdLGvYWsjLy2PWrFmc2nGKh2seYlXPCm19bXrm9cT1riuvu79e0yYWy4ULF2jZsqWGilll07RpU/75559KaUuSJNavX49RtBEd5ncg7nIclh6W6lnx56lePXXqVPbu3cuOHTsY+tVQACIDIjGwMsChrQPpUeka5ygrry17jSM/HuGJ9ARjXePnDuXx8vKiX79+/PXXX7z88ssEBweTHJaMU2cnku8mk3pfrBAIBAKBiipxCMLDw6ui2X81zs2cuZR/Cclf4vHjxyKXoJr56KOP2Lp1K4Nkg+ggdQBAriNHkadQhrbUQr788ksSExPp06eP2iFoPEoZPmRiYsKGDRvYcGwD6ZHptcIh0NHRoUtOF7QuatFhXgeClgfR7etunP78NK/Pf52AuQHIZLJaF9MdFhZG69atARgwYAA7d+6s9FWiK1euMGbMGNq1a8f333//3O3dvHmTCRMmoK+vT1JSEtvabKNe73qE//X0u7ki/Zyens758+eJj48nLy9PvT0mOAZ7b3uMHY159M+jCtl8a80t2kvtASolz6FJkyb88MMP1KlTh9BQZQ5QSlgK5g3NMb1lKkKGBAKBoADVNtLJycnh9u3bGj8igqeYWpoy0mokm5durpAcq+D5uH//Pvn5+ZhIJsi0lKpCwSuC2eKzhfjr8fjP8+ek70kiIiIKHVtZSijlIT8/nw8++IARI0bQsGFDdUKxaoVAhYmTCekRlZdY/LyKMBpqL0DjUY3JfZKL+1D3Wqv2cvv2bUxNTQH4448/1KpplcmtW7e4fPky165dIzc3F39//+fKV3ny5AkdO3bEysqKc2fPkRyaTL0+9Uh9mIqkqHi7xsbGBAYGsm/fPnr16sXDhw9ZsmQJ3276Fntve4wcjdQrBOVBFdpk5GhELrk0eLtBpeQ5ODo6qh0YXbkuaZFpmLuaY+piSsqDlOdqWyAQCP5NVLlDkJmZyTvvvIOhoSFNmjTh4cOHAEyZMkVUKH2Gwa0G09y8uVpCUlB9LOm5hP/xP1pYt2DIniF09OvIk/gnaOtr86v3rxzYe4DuC7rT16evxnGVVfG1vGhpaTF//ny2bt2KkZERSXeTyM/Jx6qJlcZ+cjs5MWExlXbe56l8GxERQdNpTfGZ40P0+Wjs2tihra8sEhW0N4jvw75nw/0NlWZrZdG/f3/i4+OZOnUqK1asoE6dyo8779atG3/88QczZ87EycmJTp06cefOnQq317p1a/z8/IiMjOTdce8iSRJOXZzIz84nMzbzuWw1MDBg4MCBAERFRTFz5kz2XNmDXRs7jB2NyXicUa72AhcEssx3GYqRCvan7GcWs9gRtuO5k5+vXLlCcnIy3t7e6OjokBKegraBNkb2Rpi6iBUCgUAgKEiVj2JmzpzJ5cuXOXnypMYye8+ePdmxo3YpoNQ0Fu4WJIUm1bQZ/zkCFwQSMDeAfr79kJIkrJtbq5VPIs9E0nh0YwxTDZGQeBzxWD1AqU36+THBMcqEYp2nRe1Gjx7N8F3D2Xl0Z6WdR9UvBQdqZe2HCRMmYG5uzk8//cTjc49xaKcMi3Pq4kREYASbNm1i587Ks7Uy0dHRYdWqVUyfPh0nJ6dKb9/GxoaXX36ZAQMG0KJFC6ytrbl3795ztenu7o6NjQ2WRpaYuZqha6yLoZ1hhQfCN27cIDY2FoXi6SpOgwYNePONN2mV10oZMuSgdAjKswqR8SSDw7qH+WzrZ8RlxAEQ9SDquWoEZGdn07JlSywsLNS1XZLDkjFvYI5MJsO0ntIhqG2qYQKBQFBTVHkdAlXyWfv27TUKPDVp0kRdWEmgxKSBCcf3HOfRL48YPXp0TZvzn0EVxtJgQAMurLqAaV1leEjBxMtPr3xK81nNCfs2DH9ff84uPEt+Tn6NOQPx8fEYGxurnezoEGWF4oJYWSlXC+Ji4yr13BWtfJuUpHR269evz8PVD9X7O3VxIvi7YBYvXoydnR0KhaLSknePHTuGq6sr9erVq9DxkiRVe2G6LVu2YGlpWeGK5enp6ejq6uLk5ERsbCzBK4OJOK0MdVOFyqicsbKSm5tLkyZNAIiNjcXGxgYAW1tbFr23iL8C/sLI1ohc41wUeQoy4zMxsjUqU9teH3sxMXsigacDeTn4Zb7f/D2XFynDsir62YqNjcXW1paMjAxsbGxYsmQJv//0O+/Xfx9Q9kNeZh5P4p9gaGNYoXMIBALBv4kqXyGIi4vD1ta20PaMjIxaWwG2ppDZy5h1ZhZjx44lPb32FZT6txLhGcHW2K3s37ofm+Y2Gs+lzxwfOs7riL6xPkNWD2FkwEhAmfRYmRVfy8vUqVMxNDTk22+/BZQrBM/mD8ybN4+QX0MYZDKo0s/vM8cHZOWrfOvv709KSgreLb2JvxaPfVulA+PQzoG8+DwmvD6Bt99+u9KcgZycHEaPHo2rq2uF1XsmTpxI165dOXbsGACpqamcOHGi0j+fW7du5cyZM+Tk5GBjY4OWllaF8zW++eYbLC0tWbBgAQCJtxOx9FAmlZvWrVioTHJyMtbW1mhra6sdTRXRQU+dUR1DHfTM9MoVNmRlZcWKFSvYtWoXlvaWePT0IPFWItmp2eW2U4WzszPR0dHExcUhk8nYvXs3waHBhMmVk1C6RroYWBmIsCGBQCD4f6rcIWjTpg0HDx5Uv1YNtn744Qd8fGqXmkhN497OHSeZE3379lXPpgqqnj///JM1a9YQGBCIdXPrEve9f/g+AHJtuVoJpSZ4/PgxkiTh4OCgTCi+EFNohcDc3BwHNwfSItIq/fyBCwJBAmSUqx9MTU1JvpaMoa0hJk4mAOgY6GDvbU/EqcIJ289DXFwcTZs2xcHBoULfNZIksX//fk6dOqUOk2nVqhXdu3fnx0k/PldydUFSU1N588036dy5M0+ePFFvl2vJOe17utz5GsHBwWRkZKjFCRJvJWLZ6P8dAhdT0h6W/3mwsbEhLi6OJ0+eFHLYooOisfSyVNte0cTitMg0jOsYY2RvhImTCTEhz5/7olpB++ijj3i3ybt06dRF/Z7IIxAIBIKnVHnI0KJFi+jXrx83btwgLy+PVatWcePGDQICAipNc/vfgqmLKdO0pjFuzTjMnc1r2pz/DK+//jp2dnaYHDfBprlNsftteG8DP234ibq2dfn444/Jz86vcHGn5+X48ePEx8djaGhI4p1EpDwJq8ZWhfYzcTIhMyZTvaJRGagGpKB08L0/9S5XPzw+/xiHtg4aKzFOXZy4ceQGtAF7e3usrUt2zErCf54/MrmMDr4dOHLkCElJSejq6irfm+9PREIEw1cPL7UdmUyGv78/f/75J126KAeSrVu3Jjc3l8zczCKvuWA+RVlJTU2lV69eJCYmYmZmBsBff/3F3ANzqdOmDnJfufo8ZcnX2LlzJ9euXcPe3p7du3czO3A2Lzd4mVVvrcLUxZQHfz8os23Poq1d+CdjyV9LCNwVyDfm3/DBBx+UK7E4KCgIExMTPDw8SI9Mx6SOCcuWLeOE9glcTrhQt1vdCttakJEjR/Jk/hM82niotwmHoGj85ymdzaKer8AFgcoQy3llf74FAsGLQZWvEHTq1InLly+Tl5dHs2bNOHLkCLa2tgQGBqq1vQVK5NpyzF3N/9WJxVlZWRw8eJDs7IqHA1Q2L7/8MkuXLsXygSW2LQqHt4Hyh/DkhpOc5Sw39W6ScDOhyATb6kImk2FjY4ORkRExITHYtLQpVC8hOTmZL7//kv2y/RWasS0K1YC0+YTm6FvqY9PcBtuWtqX2w9atW3nrrbfYv38/j889VocLqXDq4sTCfQtp1qwZ+/fvfy4b5VpyRswdgb25PWfOnMHCwgKAvZ/spfe83rz13Vtlfv7q16/P5MmT0dPTA+CXX37hwYMHzNw2s8LJ1c/i5OTEkSNHCA4OfnoNcjlBQUEERwfTYX4H/H39+UrvqzK1L5fLad68Oba2tsQ/jicsN4xr4deAyh8EZ8ZlopWhdDSjoqIAMHYwLvPzNmPGDDw9Pfnxxx9Jj0zHuI4xa9eu5VD4Ia6cvlJhu+bMmcPYsWM5d+4coMwDSglPwdzVXL2PKrFYoMnzKIkJBIIXlypdIcjNzeX9999nzpw5bNhQ++QEayMW7hYk3UnCpZdLlVZFrSkCAgIYPXo0HTp0YN++fRVOnKxsMqIzeJLwpJBspwpFvoJXPnqFeob1sM20JTEwEXi+iq+VRVH5A6AMeZnvNx+AuLA4zOqZPfe5VAnYFu4WxF6IxbmrM/f/vk/fH/uq3y+KY8eOsWnTJurXr4/DeQdavN9C4/06Heqgn6mPpYXlc9cq8ZnjQ9rSNJJSkgjbGkanTp0IXBBI6IpQ9Iz0yJPnERoaStOmTcvdtmqlQXUeKH9ydVno2rUrP/74I/369cPBwYHA+YEVylvxquPFWyZvMW31NKDiDsHvv//Ovn376NevHyNGjFBvjw6OZmiDoewL2qd2vIwcjcq0QpCXl4eJiQk6Ojr07t2by8cuY93Umvfff5+YWzHkHM0pt50qDh48yMWLF3nttdcASItI40n+E05dO4VVtBWdOnXC1MWUh8cfVvgc/1YKPteq17VJUU0gEFQNVeoQ6Ojo8PvvvzNnzpyqPM2/izowYsEI4ubGERsbW+QS/YvEs8vPLVq0oF69ehw+fJid03fibOFco8vPMTExpKamIguVYe5qjq6xbpH7qWwcxjBiL8Wy/aftagWa6v6BPHLkCHv27KFnz54MHTqUmJAYmo4rPLg1Nzdn4sSJxByIIeVR5RRhUvXD2S/OYtHQgnq963Ho7UNIklRiP4waNYr69evTwasDF+ZfKJTvoGemxwdeH9D207Z4vOFRTCtl59qdaxycd5CodVGsWL8CKV+ik18nzr1xjvr165f6uYqJiWHevHkMGDCAl19+udj92s9uj/88/3IlV5cFfX19xo0bB8A/n/6jlPGUlV7B991338XKyoopU6bg5OSEYaohfVr2oXnz5oDSIchOySY7JRs9M70y23Pu3Dl++eUXrK2tNR2CoGjc2rthafm0EraxQ9mqFWtra3PgwAFSUlIwMzPDP9Kfen3qMWvsLHLSclhttpr0x+kYOxiX2U4Vvr6+3Lx5k5YtWwKQEpZCkFkQs1+Zzauvvqp2CCpjhSA3N5cHDx7QsGHD526rtuAzxwdJIdUKRTWBQFA9VPkU9JAhQ9i7d29Vn+ZfQ73m9XiQ+ICkpKTnKkxUW3h2+dnKyooFCxbw66RfiVgdUePLz5s2bcLd3Z0P/vcBNi2Kzx8oiEUjC3LScspdgKmy+Oeff/juu+84evQoinwFMReKXiGQyWR8++23jPUZiyK+clcwku4mYd7QnDqd6vAk/gmJtxNL3L9bt27Mnj0bF4ULlh6WRQ5Gnbs6q+UxnxdHR0fGrx+PnrYeUr5yMN1qaivc3NzK5GT/9ddffPfdd/j6+hZ6z8/Pj2bNmnHgwAF2D9wN/9+1FU0yf/nll2ndujX+/oUTkQMXBBK0PAgjRyNkchnt57QvNjQrNTWVjRs3smzZMvLz8wFlQrFFIwv1Pvrm+uia6pZ7IDxo0CCWLl3KgAEDNLbHBMdg763p3JU3qViVN5Eema5ONNc10cXK04rooOhy2aliyJAh6iJvoKxB4N3QG1dXV/XAvaIOwaNHjzhz5gygLLZnZGREkyZNnntlq7ZRr3c9oOYV1YrieSumCwSCwlT59LObmxt+fn74+/vTunVrjIw0tamnTp1a1Sa8UFh5WDHZZjKTzkyifv36NW3Oc+MzxwdJkpjpO5MxkWMY9904LC9YcnP1TfWMU2XqzpeX9PR09PX1sVZYl5hQrCI3N5e79++SXSebhJsJGDuWf/byeenduzcymYz27duTdCcJSSFh5Vl0qBMoE4srW2ko+W4yLj1c0NbXxqmLEw/+foCVR/E2qFAlFBdFnc51CJgbUGk2Bi4IRJGnABkgwY8ePzLmwpgyzTg3a9aMiRMn4uFReLXi4cOHXLt2jW3zttHqQivchrpxd89d9WAdypdkfuHCBaKjo9V5CioC/AJYN3cdt+W3+fnHn/nnrX+o36c+WjpaRZ5HS0uLn3/+mcuXL+Pi4gIoJUfz3PL4/fffadq0KY0aNVIPhMvyvKvo1KkTnTp10tgmSRLRQdE0mdKExYsXEx0dzddff60uTlYeJElS5xCAssK9XjM9os9H03DQ88+8J4cl493Km/999z/1NlMXU7KTs8lOzUbPtGyrJSdPnqRPnz7Y29tz584dHB0d0dXVRS6Xs/eTvdSxqvOvScb95zOl6IdMS1bqylR1o5pogudP6hcIBEqq3CH48ccfMTc3JyQkhJCQEI33ZDKZcAiewcLNAsdYR1yc/j05BBEeEfzDPwR8H8CjDY8wUhipnYFr164xcuRItm7dWqGY7ufFz8+PuXPn8mOLH8s0QJo7dy6LFy+md93e9LvZD5ceLtVgpSZdu3ala9euAFz/5Tq2LW0LJRQXRG4tJ/JcZKXakBSqXCEAcOnlwv0j92k1pVWR+8bFxfHo0SPc3d2JPh+N62DXIvfLdMjkm2vfEDAugPU/ra+wbUFBQWzx3ULuoVw6tO+AQzsH9Mz1CJwfyM+Nf0bxiYI9f+9h2rRpDB48uMg2WrduXazowfvvv49rqitZO7Nw7ubMwO0D+drga5qMaVLsQKUkjh8/TmhoKJ6enhrbJYXEP0b/8CjjEddSruHQzoHH5x4Xm7diZGTE6NGjNYoaJt5KZG/iXvYv3c+SJUv47LPP1MXJnpf0yHQyYzOxb2XPrN6zAGWojkplSFJIyORF15oJDw/H29sbd3d3AgICyErKIi8rD5M6JuzcuZPXX3+dVg1b8Xni5+W2KyIigri4OBo0aKBefUgOSy5UjE3fQh9dE+VqiU2zsjlH7dq1w8bGhvr16xMXF4eTkxNhYWHY2tpyduHZf80gNXBBIJGnIzFyNMKxvSO2LW1rTFGtKESeg0BQ+VSpQyBJEidPnsTW1hYDA4OqPNW/BmNHY7T0tUi5l1LirO+LRLdu3ejt1RvpooSRQrlCZOFugSRJTBw2kau3rzJt2jT+/vtvjeOqbVYtH9Jvp5fJIWjcuDHGxsbomeuReLPkMJnqICYkBrs2hcOFVHz88cesXLmSgY4DGcnISjlnTloOmTGZGg5BwPyAYqVNDx48yNtvv02PHj0YHDKYTos6FdoHQKGn4AIXiNgb8VwOwYbPN7Dh+AYGthqIcR1jTJxN8P7YG5lcRsDcAPbP28/pvNNYZFgU6RCU9tx5e3tzI/QG2S7ZvPb3a8i15Jg4m5B6P7VCSeaenp6FnAGAtp+1pf2K9vR+tTfu7u5kt83m8fnHQNkGZYp8Bcl3k/Ee5E3Mkxh1QbGKhMrcvHkTS0tLbGxs1BMV0UHRWDWxwtTKlEmTJmFhYYFMJsPIwQhFnoInCcVXAX748CEJCQnEx8cDSudC10QXXRNd7O2VIUiZUibRQdHlrha9ZcsWPv/8c958801+/fVXQOkQeI582scJCQlYWVkp++J+2R0CAwMDgoODsbOzU9tkZ6f8/P1bBqkqm2VyGb3X9+bIu0cYtEtZ3LC2OgWBCwJR5FZeUr9A8F+kyh0CNzc3rl+/jpubW1We6l+DTC5Dr4Ee69euR+4s57PPPqtpk56bvHt59LnWhzzy0NLVIj8nn8PvHubC6gt82O5Dsm5n8XGbjzWOqc5ZtcRbiWgbaJdJheeNN97gzTff5NpP17ix5UaV2/YsmZmZPHjwgAYNGqCnp0dMcAzNxjcrdn8bG+VAJym58qRsk8OS0TPTw8BK6eTbNLNBx0iHqLNROHdxLrR/VlYWNjY2uNi5kPckr9jBV/369Xm33btYW1S8BgFAXau69GjagyGTh5D2fRomryvj0jv4dkAmk5F3MA/bYFvcgt0KhUEELghkle8qXpv2WrHt39p+i7SHaYy9PFadA2NW34yUcOWse2UNSK79dI2XXV9mzK4xyGQy7sff5+qPV4vcNyEhgcOHD9O9e3f1gDr1fiqSJDFrwSxma89W72ta15To4LLH5isUCpo3b05eXh4PHz7E2Vl5j6ODo9X5A2vXrtU4Rs9Mj/So9GIdgnbt2nHlyhUyMpShRQXDhdq1a0dycjJG+kZ8Y/YNyXeTsXCzKLKdopAkCVtbWxo0aKB+nRyWjLmrOdHR0XTp0oWoqCjS0tIqtFqi6t+iKDhIfVGTcRX5Cur3q48iT0Hd7nV5Ev+E1AcVc3arGp85PgTMC0CRW7lJ/QLBf5EqjUmRy+W4ubmRkJBQlaf512HgYsCstbOYNWsWOTkVl96raaKjo8lKymJXn10ochV09uvMtOxpdPTrSG56LnIdORG7IpjcfDLXllx7bj338nLy5En69evHl0u/xLqZdbHhDQXR1tZGJpNh6WlZIysEISEhNG7cmCZNmigTii8WnVCsYvLkyUTeiGRI1hBlPH0FOX78OOvWrePUqVPKhGI3c/UMqUwuw6WnS7EFryZMmEBsbCxTe03FrpVdsQXSLCwsmD51Oo3jG1fYToDZv83m6NWjjBs3jrRHaZg6m6rf85njw+dnP2fB5gXY6NgUqiNwwPcAu+S7GL56OOHh4YXaTr6XzJH3j9BoQSN2HNrB2bNnAaWmfcr98ofhnDp1is2bNxcSEMjPzSdoeRDtPm+n7mf7NvakhKeQGZdZqJ0jR47w5ptv0q9fP/W2hFsJmDc0LxROVt5qxWlpaVhYWCCXy7G1fVqnIzooupBalIrSpEf19fVp1qwZ7du3BzQdAl1dXczMzNDW08a2pa16VaSsfP7552qVKIAnCU/ISc3BrIEZlpaW3L17l4yMDGJiYsq1WnLgwAF+//13oqM1nanIyEg+/PBD3nrrLQDaft4WqJ3JuGWh47yO5Gfn4zrIFR0DHWy9bIkKUNaY8JnjU6vyIAL8ApQKXFQ8qV8gECip8iD1JUuWMGPGDK5du1bVp/rX0KB5A9rXbc+ECRN48uRJTZtTIW7evIm7uzuvNnyVJylP6DC/g/qHUVXQK+KfCFpObIlNMxvkOsrY6xW6K6ptiT0oKIhDhw4RFBJUrgRLAEsPSzKiM8hKzqoi64omISEBY2NjXF1dSbyldEhKSuY1MTHBrqEdkiSREV0xVaTo6GiGDRvGpEmT2LJlC8mhyVg0tCAzM5OjR48iSRL1etcrtQJufEh8oYJkz1Kncx1iL8SSk/b8jnB+Tj4Z0RkYOxVOIvYc6cmrf7yKlq6WRtGvZlOa0aNnD7p161YoqT8/N5+DIw/SZEwTDt45yPjx49m2bRsAZvXMSL1ffsWaTZs2MXbsWLZv366x/faO28i15bgPc0ehUHDr1i1SclKwcLcoUnlHR0cHLy8vevXqpd6WdDupyGejvCFDZmZmxMbGkp2drU58liSpkMJQVlYWycnJQPmKk4GyToDKISiIfVt7os9XTGlIFdqUEpaCoZ0husa66OrqEhISQmxsLHZ2duUqTvbFF18wbNiwQmpQMpmM1atX8+uvv5KVlcWB4Qf+/43nG6RmZhZ2/KpDXScrKYuIUxG4DlTm+jh2cCQyoHJzkCqDwAWBBMwNQCaX4TXFC4tGFjVSJFIg+LdQ5Q7BmDFjOH/+PC1atMDAwABLS0uNf4LCWLpb8mH9D1m7dq06Ke5F49ChQ6SlpRGaEkqbGW3o4NtB432VU6BjrMPLv75M682t+ZVf2Zq7tdpm1QYNGsT3339PB6MOZZYcBfjhhx8YNHwQV02uVvsqwZAhQ0hNTWX37t3EhMSUmlAMoKWjhZG9UYWVhuzt7YmLi+PDDz+kVatWJN1Nwqi+EQ4ODvTq1YvQ0FBceroQHaRcESqOkhSGVOQY5JBqn8rNIzcrZKskSWrJzfTH6chksiJVhTIyMriSdQXp06ezizItGYNmDeLw4cPMbDuz0MDCf44/eU/y0LfUx/axLd27d1fH/hcMGSoPjRs3pnv37mq9fFAmE59bcg7vT72Ra8t588038fT0ZMuWLTi0dShyxnzYsGFcuHCBpUuXqrcVlBx9/fXXcXJyIiQkBFMXUzKiM8jLKp9MZkG51pR7KeRm5Kod6RUrVmBgYMDHHytD/4wdS3YItm3bxi+//MLjx8prSY9Mx6SOifr9H374gQkTJpBok1juFYJnSbqbpFGh2MvLCxsbG2QyWbmco9atW9OuXbtCylMODg7MnDmTH374gcCFgdzdc5e63esik8vw/sy7QoPUkJAQGjRowMGDBzW2V0cV4fBD4Vg1tsLMRfnb49jBUb1CUFtQXa/bUDfs2tjRbmY70h6k4fWBl3AKBIIKUuUqQ19//XVVn+Jfh4W7BcmhyRU+PioqilmzZrFy5coac7re6PQGV3Sv8NHuj2jxcosi9yk46H94+iGXuYwWWgzOGVwtEneNGjWiUaNGfOv7bblWCO7evcvRo0fp5diLhFsJOPo4VqGVhZHJZBgZGSljuIsJ2VCRm5vLwoULOZV3ik7hnXBsXzFbtbS01J/l7Vu307RLU7y9vQkNDVUqCPVwx6qxFQ+PP8R9qLv6uPv37zN69GiaNW2G2yW3QkovzzJ48GACogLQ2aZDi6FFPzclkZycjI2NDXXq1OHExhMYOxoX6TBduXKFwYMHY2Jgwmxmo62tjSJPwXd1vqPh4IZoG2lz4dcLgPI5vf/3fS6uuUjTcU0J9Aukm183Zs2ZpW6voiFDH3/8sXoQrSLsjzCyErJoMqYJoCzmt2/fPpKSkrBvZ8+9g/eKba9g8m3i7UR1wbrHjx8TGRnJnTt3aOXVCi1dLdIepZUrNr8g0UHR2LSwUYd/qRKWVeE0pYUMLViwgJs3b/L333/j4OBAWmQaNi2ffgb37NnDn3/+iedCTxQXFcUmrD/Lo0ePGDVqFB4eHnz//fcA6vyBojBzKfvKzrN5EipkMhmLFi1SDlK/8EfXTJehh4ayo+sOzBuY09GvY5mScXNzcxk/fjy9evXi4MGDxMTE8M0339C/f3/1fa2OxOWwA2G4DnqqBFanQx3iLseRk55TbOHG6kZVMT0jOgNTZ1OMHYxpPKYx2anZdPTrWCl5Ds8W1SzIiygjKxCURpU7BGPHjq3qU/zrsHC3ID0qney0bBTainIrNA0bNozAwEBkMhk///xzFVlZPFnJWfwx/A8m+E0o1hkoSOCCQGK+jWFCzwnY3rbFq4NXtalZZMRkkBmTiXXTsieyDhs2DHd3d/IP59eo0lBMSAwt3i+5f7W1tVm6dCnZ2dk8uPmAZhSfgFxWku8qQ4Z+//13TE1N1YMVlfxoQYfg9OnTnDlzhqTYJBobN8asQckrXvb29lgYWxBzLaZCtj18+JD8/HwyMzPJjs7GxNmkyP28vb1p5NAIy8eWeM3ywnuGNwtHLcTqoBVPEp6QfC4ZXVNd/H39SYtM4+7eu7j0dOHiNxeLHHiZ1TcjPSqdvOw8tPUq/rUqSRLnFp+j9fTWaOsr2/nggw/4+OOP0dHR4fH5xwTMDdBQ3klNTcXExKSQEk/i7UQsGyknBJYtW4ZcLqdx48bI5DJM6pqQ+iC1TA7B/v372blzJ7169WLMmDEAPA56rKFuNWzYMAYNGoSFhbK90qoVd+/eHUdHR1xdlQPPZ1cIhg8fTuvWrenQqwNnvzxL/LV47FoVnyuj4u7du5w6dUojzv9Zh+DGjRscPHgQR0dHhvQYQmZsJrlPctEx0Cm1/ZJQ5CkwtDWkw7wOaOlo4T7MndDfQxl2eJjy/VIGqf7+/mzatImDBw/y6NEjGjVqxLRp0wrdV585PuSk51SJuk5+bj7hf4Yz7Mgw9TYTJxOM6xgTfT6aut3rltpGdQykVcdv9tpMu1ntAPCe4c3Gpht55847mNY1LenwMiFqHQj+a1SL0H1+fj6///47CxcuZOHChezZs0e9rC8ojIGVAVcNr2Jlb8Wbb75Z7uNXrlxJ+/bt6W7QvcrjTQvGtO7fv58RI0aw7619WHpYkp+dX+o5Cn65rvt7HT1G9kBLR0s9q1ZVS79ZWVn8/fffhBwOway+WZkLEwG0adOGcePG0bpjaxJuVl/CvEKhYMCAAUyePJnkxGRiL8aWKDkKytnL6dOnM7bdWHLjcyt0Xl9fX95//30uXbpETkYO6VHpmLuZY2ZmpjFYUTkEkiSpt73yyivs2LGDUR1GYd/WvlT5yF27dhF2IYwG4Q3KHdICyoJikZGRHDt2TBmXXkT+AEDQ4iDeffwuK/xW0OuLXqxdu5YVB1fwe/3fiTgVQfP3mvPyry9j0ciCK99f4UncE+7uu1to4JWfn09KSgrGDsZo6WiVK1lXoSg8QIw4FUHirUQNR8/Y2BgdHeVg1aaFDTlpOaTce7oa8dZbb+Ho6Mi+ffvU27KSs8iMyVQ7BD4+PrRr1w4TE+WguzyhMkFBQfz666+cP39evS0mSDN/wNjYGEtLS/X9LW2FYM2aNRw9elSdp1EwqRiUoaZ+fn54t/XGvo19mcOGGjduzNatW9UJxaDMISjoEAQHB/Ppp5/y888/Y2hriJZe6fet4DNdFAqFgiz7LO4r7tP0beWqjNtQNx4ef8iThCdlSsatW7cus2bNYvLkyejr6zN37lxMTQsPbDPjMwn/U5nwXhF1neXLlxMRUXRF8MgzkWgbaBdaeSxPHkFpYU0R/0RUyu9STloOcVfi1Cu0Fg0tcB3kSvDK4DIdXxqqsNZnhQdeNBlZgaCsVLlDcPfuXTw9PRkzZgy7d+9m9+7djBo1iiZNmhAWFlbVp38hkclk2DjZkJGZwb17xYcHPEtubi5Dhw7l8OHDnDhxgoYODas83lT15X9s9jHGjRvH9u3b2Xp8KzbNbQiYG1DqOVRLv6ovV7dX3Qg7EEbbz9pW2tJvUdy5c4fevXszaOKgcuUPFKS6lYZ2TN3BwYMH+emnn3jy8AkyuUw94Cvph3TRokVMenUS2okVm7netWsX69evJy4ujpSwFHRNdAvJSebl5eHUxYmMqAySw5LV242NjXn99ddpnte81HAhUD775g3N0bfUr1DsuFwux9HRkebNm5P2KK3YFYJnnzsXFxfq1avH9IXT6ejXEUmScB3oyju33kGuK0dSSIUGXuvWrcPc3JzZs2cjkyvj0cuTR7B7924sLS1555131NvOLT6H12SvYh3UZ5V3JEni3LlzREdH4+DwtH+TbidhaGuIvoV+ke2UR26zf//+LFu2TF2zQZGvIOaCpkPwLOVJKs7LzuNJ/JMik4qhfInFdnZ2jBgxghEjRqi3PbtC0Lx5c0aMGMHLL7+svm+lOUeLFi3CycmJJUuWFPn+6dOn6TmpJ7/m/6pe2TFzMcPWy5a7+++WyfYGDRrwxRdfaDgzAPHx8UyZMoUuXbqQmZDJrl67NByU8iQu//7773z66ae0bNmStLTCTlDY/jBcB7oWUlyr06EOUYFlyyMobSBdt3vdSvldenz+McZOxpg4Pf2Mt/2sLVc2XCEzvnBCdkUoeC0r9VYKZ0Dwr6bKQ4amTp2Kq6srZ8+eVcezJyQkMGrUKKZOnVooaUqgpL1Xe7b13caQpUPKfMyNGzfYvXs3x44dw9fXV/2ldcT3CFC58aaSJOHv70+TD5Rxzv6+/vxv8P/Y9Mcmxg8dz/ml58t0jmdnzbJtsjmkOETUpCgW/7C4wvaVRmZmJp6ensgT5OVWGAKIiYnB/74/d+/dJS8rTz0IqEosTS0ZznBsutqQcCkBWy9b5FryMi1hmziZELa/Yg747NmzuXXrFk2bNiUpUFmhWDUT/NtvvzF//nz69u3LihUrcOzoyIO/H2DRUDMU5fH5x3iM8Ciq+ULIZDKcujgRcSqiyLoGZSXtURrOXYs+vuBzd//+fYYNG8Ybb7yBTCZDS+tprHrggkAUOQp1/YyCuS0KhYL09HQiI5Uzp+XNIzi67ihJSUlqaeGYizFEnIqg/y/9C4VW/PHHH6xZs4aOHTvi09aH6PPReI7wRCaTERYWRkBAgEZl5YRbCWpnESA7O5tDhw5x7949PvroI0xdTDUct5Lw8fHBx+fp5zjxViKSJBVSMPr6668JDQ1VVkN2VCYuF1Wt+NlCY+lR6ci0ZBjaajqZGRkZxMfH49DWgdP/O10mW58lJyOHjOgMzFyfhqq1bNmSrVu3ql+XxSG4c+cOkZGRRa7qABhHG6ODDvYu9uTk5KCrq4y1dx/mzp1dd2j2dsVD9YyMjPjxxx958uQJX3X5CgeFA4m3EvHx9eHC6gu4v+Ze5hBLDw8P2rdvT48ePTAxMeHEiRPs2rWLNWvWAHB3/126f9290HEOPg4EzAsosfp0QQrmOgT4BSDlSbT+qDVtP2+Llo6W+j3VvuX9XXr8+DFz/ebyqs+r6m07d+7k+++/x9DGEO813pUW3998fHP8ff1R5CiQ6xYdCiUQ/Buo8lHMP//8o+EMgDIBbcmSJXTsKGLwisOxsSPJd5PR1y96hq8obG1t+eqrr8jMzFT/4F6zv8Yy3WU89H1Y7njT4mJB79y5Qw+fHkQkRvDtt9/yzvR3iL0cS+jvoYzWGs2tjbcq7HBcvnKZP9P+JHBrIAu+W6ChbFKZtG/fnhs3brDZa3OFHIKpU6fy22+/8bLuyyTdSapQG+Wlz6I+mBqY4u/rz+Xkyzi0dyjTD6kkSUgWEo8fVEytZeTIpxWOH919pK5QrOLGjRtqiUeV/GjLiS1ZsmQJ9vb29OvWj6Q7SaVKjgJcunSJlStXQgIMPDWw3LZu2bKFuLg4+vfvT9qj4kOGVPTo0YPjx4/z559/amj4Q+HwANVrUA5ihg8fTp8+fXB0VIYsmNUvn/ToGx3fwOi4EW0s2gBwfsl5mr3bjMvfXS7k4MXHx3P48GEyMzN59d1Xufz9ZfV7+vr6dO+uOYhLup2EpcfT71yFQsErr7yCJEmMGjUKUxdTHh5/WGZbCxIdFI1dK7tCydobNmzgxo0bvPLKK3Tt0BVFbtHVir/99lvmzp3LW2+9xZdffkl6RDrGDsYaM8PXrl2jWbNmWFlZcf/qfRJuJJCTloOuSclJrSdOnMDCwgJPT0/09PRIuZeCjrFOsQXS4P9XS0px5L766ismTZpUZFEySZK4veo2JxedpMNMTTU196HunJl9hqzkLPTNi/8u9/f3x8DAAC8vr0JhdQYGBizyW8TDDQ8xzzYnMSxR/UymRaShY6hT5sTlJk2acObMGfLz84mNjeXll1/myZMneHl5MaTDEDIeZ1C3R+E8AduWtuRl5ZF4OxErz8JStooEPqcAAGXVSURBVGfOnGHTpk00btyYadOmqe3wn+uPlCeBDC6uvciFby5gWtcUc1dz7NrYVSgPIicnBx8fHx48eIDFYAsGoayifPPmTY4dO8aoQaO4+M1FvGd4o2uky7Vr12jSpEm5ql2rkCSJHd13AMp6K4ocBadmnqLL4i7lbksgqO1UuUOgp6dX5NJkenq6ehZFUBhLd0vC/ypcGKkkHBwc+OijjzS2Xb96ncycTIIJxjPXs1zxpsUlVcVti6N3Ym+OmR/j3Ppz5MzIwbSeKTItGVJ+4dCK8tC/f38GvDQA2wu25OflV5lDAMoEuoQbCRUKGerUqRM3b97EKsWKhJsJ1eIQgPI+SJJEwNwAYkJiUOSV/kO6fPlyPvvsM7xl3kxTTCvTDF9xPFs1tnfv3vz222/07NkTUOYRnFt8jtTkVObPn09WVhZ/rP0DswZmGFoXPyhTkZiYyC+//IJ7A3dax7RGkacoVVa1IN9//z2nT59WKtdEaBYlK4q6devi7e1Nbq5mfkVRjlZRCi/W1k+T0c3qmRF3Ja7Mtr7k9xJ6Onr4+/pzXH6cu/vu0nJyyyIdvB49erB27Vo6dOiAg4EDf7//N/m5+erZ1mdJvJ2IY4enilIGBga8/PLLmJiYkJWVVa4cgps3b2JhYYGtrS1yuVyjQnFB3n77bZKTk3F2dkbHUKfYasUPHz4kISHhqTzsM/kDgNrJys7ORtdKF5M6JkSHRFP3pZKTWocPH05cXBwXLlzAy8uL5DBlAnxRg8Hs7GwkScLUxVRd06M4LC0tadeuXZHvPTrxiMRbierk4YKYu5pj3cSasANhNBndpNj2P//8c86cOcPngz9n8V7NldGcjBwM1xjiqeWJxwgPtPW01c+G5whP/hz9J+9HvA8Un7isUCjUTruWlhZaWlrY2try9ddfc/LkSUaNGsXlry/j0tMFHcPCydVaOlrYe9sTFRBVpEMQFhbGDz/8wEsvvcS0adNIS0tjSv8p/C39zUfaHyHLk9H+f+1p8lYTUsJSSL6XTHJYMrEXYlHklm/mXVdXl1kzZ+E3yY9XRz1dIXjttddwdXXF29ub86POc/WHq1gOsqRZs2Y0adKE/fv3q6tXl5U/3viDxJuJtP2sLZ0WdmJTy02cX3IeZNBlkXAKBP8uqjyHYMCAAbz33nucO3dOOVMpSZw9e5YJEyYwaNCgqj79C4uFuwVnrp1h9uzZhQrhlBVJkugc05k3Ld7kTd5EJpeVK9702VhQSZI4OukogfMCaWbUjGn603irx1uMODOCRq83UjsDz1OMR0dHh31/76OVbivigso+uKoISXeSkGnLMG9gXu5jP/jgA65cucLwl4ZXS2KxJEns3r2b8PBw9MyV8eWKvLIlFNrYKJ2VTCmTzNjyxdZGRERw8+ZNsrKU9QWSQpM0VgjMzc157bXX1Ooydl52aOloEXk+kpkzZzJgwAAsEixKrT+gwtPTk2XLljF/4XzkOnJiLpZPbah///68/vrruLm6kRmTWWwOgYqpU6eSkpJSKHnz2RwDFarPRFEDr4pIj6rau7DqAopcBSErQ4o8r7OzM5MmTaJly5ZYuFmgpafFg3MP6NevH8uXLycvTzMBO/FWokbIECgr7W7duhVnZ2dM65qSHpFephwdb29vHBwc1PlM0UFFOwSffPIJCxcupFGjRkDxicWzZ8/m6tWrTJ06FYC0yMIrORYWFiQnJ5Oamoquri723vZFFmQrSG5uLg0aNMDa2lqdrJwclqwRLqTizTffxMDAgG3btpW7UNuzBC4MpNVHrYpdvVCFDRVHfn4+dnZ2GOgaoLVPS+O7M/dJLpuabSL1QSqeb3rSeWFnjWfD+SVnJIVExD8RxSYuZ2Zm0rp1a7799ttCIU/vvfceW7ZsQV9fv5Dc6LOUlFjcoUMHZs+erV4duPDlBX4/8ztRROGyxYWOfh0JmBfAjc03qNu9Ls3fbY6OoY6yyrAMFDmKEn8z7t+/r1E5/JVOr/CR7kd0GPx0RcbT05M333wTd3d32n7eluAVwVwMvoienh5ubm7q78GycurzU9z+7Tbur7nTZUkX5Npyxlwcg6WnJecXn69wGJtAUFup8hWC1atXM3bsWHx8fNRKGXl5eQwaNIhVq1ZV9elfWCzcLAhODyb4i2D09fVLDa9SKBScPHkSLy8v9eAsaHkQkYciaZnakiZvNeHhsYfqeEgom6RnwVlR/7n+ICmVTrou60rdHnXVMewBcwOKDa0oL3JtOQ0HNyR0dyhOnZ3KfXxZGDx4MKmPUunfsH+FZsxVM45WnlbEXoytbPMKce/ePYYOHYquji4LpYXIkBUZ114Ub7zxBq+99hqbGmwiLSINI3ujMp93w4YN+Pn5MX78eNavX6+WHC0OmVxG3Z51SQpMwneuLwC7B+7GpYdLmc7n4OBAh4wOyO/K0eusR8SpCBy8nzoTpckWfv755wAk30vmpPZJDO1KXpXw8vLi9u3bhbaXFH9csK9/+OEHHjx4wLRp08pVnCwzM5Nly5bh5ubGiP+NwN/Xv8jE5aKQyWXYe9tzcPtBDh06xK1bt/jkk0/U7yvyFSTfTdYIGXoWEycTFPkKMh5naCRlPktWVhZGRkY8efIEOzs78nPyibsUV2r9Cyg+sdjExISmTZuqXz8rOQrKz1fBooxlSSzW0dHh7NmzGtuKq0FgYmKCJEk8ePCAXj16legQPHjwgN9++41mzZrRt29fjfci/SOJCY5h8O+DCQ4OZu7cuVhaWvLLL7+o93Ef5k7ggkCyU7OLTBbX0tJi165d5OTkELI0RP3d6T3Dm03NN5ESnkL72e1xGe/Cd999R5MmTejcuTOg/K5s9Hojbm2/Vawk6A8//MClS5dYvHgxo0ePVitNqZDJZGTEZvD43GNcF7gWyvFQUadDHf759J8iz+Hm5saCBQsA5Wc0yC+INxzeoF7negwdOlSdl6O6NtXfHf06ItOSceOXG8X+ZuTk5DBo0CD09fU5c+YMurq6PA58jFM7p2JXyBoObsjpmadxz3QnIiICS0tL9QpJWQk7GIalhyUDdzwNXdTS0WLspbFsbL6Raxuv0fbTtuiZlV2hTiCozVT5CoG5uTn79u3jzp077Nq1i127dnH79m327NnzwlbhrQ50TXRpZtaM0a+Mpk2bNqXuf/fuXXr06EGdOnXIz8/n3p/3ODP7DDmpOXT060iPb3qQHpVOk7ealFvS02eODzItGWlSGl/LviZ7UjZ1e9YtlNBaMLTieWVD6/Svw+ZfNvPrr79W6PiSkCSJI0eOcPLiSWwaP1+oj5WnFdHXy6aA8jwkJSXRokkL6uTVQZYno6NfR6ZlTytTPxsYGGBsrFTjKG+14tzcXIyNjXF1dSX3SS5pEWmFcghycnL4+eefGTt2LHl5edTrpcwjAGVfR5+PLlP+gApVqFp+dj4Rp57KI5ZHhSTtURpGjkaVoqRVEnPnzmXhwoXcu3cPs3pmZMYoNe1LIzQ0lPnz5/Phhx9yZvYZAOS68hJX11JTU/nrr7/4/fffsW9rj3mcOV9//TWffPKJxgAu9X4qkiRhVq/o79e8vDy0dLUwdjQudWZcX1+fmJgYcnJyMDY2Ju5qHNqG2oWeARVZWVnqGgDGjsYlSo+qKCpk6FmKq9BcGs9KjqqYO3cuMTExSmlPF1PSI9PJzy1aCvv8+fN8+umn+Pn5FXovcGEgXlO80LfQR6FQ8Oeff3L06FGNfSwbWWLhZlFiQTlQhsIU/O782uhrku8m0+5/7ei0oBPffPMNEydO5IcfftA4zmOEB3d23SE/p2j7P/jgA9asWcP69esLOQMqwv4IY4fpDtr3aF/IfhUOPg4k3k7kScITQBn2O3LkSE6fPq2heqTIV9BuZjsaJzRm4oKJamdAdW0Pjz/U+M1oOKQhqQ9SaT+nfZHfZTdv3iQyMpLw8HCSkpIAiAqIok6HOsX2pVxLTttP23J+6XmsLK00nIHQ0NBij1Nxd99d0iPSef346xqfrcuXLyPXkTP28lh0DHXY2GwjOWk5hY6vLFlvgaA6qZY6BAANGzZk4MCBDBw4kIYNG1bXaV9oejfvzWdDPis0K1UUcXFx1K9fn+bNm5McmszBkQdxHeiq/tKdOXcma/TWcHzr8RLDHooicEEgUr7EWflZIqVIVi9Yrf6CrUhoRVkITg5mY8JGJrw/gcePK5YMWxwKhYL9+/fzXpP3aOzTuMLtbN++nZcmvsQPN3+oMnlUFc3cmzE+ZjwTpYkVdr4q4hAsWrSI1NRUPv74Y2WCppFOoRUGLS0tPvnkEzZv3sy5c+dIc0rj7NmzPEl+QuqDVLISs7D1si3zOV3fd8V+sj23jtziwZEHSAqpTMnTubm56tCZsuQPVAZvvPEGEydOxNTUFEM7Q7T1tcuUWGxgYMA777xDlwZdOL/4PLomukzPnl7ivQwICKB///7MnDkTh7YO5F3P48MPP2Ty5Mka+yXcSsDCzaJQ7sW5c+dwcXFRTzCUJ1RGS0sLmUxGTHAM9m2Kridx5MgRDAwM1MnZRg5GhVYIVJWzN2/erM7bKM4h2Lt3LxMmTGDPnj3YtbYj7VEaGdGlOxgFSbqbVKRD4ODggK2tLTKZDGNHY5BR7GdDJWXqqeupcV8eBz0m8nQkrT9qTeCCQFL3prJu3Tp27txZqG5BcWFDubm5pKRoriqpJmBQKJ3EzguVqwEDBgygY8eOhXIZHNs7omOiw/0j94u0Xy6XM3ny5EJJ8wUJ/yOcBp4N0NLS4sKFC0XuY2htiIWbBVFnlfKjP//8M9u2beOdd97RuN6O8zoqcyeaW2PprrlK5TPHB6euThqfYytPK4zrGGPf2r7I34wWLVpw/fp15XNgp6y7EhUQpZEj8yz+8/xJfZhKTkoOYQeU6mqSJOHr64tHIw+Wj1xe7LFZSVn8PfFvun3dDWOHp8/lL7/8QqtWrfD19UVbT5tGIxpx6NEh1jdZT076U6egMmW9BYLqpMpDhoYOHUrbtm357LPPNLYvW7aMoKAgdu7cWdUmvLBYuFuQFJpUpn07duzIvXv3SIlJYVeXXbSY2EJDCeHixYvcz7zPmSNnGPLZkDKH8qi+3GRyGT9c/oEvZ3xJxqEMdZhKWUMrysuYt8bwzf++oUPTDhqJm5WBlpYWvXr1IiwpDEev4n9USsPExITIx5HkyfJICU8pMZTmeVDkKzg48iC6prp4feBVpPOl2q84vvjiC/xD/XnP5T1a0apc55fJZGhra5N8N1lDclSFlpYWH3zwAaBMBv3f//7HtvxtSBMkJr06CZvmNuWqAtutWzdu3LjB16O/JveXXL7S/6pMKiR79uxh5MiRDB48mE+9Py01f6AyWLFihcZrVR5BUYmXBXF3d+cdl3fw/9GfBgMaoMhR3ruiEpdVtG3bFnd3d9q3b491K+tilXeSbicVyh8AZWLsw4cPiYuLQ6FQlMkheFZpLDooWl0M79nwLZUCT0KCMqfG2NFYY4UHIDIykjlz5qCrq8uoUaOA/88hKMIhCAgI4Pvvv0dfX59XXnkFSw9LooOicR1YdJy7n58fx48fZ/Lkybz22mvk5+aT+iC1SIegIHJtOSZOysrN5vUL79ulSxe6dOlSKBTy3BfnaDGhhYYq1IQJE4o8h/swd84vOU9Oeg66xk/v1/Hjxxk4cCDDhw9XhxkdnXwUKV9CriNXx9b7zPGhS5cunDlzplDbMrkMjzc8uLX9Fq4DnvZNcaE/z5KXlUf44XB8//BlofPCEifsHH0ceRz4GNeXXenTpw/vv/8+bdu2LRSOc2PLDRq/qZxs2bp1KytWrGDLli14eHgU+s2QyWQ0HNKQ0L2h9Pu5aKfF3t5e/XxlxmeSeCcRh/bF5yWpVhnr9anHuSXncB3kikwm49qhaygkBTeibhR77MmPT2LTwoYmYzSTwJOTk1EoFERHRyNJEn9k/8Fe9nL90XV0murw9vW3CVkZImoVCF5YqtwhOHXqVKFCKwD9+vUr9GMq0MTC3YLo4Gji4+MxNzfXUNwpShJUka/g77f+BkCuo/kFPWPGDIZ4DYHDZT+/6gfQc5QnUQFRODd1ZtVfq547R6AsyOVytqzeQsDcAHXuSWWSGZ9JelQ61s0q7mx07tyZ48ePc2vSLRJvJlaZQ3Bm9hmS7iQxOnh0sYWmSrsP69ev5+HDh/R06VlhO55NKC7I/Pnz1X+bmJhgoGNAw7yG5Q4XAuXsbVxcHK6vu3Lr11tlrsb66NEj8vPzlcpmJRQlq0rKIz2qWl3LiM5AS/9pLHRxDp6lpaU63yEkJISHVg8J9w+nUd9GGvsl3kosMn+gfv36nDlzBnd3d2SyshXkOhd2jl9//ZV+F/rxxZ4viA6Kxmeupm68isaNG5OYmIi5uTmgTCp+doVALpfz9ttvk5ubi1yuLPiWEZVRKIcAoE+fPhgYGKjj5e29lRWLi3MIgoKC+Oeff9RFydIepiGTy4p8DvLy8li1ahXh4eF8+eWXZeqLgs5aRnQG9w/fx8vdq0wDQKvGVpjWMyX8r3Aavfb0fgUGBpKbm4uhoTLXxX+eP5e+vYRTVyfeOPlGmb9rPUd4sq3TNnIzc9UqQRs3buTHH3/kk08+YciQIcUe+/DEQwxtDPF8ybNUB8KxgyO3tt8ClE7td999V2iftMg0Ik9H8vKWlwHYsWMHFy5cYPXq1Xz77bdFtus2xI29g/dqqIr99NNPNGvWDG9vb419H599jKW7ZYmqZQXvlZa+FhGnI4j4J4K2QW3p8GYHPvn1kyKPCz8czp1dd3jr2luF+mLKlCl4enrSvXt3ZDIZ/fr147vvvuO1rq+RdiCNb0y/QVJIwhkQvLBUuUNQnLyojo4OqakVV3b4L2DhZkG/2f1I3JnIzZs38fB4WtipKEnQU5+fIiY4hifxTwolW/Xr149OzTux/uv1xSa3PYtqwJKTlkPdbk8T1soyI10ZNOjXgENjDpFwMwFLD0skSSp3YlhRXLx4kZvHb4ITJWqDl4apqSndunUjtUkqCTcTih2olIXiaj7c3HaTIyuPsE57HX+N/4udO3dWSE970qRJPDr3CJ2osjtXt2/fZurUqbRs2ZKlS5eWmlCsuo63nN7iw20f4v+5P49jHtPsHWVRptISglX8/fffyGQyZXiGBDItWZmSpz/66CNGjBhBfn4+wZODcelZtkTm50WSJLKzs9HX11euEJQhsTgnJ0fdD9tf2k6TsZqzkaUNKFatWsUv8b+QsjSFTX03abyXeDuRph2bFjpGW1tbQ5zA1MWUu5dKrqL7xOMJF7mIzl4d+vn2I/56PFEBUQSvCC408NHW1lYLGkDRScV169blp59+Ur/OjM8kPye/yBWCHj160KNHD/Vrh7YOJRbXW7hwISNGjFCH1CSHJWNWz6zI0A0tLS3mzp1LRkYGU6dOxbRe8Q5BdnY2enrK78uCA02ZXEbQ8iCNfkhMTCQoKAgtLS21FC8oZ8Hdh7lz5/c7Gg7BvHnzGDlyJHK5Mh8rcH4ghraGagnTolaM8vLyuHz5skYhOpsWNsrig3+E4fG68ndi06ZN+Pv7M2DAgGL7DApUJy7wvRIXF0dCQoLGbw4oHYIT006UKAd8e8dtnLo6qcNtPv/8c9q1a8f7779frA0O7R2QacmIDIjEuYsz169fZ+LEieTl5RESEkLLli3V+0YFRuHgU7pqWcG+2/HSDpCg89zO6s+d/zx/kEHbWW3R0dEhOzWbI+OP0HV5V65vuo4iX0FsC2WtBtUYpuA9femllwgLC8Pa2pqVeivVBQyFMyB4UanyILdmzZqxY8eOQtu3b99O48YVj9/+L2DhboF+vnLA+ujRI433CsaO75+xHzcnNz776jMy4zOLnaEwqWOCSV0THp8tW0x+x3nKdv7Y+wfLLi3TkD8tLVyoMtA11qVen3r8te4vunXrxvr16yul3dWrV/PmJ29ywajoWNnyYuVp9dzSoyoHr2CMcnRwNH+N/YuHOQ9JzEwkPDy8Qs4AwGeffcaMyTMwiDco8zE3b97kyJEjHD9+HPj/eOxiVghAmZtxO/o2u3x3kXgxkbT7aTw++xj7tvbliqtVOQP+vv649HLB7RW3MuVJaGlp4ejoiLOzM2kR1bNC8Pvvv2NkZKSWUDarb1Ym6dFWrVphaWmJv78/CdcSsG5SvpUqU1NT7MzsaJhXOLwj8XZhydEi2yjDrHjv3r1Zvnw5w0cN5+yCs0j5UpHOQFEYOxqrqxUXR3pkOnrmekVq3z+LfVul9Oiz8fkqWrRowciRI3F1VTrmxUmOgvIZmzRpEjNnzsTQ0FDZF0Ws7GRmZmJoaEjdunVJT1c6N03fVjpbRalC/fXXX/Tt21djxUyF+zB37v1xr1DSubu7Ow0bNiQ9Kh25tpxX/3wVbb2nc3UF87HS09Oxs7OjTZs26uRt1fV4jPDg9vanillbtmxhyZIljB49usg+AKUz+6zc6IEDB6hXrx7vvvtuob62bmzNfe4z5Z0p6grdz3Jzy0083/R8ar+PD7NmzcLKqvgwOrmWHNdBrtzdq3RQ7ezsGDp0KP3796dFixYa+5aWUFwQnzk+yHXl8P+XcWnNJY5OPkpUYBQ5+Tl8MO8DXmmnLNh36vNTmDc0JyMmA39ff7YEbOHVV19l+PDh6poZz2JtbV1kNXOB4EWkylcI5syZw6uvvkpYWJi6muaxY8fYtm2byB8oBXNXc8YpxjH17lRsXAur4ah+iDb4buAud7HHnk5+nYr9ob5+/Tq3HG5hf9ieer3rlcmGrOQs9ofu5w53aPF7i2qvLu32qhtLZi/hn0f/EBYWxjvvvPPcIUR2dnY4mznj2cSz9J1LISYmhv339nPn5B36UXzSXmk8OxPY7N1m/Nb9NxS5Ct6e/Tbv932f7Ozs57JVlVRc1tji1q1b89NPP2FgoHQini1K9iz/+9//WPL9Evq26IvDFw6YupiSlZjFnZ13CJgXUOal9ILhKDYtbDjzvzMM2qkccJc1VK26QoZMTU158uSJenBkVs+M278VljF9loiICFJSUtDP1+dJwhOsGpecc6Di0aNHdO/enbi4OC7tvsShMYc03s9KziIzJrNYhyA4OJhTp07RtGlTWrm0IvVBaonPg7e3tzpkY8W2/2vvvuOaOrs4gP/CHiFhT2ULiKIiFEQU994TrbXO1lr1ddvaVhz11arV1lZb625rHXXXrXUzFBXRatkge8gmbJL7/pE3VyIbEgJyvp8Pnw+5ueQ+ubnc3HOf5zlne52FB48ePYqAgAD4+vrCy92rSrXiiooKqaGPgmRBrWlPCwsL8dfnf8HS0BKen3uivLCcLTYG1N7rVFPKUYmtW7eyv+dY5SAlIKXKOjExMRCJxBfiXK74jvf1T64DQLVpf7t06YKOHTuytRgqM+piBG0zbby69godxnaQek5YLkRacBo8PvOAqVvVIXaV97ekuFZERIRU5WSnKU54uPkhSvNKoc5Xh4WFRZW5e2/3RGY8zUBZfhna92nP7kv3ee4QiUQoLS1FTk4O9PXfHEscJQ78tf3x5LcnEGoKqwwZygrPQubLTDiMd6jyHupiP8Yet/5zC32394WhoSGOHj2K0tJSqWNTWC5EanAqBuwaUMsrvfH2xbrdGDuIykU4Pew0ErUT8QzP8Pzpc/w07idU/F2BLh91YVNod/PqhgN3D6B79+419kzXVc2ckNZE7gHBqFGjcO7cOWzatAmnTp2CpqYmunTpgr///ht9+vSR9+ZbNRUNFbS3ao+SpBKghtEoLnNcYO1njVmYBY4Kp9aT0MyZM/H48WOgAGy597ok3UvCdOvpSBqSxBYSak62I23RZXYXLPxoIVZ+tVIm8wm++eYbdPq7EzymeDT5tXJycrDt6DaoQlVqaEFjVFfzoef6nujp17OOv6wbwzAQ6YiQU5ojvkCrR9Xg9u3bY9asWQDEEw/zE/Jr7SEYPHgwvvnmGwh0BOwdfXDQoGAAAJ6/eo6/u/4NgVCA/zj+BzlRORAJRXUOVfvqq69gYGCA6VOnozizuNYLTVnp2bMnoqOj2cq6POvq7zS/LT4+HsnJyVBNUAXfhi810bQ2ZmZmSElJQVFREQS6AghSxD9cc/HFak5EDrSMtWqca3Lp0iWsW7cOH330Efru6IuKoop6HQ+STGMcldqHb125cgVHjhyBtbU1fHx8oM5XR2FqIRsQjBkzBg8fPsTevXsxfvz4WlOOVlRUgMfjQSQSYQ3WQElJCUbdjJAWnAY9ez2pi7Hk5GQEBwfDyckJHTuKA/3cmFy086lfHZOaeks6d+6MjIwMNtNZ0NdBiLsUB5vhNphwaUKVC0AXFxf8+2/1E1bZYUOnItFhbAf4+vrC1NQUK1asQNKvSagorUCPNT3qbOu5c+dgamrKpvOU0HfUh4GzAaLORqHzzKpDxoCqQ02j/4qG9VBrBG8JZvelmZkZQkJC4OTkxF6Ml5WVsRWOpwyegrIbZWwRssrCj4XDdoRttbn5nz59iq1bt6J9+/bYsmVLlSDUcoAlYtNikflPJlv5/e3z6evnr6GsqlznpH2g5ot17w3emJ82H7GXY1G0sQgVzypQfL4YHGUOnnwvXRgwLCysxurG9a1mTkhrIfeAAABGjBiBESNGNMem3jl6DnrIicxB+z7tqzxXXlyOIx5HoAUtuKi51DnO2sfHB6qMKgQvBLWOAa0s8XYiPId64qufv2rye2kMTX1NWPe3Rn/n/rC0rL7wTkOJKkTIepnFfuk0haOjI3wn+aLgZAFyEnNgal/9BNqa5ggAb+5ydl/UHeWF/x9OwIjvQMoiGACA3377DTNnzkRHlY5YmLSwXgFBZXlxeVDRUJFKw/e2fv364dSpU3BwcICLiwsebHwAYZmwweNqjUca49rBa8jXyseaL9eAETLiDDC2ujW+TnFxMf773/8CAMb0HgMlVSVoGTfsPTaGtrY2O0QFEA8ZKs4srpJN5m18Ph98Ph9PbjyBQaf69Q4A4nH6t27dgoODA/T09PDI+RHSHqXBfox46FBWeFatBcnc3d0xZcoUeHp6Qo2rBg19DRQkFNR4PISHhyPqYBTCtoVBWUkZcyLnIOxIWI0XPGPGjIG1tTV69hQft5KJxZL/tYSEBGRlZbH58GvKMCR5ryYmJigoKIDDDAcE+AXA1EM8sTg3JlfqYuzIkSOYPn06+vXrxw5xy43JZYf31KS0tBS5ubngWfFQkFgARsRIFSrkcDgwMjKCkZGRVMa1QXsGSb3/+l4AOkx0wJ/9/kRyQjKbnnTu6Ll4uOkhptybIjVUqCYWFjUPl3Ga6oTTu09j+93t+Pjjj+HlVX1GMkl7Yy/EgmfDq3JhKwmqAKBXr1548OABHjx4AHd3d0yaOQk8f16VXhCGYRB2NAw+W3xQnefPn+P48eMwNDTE0qVLYWYmPQ/g6t9XsbVkK5IXJuPXu79W22uVEiieP1BXMcn6XqzvGr8LxdnF+NnkZ5RXlOOG0g18OO9D9nVqCgaA2lNuS54npDVploCANJ7QQohvD34Ls2gzbNmyhV3OMAz+6PEHBMkCePl5wXu9d53dldu3bwcjYrBLfxcynmVU2zX9toRbCejxVd13reSpw/gOCD8aDrcl4kl09R3yUpOcaHEq19rudtcXh8PB8T+PY6/NXpQllAE1ZOyrbhI48OaLq12fdniy4wlbWVfSxX1x1UW80H8BDw8PdshdY0jyd5eriYuLGXeruy7AnTt3YGZmBjs7O3HKUTvdOr+IJ0yYwL4vSTBQnwnBlXXr1g3btm2DnZ0dlFWVoWuni+yIbOja6tb4N+Xl5VixYgVSU1OhnK8MnXY6japA3VSaBppQ1VZF3qs8GHWuO+DMfJEJw84Nmz9QOQ+9mae4YJckIKgp5ajE2zdnJHfGTbqbVL+t7p7IL87HrmG7oBmrCV0b3VovgidOnIiJEyeyj7lmXAhS30wsvn//PhITE2FtbQ2g7qJk0dHRbAaeIBPx/0raozSAgdTFmIaGBt577z24uroCEJ8j8mLzav0fv3LlCkaMGAE3NzcE+YuP18K0Qra35W0ioQj2Y+0hSBZI1bio6QKwuvOUSXcTaBhoIO9xHs6cOYOnIU8RuioUbkvd6lX9+W1vb8PJ1wmffPYJnj5+Ci0trSoBQeX2Sj6/9JD0WnvwlJSUIBQKERkZCXd3d5h6mCI/IV+qZwoQp6QtyiiC7fDqL6JnzJiB8vJydO/evUowAACRkZEQMSLEvYyr8f3Wd/5AQy7WQ3eHQlQhQrpKOm5W3EQf1z54kfCiSg/M2+SVcpsQRaHKGS2cuoU6fn/wO3bt2iU1wevUkFPIfJ4Jp0VOeGnxEk+ePKlXkSqOEgfmPc2rHS/7tvjweBz/5zjSeekyez+NYT/GHsmByUgIS8CcOXPQsWNHtgBVQ92+fRs9BvXAZd5lmRaOqWti8dufDcMwuP/lfXFaPHVlKKkowdHXEbnRuVJViE9uO4nVq1dj+fLlTWpf//79UVhYiM0+m+tVnEwoFGLIkCFwcnJCUlIScqJzap0/UFnlu3P1raZcmY2NDVasWIFx48YBAPSd9JETUXs9Dh6Ph23btuHIkSMQJAmaNeXoiRMnsGbNGoSHh4PD4dSZejQoKAgbN27EjRs3kPUyq8EBQWVmHmZIffgmSUB2RPUpR2tS28RioVAIVWVVKHGUYGRoBJthNuxz9S08yDXnojDlTTExXV1duLi4sD0EgmRBtSlHJSTBgGSbkgmiSqpKVQKR4OBgNpV1UXoRygvLwbepflIxIK6ZwTAM0tPToaKuAm0z7SoTwr///nvs2LEDiYmJ8F7nDVGFCB3Gd6jyWpWTLJw4cQKOjo746KOPpNYJWBeABxsfwGGCA+L/isfYsWMxTGMYKkoqoKSi1KDKtufPn4eXlxfGjh3LFngDAJ4lD2NcxmCM1xjMmTOnxr93muIE/D+OqKsHb+/evUhKSmLTuarz1GHkYoSUIOnvkLCjYXCY4AAVjZrvM86dOxfdu7+pgxIbG8vOjVq+fDnO/3keo/NGoyCx+nNUcmByrQXJJCQJMapT+bOqfK7Kn5EPLTUt9EjpgeBNwXVug5B3DQUELVxHj47w0fWBn58fe+KPuRiDxDuJ6PpJV2iM1sC8efPg6+sLoH5f1OY9zRF/P77ObZ/acwpXmatYsnqJTN5LY3HNuDDvYY6MOxk4f/48IiIicPfu3Ua9VkREBKKTopGvIduUt9r22rh7626NGVCAN5+Nn58fjJSMcGPTDfCseJh4bSLa92mPf/b/U6WLu8fsHuiKrujK61rj69aHmpoatLS0oNNOB4IkQZ3r5+bmwsnJCXp6emjfvj1blKwuNXXVNzQoqEzPUQ/Z4dn1Xr8gsaBZ5g9I7NmzBxs3bmQrvNaVevTmzZtYs2YNjh07Ju4haGCGocrYzDv/z+STHZ4NPce6A7eKioo6i5MpKysjsyATpWWlyL6TDeuh1lLP15RprKSkBHFx4ru81VUrrqwgqeYhQ2+TTBDlKHMgKhchcH1gjevmxuSCa8GttSCes7Mz0tPTER8vPhdWty927NiB5cuXIzExEWUFZYi/EV9tQFCZiooKIiMjERsbK7Vc0ktYml+K6PPRSH+ajgcbH8CitwWCNgQ16AaFmpoaHjx4gOzs7Cp3skd/PBq+yr5SF96VRZ6JxGGXw+ywxLoy4zg5OcHCwkKqJ8K8pzmSA99kGRIJRQg/Ho6O79c/UUNMTAxcXV2xePFiiETi76vRk0bDqo8Vos9XTYdbkFQAQZIAZh51pxytj7fPVfv27UNWXhY+3vBxo89VhLRmNGSohTNxNsHYorFYvGIxlJSVkPkyE5emXcLwI8PhNNkJ9+7dw+DBg9kueKD27spZs2bhzMkz+FD9Q4xlxtY69IZ5xaC3XW8MmTBElm+pQSRj7zuM74BX51/hhx9+gIWFBXr16lXvvPaVjRs3DsmHkmHjZVP3yvVUVlaGcb+MQ0lZCcYljIOVVc35773WeMFyrSX+Zv7GX5y/8DTuKTgcDhJuJ1TbxT3/wHx0s+4ms/GoOu106pUn38DAAM+ePWOHJORE5cBhYt2ZQ2Q1rjYtLQ3p6elwcHCAvqM+/v295sqigLjeiYaGBlRUVJot5ajE6NGj0bFjR9jYiI+pulKPduvWDXPmzIFHZw8U/FrQoDv6bzPsbAhRmQjZkeLCeLnRuXWmHHV2dkZERARevnwJnhUPyferTx8pkRuZi5LMkmrnMb0tPT0dpqam4HA4KC0tlapW/Pz5c1y4cAGurq4YPnw4gLqHDAUEBOD333+HRrwG2l1tB+8N3nBf4Y495nsQuC4QHKXqEynkROfUWaFYVVUVxsZvhs69HRAwDIMZM2YgMjISDg4OiL0SC107Xeg71L5/fXx8cODAAUybNk1quaSdJ/xOIFUjFXkD8mDnbofnvzxvcDGrYcOG4cSJE3BxcWEz4AiFQggEAjhMcsDtJbeRn5gvNbRJWC7Evc/uIfSnUAhLhU3KjGPe0xyhP4WyjxNuJYDD4aB9v7qPEfZvEhJQUVGB1NRUlJaWstnM7MfaI/pcNLovkg5oUoJSYOhiWKUyd2O9fa7icDjQ0NCgOQCkzaKAoIWSXAh7rvYEI2KQn5APdZ46zo4+C2NXY2T9Kx6e4uPjAx+f6idxVaekpAT5hfmILY5Ffnw++NY1d6nrR+rjwLcHqqTIa06Su2puS92QcCsBnx7/FBq6GtVWSq0PExMTtEtrh4FjG1+x921qampwtHPEq4hXSEhIkAoIhEIh9u7di9TUVGzYsAF3VtwBn+HDlmOLQcwgPNj4oM6aDrIaj3rgwAFcvHERbqVu9U6RKgkY61OUDJDduFp3d3ckJyfj0aNHMHMyq7OHYOnSpTh06BC2bt0K60TrJg3Daai3s63wrflI9q/5InvkyJEYOXIkYq/E4k6HO7UOsaiLsqoyjLsbIy04jU0SUNv/NCD+TEUiEZKSkmBpZYmwI2G1rv/q6iu079u+Xu00MjKCiooK1NTUkJmZKdVD4O/vj6+++gpjxozB8OHDUV5UjtLc0loDgpiYGPzyyy/ogA74dcOv7DE0/MhwXJh4QXzHvbwUM3+bCRsbG1y6dAlaWlp1phytztsBAYfDwddff80+DjoTVGfvgGQfzJ49u9rnvNZ4YcelHTj18BRelbzCpPuTGl3ZdvLkyVKPV65cie+++w6nl56GZX9LRJyIwHsrxCljC5IKcLTnUZRkl0gFA5I2AQ3LjGPR0wLX5lxDRUkFVDRUEHY0DE5TnBrUy9GvXz/cvXsXp0+fRn5+/puAYIw97iy7g5KcEqlsWSlBKfUaLlRfNAeAEGlyDwiEQiEOHz6MmzdvIiMjg+0alJBkhCDSKk9C5dvyEfMgBo93P4aquiqS7ibBakDjqrB++eWX+Pzzz/F07lMk+yfXePFQmFaInIjqsxs1p8pfVtpm2oi9GIu8uLwqw1JqUznDT0lOCQoSCtisJ43pZajO1ctX8bvN7/DoIp3K9N9//8Wnn34KJSUlOGQ7IG13Glw6uWDHix113pkrKSlBRUUFm/+8qS5fvoxzAeegYdyw6szCMqE4y48MJmHXl5mZGcrLy1FYWAj9zvooTCtk86tXJzk5GUKhEHp6es1Wg6AmPGse/j1Se48GIJ5Q3JAMQzUx8xBPLNYw0ICuvW6d2cPOnDkDHo8HY2NjvA59XeOQob///huHDh2Cdog2Pvn0k3q1RUlJCZmZmeDxeOBwOBCaC9lJxQ4ODpg9ezY7lEWQLICymnKtGa/c3d0xq88s2JnaSf2P2I2wg/UQa+Qn5iMlOwXx8fHIzs5mLyrzYvLqVdvh4sWLuHr1KgYPHgxLa0vEXKi+EnJFSQViL8Viyr0p9doPlZWVlbGVbgFg0OxBeBz8GJ2YTjKrbCsSiXDv3j0AwPrv1mP92PUIPxaO91a8h1fXX+HcuHOoKKqAhY8FrAdaN7kHj2/Lh4aeBtKfpMO4uzGiTkdh0s1JDW63u7s73N3dpZbxLHkw6mKE2EuxcP7gTfHSlMAUuC50bfA2CCH1I/eAYPHixTh8+DBGjBiBzp07Nyk7TFtS+UI42DAYc9+fC08NT0wsmcheCEuqJ9aVDaGyzp3Fafiye2cjOSBZ6oRbWeCJQOi46NSYz7w5Vd4XV2ZcQZ4oD5mDMiEQCuCFur9MKwdXQUVBSDZMhjJXudG9DNUxtTaFtrE2kp4mIVcnF25u4oxILi4u8PX1RTtBO6TsToGKigpGHhsp9b5u+N2Qeixx/fp1jB07FqNHj8a5c+ea3EZfX184WDigbF9ZnZmaVqxYgRcvXmDFihXobtkdSqpKzTouPzg4WKp9moaayI7IrnH88IULF5Ceng5tbW38vvz3Zm0rIB5eUlhYCC6XKx4yVMuwLEn128ZkGKqOmacZHu94DF1b3XoNP6qcLpJnxUNxVjHKCsugpi09FCM0NBRHjx5Fd6XusBla/yF2fP6bmwxccy4KUwvBMAwGDhyIgQPf9MwVJBdA21y71mxQzs7OOHjnYLXP9fu+Hw51OoRR20ch4P0AZGdnv+nRismF3agairdUcu/ePezevRsqKir4z+D/SA31ysvLg6amJtTU1BD/dzw0DTXrlZ1LIjg4GCtXrkSHDh2wf/9+drlLugsWMAsalYGrJkpKSvD398etW7egFqiG0P+GgqPMwY1Pb+Cf/f9AVF79UL7KGtIGDofDziMQpAqgbardqCxJNbEbY4eoc1Hs91N5cTnSQ9Jl2kNACJEm94Dg+PHj+PPPP9kxo6T+JCfoZ37PAAAFJQVSJ/X79+9jxIgRGDx4MM6ePdug17boZYHAdTVPyvtq+1d4nPQY2n9oVxkLqwiSsa6ichHylPPw842fwQ3i4rPPPmPvCtb2twDwt9/f8IMfAGDU16MQsjGk0d311dF20MbM/8xEeGo44uPj2Qwpx44dQ+D6QLzKfAVuOy6MXN6kowzRD8EWtS3gR/GrBDfh4eFgGAa6uroyad/kyZMxZsgY/PjjjyjNK4WGbs3B3v379xEcHIx58+bVO+WoLL0drOg76tcaECgrK8Pc3BxlhWUoySlp1h6Cp0+fwtvbG8bGxnj16hX41nyU5paiJLekyj4uKSmBtrY2dHV1scV6C+xG1n3RWhdTD1NkhGZAv6N+nfMH3qZpoAkVLRXkx+fD0Fk6OOnfvz8+n/05BJcF9c4wVZlIJAKjw7ypVvxWT0BdGYbqwrfmo8cXPRCwNAAfPPpAqmckNyYXfLvah04BwKBBg6CsrIx+/fqBZ8GTqty8evVq/PLLL9i0aRO6RnZFh3EdGnRDq6KiAvfu3UNISAi+++476OjoyLWyrYaGhvh7djigra6NAL8APNvzrEqK1qaS9Lia9zRHSmAKUoNS4fS+uIiZrHpcO4ztgEdbH7FDktKfpENDX6PWrFGEkKaRe5YhNTU12NvXkJyd1MlrjRc6q3bGf/FfzFWbK3VSj46ORnFxcYOr916/fh0H/Q/ixT8vUJJbUuV5hmGQmp4KESNiexQUTRIMcFQ4aCdsh34O/cR1FWrJ6lOZ1xovdFrcCY5whDWsZR4MAECgMBBp6WnQ0tJCdPSbLBkcDgddP+6K189eVyk0Fh4ejqKyIjxmHld5vVWrViEtLQ3r16+XWRvVeGpQ5arWmXp0x44d2L9/Pzw8PJATldOsw4Wqo++kX69MQ4IkAZTVlaFpWHuQKEsGBgYoLi5GamoqRCIRNPQ0oM5Xr3YoTnKyeG5BWVkZCsMLmzRkKGCdOBMK34YPdZ46Ys7HsBmGgr4OqjGNZWxsLHbs2IFffvkFHA6nxkxD3bt3xwDNARgzYUyD23bp0iU4Ojris68+E1crTilEcXGx1Dp1TSiWKC8vxz///IOMjIwqz7mvcEd5YTlC94Syy0rzS1GcWVyvOQSDBg3C5s2bMXjwYPCseGzlZgBITEyESCSCoYEhYs7H1Gv+QGU9e/bEDz/8gLCwMDYY+NPvT3iu9ZRZBq6aVE7RKqthSRKSHtfsiGwk3UtC7OVYdHy/IxvcyCKds6GLIbSMtRB/U5wBSlJ/gEYYECI/cg8Ili9fjp07d9b7wo1IC/o6CMrlytBU06ySHm7u3Lm4du0atm7d2qDX/PHHH7Hluy1IMUypkksaEE9AWyxcjPDn4XBxcWnye2iqynfVlpcvR7te7TA8cjic4pyk8pTXpqKkAqJwEeZy5mIBFsj8SxIARgwcgak2UxEdHY0uXbpIPRe8JRg2w2yqVEfetGkT9u/fj19//RWAeOjLxIkTsXPnTgDiSdC1ZS1qKIFAgFzDXOQn1J521dvbG3PmzIGFhUW9U47K0q1bt/DBBx9g27ZtAP6fejSi+oAgLi4Oy5Ytw759+9iUo8154WBhYYGYmBjk5uayGV9qSj1qZ2eHvLw83D1/F4yQadSddwnJhdmDjQ9g6mGK0rxSGDgZ1HlhFhUVheXLl2PXrl3itlrxUJBQNUBkGAZxV+Kk6g/UF5fLRXR0NC5dugQNUw3kJuVCR0cHhoaGyMzMBFD/lKMTJkxAly5dcPr06SrPqairQPi+ED9/9jPi/xVfPObG5EJdVx2a+g0LCiWVmyXB0V9//YXU1FR4mniCo8KBuVfDh6ssWrQI7dq1AwBkF2TjB84PGPvjWOTm5rLr1LemQ0NIUrTWJ61oQ0na++LAC5TmlsLQxRARJyIaNK+rLhwOh802BIgDAhouRIh8yT0g8Pf3xx9//AE7OzuMGjUK48ePl/ohNatPgadBgwZJpRytj5EjR2L27Nlw6e5SbYGyxNuJMHU3haOLI3uBoyjV5bWfcncK9DvqI/ibYASsrbuYj7BMiL8m/YXMl5n1zr3dGF16dYFlpmWVHhtBqgDP9z2Hl1/VL0odHR3MmTOH3c9xcXE4ffo0O0FQlioqKqCvr491r9Yh9kVs3X/wfw0pSiYr8fHx+OOPP9ikAwZOBjUWJ3v58iW+++477Nmzp9lTjgLi4Uq2trZSQ9dqK07G4/GgWyge76+sWv/5P2+rfHe5olhcqC/6r+g6L8wcHBwwZcoUtqIwz7L6HoLga8FITkqGee+GX4j5+Pjgjz/+QEREBPgWfMT9GwehUIj8/Hzo64uHNdW3h6BTp07g8XgQCKqvZ7DrzC7sL9qPX/8jDqobmmGorKwM0dHRKC0tBd+az+4LDocDU1NTpN9IR4exHZp851t7uDb4uny0b9++yjDAujKNNURTCwPWh+TYY0QMMp5myDQYkLAfa4+Yv2IgEorEBckaEZARQupP7nMIdHV12YqjpP6qK5pyP+o+HCc7YrHfYnxd9DWGbG5cfYB58+Zh3rx5eL7vOcKOVk05mHA7oUH5pOWpurz2HCUOpj+ejp/tf8aJX09AOEBYY+pVYbkQF6deRHpIOgpTCuUydldCv6M+8uLy2HGvEo+2PoL1YOt6TUjs378/du7ciW7dusmkTZWpqKjA0tISmcmZSIxJrHG9mJgYREVFoWPHjrCysqp3ylFZ6tGjB7Zt24aOHcWFjvQc9ZATlQORUFTlwsza2horV66EoaGhwjMMSfCta59Y3NSCZBJvp4x8uOlhnRdmNjY2OHbsGPuYZ8VD1suqVbZHTRmF12WvMSpqFDtJvr44HA7ef/99AOKJxbxSHnJzc5GamsoGv/WdQ+Dn54dNmzbV2Ovj5uaGsowylNwrQdL9pCoBQV3j2u3s7JCUlIRHjx6Jh0+9ysfLly/h7OwMMEDUmSgMOdD4WixZWVn44osvcPfuXaSkpOD169eNfq261FQYEGhYWtH68FrjhaCNb3oiZBkMBKwLAIfDASNk8O+Rf1GaWwoTNxMAsssMRwiRJveA4NChQ/LexDvp7Qvh69ev49SpU+zzX59pfEAgYe5tjluLb0FYLmTvVGZlZWHWkVkYNGwQelb0hIqKYktV1HTSV9VSRfr76fhx+48I+SgE/hH+VdYRCUW48uEVJAckoyi9CJc7XcZvJ3/D9h7bMWjNIACy/ZLUaacDFS0V5ETmsEODCtMK8eyXZ5jqP7Ver9G5c2e5ztt48eIFnmx6gsLUwhrXOXv2LFauXImpU6fi919/R15cXrMPGerYsSMbDADiO+6MiBGnP7WVbkvnzp3ZYXPXP76ukIDgypUrCAgIwKBBg9CnTx/wbfjs+OfKTpw4gcjISOj466CHTw+ZbNtrjRcebHwAYZmwURdmPCse4i7HSS1jGAaiUhGUlZRhYmLSpPZpm2kjPyUffD5fKgNRfXsI6koacOjQIfZC+K+Jf8F2hC17vNYnk5ilpSWysrLw+vVr8Kx48A/0x+dffI5p06Zh3Zx1KBeUw7KfZf3ebDW0tLRw9uxZvH79Gjdv3sSIESMa/Vp1kVVhwPqobliSrIICyXA4I1cjBPgFwMTNBCoaKjLNDEcIkUaFyVqoty+Ep06dCjc3NxgZGWHXrl04cPxAk7fBGDKo0KhAxtMMNnvLxeMXkV6RjifRTxQeDNRl2uxpOHzkMNSj1fHXpL8w+uRo9jlGxODq7KuIvxkPXXtduC5wxb4j+xAZGcm+L1l/SXI4HOg76SMrLIsNCIK3BcNqoBVMujftokpWNDU1odNOB2mP0mpch8vlonPnzujUqRPy4/PBUeIo/K67sqoydO10kR2eXSUgqCw/MR/GrvVPDSkr58+fxy+//AJlZWX06dOnxjkEJ06cwNmzZzHdfDpGfjpSJtsO+jqIDQYacmFWUVEBkUhU7aTiipIKfIWvMO35NBhaNL4n49GjR/ji4hfgFnMxGIPZ5SKhCIJUAbjtZFNjw2uNF0RCEYLWB+Hlry8xeN/gau+WV+fq1avgcrngcDh4EvEEsXdjUV5ejqysLESdi4LdKDsoqzV+aJempiZ2794NU1NT9OrVq9GvUx/NVWxLntmSKr+G5DUdJjrU+/MkhDSOXK74unfvjps3b0JPTw+urq61TvALCQmRRxPeOZXnW8yePbvJkyYnTpyI06dPY2HXhUgOSGYDAkc4YnnH5fD6uuWfcJ2dnZGYkogrM64g7EgYrn10DUP2DQEjYnB93nXEXoxFSXYJui/qDq81Xrg45SJiYmLg6vqmuI2sv1gMOhqw2XAK0wvxbM+zRhUzkiduO26tWYY++eQTfPKJuBBV3NU46NrqyiRzSEOlpKQgIyMDzs7OUFNTE2caisiG7XDbKusZGxtDRUUFgiSBQoKX/v37Q1lZGZ6engDEQ4byX+VXqfcwfPhw6OnqQfs3bZkUJWvshdkHH3yAY8eOYd++fZg4aCIEKQKpnsKku0nQMtGCobNhk841JSUlCAwTpzf+6quvMGHCBLi6uqIoowiMkAHXvH4Bwc6dO3Hu3DmsWLGixjvs3uu8kZ+Qj5eHXuLGJzfqlXsfEM/jkeBZ8eDOuOPmzZvw8PDAsW7H4LOl/pXgazJpUsOLdrVUzTUsyWuNF4TlQjz4+gGe/vAUoor6fZ6EkMaRS0AwZswYqKuLK4qOHTtWHpto02SRQaV9e/EcgVKjUiT7J8N9qbhaZFZgFsZNGgfvCa2jS1ZJSQkjfh+B0txS/LP/H6hx1SAsFyLydCRKc0qlvkA6dOiADh0aljqwoQw6GiDjmTg94qNvH8GynyVM3WRXsKepIiMjsW7/OiREJWAWZtW5fk50DnQ76Mq/YdVwdHSEQCBAZGQkOnToIK5F8FbqUYZh4OjoiJKSEoSHhytsDsHkyZMxefJk9jHPmoeyAnFNhMrZbubOnYuxPcfiyPEjTc6p3pQLM01NTYhEIiQlJYFrzgVHiYOCpALo2ugCEAeCNkNtmnyu6dWrF7745Asc2H8A//3vf2FlZQVXV1cIkgXQNNSEinr9voL++ecf3LlzB7169ZIKCDZv3oy9e/di/vz5WLVqFYYdHIawI2EQlTdsXHtOTg40NTXBsxb3lvTt2xeZLzNRkFQA6yHWjXnr76zmHJbUa0MvBH8T3ODPkxDScHIJCNauXVvt76Tl+OKLL7BhwwbkPcvDXxP/QklJCebNmwedKzpYdWaVopvXYC47XJCfkY8n3z9hlzXn3SRJsR5DF0OEHw9HYUYhQn8Khe8d3xY1Ca64uBjHzh2DFrRQVlAGNR21WtdXxIRiCTMzM+Tn57PZZfSd9PHi8AupdXJyclBWVgahUAgjnhFK80oVPrwJANR56tDQ10BeXF6V9JdZL7Ng4GzQ5F6XplyYrV+/Hhs2bICJiQmUlJTAbccVz8/4f0Bw9fRVhNuGI3J3JBYsWNDoNnI4HKxcsRIReyOgM1OHnSxf3/kDEjNmzECvXr2qDLmJiorCq1evUFZWBuBNvZKGDJ9KSkpib5CkxKagJKcEpfmliDoTBZuhNlDValidl3ddcw1LAhr3eRJCGqfZBok/fvwYYWHijDbOzs4NzlpBZMvISDzGXdNdE6U5pTjz6xn89ttvGKQ8COVm5QpuXcP0798ft2/fxuVLl5E1OguMkKlyNykkJARPnz6Fm5ubXDL4SCbBdf9Pd2RHZOPRtkdo36c9Xl191aImwdnb22PdunWI/m808pPyYdhRenx4bGwshg8fDmdnZ5w5cwY5UTlVhug0l4iICKk71NX1EOjr66O4uBhpaWkoe10GFU0VaOjVXIFZnhiGQW5uLvT0xAGUJPWopIeovLwcZWVlyHyRKZPhQk25MDM3l07hWHkeQW5sLqJTonEh6QLUjdWbFBAA4knFPUQ98Om2T9lqxfWtQSDRu3dv9O7du8ryb775BnPmzIG5uXmjh0+pqalBXV0dHA4HOcU5UOWqIj8+H1FnouC+3L2B75bIirznKRBCpMl9YHBSUhJ69+4NDw8PLF68GIsXL8Z7772HXr16ISkpqcGvt3v3blhbW0NDQwOenp4IDg6udf2TJ0/CyckJGhoacHFxweXLlxv7Vt5JKhoqMHEzAT+Xjw8Hfoh47XjEJtQ/R31LYG9vD1VVVVzffZ0NBt6uM3D+/HnMnTsXP/30k1zaIMnLHfJDCETlIoR8HwKd9jotbhKctrY21q5diz5WfVCYXDXTUFBQECIiIpCSIq5PoYiiZBJvD1fRc9RDUXoRSvNKpZYrKSnB3NycnT+giGqmeXl50NLSgr6+PkpKxNW/355Y/OjRI3C5XHyw8wMYdm56ylFZqhwQxF2NQw+3Hti+fTumTZvW5NdW1VJlqxVL1DflaF2MjY3h7e2NtCNp1Q6fqk8OfmNjYxyYcwAnF52Es7MzeFY8JN5JRObLTNiOtK216jORj5qGw8mjpgIhREzuAcHcuXNRXl6OsLAwZGdnIzs7G2FhYRCJRJg7d26DXuvEiRNYtmwZ1q5di5CQEHTt2hVDhgyptqQ9AAQGBmLq1KmYM2cOnj59irFjx2Ls2LF48eJFteu3NQHrxCdWi14WUI1RxQS9CTi88jAGDRrUqr4E161bh0srL8HiskWNxXhsbW0xZMgQvPfee3JrR+ViPSKhCM/3Pm9RwUBlOu10qp1YPG7cONy5cwcbN26EqEKEvLi8Zi9KVhNNfU1oGmnWWLFYkTUIeDweW409LU2cwYlvw0feqzcBgSTIUi1TVXhAUFBQgB07duDzzz8HIF2tOO5KHPpO7Itly5bJbA6Ytpk2BKlvCosVJDeshwAQF6s7d+4c4uLiqjxX2/Cp+lQBtjW1Rfi2cAR9HQSeFQ8hP4TAsp8lnv74tNaqz0Q+mvp5EkIagZEzDQ0NJiQkpMryx48fM5qamg16LQ8PD2bBggXsY6FQyJibmzObN2+udv3JkyczI0aMkFrm6enJzJs3r97bzMvLYwAweXl5DWpraxC4IZDZhm3MhakXmAMdDzC7jHYxSf5J7PLADYGKbmK91NReRb2P7SrbmW3YxuxQ29Gs262L/1p/JnBDICMQCJjdI3YzJ5acYJ8L3BDI+K/1l1o/JzaH2a6ynRGWC5u7qQzDMMzFixeZ999/n9m9eze77Givo8yLX1+wj3/88UdmyZIlzMOHDxn/tf7M5RmXFdFUhmEYJj4+nikuLmYfh+wKYU4NPyW1TlZ6FrOGs4bJi1fs+SQ/P58BwABg8vPzmWf7njF/DvyTKS8pZ77T+o7JeJ4h0+2d6H+CeX7w+ZvHA04wz/Y9a9BrjB49mgHA7Ny5k2EYhklNTWW+++475urVqzJpo+R88bvH78w2bGPOjDrTqs6D5N32Ll+LkJZB7rc92rdvj/LyqmPShUJhlXGstSkrK8OTJ08wcOBAdpmSkhIGDhyIoKDquw+DgoKk1geAIUOG1Lg+AJSWliI/P1/q510ludsSfiwc2WHZqCiqwKsbr1rcMJe6VL6bxPz/Li2gmLtJQV8HQVQhqnbYkqJJ5jksGrEICy4twOGrhwG86Z5/+y5oblQu+DZ8KKko5u5oVFQUjh49ivv377PLJKlHJU6fPo3vv/8eUVFRCq9SbGlpCQ2NN/MXJHMIKqtIqYAh11DhE591dHQwc+ZMrFy5EkKhkB0ylHw/GRp6GshSzUJycjIqKipksj1tM22pYniCZAF02jVsH3h4eMDV1RVcrrhnITQ0FEuXLsXKlStl0kbJ+SItWNzDE3MhplWdBwkhpCnk/k2/bds2LFq0CI8fP2aXPX78GIsXL8a3335b79fJzMyEUCisUjXTxMSE7aJ/W1paWoPWB8Rp7CQVNfl8Ppt94l0l+RIEgPKicgStD2p1X4Le67yhP1kf48aNw5Ah0tWbe3zVA/EO8SgqKpJ7OyqPe61u2JKiST7rortF4KpyISoSSbVZdZgqtm3bhqdPnwL4f8pRBc0fAIC+ffti+/btmD17Nrvs7YnFc+bMwfLly+Hm5qawGgQ14VnzkPcqTypIzXyZCcPOTcvtLyuHDh3C1q1boaurKw4IEvIRezkW7Qe3h4eHB9q1ayez4ZVccy4EKW+GDDU0yxAAfPnllwgJCWGPBz6fj4kTJ2LQoEEyaSMg/h9RUhV/LVKaS0JIWyL3LEMzZ85EUVERPD092QqxFRUVUFFRwezZs6W+7LOzqx8b3JxWr16NZcuWsY/z8/PbRFAQuD6w2uw8rQWXy8W5c+fA4XCQkZEBY2Nxtdrbt29j2rRpsLS0RHR0NFRV5ZNCsLmK9TSV1xoviEQiuK9zBxLEbeu+WFy47YsvvsDmzZsxsvtIXHhyQZxytNL8geZOn9qtW7cqGaHeTj36wQcf4IMPPgAABCYGKjQgCAwMxKVLl9ClSxf4+vqCZ8VDRVEFil4XQdtYG1u2bEHkpUj4WDa90JWsSNLlvrfyPQhLhQg7GgantU6wDLZEUlwSCs4WAN2avh2uORdJ98VJJErzS1FWUNbggOBtXl5eOHnyZNMbVwmluSSEtFVyDwi+//57mbyOoaEhlJWVkZ6eLrU8PT0dpqbVF34yNTVt0PoAoK6uzhZVayuCvg6qkp2ntX0JWlhY4KeffoKnpyebUhUQ5923tbXFsGHD5BYMAM1brKepvNd6I3hTMIRlQkAJCP0pFGmP0qDrrIveDr2hG6KLoK+DkBudC6tBVgCkAx5F0nfUR25ULkRCkdQQJ4ZhxEOGGjgMRZYePHiATZs2YcqUKfD19YWathq0jLWQ/yof2sba+Omnn5CQkACfJS0nIBBBhNt+twEAWiZaKM4sRs+pPbEvcx9u+t1kb+I0lbaZNttDIEgWQEWjaelhmbcqQMsCpbkkhLRlcg8IZsyYIZPXUVNTg5ubG27evMlmvhCJRLh58yYWLlxY7d94eXnh5s2bWLJkCbvsxo0b8PKik7vEu/QlOH/+/CrLRowYgaFDh8p9yFBzFutpqqCvgyAsE7IBoPsqd+i00wHzO4Nxr8aB78xHgF8ANAw00HV+12p7P5qLQCDA8+fPYWpqCltbW/Bt+GAYBvmv8iHSE6GgoADt2rVDhaAC5YJyhfYQeHp6YsGCBVLnF0nqUTMPM3z88ce4+s1VdPburLA2VrZ9+3as+noVRrqNhIafBrgWXJh7mbOZdQZsGCCzz7vykCHJcKHGXNB/9tlnOHr0KLZu3QpfX18oKclm1Gtr6eEjhBB5kfscgpCQEPzzzz/s4/Pnz2Ps2LH44osv2OqS9bVs2TLs27cPv/76K8LCwjB//nwUFhZi1qxZAIAPP/wQq1evZtdfvHgxrl69iu3btyM8PBzr1q3D48ePawwg2pq2kutZWVkZOjotZ2y5Ikk+84h+EbjY6yK0Zmsh+JtglGSXYNqDaZjxfAYcxjlAja+GkqwSnBt7TqGTzBcuXAhvb2/89ttvAAAlFSXo2usiKzwLx48fh7W1NSZOnIj8xHyocsX57hXF29sbu3btksrdXzn16MrFKzFGMAZOvZwU1UQpenp6EIlEqDCpgPcGbwiSBUgKTIK/n7/MP2/JpGKGYRqVclQiPz8fSUlJePbsGYyMjGBnZ4fExMQmt4/SXBJC2jq5BwTz5s1DZGQkAHEVVF9fX2hpaeHkyZNYtWpVg17L19cX3377Lfz8/NCtWzeEhobi6tWr7MThhIQEpKamsuv37NkTR48exd69e9G1a1ecOnUK586dQ+fOLeMOnaK9i1+CISEh+PLLL3H69GncvHlTakJnW1c5AMzQycCtW7fAdGfgvcEbl/wu4daaW9B31Eevjb2wKHsRlFSVICoTKXReiaurK8zMzKCsrMwuM3AyQE5EDvLy8qCqqgobGxs2w1BLmKxbGd+aj/w4caahrH+zoGmgCS0TLQW3SmzixIlITU3FhQsX4LXGC8pqyvhX9C82YROulF+R6ba0zbQhKhehOKu4UROKJRYsWID79+/j448/RnZ2NmJjY6WGCDaW97qaAyCvNV7NNm+GEEIUhcPI+YqJz+cjJCQEdnZ22LJlC27duoVr164hICAAU6ZMkcndHXnKz88Hn89HXl4eeDyeoptD6vDRRx9h//797ON58+Zhz549CmxRyyGZQOq1xgvXrl1DRkYGvL29YWtri94deyMoMgiHDh/C9OnT2eBBMqxIUT0EQqFQKhgAgHur76EkuwSDfxkMoVCI0tJSRB2JQuSpSEy6PqnZ21gZwzDIzs4Gn8+HiooKnv3yDFFnozD01FC8/P0l4k7EYcqdKQptY3Ukn/d5pfPwF/lj3HvjcCb4jEy38aPuj5hyfwqe7XkGFS0V9N3Wt9GvJRKJkJaWhoSEBPTo0UN2jSSkhaJrESJvcu8hYBgGIpH4TvPff/+N4cOHAxDXJ8jMzJT35kkbM3HiREyePBmdO3eGpqYmRo8eregmtRiV74IOGTIE06dPh62tLQBAoCGAUCSEg4NDi0qf+nYwAPy/FsH/U48qKytDS0sLBUmKrUEgYWlpCUNDQ4SFhQF4M4fg0KFD6PFpD+xP2V/HKzS/yp/3tYJr2DF9B6wfWcv885ZMLG5MDYK3KSkpwdzcnIIBQgiREblPKnZ3d8fGjRsxcOBA3L17Fz///DMAIC4urkqNAEKaasiQIWwtgqysLOjr6yu4Ra3D06dPkZCQgPiD8Xi4/mGLnlyp7yhdnAwAChILwLNS/F0zfX19JCUlIT09HS4uLuLiZPH5yEwT3/wwadeyznkrR63Ew4sPsWz5MvZzXfrbUgR1kH1yAa45F4WphU2aQwAAAQEBCAwMxNChQ+Hi4iKTthFCSFsn9x6C77//HiEhIVi4cCG+/PJL2NvbAwBOnTqFnj17ynvzpA0zMDBocWPKWwqhUIiXL1/iwoUL7DwLS0tLKEGpxc0r+eWXX+Du7o6dO3cCEAcEr9NfY/TI0VixYkWLSDkqcf36dZSUlLAV0nmWPAhLhVi9cDV2mO3A58s/V3ALpZ1+eBr3cR/aQ7Sllsvj85bqIbBo/Gf13XffYdWqVRg1ahQ7P40QQkjTyL2HoEuXLlJZhiS2bdtW7XAAQoj8CYVCuLi4gGEYqYreLTF9alZWFp48eQIHBwcAgIaeBgr1CnHh0gVYhFrg22+/ZScVK9rbvZ4qGirQNtNGxtMMCFOFsPeyV1DLqvfxMvHkXAsLC2zfvh0qKiqYNGkSzM3NZf55c825KEgoQGFaYZN6CAYNGoTTp08jPj4ewcHB7HFBCCGk8eQeENREQ6PxRWkIIU2jpqaGLl26QFlZGT4+PhgwYADWrFkDMzMzRTetigkTJsDBwQHvvfceu8y6gzW+cPgCph6m4h6CFjKHQKK4uBjp6emwtrYG34aP2Eux0DbThqa+pqKbJuXzz8U9FiKRCH379sXr16/h6uoKc3NzmW9L20wbiXcS2d8ba968ecjNzcWjR48oYxwhhMiIwgICQohihYaGIi0tDWZmZoiKisLmzZsV3aRqOTo6wtHRUWqZfVd7uBi6oPei3ijOLkZFUQV47RU/hwAAXr58ifHjx0NdXR2PHj0Cz4qHDb9tgJmxGT4s/BDa2o2/GJaXsrIyrFy5Evfu3ZPbRF2uORevn72GlrEWlFWb1jv82WefyahVhBBCAAoICGnTdHR0cPr0aURFRYHP5yu6OfWm56iHlIAUAOIJxWo8NajpqCm4VWLGxsbISMqAirIKYmNjwZgwuC+4DwiA31V/R9DXQeIaIC0kt31FRQUEAgFWrlyJlStXym07XHMuhGXCJs0fIIQQIh8UEBDShmlra2P8+PGKbkadYmNj4e/vD1tbW/Tq1QvpaumIehEFoVDYYuYPSBgZGWHbtG1I2ZeC3FO50LXWxSAMgslAEzzZ8oRN8dkS3LlzBwMGDICzs3O1c71kQVL/wmmquEJz5fkDLS04IoSQtkruWYYIIS3TkydPMHDgQEyePFnRTanTwYMHMWPGDBw+fBgAMP+b+VgZtRJBAUEtbv4AAMzdOxeDNgxCgF8ABKECDMZgTLedzgYDik7dKmFsbAyRSIQXL16gtLRULttQUlZCgF8AXv76EgDAbScOCCT1D5SU6WuIEEIUTe49BEKhEIcPH8bNmzeRkZHBFimTuHXrlrybQAipRkVFBW7evAkjIyMwDNOiU7R6eXnBx8cHzs7OEAqF0OJqQQlKMFQ1xOvE1y1m/kBlkov+3/x+QwpSgL1oUcEAADg4OOCPP/7AtGnT0KlTJ0RHR8t8G5XrWCirK0PHQkeqGFpL2h+EENJWyT0gWLx4MQ4fPowRI0agc+fOLfqig5C2pFu3bujWrRvMzc1b/P/liBEjMGLECPZxREQEDjgfgEqWCgoSC6Brr6u4xtVCe4w29vjtARdcuKm6tbiLXxUVFSgrK8PU1FSudWEqBwUB6wLAVDAUDBBCSAsi94Dg+PHj+PPPPzF8+HB5b4oQ0gDq6up4+vSpopvRaIYdDZETkYOCpAK079de0c2pVuH5QrjABf/gH/xb/i+Cvg5qcRfBvr6+mDx5MgQCgVy347XGC0EbgiCqEEFZTbnF7QdCCGnL5B4QqKmpsdWJCSGkKRiGQUlJCTQ1NaHvqC8OCBILWuSQIcmwmJ/W/QTNkZoovliMAL8AAIor8lYTDocDHR35zsMI+vpNMCAsE7bI4IgQQtoquc/mWr58OXbu3AmGYeS9KULIO2z37t3Q19eHlpYWxo8fj9CiUGSFZUGQJGAnqrYUlcfI91rbC25ubui1the8N3gjwC8AQV8HKbqJzary/lhaurTN7gdCCGmp5N5D4O/vj9u3b+PKlSvo1KkTVFVVpZ4/c+aMvJtACHkH6OjoIDc3FwBw9uxZdF/WHcInQlSUVLS4LEMioajaMfKSxyKhqLo/eydVN4G48pyCyo8JIYQohtwDAl1dXYwbN07emyGEvONGjBiB0NBQ3N1xF68yX2H4xOG4teMWNPQ0oKYtLkrWUvLa17b9tnbxS8ERIYS0fHIPCA4dOiTvTRBC2gADAwMYGBigyL4IZb+VobRHKbRMtKBtog1A+k40aTkoOCKEkJaPKhUTQlqVysNNeFY8cNtxKa89IYQQ0gTNEhCcOnUKf/75JxISElBWVib1XEhISHM0gRDyDrh+/To2bdqEYcOGwWeDDwL8AlCQWIC4y3EUDBBCCCGNJPcsQz/88ANmzZoFExMTPH36FB4eHjAwMEBsbCyGDRsm780TQt4hFy5cwN27d/H555/Da40XlNSUwIgYymtPCCGENIHcA4KffvoJe/fuxY8//gg1NTWsWrUKN27cwH/+8x/k5eXJe/OEkHfIxo0bMWvWLPz999/iCcRl0nntCSGEENJwcg8IEhIS0LNnTwCApqYmCgoKAADTp0/HsWPH5L15Qsg7hM/n4+DBg9AK1KK89oQQQoiMyH0OgampKbKzs2FlZQVLS0s8ePAAXbt2RVxcHBUrI4Q0GOW1J4QQQmRL7gFB//798ddff8HV1RWzZs3C0qVLcerUKTx+/Bjjx4+X9+YJIe8YymtPCCGEyBaHkfNtepFIBJFIBBUVcexx/PhxBAYGokOHDpg3bx7U1NTkufkmy8vLg66uLhITE8Hj8RTdHEIIIYS0Mfn5+Wjfvj1yc3PB5/MV3RzyDpJ7QNDaJSUloX379opuBiGEEELauMTERLRr107RzSDvoGYJCO7fv49ffvkFMTExOHXqFCwsLPD777/DxsYGvXr1kvfmm0QkEiElJQU6OjrgcDhy2YYk8qdeiKajfSk7tC9lg/aj7NC+lB3al7LTHPuSYRgUFBTA3NwcSkpyzwdD2iC5zyE4ffo0pk+fjmnTpuHp06coLS0FIB6Ks2nTJly+fFneTWgSJSWlZovGeTwenZhlhPal7NC+lA3aj7JD+1J2aF/Kjrz3JQ0VIvIk9zBz48aN2LNnD/bt2wdVVVV2ube3N1UpJoQQQgghRMHkHhBERETAx8enynI+n4/c3Fx5b54QQgghhBBSC7kHBKampoiOjq6y3N/fH7a2tvLefKugrq6OtWvXQl1dXdFNafVoX8oO7UvZoP0oO7QvZYf2pezQviTvArlPKt68eTOOHDmCgwcPYtCgQbh8+TLi4+OxdOlSrFmzBosWLZLn5gkhhBBCCCG1kPuk4s8//xwikQgDBgxAUVERfHx8oK6ujhUrVlAwQAghhBBCiII1Wx2CsrIyREdHQyAQwNnZGVwutzk2SwghhBBCCKkFFSYjhBBCCCGkDZPbkKHZs2fXa72DBw/KqwmEEEIIIYSQOsgty9Dhw4dx+/Zt5ObmIicnp8aftm737t2wtraGhoYGPD09ERwcrOgmtTrr1q0Dh8OR+nFyclJ0s1qFe/fuYdSoUTA3NweHw8G5c+eknmcYBn5+fjAzM4OmpiYGDhyIqKgoxTS2hatrX86cObPKcTp06FDFNLaF27x5M9577z3o6OjA2NgYY8eORUREhNQ6JSUlWLBgAQwMDMDlcjFhwgSkp6crqMUtU332Y9++fascl5988omCWtxy/fzzz+jSpQtbfMzLywtXrlxhn6fjkbR2cgsI5s+fj7y8PMTFxaFfv344cOAAzp49W+WnLTtx4gSWLVuGtWvXIiQkBF27dsWQIUOQkZGh6Ka1Op06dUJqair74+/vr+gmtQqFhYXo2rUrdu/eXe3zW7duxQ8//IA9e/bg4cOH0NbWxpAhQ1BSUtLMLW356tqXADB06FCp4/TYsWPN2MLW4+7du1iwYAEePHiAGzduoLy8HIMHD0ZhYSG7ztKlS3HhwgWcPHkSd+/eRUpKCsaPH6/AVrc89dmPAPDRRx9JHZdbt25VUItbrnbt2uGbb77BkydP8PjxY/Tv3x9jxozBy5cvAdDxSN4BjByVlJQwR48eZQYOHMhoaWkxkyZNYq5evcqIRCJ5brbV8PDwYBYsWMA+FgqFjLm5ObN582YFtqr1Wbt2LdO1a1dFN6PVA8CcPXuWfSwSiRhTU1Nm27Zt7LLc3FxGXV2dOXbsmAJa2Hq8vS8ZhmFmzJjBjBkzRiHtae0yMjIYAMzdu3cZhhEfh6qqqszJkyfZdcLCwhgATFBQkKKa2eK9vR8ZhmH69OnDLF68WHGNasX09PSY/fv30/FI3glyLUymrq6OqVOn4saNG/j333/RqVMnfPrpp7C2toZAIJDnplu8srIyPHnyBAMHDmSXKSkpYeDAgQgKClJgy1qnqKgomJubw9bWFtOmTUNCQoKim9TqxcXFIS0tTeoY5fP58PT0pGO0ke7cuQNjY2M4Ojpi/vz5yMrKUnSTWoW8vDwAgL6+PgDgyZMnKC8vlzo2nZycYGlpScdmLd7ejxJ//PEHDA0N0blzZ6xevRpFRUWKaF6rIRQKcfz4cRQWFsLLy4uOR/JOkHsdAgklJSVwOBwwDAOhUNhcm22xMjMzIRQKYWJiIrXcxMQE4eHhCmpV6+Tp6YnDhw/D0dERqampWL9+PXr37o0XL15AR0dH0c1rtdLS0gCg2mNU8hypv6FDh2L8+PGwsbFBTEwMvvjiCwwbNgxBQUFQVlZWdPNaLJFIhCVLlsDb2xudO3cGID421dTUoKurK7UuHZs1q24/AsD7778PKysrmJub4/nz5/jss88QERGBM2fOKLC1LdM///wDLy8vlJSUgMvl4uzZs3B2dkZoaCgdj6TVk2tAUFpaijNnzuDgwYPw9/fHyJEjsWvXLgwdOhRKSnLtnCBtyLBhw9jfu3TpAk9PT1hZWeHPP//EnDlzFNgyQt6YMmUK+7uLiwu6dOkCOzs73LlzBwMGDFBgy1q2BQsW4MWLFzQvqIlq2o8ff/wx+7uLiwvMzMwwYMAAxMTEwM7Orrmb2aI5OjoiNDQUeXl5OHXqFGbMmIG7d+8qulmEyITcrso//fRTmJmZ4ZtvvsHIkSORmJiIkydPYvjw4RQMADA0NISysnKVLATp6ekwNTVVUKveDbq6unBwcEB0dLSim9KqSY5DOkblw9bWFoaGhnSc1mLhwoW4ePEibt++jXbt2rHLTU1NUVZWhtzcXKn16disXk37sTqenp4AQMdlNdTU1GBvbw83Nzds3rwZXbt2xc6dO+l4JO8EuV2Z79mzBzweD7a2trh79y4+/vhjjB8/vspPW6WmpgY3NzfcvHmTXSYSiXDz5k14eXkpsGWtn0AgQExMDMzMzBTdlFbNxsYGpqamUsdofn4+Hj58SMeoDCQlJSErK4uO02owDIOFCxfi7NmzuHXrFmxsbKSed3Nzg6qqqtSxGRERgYSEBDo2K6lrP1YnNDQUAOi4rAeRSITS0lI6Hsk7QW5Dhj788ENwOBx5vfw7YdmyZZgxYwbc3d3h4eGB77//HoWFhZg1a5aim9aqrFixAqNGjYKVlRVSUlKwdu1aKCsrY+rUqYpuWosnEAik7gTGxcUhNDQU+vr6sLS0xJIlS7Bx40Z06NABNjY2WLNmDczNzTF27FjFNbqFqm1f6uvrY/369ZgwYQJMTU0RExODVatWwd7eHkOGDFFgq1umBQsW4OjRozh//jx0dHTYcdh8Ph+amprg8/mYM2cOli1bBn19ffB4PCxatAheXl7o0aOHglvfctS1H2NiYnD06FEMHz4cBgYGeP78OZYuXQofHx906dJFwa1vWVavXo1hw4bB0tISBQUFOHr0KO7cuYNr167R8UjeDQrOctTm/fjjj4ylpSWjpqbGeHh4MA8ePFB0k1odX19fxszMjFFTU2MsLCwYX19fJjo6WtHNahVu377NAKjyM2PGDIZhxKlH16xZw5iYmDDq6urMgAEDmIiICMU2uoWqbV8WFRUxgwcPZoyMjBhVVVXGysqK+eijj5i0tDRFN7tFqm4/AmAOHTrErlNcXMx8+umnjJ6eHqOlpcWMGzeOSU1NVVyjW6C69mNCQgLj4+PD6OvrM+rq6oy9vT2zcuVKJi8vT7ENb4Fmz57NWFlZMWpqaoyRkREzYMAA5vr16+zzdDyS1o7DMAzTnAEIIYQQQgghpOWg2b2EEEIIIYS0YRQQEEIIIYQQ0oZRQEAIIYQQQkgbRgEBIYQQQgghbRgFBIQQQgghhLRhFBAQQgghhBDShlFAQAghhBBCSBtGAQEhhDTRzJkzqXozIYSQVktF0Q0ghJCWjMPh1Pr82rVrsXPnTlCNR0IIIa0VBQSEEFKL1NRU9vcTJ07Az88PERER7DIulwsul6uIphFCCCEyQUOGCCGkFqampuwPn88Hh8ORWsblcqsMGerbty8WLVqEJUuWQE9PDyYmJti3bx8KCwsxa9Ys6OjowN7eHleuXJHa1osXLzBs2DBwuVyYmJhg+vTpyMzMbOZ3TAghpK2hgIAQQuTg119/haGhIYKDg7Fo0SLMnz8fkyZNQs+ePRESEoLBgwdj+vTpKCoqAgDk5uaif//+cHV1xePHj3H16lWkp6dj8uTJCn4nhBBC3nUUEBBCiBx07doVX331FTp06IDVq1dDQ0MDhoaG+Oijj9ChQwf4+fkhKysLz58/BwDs2rULrq6u2LRpE5ycnODq6oqDBw/i9u3biIyMVPC7IYQQ8i6jOQSEECIHXbp0YX9XVlaGgYEBXFxc2GUmJiYAgIyMDADAs2fPcPv27WrnI8TExMDBwUHOLSaEENJWUUBACCFyoKqqKvWYw+FILZNkLxKJRAAAgUCAUaNGYcuWLVVey8zMTI4tJYQQ0tZRQEAIIS1A9+7dcfr0aVhbW0NFhU7NhBBCmg/NISCEkBZgwYIFyM7OxtSpU/Ho0SPExMTg2rVrmDVrFoRCoaKbRwgh5B1GAQEhhLQA5ubmCAgIgFAoxODBg+Hi4oIlS5ZAV1cXSkp0qiaEECI/HIbKaxJCCCGEENJm0W0nQgghhBBC2jAKCAghhBBCCGnDKCAghBBCCCGkDaOAgBBCCCGEkDaMAgJCCCGEEELaMAoICCGEEEIIacMoICCEEEIIIaQNo4CAEEIIIYSQNowCAkIIIYQQQtowCggIIYQQQghpwyggIIQQQgghpA2jgIAQQgghhJA27H/HjL1zOqKhWQAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -675,18 +666,18 @@ "Trotter step with Lie-Trotter\n", "-----------------------------\n", "\n", - " Depth: 7\n", - " Gate count: 17\n", - " Nonlocal gate count: 5\n", - " Gate breakdown: RZ: 6, RX: 6, RZZ: 5\n", + " Depth: 17\n", + " Gate count: 27\n", + " Nonlocal gate count: 10\n", + " Gate breakdown: CX: 10, U1: 6, R: 6, RZ: 5\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAA3UAAAGwCAYAAAAOtEwOAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAABr/0lEQVR4nO3de1zUdd7//8dwHAZQPKCAgoqIp8SzhemuWlZaoh2s9tLKTdPazPquq66d2NorM/XK1NrNvbbD1VpeXquWVm6ZmRuWmaSmIqKgIyKgctBAOQ0zvz/4xcaKxuAwH2d43m+3ue3O5/3+vD/PUUJevN+f98fkcDgciIiIiIiIiEfyMTqAiIiIiIiINJ6KOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ/mZ3QAEbm6OBxQXm10isYz+4LJZHQKz+dwOLCVVRgdwyl+QYGY9JcvIiLNkIo6EamjvBqGbzI6ReOljIUgfWe7YrayCt7tOtnoGE6ZlLUKf4vZ6BgiIiJup+WXIiIiIiIiHkxFnYiIiIiIiAdTUSciIiIiIuLBVNSJiIiIiIh4MBV1IiIiIiIiHkxFnYiIiIiIiAfTxt8i4jIl+7dx+OmRdY75mIMJjIqnzYj7aHfbY5h89W3Hm0Uk9uaW9c/VOVZ1vowfjuaRtfZL0t/YhKPablA6ERER76SfrkTE5Vr94le0HDgWHA6qivMp3PYOOW/+lvKcdDo9+hej44kbHF2fQs7W3WAyERQeRtzEXzLkuSm07NaBHXNWGh1PRETEq6ioExGXs8QOoM2Ifz24Onzsb0j7TQ8KPvsrUZNfwL9luIHpxB0K9x/j6LqU2vcZb3/K7SnLiP+PG9i9cDUVhT8YmE5ERMS76J46EWlyvuZggrtfBw4HFflZRscRA9jKKjiz+wgmHx9adGpvdBwRERGvoqJORNzix2LOL6S1wUnEKKGda4q5irOlBicRERHxLlp+KSIuZ6+4gO2HAhwOB7bifM588jplR/dg6TYEc4d4o+OJG/gFBRDYOrT2nrru999Emz6xnNl9hB+O5hkdT0RExKs0i6KuoKCARYsWsX79enJycggPD+eOO+5gwYIFzJo1izfffJMVK1Ywc+ZMo6OKeIW81cnkrU6ucyws8Q5iZrxmUCJxt/5z76X/3HvrHLN+/A075//VoEQiIiLey+uLur179zJmzBjy8/MJDg6mV69e5Obmsnz5crKysigqKgKgX79+xgb1YmcrYEM2/DMfSqog0BfiW8JdnaFXmNHppCm0vXk6rYZOxFFdRdnx/eSvf4nKghxM/ubaPiVpKWQ+P+aicx22Shz2aga+X+3OyOJiGX/bjPXDHfj4+9GqRwzXPDqB4Mg2VFdU1vbxCfBj3ObFHHs/hX3L1tceH/bKo5jDw9gy6QUjoouIiHgcry7qCgoKGDduHPn5+cyePZvk5GRCQ0MBWLRoEfPmzcPPzw+TyURCQoLBab1PtQNePQhrjkHlvz2W6tA52JgNCa3gPwdClMWYjNI0AiO70aLfjQC0HDiGkJ7DyJg/jOw/P0zsnP8FILT3cPqvqXtvVWVhLodmDyL8Vs2ae7ofjuaTl7IfgJNb93Dq20OM3fBHEl+awT8fWQqAvdLG9lkruOX95znx2XcUHzxOzC2D6Th6EBtG/dbI+CIiIh7FqzdKmTVrFjk5OcycOZMlS5bUFnQAc+fOpW/fvthsNjp37kyLFi0MTOp97A54Zjf8Levigu6n9hXDr1Mg57z7son7hfQcSusR91G8fQ2l6V/X28deVcHRhXcQ0msYkROfdHNCaWpnUjPIWvslXSZcT/ig7rXHC/cdJe3PGxm+/DEska1JXPwwO5/8K2Wnig1MKyIi4lm8tqhLT09nzZo1tG3blhdffLHePgMHDgSgb9++dY4fO3aMpKQkQkNDadWqFffffz+FhYVNntmbvJMJm082rG9hBfy/nTUze+K9Iu95Bnx8yX3v2Xrbs//0MPaqcjo//rZ7g4nbfL90LXZbNf3n3FP3+CvrsFdXk/TZYvK/OsCxDV8ZlFBERMQzeW1Rt3r1aux2O5MmTSIkJKTePkFBQUDdoq6kpISRI0eSk5PD6tWr+ctf/kJKSgq33XYbdvtlppykls0Oq486d86xUthxumnyyNXBHBlH6+H3UrLvc0rSUuq0nf5wOedSP6Lr/A/wCdRaXG9VYs3n2IaviPpFAu2u7Vl73GGr5syuDMxtWpK55gsDE4qIiHgmry3qtm7dCsDIkSMv2ScnJweoW9T95S9/4eTJk3zwwQfcdtttTJw4kffee49vvvmGjRs3Nm1oL7Etv2b2zVn/d8z1WeTqEjHxKfDxqTNbV7LvC3LemUfs3L8T2L6zceHELfYtq5mV++lsXbtrexJ3z0jS39jEkOd/ja85wMCEIiIinsfkcDi8ctFbdHQ0OTk57Nmzp96dLW02G5GRkRQUFJCVlUVsbCzwryLwiy/q/ra4a9eujBgxgjfeeMPpLIMGDSI/P9/5D+GhQic+T/DIB50+z15eyunf9miCROIMU0AQ7V854pZrVZyycuh3g4m8N5l2Ltoc5dQT3XBUlrlkrObM3+FDsn1Ik1/Hz2Im6fMlHFz5EYf+51PGvP88Bd9nsSv5bafHes7nW6pMWlEhIiKeKSIigtTU1Ead67W7X54/X7PzRllZ/T/crVmzhoKCAkJDQ+nSpUvt8YMHDzJx4sSL+vfu3ZuDBw82Kkt+fj4nTzbwBjMv0Kkaghtxno85pFn9OV2tfAIttHfDdewVF8h6cQIthyS5rKADyM3NxV5xwWXjNVcBJl/c8YUw+A/3U5p9mkNvfwLA9sdfJWnLErL/sZNT36Q7NVZuXi6VDj0KQ0REmh+vLeoiIiIoLi5m9+7dJCYm1mnLy8tjzpw5ACQkJGAymWrbiouLCQsLu2i81q1bk5GR0egszUmQT+N+U24vK6FDhw4uTiPOMgUEueU6xV+vo+zY95SfPEzx9jUXtfd+9SAB4TFOjxsVFaWZOhfwd/hAE096dRjVny5J17Phhtm1x0qOn+K7F97l+qWPsnHUbGxlDV/LHRUZpZk6ERHxWFdSM3htUXfjjTeSnp7OSy+9xOjRo4mPjwdg165d3HfffRQUFADueeh4Y6dRPdU/82H2t86fN6pLKEv+//scxThlNhi+qemv02bkfbQZeZ/Lxz18+AhBXvudzX2qLpTzbtfJTXqNk1v38F6PBy46fujtT2pn7pxx+Mhh/C3mn+8oIiLiZbx2o5S5c+fSpk0bTpw4Qe/evenTpw/dunVjyJAhxMbGMmrUKODixxm0atWKs2fPXjReUVERrVu3dkd0jzesPUQ0YrLnrs4ujyIiIiIi4vW8tqjr2LEjKSkp3HrrrZjNZqxWK61bt2blypV8/PHHHD58GLi4qOvZs2e9984dPHiQnj17XnRcLuZrgsldnTunR0sYEt40eUREREREvJlXL1Lq2bMnH3300UXHS0tLsVqt+Pj4cM0119Rpu+2223jyySfJycmhY8eOAOzcuZOsrCwWL17sltze4J4ucLQE1h//+b5RFvivIeBj+vm+IiIiIiJSl9fO1F1OWloaDoeDbt26YbHUfdDx9OnTiYyMZPz48Xz00UesXbuWX/3qVwwZMoTx48cblNjzmEwwPwF+0wOCL/Org6Ht4M1h0N49e3OIiIiIiHgdr56pu5T9+/cDFy+9BGjRogVbt27l8ccf595778XPz4/bbruNpUuX4uPTLGvgRjOZ4MF4+FUsfHKyZgOVnaehygFBvvDuLyEmxOiUIiIiIiKeTUVdPbp27Vrvsk1pnCA/uL1TzWvsZjhdDqH+KuhERERERFxBRZ2IuEx57hGsrzyAraQAX0tLOj/+NkExvS/Zv2DLWxxf8SBd579P2HUTao/vf6gzJr9AfAJr1uVG3Dmf1sPv4dzuT8hd9TQOWyU+gRZifrMSSxf9d3y1GvLHB4m5eRAh0e3YeOPvKEqzNqpfQ8cRERFprpplUbd161ajI4h4pew/zaDtzdNpe8MUir9ai3XZFHr+1656+1acslKw+b8J7n5dve2xc9Zgie1X+95WWsyxlyfRfcGXBMX0piQthWMvT6L3igNN8VHEBY5/vIMDf/qAsRv+84r6NXQcERGR5ko3iYmIS1SdPc35zFTajKh5YHXY0DupLDhBeV7mRX0ddjvHX51G9PQVmPwDGzR+RV4WfqFtamf+QnsPp/JMNheydrvuQ4hLnfomnQt5RVfcr6HjiIiINFcq6kTEJSoLTuDfKhKTb80CAJPJREB4DJVnsi/qe2rDy4T0vJ7guIGXHM/6yv2kzeqDdcVUqs6dwRzVDVtJIaXpXwNwdudG7GUlVJy2NsnnEREREfEUzXL5pYg479DcRMpzj9Tb1mvpngaPU3b8AGd3rKP7gi8v2af7gi8JCI/BYavi5LtPY132AN2e3UTXuWs5+bf52MtLCe6eiDm6FyYffRszwtgPX6BFbGS9bRtHz+FCbqGbE4mIiDRf+mlIRBqkx6Idl203+QdSVZyHo9qGydcPh8NB5ZlsAsJj6vQrPZhCxWkrBx7pBkBVcT7HT0ynqjiP8DGPANSeY/Lzp/24JzjwSDwAoQkj6Z4wEgB7VQX7HojAHNPLpZ9TGmbTuKeMjiAiIiL/PxV1IuIS/mHtsHQdQOG2VbS9YQpnv15HQJuOmCPj6vQLH/NIbfEGkPHUCNqPe6J298vq8vM4bFX4hYQBUJSyGktsfwCqivLwb10zO5S35o+EJoy6aHwRERGR5kZFnYi4TKdHVmJdPoX8tQvwDWpB51lv1bZZV0wjbEgSYdcmXXYM29lTZC28E+zVOHAQ2D6Wzk+8A0Due89ScjAFqm0E90ik08w3mvTzyJVJXDSdjjcMJKhdGKNXP01VaRnrhz4GwNAlD3NicyonNqdett/PjSMiIiJgcjgcDqNDSPPx48PH25lh001Gp5H6lNlg+CajUzReytiaB97Llam6UM67XScbHcMpk7JW4W8xGx1DRETE7bT7pYiIiIiIiAdTUSciIiIiIuLBVNSJiIiIiIh4MBV1IiIiIiIiHkzbCYhIHWbfms1GPJXZ1+gE3sEvKJBJWauMjuEUv6BAoyOIiIgYQkWdiNRhMmn3SAGTyaSdJEVERDyEll+KiIiIiIh4MBV1ctXauHEj/fr1q/Pq0KEDZrP5sm2XMnHiRHbs2OFUhiNHjjB06FDi4+MZPHgwaWlpF/UpLy9nwoQJxMfH07dvX0aPHk1mZmZt+/Dhwzl27JhT1xURERERaSgVdXLVSkpKYu/evbWvbdu2YbFYeO211y7bVp9vv/2WoqIiEhMTncowY8YMpk+fzuHDh5k3bx5Tpkypt9/06dPJyMjg+++/Z/z48UybNq22bfbs2SQnJzt1XRERERGRhjI5HA6H0SGk+Ri7GU6XQzszbLqp4efZ7XbGjRtHdHQ0r7/+eoPbfjR16lSGDh3K1KlTG3zN06dPExcXR1FREX5+fjgcDiIjI9m+fTtxcXGXPC81NZW77roLq9UKQFVVFVFRUWRmZtKyZcsGX19EREREpCE0UyceITk5maKiIpYvX+5U24+2bdvGtdde69Q1T5w4QWRkJH5+NbuGmEwmYmJiyM7Ovux5y5YtY/z48bXv/f396dOnDykpKU5dX0RERESkIbTHnVz1NmzYwBtvvEFqaioBAQENbvupnJwc2rdvX+dYYmIiR44cqbf/nj17GpV1wYIFZGZm8vnnn9c5HhERQU5OTqPGFBERERG5HBV1clXLyMhg6tSpfPDBB0RFRTW47d9ZLBbKy8vrHPu5TVMCAwPJy8vDZrPVLr/Mzs4mJiam3v5Llixh/fr1bNmyBYvFUqetvLycoKCgy15PRERERKQxtPxSrlolJSXcfvvtPPfccwwbNqzBbfVJSEggIyPDqeu3a9eOAQMGsGpVzQOY161bR8eOHeu9n+7ll19m9erVfPbZZ4SFhV3Unp6eTt++fZ26voiIiIhIQ2ijFHErZzZKWbhwIU899RR9+vS5qO3uu+/mmWeeqbdt06ZNF83crVixguzsbBYvXuxU3oyMDKZMmUJhYSEtWrTgrbfeqr3mtGnTSEpKYsCAAURHRxMbG0toaChQM8u3c+dOAKxWKzfddBMZGRmYTCanri8iIiIi8nNU1IlbNXb3yytVWlrK0KFD2bFjB8HBwe67MPD73/+euLi4Oo85EBERERFxFS2/lGYhJCSEpUuXGvIQ8KioKB588EG3X1dEREREmgfN1IlbGTVTJyIiIiLirTRTJyIiIiIi4sFU1ImIiIiIiHgwFXUiIiIiIiIeTEWdiIiIiIiIB1NRJyIiIiIi4sFU1ImIiIiIiHgwP6MDiIjI1cXhgPJqo1M0jtkXTCajU3gHh8OBrazC6BhO8QsKxKQvABFphlTUiYhIHeXVMHyT0SkaJ2UsBOlfNpewlVXwbtfJRsdwyqSsVfhbzEbHEBFxOy2/FBERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqf5iIiIy5Ts38bhp0fWOeZjDiYwKp42I+6j3W2PYfLVPz3eLCKxN7esf67OsarzZfxwNI+stV+S/sYmHNV2g9KJiHgn/csqIiIu1+oXv6LlwLHgcFBVnE/htnfIefO3lOek0+nRvxgdT9zg6PoUcrbuBpOJoPAw4ib+kiHPTaFltw7smLPS6HgiIl5FRZ2IiLicJXYAbUZMrn0fPvY3pP2mBwWf/ZWoyS/g3zLcwHTiDoX7j3F0XUrt+4y3P+X2lGXE/8cN7F64morCHwxMJyLiXXRPnYiINDlfczDB3a8Dh4OK/Cyj44gBbGUVnNl9BJOPDy06tTc6joiIV1FRJyIibvFjMecX0trgJGKU0M41xVzF2VKDk4iIeJdmUdQVFBQwd+5c4uLiMJvNREdH8/jjj3P+/HmmTp2KyWTi1VdfNTqmiIjXsFdcwPZDAVXnzlBm3U/2649SdnQPlm5DMHeINzqeuIFfUACBrUMJbNOCsB4xXLtgGm36xHJm9xF+OJpndDwREa/i9ffU7d27lzFjxpCfn09wcDC9evUiNzeX5cuXk5WVRVFREQD9+vUzNqiXO1MOX52C87aa95V2cDjAZDI2l7jPkXPwfRFcqIZgPxjcFmJCjE4lTSVvdTJ5q5PrHAtLvIOYGa8ZlEjcrf/ce+k/9946x6wff8PO+X81KJGIiPfy6qKuoKCAcePGkZ+fz+zZs0lOTiY0NBSARYsWMW/ePPz8/DCZTCQkJBic1jsdOgtvHYFt+VDt+Nfxs5Vw7za4NxbGx4CPijuvtTUX3j1aU9D9u2vD4f64mv8V79L25um0GjoRR3UVZcf3k7/+JSoLcjD5m2v7lKSlkPn8mIvOddgqcdirGfh+tTsji4tl/G0z1g934OPvR6seMVzz6ASCI9tQXVFZ28cnwI9xmxdz7P0U9i1bX3t82CuPYg4PY8ukF4yILiLicby6qJs1axY5OTnMnDmTJUuW1GmbO3cu7733Ht9//z1dunShRYsWBqX0Xtvy4Mnvambl6pNVAi98D98VwB/6g1+zWAzcfDgc8KdDNUX9pew8A9+egdnX1BT44j0CI7vRot+NALQcOIaQnsPImD+M7D8/TOyc/wUgtPdw+q+pe29VZWEuh2YPIvzWmW7PLK71w9F88lL2A3By6x5OfXuIsRv+SOJLM/jnI0sBsFfa2D5rBbe8/zwnPvuO4oPHibllMB1HD2LDqN8aGV9ExKN47Y/R6enprFmzhrZt2/Liiy/W22fgwIEA9O3bt/bYj0XgkCFDCAwMxKT1gY2ytxDmX6ag+6lPTsJ/HWj6TOJe7x29fEH3Iwew5AB8ktPkkcRAIT2H0nrEfRRvX0Np+tf19rFXVXB04R2E9BpG5MQn3ZxQmtqZ1Ayy1n5JlwnXEz6oe+3xwn1HSfvzRoYvfwxLZGsSFz/Mzif/StmpYgPTioh4Fq8t6lavXo3dbmfSpEmEhNR/405QUBBQt6jLzMxk3bp1REREMHjwYLdk9UavpkNVAwq6H/3dCtnaDM1rlFbBykPOnbPiINic+JoRzxN5zzPg40vue8/W2579p4exV5XT+fG33RtM3Ob7pWux26rpP+eeusdfWYe9upqkzxaT/9UBjm34yqCEIiKeyWuLuq1btwIwcuTIS/bJyamZGvhpUfeLX/yCvLw8Nm7cyI033ti0Ib3UkXOwt577p37OOqvLo4hB/pFTsyGKM06Vw/ZTTZNHrg7myDhaD7+Xkn2fU5KWUqft9IfLOZf6EV3nf4BPoMWghNLUSqz5HNvwFVG/SKDdtT1rjzts1ZzZlYG5TUsy13xhYEIREc/ktUXd8ePHAejUqVO97Tabja++qvlN4E+LOh8fr/0jcZvNuY0779OTrs0hxtncyL9LfQ14v4iJT4GPT53ZupJ9X5Dzzjxi5/6dwPadjQsnbrFvWc2s3E9n69pd25O4e0aS/sYmhjz/a3zNAQYmFBHxPF67Ucr58+cBKCsrq7d9zZo1FBQUEBoaSpcuXZo0y6BBg8jPz2/Sa1xNWvzHIizD/sPp885csNGxY2fXBxK3a5v8T/zad3X6vI+37eBvEyY2QSJxhikgiPavNOCGyHqE9hnBwA2OS7YHRfess6tlxSkrRxffTccpiwntM6JR1/yp+PhuOCrr/74vzvF3+JDMEKfPy9+RxtuRd12y/dyRk7zT8V8FnZ/FzLBXHuW7F97l0P98ypj3n2fA/P9gV/LbTl87vls8VSat4xYRzxQREUFqamqjzvXaoi4iIoLi4mJ2795NYmJinba8vDzmzJkDQEJCQpNvhpKfn8/Jk81nCsK35ByNWTzlqLY1qz8nb9ayvKxR31zKL5Tqa+Aq4BNoob0brmOvuEDWixNoOSSJdi7a7TI3Nxd7xQWXjNXcBZh8cccXwuA/3E9p9mkOvf0JANsff5WkLUvI/sdOTn2T7tRYuXm5VDr0KAwRaX68tqi78cYbSU9P56WXXmL06NHEx8cDsGvXLu677z4KCgoA9zx0PCIiosmvcTUJPH+6UedVn7HSoUMHF6cRI5iKc6DTNU6f5/dDrr4GrgKmgCC3XKf463WUHfue8pOHKd6+5qL23q8eJCA8xqkxo6KiNFPnIv4OH2jiSa8Oo/rTJel6Ntwwu/ZYyfFTfPfCu1y/9FE2jpqNrayiweNFRUZppk5EPNaV1Awmh8Nx6XUyHiwnJ4d+/fpRWFiIn58fPXr0oLy8nMzMTMaMGYPdbufTTz/lL3/5Cw899FC9Y/zhD3/gueeew0v/iJpMcQWM/cy53S8BfqdnlXmN7afgiZ3On/fuL6F7S9fnEeeU2WD4JqNTNE7KWAjy2l9XulfVhXLe7TrZ6BhOmZS1Cn+L+ec7ioh4Ga/dFaRjx46kpKRw6623YjabsVqttG7dmpUrV/Lxxx9z+PBhoO4mKeIarQLhxijnzgnyhduimyaPuF9iO+jg5BrchFYq6EREREQaw6t/n9mzZ08++uiji46XlpZitVrx8fHhmmucXyImP+//9YZ9RXCygbe2JPeHEP+mzSTu42uC5wfAI1837AH0of7wTL8mjyUiIiLilby6qLuUtLQ0HA4H8fHxWCwXTyesXbsWgIMHD9Z537lzZwYNGuS+oB6sdSCsHAqzdsLRkkv38zPBH/o7P7MnV7++rWH5dfC7b6HUdul+bQPhleugS6j7somIiIh4k2ZZ1O3fvx+49NLLiRMn1vv+gQce4O23327SbN4kwgJ/+wVsyYW1Vthf/K+21gEwvhPc0Qki9ZxhrzWoLbx/A2zMhvXH687cxobCnZ3h1o6apRURERG5Eirq6qGNUVwn0Bduja55FVfAuSow+0BbM/h57R2d8lOtAuGBbjA5DsZuhsIKaBMIa0ZAEz9NRERERKRZUFEnbtMqsOYlzZOvqeb14/9XQed9ynOPYH3lAWwlBfhaWtL58bcJiul9yf4FW97i+IoH6Tr/fcKum1B7fP9DnTH5BeITWPNohYg759N6+D2c2/0JuauexmGrxCfQQsxvVmLpou/jV6shf3yQmJsHERLdjo03/o6iNGuj+jV0HBGR5qxZFnVbt241OoKIiNfJ/tMM2t48nbY3TKH4q7VYl02h53/tqrdvxSkrBZv/m+Du19XbHjtnDZbYfrXvbaXFHHt5Et0XfElQTG9K0lI49vIkeq840BQfRVzg+Mc7OPCnDxi74T+vqF9DxxERac60AE5ERK5Y1dnTnM9Mpc2ImueahQ29k8qCE5TnZV7U12G3c/zVaURPX4HJv2HT9xV5WfiFtqmd+QvtPZzKM9lcyNrtug8hLnXqm3Qu5BVdcb+GjiMi0pypqBMRkStWWXAC/1aRmHxrFoCYTCYCwmOoPJN9Ud9TG14mpOf1BMcNvOR41lfuJ21WH6wrplJ17gzmqG7YSgopTf8agLM7N2IvK6HitLVJPo+IiIgnaZbLL0VExDmH5iZSnnuk3rZeS/c0eJyy4wc4u2Md3Rd8eck+3Rd8SUB4DA5bFSfffRrrsgfo9uwmus5dy8m/zcdeXkpw90TM0b0w+eifMSOM/fAFWsRG1tu2cfQcLuQWujmRiEjzpn8NRUTkZ/VYtOOy7Sb/QKqK83BU2zD5+uFwOKg8k01AeEydfqUHU6g4beXAI90AqCrO5/iJ6VQV5xE+5hGA2nNMfv60H/cEBx6JByA0YSTdE0YCYK+qYN8DEZhjern0c0rDbBr3lNERRETkJ1TUiYjIFfMPa4el6wAKt62i7Q1TOPv1OgLadMQcGVenX/iYR2qLN4CMp0bQftwTtbtfVpefx2Grwi8kDICilNVYYvsDUFWUh3/rmtmhvDV/JDRh1EXji4iINEcq6kRExCU6PbIS6/Ip5K9dgG9QCzrPequ2zbpiGmFDkgi7NumyY9jOniJr4Z1gr8aBg8D2sXR+4h0Act97lpKDKVBtI7hHIp1mvtGkn0euTOKi6XS8YSBB7cIYvfppqkrLWD/0MQCGLnmYE5tTObE59bL9fm4cERGpYXLoSdsi4iZjN8Ppcmhnhk03GZ1GLqXMBsM3GZ2icVLGQpB+XekSVRfKebfrZKNjOGVS1ir8LWajY4iIuJ12vxQREREREfFgKupEREREREQ8mIo6ERERERERD6aiTkRERERExIOpqBMREREREfFg2iNMRETqMPvW7CLpicy+RifwHn5BgUzKWmV0DKf4BQUaHUFExBAq6kREpA6TSY8FEDCZTHo8gIiIh9DySxG5Km3cuJF+/frVeXXo0AGz2XzZtkuZOHEiO3bscCrDkSNHGDp0KPHx8QwePJi0tLSL+pSXlzNhwgTi4+Pp27cvo0ePJjMzs7Z9+PDhHDt2zKnrioiIiDhDRZ2IXJWSkpLYu3dv7Wvbtm1YLBZee+21y7bV59tvv6WoqIjExESnMsyYMYPp06dz+PBh5s2bx5QpU+rtN336dDIyMvj+++8ZP34806ZNq22bPXs2ycnJTl1XRERExBkmh8PhMDqEiDQPYzfD6XJoZ4ZNNzX8PLvdzrhx44iOjub1119vcNuPpk6dytChQ5k6dWqDr3n69Gni4uIoKirCz88Ph8NBZGQk27dvJy4u7pLnpaamctddd2G1WgGoqqoiKiqKzMxMWrZs2eDri4iIiDSUZupE5KqXnJxMUVERy5cvd6rtR9u2bePaa6916ponTpwgMjISP7+am8tMJhMxMTFkZ2df9rxly5Yxfvz42vf+/v706dOHlJQUp64vIiIi0lC6FV5ErmobNmzgjTfeIDU1lYCAgAa3/VROTg7t27evcywxMZEjR47U23/Pnj2NyrpgwQIyMzP5/PPP6xyPiIggJyenUWOKiIiI/BwVdSJy1crIyGDq1Kl88MEHREVFNbjt31ksFsrLy+sc+7lNUwIDA8nLy8Nms9Uuv8zOziYmJqbe/kuWLGH9+vVs2bIFi8VSp628vJygoKDLXk9ERESksbT8UkSuSiUlJdx+++0899xzDBs2rMFt9UlISCAjI8Op67dr144BAwawalXNc7rWrVtHx44d672f7uWXX2b16tV89tlnhIWFXdSenp5O3759nbq+iIiISENpoxQRcRtnNkpZuHAhTz31FH369Lmo7e677+aZZ56pt23Tpk0XzdytWLGC7OxsFi9e7FTejIwMpkyZQmFhIS1atOCtt96qvea0adNISkpiwIABREdHExsbS2hoKFAzy7dz504ArFYrN910ExkZGZhMJqeuLyIiItIQKupExG0au/vllSotLWXo0KHs2LGD4OBg910Y+P3vf09cXFydxxyIiIiIuJKWX4qI1wsJCWHp0qWGPAQ8KiqKBx980O3XFRERkeZDM3Ui4jZGzdSJiIiIeDPN1ImIiIiIiHgwFXUiIiIiIiIeTEWdiIiIiIiIB1NRJyIiIiIi4sFU1ImIiIiIiHgwFXUiIiIiIiIezM/oACIiInJ1cTigvNroFI1j9gWTyegU3sHhcGArqzA6hlP8ggIx6QtAmiEVdSIiIlJHeTUM32R0isZJGQtB+unGJWxlFbzbdbLRMZwyKWsV/haz0TFE3E7LL0VERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg+lJLiIiIuIyJfu3cfjpkXWO+ZiDCYyKp82I+2h322OYfPXjh7eKSOzNLeufq3Os6nwZPxzNI2vtl6S/sQlHtd2gdCLeS99VRURExOVa/eJXtBw4FhwOqorzKdz2Djlv/pbynHQ6PfoXo+NJEzu6PoWcrbvBZCIoPIy4ib9kyHNTaNmtAzvmrDQ6nojXUVEnIiIiLmeJHUCbEZNr34eP/Q1pv+lBwWd/JWryC/i3DDcwnTS1wv3HOLoupfZ9xtufcnvKMuL/4wZ2L1xNReEPBqYT8T66p05ERESanK85mODu14HDQUV+ltFxxM1sZRWc2X0Ek48PLTq1NzqOiNdRUSciIiJu8WMx5xfS2uAkYoTQzjXFXMXZUoOTiHgfLb8UERERl7NXXMD2QwEOhwNbcT5nPnmdsqN7sHQbgrlDvNHxpIn5BQUQ2Dq09p667vffRJs+sZzZfYQfjuYZHU/E6zSLoq6goIBFixaxfv16cnJyCA8P54477mDBggXMmjWLN998kxUrVjBz5kyjo4p4NYej7v9K8+JwQFk1VNkhxB98TUYnkqaUtzqZvNXJdY6FJd5BzIzXDEok7tR/7r30n3tvnWPWj79h5/y/GpRIxLt5fVG3d+9exowZQ35+PsHBwfTq1Yvc3FyWL19OVlYWRUVFAPTr18/YoCJeqtwGn+bC2mNwpqLm2JkKeGg73NUFRkWCvxaCe7WCcvggG963wqnymmO+ppq/+4ldoH9rMKnA8zptb55Oq6ETcVRXUXZ8P/nrX6KyIAeTv7m2T0laCpnPj7noXIetEoe9moHvV7szsrhQxt82Y/1wBz7+frTqEcM1j04gOLIN1RWVtX18AvwYt3kxx95PYd+y9bXHh73yKObwMLZMesGI6CIeyauLuoKCAsaNG0d+fj6zZ88mOTmZ0NBQABYtWsS8efPw8/PDZDKRkJBgcFoR73PoLDyxEwoqLm7bU1TzigmGZddCdIjb44kbbDoBf/y+Znbup6od8Fluzev6dvDiILB49b9IzU9gZDda9LsRgJYDxxDScxgZ84eR/eeHiZ3zvwCE9h5O/zV176+qLMzl0OxBhN+q1TOe7Iej+eSl7Afg5NY9nPr2EGM3/JHEl2bwz0eWAmCvtLF91gpuef95Tnz2HcUHjxNzy2A6jh7EhlG/NTK+iMfx6t+Pz5o1i5ycHGbOnMmSJUtqCzqAuXPn0rdvX2w2G507d6ZFixYGJhXxPkfOwYyv6y/ofir7PEz7CvIuuCeXuM/HJ+DZPRcXdP/uq9M1xX+lJmW8WkjPobQecR/F29dQmv51vX3sVRUcXXgHIb2GETnxSTcnlKZ0JjWDrLVf0mXC9YQP6l57vHDfUdL+vJHhyx/DEtmaxMUPs/PJv1J2qtjAtCKex2uLuvT0dNasWUPbtm158cUX6+0zcOBAAPr27Vt7bO3atdx555106tQJi8VCjx49eOqppygt1U5NIg3lcMBTu+G8rWH9Cyvg+b1NGknc7Ew5/HFvw/vvLoS3jjRZHLlKRN7zDPj4kvves/W2Z//pYexV5XR+/G33BhO3+H7pWuy2avrPuafu8VfWYa+uJumzxeR/dYBjG74yKKGI5/Laom716tXY7XYmTZpESEj967qCgoKAukXdkiVL8PX1ZcGCBfzjH//gkUce4c9//jO33HILdvvP/LpZRAD4rhCOljh3zq4COObkOXL1+uA42JzcEOf942DTt1mvZo6Mo/XweynZ9zklaSl12k5/uJxzqR/Rdf4H+ARaDEooTanEms+xDV8R9YsE2l3bs/a4w1bNmV0ZmNu0JHPNFwYmFPFcXlvUbd26FYCRI0desk9OTg5Qt6j78MMP+b//+z8mTZrEL3/5Sx5//HFeffVVvvrqK7Zv3960oUW8xDpr485bf9ylMcQgdkdNgeasggr4Mt/1eeTqEjHxKfDxqTNbV7LvC3LemUfs3L8T2L6zceGkye1bVjMr99PZunbX9iTunpGkv7GJIc//Gl9zgIEJRTyTyeHwzs3Fo6OjycnJYc+ePfXubGmz2YiMjKSgoICsrCxiY2MvOdbhw4fp3r077733Hr/61a+czjJo0CDy8/WTijQfbZ7agn+HHk6fV5H+T4pXTGqCROJOpqAWtP+vg406t2TjIs5/stzFicRZpoAg2r/invWwFaesHPrdYCLvTaadCzZHOfVENxyVZS5IJv4OH5LtQ5r0Gn4WM0mfL+Hgyo849D+fMub95yn4PotdyW83arznfL6lyqQpf/FMERERpKamNupcr91r7Pz58wCUldX/jX3NmjUUFBQQGhpKly5dLjvWF1/ULAXo2bPnZftdSn5+PidPnmzUuSKeKAwf/BtxXmU1+m/FC/i1rKJ9I88tLa8kV18DhvMJtDT679AZ9ooLZL04gZZDklxS0AHk5uZir9DOS64QYPKlqb8QBv/hfkqzT3Po7U8A2P74qyRtWUL2P3Zy6pt0p8fLzcul0qFdl6T58dqiLiIiguLiYnbv3k1iYmKdtry8PObMmQNAQkICpss8IOnkyZM888wz3HLLLY1+ll1ERESjzhPxVD4VPzTqPP+q83To0MHFacTt/AJw2Ksx+fg6fWqwqUpfA1cBU0CQW65T/PU6yo59T/nJwxRvX3NRe+9XDxIQHuPUmFFRUZqpcxF/hw804aRXh1H96ZJ0PRtumF17rOT4Kb574V2uX/ooG0fNxlb2M1so/5uoyCjN1InHupKawWuXX86aNYsVK1YQHR3Nli1biI+PB2DXrl3cd999HD16lKqqKh599FFeffXVescoLS1lxIgR5Ofns2vXLiIjI935EUQ81qoseCXN+fP+cwDc0tH1ecT9fvctbHNy1bkPsOFGiNQeGYYrs8HwTUanaJyUsRDktb+ydq+qC+W823Wy0TGcMilrFf4W8893FPEyXrtRyty5c2nTpg0nTpygd+/e9OnTh27dujFkyBBiY2MZNWoUUHeTlJ8qKytj3LhxHDt2jM2bN6ugE3HCuGgIdPK7S+sAGKX/zLzGXZ2dP2dYhAo6ERGRxvDaoq5jx46kpKRw6623YjabsVqttG7dmpUrV/Lxxx9z+PBhoP6irqqqirvuuovU1FT+8Y9/0KtXL3fHF/FoLQPg/jjnzpnRAwKcX60nV6kh4TCkbcP7B/jAQ/FNl0dERMSbefUChZ49e/LRRx9ddLy0tBSr1YqPjw/XXHNNnbYfn233+eefs2nTJoYMadpdn0S81fTuNVvUN2Rr+4fi4c7OTR5J3MjHBIsGw8xv4EDx5fsG+MBLg6BnmFuiiYiIeB2vLuouJS0tDYfDQXx8PBZL3bU+jz76KH//+9/5/e9/j8Vi4Ztvvqlt69q1K+Hh4e6OK+KRTCZ4MgF6hcG7WWAtvbhP95YwJQ5Ga18MrxTiD68nwhtHah5GXlxZt90EDGsP0+KhdytDIoqIiHiFZlnU7d+/H6h/6eU//vEPABYuXMjChQvrtL311ltMmTKlyfOJeAuTCW7vBBNiILUAvi+CC9UQ7AfXhkPvsJo+4r3MfvBoz5rZ2C/y4YW9NV8DIX7w7i+hQ7DRCUVERDyfirp/Y7Va3ZxGxPuZTDA4vOYlzVOAL9zcAZal1RR1Fj8VdCIiIq6iok5ERERcojz3CNZXHsBWUoCvpSWdH3+boJjel+xfsOUtjq94kK7z3yfsugm1x/c/1BmTXyA+gTXPy4u4cz6th9/Dud2fkLvqaRy2SnwCLcT8ZiWWLvq3/Go15I8PEnPzIEKi27Hxxt9RlGZtVL+GjiPSnDXLom7r1q1GRxAREfE62X+aQdubp9P2hikUf7UW67Ip9PyvXfX2rThlpWDzfxPc/bp622PnrMES26/2va20mGMvT6L7gi8JiulNSVoKx16eRO8VB5rio4gLHP94Bwf+9AFjN/znFfVr6DgizZnXPtJARERE3Kfq7GnOZ6bSZkTNw6rDht5JZcEJyvMyL+rrsNs5/uo0oqevwOQf2KDxK/Ky8AttUzvzF9p7OJVnsrmQtdt1H0Jc6tQ36VzIK7rifg0dR6Q5U1EnIiIiV6yy4AT+rSIx+dYsAjKZTASEx1B5Jvuivqc2vExIz+sJjht4yfGsr9xP2qw+WFdMpercGcxR3bCVFFKa/jUAZ3duxF5WQsVpa5N8HhERT9Isl1+KiIiIcw7NTaQ890i9bb2W7mnwOGXHD3B2xzq6L/jykn26L/iSgPAYHLYqTr77NNZlD9Dt2U10nbuWk3+bj728lODuiZije2Hy0Y8yRhj74Qu0iI2st23j6DlcyC10cyKR5k3fCUVERORn9Vi047LtJv9AqorzcFTbMPn64XA4qDyTTUB4TJ1+pQdTqDht5cAj3QCoKs7n+InpVBXnET7mEYDac0x+/rQf9wQHHokHIDRhJN0TRgJgr6pg3wMRmGN6ufRzSsNsGveU0RFE5CdU1ImIiMgV8w9rh6XrAAq3raLtDVM4+/U6Atp0xBwZV6df+JhHaos3gIynRtB+3BO1u19Wl5/HYavCLyQMgKKU1Vhi+wNQVZSHf+ua2aG8NX8kNGHUReOLiDRHKupERETEJTo9shLr8inkr12Ab1ALOs96q7bNumIaYUOSCLs26bJj2M6eImvhnWCvxoGDwPaxdH7iHQBy33uWkoMpUG0juEcinWa+0aSfR65M4qLpdLxhIEHtwhi9+mmqSstYP/QxAIYueZgTm1M5sTn1sv1+bhwRqWFyOBwOo0OIiEjzMHYznC6HdmbYdJPRaeRSymwwfJPRKRonZSwE6VfWLlF1oZx3u042OoZTJmWtwt9iNjqGiNtp90sREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYbiUWERGROsy+NRuOeCKzr9EJvIdfUCCTslYZHcMpfkGBRkcQMYSKOhEREanDZNIOkgImk0k7SYp4CC2/FBERERER8WAq6kRE5Kq0ceNG+vXrV+fVoUMHzGbzZdsuZeLEiezYscOpDEeOHGHo0KHEx8czePBg0tLSLupTXl7OhAkTiI+Pp2/fvowePZrMzMza9uHDh3Ps2DGnrisiIuIMFXUiInJVSkpKYu/evbWvbdu2YbFYeO211y7bVp9vv/2WoqIiEhMTncowY8YMpk+fzuHDh5k3bx5Tpkypt9/06dPJyMjg+++/Z/z48UybNq22bfbs2SQnJzt1XREREWeYHA6Hw+gQIiLSPIzdDKfLoZ0ZNt3U8PPsdjvjxo0jOjqa119/vcFtP5o6dSpDhw5l6tSpDb7m6dOniYuLo6ioCD8/PxwOB5GRkWzfvp24uLhLnpeamspdd92F1WoFoKqqiqioKDIzM2nZsmWDry8iItJQmqkTEZGrXnJyMkVFRSxfvtypth9t27aNa6+91qlrnjhxgsjISPz8anYMMZlMxMTEkJ2dfdnzli1bxvjx42vf+/v706dPH1JSUpy6voiISENpbysREbmqbdiwgTfeeIPU1FQCAgIa3PZTOTk5tG/fvs6xxMREjhw5Um//PXv2NCrrggULyMzM5PPPP69zPCIigpycnEaNKSIi8nNU1ImIyFUrIyODqVOn8sEHHxAVFdXgtn9nsVgoLy+vc+znNk0JDAwkLy8Pm81Wu/wyOzubmJiYevsvWbKE9evXs2XLFiwWS5228vJygoKCLns9ERGRxtLySxERuSqVlJRw++2389xzzzFs2LAGt9UnISGBjIwMp67frl07BgwYwKpVNQ9fXrduHR07dqz3frqXX36Z1atX89lnnxEWFnZRe3p6On379nXq+iIiIg2ljVJERMRtnNkoZeHChTz11FP06dPnora7776bZ555pt62TZs2XTRzt2LFCrKzs1m8eLFTeTMyMpgyZQqFhYW0aNGCt956q/aa06ZNIykpiQEDBhAdHU1sbCyhoaFAzSzfzp07AbBardx0001kZGRgMpmcur6IiEhDqKgTERG3aezul1eqtLSUoUOHsmPHDoKDg913YeD3v/89cXFxdR5zICIi4kpafikiIl4vJCSEpUuXGvIQ8KioKB588EG3X1dERJoPzdSJiIjbGDVTJyIi4s00UyciIiIiIuLBVNSJiIiIiIh4MBV1IiIiIiIiHkxFnYiIiIiIiAdTUSciIiIiIuLBVNSJiIiIiIh4MD+jA4iIiIjI1cXhgPJqo1M0jtkXTCajU1w5h8OBrazC6BhO8QsKxOQNf/geSEWdiIiIiNRRXg3DNxmdonFSxkKQF/yEayur4N2uk42O4ZRJWavwt5iNjtEsafmliIiIiIiIB1NRJyIiIiIi4sFU1ImIiIiIiHgwFXUiIiIiIiIeTEWdiIiIiIiIB1NRJyIiIiIi4sG8YMNXEREREbkalOzfxuGnR9Y55mMOJjAqnjYj7qPdbY9h8tWPn00pIrE3t6x/rs6xqvNl/HA0j6y1X5L+xiYc1XaD0klT0X9VIiIiIuJSrX7xK1oOHAsOB1XF+RRue4ecN39LeU46nR79i9HxmoWj61PI2bobTCaCwsOIm/hLhjw3hZbdOrBjzkqj44mLqagTEREREZeyxA6gzYh/PTg7fOxvSPtNDwo++ytRk1/Av2W4gemah8L9xzi6LqX2fcbbn3J7yjLi/+MGdi9cTUXhDwamE1fTPXUiIiIi0qR8zcEEd78OHA4q8rOMjtMs2coqOLP7CCYfH1p0am90HHExFXUiIiIi0uR+LOb8QlobnKT5Cu1cU8xVnC01OIm4mpZfioiIiIhL2SsuYPuhAIfDga04nzOfvE7Z0T1Yug3B3CHe6HjNgl9QAIGtQ2vvqet+/0206RPLmd1H+OFontHxxMWaRVFXUFDAokWLWL9+PTk5OYSHh3PHHXewYMECZs2axZtvvsmKFSuYOXOm0VFFREREPF7e6mTyVifXORaWeAcxM14zKFHz03/uvfSfe2+dY9aPv2Hn/L8alEiaktcXdXv37mXMmDHk5+cTHBxMr169yM3NZfny5WRlZVFUVARAv379jA0qIuLF8i/AB9lwrrLm/Q9V8PVpuC4cfEzGZhP3OHgWPjoBp8vABERYYFw0xLc0Opk0hbY3T6fV0Ik4qqsoO76f/PUvUVmQg8nfXNunJC2FzOfHXHSuw1aJw17NwPer3RnZ62T8bTPWD3fg4+9Hqx4xXPPoBIIj21BdUVnbxyfAj3GbF3Ps/RT2LVtfe3zYK49iDg9jy6QXjIgujeDVRV1BQQHjxo0jPz+f2bNnk5ycTGhoKACLFi1i3rx5+Pn5YTKZSEhIMDitiIj3OVMOC/dBSj789KlI5dUw6xvoaIFHe8LoDoZFlCa2vwgWH6gp6v7d6qPQtzXM6QM9VNx5lcDIbrTodyMALQeOIaTnMDLmDyP7zw8TO+d/AQjtPZz+a+re21VZmMuh2YMIv1Wrp67UD0fzyUvZD8DJrXs49e0hxm74I4kvzeCfjywFwF5pY/usFdzy/vOc+Ow7ig8eJ+aWwXQcPYgNo35rZHxxkldvlDJr1ixycnKYOXMmS5YsqS3oAObOnUvfvn2x2Wx07tyZFi1aGJhURMT75F6AX6fAP/+toPupnAsw/zv436NujSZusuM0zPi6/oLuR98XwfTtsKfQbbHEACE9h9J6xH0Ub19DafrX9faxV1VwdOEdhPQaRuTEJ92c0PudSc0ga+2XdJlwPeGDutceL9x3lLQ/b2T48sewRLYmcfHD7Hzyr5SdKjYwrTjLa4u69PR01qxZQ9u2bXnxxRfr7TNw4EAA+vbtW3ssJSWFG2+8kcjISAIDA+nYsSP33HMP6enpbsktIuINquzwxE7IL2tY/yUH4KtTTZtJ3Cu7FObtgspLVfQ/caEaZn8Lpxr49SKeKfKeZ8DHl9z3nq23PftPD2OvKqfz42+7N1gz8v3Stdht1fSfc0/d46+sw15dTdJni8n/6gDHNnxlUEJpLK8t6lavXo3dbmfSpEmEhITU2ycoKAioW9QVFxfTp08fli9fzubNm3nppZdIS0sjMTGRnJwct2QXEfF02/LgaIlz57x9pGmyiDFWH60p1hrqhypYa22yOHIVMEfG0Xr4vZTs+5yStJQ6bac/XM651I/oOv8DfAItBiX0fiXWfI5t+IqoXyTQ7tqetccdtmrO7MrA3KYlmWu+MDChNJbXFnVbt24FYOTIkZfs82OR9tOiLikpiaVLlzJx4kR++ctfMmnSJNavX8+5c+dYt25d04YWEfESf7c6f86eIsj8weVRxADnbbCpEb8H3XAcKrU3hleLmPgU+PjUma0r2fcFOe/MI3bu3wls39m4cM3EvmU1s3I/na1rd21P4u4ZSfobmxjy/K/xNQcYmFAaw2s3Sjl+/DgAnTp1qrfdZrPx1Vc1U8s/Lerq06ZNGwD8/Lz2j0tExGXKq2F3I++P+vo0xOkWZ4+3v6imsHNWUSVknIM+eja1xwrtM4KBGxyXbA+K7llnV8uKU1aOLr6bjlMWE9pnhBsSer/8HWm8HXnXJdvPHTnJOx3/VdD5WcwMe+VRvnvhXQ79z6eMef95Bsz/D3Ylv+2GtOIqXlulnD9/HoCysvoX6K9Zs4aCggJCQ0Pp0qXLRe3V1dXY7XaOHz/O/PnziYiI4O67725UlkGDBpGfn9+oc0VEPI1Pi3DaLdzTqHMXvLycJzcucnEicbfA/rfS6qGVjTp3/L2TqTy4zbWBxGmmgCDav9K0a6LtFRfIenECLYck0c6Fu13Gx3fDUen5N2j6O3xIZkiTX2fwH+6nNPs0h97+BIDtj79K0pYlZP9jJ6e+cW5Pifhu8VSZGnAjrdQrIiKC1NTURp3rtUVdREQExcXF7N69m8TExDpteXl5zJkzB4CEhARMposfkvTLX/6ydiYvLi6OrVu3Eh4e3qgs+fn5nDx5slHnioh4Gp+ic7Rr5LnnTueRr++XHq9FRA6tGnnu6Rwr5/U1YDifQAvtm/gaxV+vo+zY95SfPEzx9jUXtfd+9SAB4TFOj5ubm4u94oIrIhoqwORLU/8ldBjVny5J17Phhtm1x0qOn+K7F97l+qWPsnHUbGxlFQ0eLzcvl0qH1lAbwWuLuhtvvJH09HReeuklRo8eTXx8PAC7du3ivvvuo6CgALj0Q8ffeOMNzp49y7Fjx1i8eDE33XQTX331FTExzn9ziYiIaPTnEBHxRLa8w/hFxje4v8PhwGQyEVR8lA4d9NA6T+dTlo+j2obJ17kfMxyVZbSqKiZMXwOGMwUENfk12oy8jzYj73P5uFFRUV4zU3fJ58G4yMmte3ivxwMXHT/09ie1M3fOiIqM0kzdFbiSmsHkcDguvfDZg+Xk5NCvXz8KCwvx8/OjR48elJeXk5mZyZgxY7Db7Xz66af85S9/4aGHHrrsWGfPnqVz585MnjyZV1991U2fQETEc/3v0ZrHFDgjJhjWjYJ6Fk+IB5q3Cz7Pc+6cpBh4tl+TxBEnldlg+CajUzROylgI8oJpi6oL5bzbdbLRMZwyKWsV/haz0TGaJa/d/bJjx46kpKRw6623YjabsVqttG7dmpUrV/Lxxx9z+PBh4Oc3SQEICwsjLi6OzMzMpo4tIuIVbo2GUH/nzvlVrAo6b/KrWOf6+wB3X3yLu4iINIAX/B7j0nr27MlHH3100fHS0lKsVis+Pj5cc801PzvO6dOnycjI4Nprr22KmCIiXifUH5YMhse+adjDp8d2hLs6N3kscaN+beDxXrDsYMP6z0uAHi2bNpOIiLfy6qLuUtLS0nA4HMTHx2Ox1H3A5eTJk4mLi6Nfv36EhYVx5MgRli5dip+fH//v//0/gxKLiHiegW3hT4nw5Hdwurz+Pr4muLcLzOqtWTpvdF9czTK4ZWlQdom9E4L9YG6fmtldERFpnGZZ1O3fvx+of+nlddddxzvvvMOyZcsoLy8nOjqakSNH8uSTT17ymXciIlK/fm1g443wZT6sPw7HSmseLt0qEG6Mggkx0K7p92MQA93VGW7pAB/nwMcn4NDZmr0f/Ew1xdwtHcHSLH8aERFxnWb5bfRyRd3MmTOZOdN1z0oREWnu/HxgVFTNS5qnEH+4p0vNa+zmmpnb1oFwR2ejk4mIeAcVdSIiIiLiEuW5R7C+8gC2kgJ8LS3p/PjbBMX0vmT/gi1vcXzFg3Sd/z5h102oPb7/oc6Y/ALxCayZyo+4cz6th9/Dud2fkLvqaRy2SnwCLcT8ZiWWLvp57lKG/PFBYm4eREh0Ozbe+DuK0qyN6tfQccQ4zbKo27p1q9ERRERERLxO9p9m0Pbm6bS9YQrFX63FumwKPf9rV719K05ZKdj83wR3v67e9tg5a7DE9qt9byst5tjLk+i+4EuCYnpTkpbCsZcn0XuFk89PaUaOf7yDA3/6gLEb/vOK+jV0HDGO1z7SQERERETcp+rsac5nptJmRM2z1cKG3kllwQnK8y5+JJTDbuf4q9OInr4Ck39gg8avyMvCL7RN7cxfaO/hVJ7J5kLWbtd9CC9z6pt0LuQVXXG/ho4jxlFRJyIiIiJXrLLgBP6tIjH51iwEM5lMBITHUHkm+6K+pza8TEjP6wmOG3jJ8ayv3E/arD5YV0yl6twZzFHdsJUUUpr+NQBnd27EXlZCxWlrk3weEU/SLJdfioiIiIhzDs1NpDz3SL1tvZbuafA4ZccPcHbHOrov+PKSfbov+JKA8BgctipOvvs01mUP0O3ZTXSdu5aTf5uPvbyU4O6JmKN7YfJpnj/Ojv3wBVrERtbbtnH0HC7kFro5kRipef5XICIiIiJO6bFox2XbTf6BVBXn4ai2YfL1w+FwUHkmm4DwmDr9Sg+mUHHayoFHugFQVZzP8RPTqSrOI3zMIwC155j8/Gk/7gkOPBIPQGjCSLonjATAXlXBvgciMMf0cunn9BSbxj1ldAS5iqioExEREZEr5h/WDkvXARRuW0XbG6Zw9ut1BLTpiDkyrk6/8DGP1BZvABlPjaD9uCdqd7+sLj+Pw1aFX0gYAEUpq7HE9gegqigP/9Y1s1N5a/5IaMKoi8YXaY5U1ImIiIiIS3R6ZCXW5VPIX7sA36AWdJ71Vm2bdcU0woYkEXZt0mXHsJ09RdbCO8FejQMHge1j6fzEOwDkvvcsJQdToNpGcI9EOs18o0k/j6dLXDSdjjcMJKhdGKNXP01VaRnrhz4GwNAlD3NicyonNqdett/PjSNXB5PD4XAYHUJERESahx8fPt7ODJtuMjqNXEqZDYZvMjpF46SMhSAvmLaoulDOu10nGx3DKZOyVuFvMRsdo1nS7pciIiIiIiIeTEWdiIiIiIiIB1NRJyIiIiIi4sFU1ImIiIiIiHgwFXUiIiIiIiIezAv2BhIRERERVzL71uwi6YnMvkYncA2/oEAmZa0yOoZT/IICjY7QbKmoExEREZE6TCbveCyAJzOZTHo8gDSYll+KiIjIVWnjxo3069evzqtDhw6YzebLtl3KxIkT2bFjh1MZjhw5wtChQ4mPj2fw4MGkpaVd1Ke8vJwJEyYQHx9P3759GT16NJmZmbXtw4cP59ixY05dV0TEGSrqRERE5KqUlJTE3r17a1/btm3DYrHw2muvXbatPt9++y1FRUUkJiY6lWHGjBlMnz6dw4cPM2/ePKZMmVJvv+nTp5ORkcH333/P+PHjmTZtWm3b7NmzSU5Oduq6IiLOMDkcDofRIURERKR5GLsZTpdDOzNsuqnh59ntdsaNG0d0dDSvv/56g9t+NHXqVIYOHcrUqVMbfM3Tp08TFxdHUVERfn5+OBwOIiMj2b59O3FxcZc8LzU1lbvuugur1QpAVVUVUVFRZGZm0rJlywZfX0SkoTRTJyIiIle95ORkioqKWL58uVNtP9q2bRvXXnutU9c8ceIEkZGR+PnV3FxmMpmIiYkhOzv7suctW7aM8ePH17739/enT58+pKSkOHV9EZGG0i2wIiIiclXbsGEDb7zxBqmpqQQEBDS47adycnJo3759nWOJiYkcOXKk3v579uxpVNYFCxaQmZnJ559/Xud4REQEOTk5jRpTROTnqKgTERGRq1ZGRgZTp07lgw8+ICoqqsFt/85isVBeXl7n2M9tmhIYGEheXh42m612+WV2djYxMTH19l+yZAnr169ny5YtWCyWOm3l5eUEBQVd9noiIo2l5ZciIiJyVSopKeH222/nueeeY9iwYQ1uq09CQgIZGRlOXb9du3YMGDCAVatqnhW2bt06OnbsWO/9dC+//DKrV6/ms88+Iyws7KL29PR0+vbt69T1RUQaShuliIiIiNs4s1HKwoULeeqpp+jTp89FbXfffTfPPPNMvW2bNm26aOZuxYoVZGdns3jxYqfyZmRkMGXKFAoLC2nRogVvvfVW7TWnTZtGUlISAwYMIDo6mtjYWEJDQ4GaWb6dO3cCYLVauemmm8jIyMBkMjl1fRGRhlBRJyIiIm7T2N0vr1RpaSlDhw5lx44dBAcHu+/CwO9//3vi4uLqPOZARMSVtPxSREREvF5ISAhLly415CHgUVFRPPjgg26/rog0H5qpExEREbcxaqZORMSbaaZORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WB+RgcQEREREZF/cTigvNroFI1j9gWTyTVjORwObGUVrhnMTfyCAjG56g/Ameu6/YoiIiIiInJJ5dUwfJPRKRonZSwEuajCsJVV8G7Xya4ZzE0mZa3C32J2+3W1/FJERERERMSDqagTERERERHxYCrqREREREREPJiKOhEREREREQ+mok5ERERERMSDqagTERERERHxYCrqREREREREPJieUyciIiIi4iVK9m/j8NMj6xzzMQcTGBVPmxH30e62xzD5em8JEJHYm1vWP1fnWNX5Mn44mkfW2i9Jf2MTjmq7Qemajvf+jYqIiIiINFOtfvErWg4cCw4HVcX5FG57h5w3f0t5TjqdHv2L0fGa3NH1KeRs3Q0mE0HhYcRN/CVDnptCy24d2DFnpdHxXE5FnYiIiIiIl7HEDqDNiMm178PH/oa03/Sg4LO/EjX5BfxbhhuYrukV7j/G0XUpte8z3v6U21OWEf8fN7B74WoqCn8wMJ3r6Z46EREREREv52sOJrj7deBwUJGfZXQct7OVVXBm9xFMPj606NTe6Dgup6JORERERKQZ+LGY8wtpbXASY4R2rinmKs6WGpzE9bT8UkRERETEy9grLmD7oQCHw4GtOJ8zn7xO2dE9WLoNwdwh3uh4Tc4vKIDA1qG199R1v/8m2vSJ5czuI/xwNM/oeC7n9UVdQUEBixYtYv369eTk5BAeHs4dd9zBggULmDVrFm+++SYrVqxg5syZRkcVERHxWg4HZPwAFdU17232mmMmk7G5xH2q7HCgGM5VQoAvxIZAhMXoVN4rb3UyeauT6xwLS7yDmBmvGZTIvfrPvZf+c++tc8z68TfsnP9XgxI1La8u6vbu3cuYMWPIz88nODiYXr16kZuby/Lly8nKyqKoqAiAfv36GRtURETES5VXw0fZ8HcrZJX863hRJdz3JdzVGW6NBn/dEOK1CsphrRXePw6FFf86bgKubw93d4Gh7YxK573a3jydVkMn4qiuouz4fvLXv0RlQQ4mf3Ntn5K0FDKfH3PRuQ5bJQ57NQPfr3ZnZJfK+NtmrB/uwMffj1Y9Yrjm0QkER7ahuqKyto9PgB/jNi/m2Psp7Fu2vvb4sFcexRwexpZJLxgRvVG8tqgrKChg3Lhx5OfnM3v2bJKTkwkNDQVg0aJFzJs3Dz8/P0wmEwkJCQanFRER8T5nK+G3O2Ffcf3th87Bf34Pn56ExYMhxN+9+aTpZZyDx7+BgoqL2xzA9lM1r8ld4fFemrl1pcDIbrTodyMALQeOIaTnMDLmDyP7zw8TO+d/AQjtPZz+a+reX1ZZmMuh2YMIv9WzV7H9cDSfvJT9AJzcuodT3x5i7IY/kvjSDP75yFIA7JU2ts9awS3vP8+Jz76j+OBxYm4ZTMfRg9gw6rdGxnea1/5ebNasWeTk5DBz5kyWLFlSW9ABzJ07l759+2Kz2ejcuTMtWrQwMKmIiIj3Ka++fEH3U7sKYO6umuV54j1yzsPMHfUXdP9uVRb8+VDTZ2rOQnoOpfWI+yjevobS9K/r7WOvquDowjsI6TWMyIlPujlh0zqTmkHW2i/pMuF6wgd1rz1euO8oaX/eyPDlj2GJbE3i4ofZ+eRfKTvVgG9eVxGvLOrS09NZs2YNbdu25cUXX6y3z8CBAwHo27fvJccZM2YMJpOJP/zhD00RU0RExGttzG5YQfejbwtg88mmyyPu91o6FFf+fL8fvXWkphCUphN5zzPg40vue8/W2579p4exV5XT+fG33RvMTb5fuha7rZr+c+6pe/yVddirq0n6bDH5Xx3g2IavDErYeF5Z1K1evRq73c6kSZMICQmpt09QUBBw6aLu//7v/9i7d29TRRQREfFaDkfNPVTOasw5cnUqKIetTm4w6ADWWZsijfzIHBlH6+H3UrLvc0rSUuq0nf5wOedSP6Lr/A/wCfTOHWxKrPkc2/AVUb9IoN21PWuPO2zVnNmVgblNSzLXfGFgwsbzyqJu69atAIwcOfKSfXJycoD6i7offviBJ554giVLljRNQBERES928CwcLfnZbhfZXwxW73t8VLP0yUmodjh/3scnXJ9F6oqY+BT4+NSZrSvZ9wU578wjdu7fCWzf2bhwbrBvWc2s3E9n69pd25O4e0aS/sYmhjz/a3zNAQYmbByTw+FoxH9yV7fo6GhycnLYs2dPvTtb2mw2IiMjKSgoICsri9jY2Drtjz32GPv372fbtm2YTCaSk5OvaAnmoEGDyM/Pb/T5IiIiniSw3xhaTf/vRp1btOxeKjO2uziRuFvonckE3/BQo87Nf6wLVFe5OJFnMQUE0f6VI265VsUpK4d+N5jIe5Np54LNUU490Q1HZZkLkoG/w4dk+xCXjHUpfhYzSZ8v4eDKjzj0P58y5v3nKfg+i13JbzdqvOd8vqXK1LgbhCMiIkhNTW3UuV65++X58zULssvK6v+CWrNmDQUFBYSGhtKlS5c6bampqfz3f/833333ncvy5Ofnc/KkbhQQEZHmISy6gFaNPLeg4Awl+jfT43UsLSG4keeePJkD1TaX5vE0PoEW2rvhOvaKC2S9OIGWQ5JcUtAB5ObmYq+44JKxAky+NPUfxOA/3E9p9mkOvf0JANsff5WkLUvI/sdOTn2T7vR4uXm5VDrc/ygIryzqIiIiKC4uZvfu3SQmJtZpy8vLY86cOQAkJCRg+sneudXV1cyYMYOZM2fSu3dvl+YRERFpLvxMNdsdOhyOOv/OXs6PfVv5VtKiQ4emjCduEFT1Q6POqz53mg4R7ihnrm6mgCC3XKf463WUHfue8pOHKd6+5qL23q8eJCA8xqkxo6KiXDpTRxPuitthVH+6JF3Phhtm1x4rOX6K7154l+uXPsrGUbOxlTVg+9afiIqMuqKZusbyyqLuxhtvJD09nZdeeonRo0cTHx8PwK5du7jvvvsoKCgALn7o+KuvvsqpU6dcvttlY6dRRUREPJHDAfdug6yShj90zGQykdAK3tyd8vOd5apXWA63fgY2J2/yeXBgOx77//c9aM7KbDB8U9Nfp83I+2gz8j6Xjnn48BGCXFRhVF0o592uk10zWD1Obt3Dez0euOj4obc/qZ25c9bhI4fxt5h/vqOLeeVGKXPnzqVNmzacOHGC3r1706dPH7p168aQIUOIjY1l1KhRQN1NUgoKCnjmmWd49tlnsdlsnD17lrNnzwJQXl7O2bNnsdv1AB0REZGfYzLBxM7Onzexy8/3Ec/Qxgw3RDl3jgm4o1OTxBHxel5Z1HXs2JGUlBRuvfVWzGYzVquV1q1bs3LlSj7++GMOHz4M1C3qcnJyKCkpYcaMGbRq1ar2BfDSSy/RqlUrsrOzDfk8IiIinmZcDPRr3fD+ieEw2skiQK5uj/aENoEN7/9Qd+jQ2BvxRJo5r1x+CdCzZ08++uiji46XlpZitVrx8fHhmmuuqT0eFxfHF19c/FyKkSNH8sADDzBlyhTdGyciItJAgb7w8hCY/S3sKbp83+vCYeFg8PPKXzU3X1EWeC0RZn0Dp8sv33dKHDwU755cIt7Ia4u6S0lLS8PhcBAfH4/F8q8HK4aEhDBixIh6z+ncufMl20RERKR+LQJqfqjflAN/t0LGubrtfVrBXZ3h5g4q6LxVXAt495ew7ji8b4VT/1bcjYyAu7vA4HBD4ol4jWZX1O3fvx+o/6HjIiIi4loBvjChE4yPgaySmhkbExARBF1CjU4n7tAqEKbF18zGHTwL/28nnKuqWZq5uGkfQSbSbKio+xle+Gx2ERERtzOZamZt4loYnUSM4ucDCa1rluZSBb4N3xxVRH6GijoRERERES9QnnsE6ysPYCspwNfSks6Pv01QzKWfvVyw5S2Or3iQrvPfJ+y6CbXH9z/UGZNfID6BNc/Li7hzPq2H38O53Z+Qu+ppHLZKfAItxPxmJZYuV+/P1EP++CAxNw8iJLodG2/8HUVp1kb1a+g4Rmp2Rd3WrVuNjiAiIiIi4nLZf5pB25un0/aGKRR/tRbrsin0/K9d9fatOGWlYPN/E9z9unrbY+eswRLbr/a9rbSYYy9PovuCLwmK6U1JWgrHXp5E7xUHmuKjuMTxj3dw4E8fMHbDf15Rv4aOYyTdliwiIiIi4uGqzp7mfGYqbUbUPKw7bOidVBacoDwv86K+Drud469OI3r6Ckz+DXvuREVeFn6hbWpn/kJ7D6fyTDYXsna77kO42Klv0rmQ9zPb7zagX0PHMZKKOhERERERD1dZcAL/VpGYfGsW4plMJgLCY6g8c/Fzlk9teJmQntcTHDfwkuNZX7mftFl9sK6YStW5M5ijumErKaQ0/WsAzu7ciL2shIrT1ib5POKcZrf8UkRERETE0xyam0h57pF623ot3dPgccqOH+DsjnV0X/DlJft0X/AlAeExOGxVnHz3aazLHqDbs5voOnctJ/82H3t5KcHdEzFH98LkY0w5MfbDF2gRG1lv28bRc7iQW+jmRMZSUSciIiIicpXrsWjHZdtN/oFUFefhqLZh8vXD4XBQeSabgPCYOv1KD6ZQcdrKgUe6AVBVnM/xE9OpKs4jfMwjALXnmPz8aT/uCQ48UvNk+NCEkXRPGAmAvaqCfQ9EYI7p5dLP2VCbxj1lyHWvVirqREREREQ8nH9YOyxdB1C4bRVtb5jC2a/XEdCmI+bIuDr9wsc8Ulu8AWQ8NYL2456o3f2yuvw8DlsVfiFhABSlrMYS2x+AqqI8/FvXzI7lrfkjoQmjLhpfjKGiTkRERETEC3R6ZCXW5VPIX7sA36AWdJ71Vm2bdcU0woYkEXZt0mXHsJ09RdbCO8FejQMHge1j6fzEOwDkvvcsJQdToNpGcI9EOs18o0k/z5VKXDSdjjcMJKhdGKNXP01VaRnrhz4GwNAlD3NicyonNqdett/PjXO1MDn0dG0RERERcZOxm+F0ObQzw6abjE5zdSqzwfBNRqdonJSxEOSiaaOqC+W823WyawZzk0lZq/C3mN1+Xe1+KSIiIiIi4sFU1ImIiIiIiHgwFXUiIiIiIiIeTEWdiIiIiIiIB9PulyIiIiIiVxGzb82GI57I7Ou6sfyCApmUtcp1A7qBX1CgMdc15KoiIiIiIlIvk8l1O0h6MpPJZMhOkp5Iyy9FREREREQ8mIo6EREREbkqbdy4kX79+tV5dejQAbPZfNm2S5k4cSI7duxwKsORI0cYOnQo8fHxDB48mLS0tIv6lJeXM2HCBOLj4+nbty+jR48mMzOztn348OEcO3bMqeuKOENFnYiIiIhclZKSkti7d2/ta9u2bVgsFl577bXLttXn22+/paioiMTERKcyzJgxg+nTp3P48GHmzZvHlClT6u03ffp0MjIy+P777xk/fjzTpk2rbZs9ezbJyclOXVfEGSaHw+EwOoSIiIiINA9jN8Ppcmhnhk03Nfw8u93OuHHjiI6O5vXXX29w24+mTp3K0KFDmTp1aoOvefr0aeLi4igqKsLPzw+Hw0FkZCTbt28nLi7ukuelpqZy1113YbVaAaiqqiIqKorMzExatmzZ4OuLNJRm6kRERETkqpecnExRURHLly93qu1H27Zt49prr3XqmidOnCAyMhI/v5pdS0wmEzExMWRnZ1/2vGXLljF+/Pja9/7+/vTp04eUlBSnri/SUNpXR0RERESuahs2bOCNN94gNTWVgICABrf9VE5ODu3bt69zLDExkSNHjtTbf8+ePY3KumDBAjIzM/n888/rHI+IiCAnJ6dRY4r8HBV1IiIiInLVysjIYOrUqXzwwQdERUU1uO3fWSwWysvL6xz7uU1TAgMDycvLw2az1S6/zM7OJiYmpt7+S5YsYf369WzZsgWLxVKnrby8nKCgoMteT6SxtPxSRERERK5KJSUl3H777Tz33HMMGzaswW31SUhIICMjw6nrt2vXjgEDBrBqVc0DsNetW0fHjh3rvZ/u5ZdfZvXq1Xz22WeEhYVd1J6enk7fvn2dur5IQ2mjFBERERFxG2c2Slm4cCFPPfUUffr0uajt7rvv5plnnqm3bdOmTRfN3K1YsYLs7GwWL17sVN6MjAymTJlCYWEhLVq04K233qq95rRp00hKSmLAgAFER0cTGxtLaGgoUDPLt3PnTgCsVis33XQTGRkZmEwmp64v0hAq6kRERETEbRq7++WVKi0tZejQoezYsYPg4GD3XRj4/e9/T1xcXJ3HHIi4kpZfioiIiIjXCwkJYenSpYY8BDwqKooHH3zQ7deV5kMzdSIiIiLiNkbN1Il4M83UiYiIiIiIeDAVdSIiIiIiIh5MRZ2IiIiIiIgHU1EnIiIiIiLiwVTUiYiIiIiIeDA/owOIiIiIiMi/OBxQXm10isYx+4Krnq/ucDiwlVW4ZjA38QsKNOQB8yrqRERERESuIuXVMHyT0SkaJ2UsBLmowrCVVfBu18muGcxNJmWtwt9idvt1tfxSRERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYnlMnIiIiIuIlSvZv4/DTI+sc8zEHExgVT5sR99Hutscw+XpvCRCR2Jtb1j9X51jV+TJ+OJpH1tovSX9jE45qu0Hpmo73/o2KiIiIiDRTrX7xK1oOHAsOB1XF+RRue4ecN39LeU46nR79i9HxmtzR9SnkbN0NJhNB4WHETfwlQ56bQstuHdgxZ6XR8VxORZ2IiIiIiJexxA6gzYjJte/Dx/6GtN/0oOCzvxI1+QX8W4YbmK7pFe4/xtF1KbXvM97+lNtTlhH/Hzewe+FqKgp/MDCd6+meOhERERERL+drDia4+3XgcFCRn2V0HLezlVVwZvcRTD4+tOjU3ug4LqeiTkRERESkGfixmPMLaW1wEmOEdq4p5irOlhqcxPW0/FJERERExMvYKy5g+6EAh8OBrTifM5+8TtnRPVi6DcHcId7oeE3OLyiAwNahtffUdb//Jtr0ieXM7iP8cDTP6Hgu1yyKuoKCAhYtWsT69evJyckhPDycO+64gwULFjBr1izefPNNVqxYwcyZM42OKiIiIiJyxfJWJ5O3OrnOsbDEO4iZ8ZpBidyr/9x76T/33jrHrB9/w875fzUoUdPy+qJu7969jBkzhvz8fIKDg+nVqxe5ubksX76crKwsioqKAOjXr5+xQUVERES8VM55WGeFL/LgTHnNseJK2JoLv4gAP90Q5HJtb55Oq6ETcVRXUXZ8P/nrX6KyIAeTv7m2T0laCpnPj7noXIetEoe9moHvV7szsktl/G0z1g934OPvR6seMVzz6ASCI9tQXVFZ28cnwI9xmxdz7P0U9i1bX3t82CuPYg4PY8ukF4yI3iheXdQVFBQwbtw48vPzmT17NsnJyYSGhgKwaNEi5s2bh5+fHyaTiYSEBIPTioiIiHiXKju8tA82ZIOjnra5qdA+CF4aBNe0MiSi1wqM7EaLfjcC0HLgGEJ6DiNj/jCy//wwsXP+F4DQ3sPpv6bu/WWVhbkcmj2I8Fs9ewXbD0fzyUvZD8DJrXs49e0hxm74I4kvzeCfjywFwF5pY/usFdzy/vOc+Ow7ig8eJ+aWwXQcPYgNo35rZHynefXvRWbNmkVOTg4zZ85kyZIltQUdwNy5c+nbty82m43OnTvTokULA5OKiIiIeBebHebugg/qKeh+6lQZPPw17C9yW7RmKaTnUFqPuI/i7WsoTf+63j72qgqOLryDkF7DiJz4pJsTNq0zqRlkrf2SLhOuJ3xQ99rjhfuOkvbnjQxf/hiWyNYkLn6YnU/+lbJTxQamdZ7XFnXp6emsWbOGtm3b8uKLL9bbZ+DAgQD07du39ti2bdswmUwXvbQ8U0RERKTh3smElFMN61teDbO/hXJb02Zq7iLveQZ8fMl979l627P/9DD2qnI6P/62e4O5yfdL12K3VdN/zj11j7+yDnt1NUmfLSb/qwMc2/CVQQkbz2uXX65evRq73c6kSZMICQmpt09QUBBQt6j70WuvvcaAAQNq3wcHBzdNUBEREREvY7PD/x1z7pyiSticC0kxTZNJwBwZR+vh91L0z3cpSUshtPfw2rbTHy7nXOpH9FiyC59Ai4Epm06JNZ9jG76i652/oN21PTm9Mx0Ah62aM7syaJvQlcw1XxicsnG8dqZu69atAIwcOfKSfXJycoD6i7pevXpx3XXX1b769OnTNEFFREREvMy2fCiocP68tVaXR5F/EzHxKfDxqTNbV7LvC3LemUfs3L8T2L6zceHcYN+ymlm5n87Wtbu2J3H3jCT9jU0Mef7X+JoDDEzYOCaHw3G5Zc4eKzo6mpycHPbs2VPv0kmbzUZkZCQFBQVkZWURGxsL1Cy/HDlyJF988QUjRoxwSZZBgwaRn5/vkrFERERErnYh4+cTcvOjTp/nsNs59Vgn8M4fTxvMFBBE+1eOuOVaFaesHPrdYCLvTaadCzZHOfVENxyVZS5IBv4OH5LtQ1wy1qX4Wcwkfb6Egys/4tD/fMqY95+n4PssdiW/3ajxnvP5liqTvVHnRkREkJqa2qhzvXb55fnz5wEoK6v/i2rNmjUUFBQQGhpKly5dLmq/5557KCgooE2bNiQlJbFw4ULatm3bqCz5+fmcPHmyUeeKiIiIeJroqmrqv/nl8kw+PuSeLnRZUeCpfAIttHfDdewVF8h6cQIthyS5pKADyM3NxV5xwSVjBZh8aeo/iMF/uJ/S7NMcevsTALY//ipJW5aQ/Y+dnPom3enxcvNyqXS4/1EQXlvURUREUFxczO7du0lMTKzTlpeXx5w5cwBISEjAZDLVtrVs2ZI5c+bwi1/8gpCQEHbs2MGLL77IN998Q2pqKmazGWdFRERc2YcRERER8SAWn8bNVDhslUSFt3ZxGs9jCghyy3WKv15H2bHvKT95mOLtay5q7/3qQQLCnbvJMSoqyqUzdTTuS6lBOozqT5ek69lww+zaYyXHT/HdC+9y/dJH2ThqNrYy59YRR0VGXdFMXWN57fLLWbNmsWLFCqKjo9myZQvx8fEA7Nq1i/vuu4+jR49SVVXFo48+yquvvnrZsT788EOSkpJ48803+fWvf+2O+CIiIiIea18RPLjd+fN+GQH/1bSr7TxCmQ2GbzI6ReOkjIUgF00bVV0o592uk10zmJtMylqFv8X5SaAr5bUbpcydO5c2bdpw4sQJevfuTZ8+fejWrRtDhgwhNjaWUaNGAfVvkvLvbrvtNoKDgxu9xlVERESkOenTCuIb8QjgiZ1dHkWkWfDaoq5jx46kpKRw6623YjabsVqttG7dmpUrV/Lxxx9z+PBhoGFF3Y9+ukxTREREROpnMsHUeOfO6R0GQ8KbJI6I1/Pae+oAevbsyUcffXTR8dLSUqxWKz4+PlxzzTU/O87GjRs5f/48Q4ZoPYCIiIhIQ9wQBY/1hBUN2Guicwi8PAR89PtzkUbx6qLuUtLS0nA4HMTHx2Ox1H244uTJk4mNjWXAgAG1G6UsWrSIfv36ce+99xqUWERERMTzPNAN2gfBnw/ByXo2RPQzwego+F0faOl5jwYTuWo0y6Ju//79QP1LL3v37s17773HK6+8QllZGR07duShhx4iOTmZgAB9txERERFxxi0d4aYO8M0Z+CIPzlVCoA90bQHjoqGN+/eUEPE6Kur+zfz585k/f767I4mIiIh4LR8TDG1X8xIR11NRJyIiIiLiBcpzj2B95QFsJQX4WlrS+fG3CYrpfcn+BVve4viKB+k6/33CrptQe3z/Q50x+QXiE1jzvLyIO+fTevg9nNv9CbmrnsZhq8Qn0ELMb1Zi6XL1/jw95I8PEnPzIEKi27Hxxt9RlGZtVL+GjmOkZlnUbd261egIIiIiIiIulf2nGbS9eTptb5hC8VdrsS6bQs//2lVv34pTVgo2/zfB3a+rtz12zhossf1q39tKizn28iS6L/iSoJjelKSlcOzlSfRecaApPopLHP94Bwf+9AFjN/znFfVr6DhG8tpHGoiIiIiINBdVZ09zPjOVNiNqHtYdNvROKgtOUJ6XeVFfh93O8VenET19BSb/wAaNX5GXhV9om9qZv9Dew6k8k82FrN2u+xAuduqbdC7kFV1xv4aOYyQVdSIiIiIiHq6y4AT+rSIx+dYsxDOZTASEx1B5Jvuivqc2vExIz+sJjht4yfGsr9xP2qw+WFdMpercGcxR3bCVFFKa/jUAZ3duxF5WQsVpa5N8HnFOs1x+KSIiIiLiSQ7NTaQ890i9bb2W7mnwOGXHD3B2xzq6L/jykn26L/iSgPAYHLYqTr77NNZlD9Dt2U10nbuWk3+bj728lODuiZije2HyMaacGPvhC7SIjay3bePoOVzILXRzImOpqBMRERERucr1WLTjsu0m/0CqivNwVNsw+frhcDioPJNNQHhMnX6lB1OoOG3lwCPdAKgqzuf4ielUFecRPuYRgNpzTH7+tB/3BAceiQcgNGEk3RNGAmCvqmDfAxGYY3q59HM21KZxTxly3auVijoREREREQ/nH9YOS9cBFG5bRdsbpnD263UEtOmIOTKuTr/wMY/UFm8AGU+NoP24J2p3v6wuP4/DVoVfSBgARSmrscT2B6CqKA//1jWzY3lr/khowqiLxhdjqKgTEREREfECnR5ZiXX5FPLXLsA3qAWdZ71V22ZdMY2wIUmEXZt02TFsZ0+RtfBOsFfjwEFg+1g6P/EOALnvPUvJwRSothHcI5FOM99o0s9zpRIXTafjDQMJahfG6NVPU1VaxvqhjwEwdMnDnNicyonNqZft93PjXC1MDofDYXQIERERERGpUWaD4ZuMTtE4KWMhyEXTRlUXynm362TXDOYmk7JW4W8xu/262v1SRERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpo1SRERERESuIg4HlFcbnaJxzL5gMrlmLIfDga2swjWDuYlfUCAmV/0BOEFFnYiIiIiIiAfT8ksREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREPpqJORERERETEg6moExERERER8WAq6kRERERERDyYijoREREREREP9v8BRlkgEYp66HwAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABLcAAAG7CAYAAAAxAnfSAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAoV1JREFUeJzs3Xl8TPf+P/DXTCaZmWyySyKSSEQIYi1CqbW2Uq2rKEoXWyluXXzdalXdq6hWqVJa1UWrsZaiLYoKRamdECKDLJNkssiezGTO74/85EolzExmyRmv5+Ph0eacz/I+znGSvOezSARBEEBERERERERERCRCUlsHQEREREREREREZComt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhEi8ktIiIiIiIiIiISLYsltyQSCX788UeDy48bNw5DhgypVZ8qlQoSiQTnzp0zuY13330XrVu3rlUcRERERERERERkHUYnt9RqNaZPn47GjRtDoVCgfv366NKlC9asWYOioiJLxGhW3bt3h0QigUQigUKhQFRUFFavXm3rsIyWlpaGF198EU2aNIFUKsWMGTMeWScrKwv9+vVDYGAg5HI5GjZsiKlTpyIvL6+yzLhx4yr/fu7/07x588oyoaGh1ZaZMmVKlf6OHz+Onj17wsXFBe7u7ujWrRuKi4urlNmzZw86duwIpVIJT0/PBxKct2/fxsCBA+Hs7Aw/Pz/MmjULOp2u8vzRo0fRpUsXeHt7Q6lUomnTpli+fHmVNt59990HYm3atOkDfz+Pire66168eHHl+ZKSEowbNw4tW7aETCZ7ZLL22LFjkMlkDyRT16xZg+joaLi7u8Pd3R0xMTH4+eefK89nZ2fjjTfeQGRkJJRKJYKDgzFt2jTcvXu3sowh95qIiIiIiIjIHsiMKXzz5k106dIFHh4eWLRoEVq2bAm5XI6LFy9i3bp1aNCgAQYPHmypWM1m/PjxeO+991BUVIRvvvkGU6ZMgaenJ0aOHGnr0AxWWloKX19fzJs374FkTk2kUimeffZZ/Oc//4Gvry9u3LiBKVOmIDs7G99//z0AYMWKFVUSNjqdDq1atcKwYcMqj506dQrl5eWVX1+6dAl9+vSpUub48ePo168f5s6di08++QQymQznz5+HVPq/fOq2bdswfvx4LFq0CD179oROp8OlS5cqz5eXl2PgwIHw9/fHH3/8gbS0NLz00ktwdHTEokWLAAAuLi6YOnUqoqOj4eLigqNHj2LixIlwcXHBhAkTKttq3rw5Dhw4UPm1TFb10TckXgB47733MH78+Mqv3dzcqsSrVCoxbdo0bNu27aH3Ijc3Fy+99BJ69eqF9PT0KueCgoKwePFiREREQBAEfP3113j22Wdx9uxZNG/eHKmpqUhNTcWyZcsQFRWFW7duYdKkSUhNTcXWrVsBGHaviYiIiIiIiOyCYIS+ffsKQUFBQkFBQbXn9Xp95f8DEHbs2FH59YULF4QePXoICoVC8PLyEsaPHy/k5+dXnh87dqzw7LPPCu+++67g4+MjuLm5CRMnThRKS0sry/z8889Cly5dhHr16gleXl7CwIEDhRs3blSeT0pKEgAIZ8+erfEannrqKWH69OlVjkVERAgjRowQBEEQ5s+fL7Rq1Ur45ptvhJCQEMHd3V0YPny4kJeXZ3AcpaWlwpQpUwR/f39BLpcLwcHBwqJFiyrP5+TkCK+++mrldfbo0UM4d+5cjTE/SnXXZKgVK1YIQUFBNZ7fsWOHIJFIBJVKVWOZ6dOnC+Hh4VXuf8eOHYV58+bVWEer1QoNGjQQvvjiixrL7N27V5BKpYJara48tmbNGsHd3b3Kc/F3zz33nDB69OjKr+/d04d5VLyCIAghISHC8uXLH1rmnnvPc02GDx8uzJs3z6DYBEEQPD09H/p3tXnzZsHJyUnQarU1lnnUvSYiIiIiIiISI4OnJWZlZWHfvn2YMmUKXFxcqi0jkUiqPV5YWIi+ffvC09MTp06dwpYtW3DgwAFMnTq1SrnffvsN8fHxOHz4MDZt2oTt27djwYIFVdp58803cfr0afz222+QSqV47rnnoNfrDb2MaimVSpSVlVV+nZiYiB9//BG7d+/G7t278fvvv1cZzfSoOFauXIldu3Zh8+bNuHbtGr777juEhoZW1h82bBgyMjLw888/46+//kLbtm3Rq1cvZGdnA/jf2mGHDx+u1XU9SmpqKrZv346nnnqqxjLr169H7969ERISUu35srIybNy4Ea+88krl/c/IyMDJkyfh5+eHzp07o379+njqqadw9OjRynpnzpxBSkoKpFIp2rRpg4CAAPTv37/KyK3jx4+jZcuWqF+/fuWxvn37Ii8vD5cvX642nrNnz+KPP/544JquX7+OwMBAhIWFYdSoUbh9+3blOUPivWfx4sXw9vZGmzZt8MEHH1SZImmoDRs24ObNm5g/f/4jy5aXl+OHH35AYWEhYmJiaix39+5duLu7PzAi7R5D7jURERERERGRKBmaBTtx4oQAQNi+fXuV497e3oKLi4vg4uIizJ49u/I47hu5tW7dOsHT07PKiK89e/ZUGZUzduxYwcvLSygsLKwss2bNGsHV1VUoLy+vNqbMzEwBgHDx4kVBEIwfuaXT6YRvv/1WACCsWrVKEISKUT7Ozs5VRmrNmjVL6NixY41t/j2ON954Q+jZs2eVkUz3xMXFCe7u7kJJSUmV4+Hh4cLatWsFQRCE5ORkITIyUjh58mSNfdZ0TYYYMWKEoFQqBQDCoEGDhOLi4mrLpaSkCA4ODkJsbGyNbcXGxgoODg5CSkpK5bHjx48LAAQvLy/hyy+/FM6cOSPMmDFDcHJyEhISEgRBEIRNmzYJAITg4GBh69atwunTp4WRI0cK3t7eQlZWliAIgjB+/Hjh6aefrtJfYWGhAEDYu3dvleMNGjQQnJycBKlUKrz33ntVzu3du1fYvHmzcP78eeGXX34RYmJihODg4Mp7bEi8giAIH374oXDo0CHh/Pnzwpo1awQPDw/hn//8Z7V/LzWN3EpISBD8/PyEa9euCYJQ86iyCxcuCC4uLoKDg4NQr149Yc+ePdX2IwgVz19wcLDw73//+4Fzht5rIiIiIiIiIrGq9W6Jf/75J86dO4fmzZujtLS02jLx8fFo1apVlRFfXbp0gV6vx7Vr1yqPtWrVCs7OzpVfx8TEoKCgAHfu3AFQMfpm5MiRCAsLg7u7e+VoqPtH4Rhi9erVcHV1hVKpxPjx4/HPf/4TkydPrjwfGhpaZS2lgIAAZGRkVH79qDjGjRuHc+fOITIyEtOmTcO+ffsq654/fx4FBQXw9vaGq6tr5Z+kpCQkJiYCABo0aICrV6+iQ4cORl2XoZYvX44zZ85g586dSExMxJtvvlltua+//hoeHh4PXRh9/fr16N+/PwIDAyuP3RvBNnHiRLz88sto06YNli9fjsjISHz55ZdVyrz11lsYOnQo2rVrhw0bNkAikWDLli1GX1NcXBxOnz6Nzz77DB9//DE2bdpUea5///4YNmwYoqOj0bdvX+zduxe5ubnYvHmzwfECwJtvvonu3bsjOjoakyZNwocffohPPvmkxuf+78rLy/Hiiy9iwYIFaNKkyUPLRkZG4ty5czh58iQmT56MsWPH4sqVKw+Uy8vLw8CBAxEVFYV33333gfOG3msiIiIiIiIisTJ4QfnGjRtDIpFUSUYBQFhYGICKqX2WNmjQIISEhODzzz9HYGAg9Ho9WrRoUWVKoSFGjRqFt956C0qlEgEBAQ8sGu7o6Fjla4lEUmXq46PiaNu2LZKSkvDzzz/jwIEDeOGFF9C7d29s3boVBQUFCAgIqHbKoYeHh1HXYSp/f3/4+/ujadOm8PLyQteuXfH2228jICCgsowgCPjyyy8xZswYODk5VdvOrVu3cODAAWzfvr3K8XvtREVFVTnerFmzygRgdWXkcjnCwsIqy/j7++PPP/+s0sa9xdf9/f2rHG/UqBEAoGXLlkhPT8e7775b4wYBHh4eaNKkCW7cuGFwvNXp2LEjdDodVCoVIiMjayx3T35+Pk6fPo2zZ89WTsnV6/UQBAEymQz79u1Dz549AQBOTk5o3LgxAKBdu3Y4deoUVqxYgbVr11Zpr1+/fnBzc8OOHTseeG4Bw+41ERERERERkZgZPHLL29sbffr0wapVq1BYWGhUJ82aNcP58+er1Dt27BikUmmVpMD58+dRXFxc+fWJEyfg6uqKhg0bIisrC9euXcO8efPQq1cvNGvWDDk5OUbFcU+9evXQuHFjNGjQ4IHE1qMYGoe7uzuGDx+Ozz//HLGxsdi2bRuys7PRtm1bqNVqyGQyNG7cuMofHx8fk66nNu4l7f4++uj333/HjRs38Oqrr9ZYd8OGDfDz88PAgQOrHA8NDUVgYOADidCEhITKtbvatWsHuVxepYxWq4VKpaosExMTg4sXL1YZNbd//364u7s/kIj6+zU9bDRVQUEBEhMTKxM8hsRbnXPnzkEqlcLPz6/GMvdzd3fHxYsXce7cuco/kyZNqhyl1bFjR4OvKS8vD08//TScnJywa9cuKBSKR/Zf070mIiIiIiIiEjODR24BFdP5unTpgvbt2+Pdd99FdHQ0pFIpTp06hatXr6Jdu3bV1hs1ahTmz5+PsWPH4t1330VmZibeeOMNjBkzpspi4WVlZXj11Vcxb948qFQqzJ8/H1OnToVUKoWnpye8vb2xbt06BAQE4Pbt2/i///u/2l29CQyJ46OPPkJAQADatGkDqVSKLVu2wN/fHx4eHujduzdiYmIwZMgQLF26FE2aNEFqair27NmD5557Du3bt0dKSgp69eqFb7755qFTE8+dOwegIlmTmZmJc+fOwcnJqTLxs2PHDsydOxdXr14FAOzduxfp6el44okn4OrqisuXL2PWrFno0qVLlQXvgYrphh07dkSLFi2q7Vuv12PDhg0YO3bsA4uYSyQSzJo1C/Pnz0erVq3QunVrfP3117h69Sq2bt0KoCLRM2nSJMyfPx8NGzZESEgIPvjgAwAVC+4DwNNPP42oqCiMGTMGS5cuhVqtxrx58zBlyhTI5XIAwKefforg4GA0bdoUAHDkyBEsW7YM06ZNq4znX//6V+Vou9TUVMyfPx8ODg6VI7sMiff48eM4efIkevToATc3Nxw/fhz//Oc/MXr0aHh6elb2deXKFZSVlSE7Oxv5+fmV96h169aQSqUP/H36+flBoVBUOT537lz0798fwcHByM/Px/fff4/Dhw/j119/BfC/xFZRURE2btyIvLw85OXlAQB8fX3h4OBg1L0mIiIiIiIiEjVjF+lKTU0Vpk6dKjRq1EhwdHQUXF1dhQ4dOggffPBBlcXgcd+C8oJQsUB2jx49BIVCIXh5eQnjx48X8vPzK8/fW4D7nXfeEby9vQVXV1dh/PjxVRZe379/v9CsWTNBLpcL0dHRwuHDh6v0Y+yC8tWpboHv5cuXCyEhIQbHsW7dOqF169aCi4uL4O7uLvTq1Us4c+ZMZf28vDzhjTfeEAIDAwVHR0ehYcOGwqhRo4Tbt29XuY5Dhw7VGKcgVPwd//3P/XFu2LBBuP8WHzx4UIiJiRHq1asnKBQKISIiQpgzZ46Qk5NTpd3c3FxBqVQK69atq7HvX3/9VQBQuTB6dd5//30hKChIcHZ2FmJiYoS4uLgq58vKyoSZM2cKfn5+gpubm9C7d2/h0qVLVcqoVCqhf//+glKpFHx8fISZM2cKWq228vzKlSuF5s2bC87OzoK7u7vQpk0bYfXq1VU2IRg+fLgQEBAgODk5CQ0aNBCGDx8u3Lhxw6h4//rrL6Fjx46Vf3fNmjUTFi1a9MDGACEhIdXel5pU97y98sorQkhIiODk5CT4+voKvXr1Evbt21d5/tChQ9X2AUBISkoSBMHwe01EREREREQkdhJBEAQr5tKIiIiIiIiIiIjMpta7JRIREREREREREdkKk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESixeQWERERERERERGJFpNbREREREREREQkWkxuERERERERERGRaDG5RUREREREREREosXkFhERERERERERiRaTW0REREREREREJFpMbhERERERERERkWgxuUVERERERERERKLF5BYREREREREREYkWk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESixeQWERERERERERGJFpNbREREREREREQkWkxuERERERERERGRaDG5RUREREREREREosXkFhERERERERERiRaTW0REREREREREJFpMbhERERERERERkWgxuUVERERERERERKLF5BYREREREREREYkWk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESiJbN1AEREfycIQEm5raMwjcIBkEiMqyMIAnTFpZYJyMZkSjkkxv6FEBERERERGYHJLSKqc0rKga57bR2FaeIGAEoj36y64lJ8Fz7aMgHZ2KjEjXB0Vtg6DCIiIiIismOclkhERERERERERKLF5BYREREREREREYkWk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESixeQWERERERERERGJlpEb1hMR1W2a377CrZUvI2TaBvj0GvfA+dJ0FS5NaATvnmMROv0rq8dnC/4xzdFv+4Iqx7SFxci7mYbErUcQv34vhHK9jaIjIiIiIiKqHSa3iIgeEze3xyH54BlAIoHS1wONhz2FDgvGoV5EAxyftdbW4REREREREZmEyS0iosdE1sUk3NwWV/n1ta9+xXNxK9DkxV44s3gTSrPybBgdERERERGRabjmFhHRY0pXXIrMM9chkUrhHlLf1uEQERERERGZhMktIqLHmFtoRVKrNLfAxpEQERERERGZhtMSiYgeEzKlE+RebpVrbkW+9DS8W4Yh88x15N1Ms3V4REREREREJnksRm5pNBrMnj0bjRs3hkKhQMOGDTF9+nQUFhbi1VdfhUQiwapVq2wdJhGRRbWZPQIjL2/AyEtfYsihj9Ds5X5Q7TmBg+OW2Do0IiIiIiIik9n9yK1z586hf//+UKvVcHFxQVRUFFJTU7Fy5UokJiYiOzsbANC6dWvbBmpBN5Pz8Nnmqzh8Og0FRTq4OsvQvX0AJr3QFGFB7rYOjyxMEAScuJCBNbFXcelGDkrKyuFdT47ne4di3LMR8HSX2zpEG5FU/l/20c3I2L0SxUnnIHP3QcvPVbYLy4KufbsPqp+OQ+oog2fTYLSYMgQuAd4oLy2zdWhEREREREQms+vklkajwaBBg6BWqzFz5kzMnz8fbm5uAIClS5dizpw5kMlkkEgkiI6OtnG05pdXUIZX58dh2wEVBKHquVOXNFj29UUM7R2K9Qu6wt3VyTZBkkUlqO5i5JxDOBOf9cC5o2fT8dYnpzFrbDTmT24DqVRSTQviI3VSAgD0pUXVnteXFlaUkysrj8lcPeE3YCq0d9ORsWu55YO0kbybaqTFXQQApBw8i/Q/r2LAzoWIWTIRv0+23+smIiIiIiL7ZtfTEqdNm4bk5GRMnToVy5Ytq0xsAcDs2bPRqlUr6HQ6hIaGwt3dvkYw5ReWoedrP2Pr/gcTW/cIArB1vwo9X/sZ+YUcuWFvriTmIGbMT9Umtu4pLinHe2vPYsKCoxBqelBERl6/EQCgJDm+2vMldyqOO/k1qjzm3roPvLqNgNw3xPIB1iGZp68hcesRNBrSBb7tI20dDhERERERkUnsNrkVHx+P2NhY+Pj44P3336+2TLt27QAArVq1qnI8KSkJgwcPhpubGzw9PfHSSy8hK6vmBEFdNGHBMfx1RWNQ2b+uaDBhwTELR0TWVKYtx8Ap+5B9t9Sg8ut3JGBNbPXJILFxDm8LR5+GyIn7AWVZqVXO6bVlyNi7CpBI4NFhsI0irFvOL98Kva4cbWYNt3UoREREREREJrHb5NamTZug1+sxatQouLq6VltGqayYlnR/cis/Px89evRAcnIyNm3ahHXr1iEuLg7PPPMM9Hq9VWKvrVup+di8L8moOpv3JeF2WoGFIiJr235ABVWqcffzo28vQa8X/+gtiYMMIZPXoLzoLq5Mj0by13OQ+es6pMUuRPybbVFw6Xf4D50LRRBHKgFAvkqNpJ3HENgtGn4dm9k6HCIiIiIiIqPZbXLr4MGDAIAePXrUWCY5ORlA1eTWunXrkJKSgh9//BHPPPMMhg0bhu+//x4nTpzArl27LBu0mazdcs3oJIVeL2DtlqsWiois7dMfjB+FlXgnH/v+SLFANNZXr/1ARC4+BreWPZB18GvcXjsF6Ts/hMzdF41mxaLBmP/aOsQ65cKKbdCXc/QWERERERGJk0Swl4V2/qZhw4ZITk7G2bNnq90JUafTISAgABqNBomJiQgLCwPwv2TYoUOHqpQPDw9H9+7dsX79eqNjad++PdRqtfEXYaJMt1dQ5mj82kFOWhV88zdYICKyJgESpHq+A0iMz127Fh9BveLfLBCVcSROStT/+LrV+8098SPurJ9Rq90S02dEQCgrNqqOoyDFfH0Hk/usyxZI/4RWIo5Rr0REREREZDv+/v44ffq0SXXtdrfEwsKKHdGKi6v/JTM2NhYajQZubm5o1Oh/C0tfuXIFw4YNe6B88+bNceXKFZNiUavVSEmx4oiYxhLA0fhqZTqJdeMky5DKAS/TBmUWFJahIM32z4BU7oz6VuxPKC+HUK6FUK4FBAH6shJAIoHUUW50W6mpqTXu1FgTJ4kDrHrBVpSalooyodzWYRARERERkR2z2+SWv78/cnJycObMGcTExFQ5l5aWhlmzZgEAoqOjIZFIKs/l5OTAw8Pjgfa8vLxw7do1k2OxpkyZHqbsfegkE+DboIHZ4yHrEiBBqqA3aeSWm4sj3OvAMyBxUlq1v6zD3+LWypcrvz47TAknvxCTRnAFBgaaNHILdjq4KTAgkCO3iIiIiIjokWqTO7Hb5Fbv3r0RHx+PJUuWoE+fPmjSpAkA4NSpUxgzZgw0moqdBKubsmhupg6rM9WCNWfw7pqzRtd7a/rzeGfSQgtERNbWe/zP+O1k6qML/s3O7xajR4dAC0RknGId0HWv9frz6TUOPr3GmaWthITrUBr5ZtUWleC78NFm6b+uSbieAEdnha3DICIiIiIiO2a3C8rPnj0b3t7euHPnDpo3b46WLVsiIiICHTp0QFhYGHr27Amg6mLyAODp6Ync3NwH2svOzoaXl5c1Qq+18UMj4eAgeXTB+8gcJHjt+SYWiois7fXhxu9617RRPXR/IsAC0RARERERERFZjt0mt4KCghAXF4eBAwdCoVBApVLBy8sLa9euxZ49e5CQkADgweRWs2bNql1b68qVK2jWzPiEgS0E+rngpUGNjarz0uAIBPq5WCgisrbB3YPRtFE9o+rMeaXqFF0iIiIiIiIiMbDb5BZQkajavXs38vPzkZ+fj5MnT2LChAkoLCyESqWCVCpFixYtqtR55plncPToUSQnJ1ceO3nyJBITEzFo0CBrX4LJPv13Z3RrZ9h81W7t/LFqbsyjC5JoyGRS7Pn0aQT6ORtUfuZLLTDuWY7cIyIiIiIiIvGx6+RWTS5fvgxBEBAREQFn56q//E+YMAEBAQF49tlnsXv3bmzduhUjR45Ehw4d8Oyzz9ooYuMpFTL8sqYvxg+NhKOs+tvsKJNi/NBI/LKmL5QKu11+7bEVFuSOExsHoVfHmtfQ8qonx0ezOuKDmR2sGBkRERERERGR+TyWGY2LFy8CeHBKIgC4u7vj4MGDmD59OkaMGAGZTIZnnnkGy5cvh1QqrlygUiHDuvlPYuHUdvhyRwIOn07D4T/TUKbTw93FEdd3D4Oft3V3pSPraujvigOf98eVxBys3XIVa7dcRalWD4WTA9a83RnD+4YxsUlERERERESi9lj+Vvuw5BYAhIeHY/fu3dYMyaLqeysx97VWmPtaKwT13oSUjCK4uTgysfUYiQr3xIr/i8G2AyqkZBTB20POaYhERERERERkF5jcIiK7UZJ6HaqPx0KXr4GDcz2ETv8KyuDmNZbXHNiAW5+8gvC5O+DRaUjl8YvjQyGRySGVVySA/YfOhVfX4bh75hekbpwHQVcGqdwZwa+vhXMj271HOix8BcF928O1oR929f4Xsi+rTCpnaDt/59bIH11XvAG5lxu0+UU4On0VchOSH12RiIiIiIjIjMQ1z85MDh48CEEQMHDgQFuHQkRmdHv1RPj0nYAWaxLg//wcqFaMq7FsaboKmn2fwyWyU7Xnw2bFIurjc4j6+By8ug6HriAHSR+NQuiMrxG18gIajPsASR+NstCVGObWnuPY++w8FNzJqFU5Q9v5u85LJyJh437seHIaLq76EU+umGpUfSIiIiIiInN4LJNbRGR/tLkZKLxxGt7dRwMAPDoPRZnmDkrSbjxQVtDrcWvVa2g44RNIHOUGtV+algiZm3flSDC35l1RlnkbRYlnzHcRRko/EY+itOxalzO0nfspvN3h3SociduOAABu7TkBl0BvuIUatksrERERERGRuTC5RUR2oUxzB46eAZA4VMy2lkgkcPINRlnm7QfKpu/8CK7NusClcbsa21N9/BIuT2sJ1SevQns3E4rACOjys1AQ/wcAIPfkLuiL81GaobLI9dR1Lg18UJyeA6FcX3msIEUDlwY+NoyKiIiIiIgeR4/lmltEJD5XZ8egJPV6teeilp81uJ3iW5eQe3wbIhcdqbFM5KIjcPINhqDTIuW7eVCtGIuId/YifPZWpHw7F/qSArhExkDRMAoSqWVeowN++i/cwwKqPberzywUpWZZpF8iIiIiIiKxYXKLiESh6dLjDz0vcZRDm5MGoVwHiYMMgiCgLPM2nHyDq5QruBKH0gwVLk2OAABoc9S4dWcCtDlp8O0/GQAq60hkjqg/aAYuTa7YWdItugcio3sAAPTaUlwY6w9FcJRZr/OevYPeski75lKYooGyvickDtLK0VuuDXxQmKKxcWRERERERPS44bREIrILjh5+cA5vi6zDGwEAuX9sg5N3EBQBjauU8+0/Ga2+SkPLz1Vo+bkKLpGdEPL6usrEVnlJIXQFuZXls+M2wTmsDQBAm51WeTwtdiHcons+0L69eXLlGwju3+GB4yVZeci+mITwod0AACEDO6EwLRv5KrW1QyQiIiIiosccR24Rkd0ImbwWqpXjoN66CA5Kd4RO21B5TvXJa/DoMBgeHQc/tA1dbjoSFw8F9OUQIEBePwyhM74BAKR+/w7yr8QB5Tq4NI1ByNT1Fr2eR4lZOgFBvdpB6eeBPpvmQVtQjO2d3wAAdF42CXf2ncadfacfWu5R7fi0CkP8+r3V9v/H7LV48uMpaDnteWgLinF0xqeWv2giIiIiIqK/kQiCINg6CLKeoN6bkJJRhAZ+zkg+MNLW4ZCVieX+F+uArtXnU+q8uAGA0siPDbRFJfgufLRlAqoFubc7nvp0OvaNWGhyG6MSN8LRWWHGqIiIiIiIiKritEQiIqpWaVZerRJbRERERERE1sDkFhERERERERERiRaTW0REREREREREJFpMbhERERERERERkWhxt0QiqnMUDhULs4uRwsH4OjKlHKMSN5o/mDpAppTbOgQiIiIiIrJzTG4RUZ0jkRi/46CYSSQS7ihIRERERERkIk5LJCIiIiIiIiIi0WJyi4iIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhEi8ktIiIiIiIiIiISLSa3iIiIiIiIiIhItJjcIiIiIiIiIiIi0WJyi4iIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiERLZusAiKojCEBJua2jMI7CAZBIbB0FEdkDMb4D7zHlXSgIAnTFpZYJyMZkSjkk/OZAREREZFFMblGdVFIOdN1r6yiMEzcAUPJfFBGZgRjfgfeY8i7UFZfiu/DRlgnIxkYlboSjs8LWYRARERHZNU5LJCIiIiIiIiIi0WJyi4iIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLS4/PVjIjevFOqsYmh1egCAXi/YOCKyJkEQoNb87/5rdXqUlOqgkPMVQEREREREROLG32ztVFGxDj/8chP7jifj9GUNEu/kVzmfpilG44Gb0b65D56OCcKIfmFw5lZ/dkWtKcJXO68j7owaf13JQnpWceW5jOwSuMV8gxaNPdGumQ+e7x2Kvp0bwMGBgzmJiIiIiIhIXJjNsDOpGYX44KuL+GrndeTmlz20bOKdfCTeyUfsL0mYuewkxg6OwOyXWyLQz8VK0ZIl/HVFg6UbLmD7byrodDWP0NPpBJy7mo1zV7OxfkcCGjVww+QXmmLqyCgoFXw1EBERERERkTjwN1g7IQgCvtl1AzOWnnhkUqs6ufllWPHdZXy96zo+nt0JLw1uDIlEYoFILSf/4mEkzOtR5ZhU4QJ5YBN4dx8Dv2fegMTBfh/5klId3l1zFh98ddGkaadJKfmYvfwU1u9IwIaFXRHTqr4FoiQiS9P89hVurXwZIdM2wKfXuAfOl6arcGlCI3j3HIvQ6V9ZPT5b8I9pjn7bF1Q5pi0sRt7NNCRuPYL49XshlOttFB0RERER1Zb9/qb/GCks0mLU3MPYeeh2rdvKzS/DuLePYMdBFb57vztcnB3NEKF1eXYbiXrtBgCCAG2OGlmHv0Hyl2+iJDkeIVPW2To8i0i8k4fB0/bjSmJurdu6prqLJ8fuwdsTWmP+5DaiS3ISEdXk5vY4JB88A0gkUPp6oPGwp9BhwTjUi2iA47PW2jo8IiIiIjIRF9gRufzCMjw96RezJLbut/PQbfSd/CvyC40fBWZrzmFt4d19NLx7jIH/87PQdOkJOHoHQbP/C2jvZto6PLO7mpSLruP2mCWxdY9eL2DBZ2cxbfEJCAI3HyAi+5B1MQk3t8Xh5tYjuLxmF/YM/DcKUzRo8mIvyL3dbR0eEREREZmIyS0R02r1GDL9AP44l2GR9o+dTceQ6Qeg1Yp7qoaDwgUukZ0AQUCpOtHW4ZhVsroQfSb8grTMIou0v2rTFby96i+LtE1EZGu64lJknrkOiVQK9xBOxSYiIiISKya3RGzJhvM4+GeaUXVObRqMO/tH4NSmwQaVP/hnGpZuuGBKeHXKvaSWzNXLxpGYjyAIePXdOCSnFxpcx9j7DwD//fw8Dp8y7jkjIhILt9CKpFZpboGNIyEiIiIiUz0WyS2NRoPZs2ejcePGUCgUaNiwIaZPn47CwkK8+uqrkEgkWLVqla3DNMqFhGy899k5o+v5+zgjqL4L/H2cDa6z4LOzuJiQbXRftqIvLYIuTwPt3UwUqy7i9mdTUHzzLJwjOkDRoImtwzOb9dsTsO+PFKPqmHL/AeCVd+JQUKQ1qg4RUV0jUzpB7uUGubc7PJoGo+Oi1+DdMgyZZ64j7yaT+ERERERiZfcLyp87dw79+/eHWq2Gi4sLoqKikJqaipUrVyIxMRHZ2RVJm9atW9s2UCO98f5xaHXWmS6o1enxxuLjOPzlQKv0V1tpm+YjbdP8Ksc8Yp5H8MRPbRSR+eUVlGHmhyet1l9SSj6WfHkBC6e2s1qf5nY7rQC/HktGbn4ZnJUytI/yQYeWvlww/zHy1xUNTl7IQGGxDvXcnNCnUwM0CnKzdVhkRW1mj0Cb2SOqHFPtOYGTc7+wUUREREREZA52ndzSaDQYNGgQ1Go1Zs6cifnz58PNreIXmaVLl2LOnDmQyWSQSCSIjo62cbSGu5CQjSN/qa3a5++n1biYkI2WTer+tD6fvhPg2XkYhHItim9dhHr7EpRpkiFxVFSWyb8chxvv9X+grqArg6AvR7sd5dYM2Wjf7r6BvALrjqRau+Uq5k1oDbmTg1X7ra0T5zOw+Mvz+On3O9Drqy6O36apN6aPao6XBjdmkstOCYKA2F9uYvm3l/HnpaobSkgkQP8ngzDn5Wh0ax9gowht6X/PfPbRzcjYvRLFSecgc/dBy89VtgvLgq59uw+qn45D6iiDZ9NgtJgyBC4B3igvFd/mKURERET0P3Y9LXHatGlITk7G1KlTsWzZssrEFgDMnj0brVq1gk6nQ2hoKNzdxbNL0urY+MeqX2PJAyLg3ro36rXrD//nZ6PxWz+h6MYp3F4zqbKMW/OuaBNbUOVP89UJkLn5IPDFhTaM/tEEQbDJvcjMKcG2/Sqr91sb3+9JRNdxu7Hz0O0HElsAcPZqFsa9fQQTFhyt9jyJmyAI+OfSkxg55/ADia2K88DeuGT0HP8z1m+/ZoMILUPqpARQMUW7OvrSinX6pHJl5TGZqyf8BkxF4Oj/Wj5AG8q7qUZa3EWkHDyLS6t34rexi+HTOhwxSybaOjQiIiIiqgW7TW7Fx8cjNjYWPj4+eP/996st065dxRSrVq1aVR67lwzr0KED5HJ5nRvNIQgCNv960yZ9x/56E4IgvgSAa7PO8Oo+BjlHY1EQ/0e1ZfTaUtxc/Dxco55EwLB/WzlC41y6noMribk26fuHX2zz7Jli//EUvDTvd+jKH/3MfrE9AXNXnLJCVGRN/1l3Diu+u/zIcuXlAsYvOIqdh25ZISrLk9dvBAAoSa4+CV5yp+K4k1+jymPurfvAq9sIyH1DLB9gHZJ5+hoStx5BoyFd4Ns+0tbhEBEREZGJ7Da5tWnTJuj1eowaNQqurq7VllEqKz61vj+5dePGDWzbtg3+/v544oknrBKrMW4m5yMnzzbTJ3LyynAzOd8mfddWwPC3AakDUr9/p9rzt1dPgl5bgtDpX1k3MBOcvqJ5LPs2hiAImL38T5QbkNi658NvLiFZbfjOk1S3aXJK8J915wwuLwjArI/+tIsRfM7hbeHo0xA5cT+gLCu1yjm9tgwZe1cBEgk8Ohi+a6o9O798K/S6crSZNdzWoRARERGRiew2uXXw4EEAQI8ePWosk5ycDKBqcqtbt25IS0vDrl270Lt3b8sGaYK/bJxcsHX/plIENIZX1xHIv/Ab8i/HVTmX8dNK3D29G+Fzf4RUbtwugrZgy3uQllmEtMzqpzrVJScuZODcVeN2+CwvF/D5NvuZmva4+3JHAsq0xm26cf1WHg7+mfrognWcxEGGkMlrUF50F1emRyP56znI/HUd0mIXIv7Ntii49Dv8h86FIogjlQAgX6VG0s5jCOwWDb+OzWwdDhERERGZwG6TW7duVUwvCQmpfoqFTqfDsWPHAFRNbkmldfuv5Jrq7mPdf234D3sLkEqrjN7Kv3AIyd/MQdjsLZDXD7VdcEaw9T2wdf+G2PSzadMnN/2SaOZIyFZMvZemPjt1Tb32AxG5+BjcWvZA1sGvcXvtFKTv/BAyd180mhWLBmPse20tY11YsQ36co7eIiIiIhIriSDGRZQM4OXlhZycHPzxxx+IiYl54Px3332H0aNHw83NDXfv3q12ba13330XCxYsqPU6U+3bt4dabZ7dDe8qe6FA2a3ac6c2DYa/z8NHHvn7KCFzkEJXrodaU1xjObWmCE+M3PXAcdfiI6hX/JtxQZtA4qRE/Y+vW7SP0nQVrv7rCQSMmA+/gVNr3V76jAgIZTX/nZpLptsrKHOsPmn7qGfA0PsP1PwMeOd/C4X2hnFBW1m2yz9QLG9pdD2JvgSBudWv0UfikuYxE3qp8RuFKMquwbvgewtEZBxrvAOrk3viR9xZP6NWuyWa8i50FKSYr+9gcp912QLpn9BKjBtFSERERPQ48vf3x+nTp02qKzNzLHWGv78/cnJycObMmQeSW2lpaZg1axYAIDo62uKLxqvVaqSkpJinsfp5gLL6U/4+zgiq72JQMzIHqcFl71eQfxcF6Wa6loeQyp1R34Lt60uLkPj+ENTrMNgsiS0ASE1NrXF3MrNqVAI4Vn/K0GfA1PsPAFmaTKDA8s9ArQQVAnLjqwl6rfn+rZJtuWoBJ+OrlRQX1olnwNLvwL8TysshlGshlGsBQYC+rASQSCB1NP4fkinvQieJA6x6wVaUmpaKMqHc1mEQERER2TW7TW717t0b8fHxWLJkCfr06YMmTZoAAE6dOoUxY8ZAo6lYt6h169YWj8Xf399sbeUrnJBXwzm15tG/TBgzcqs67q5yuMkaGBJqrUicasjgmUnOH9tQnHQeJSkJyDka+8D55quuwMk32Kg2AwMDrTJyK8sJKKnh3KOeAWNHblXHx9sN8nqWfwZqI09eDFO2PnAScuDboG5fGxlGI8lFKbyNrufqVIR6deAZsPQ78O+yDn+LWytfrvz67DAlnPxCTBrBZcq70FGQAnY6uCkwIJAjt4iIiIgMUJvcid1OS0xOTkbr1q2RlZUFmUyGpk2boqSkBDdu3ED//v2h1+vx66+/Yt26dRg/fny1bZhrWqI5/XosGf0m/2py/Tv7RyCovguS0wvRsM8PRtf/ZU1f9O0SZHL/hirWAV33Wrwbs4obACitkC5+a+VpLPrivEl1a3v/JRIg7/hLcHWuYehYHXFHXYDQfpuN3vnuy/e64uUhTSwUFVnT5l9vYvisQ0bXS/jpH4gIqWeBiIwjxnfgPaa8C7VFJfgufLRlArKxUYkb4eissHUYRERERHatbq+eXgtBQUGIi4vDwIEDoVAooFKp4OXlhbVr12LPnj1ISEgAUHUxeTFoF+XzWPdPQPvmtrsHTRt51PnEFgA09HfF4O7GjbzzdHfC8L5hFoqIrG1IzxD4+xg3+qlPTGCdSGwREREREZFx7HZaIgA0a9YMu3fvfuB4QUEBVCoVpFIpWrRoYYPITOfjqUDjYHfcuF3T5ETLiQhxh48nP322tY4tfSGRALYYUBjTys/6nZrok/+LwalLmUjJePR0XalUgm/++xScrTH0jqzCydEBGxd1R7/Jv0BX/uh/LH5eCnz2dhcrREZEREREROZmtyO3Huby5csQBAERERFwdn5wZ7mtW7di69atuHLlSpWvTV2139xefc4206Zs1S9VFejngv5PWn5qaHXE9AwE+bvg8JcD0Tj44TvmKeQO2PphTzzzlHEjvaju69UpELtW9oHLI5KWwQEuOLR+AMKCjN9dkYiIiIiIbO+xTG5dvHgRQM1TEocNG4Zhw4Zhy5YtVb5etWqV1WJ8mFefawInR+veOidHKV7hWkR1xuvDm1m9z1aRXqIauQUAjYPdcX7Lc1i/oCvaNqu6uLhUKsH8SW1wY/cwPNcr1DYBksX179oQN/YMw3+mtkND/6o7hEY38cJnb3fB5R1DERXuaaMIiYiIiIiotpjcqoYgCNX++eqrr6wYZc18vZQY92yEVft8eUgT+HpZd/cuqlm/LkFoHu5h1T5njWsJiURi1T7NwVkpwyvPNcHpH56F+tCL8POqmFrr763Au6+3RYP6Lo9ogcTO38cZb01ojaSfX4C/9737r8S5LUMwcVhTUawjR0RERERENXssF5h5VHJLDJbMeAJ7jtwxaD2h2mrg54zF09tbvB9LKkm9DtXHY6HL18DBuR5Cp38FZXDzKmX0ZSW4uWwESu5cgdRJCVk9PwRPXgNFQGMbRV0zBwcpNizshpgxP6HcgPWEamtA1yC8OCDc4v1YkkQiQX1vJRxl0sqv6fHi4CCFg4P0//+/xC6fAUPedffTHNiAW5+8gvC5O+DRaUjl8YvjQyGRySGVV3yo4T90Lry6DsfdM78gdeM8CLoySOXOCH59LZwb2e57aYeFryC4b3u4NvTDrt7/QvZllUnlDG3n79wa+aPrijcg93KDNr8IR6evQm5Ccu0uioiIiIiM9liO3Dp48CAEQcDAgQNtHYrJPNzl+Hz+k0bXU2uKkJxeCLXG8KTY5/OfhIe73Oi+6pLbqyfCp+8EtFiTAP/n50C1Yly15XyfnoDmq68hasV5eHR8FrdWvWbdQI3wRAtfzB4XbVQdU+5/PTcnrHvnSbtMBBDZG0PfdQBQmq6CZt/ncInsVO35sFmxiPr4HKI+PgevrsOhK8hB0kejEDrja0StvIAG4z5A0kejLHQlhrm15zj2PjsPBXcyalXO0Hb+rvPSiUjYuB87npyGi6t+xJMrphpVn4iIiIjM47FMbtmL/l0bYuHUtkbVeWLkLjTs8wOeGLnLoPILp7ZF/64NTQmvztDmZqDwxml4dx8NAPDoPBRlmjsoSbtRpZzUSYF67QdUJnFcmnRCWYbK2uEaZcHrbTGwm+H3x9j77+QoxeYPenDqHpEIGPquAwBBr8etVa+h4YRPIHE07MOL0rREyNy8K0eCuTXvirLM2yhKPGO+izBS+ol4FKVl17qcoe3cT+HtDu9W4UjcdgQAcGvPCbgEesMt1N+odoiIiIio9pjcErm3xrfGOxPbWKTtdya2wVvjW1ukbWsq09yBo2cAJA4Vs3AlEgmcfINRlnn7ofUydq+AR4dnrRGiyRwdpdiyrKdFdk+UOzlg64e98HRn2+zMSETGMeZdl77zI7g26wKXxu1qbE/18Uu4PK0lVJ+8Cu3dTCgCI6DLz0JB/B8AgNyTu6AvzkdpHf8QwFJcGvigOD0HQrm+8lhBigYuDXxsGBURERHR4+mxXHPLnkgkEiyY0hYhga6YvuQECoq0tW7T1dkRK+Z0wivPiWN3xKuzY1CSer3ac1HLz5rUZtqWRShNu4GQhb/VJjSrUCpk+HFFb/zfx6fw8cbLEMywBFdYkBu+XfQUOreuX/vGiMgszPWuK751CbnHtyFy0ZEay0QuOgIn32AIOi1SvpsH1YqxiHhnL8Jnb0XKt3OhLymAS2QMFA2jIJFa5keJAT/9F+5hAdWe29VnFopSsyzSLxERERGJD5NbduKV55qgV8cAvPbuURw4kWpyO707BeKLd59ESKCbGaOzrKZLjz/0vMRRDm1OGoRyHSQOMgiCgLLM23DyDa62vHrHMuQe346I9w5AKne2RMhm5+TogI9mdcLzvULx8jtxuHE7z+S23ngxCu9Paw8X7iBHVKeY611XcCUOpRkqXJpcseuuNkeNW3cmQJuTBt/+kwGgso5E5oj6g2bg0uSKDzvconsgMroHAECvLcWFsf5QBEeZ9Trv2TvoLYu0ay6FKRoo63tC4iCtHL3l2sAHhSkaG0dGRERE9PjhtEQ7EhLohn1r++HgF/3xjz6hcHAwbAFwBwcJ/tEnFL993h/71vYTVWLLEI4efnAOb4uswxsBALl/bIOTd1C1uyCm7/wIOXGbEPHefshcPawcae092dYfl7Y/j43vP4XOrf0Mrufu6og3XozC5R3PY+X/xTCxRSRChr7rfPtPRquv0tDycxVafq6CS2QnhLy+rjKxVV5SCF1BbmX57LhNcA6rmP6uzU6rPJ4WuxBu0T3r5I6y5vTkyjcQ3L/DA8dLsvKQfTEJ4UO7AQBCBnZCYVo28lVqa4dIRERE9NjjyC07I5FI0KNDIHp0CERqRiEOn1Lj9JVM/HUlC2maIpSWlUPu5IAAH2e0i/JG+yhfdH/CH4F+9r1geMjktVCtHAf11kVwULojdNqGynOqT16DR4fBcA5vi+QvZ8LJPwwJ8ypGJkhkcjRbdtJWYZtE7uSAUQMbY9TAxrh8IwdHz6bjrysanL2ahZy8Umh1eijlMoQ3dEP7KF+0i/JGz46BcGVCi0j0DHnXeXQc/NA2dLnpSFw8FNCXQ4AAef0whM74BgCQ+v07yL8SB5Tr4NI0BiFT11v0eh4lZukEBPVqB6WfB/psmgdtQTG2d34DANB52STc2Xcad/adfmi5R7Xj0yoM8ev3Vtv/H7PX4smPp6DltOehLSjG0RmfWv6iiYiIiOgBEkEwxwo9ROZVrAO6Vv+7RJ0VNwBQMl1c5wX13oSUjCI08HNG8oGRtg6HrEws91+M78B7THkXaotK8F34aMsEVAtyb3c89el07Bux0OQ2RiVuhKOzwoxREREREdHfcVoiERERUTVKs/JqldgiIiIiIutgcouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLR4t5uVCcpHCp23BIThYOtIyAieyHGd+A9prwLZUo5RiVuNH8wdYBMKbd1CERERER2j8ktqpMkEuO3kicisheP2ztQIpHA0Vlh6zCIiIiISKQ4LZGIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhEi8ktIiIiIiIiIiISLSa3iIiIiIiIiIhItJjcIiIiIiIiIiIi0WJyi4iIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhES2brAIiI6EGCAJSU2zoK4ygcAInE1lEQkT0Q4zvwHlPfhYIgQFdcav6AbEymlEPCbw5ERGRhTG4REdVBJeVA1722jsI4cQMAJb+rEJEZiPEdeI+p70JdcSm+Cx9t/oBsbFTiRjg6K2wdBhER2TlOSyQiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLR4r5WRGS3Skp1OHEhE39d0eD0ZQ1uqwuQkV0MANDkluCdT/9CuygfdG7lB18vpY2jJUvIvluKP86l4/RlDc7EZyEjuwQAkJldguGzDqJdMx+0b+6DmFZ+UCr4LZGIiIiISIz4kzwR2Z2k5Hx8tiUe63ckICu3tNoypWV6LFx7DgDgKJNiaO9QTBnRDF3a1IdEIrFitGRugiDg5IVMrI6Nx+Z9SSgtK3+gTJlOj82/JmHzr0kAAE93J7w8pAkmDWuKiJB61g6ZiIiIiIhqgcktIrIbRcU6vPXJaaz47jIEwfB6Wp0eP/xyEz/8chM9ngjA+gVd0SjIzXKBWlD+xcNImNejyjGpwgXywCbw7j4Gfs+8AYmD/b7676gLMGHBMfxyLNmoejl5Zfjom0v46JtLmDSsKZa++QTcXJwsFCURWZLmt69wa+XLCJm2AT69xj1wvjRdhUsTGsG751iETv/K6vHZgn9Mc/TbvqDKMW1hMfJupiFx6xHEr98LoVxvo+iIiIhqz35/wyGix8of59Ixdt4R3LidV6t2Dp1KQ8uh2/HBmx0w6YWmoh3F5dltJOq1GwAIArQ5amQd/gbJX76JkuR4hExZZ+vwLGLDjwmYsfQE8gq0tWrnsy1X8fOxZGx4ryt6dAg0U3RERLZ3c3sckg+eASQSKH090HjYU+iwYBzqRTTA8VlrbR0eERGRybigPBGJ3o8HVejx6t5aJ7buKSzW4fX//oE3PzgJwZghYHWIc1hbeHcfDe8eY+D//Cw0XXoCjt5B0Oz/Atq7mbYOz6wEQcBbK0/jlXfiap3YuudWagGenvQLNu1NNEt7RER1QdbFJNzcFoebW4/g8ppd2DPw3yhM0aDJi70g93a3dXhEREQmY3KLiERtz5HbGPavgyjTmn86xccbL2PmMvEmuO7noHCBS2QnQBBQqravhM07n57Boi/Om71dnU7A6H//jq37kszeNhFRXaArLkXmmeuQSKVwD6lv63CIiIhMxuQWEYlW4p08vPCvQ9DpLJd8Wv7tZXyz64bF2reme0ktmauXjSMxny37kvCfdecs1r5eL2DU3MO4kphjsT6IiGzJLbQiqVWaW2DjSIiIiEzHNbeISJT0egGvvBOHohKdUfVObRoMfx9nqDVFeGLkLoPqTF96Ar07BaJBfRdTQrUJfWkRdHkaCIIAXY4amb98huKbZ+Ec0QGKBk1sHZ5ZZGYX4/X//mFUHVPuf5lWj3FvH8Ef3wyCTMbPhIhIvGRKJ8i93CrX3Ip86Wl4twxD5pnryLuZZuvwiIiITPZY/JSu0Wgwe/ZsNG7cGAqFAg0bNsT06dNRWFiIV199FRKJBKtWrbJ1mERkhLVbruLIX2qj6/n7OCOovgv8fZwNrnM3vwyT/2NcEsXW0jbNx/kxvrjwkh+uTI9G5s+r4RHzPBq/tdPWoZnN9CUnoMkpMaqOKfcfAE5d0mD5t5eMqlMXlZfrkX23FAVFWruYbkvGK9OWIyu3BCWlxn0wQPahzewRGHl5A0Ze+hJDDn2EZi/3g2rPCRwct8TWoREREdWK3Y/cOnfuHPr37w+1Wg0XFxdERUUhNTUVK1euRGJiIrKzswEArVu3tm2gRGSw8nI9lm64YNU+f/r9Nq4k5iAq3NOq/ZrKp+8EeHYeBqFci+JbF6HevgRlmmRIHBWVZfIvx+HGe/0fqCvoyiDoy9FuR7k1QzZKUnI+fvjlplX7/OjbS5g+ujmcHB2s2m9tCYKAI3+psTo2Htt/U1VO423o74KJ/2iK14ZGor630sZRkiWVacux/YAKq2PjEXcmvfJ4uygfvD68GUb0C4Oz0u5/JKzG/3bDzT66GRm7V6I46Rxk7j5o+bnKdmFZ0LVv90H103FIHWXwbBqMFlOGwCXAG+WlZbYOjYiIqFbseuSWRqPBoEGDoFarMXPmTKSlpeHMmTNQq9VYsmQJ9uzZg1OnTkEikSA6OtrW4RKRgX45lgxVqvXXBlmz+arV+zSVPCAC7q17o167/vB/fjYav/UTim6cwu01kyrLuDXvijaxBVX+NF+dAJmbDwJfXGjD6B9t7darsPbAI7WmGD8evGXdTmspv7AMA6fsQ/dX9mLzr0lV1qe7oy7EvFV/IfjpH/D9HvvaZID+5/qtu2j+3HaMnHO4SmILAP66osGr8+MQMWgLzsZrbBSh+UmdKpK1+tKias/rSwsrysn/l9SVuXrCb8BUBI7+r+UDtKG8m2qkxV1EysGzuLR6J34buxg+rcMRs2SirUMjIiKqFbtObk2bNg3JycmYOnUqli1bBjc3t8pzs2fPRqtWraDT6RAaGgp3d25/TCQWn2+7ZpN+v/npOkrL6u5opodxbdYZXt3HIOdoLAriq59iqdeW4ubi5+Ea9SQChv3byhEarrxcj/U7EmzSt62ePVOUlOowcMo+/Hw0+aHlyrR6jJp7GBt328fGCfQ/qpR8dHt5D27czntoudSMInR/dS8uJmRbKTLLktdvBAAoSY6v9nzJnYrjTn6NKo+5t+4Dr24jIPcNsXyAdUjm6WtI3HoEjYZ0gW/7SFuHQ0REZDK7TW7Fx8cjNjYWPj4+eP/996st065dOwBAq1atKo9t3boVQ4cORUhICJydndG0aVO89dZbKCjgDjJEdYEgCDh6Nv3RBS0gr0CLSzfEu2tewPC3AakDUr9/p9rzt1dPgl5bgtDpX1k3MCMl3Mozeq0tczl+PgPl5Xqb9G2s97+48MBInYd5dX4c0jKrH+lC4vTKO3FQa4oNKptXoMXIOYfsYi025/C2cPRpiJy4H1CWlVrlnF5bhoy9qwCJBB4dBtsowrrl/PKt0OvK0WbWcFuHQkREZDK7TW5t2rQJer0eo0aNgqura7VllMqK4ej3J7eWLVsGBwcHLFq0CD///DMmT56MNWvWoF+/ftDrxfELDZE9u51WgKzcUpv1/9cV8U7dUQQ0hlfXEci/8BvyL8dVOZfx00rcPb0b4XN/hFRu3GLr1mbLe1BYrEPCrYePgqkLyrTlWLfNuGm0ZVo9vtgunpFp9HBXEnNw6JRxu99dTsw1aaOOukbiIEPI5DUoL7qLK9Ojkfz1HGT+ug5psQsR/2ZbFFz6Hf5D50IRxJFKAJCvUiNp5zEEdouGX8dmtg6HiIjIJHab3Dp48CAAoEePHjWWSU6umKpxf3Lrp59+wubNmzFq1Cg89dRTmD59OlatWoVjx47h6NGjlg2aiB7p3DXbTps5G59l0/5ry3/YW4BUWmX0Vv6FQ0j+Zg7CZm+BvH6o7YIz0Lmrtr0HYngGfjp82+ARO/dbu+Uq9Hrxj9whYN1W0xKVn4lobcGHqdd+ICIXH4Nbyx7IOvg1bq+dgvSdH0Lm7otGs2LRYIx9r61lrAsrtkFfztFbREQkXhLBHsafV6Nhw4ZITk7G2bNnq90JUafTISAgABqNBomJiQgLC6uxrYSEBERGRuL777/HyJEjjY6lffv2UKvF/0koUV1Q6NQKua7PV3vu1KbB8Pd5+Kgjfx8lZA5S6Mr1D/3lX60pwhMjdz1wXFl6EV6FW40L2gQSJyXqf3zd4v2Upqtw9V9PIGDEfPgNnFqrttJnREAoMz6hYqwc58EoUrSr9tyjngFD7z9Q8zNQr3APXEv/NC5oK8tTPIV8554m1Q3IWQSpYLvRkWQeGreXUOoYbnQ9mU6N+nlrLBCRcaz1Dvy73BM/4s76GbXaLdHUd6GjIMV8fQeT+62rFkj/hFbC2Q9ERPRo/v7+OH36tEl17Xbf58LCip1wiour/+EiNjYWGo0Gbm5uaNSoUbVl7jl06BAAoFkz04Zqq9VqpKSkmFSXiP7GsxFQ/Uxj+Ps4I6i+i0HNyBykBpe9X3FJqVX+PUvlzqhv4T70pUVIfH8I6nUYXOvEFgCkpqbWuDuZWQWVAIrqTxn6DJh6/wHg7t083M2q4+/0+sWAibNL09IygfJ888ZD1hdWDjgaX01XjjrxM4s13oH3E8rLIZRrIZRrAUGAvqwEkEggdZQb3Zap70IniQOsetFWkpqWijJBnJuxEBGReNhtcsvf3x85OTk4c+YMYmJiqpxLS0vDrFmzAADR0dGQSCQ1tpOSkoK3334b/fr1q3YEmKGxEJF5FDm5oqYl3dWaR/8yYczIreooFY7watDAkFBrReKkfHShWsr5YxuKk86jJCUBOUdjHzjffNUVOPkGG9xeYGCgVUZu5SqdUFjDuUc9A8aO3KqORz0XuCgs/wzURoHcAXdNqSjoEejvCQm4g7DYZTnqYMq2C07SUvha4R33KNZ4B94v6/C3uLXy5cqvzw5TwskvxKQRXKa+Cx0FKWCHA5wCAwI5couIiAxSm9yJ3U5LnDZtGj755BM0bNgQBw4cQJMmTQAAp06dwpgxY3Dz5k1otVpMmTIFq1atqraNgoICdO/eHWq1GqdOnUJAQIA1L4GIqnHyQgY6jf7J5Pp39o9AUH0XJKcXomGfH4yuv+D1tnhnUhuT+zdUsQ7outfi3ZhV3ABAaYWPTJZ9dRGzPjJtWmBt7z8AHPyiP3p0CDSprrWoUvIRNmAzjP0O/1yvEGxf3tsyQZFVfb8nEaPmHja63vJZHTFjTAvzB2QkMb4D7zH1XagtKsF34aPNH5CNjUrcCEfnGobbEhERmYndLig/e/ZseHt7486dO2jevDlatmyJiIgIdOjQAWFhYejZs2ItkvsXk79fcXExBg0ahKSkJOzbt4+JLaI6IrqJFxwcah5taWntorxt1jdVsPU9aNvMx6b9GyK0gRsGdm1odL3Xh3OnNHsxtE8ofD2NSygoFQ4Y+2yEhSIiIiIishy7TW4FBQUhLi4OAwcOhEKhgEqlgpeXF9auXYs9e/YgISEBQPXJLa1Wi3/84x84ffo0fv75Z0RFRVk7fCKqgVIhQ4vGnjbrv11U3U9s2DtbJpcaB7ujnpuTzfo3xvzJbaCQOxhcvnenQPTqWLdHpJHh5E4OeG9KW6PqzHk5Gp7uxq8xRURERGRrdpvcAioWgN+9ezfy8/ORn5+PkydPYsKECSgsLIRKpYJUKkWLFlWH3uv1eowaNQq//fYbdu7ciQ4d7G/XGiKx+0efUJv0+2Sb+o/cjZEsr56bE57ubJs1gYb1efgGJHVJ++a+2PxBT4MSXJ2ifbH1w14PXYOSxGfSC83w9sTWhpUd1tQqU66JiIiILMGuk1s1uXz5MgRBQEREBJydq/6iOmXKFGzZsgX//Oc/4ezsjBMnTlT+yczMtFHERHS/156PhExm/V/COWWr7rDFvZBIgInDIq3eb20M6h6MIxsGYmC3hqgub+XrqcC/X2uFg18MEM2INDLOe1Pa4YelPdCmafXTeZs2qofP5z+J1fM6M7lJREREomW3uyU+zMWLFwFUPyXx559/BgAsXrwYixcvrnJuw4YNGDdunMXjI6KH8/dxxj96N8IPv9y0Wp/1vZV4vneo1fqjhxvYtSFCAl1xK7XAan0+0y0YIYFuVuvPXJ5o4Yvdq55GUnI+tv+mwrtrzqCgSAdPdyfc2T8CcifDpy6SOA3vF4YX+jbCnxczceBEKhZ/eR4FRTr4eMhx5cehTGoRERGR6D2WI7celtxSqVQQBKHaP0xsEdUdS/75BNxcHK3W38ezOzIJUIfIZFJ88n8xVutPqXDAh/8S9zT1RkFumDm2Jeq5VozQclbI+Ew/RiQSCTpG++GtCa0rnwG5kwMTW3agw8JX8I8/V2Nc2lZ4NQ81uZyh7fydWyN/DNj1Xzx3dCWe+XkxPJoEGX8RREREtcTkFhGJUnCAK5bNtE6y4fleoRjeL8wqfVlKSep1XJ3dGZcmN0H8zCdQfPvyA2X0ZSW4sWgILk1ugivTWyHhnT4oSbthg2gNM6h7MEY/E26Vvha90R4RIfWs0hcRmc6Qd939NAc24K9nJcg98WOV4xfHh+LS5EhcmdEaV2a0RnZcLADg7plfEP9me1yZFo2rszqhKOm8pS7FYLf2HMfeZ+eh4E5GrcoZ2s7fdV46EQkb92PHk9NwcdWPeHLFVKPqExERmcNjOS3x4MGDtg6BiMxg/NBI/HosBdt/UxlcR60pqvLfRwkJdMUaO1iL5vbqifDpOwE+vcYh59hWqFaMQ7MPTz1QzvfpCXBv1x8SiQQZe1bh1qrXEPnfw9YP2EAr5sTg5MVMXL+VZ1B5Y+8/APTrEoRpo5qbFB8RWZeh7zoAKE1XQbPvc7hEdqr2fNisWDiHta78WleQg6SPRiFy0REog5sj/3Ickj4aheafXLLEpRgs/US8WcoZ2s79FN7u8G4Vjn0jFgIAbu05gU6LXoVbqD/yVWqj2yMiIjLVYzlyi4jsg0QiwXeLnzJq57wnRu5Cwz4/4ImRux5ZNtDPGQfW9Yeft7I2YdqcNjcDhTdOw7v7aACAR+ehKNPceWBUltRJgXrtB1Qm8lyadEJZhsra4RrFq54c+9f2Q0igq0Hljbn/ANC1bX1s/bAnpFJxJzeJHgeGvusAQNDrcWvVa2g44RNIHOUGtV+algiZmzeUwRXJbrfmXVGWeRtFiWfMdxEi49LAB8XpORDK9ZXHClI0cGngY8OoiIjocfRYjtwiIvuhkMuwa2UfjJ33O2J/STJbu00b1cPeT/uiUZD4FhD/uzLNHTh6BkDiUPHKl0gkcPINRlnmbSgCGtdYL2P3Cnh0eNZaYZosJNANR796Bs+8sQ/nr2Wbrd1newTj+8U94Kzkt0oiMTDmXZe+8yO4NusCl8btamxP9fFLECDAJaIDGry0GIrACOjys1AQ/wdcm3VG7sld0BfnozRDBefwtha5pgE//RfuYQHVntvVZxaKUrMs0i8REZHY8Cd2IhI9uZMDNi3pgcFPheCNxceRfbfU5LakUglmvtQCC15vC6VCHK/Iq7NjUJJ6vdpzUcvPmtRm2pZFKE27gZCFv9UmNKsJ8nfBn98PxsK15/D++vMoLxdMbsvd1REfz+6Ecc9GiH46KpE9Mde7rvjWJeQe34bIRUdqLBO56AicfIMh6LRI+W4eVCvGIuKdvQifvRUp386FvqQALpExUDSMgkRque8Vewe9ZbG2zaEwRQNlfU9IHKSVo7dcG/igMEVj48iIiOhxI47f3IiIHkEikeDFgeHo2TEA/1l3Dt/8dAP5hVoj6gPPdAvGW+NboWO0nwUjNb+mS48/9LzEUQ5tThqEch0kDjIIgoCyzNtw8g2utrx6xzLkHt+OiPcOQCp3tkTIFuHk6ICFU9vhuZ4h+O/n57Hz8C2jklwuShlGDQzH2xPaIMjfxYKREpEpzPWuK7gSh9IMFS5NjgAAaHPUuHVnArQ5afDtPxkAKutIZI6oP2gGLk1uAgBwi+6ByOgeAAC9thQXxvpDERxl1uusi55c+QZu/3wSt3/+s8rxkqw8ZF9MQvjQbrix+TBCBnZCYVo219siIiKrY3KLiOyKv48zVv27M96f3h4bdydi95Hb+OtKFtKzih8o66KUoXVTb3Rv74/Xno9EaAPxT0GsjqOHH5zD2yLr8Eb49BqH3D+2wck7qNopiek7P0JO3CZEvHcAMlcP6wdrBm2jfLBteS8kqwvxxfZrOHQqDWfis1BQ9GCy09dTgXZRPhjQNQgvDYpAPTcnG0RMROZg6LvOt//kyiQWAFx7qzvqD5oBj05DAADlJYUQdNrKd2B23CY4h7UBAGiz0+DoVTFNMC12Idyiez50erc1xCydgKBe7aD080CfTfOgLSjG9s5vAAA6L5uEO/tO486+0w8t96h2fFqFIX793mr7/2P2Wjz58RS0nPY8tAXFODrjU8tfNBER0d9IBEEwfe4GEZEICIKA1Iwi3EorQElpOZwcpfDxVCAi2B0ODnVzX41iHdC1+t8jTFKSfA2qleOgy8+Cg9IdodM2QBnaEgCg+uQ1eHQYDOfwtrj4akM4+YfBQVmR6JPI5Gi27KRBfcQNAOrq8lR6vYAbt/OQkV2MMq0eCrkDGvq7IKi+y2M39TCo9yakZBShgZ8zkg+MtHU4ZANieAZMfQca8q7z6Di4Sp2/J7dK1TeRuHgooC+HAAHy+mFo+NoKyOuH4taq8ci/EgeU6+DSNAYNx3/ywAcBpr4LtUUl+C58tPEVLUzu7Y6nPp1euSOisUYlboSjs8LMUREREVXF5BYRUR1k7uSWNdTl5Bb9jxgSG2RZYngGxPgOvMfeklu1xeQWERFZQ90cskBERERERERERGQAJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhEi0v/EhHVQQqHikWJxUThYOsIiMheiPEdeI+p70KZUo5RiRvNG0wdIFPKbR0CERE9BpjcIiKqgyQS7jxIRI+vx/EdKJFIuKsgERGRiTgtkYiIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItJreIiIiIiIiIiEi0mNwiIiIiIiIiIiLRYnKLiIiIiIiIiIhEi8ktIiIiIiIiIiISLSa3iIiIiIiIiIhItJjcIiIiIiIiIiIi0WJyi4iIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLyS0iIiIiIiIiIhItma0DICIiIvo7QQBKym0dhXEUDoBEYusoiMgeiPEdeI+p70JBEKArLjV/QDYmU8oh4TcHIotjcouIiIjqnJJyoOteW0dhnLgBgJI/WRGRGYjxHXiPqe9CXXEpvgsfbf6AbGxU4kY4OitsHQaR3eO0RCIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIiIiIiESLy54SERHZufzCMpyNz8KNO/koKNICAIpKdLialIsmIfUglXIXJ3uXnlWMv65okJJeWPkMFJfqkJJeiEA/Z+7kRURERKLG5BYREZEduqMuwLqt17B1fxKuqe5CEKqez8krQ7Nnt8HV2RExrXwxfmhTDOkRAkdHDuq2F2euaLA6Nh6/HEtGSkbRA+ez75YhqM8PqO+tRK+OgZj8QlN0aVOfiS4iIiISHSa3iIiI7MjN5DzM+vAUfjx0C3q98MjyBUVa7D+eiv3HUxHg64yZL7XA9FHNIZOJM8mVf/EwEub1qHJMqnCBPLAJvLuPgd8zb0DiYN8//hw+lYb/+/gUTl7MNKh8elYxvt+biO/3JiK6iRcWTmmLwT1CLBwlEVmK5revcGvlywiZtgE+vcY9cL40XYVLExrBu+dYhE7/yurx2YJ/THP0276gyjFtYTHybqYhcesRxK/fC6Fcb6PoiMgc7PunOyIioseEXi9gdWw85iw/haISnUltpGUW4V8f/onNvybhq/90Q7MwD/MGaUWe3UaiXrsBgCBAm6NG1uFvkPzlmyhJjkfIlHW2Ds8iCoq0mLP8FFbHxpvcxoWEbDw7/QBGPxOOFXNi4FVPbsYIiYhs6+b2OCQfPANIJFD6eqDxsKfQYcE41ItogOOz1to6PCKqBXF+LEtERESVikt0GDL9AN54/7jJia37/XkpE21e+BFb9yWZITrbcA5rC+/uo+HdYwz8n5+FpktPwNE7CJr9X0B717ARTWJyKzUf7YbvrFVi634bdycieuh2XL6RY5b2iIjqgqyLSbi5LQ43tx7B5TW7sGfgv1GYokGTF3tB7u1u6/CIqBaY3CIiIhKxklIdnpm6Dz/9ftus7ZaWlWP47EPYtDfRrO3aioPCBS6RnQBBQKnaPq7pHlVKPp4cuwcJt+6atd2UjCJ0e3kPLl3PNmu7RER1ha64FJlnrkMilcI9pL6twyGiWmByi4iISKQEQcCYf/+Og3+mWaR9vV7AS/N+x6E/Uy3SvrXdS2rJXL1sHIn55BWU4elJvyA5vdAi7WffLcXTk36FWvPggvRERPbALbQiqVWaW2DjSIioNpjcIiIiEqmNu29g636VUXVObRqMO/tH4NSmwQaV1+kEvPxOHPILy0yI0Hb0pUXQ5WmgvZuJYtVF3P5sCopvnoVzRAcoGjSxdXhm868P/8T1W3lG1TH2GUjLLMKkhccg/H3LTSIikZEpnSD3coPc2x0eTYPRcdFr8G4Zhswz15F30zIfFBGRdTwWyS2NRoPZs2ejcePGUCgUaNiwIaZPn47CwkK8+uqrkEgkWLVqla3DJCIiMlhaZhGmLT5hdD1/H2cE1XeBv4+zwXVupRZg1kenjO7LltI2zcf5Mb648JIfrkyPRubPq+ER8zwav7XT1qGZzb4/kvH5tmtG1zPlGdh56DY27b1pdF9ERHVJm9kjMPLyBoy89CWGHPoIzV7uB9WeEzg4bomtQyOiWrL73RLPnTuH/v37Q61Ww8XFBVFRUUhNTcXKlSuRmJiI7OyKdSRat25t20CJiIiM8N/PzyE333qjqdZuuYp/jm6OyEYeVuuzNnz6ToBn52EQyrUovnUR6u1LUKZJhsRRUVkm/3IcbrzX/4G6gq4Mgr4c7XaUWzNkowiCYPWE4+zlf+KFvo0gk4nvs1FBEHDiQga+/ekGUjOL4CCVolEDV7zyXBNEhXvaOjyyAp1Oj52HbmHX4dvIySuDUuGA1pHeeOW5JqjvrbR1eDYiqfy/7KObkbF7JYqTzkHm7oOWn6tsF5YFXft2H1Q/HYfUUQbPpsFoMWUIXAK8UV4qrtHJRPQgu05uaTQaDBo0CGq1GjNnzsT8+fPh5uYGAFi6dCnmzJkDmUwGiUSC6OhoG0dLRERkmPzCMnzz0w2r9/vZlqtYPruT1fs1hTwgAu6tewMA6rXrD9dmT+La3Cdxe80khM36AQDg1rwr2sRWXWOlLCsVV2e2h+/AqVaP2Rh/nMvAhQTrLvSeklGEn36/jed6hVq139r6/XQaZiw9gXNXH/z7+vCbS+j+RAA+/XcMk1x2bO2Wq3hv7VmkZlRdO27zr0mYv/oMRvQLw8r/6wQPd7mNIjQvqVNFsk5fWv1aefrSijX6pPL/JfVkrp7wGzAV2rvpyNi13PJB2kjeTTXS4i4CAFIOnkX6n1cxYOdCxCyZiN8n2+91Ez0OxPfRmxGmTZuG5ORkTJ06FcuWLatMbAHA7Nmz0apVK+h0OoSGhsLdnVu/EhGROHy3JxH5hVqr97th53UUFlm/X3NwbdYZXt3HIOdoLAri/6i2jF5bipuLn4dr1JMIGPZvK0donNWx8Tbp99MfbNOvqX48qEKfCb9Um9i65/CpNHR5aTdOX860YmRkLXNXnMKkhcceSGzdo9Xp8e3uG+g6bg+yckusHJ1lyOs3AgCUJFf/77XkTsVxJ79GlcfcW/eBV7cRkPuGWD7AOiTz9DUkbj2CRkO6wLd9pK3DIaJasNvkVnx8PGJjY+Hj44P333+/2jLt2rUDALRq1aryWFxcHHr37o2AgADI5XIEBQVh+PDhiI8X1w9zRERkv3YfuWOTfu/ml+GP8xk26dscAoa/DUgdkPr9O9Wev716EvTaEoRO/8q6gRlJEATsibPNM3DoVJpoEpwXE7Ixcs5haHX6R5bNzS/DwCn7kJldbIXIyFq+3JGAxesvGFT20o0cDH3zN7vYOME5vC0cfRoiJ+4HlGVV3e1Wry1Dxt5VgEQCjw6GbSph784v3wq9rhxtZg23dShEVAt2m9zatGkT9Ho9Ro0aBVdX12rLKJUVQ3HvT27l5OSgZcuWWLlyJfbt24clS5bg8uXLiImJQXJyslViJyIiepi/rmgey75rSxHQGF5dRyD/wm/IvxxX5VzGTytx9/RuhM/9EVK54Qut20LinXzcteJ6a/fT6wWct/J0SFN9+M0llJQavm5aRnYJvtieYMGIyJr0egGLvjhnVJ3fT6tx7Gy6ZQKyIomDDCGT16C86C6uTI9G8tdzkPnrOqTFLkT8m21RcOl3+A+dC0UQRyoBQL5KjaSdxxDYLRp+HZvZOhwiMpHdJrcOHjwIAOjRo0eNZe4lq+5Pbg0ePBjLly/HsGHD8NRTT2HUqFHYvn077t69i23btlk2aCIiokdIzSiEWmO70SViTm4BgP+wtwCptMrorfwLh5D8zRyEzd4Cef1Q2wVnIFvfA1v3b4is3BL88Ivxuzt+tiUe5eWPHulFdd/+4ylIvJNvdD1bTfk1t3rtByJy8TG4teyBrINf4/baKUjf+SFk7r5oNCsWDcb819Yh1ikXVmyDvpyjt4jEzG4XlL916xYAICSk+nnjOp0Ox44dA1A1uVUdb29vAIBMZrd/XUREJBK30wpt2v8dtW37fxS3lt3RbmfN04qUDZtV2QWxNF2Fmx+8gKBxH8CtZXcrRFh7t9MKHl3Iov3X7WcAqBiBU1pm/G6Xt9MKEX8zFy0ivCwQFVnTL8dMm3Hx81H7manhEvEEwudssXUYdYL6+GV8FfCPGs/fvZ6Cb4KY2CISM7vN1hQWVvzgVVxc/afbsbGx0Gg0cHNzQ6NGjR44X15eDr1ej1u3bmHu3Lnw9/fHCy+8YFIs7du3h1qtNqkuERHR/UplIYD7K9WeO7VpMPx9Hj6lzt9HWfnfO/tH1FhOrSnCEyN3PXD8zNkLCAp63YiITSNxUqL+x9ct2oe+tAiJ7w9BvQ6D4WeG3RGbNImAUGb5UXV5im6Ac69qz1njGViz9gtsWv68ERFbX6FTa8D1OZPq9ugzEHKdbdY0I/PJcXkWkLc1ul5uXgkaBAVBYoGYjGGNd+D9hPJyCOVaCOVaQBCgLysBJBJIHY3fQdLUd6GjIMV8dDC6Xl3XJKIJtBKOCCUyhL+/P06fPm1SXbtNbvn7+yMnJwdnzpxBTExMlXNpaWmYNWsWACA6OhoSyYPfvp566qnKkV2NGzfGwYMH4evra1IsarUaKSkpJtUlIiKqwlkB1LDBr7+PM4LquxjUjMxBanDZ+2nLSqzyPU0qd0Z9C/eR88c2FCedR0lKAnKOxj5wvvmqK3DyDTa4vdTUVOhLq9+Rzax8coAa8lfWeAYK8++iUF3Hf66pFwhUv+TqI2nSU4CSOn599GiBuYDxeRlAX4bUOvBzuzXegffLOvwtbq18ufLrs8OUcPILQcvPVUa3Zeq70EniAKtetJWkpqWiTDB+JCkRGcduk1u9e/dGfHw8lixZgj59+qBJkyYAgFOnTmHMmDHQaCrWi2jdunW19devX4/c3FwkJSXhgw8+wNNPP41jx44hONjwH3Lv8ff3N/k6iIiI7qeTOqOm5Y7Vmkf/MuHvo4TMQQpduf6ha3fV1JZcpoVPgwaGhForEielxfvw7jEG3j3GmK29wMBAq4zcKnSSIbeGc9Z4BtxdJHCzwjNQGzppccW/E0EAqvkQsyYSfTH8vR0gRd2+Pnq0Iqdc5JhQT65Ptco77lGs8Q68n0+vcfDpNc4sbZn6LnQUpIAdDnAKDAjkyC0iA9UmdyIR7GG/22okJyejdevWyMrKgkwmQ9OmTVFSUoIbN26gf//+0Ov1+PXXX7Fu3TqMHz/+oW3l5uYiNDQUo0ePxqpVq6x0BURERA/S6wV4Pvkt8gq0JtW/s38Eguq7IDm9EA37/GB0/XkTWmPh1HYm9W2MYh3Qda/FuzGruAGA0gofG56/loXWw340uX5tn4F9a/uhT4ztf/l/lP6TfzV63aXpo5rj4zmdLBQRWVNJqQ4Nev+A7LulRtXb+mFPDO3z4JIl1ibGd+A9pr4LtUUl+C58tPkDsrFRiRvh6KywdRhEds9ud0sMCgpCXFwcBg4cCIVCAZVKBS8vL6xduxZ79uxBQkLFVs+PWkweADw8PNC4cWPcuHHD0mETERE9lFQqQdtmPjbrv12Ut836pgpRYZ6QOznYrP+2zcTxDMwY3dyo8o4yKSa/0NRC0ZC1KeQyTBpm3P0MDXTF4O7Vb0ZFRER1m90mtwCgWbNm2L17N/Lz85Gfn4+TJ09iwoQJKCwshEqlglQqRYsWLR7ZTkZGBq5du4bw8HArRE1ERPRwPZ4IsEm/jjIpurS2wwVRRMbRUYqubW1zH6KbeMHbQxwjEPp2CcL8SW0MKiuRAF++1xWRjTwsGxRZ1buT26JvZ8NGGdZzdcKulX3g6GjXvx4REdmtx/LtffnyZQiCgIiICDg7V12RdfTo0Xj33Xfx448/4vDhw/j888/RvXt3yGQy/POf/7RRxERERP/z6nNN4OBg/b28hvYOha+XddeBoeoZOyJF7P2aav7kNvhoVkco5DWPdPN0d8KWZT0x+pnGVoyMrMHRUYqdK/tg7OCIhy691iSkHo5+PRAtm3hZLzgiIjKrxzK5dfHiRQDVT0ns1KkT9u7di5dffhn9+/fHBx98gK5du+LcuXNo3Jg/9BARke01qO+CIT2sP3VmyohmVu+Tqje4ewgC/WrYMtFCXJ0dMfoZcY1il0gk+OeYFkj9bSSWz+qIts28If3/P/06OUrx5XtdkXJgZJ1YY4ksQ+7kgK/+0w3Xdw/DrHEtERlaD9L/n+hSODnglzV9Eb9zKFpEMLFFRCRmTG79zdSpU/Hnn38iJycHxcXFSEhIwNq1axESwvn3RERUd7w1vpVVR2/17BCALm04JbGucHSUYt741lbtc+ZLLeDm4mTVPs3F012OGWNa4K/YIQjwqUgK+noq8PKQJlAq7HbzcLpPeEN3LH2zA67u+gcCfCueAW8POfp2CYJUav2RsEREZF6P5XfzhyW3iIiIxKBNMx/MfbUV/rPunMX7cnV2xPoFXSF52LweEShJvQ7Vx2Ohy9fAwbkeQqd/BWVw1UXH9WUluLlsBEruXIHUSQlZPT8ET14DRUDdG709cVhTbN6XhMOn0izeV6tIL/x7PH9uIqrrDHnP3U9zYANuffIKwufugEenIZXHL44PhUQmh1ReMRXdf+hceHUdjrtnfkHqxnkQdGWQyp0R/PpaODey7buhw8JXENy3PVwb+mFX738h+7LKpHKGtvN3bo380XXFG5B7uUGbX4Sj01chN8G4nVqJqPYey5FbBw8ehCAIGDhwoK1DISIiMtnbE1ujVaRxU2nUmiIkpxdCrSkyuM6ymR0Q2sDN2PDqnNurJ8Kn7wS0WJMA/+fnQLViXLXlfJ+egOarryFqxXl4dHwWt1a9Zt1ADSSVSvDlgq5wc3E0qp6xz4CToxRfLewGJ0fb7dBIRIYx9D0HAKXpKmj2fQ6XyE7Vng+bFYuoj88h6uNz8Oo6HLqCHCR9NAqhM75G1MoLaDDuAyR9NMpCV2K4W3uOY++z81BwJ6NW5Qxt5+86L52IhI37sePJabi46kc8uWKqUfWJyDwey+QWERGRPXBydMCeVU8jNNDV4DpPjNyFhn1+wBMjdxlUfuZLLTDhH5GmhlhnaHMzUHjjNLy7jwYAeHQeijLNHZSk3ahSTuqkQL32AypHqbk06YSyDJW1wzVYoyA37FrZB3InwxNPxjwDUqkEPyztgdZNvWsTJhFZgaHvOQAQ9HrcWvUaGk74BBJHuUHtl6YlQubmXTkSzK15V5Rl3kZR4hnzXYQJ0k/Eoygtu9blDG3nfgpvd3i3CkfitiMAgFt7TsAl0Btuof5GtUNEtcfkFhERkYg1qO+Cw18OQESIu9nbnvNKND6Y2UH00xEBoExzB46eAZA4VKzIIJFI4OQbjLLM2w+tl7F7BTw6PGuNEE3W/YkA7P30abgozbvahJOjFFuW9cRzvULN2i4RWYYx77n0nR/BtVkXuDRuV2N7qo9fwuVpLaH65FVo72ZCERgBXX4WCuL/AADkntwFfXE+SuvwBwCW5tLAB8XpORDK9ZXHClI0cGngY8OoiB5Pj+WaW0RERPYkJNANJzYOxvQlx7Fxd2Kt2/OqJ8equTEYOUA8O+NdnR2DktTr1Z6LWn7WpDbTtixCadoNhCz8rTahWUXPjoE4telZjJt3BH9eyqx1e1HhHvj6P93QvrmvGaIjInMw13uu+NYl5B7fhshFR2osE7noCJx8gyHotEj5bh5UK8Yi4p29CJ+9FSnfzoW+pAAukTFQNIyCRGq5XykH/PRfuIcFVHtuV59ZKErNsljfRCQuTG4RERHZAa96cny7qDv+0acR3nj/OO6oC01q5x99QvHJ3Bj4//8d5cSi6dLjDz0vcZRDm5MGoVwHiYMMgiCgLPM2nHyDqy2v3rEMuce3I+K9A5DKxfF30SzMA8e+eQYffnMR/1l3HgVFWqPbUMgd8M/RLTB/chujpjoSkeWZ6z1XcCUOpRkqXJocAQDQ5qhx684EaHPS4Nt/MgBU1pHIHFF/0AxcmtwEAOAW3QOR0T0AAHptKS6M9YciOMqs13m/vYPesljb5lCYooGyvickDtLK0VuuDXxQmKKxcWREjx9OSyQiIrIjz/YIwc29L2DHx73QJybQoDqe7k6Y+VILXN89DFs+7CW6xJYhHD384BzeFlmHNwIAcv/YBifvoGp3QUzf+RFy4jYh4r39kLl6WDnS2pHJpJjzSiuk/jYCq9/qjBaNPQ2qF97QDctmdkDy/hFYNL09E1tEImToe863/2S0+ioNLT9XoeXnKrhEdkLI6+sqE1vlJYXQFeRWls+O2wTnsDYAAG32/3ZnTYtdCLfonnVyN1lze3LlGwju3+GB4yVZeci+mITwod0AACEDO6EwLRv5KrW1QyR67HHkFhERkZ2RyaQY0jMUQ3qGIjevFGfis3D6sgbXb99FcWk5ZA5SeLo7oXWkN9pFeaNpIw/IZPb/eVfI5LVQrRwH9dZFcFC6I3Tahspzqk9eg0eHwXAOb4vkL2fCyT8MCfMqRidIZHI0W3bSVmGbxM3FCZOHN8OkF5oiNaMIp69o8NcVDVIyilBaVg4nRyn8vZ3RLsob7aJ8EBLoahdrqxE97gx5z3l0HPzQNnS56UhcPBTQl0OAAHn9MITO+AYAkPr9O8i/EgeU6+DSNAYhU9db9HoMEbN0AoJ6tYPSzwN9Ns2DtqAY2zu/AQDovGwS7uw7jTv7Tj+03KPa8WkVhvj1e6vt/4/Za/Hkx1PQctrz0BYU4+iMTy1/0UT0AIkgCIKtgyAiIiK6X7EO6Fr97xF1VtwAwMxrupMFBPXehJSMIjTwc0bygZG2DodsQAzPgBjfgfeY+i7UFpXgu/DR5g+oluTe7njq0+nYN2KhSfVHJW6Eo7PCzFER0d/Z/8e0RERERERERCYozcozObFFRNbD5BYREREREREREYkWk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESixT19iIiIqM5ROFTsuCUmCgdbR0BE9kKM78B7TH0XypRyjErcaN5g6gCZUm7rEIgeC0xuERERUZ0jkZi2lTwRkT14HN+BEokEjs4KW4dBRCLFaYlERERERERERCRaTG4REREREREREZFoMblFRERERERERESixeQWERERERERERGJFpNbREREREREREQkWkxuERERERERERGRaDG5RUREREREREREosXkFhERERERERERiRaTW0REREREREREJFpMbhERERERERERkWgxuUVERERERERERKLF5BYREREREREREYkWk1tERERERERERCRaTG4REREREREREZFoMblFRERERERERESixeQWERERERERERGJFpNbREREREREREQkWjJbB0BERERERFUJAlBSbusojKNwACQSW0dBRPZAjO/Ae0x9FwqCAF1xqfkDsjGZUg6JFb45MLlFRERERFTHlJQDXffaOgrjxA0AlPztgojMQIzvwHtMfRfqikvxXfho8wdkY6MSN8LRWWHxfjgtkYiIiIiIiIiIRIvJLSIiIiIiIiIiEi0mt4iIiIiIiIiISLSY3CIiIiIiIiIiItFicouIiIiIHguCIEAQhMr/p8dPebkeej4DRER2h/uZEBEREZFdUmuKsGVfEk5d0uCveA2uJt2FXl+R0EjNLEbbF35E++Y+6BTth6G9Q1HPzcnGEZO5XbqejZ2HbuOveA3+uqLB7bTCynNpmmI89fIetIvyxlPtAzDgyYZwdORn/0REYiQR+JEFEREREdmRY2fT8cmmy9h2QAWdzrAfdV2UMox+pjHeGBmF5o09LRzhoxXrgK57bR2FceIGAMo68NF5ebkeW/ersDo2Hkf+UhtcL9DPGROGRmLyC83g5620YIRE9ChifAfeY+q7UFtUgu/CR5s/IBsblbgRjs4Ki/dTB779EBERERHV3t38Mry57CS+3JFgdN3CYh3WbrmKL7Zfw9xXW+Htia3h5OhggSgtK//iYSTM61HlmFThAnlgE3h3HwO/Z96AxMF+fwW4fusuXn4nDsfOphtdNzWjCO+uOYuV31/BJ/8Xg5EDwiCRSCwQJRFZkua3r3Br5csImbYBPr3GPXC+NF2FSxMawbvnWIRO/8rq8dmCf0xz9Nu+oMoxbWEx8m6mIXHrEcSv3wuhXG+j6MzDfr+zEREREdFj4+gZNUbOOYzk9MJHF36I8nIB/1l3DjsP3cKWZT0R2cjDPAFamWe3kajXbgAgCNDmqJF1+Bskf/kmSpLjETJlna3Ds4h1W69ixtITKC4pr1U72XdLMWruYWw9kISv/9MNbi6crkpE9uHm9jgkHzwDSCRQ+nqg8bCn0GHBONSLaIDjs9baOrxa4aRyIiIiIhK1n+PuoM/EX2qd2Lrfxes56DpuD85fyzJbm9bkHNYW3t1Hw7vHGPg/PwtNl56Ao3cQNPu/gPZupq3DM7v/rDuLie8dq3Vi6347fruFnq/9jJy8UrO1SURkS1kXk3BzWxxubj2Cy2t2Yc/Af6MwRYMmL/aC3Nvd1uHVCpNbRERERCRaR06n4fk3f0NJqfmSGvdk5pSgz4RfkKC6a/a2rc1B4QKXyE6AIKBUnWjrcMzqo28u4u1VZyzS9unLGgx4/VcUFmkt0j4RkS3pikuReeY6JFIp3EPq2zqcWmFyi4iIiIhEKftuKYbPPmSRxNY9mTklGDnnELRaca9FAqAyqSVz9bJxJOZz4nwGZn10yrJ9XMjE/604bdE+iIhsxS20IqlVmltg40hqh8ktIiIiIhKlGUtOQK0pNqrOqU2DcWf/CJzaNNjgOmfis7B0wwVjw7MpfWkRdHkaaO9molh1Ebc/m4Lim2fhHNEBigZNbB2eWZSU6vDyO0eg1xu3+bspz8CqTVdw+FSasSESEdUpMqUT5F5ukHu7w6NpMDoueg3eLcOQeeY68m6K+x1n9wvKazQaLF26FNu3b0dycjJ8fX3x/PPPY9GiRZg2bRq+/PJLfPLJJ5g6daqtQyUiIiIiAx08mYpvd98wup6/jzOC6rsYXW/BZ2cxckAYwoLEsSZJ2qb5SNs0v8oxj5jnETzxUxtFZH5LvryAq0nGTxk19RkYv+Aoru4cCgcH8Y4PuHwjB6rUfOj1QKCfM9o28+aOkI+R8nI9/ryUiYzsEjjKpGgSUg+Ng8XxTiPzaDN7BNrMHlHlmGrPCZyc+4WNIjIfu05unTt3Dv3794darYaLiwuioqKQmpqKlStXIjExEdnZ2QCA1q1b2zZQIiIiIjLKiu8uW7U/rU6PzzZfxdI3O1i1X1P59J0Az87DIJRrUXzrItTbl6BMkwyJo6KyTP7lONx4r/8DdQVdGQR9OdrtsNx0z9oq05ZjdWy8Vfu8cTsPe+OSMah7sFX7rS2dTo/v9iRidWw8/rxUdTOBZmEemPxCU7wypAlcnB1tFCFZWk5eKdZuuYrPtlzFrdSqU896dgjA68Ob4fneoY9hovN/15t9dDMydq9EcdI5yNx90PJzle3CsqBr3+6D6qfjkDrK4Nk0GC2mDIFLgDfKS8tsHVqtifdjh0fQaDQYNGgQ1Go1Zs6cibS0NJw5cwZqtRpLlizBnj17cOrUKUgkEkRHR9s6XCIiIiIy0K3UfOw+csfq/a7fkYDiEp3V+zWFPCAC7q17o167/vB/fjYav/UTim6cwu01kyrLuDXvijaxBVX+NF+dAJmbDwJfXGjD6B9t234VMrJLrN7vpz9csXqftVFYpMXgafsx7u0jDyS2ACD+Zi6mLT6Bp17Zi/Qs46b4kjgk3slDhxd3Ye6K0w8ktgDg4J9p+MfMgxg374hdrC0IAFInJYCK6dnV0ZdW7KwrlSsrj8lcPeE3YCoCR//X8gHaUN5NNdLiLiLl4FlcWr0Tv41dDJ/W4YhZMtHWodWa3Sa3pk2bhuTkZEydOhXLli2Dm5tb5bnZs2ejVatW0Ol0CA0Nhbs7h2ISERERicX3e28avc6SOWTfLcXeOOsn1czBtVlneHUfg5yjsSiI/6PaMnptKW4ufh6uUU8iYNi/rRyhcUyZkmoOv/6RIpokUHm5HiNmH8LPR5MfWfavKxW7QhZwV0i7kpFVjD4TfsGN23mPLPvNTzfw+n+PQRCs/241N3n9RgCAkuTqR3eW3Kk47uTXqPKYe+s+8Oo2AnLfEMsHWIdknr6GxK1H0GhIF/i2j7R1OLVil8mt+Ph4xMbGwsfHB++//361Zdq1awcAaNWqVY3t9O/fHxKJBO+++64lwiQiIiIiE1Q3AsVaTl3W2Kzv2goY/jYgdUDq9+9Ue/726knQa0sQOv0r6wZmJEEQbPoMnL5su76N8ePBW0aNcDwTn4U1Vp7qSZa16IvzSErJN7j8F9sT8OdFcTzfD+Mc3haOPg2RE/cDyrJSq5zTa8uQsXcVIJHAo4Phm0rYs/PLt0KvK0ebWcNtHUqt2GVya9OmTdDr9Rg1ahRcXV2rLaNUVgxBrCm5tXnzZpw7d85SIRIRERGRiU7bMMH01xXxJrcUAY3h1XUE8i/8hvzLcVXOZfy0EndP70b43B8hlTvbKELD3EotQFZuqc36/+tKls36NoYpa5J9tuWqTUZFkvkVFmnx1a7rRtez9lp2liBxkCFk8hqUF93FlenRSP56DjJ/XYe02IWIf7MtCi79Dv+hc6EIEvdIJXPJV6mRtPMYArtFw69jM1uHYzK7TG4dPHgQANCjR48ayyQnVwzPrS65lZeXhxkzZmDZsmWWCZCIiIiITJJXUIbk9EKb9X85MddmfZuD/7C3AKm0yuit/AuHkPzNHITN3gJ5/VDbBWegy4k5j3X/hridVoCDf6YZXe9mcj6OnlFbICKytp2HbuNuvvGLhMf+moSiYnGsLfgw9doPROTiY3Br2QNZB7/G7bVTkL7zQ8jcfdFoViwajLHvtbWMdWHFNujLxT16SyLYw6Tav2nYsCGSk5Nx9uzZandC1Ol0CAgIgEajQWJiIsLCwqqcf+ONN3Dx4kUcPnwYEokE8+fPr9XUxPbt20Ot5jcJIiIiotoql7hC7TmrxvOnNg2Gv0/NI4/8fZSQOUihK9dDral57SS1pghPjNz1wHGJUILAnOqXvTAniZMS9T82ftSFsUrTVbj6rycQMGI+/AZOrVVb6TMiIJRZfj2qIqfmyHF9odpzj7r/QO2fAXlZAnwKvjMuaCsrlTWExv01k+p6FmyFc9lFM0dE1paveBJ5zn1Mqls/9yPI9HfNHJFxrPUO/LvcEz/izvoZtdot0dR3oaMgxXy9OHbkNcYC6Z/QSgzbrMDf3x+nT582qR+ZSbXquMLCik/ziourf6BiY2Oh0Wjg5uaGRo0aVTl3+vRpfP755/jrr7/MFo9arUZKSorZ2iMiIiJ6bMncAc+aT/v7OCOovsujm3GQGlTu7wS93io/10nlzqhv4T70pUVIfH8I6nUYXOvEFgCkpqbWuDuZWdULAKpfecTg+w+Y/gyUlhTX/Z/tneWAiXtm5WRnI+duHb8+ejSfu4CJM4zT1WmA1rYjFK3xDryfUF4OoVwLoVwLCAL0ZSWARAKpo9zotkx9FzpJHGDVi7aS1LRUlAnlFu/HLpNb/v7+yMnJwZkzZxATE1PlXFpaGmbNqvi0Lzo6GhKJpPJceXk5Jk6ciKlTp6J58+ZmjYeIiIiIak8PJzxsspVa8/BfKIwZtVMdqUSHgAYNDAm1ViROykcXqqWcP7ahOOk8SlISkHM09oHzzVddgZNvsMHtBQYGWmXkVomjK2pa9epR9x+o/TOglDvAywrPQG3opHKkA4AgAPf9vvNQ/7+sj4cD5K51+/ro0YqcBJiUnhK0CPRzh8TUzJiZWOMdeL+sw9/i1sqXK78+O0wJJ78Qk0ZwmfoudBSkgGEDnEQlMCDQqJFbprLL5Fbv3r0RHx+PJUuWoE+fPmjSpAkA4NSpUxgzZgw0moqFQP8+ZXHVqlVIT083++6Ipg6rIyIiIqIHBT/9A+6oq193q7ppZPe7s38Eguq7QK0pRsM+Pxjdd68uTbFvbbLR9YxVrAO67rVsH949xsC7xxiztZeQcB1KK/x2cSs1H6H9Nld77lH3H6j9MzD3zZfw9sTlRteztj4TfsaBE6mPLniPRILwhm5I+OkYpFIDE2JUZxUV69Cg9ybkGrnu1rghUdiwUGWZoIxgjXfg/Xx6jYNPr3FmacvUd6G2qATfhY82Swx1ScL1BDg6Kyzej10uKD979mx4e3vjzp07aN68OVq2bImIiAh06NABYWFh6NmzJ4Cqi8lrNBq8/fbbeOedd6DT6ZCbm4vc3FwAQElJCXJzc6HX22EalYiIiEhk2kX5PJZ9U4XgAFd4exg/VchcxPIMvD7c+F3PJr/QjIktO+GslOHlIRFG1zPluSGqC+wyuRUUFIS4uDgMHDgQCoUCKpUKXl5eWLt2Lfbs2YOEhAQAVZNbycnJyM/Px8SJE+Hp6Vn5BwCWLFkCT09P3L592ybXQ0RERET/07Glr8367tDCdn1TBYlEYrNnQCIB2oskuTW4ezCe7WH4tNInWvhg0rCmFoyIrO3fr7VG42DDF1+bNKwpnuA7jkTKLqclAkCzZs2we/fuB44XFBRApVJBKpWiRYsWlccbN26MQ4cOPVC+R48eGDt2LMaNG8e1s4iIiIjqgBcHhOOtT/6CXm/dTb+9PeTo/2SQVfuk6r00KAJ74yw/PfTv+nUJgp+3ddcCMpWDgxTfL+6BkXMOYdfhh39I37GlL376pA9cnB2tFB1Zg4+nAvvX9kO/yb/imurhux++9nwTfDI35qFliOoyu01u1eTy5csQBAFNmjSBs/P/FslzdXVF9+7dq60TGhpa4zkiIiIisq7gAFcMeqohdh6y7qj6V59rAoX8sfvxuU56rlcI6nsrkZ5l+QXs7ye2KVvOShm2L++F2F+SsGZzPI6eTa9yvmWEJ6aMiMJLgxpDqeCzbY9CG7jh5HeDsX7HNayOjUfinfwq5/t2boDXhzfDoO7BVTZbIxIbu5yW+DAXL14EUHVKIhERERGJyz/HtHh0ITNycpRi8gviSmzYMydHB0wdad370SSknihH7jk4SPHiwHDEff0Mru4cCu96FeuV+XkqcH7rc5g4rCkTW3aunpsT3nypJRJ+GoY/vx9c+QzU91bgl8/6YXCPECa2SPQeu7eYscktQbDucHciIiIierSn2gdg3LMR+Grndav0t+D1tght4GaVvsgws8ZFY9PPN3ElMdfifUkkwBfvPgkHB3GPDYhs5AGF3AEA4OgoZULjMSOVSvBEC9/KZ0Am8ueZKnRY+AqC+7aHa0M/7Or9L2RfVplUztB2/s6tkT+6rngDci83aPOLcHT6KuQmWH/a+GP3NHPkFhEREZF9WD6rIxr4OT+64H3UmiIkpxdCrSkyuE6HFr7419iWxoZX55SkXsfV2Z1xaXITxM98AsW3Lz9QRl9WghuLhuDS5Ca4Mr0VEt7pg5K0GzaI9tHkTg74amE3ODgYl6Ax5RmY9mJzdG3H9XeJ6jpD3nP30xzYgL+elSD3xI9Vjl8cH4pLkyNxZUZrXJnRGtlxsQCAu2d+Qfyb7XFlWjSuzuqEoqTzlroUg93acxx7n52HgjsZtSpnaDt/13npRCRs3I8dT07DxVU/4skVU42qby6P3citgwcP2joEIiIiIjIDD3c5Yj/oiT4Tf0ZxSblBdZ4YucuoPup7K/H9ku6QycT/mfDt1RPh03cCfHqNQ86xrVCtGIdmH556oJzv0xPg3q4/JBIJMvaswq1VryHyv4etH7ABnmjhi4/+1RHTl5wwvI6Rz0CXNvWxaFp7Y0MjIhsw9D0HAKXp/6+9Ow+Pqrr/OP6Zyb4SSEICJCwJCSQxgIAICIgLraCgdan4AxWrolQFfrXQUpe28iuipVQWUVpF61Ia1wKCVRGRqKAgKlsQCYQASYBsQvaZzP39wWMKksBkMktueL+eh8cnc+855zvem9H5cM65eSp+/+8K6zW40eNJM7IUmtSv4Wd7RZn2z5+gXnM2KKRrhk7szNb++ROUsWiHJ96K045synHLec72c6rg6EhF903W++NnS5IOrN6kwXPuVET3eJ3IK2p2fy1h/v9KAwAA4Lx1yYVxWrFglEKC/dzed1x0iD5YepWSEyPd3re32cqPqnLvFkWPnChJihp6g+qKD54xK8saGKx2A8c0LFcLSx2suqN53i63WaZOyNDj0zwTPg3uE6t3Fo1SaMh5NycAMB1nP+ckyXA4dGDxXUqcvEiWgCCn+q8tzJV/RLRCumZIkiIyhqvuWL6qcre6702YTFiXGFUfKZNR72h4reJwscK6xHi9Fj6lAQAAYGqjhnTRh38frVt+s14HCirc0ueFvaP12rzL1bOr+YMtSaorPqiA9p1k8Tv5v/8Wi0WBsV1VdyxfwZ16Ntnu6DsLFDXoWm+V6bLf3tlXHTuE6IHHN6qqxu6WPm/6SQ8te2y4wkMD3NIfAM9qzufckRXzFZ52icJ6Dmiyv7ynbpMhQ2Epg9TltrkK7pwi+4kSVeR8pvC0oSr/fKUc1SdUezRPocn9PfKexqz6kyKTOjV6bOWoGaoqKPHIuGZEuAUAAADTG9I3Ttvf/Jlmzt+sZ1/f7XI/Af5WPXJPP/32F30VEGCeRQ67Zw5RTUHjm+un//Url/osfH2Oagv3qtvsD1tSmtf84mepGnlRvH7xaLY+3uL6cpiY9sFa8tBQ3fSTHm6sDkBLuetzrvrADpVvfFO95mxo8pxeczYoMLarDLtNh199WHkLblfKo2uUPPMNHX55lhw1FQrrNUTBiemyWD0Xq6wZ+5DH+naHysPFColrL4uftWH2VniXGFUeLvZ6LYRbAAAAaBMiwgL1zCOX6I7rUrVo+U699t5+1dkc524oKSIsQLePS9H949PUq0eUZwv1gN5PbjzrcUtAkGxlhTLq7bL4+cswDNUdy1dgbNdGzy96e57KN76llMfWyhrUvE37fSkpIVLrnhujf687oCVZOfrw8wKn23btFKZ7b0rT5Bt7KToq2INVAnCFuz7nKnZlq/ZonnZMSZEk2cqKdODgZNnKChU7eookNbSx+Acobux07ZiSKkmK6HOZevW5TJLksNVq2+3xCu6a7tb32RoNW/iA8t/9XPnvfnHa6zUlx1W6fb+Sbxihva+tV7erB6uysNTr+21JhFsAAABoYwZlxurlzJGa/+uL9ebaPG3eWawvdxUrZ195Q9gVGuyvzJT2GpAeo4szY3X9ld3b9PKzgKiOCk3ur5L1ryjmikkq/+xNBUYnNLok8ciK+SrLXq6Ux9bKPzzK+8W2kNVq0fVXdtf1V3bX7v3lWvlRvr7MOXkP7D9cIYfDkCR1aBekC3tHa0B6tEYMiNdVlyTIz888s/UAnM7Zz7nY0VMaQixJ+vahkYobO11Rg6+TJNXXVMqw2xo+/0qzlys06UJJkq20UAEdTi4TLMyarYg+l591abc3DHlyshKuGKCQjlEatfxh2Sqq9dbQByRJQ+fdq4Pvb9HB97ec9bxz9RPTN0k5z69pdPzPZi7VsKfuU+bU62WrqNYn05/2/JtuBOEWAAAA2qTYDiG69+dpuveU1+x2hywWnZchRrcpS5W3cJKK3pgjv5BIdZ/6QsOxvEV3KWrQOIUm99ehZQ8qMD5Jex4+OTvB4h+ktHmf+6rsFundI0q9T5mJZxiG7HZD/v6Whk3zAbQdznzORV087qx92MuPKHfuDZKjXoYMBcUlqfv0lyRJBf98VCd2ZUv1doX1HqJu9z/v0ffjjI0z/9bksc9+/axT553teFB0pKoKS1XyTW6jx4/nFrSK5ZMWwzAMXxcBAAAA4L+q7dLwxv+SvNXKHiPxUMHWL+HK5Tp8tEpdOobq0NpbfF0OfMAM94AZPwN/4Opnoa2qRq8mT3R/QT42IfcVBYR6fqn3+fdXVgAAAAAAAGgzCLcAAAAAAABgWoRbAAAAAAAAMC3CLQAAAAAAAJgWWz4CAAAArUyw38lNic0k2M/XFQBoK8z4GfgDVz8L/UOCNCH3FfcW0wr4hwR5ZxyvjAIAAADAaRYLTx4EcP46Hz8DLRaLV54q2FaxLBEAAAAAAACmRbgFAAAAAAAA0yLcAgAAAAAAgGkRbgEAAAAAAMC0CLcAAAAAAABgWoRbAAAAAAAAMC3CLQAAAAAAAJgW4RYAAAAAAABMi3ALAAAAAAAApkW4BQAAAAAAANMi3AIAAAAAAIBpEW4BAAAAAADAtAi3AAAAAAAAYFqEWwAAAAAAADAtwi0AAAAAAACYFuEWAAAAAAAATItwCwAAAAAAAKbl7+sCAAAAAAD4McOQaup9XYXzgv0ki8XXVbQNZrv2p3L1PjAMQ/bqWvcX5GP+IUGyeOEXg3ALAAAAANDq1NRLw9f4ugrnZY+RQviG7RZmu/ancvU+sFfX6tXkie4vyMcm5L6igNBgj4/DskQAAAAAAACYFuEWAAAAAAAATItwCwAAAAAAAKZFuAUAAAAAAADTItwCAAAAAACAafEsBwAAAABoo6qq7fpmT4m+3FWi7d+VqvT7WklS2fFa/eUf2zUgPUYX9o5Wu4hAH1cKTykpr9GXu4r15a4SfZf/fcM9UH6iTktf360B6dHKTOmgoEA/H1cKuI5wCwAAAADaEMMw9Pm2Y1qSlaPX3t+v2rr6M86pqqnXr//yhSTJarVo7KWJum98uq64uLOsVou3S4ab2e0Orfo4X0uycrR2U0Gj51RW23Xv7E8lSeGhAbr1mmRN+XmaMlM7eLNUwC0ItwAAAACgjdiVW6a7//iJPvv6qNNtHA5DKz7K14qP8pWWFKW/PXqJhvWP92CVnnNi+3rtefiy016zBocpqHOqokfeqo7XPCCLX9v+GvzOx/m6b85nyi+sdLpNRZVNz7y2W8+8tltXXZKgZx8Zqm6dIzxYpecUf/iiDiy8Q92mvqCYKyadcbz2SJ52TO6h6MtvV/dpL3q9Pl+IH5Khq97642mv2SqrdXxfoXLf2KCc59fIqHf4qDr3aNu/1QAAAABwHrDbHZr3j+36/ZKtqrO5/iU1Z1+5RtyxWtMmZOhPDwxUaIg5vzK2H3GL2g0YIxmGbGVFKln/kg4t+5VqDuWo231/83V5HlF2vFbTn9ikl1btbVE///n0kDJveFvzHhyku2/oJYuFmXxtxb63snVo3VbJYlFIbJR63nSpBv1xktqldNHGGUt9XV6LmPOTCgAAAAAgSaqpteuW36zXv9cdcEt/hiE99cpObdp2VGuW/FTtI4Pc0q83hSb1V/TIiQ0/x475pXb+sreKP3hOnSf+SQHtYn1YnfsdKqrUqHve1e7937ulvxOVNt3z2Kf6KqdEi383RH5+PIuuLSjZvl/73sxu+PnbF9/Tz7IXKPV/rtDWuctVW3Lch9W1DHcoAAAAAJiUzebQTQ+uc1uwdapN247pJ/f8R8cr6tzet7f5BYcprNdgyTBUW5Tr63LcqvBYlUbeudptwdapnn19t+6d/akMw3B73/A9e3Wtjm39TharVZHd4nxdTosQbgEAAACASc2Y/4Xe2XDQY/1v2VmsibM+bhPhxg+hln9429kw3W536NppHyj34AmPjfHcW3s078XtHusfvhXR/WSoVVte4eNKWoZliQAAAABgQh9vKdSCV3c2q83m5eMUHxOqouIqXXTLSqfarPo4Xy+v2qvbxqW4UqZPOGqrZD9eLMMwZC8r0rH/PKvqfV8pNGWQgruk+ro8t3nyhW3avKO4WW1cuQceeXqrrrm0q9KSolyoEq2Ff0iggjpENOy51eu2nyg6M0nHtn6n4/sKfV1ei5wXM7eKi4s1c+ZM9ezZU8HBwUpMTNS0adNUWVmpO++8UxaLRYsXL/Z1mQAAAADglKpqu37xaPa5T/yR+JhQJcSFKT4mtFntpj2xSYXHqpo9nq8ULv+9vrk1Vttu66hd0/ro2LtLFDXkevV8aIWvS3ObXbll+uOzXzW7nSv3QG1dvSY9vEEOh/ln8J3PLpw5XrfsfEG37Fim6z6ar7Q7rlLe6k1aN+kJX5fWYm1+5tbXX3+t0aNHq6ioSGFhYUpPT1dBQYEWLlyo3NxclZaWSpL69evn20IBAAAAwEmvrt6rfYc8txTtx8pP1GnRP3dpzrSBXhuzJWJ+Olnth94ko96m6gPbVfTWE6orPiRLQHDDOSd2ZmvvY6PPaGvY62Q46jXg7Xpvltxsc5/f1qInYzbXFzuO6b1PD2n08ESvjelZ/30KZOknr+noOwtVvf9r+UfGKPPveb4ry4O+ffl95a3aKGuAv9r37qoL7rtOYZ2iVV9r/n312vTMreLiYo0dO1ZFRUV68MEHVVhYqK1bt6qoqEhPPPGEVq9erc2bN8tisahPnz6+LhcAAAAAzskwDC15Lcfr4z731reqrWvdgc8PgjqlKLLflWo3YLTir5+png+tUtXezcp/5t6GcyIyhuvCrIrT/mQs2SP/iBh1/p/ZPqz+3IrLapT13j6vj7sky/v3XXNZA0MknVya2hhHbeXJ84JCGl7zD2+vjmPuV+eJf/J8gT50fF+RCrO36/C6r7RjyQp9ePtcxfRL1pAn7vF1aS3WpsOtqVOn6tChQ7r//vs1b948RURENBybOXOm+vbtK7vdru7duysyMtKHlQIAAACAc77Yfkxf7y71+rjHymr01to8r4/rDuFpQ9Vh5K0q+yRLFTmfNXqOw1arfXOvV3j6MHW66XderrB5XlzxnVdnbf1gdfZB5Re27o3Hg+J6SJJqDjUexNUcPPl6YMceDa9F9hulDiPGKyi2m+cLbEWObflWuW9sUI/rLlHswF6+LqdF2my4lZOTo6ysLMXExOjxxx9v9JwBAwZIkvr27dvw2vr162WxWM74w7JFAAAAAK3BR5t9t/Hz+i3m3XS6082PSFY/Ffzz0UaP5y+5Vw5bjbpPe9G7hbngo80FPhnXMKQNXxb5ZGxnhSb3V0BMosqy/6W6ktP/PTlsdTq6ZrFksShq0DgfVdi6fPPXN+Sw1+vCGTf7upQWabN7bi1fvlwOh0MTJkxQeHh4o+eEhJychnhquPWDp59+Wv3792/4OSwszDOFAgAAAEAzfLmreU/Hc+/YJT4bu6WCO/VUh+HjVfrxqzqxM1sRGcMbjh1dtVDfb3lHvedtljWoeZvte5thGD69Dl/uKtbEa3r6bPxzsfj5q9uUZ5T7+M+0a1ofxYy6U0HxybKXH1HpJ1mqyd+p+Bt/p+AEc89UcpcTeUXav+JTJd8wQh0vTtPRz1v/0tPGtNmZW+vWrZMkXXbZZU2ec+jQIUmNh1vp6ekaPHhww5/MzEzPFAoAAAAAzfDVbt8FG9v2lMrmg+Vw7hJ/00OS1Xra7K0T2z7SoZd+o6SZrysorrvvinNS4bEqHSmp9tn4vgxXndVu4NXqNfdTRWReppJ1/1D+0vt0ZMVf5B8Zqx4zstTl1ra9t1ZzbVvwphz15p691WZnbh04cECS1K1b42tm7Xa7Pv30U0mNh1vuNHDgQBUVte6pmwAAAADMoSBqlmQNbvTY5uXjFB/T9Myj+JiQhn8e/GB8k+cVFVfpoltWnvG6ze5Q16Re8jM8H65YAkMU99R3zWoTkTlSA1YYTR4PSUw77SmItUfytO/PP1fCpD8rInOkq6VKklJTU2TUef7fi80vTmr3y0aPnev6Sy2/BzZu3q6EhHsbaeE+rlz7HwtLuUjJv3ndTRU5z9X7IMCw6vca5IGKpKKNO/VipxubPP79d4f1UoJngq3UlFTZLM4F4vHx8dqyZYtL47TZcKuy8uQTEKqrG7+psrKyVFxcrIiICPXo0eOM4zfffLOKi4sVHR2tcePGae7cuYqJiXGplqKiIh0+fNiltgAAAABwmihLk4fiY0KVEHfuLVX8/axOndeYoqKjkv24S22bwxoUqjgP9u+orVLu49ep3aBx6nj1/S3ur6CgoMkn9LlViL/UrvFDzl5/yfV7wG43PP791tPX/seM+noZ9TYZ9TbJMOSoq5EsFlkDgprdl6v3QaDFT159015SUFigOsPzT1lts+FWfHy8ysrKtHXrVg0ZMuS0Y4WFhZoxY4YkqU+fPrJY/vsfh3bt2mnGjBkaMWKEwsPDtXHjRj3++OPatGmTtmzZouDgxv+G5Fy1AAAAAIA7FMihpuYmFRWf/Ut1fEyI/P2sstc7VFTc9OySs/XTKT5WViOiyePuYgkM8Wj/ZZ+9qer936jm8B6VfZJ1xvGMxbsUGNvV6f46d+7spZlbHXS0iWPnuv5Sy+8Bfz8prksXZ0p1maev/Y+VrH9ZBxbe0fDzVzeFKLBjN2X+Pa/Zfbl6HwQYVsm8K36b1LlT52bN3HKVxTCMpudsmtjUqVO1aNEiJSYmau3atUpNTZUkbd68Wbfeeqv27dsnm82m++67T4sXLz5rX6tWrdK4ceO0bNky3XHHHWc9FwAAAAA8qe+Nb2vbnlKX2h78YLwS4sJ06EilEkf9q9ntI8MDVPbJrbJam5495i7Vdmn4Go8P4zbZY05OqvK08uO1aj/sFZfbt/QeGDM8Qauf/qnL4zvDbNf+VK7eB7aqGr2aPNH9BfnYhNxXFBDa/ElCzdVmN5SfOXOmoqOjdfDgQWVkZCgzM1MpKSkaNGiQkpKSdPnll0tybr+ta665RmFhYS6v/QQAAAAAdxmQHu2zsfunxXgl2ELToiKD1LNrpM/GH5Du2nY9gCe12XArISFB2dnZuvrqqxUcHKy8vDx16NBBS5cu1erVq7Vnzx5JzdtM/tTliwAAAADgC74MFwak+S5Yw3/5MuAk3EJr1Gb33JKktLQ0vfPOO2e8XlFRoby8PFmtVl1wwQXn7GflypWqrKzUoEGeeXIBAAAAADhrzLBEWSwb5YsNZq651Pk9qOA5Yy/tqqz/7Pf6uGEh/ho5sJPXxwXOpU2HW03ZuXOnDMNQamqqQkNPf0zqxIkTlZSUpP79+zdsKP/kk0+qX79+Gj++6cekAgAAAIA39EiI0JjhiVq94aBXx01PjtKlA3lYVmtw46gemv7k5youq/HquBOv6al2EYFeHRNwRptdlng227dvl9T4ksSMjAy9/fbbuu222zR69GgtW7ZMd999t9avX6/AQH6JAQAAAPjeL29O8/qYU36exlYtrURQoJ/uuj7V6+NO+Xlvr48JOOO8nLl1tnBr1qxZmjVrlrdLAgAAAACnjR6WoCsHd9baTQVeGS89OconYQqaNmNSH7244jsVFVd7Zbzbx6Woby/2XGttBs3+hbr+dKDCEztq5ZW/VunOPJfOc7afH4voEa/hCx5QUIcI2U5U6ZNpi1W+51DL3pQLmLkFAAAAACZjsVj03B+GKTw0wONjWa0WvfDYCAUHmXtuRE3Bd9o9c6h2TElVzoMXqTp/5xnnOOpqtHfOddoxJVW7pvXVnkdHqaZwrw+qPbcO7YK09JFLvDJW546h+uvMi70yVks4c41PVbz2BX15rUXlm/592uvb7+6uHVN6adf0fto1vZ9Ks7MkSd9v/Y9yfjVQu6b20e4Zg1W1/xtPvRWnHVi9UWuufVgVB4+26Dxn+/mxoU/eoz2vfKC3h03V9sX/1rAF9zervbucl+HWunXrZBiGrr76al+XAgAAAAAu6dY5QotmDW5Wm6LiKh06Uqmi4iqn2zx8dz8NyoxtbnmtTv6SexTz08m64Jk9ir/+N8pbMKnR82J/MlkZS75V+oJvFHXxtTqw+C7vFtoM4y7rpjt/1rwZdc29B6xWi57/w3C1jwxypUSvcvYaS1LtkTwVv/93hfVq/HcoaUaW0p/6WulPfa0Ow2+WvaJM++dPUPfp/1D6wm3qMunP2j9/gofeifOObMpRVWFpi89ztp9TBUdHKrpvsnLf3CBJOrB6k8I6Ryuiu/f35jsvwy0AAAAAaAsmXZuqx6cNdPr8i25ZqcRR/9JFt6x06vzJN/bSH355oavltRq28qOq3LtF0SMnSpKiht6guuKDZ8zKsgYGq93AMQ17i4WlDlbd0Txvl9sszzx8ia69zPmnWDbnHrBYpGV/HK6rhiW0pESvcPYaS5LhcOjA4ruUOHmRLAHOhXa1hbnyj4hWSNcMSVJExnDVHctXVe5W970JkwnrEqPqI2Uy6h0Nr1UcLlZYlxiv12LueaUAAAAAcJ777Z19FRLkp1/N+0IOh+G2fv/31gzNe/DiNrGJfF3xQQW07ySL38mvwBaLRYGxXVV3LF/BnXo22e7oOwsUNehab5XpkoAAq16fd4XueHSDXl2d67Z+AwOs+sf/jdD40clu69OTmnONj6yYr/C0SxTWc0CT/eU9dZsMGQpLGaQut81VcOcU2U+UqCLnM4WnDVX55yvlqD6h2qN5Ck3u75H3NGbVnxSZ1KnRYytHzVBVQYlHxjUjwi0AAAAAMLlpEy/QoMxY3fFItr7N+75FfXWKDdXSRy7R2JHOzwbytd0zh6im4LtGj6X/9SuX+ix8fY5qC/eq2+wPW1KaVwQEWPXynEs1anAXTXtyk74/Udei/gZmxOjF2SOU0bO9mypsOXdd4+oDO1S+8U31mrOhyXN6zdmgwNiuMuw2HX71YeUtuF0pj65R8sw3dPjlWXLUVCis1xAFJ6bLYvVcrLJm7EMe69sdKg8XKySuvSx+1obZW+FdYlR5uNjrtRBuAQAAAEAbMKRvnL567TrNee4bLcnKUen3tc1qHxbir9vHpej/Hhhgiv2VTtX7yY1nPW4JCJKtrFBGvV0WP38ZhqG6Y/kKjG08wCt6e57KN76llMfWyhoU6omS3c5isej2a1N05eDOmrVgi7Le26c6m+PcDU/RuWOo/nfiBZo+MUP+/q1rFyN3XeOKXdmqPZqnHVNSJEm2siIdODhZtrJCxY6eIkkNbSz+AYobO107ppzc1yyiz2Xq1ecySZLDVqttt8cruGu6W99nazRs4QPKf/dz5b/7xWmv15QcV+n2/Uq+YYT2vrZe3a4erMrCUp3IK/J6jYRbAAAAANBGhAT7a/b9A/S7u/rqtff264UVe7R5R7GqauyNnh8YYNWFvaM14epk3TY2Re0iAr1csXcERHVUaHJ/lax/RTFXTFL5Z28qMDqh0SWJR1bMV1n2cqU8tlb+4VHeL7aFusSF6aU5l2reg4O07N97lPXePu3YWya7vfElq+0iAjWkT0fddX2qxo3spoCA1hVqOcvZaxw7ekpDiCVJ3z40UnFjpytq8HWSpPqaShl2W8O1L81ertCkk/vO2UoLFdDh5DLBwqzZiuhz+VmXtXrDkCcnK+GKAQrpGKVRyx+WraJabw19QJI0dN69Ovj+Fh18f8tZzztXPzF9k5Tz/JpGx/9s5lINe+o+ZU69XraKan0y/WnPv+lGWAzDcN+ibAAAAABAq1Jf79C3ed9r+3dlqqiyyeEwFBYSoLSkdsro2V6BAX6+LrFR1XZpeOPfp11Sc+hb5S2cJPuJEvmFRKr71BcU0j1TkpS36C5FDRqn0OT+2n5nogLjk+QXEiFJsvgHKW3e5+fsP3uMFNJKp4/U1Nq1bU+Zvs0rV01tvfz8rIoMC1C/3tFKSoiQ1dq69lVz9do7c42jLh53Wpsfh1u1RfuUO/cGyVEvQ4aC4pKUeNcCBcV114HFd+vErmyp3q6w3kOUePeiMwJQV+8DW1WNXk2e2PyGHhYUHalLn56m98fPdqn9hNxXFBAa7OaqzkS4BQAAAABoddwdbnlaaw63zMZs1/5UbS3cailvhVvmnG8IAAAAAAAAiHALAAAAAAAAJka4BQAAAAAAANMi3AIAAAAAAIBpsaE8AAAAAKDVMQyppt7XVTgv2E+ytK6HDpqW2a79qVy9DwzDkL261v0F+Zh/SJAsXvjFINwCAAAAAACAabEsEQAAAAAAAKZFuAUAAAAAAADTItwCAAAAAACAaRFuAQAAAAAAwLQItwAAAAAAAGBahFsAAAAAAAAwLcItAAAAAAAAmBbhFgAAAAAAAEyLcAsAAAAAAACmRbgFAAAAAAAA0yLcAgAAAAAAgGkRbgEAAAAAAMC0CLcAAAAAAABgWoRbAAAAAAAAMC3CLQAAAAAAAJgW4RYAAAAAAABMi3ALAAAAAAAApkW4BQAAAAAAANMi3AIAAAAAAIBpEW4BAAAAAADAtAi3AAAAAAAAYFqEWwAAAAAAADAtwi0AAAAAAACYFuEWAAAAAAAATItwCwAAAAAAAKb1/0BsOso0vetMAAAAAElFTkSuQmCC", "text/plain": [ - "
" + "
" ] }, "execution_count": 19, @@ -752,19 +743,19 @@ "Trotter step with Suzuki Trotter (2nd order)\n", "--------------------------------------------\n", "\n", - " Depth: 14\n", - " Gate count: 33\n", - " Nonlocal gate count: 10\n", - " Gate breakdown: RZ: 12, RX: 11, RZZ: 10\n", + " Depth: 34\n", + " Gate count: 53\n", + " Nonlocal gate count: 20\n", + " Gate breakdown: CX: 20, U1: 12, R: 11, RZ: 10\n", "\n", "\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABnkAAAGwCAYAAABl3wDCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAACJZ0lEQVR4nOzdeXxU1f3/8fedTPYNCIEkbAFCFJFFZDEUVFyogNC6oLZgSwsVLYhtKaC1SrU/N6BFFqu2bvWLpVj2Aioq0gZFBAGlLIFshEBCyAIkkG2S+f0xJZomQCbMzM3MvJ6PRx48uOecez935m5zP/eeY9jtdrsAAAAAAAAAAADgVSxmBwAAAAAAAAAAAADnkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQlazAwDQMtntUkWN2VE0XUiAZBhmR+Eb7Ha7bOWVZofRLNbQYBlsCJeNbQCS950HJM4FAAAAAAD/Q5IHQKMqaqRhG82OoulSR0mhHNFcwlZeqXe6TzA7jGYZn7FUgWEhZofh9dgGIHnfeUDiXAAAAAAA8D901wYAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IavZAQDwHaV7t+jQb4fXm2YJCVdwQrJibrxf7W5/WEYAhx1fFpfSS7eteqretOqz5TqTmaeMFf/Wgdc3yl5Ta1J08AS2Af/GeQAAAAAAAM/iVzYAl2t9/Q8Ufe0oyW5XdUm+ira8rdw3fqWK3APqMvXPZocHD8hclarczbskw1BobCsljbtBg56aqOgeHbRt5qtmhwcPYBvwb5wHAAAAAADwDJI8AFwurFt/xdw4oe7/saN+rn0/v1KFH76mhAnPKDA61sTo4AlFe7OUuTK17v9pb32gO1IXKvmHN2vX88tUWXTGxOjgCWwD/o3zAAAAAAAAnsGYPADcLiAkXOFXXCfZ7arMzzA7HJjAVl6pk7sOy7BYFNWlvdnhwARsA/6N8wAAAAAAAO5BkgeAR5y/qWeNaGNyJDBLZKLjxn7lqTKTI4FZ2Ab8G+cBAAAAAABcj+7aALhcbeU52c4Uym63y1aSr5Pvv6LyzN0K6zFIIR2SzQ4PHmANDVJwm8i68Viu+NEIxfTuppO7DutMZp7Z4cED2Ab8G+cBAAAAAAA8wy+SPIWFhZo7d65WrVql3NxcxcbG6s4779Szzz6r6dOn64033tDixYs1bdo0s0MFfELesjnKWzan3rRWKXeq85SXTIoInnbNrPt0zaz76k3L3vC5tj/2mkkRwdPYBvwb5wEAAAAAADzD55M8e/bs0ciRI5Wfn6/w8HBdddVVOn78uBYtWqSMjAwVFxdLkvr162duoD7sVKW0Nkf6V75UWi0FB0jJ0dLdidJVrcyODu7Q9rsPqPWQcbLXVKv8yF7lr3pBVYW5MgJD6uqU7ktV+tMjG7S126pkr63RtatrPBkyXCzt/zYp+5/bZAm0qvWVnXX11O8rPD5GNZVVdXUsQVaN2TRPWatT9fXCVXXTh744VSGxrfTR+GfMCB0uwjbg3zgPAAAAAADOq7FLqfnSuqNS3jmp1i7FhkijOko3JzjuF6P5fDrJU1hYqDFjxig/P18zZszQnDlzFBkZKUmaO3euZs+eLavVKsMw1KdPH5Oj9T01dmnJfml5llRVW7/s4GlpXY7Up7X0/66VEsLMiRHuERzfQ1H9bpEkRV87UhE9hyrtsaHKeflBdZv5d0lSZK9humZ5/XE5qoqO6+CMAYodzVt13u5MZr7yUvdKko5t3q0TXxzUqLW/V8oLU/SvhxZIkmqrbNo6fbFuW/20jn74pUr2H1Hn2waq460DtPamX5kZPlyAbcC/cR4AAAAAAEjS5wXS//tKyi+vPz2jVPr8pPTHfdKMq6WRHc2JzxdYzA7AnaZPn67c3FxNmzZN8+fPr0vwSNKsWbPUt29f2Ww2JSYmKioqysRIfU+tXXpil/R/GQ0TPN/2dYn0k1Qp96znYoPnRfQcojY33q+SrctVduCzRuvUVlcq8/k7FXHVUMWP+42HI4S7ndyZpowV/1bX739HsQOuqJte9HWm9r28TsMWPayw+DZKmfegtv/mNZWfKDExWrgD24B/4zwAAAAAAP5nS570yPaGCZ5vO1XluI/8jyzPxeVrfDbJc+DAAS1fvlxt27bVc88912ida6+9VpLUt2/fetOzsrI0duxYRUZGqnXr1vrRj36koqIit8fsS95OlzYda1rdokrpl9sdb/7Ad8Xf+4RkCdDxvz3ZaHnOnx5UbXWFEh95y7OBwWO+WrBCtbYaXTPz3vrTX1yp2poajf1wnvI//Y+y1n5qUoRwN7YB/8Z5AAAAAAD8R+5Z6fEvm37Pd95e6ati98bkq3w2ybNs2TLV1tZq/PjxioiIaLROaGiopPpJntLSUg0fPly5ublatmyZ/vznPys1NVW33367amsv8koK6thqpWWZzrXJKpO2FbgnHrQMIfFJajPsPpV+/bFK96XWKyv45yKd3rle3R9bI0swfff5qtLsfGWt/VQJ1/dRu8E966bbbTU6uSNNITHRSl/+iYkRwt3YBvwb5wEAAAAA8B8rs6VKJ26n18r5e8pw8Nkkz+bNmyVJw4cPv2Cd3NxcSfWTPH/+85917NgxrVmzRrfffrvGjRunv/3tb/r888+1bt069wbtI7bkO97Ocda7vJLn8+LGPS5ZLPWe4i79+hPlvj1b3Wb9Q8HtE80LDh7x9ULHGxvffpOj3eCeSrp3uA68vlGDnv6JAkKCTIwQ7sY24N84DwAAAACA76uocYzH7qxP8qSTFa6Px9cZdrvdJzvJ6tSpk3Jzc7V7927169evQbnNZlN8fLwKCwuVkZGhbt26SfomKfTJJ/WfJO7evbtuvPFGvf76607HMmDAAOXn5zu/El4qctzTCh/+U6fb1VaUqeBXV7ohIjSHERSq9i8edusyKk9k6+CvByr+vjlqd5mDbJ/4RQ/Zqy7SwSeaLNBu0ZzaQR5ZljUsRGM/nq/9r67Xwb9+oJGrn1bhVxnaMeetZs3vKcsXqjZ46/JysQ1A8r7zgMS5AAAAAABaAmun3mr72HvNalvy55+pck/z2nqzuLg47dy5s1ltrS6OpcU4e/asJKm8vPEf+suXL1dhYaEiIyPVtWvXuun79+/XuHHjGtTv1auX9u/f36xY8vPzdexYEweo8QFdaqTwZrSzhET41efU0lmCw9TejfOvrTynjOe+r+hBY11yY+/48eOqrTzngsgQZATIrV/+twz83Y9UllOgg2+9L0na+sgSjf1ovnLe264Tnx9wen7H846ryl7j6jD9DtsAJO87D0icCwAAAACgJYho1V1tm9n21LlKFXOP2Ck+m+SJi4tTSUmJdu3apZSUlHpleXl5mjlzpiSpT58+MgyjrqykpEStWrVqML82bdooLS2t2bH4k1BL856gri0vVYcOHVwcDZrLCAp16/xLPlup8qyvVHHskEq2Lm9Q3mvJfgXFdm7y/BISEnh620UC7RZHR6hu1uGma9R17He09uYZddNKj5zQl8+8o+8smKp1N82Qrdy5vh8T4hN4i8MF2AYged95QOJcAAAAAAAtgTUipNltW4UGKdQP7xFfTg7BZ7trmz59uhYvXqxOnTrpo48+UnJysiRpx44duv/++5WZmanq6mpNnTpVS5YsqWsXFBSkWbNm6f/9v/9Xb34TJ07Utm3bmp3o8Sf/ypdmfOF8uxvjpPme6R0ITVBuk4ZtNDuKpksdJYX6bNras6rPVeid7hPMDqNZxmcsVWBY8y8k4MA2AMn7zgMS5wIAAAAAaAmqaqTbP5SKq5xrF2iRNtwqtQl2T1y+ymJ2AO4ya9YsxcTE6OjRo+rVq5d69+6tHj16aNCgQerWrZtuuukmSVLfvn3rtWvdurVOnTrVYH7FxcVq06aNJ0L3ekPbS3HNePj37kSXhwIAAAAAAAAA8KCgAOl7XZxvd0s8CZ7m8NkkT8eOHZWamqrRo0crJCRE2dnZatOmjV599VVt2LBBhw4dktQwydOzZ89Gx97Zv3+/evbs6ZHYvV2AIU3o7lybK6OlQbHuiQcAAAAAAAAA4Dl3JUrhTvS0EGBIP3TynjIcfDbJIzkSNuvXr1dpaalKS0u1fft2PfDAAzp79qyys7NlsVh09dVX12tz++23a+vWrcrNza2btn37dmVkZGjMmDGeXgWvdW9X6c4mZmsTwqQ/DJIsxqXrAgAAAAAAAABatrhQad5AKagJGQiLpCf7ST1buTkoH+XTSZ4L2bdvn+x2u3r06KGwsLB6ZQ888IDi4+P1ve99T+vXr9eKFSv0gx/8QIMGDdL3vvc9kyL2PoYhPdZH+vmVF8/YDmknvTFUau/esZ0BAAAAAAAAAB40KFZ6dYjULfLCdRLCHOO0j+7kubh8jV8OTbt3715JDbtqk6SoqCht3rxZjzzyiO677z5ZrVbdfvvtWrBggSwWv8yJNZthSD9Nln7QTXr/mPSvfGl7gVRtl0IDpHdukDpHmB0lAAAAAAAAAMAdereRlt8o7S6W1h6RNh1z3B8OtkgvDJRS2jm6akPzkeRpRPfu3bV+/XpPhuTTQq3SHV0cf6M2SQUVUmQgCR4AAAAAAAAA8HWGIfWPcfztKHTcH44Okoa2Nzsy30CSB4BbVBw/rOwXfyxbaaECwqKV+MhbCu3cq16d2qoKZc6/TxVH98sSFCprdDt1fuhlhcQnSZIOzRkhW0m+ZLEoIDRSnX62SGHdrjFjddAEkV3jNGzhwwpuE6nq0nPa+sgSnTqU26De3V/8STWV1aqpqJIkfb14tbLXfdbkcklKune4hr44VZt/8oJy3t/hxrWCM9gG8G2cBwAAAAAAcD+/TPJs3rzZ7BAAn5fzpylq+90H1PbmiSr5dIWyF05Uzz80vBEbO+IBRV07UoZhqGDDEh1ZMllXPLNFktRt5ruyRrSSJJVsW63shRN11cKvPLgWcMaQuVN0aOmHSn93i7qMvk5DF07T+pGPNlr3Xw8uUPG+7AvO62LlER1jlTz+FhXsTHNB1HAltgF8G+cBAAAAAADcj0FmALhc9akCnU3fqZgbJ0iSWg25S1WFR1WRl16vniUoRNEDRskwHB1vhidfp6qC7Lry8zf2JKnm3GnHu51okUJiohTTt7syVv5bknRkw+cKT4hRZGKcaxdkGBryh4e0/bevq7bK5tp547KwDeDbOA8AAAAAAOAZfvkmDwD3qio8qsDW8TICHIcYwzAUFNtZVSdz6rrgaUzB+oVqNeh79aZlLfiRSvd+Iknq8eRG9wWNyxLeoa3KT5TIXlNbN63sWKHCO7RVaXZ+g/pDFz0sw5BO7k7Xl8++o8qiM00q7zVljAp2HFTR15nuXSE4jW0A38Z5AAAAAAAAzyDJA8BpB2elqOL44UbLrlqwu1nzzPvHs6rMS1eX339cb3rXX74tSSra/Fflvj2bG3wmGfXPZxTVLb7RsnW3znRqXu/d8aTOHiuUYQ1Q/9k/0LCF0/TRhGcvWd7qik7qMnqw3rvjyctaFzQP2wC+jfMAAAAAAAAtA0keAE67cu62i5YbgcGqLsmTvcYmI8Aqu92uqpM5Cort3Gj9/NXzdWrbKvV4+iNZgsMarRNz04915OUHZTtTJGtUzGWvA5yzcczjFy2vraxWaPvWMgIsdW9yRHRoq7PHChvUPT/NbqvR/r+s152fLm5SefvBPRXRqZ3u+szx/9DYVkqZ96BC27VW2tubLm8FcUlsA/g2zgMAAAAAALQMJHkAuFxgq3YK695fRVuWqu3NE3Xqs5UKiunYaBc9J9b+USWpy9Tj6Y/qjb1gKzul2spzCopJkCSd+nyNrJExCohs46nVgBMqis6oeG+Wut91vdLf3aIuo6/T2bziBt10WUODZQkMUNWZc5KkrncMVdF/sppUnvb2pno38m9b+ZT2/2W9ct5vOJA7PI9tAN/GeQAAAAAAAM8gyQPALbo89KqyF01U/opnFRAapcTpb9aVZS+erFaDxiqse3/lvjFDQXHddOi3wyVJhjVYPedvV82508qcO061VeUyDIusUbFK+u36usG50fJ8NutVDX1xqnpPv1PVZeXa+ouX6sqGzH9QRzftVMnBHA1/baaMAIsMQyo9UqCtD3/zFkdIbPRFy9GysQ3g2zgPAAAAAADgfobdbrebHQT8x6hNUkGF1C5E2jjC7GhwMeU2aZgXDXuQOkoKJW3tEtXnKvRO9wlmh9Es4zOWKjAsxOwwvB7bACTvOw9InAsAAAAAoKXj/rDrWcwOAAAAAAAAAAAAAM4jyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXoihaQE0KiTAMYC1twgJMDsC32ENDdb4jKVmh9Es1tBgs0PwCWwDkLzvPCBxLgAAAAAA+B+SPAAaZRhSKEcIv2QYhgLDQswOAyZiG4DEeQAAAAAAAG9Ad20AAAAAAAAAAABeiCQPWqR169apX79+9f46dOigkJCQi5ZdyLhx47Rt2zanYjh8+LCGDBmi5ORkDRw4UPv27btg3enTpysxMVGGYWjPnj31yoYNG6asrCynlg0AAAAAAAAA/ox7xE1Dkgct0tixY7Vnz566vy1btigsLEwvvfTSRcsa88UXX6i4uFgpKSlOxTBlyhQ98MADOnTokGbPnq2JEydesO7dd9+trVu3qkuXLg3KZsyYoTlz5ji1bAAAAAAAAADwZ9wjbhrDbrfb3TJnoBGjNkkFFVK7EGnjiKa1qa2t1ZgxY9SpUye98sorTS47b9KkSRoyZIgmTZrU5DgLCgqUlJSk4uJiWa1W2e12xcfHa+vWrUpKSrpgu8TERK1Zs0b9+vWrm1ZdXa2EhASlp6crOjq6yTEAAAAAAAAAgC9pzv1hiXvEF8ObPGjx5syZo+LiYi1atMipsvO2bNmiwYMHO7XMo0ePKj4+XlarY8RpwzDUuXNn5eTkOBe8pMDAQPXu3VupqalOtwUAAAAAAAAAf8c94guzunyOgAutXbtWr7/+unbu3KmgoKAml31bbm6u2rdvX29aSkqKDh8+3Gj93bt3X37g/yMuLk65ubkuny8AAAAAAAAA+DLuEV8cSR60WGlpaZo0aZLWrFmjhISEJpf9r7CwMFVUVNSbdqkBtoKDg5WXlyebzVb3Kl5OTo46d+7crHWpqKhQaGhos9oCAAAAAAAAgD/iHvGl0V0bWqTS0lLdcccdeuqppzR06NAmlzWmT58+SktLc2r57dq1U//+/bV06VJJ0sqVK9WxY8eL9rV4MQcOHFDfvn2b1RYAAAAAAAAA/A33iJvGsNvtdpfPFbiApg6s9fzzz+vxxx9X7969G5Tdc889euKJJxot27hxY4Os7eLFi5WTk6N58+Y5FWtaWpomTpyooqIiRUVF6c0336xb5uTJkzV27FiNHTtWkjRlyhRt2LBB+fn5iomJUWRkpNLT0yVJ2dnZGjFihNLS0mQYhlMxAAAAAAAAAICvaOr9YYl7xE1Fkgce5cxO7CplZWUaMmSItm3bpvDwcM8s9FseffRRJSUlafLkyR5fNgAAAAAAAAC0FGbcH5Z8+x4x3bXB50VERGjBggXKysoyZfkJCQn66U9/asqyAQAAAAAAAMDf+fI9Yt7kgUeZlakFAAAAAAAAAJiL+8Oux5s8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBeymh0AAKDlsdulihqzo3BOSIBkGGZH4Rvsdrts5ZVmh9Es1tBgGWwIl41twHwchwEAAAAATUGSBwDQQEWNNGyj2VE4J3WUFMpZzSVs5ZV6p/sEs8NolvEZSxUYFmJ2GF6PbcB8HIcBAAAAAE1Bd20AAAAAAAAAAABeiCQPAAAAAAAAAACAFyLJAwAAAAAAAAAA4IVI8gAAAAAAAAAAAHghkjwAAAAAAAAAAABeiCQPAAAAAAAAAACAFyLJAwAAAAAAAAAA4IWsZgcAAPAdpXu36NBvh9ebZgkJV3BCsmJuvF/tbn9YRgCnHl8Wl9JLt616qt606rPlOpOZp4wV/9aB1zfKXlNrUnRwN75/83EcBgAAAAD/wi88AIDLtb7+B4q+dpRkt6u6JF9FW95W7hu/UkXuAXWZ+mezw4MHZK5KVe7mXZJhKDS2lZLG3aBBT01UdI8O2jbzVbPDg5vx/ZuP4zAAAAAA+AeSPAAAlwvr1l8xN06o+3/sqJ9r38+vVOGHrylhwjMKjI41MTp4QtHeLGWuTK37f9pbH+iO1IVK/uHN2vX8MlUWnTExOrgb37/5OA4DAAAAgH9gTB4AgNsFhIQr/IrrJLtdlfkZZocDE9jKK3Vy12EZFouiurQ3Oxx4GN+/+TgOAwAAAIBvIskDAPCI8zcVrRFtTI4EZolMdNzcrzxVZnIkMAPfv/k4DgMAAACA7/GLJE9hYaFmzZqlpKQkhYSEqFOnTnrkkUd09uxZTZo0SYZhaMmSJWaHCQA+o7bynGxnClV9+qTKs/cq55WpKs/crbAegxTSIdns8OAB1tAgBbeJVHBMlFpd2VmDn52smN7ddHLXYZ3JzDM7PLgZ37/5OA4DAAAAgH/w+TF59uzZo5EjRyo/P1/h4eG66qqrdPz4cS1atEgZGRkqLi6WJPXr18/cQH3cyQrp0xPSWZvj/1W1kt0uGYa5ccFzDp+WviqWztVI4VZpYFupc4TZUcFd8pbNUd6yOfWmtUq5U52nvGRSRPC0a2bdp2tm3VdvWvaGz7X9sddMigiexPdvPo7DAAAAaEnsdmlPsXTojFRZI0UHSd9pJ7UNMTsyeEp1reP+8Ln/3h+uqJHKbVKoz2co3M+nP8LCwkKNGTNG+fn5mjFjhubMmaPIyEhJ0ty5czV79mxZrVYZhqE+ffqYHK1vOnhKevOwtCVfqrF/M/1UlXTfFum+btL3OksWkj0+a/Nx6Z1MR4Lnfw2OlX6U5PgXvqXtdx9Q6yHjZK+pVvmRvcpf9YKqCnNlBH5z9Va6L1XpT49s0NZuq5K9tkbXrq7xZMhwsbT/26Tsf26TJdCq1ld21tVTv6/w+BjVVFbV1bEEWTVm0zxlrU7V1wtX1U0f+uJUhcS20kfjnzEjdLgA37/5OA4DAACgJai1S6uPSMuzpMzS+mUBhjQ8XprYQ7oy2pz44H5l1dL/ZUhrjkhFld9MP1Mtjdwk3d7JsQ2Q8Gs+n07yTJ8+Xbm5uZo2bZrmz59fr2zWrFn629/+pq+++kpdu3ZVVFSUSVH6ri150m++dLy105iMUumZr6QvC6XfXSNZ/aLzQP9ht0t/OuhI8l3I9pPSFyelGVc7En7wHcHxPRTV7xZJUvS1IxXRc6jSHhuqnJcfVLeZf5ckRfYapmuW1x+bo6rouA7OGKDY0dM8HjNc60xmvvJS90qSjm3erRNfHNSotb9XygtT9K+HFkiSaqts2jp9sW5b/bSOfvilSvYfUefbBqrjrQO09qZfmRk+LhPfv/k4DgMAAMBstlrpyd3SpmONl9fYpY+OS//Ol569Vrox3rPxwf0KK6SHP5cOn2m8vMwm/T3L8YLAkhQpkV5/msVnb6sfOHBAy5cvV9u2bfXcc881Wufaa6+VJPXt27du2vmk0KBBgxQcHCyD/sSaZU+R9NhFEjzf9v4x6Q//cX9M8Ky/ZV48wXOeXdL8/0jv57o9JJgooucQtbnxfpVsXa6yA581Wqe2ulKZz9+piKuGKn7cbzwcIdzt5M40Zaz4t7p+/zuKHXBF3fSirzO17+V1GrboYYXFt1HKvAe1/TevqfxEiYnRwtX4/s3HcRgAAACeNm/vhRM831ZV67iP2FgvMPBeFTXSL7dfOMHzbfnl0vTPpZLKS9dFQz6b5Fm2bJlqa2s1fvx4RUQ0ngIMDQ2VVD/Jk56erpUrVyouLk4DBw70SKy+aMkBRz+LTfWPbCmn7JLV4CXKqqVXDzrXZvF+xxMe8F3x9z4hWQJ0/G9PNlqe86cHVVtdocRH3vJsYPCYrxasUK2tRtfMvLf+9BdXqramRmM/nKf8T/+jrLWfmhQh3Inv33wchwEAAOAp2aXSyiNNr19dK710wH3xwPPez5UOnG56/ePnHN36wXk+m+TZvHmzJGn48OEXrJOb63h14NtJnuuvv155eXlat26dbrnlFvcG6aMOn3YMpOasldkuDwUmeS9XOudkN/4nKqStJ9wTD1qGkPgktRl2n0q//lil+1LrlRX8c5FO71yv7o+tkSU4zKQI4W6l2fnKWvupEq7vo3aDe9ZNt9tqdHJHmkJiopW+/BMTI4Q78f2bj+MwAAAAPMWZBM95u4qkjCa89YGWz253PNTvrNVHnHtxAA4+m+Q5csRxJOnSpUuj5TabTZ9+6nhS9NtJHovFZz8Sj9l0vHntPmjC65vwDk15FbcxbAO+L27c45LFUu8p8tKvP1Hu27PVbdY/FNw+0bzg4BFfL3S8tfHttznaDe6ppHuH68DrGzXo6Z8oICTIxAjhTnz/5uM4DAAAAE/4oJnd8jf3viJalpyzUpoTb/GcV1TpGL8dzjHsdrvd7CDcoU2bNiopKdFnn32mlJSUBuXvvPOOJkyYoMjISJ0+fbrRsXd+97vf6amnntLlfkQDBgxQfn7+Zc3Dm0T9cK7Chv7Q6Xb2GptOPJzo+oDgcW3n/EvW9t2dbld1aJuKXxznhojgLCMoVO1fbMKgSpep8kS2Dv56oOLvm6N2lznI94lf9JC9qtxFkfm3QLtFc2oHeWRZ1rAQjf14vva/ul4H//qBRq5+WoVfZWjHnLeaNb+nLF+o2uCxn8vlqW3A1d+/5DvbAMdhAAAAeC3DUPvFR2Q042H6c6lLdWbZo24ICp4U2H2gYmasblbbU29NV8UXq1wcUcsXFxennTt3Nqut1cWxtBhxcXEqKSnRrl27GiR58vLyNHPmTElSnz59Gk3wuFJ+fr6OHfOfVxQCSk+rOZ182GtsfvU5+bLoivJmHVwqzpWxDbQQluAwtXfzMmorzynjue8retDYy76xKEnHjx9XbeU5F0SGICNAbt8A/mvg736kspwCHXzrfUnS1keWaOxH85Xz3nad+Nz5DpmP5x1Xld3J/iLRgKe2AVd//5LvbAMchwEAAODN2tfWSM1I8pSdOcW9IR8QHt5RMc1sW3zyhErYBpzis0meW265RQcOHNALL7ygW2+9VcnJyZKkHTt26P7771dhoeO9r379+rk9lri4OLcvoyUJPlvQrHY1J7PVoUMHF0cDMxgluVKXq51uZz1znG2ghTCCQt2+jJLPVqo86ytVHDukkq3LG5T3WrJfQbGdmzy/hIQEniB3kUC7RfLAixAdbrpGXcd+R2tvnlE3rfTICX35zDv6zoKpWnfTDNnKK52aZ0J8gk+8xWE2T2wD7vj+Jd/ZBjgOAwAAwJvVnMySNT7Z6XYh505yb8gHWCwVstfYZAQ0Pf1gt9tlGIaibKcV5ofbwOXkEHy2u7bc3Fz169dPRUVFslqtuvLKK1VRUaH09HSNHDlStbW1+uCDD/TnP/9ZP/vZzxqdh6u6a/M3JZXSqA+dHyTr11dL93VzT0zwrK0npF9sd77dOzdIV0S7Ph44r9wmDdtodhTOSR0lhfrsowueVX2uQu90n2B2GM0yPmOpAsNCzA7D67ENmI/jMAAAALzZ3zKkP+5zrk2QRdo4QmrFMJ0+YeYO6ZM859r0jJbevl5yc8dbPsf5d+a8RMeOHZWamqrRo0crJCRE2dnZatOmjV599VVt2LBBhw4dkiT17dvX5Eh9T+tg6ZYE59qEBki3d3JPPPC8lHZSByf77OvTmgQPAAAAAACAL7i9kxQS4FybER1I8PiScYnOt7m7Kwme5vDpZ+169uyp9evXN5heVlam7OxsWSwWXX21811K4dJ+2Uv6ulg61sRu2edcI0UEujcmeE6AIT3dX3roM6mqCW90RQZKT/Rze1gAAAAAAADwgKggx72ex79sWv2OYdIjV7k1JHjYwLaORM8/sptW/4Y4XgJoLp9O8lzIvn37ZLfblZycrLCwhq8brFixQpK0f//+ev9PTEzUgAEDPBeoF2sTLL06RJq+XcosvXA9qyH97hrn3/xBy9e3jbToOunXX0hltgvXaxssvXid1DXSc7EBAAAAAADAvb7bQaqplZ7eI9kuMhpGt0hp0WBH70DwHYYh/bq342Hwv2ddvO7N8dJT/R114Ty/TPLs3btX0oW7ahs3blyj///xj3+st956y62x+ZK4MOn/rpc+Oi6tyJb2lnxT1iZI+l4X6c4uUryT3XrBewxoK62+WVqXI606Uv/Nrm6R0l2J0uiOvMUFAAAAAADgi0Z1kvrFSKuPSGuOSCVV35T1aS3dnSjdnCAFO9m1G7xDwH8TPbd1lFZmS5uOSZW135TdEOfYBga2pZu2y0GSpxF2+0VSy3BKcIA0upPjr6RSOl0thViktiGS1WdHhMK3tQ6WftxDmpAkjdokFVVKMcHS8hs5eAMAAAAAAPi6hDBpak/pgSuk2z903BtqGyy9MczsyOApV7d2/M3q7fj+7XbHPUMe/HYNkjzwmNbBvHbpzwKMb165DDBI8PiDiuOHlf3ij2UrLVRAWLQSH3lLoZ171atTW1WhzPn3qeLoflmCQmWNbqfOD72skPgkSdKhOSNkK8mXLBYFhEaq088WKazbNWasDpogsmuchi18WMFtIlVdek5bH1miU4dyG9S7+4s/qaayWjUVjke4vl68WtnrPmtyuSQl3TtcQ1+cqs0/eUE57+9w41qhqfj+Wx6OwwAAAGhJAi3f3BuycF/IL4VapY5+mZFwL7/8SDdv3mx2CADg83L+NEVtv/uA2t48USWfrlD2wonq+YeGN2NjRzygqGtHyjAMFWxYoiNLJuuKZ7ZIkrrNfFfWiFaSpJJtq5W9cKKuWviVB9cCzhgyd4oOLf1Q6e9uUZfR12nowmlaP/LRRuv+68EFKt6XfcF5Xaw8omOsksffooKdaS6IGq7C99/ycBwGAAAAAN9Hh1kAAJerPlWgs+k7FXPjBElSqyF3qarwqCry0uvVswSFKHrAKBn/fbUrPPk6VRVk15Wfv7EoSTXnTvMKWAsWEhOlmL7dlbHy35KkIxs+V3hCjCIT41y7IMPQkD88pO2/fV21VTbXzhvNxvff8nAcBgAAAAD/4Jdv8gAA3Kuq8KgCW8fLCHCcZgzDUFBsZ1WdzKnrAqgxBesXqtWg79WblrXgRyrd+4kkqceTG90XNC5LeIe2Kj9RIntNbd20smOFCu/QVqXZ+Q3qD130sAxDOrk7XV8++44qi840qbzXlDEq2HFQRV9nuneF4BS+/5aH4zAAAAAA+AeSPAAApx2claKK44cbLbtqwe5mzTPvH8+qMi9dXX7/cb3pXX/5tiSpaPNflfv2bG4wmmTUP59RVLf4RsvW3TrTqXm9d8eTOnusUIY1QP1n/0DDFk7TRxOevWR5qys6qcvowXrvjicva13gPL7/lofjMAAAAABAIskDAGiGK+duu2i5ERis6pI82WtsMgKsstvtqjqZo6DYzo3Wz189X6e2rVKPpz+SJTis0ToxN/1YR15+ULYzRbJGxVz2OsA5G8c8ftHy2spqhbZvLSPAUvc2R0SHtjp7rLBB3fPT7LYa7f/Let356eImlbcf3FMRndrprs8c/w+NbaWUeQ8qtF1rpb296fJWEBfF99/ycBwGAAAAAEgkeQAAbhDYqp3CuvdX0ZalanvzRJ36bKWCYjo22kXQibV/VEnqMvV4+qN6Yz/Yyk6ptvKcgmISJEmnPl8ja2SMAiLbeGo14ISKojMq3pul7nddr/R3t6jL6Ot0Nq+4QVdd1tBgWQIDVHXmnCSp6x1DVfSfrCaVp729qd7N/NtWPqX9f1mvnPcbDiQPz+L7b3k4DgMAAACAfyDJAwBwiy4PvarsRROVv+JZBYRGKXH6m3Vl2Ysnq9WgsQrr3l+5b8xQUFw3HfrtcEmSYQ1Wz/nbVXPutDLnjlNtVbkMwyJrVKySfru+bnBwtDyfzXpVQ1+cqt7T71R1Wbm2/uKlurIh8x/U0U07VXIwR8NfmykjwCLDkEqPFGjrw9+8yRESG33RcrRcfP8tD8dhAAAAAPB9ht1ut5sdBAD/MGqTVFAhtQuRNo4wOxpcTLlNGuZlQy6kjpJCeXTBJarPVeid7hPMDqNZxmcsVWBYiNlheD22AfNxHAYAAIAv4t4Q4HoWswMAAAAAAAAAAACA80jyAAAAAAAAAAAAeCGSPAAAAAAAAAAAAF6IJA8AAAAAAAAAAIAXIskDAAAAAAAAAADghaxmBwAAaHlCAqTUUWZH4ZyQALMj8B3W0GCNz1hqdhjNYg0NNjsEn8A2YD6OwwAAAACApiDJAwBowDCkUM4QfsswDAWGhZgdBkzENmA+jsMAAAAAgKaguzYALdK6devUr1+/en8dOnRQSEjIRcsuZNy4cdq2bZtTMRw+fFhDhgxRcnKyBg4cqH379l2w7vTp05WYmCjDMLRnz556ZcOGDVNWVpZTywYAAAAAAPBn3BsCmoYkD4AWaezYsdqzZ0/d35YtWxQWFqaXXnrpomWN+eKLL1RcXKyUlBSnYpgyZYoeeOABHTp0SLNnz9bEiRMvWPfuu+/W1q1b1aVLlwZlM2bM0Jw5c5xaNgAAAAAAgD/j3hDQNIbdbrebHQQA/zBqk1RQIbULkTaOaHq72tpajRkzRp06ddIrr7zS5LLzJk2apCFDhmjSpElNXmZBQYGSkpJUXFwsq9Uqu92u+Ph4bd26VUlJSRdsl5iYqDVr1qhfv35106qrq5WQkKD09HRFR0c3OQYAAAAAAABfwr0h7g3B9XiTB0CLN2fOHBUXF2vRokVOlZ23ZcsWDR482KllHj16VPHx8bJaHQMiGIahzp07Kycnx7ngJQUGBqp3795KTU11ui0AAAAAAIC/494QcGEM5wqgRVu7dq1ef/117dy5U0FBQU0u+7bc3Fy1b9++3rSUlBQdPny40fq7d+++/MD/R1xcnHJzc10+XwAAAAAAAF/GvSHg4kjyAGix0tLSNGnSJK1Zs0YJCQlNLvtfYWFhqqioqDftUgPtBQcHKy8vTzabre6V3JycHHXu3LlZ61JRUaHQ0NBmtQUAAAAAAPBH3BsCLo3u2gC0SKWlpbrjjjv01FNPaejQoU0ua0yfPn2Ulpbm1PLbtWun/v37a+nSpZKklStXqmPHjhftc/ViDhw4oL59+zarLQAAAAAAgL/h3hDQNIbdbrebHQQA/+DM4HrPP/+8Hn/8cfXu3btB2T333KMnnnii0bKNGzc2eHpj8eLFysnJ0bx585yKNy0tTRMnTlRRUZGioqL05ptv1i1z8uTJGjt2rMaOHStJmjJlijZs2KD8/HzFxMQoMjJS6enpkqTs7GyNGDFCaWlpMgzDqRgAAAAAAAB8BfeGuDcE1yPJA8BjnDmRu1JZWZmGDBmibdu2KTw83HML/q9HH31USUlJmjx5sseXDQAAAAAA0FJwb4h7Q3A9umsD4PMiIiK0YMECZWVlmbL8hIQE/fSnPzVl2QAAAAAAAP6Oe0PwZbzJA8BjzHpaAwAAAAAAAObj3hDgerzJAwAAAAAAAAAA4IVI8gAAAAAAAAAAAHghkjwAAAAAAAAAAABeiCQPAAAAAAAAAACAFyLJAwAAAAAAAAAA4IVI8gAAAAAAAAAAAHghq9kBAACAlsdulypqzI7COSEBkmGYHYVvsNvtspVXmh1Gs1hDg2V4+YbA5+/AcQgAAAAALo0kDwAAaKCiRhq20ewonJM6SgrlysYlbOWVeqf7BLPDaJbxGUsVGBZidhiXhc/fgeMQAAAAAFwa3bUBAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBeymh0AAADwHaV7t+jQb4fXm2YJCVdwQrJibrxf7W5/WEYAlx++Ki6ll25b9VS9adVny3UmM08ZK/6tA69vlL2m1qTo/IO/fwccgwAAAAD4G37hAAAAl2t9/Q8Ufe0oyW5XdUm+ira8rdw3fqWK3APqMvXPZocHN8tclarczbskw1BobCsljbtBg56aqOgeHbRt5qtmh+cX/P074BgEAAAAwF+Q5AEAAC4X1q2/Ym6cUPf/2FE/176fX6nCD19TwoRnFBgda2J0cLeivVnKXJla9/+0tz7QHakLlfzDm7Xr+WWqLDpjYnT+wd+/A45BAAAAAPwFY/IAAAC3CwgJV/gV10l2uyrzM8wOBx5mK6/UyV2HZVgsiurS3uxw/JK/fwccgwAAAAD4KpI8AADAI87fWLVGtDE5EpghMtGRWKg8VWZyJP7L378DjkEAAAAAfBHdtQEAAJerrTwn25lC2e122UrydfL9V1SeuVthPQYppEOy2eHBzayhQQpuE1k3HswVPxqhmN7ddHLXYZ3JzDM7PL/g798BxyAAAAAA/sIvkjyFhYWaO3euVq1apdzcXMXGxurOO+/Us88+q+nTp+uNN97Q4sWLNW3aNLNDBXya3V7/X/gXu10qr5Gqa6WIQCnAMDsiuFPesjnKWzan3rRWKXeq85SXTIoInnTNrPt0zaz76k3L3vC5tj/2mkkR+R9//w44BgEA0DJV10pnbVJogBQcYHY08DS7nXtDgDv4fJJnz549GjlypPLz8xUeHq6rrrpKx48f16JFi5SRkaHi4mJJUr9+/cwNFPBRFTbpg+PSiizpZKVj2slK6Wdbpbu7SjfFS4F0HOnTCiukNTnS6mzpRIVjWoDh+O7HdZWuaSMZJHx8TtvvPqDWQ8bJXlOt8iN7lb/qBVUV5soIDKmrU7ovVelPj2zQ1m6rkr22RteurvFkyHChtP/bpOx/bpMl0KrWV3bW1VO/r/D4GNVUVtXVsQRZNWbTPGWtTtXXC1fVTR/64lSFxLbSR+OfMSN0n+Hv3wHHIAAAWo7qWunj49KKbGlP8TfTe0Y7fhOOSJBCfP4OpX87XSX986i0Mrv+vaFfbndsA9fFShbuCwDN5tOH0MLCQo0ZM0b5+fmaMWOG5syZo8jISEnS3LlzNXv2bFmtVhmGoT59+pgcLeB7Dp6SfrFdKqxsWLa72PHXOVxaOFjqFOHx8OABG49Kv//KcVH/bTV26cPjjr/vtJOeGyCF+fQZyf8Ex/dQVL9bJEnR145URM+hSntsqHJeflDdZv5dkhTZa5iuWV5/bJCqouM6OGOAYkfzdq03O5OZr7zUvZKkY5t368QXBzVq7e+V8sIU/euhBZKk2iqbtk5frNtWP62jH36pkv1H1Pm2gep46wCtvelXZobvE/z9O+AYBABAy3CkzHFf4OjZhmUHTktP75FePii9OFi6Itrj4cEDtp6QfrNTOtfI8zOpJxx/fdtIfxgotQr2fHyAL/Dp5+enT5+u3NxcTZs2TfPnz69L8EjSrFmz1LdvX9lsNiUmJioqKsrESAHfc/i0NOWzxhM835ZzVpr8qZR3zjNxwXM2HJWe3N0wwfO/Pi1wXPRX8cC0T4voOURtbrxfJVuXq+zAZ43Wqa2uVObzdyriqqGKH/cbD0cIdzq5M00ZK/6trt//jmIHXFE3vejrTO17eZ2GLXpYYfFtlDLvQW3/zWsqP1FiYrS+yd+/A45BAAB43rGz0gOfNp7g+baTFY566Wc8Exc859MT0q++aDzB821fFUsPfiaVVXsmLsDX+GyS58CBA1q+fLnatm2r5557rtE61157rSSpb9++ddNWrFihu+66S126dFFYWJiuvPJKPf744yorK2t0HgAastulx3c5+tltiqJKx9M78B0nK6Tf72l6/V1F0puH3RYOWoj4e5+QLAE6/rcnGy3P+dODqq2uUOIjb3k2MHjEVwtWqNZWo2tm3lt/+osrVVtTo7EfzlP+p/9R1tpPTYrQ9/n7d8AxCAAAz3p6j+P3flOctUmPf8k4Lb7k/Hda28TvNL1UWrzfvTEBvspnkzzLli1TbW2txo8fr4iIxvuBCg0NlVQ/yTN//nwFBATo2Wef1XvvvaeHHnpIL7/8sm677TbV1l7icXQAkqQvi6TMUufa7CiUspxsg5ZrzRHJ5uTF+eojko3DrE8LiU9Sm2H3qfTrj1W6L7VeWcE/F+n0zvXq/tgaWYLDTIoQ7lSana+stZ8q4fo+aje4Z910u61GJ3ekKSQmWunLPzExQt/n798BxyAAADwn44zj3oBTbUod3brDN7yXK5U18eHf8zbm8jYP0Bw+m+TZvHmzJGn48OEXrJObmyupfpLnn//8p959912NHz9eN9xwgx555BEtWbJEn376qbZu3ereoAEfsTK7ee1WHXFpGDBJrd2RsHFWYaX073zXx4OWJW7c45LFUu9J+tKvP1Hu27PVbdY/FNw+0bzg4HZfL3S8MfLtN0naDe6ppHuH68DrGzXo6Z8oICTIxAh9n79/BxyDAADwjOb8JpSafz8BLc+qbOfblNdI7+e6PBTA5xl2u2++CNmpUyfl5uZq9+7d6tevX4Nym82m+Ph4FRYWKiMjQ926dbvgvA4dOqQrrrhCf/vb3/SDH/zA6VgGDBig/HzuXMJ/xDz+kQI7XOl0u8oD/1LJ4vFuiAieZIRGqf0fmveOdem6uTr7/iIXR4TmMIJC1f5F9/ehV3kiWwd/PVDx981Ru8sc6PzEL3rIXlXuosj8W6Ddojm1g9y+HGtYiMZ+PF/7X12vg3/9QCNXP63CrzK0Y85bzZ7nU5YvVG1492uBnvr8Jdd/B678/D1xHHLlMUjiOAQAwHmtpy9T8JXDnG5XfXSfip77rhsigqe1X5Qpw+r8w0Nnt7yp0nefcENEQMsWFxennTt3Nqut1cWxtBhnzzpGdSsvb/xH1vLly1VYWKjIyEh17dr1ovP65BNHtxU9e/a8aL0Lyc/P17Fjx5rVFvBGrWRRYDPaVdWIfcUHWKOr1b6ZbcsqqnScbaBFsASHNft7bKraynPKeO77ih401iU3V48fP67aynMuiAxBRoDcvgFIGvi7H6ksp0AH33pfkrT1kSUa+9F85by3XSc+P9CseR7PO64q+yVGdm3hPPX5S67/Dlz5+bv7OOTqY5DEcQgAgPPCa6TgZrSrMQK4L+ALDENxzUjwSNK5ymq2AcBJPpvkiYuLU0lJiXbt2qWUlJR6ZXl5eZo5c6YkqU+fPjIM44LzOXbsmJ544gnddtttjb4R1NRYAH9iqTzTrHaB1WfVoUMHF0cDj7MGyV5bI8MS4HTTcKOabaCFMIJC3b6Mks9WqjzrK1UcO6SSrcsblPdasl9BsZ2bPL+EhASeoHeRQLtFcvPLMB1uukZdx35Ha2+eUTet9MgJffnMO/rOgqlad9MM2cqbOFLvtyTEJ/jEmzzu/vwl93wHrvz83X0ccvUxSOI4BADAeYHVZ5vVzlJxmt+EPqK2rESWiNZOtwu1V7INwC9dTg7BZ7trmz59uhYvXqxOnTrpo48+UnJysiRpx44duv/++5WZmanq6mpNnTpVS5YsaXQeZWVluvHGG5Wfn68dO3YoPj7ek6sAeK2lGdKL+5xv9//6S7d1dH088LxffyFtcbKXSouktbdI8Yx33SKU26RhG82Owjmpo6RQn318xbOqz1Xone4TzA6jWcZnLFVgWIjZYVwWPn8HjkMAAHiv93KlJ3Y5327G1dIPLjyiArzIM181b2ympddLV7ZyeTiAT7OYHYC7zJo1SzExMTp69Kh69eql3r17q0ePHho0aJC6deumm266SZLUt2/fRtuXl5drzJgxysrK0qZNm0jwAE4Y00kKdvLo0iZIuondzGfcneh8m6FxJHgAAAAAwBfcHC+1crK3rmCLdHsn98QDzxuX6Hybq1uT4AGaw2eTPB07dlRqaqpGjx6tkJAQZWdnq02bNnr11Ve1YcMGHTp0SFLjSZ7q6mrdfffd2rlzp9577z1dddVVng4f8GrRQdKPkpxrM+VKKcj53r3QQg2KlQa1bXr9IIv0s2T3xQMAAAAA8JygAOnBK5xrM7GHFNmcAX7RIiVHS991otc1i+H8NgPAwac7E+jZs6fWr1/fYHpZWZmys7NlsVh09dVX1yurra3V+PHj9fHHH2vjxo0aNGiQp8IFfMoDV0iFlU17NfdnydJdiW4PCR5kMaS5A6Vpn0v/Kbl43SCL9MIAqWcrj4QGAAAAAPCAu7tKJyul1w81oW6iNJkH/3zOk/2kM1XStpMXr2cxHHWva+eJqADf49NJngvZt2+f7Ha7kpOTFRZWv2+gqVOn6h//+IceffRRhYWF6fPPP68r6969u2JjYz0dLuCVDEP6TR/pqlbSOxlSdlnDOldESxOTpFsZT88nRQRKr6RIrx+W1hyRSqrqlxuShrZ3XMj3cn4sRgAAAABAC/fQlVL3SOmtw9KhMw3Lu0ZI47tL3+vsuI8A3xIcIC0YLL2dLq3IlgoqGtYZ2FaalCwNcKI3EAD1+WWSZ+/evZIa76rtvffekyQ9//zzev755+uVvfnmm5o4caLb4wN8hWFId3SRvt9Z2lkofVUsnauRwq3S4FipVysu4nxdiFWa2tPxttYn+dIzexzbQIRVeucGqUO42RECAAAAANxpRAfp1gRHLw9fFEp/Pez4XdgqUHp3OPcFfJ3VIv002dGtf+oJ6fAZqbLG0TXfDXFS10izIwS8H0me/5Gdne3haADfZxjSwFjHH/xTUICjL96F+xwX82FWEjwAAAAA4C8MQ+rdxvG3MtvxuzAogASPP7FapOHxjj8ArkWSBwAAuEXF8cPKfvHHspUWKiAsWomPvKXQzr3q1amtqlDm/PtUcXS/LEGhska3U+eHXlZIfJIk6dCcEbKV5EsWiwJCI9XpZ4sU1u0aM1YHlxDZNU7DFj6s4DaRqi49p62PLNGpQ7kN6t39xZ9UU1mtmgpHH45fL16t7HWfNblckpLuHa6hL07V5p+8oJz3d7hxrbwL30F9HIMAAAAA+AO/TPJs3rzZ7BAAAPB5OX+aorbffUBtb56okk9XKHvhRPX8Q8ObwbEjHlDUtSNlGIYKNizRkSWTdcUzWyRJ3Wa+K2tEK0lSybbVyl44UVct/MqDa4GmGjJ3ig4t/VDp725Rl9HXaejCaVo/8tFG6/7rwQUq3pd9wXldrDyiY6ySx9+igp1pLojat/Ad1McxCAAAAIA/sJgdAAAA8D3Vpwp0Nn2nYm6cIElqNeQuVRUeVUVeer16lqAQRQ8YJeO//TSEJ1+nqoLsuvLzN1clqebcafpzaKFCYqIU07e7Mlb+W5J0ZMPnCk+IUWRinGsXZBga8oeHtP23r6u2yubaeXs5voP6OAYBAAAA8Bd++SYPAABwr6rCowpsHS8jwHGpYRiGgmI7q+pkTl03SI0pWL9QrQZ9r960rAU/UuneTyRJPZ7c6L6g0WzhHdqq/ESJ7DW1ddPKjhUqvENblWbnN6g/dNHDMgzp5O50ffnsO6osOtOk8l5Txqhgx0EVfZ3p3hXyQnwH9XEMAgAAAOAvSPIAAACnHZyVoorjhxstu2rB7mbNM+8fz6oyL11dfv9xveldf/m2JKlo81+V+/ZsbrKaYNQ/n1FUt8ZHSF1360yn5vXeHU/q7LFCGdYA9Z/9Aw1bOE0fTXj2kuWtruikLqMH6707nrysdfFWfAf1cQwCAAAAAAeSPAAAwGlXzt120XIjMFjVJXmy19hkBFhlt9tVdTJHQbGdG62fv3q+Tm1bpR5PfyRLcFijdWJu+rGOvPygbGeKZI2Kuex1QNNtHPP4RctrK6sV2r61jABL3ZskER3a6uyxwgZ1z0+z22q0/y/rdeeni5tU3n5wT0V0aqe7PnP8PzS2lVLmPajQdq2V9vamy1tBL8B3UB/HIAAAAABwIMkDAABcLrBVO4V176+iLUvV9uaJOvXZSgXFdGy0m6QTa/+oktRl6vH0R/XGv7CVnVJt5TkFxSRIkk59vkbWyBgFRLbx1GqgiSqKzqh4b5a633W90t/doi6jr9PZvOIG3YRZQ4NlCQxQ1ZlzkqSudwxV0X+ymlSe9vameomE21Y+pf1/Wa+c93e4e/W8At9BfRyDAAAAAPgLkjwAAMAtujz0qrIXTVT+imcVEBqlxOlv1pVlL56sVoPGKqx7f+W+MUNBcd106LfDJUmGNVg9529XzbnTypw7TrVV5TIMi6xRsUr67fq6AdLRsnw261UNfXGqek+/U9Vl5dr6i5fqyobMf1BHN+1UycEcDX9tpowAiwxDKj1SoK0Pf/MWSUhs9EXLcXF8B/VxDAIAAADgDwy73W43OwgAgH8YtUkqqJDahUgbR5gdDS6m3CYN87JhJ1JHSaE8vuIS1ecq9E73CWaH0SzjM5YqMCzE7DAuC5+/A8chAAB8E78LAcC1LGYHAAAAAAAAAAAAAOeR5AEAAAAAAAAAAPBCJHkAAAAAAAAAAAC8EEkeAAAAAAAAAAAAL8SwoAAAoIGQAMcA4t4kJMDsCHyHNTRY4zOWmh1Gs1hDg80O4bLx+TtwHAIAAACASyPJAwAAGjAMKZSrBL9lGIYCw0LMDsNv8fk7cBwCAAAAgEujuzYAAAAAAAAAAAAvRJIHANAirVu3Tv369av316FDB4WEhFy07ELGjRunbdu2ORXD4cOHNWTIECUnJ2vgwIHat2/fBetOnz5diYmJMgxDe/bsqVc2bNgwZWVlObVsAAAAAPBn/CYEgKYhyQMAaJHGjh2rPXv21P1t2bJFYWFheumlly5a1pgvvvhCxcXFSklJcSqGKVOm6IEHHtChQ4c0e/ZsTZw48YJ17777bm3dulVdunRpUDZjxgzNmTPHqWUDAAAAgD/jNyEANI1ht9vtZgcBAPAPozZJBRVSuxBp44imt6utrdWYMWPUqVMnvfLKK00uO2/SpEkaMmSIJk2a1ORlFhQUKCkpScXFxbJarbLb7YqPj9fWrVuVlJR0wXaJiYlas2aN+vXrVzeturpaCQkJSk9PV3R0dJNjAAAAAABf05zfhfwmBIAL400eAECLN2fOHBUXF2vRokVOlZ23ZcsWDR482KllHj16VPHx8bJaHaN+G4ahzp07Kycnx7ngJQUGBqp3795KTU11ui0AAAAA+Dt+EwLAhVnNDgAAgItZu3atXn/9de3cuVNBQUFNLvu23NxctW/fvt60lJQUHT58uNH6u3fvvvzA/0dcXJxyc3NdPl8AAAAA8GX8JgSAiyPJAwBosdLS0jRp0iStWbNGCQkJTS77X2FhYaqoqKg37VIDbgYHBysvL082m63u1fycnBx17ty5WetSUVGh0NDQZrUFAAAAAH/Eb0IAuDS6awMAtEilpaW644479NRTT2no0KFNLmtMnz59lJaW5tTy27Vrp/79+2vp0qWSpJUrV6pjx44X7Xv5Yg4cOKC+ffs2qy0AAAAA+Bt+EwJA0xh2u91udhAAAP/gzACbzz//vB5//HH17t27Qdk999yjJ554otGyjRs3NniKa/HixcrJydG8efOcijctLU0TJ05UUVGRoqKi9Oabb9Ytc/LkyRo7dqzGjh0rSZoyZYo2bNig/Px8xcTEKDIyUunp6ZKk7OxsjRgxQmlpaTIMw6kYAAAAAMCXNPV3Ib8JAaBpSPIAADzGmSSPK5WVlWnIkCHatm2bwsPDPbfg/3r00UeVlJSkyZMne3zZAAAAANCSmPG7kN+EAHwZ3bUBAHxeRESEFixYoKysLFOWn5CQoJ/+9KemLBsAAAAA/B2/CQH4Mt7kAQB4jFlv8gAAAAAAWgZ+FwKAa/EmDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFrGYHAAAAgJbHbpcqasyOwjkhAZJhmB3F5bPb7bKVV5odRrNYQ4NluOBL4DNgHwQAAADQNCR5AAAA0EBFjTRso9lROCd1lBTqA1e3tvJKvdN9gtlhNMv4jKUKDAu57PnwGbAPAgAAAGgaumsDAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvJDV7AAAAADgG0r3btGh3w6vN80SEq7ghGTF3Hi/2t3+sIwALj/dKS6ll25b9VS9adVny3UmM08ZK/6tA69vlL2m1qTo3M/f119iPwQAAAD8DVf3AAAAcKnW1/9A0deOkux2VZfkq2jL28p941eqyD2gLlP/bHZ4fiFzVapyN++SDEOhsa2UNO4GDXpqoqJ7dNC2ma+aHZ7b+fv6S+yHAAAAgL8gyQMAAACXCuvWXzE3Tqj7f+yon2vfz69U4YevKWHCMwqMjjUxOv9QtDdLmStT6/6f9tYHuiN1oZJ/eLN2Pb9MlUVnTIzO/fx9/SX2QwAAAMBfMCYPAAAA3CogJFzhV1wn2e2qzM8wOxy/ZCuv1Mldh2VYLIrq0t7scDzO39dfYj8EAAAAfBVJHgAAALjd+ZvK1og2JkfivyITHcmNylNlJkdiDn9ff4n9EAAAAPBFdNcGAAAAl6qtPCfbmULZ7XbZSvJ18v1XVJ65W2E9BimkQ7LZ4fkFa2iQgttE1o1Jc8WPRiimdzed3HVYZzLzzA7P7fx9/SX2QwAAAMBf+EWSp7CwUHPnztWqVauUm5ur2NhY3XnnnXr22Wc1ffp0vfHGG1q8eLGmTZtmdqgAAABeL2/ZHOUtm1NvWquUO9V5yksmReR/rpl1n66ZdV+9adkbPtf2x14zKSLP8vf1l9gPAQAAAH/h80mePXv2aOTIkcrPz1d4eLiuuuoqHT9+XIsWLVJGRoaKi4slSf369TM3UADwYfnnpDU50ukqx//PVEufFUjXxUoWw9zY4Bn7T0nrj0oF5ZIhKS5MGtNJSo42OzK4Q9vvPqDWQ8bJXlOt8iN7lb/qBVUV5soIDKmrU7ovVelPj2zQ1m6rkr22RteurvFkyD4n7f82Kfuf22QJtKr1lZ119dTvKzw+RjWVVXV1LEFWjdk0T1mrU/X1wlV104e+OFUhsa300fhnzAjdJfx9/SX2QwAtS61d2lYgfZwnnaqSAg2pW6T0vc6O60L4vgqb9MFxacdJxzYgSedsUlm1FBFobmwA4O18OslTWFioMWPGKD8/XzNmzNCcOXMUGRkpSZo7d65mz54tq9UqwzDUp08fk6MFAN9zskJ6/mspNV+q/db0ihpp+udSxzBpak/p1g6mhQg321sszfuPI8nzv5ZlSn3bSDN7S1eS7PEpwfE9FNXvFklS9LUjFdFzqNIeG6qclx9Ut5l/lyRF9hqma5bXHxulqui4Ds4YoNjRvF19uc5k5isvda8k6djm3TrxxUGNWvt7pbwwRf96aIEkqbbKpq3TF+u21U/r6IdfqmT/EXW+baA63jpAa2/6lZnhXzZ/X3+J/RBAy7HpmPTSAenYufrTP86TXj8k3RAnze4jtQ1pvD28W41dei1N+nuWVFpdv6zMJo3aJN3RRZp2lRTIyOEA0Cw+fficPn26cnNzNW3aNM2fP78uwSNJs2bNUt++fWWz2ZSYmKioqCgTIwUA33P8nPSTVOlf/5Pg+bbcc9JjX0p/z/RoaPCQbQXSlM8aT/Cc91Wx9MBWaXeRx8KCCSJ6DlGbG+9XydblKjvwWaN1aqsrlfn8nYq4aqjix/3GwxH6vpM705Sx4t/q+v3vKHbAFXXTi77O1L6X12nYoocVFt9GKfMe1PbfvKbyEyUmRut6/r7+EvshAHP8LUP6zZcNEzzn1Ur6JN/xuyH/AnXgvWrs0uNfSn851DDBc965GumdTOkX26UqXiAFgGbx2STPgQMHtHz5crVt21bPPfdco3WuvfZaSVLfvn3rpqWmpuqWW25RfHy8goOD1bFjR9177706cOCAR+IGAF9QXeu4SM8vb1r9+f+RPj3h3pjgWTll0uwdUtWFMnzfcq5GmvGFdKKJ2wu8U/y9T0iWAB3/25ONluf86UHVVlco8ZG3PBuYH/lqwQrV2mp0zcx7609/caVqa2o09sN5yv/0P8pa+6lJEbqXv6+/xH4IwLO2npD+uK9pdfPKpenbJVsTrh3hPV45KH10vGl1t5+U5u51bzwA4Kt8NsmzbNky1dbWavz48YqIiGi0TmhoqKT6SZ6SkhL17t1bixYt0qZNm/TCCy9o3759SklJUW5urkdiBwBvtyVPyix1rs1bh90TC8yxLNORvGmqM9XSimy3hYMWICQ+SW2G3afSrz9W6b7UemUF/1yk0zvXq/tja2QJpmN+dynNzlfW2k+VcH0ftRvcs2663VajkzvSFBITrfTln5gYoXv5+/pL7IcAPOuNQ87VzyyVtuS7JxZ4Xlm18z02/PO/Y3gCAJzjs0mezZs3S5KGDx9+wTrnkzbfTvKMHTtWCxYs0Lhx43TDDTdo/PjxWrVqlU6fPq2VK1e6N2gA8BH/yHa+ze5iKf2My0OBCc7apI3NeC5i7RG6aPB1ceMelyyWem8RlH79iXLfnq1us/6h4PaJ5gXnJ75e6Hhr5dtvs7Qb3FNJ9w7Xgdc3atDTP1FASJCJEbqXv6+/xH4IwDPSTktfN6PnSx768R0bcqVyJ6/ta+zS6iPuiQcAfJnV7ADc5cgRx1mhS5cujZbbbDZ9+qmjK4ZvJ3kaExMTI0myWn324wIAl6mokXY1c3yVzwqkJIZI83p7ix2JHmcVVzluCPRu4/qY4BmRvW/UtWvtFywP7dRT167+5td+5YlsZc67Rx0nzlNk7xs9EKHvy9+2T2/F333B8tOHj+ntjt8kOKxhIRr64lR9+cw7OvjXDzRy9dPq/9gPtWPOWx6I1vX8ff0l9kMALcO2gua121noeOgnKMC18cDzPmtmd9yfFUhTrnRtLADg63w2a3H27FlJUnl54+95Ll++XIWFhYqMjFTXrl0blNfU1Ki2tlZHjhzRY489pri4ON1zzz3NimXAgAHKz+edYwD+wRIVq3bP725W22f/uEi/WTfXxRHB04KvGa3WP3u1WW2/d98EVe3f4tqA0CxGUKjav+i+fhRrK88p47nvK3rQWLUbPc0l80xO7iF7lff38RFot2iOBnlkWQN/9yOV5RTo4FvvS5K2PrJEYz+ar5z3tuvE586PSZncI1nVxuUPqOCpz8DV6y+57jNw9z4ouX4/9JV9EMDli/jeo4r4bvOOK0m9+qq2rJlPjaHFaPOrVQpKcv5c/lVahjr+8AY3RAQALVtcXJx27tzZrLY+m+SJi4tTSUmJdu3apZSUlHpleXl5mjlzpiSpT58+MgyjQfsbbrih7k2fpKQkbd68WbGxsc2KJT8/X8eOHWtWWwDwNpbi02rXzLanC/KUz/HS60XF5ap1M9sW5GbrLNtAi2AJDlN7N86/5LOVKs/6ShXHDqlk6/IG5b2W7FdQbGen5nn8+HHVVp5zVYimCTIC5NYP/7863HSNuo79jtbePKNuWumRE/rymXf0nQVTte6mGbKVVzo1z+N5x1Vlv/x+Fz3xGbhj/SXXfQbu3gcl1++HvrIPArh8cSfz1fjoyJd2LDudY4kPCC0tUXM6QK0sPcU9NABwks8meW655RYdOHBAL7zwgm699VYlJydLknbs2KH7779fhYWFkqR+/fo12v7111/XqVOnlJWVpXnz5mnEiBH69NNP1bmzczcbJEfCCQD8iS3vkKzxyU2ub7fbZRiGQksy1aFDBzdGBk+wlOfLXmOTEeDcZYa9qlytq0vUim2gRTCCQt06/5jh9ytm+P0unWdCQoJPvEUQaLdIl/8iyCUd27xbf7vyxw2mH3zr/bo3W5yVEJ/gsjd53P0ZuGP9Jdd9Bu7eByXX74e+sg8CuHxBJZmSvrnOb6rq42mKb9taavYjQ2gpAvIOSNd81+l2xvF9/CYE4JcuJ4dg2O32C3fY7MVyc3PVr18/FRUVyWq16sorr1RFRYXS09M1cuRI1dbW6oMPPtCf//xn/exnP7vovE6dOqXExERNmDBBS5Ys8dAaAID3+numNP8/zrXpHC6tvEly4jcgWrDZO6SP85xrM7az9GQ/t4SDZii3ScM2mh2Fc1JHSaE+8AhT9bkKvdN9gtlhNMv4jKUKDAu57PnwGbAPAvButXbpzo+lXCdfyJnVW7qnYY/68EL55dLYD51/ZmPZDVKPaLeEBAA+y2J2AO7SsWNHpaamavTo0QoJCVF2drbatGmjV199VRs2bNChQ4ckSX379r3kvFq1aqWkpCSlp6e7O2wA8AmjO0mRgc61+UE3Ejy+5AfdnKtvET/oAQAAfIXFkO5z8nowOlAa1dE98cDz4kKlmxKcazOgLQkeAGgOn37OqmfPnlq/fn2D6WVlZcrOzpbFYtHVV199yfkUFBQoLS1NgwcPdkeYAOBzIgOl+QOlhz+Xqprw6NaojtLdiW4PCx7UL0Z65Cpp4f6m1Z/dR7qSH3QAAAA+456u0n9KpPebMLxKkEWaP0iKcPJBMbRsj/eVskqljNJL100Ik/5ff/fHBAC+yKeTPBeyb98+2e12JScnKywsrF7ZhAkTlJSUpH79+qlVq1Y6fPiwFixYIKvVql/+8pcmRQwA3ufattKfUqTffCkVVDReJ8CQ7usqTe/FWzy+6P4kR7c9C/dJ5RcYgzzc6uiWY3Qnz8YGAAAA97IY0lP9pdbB0rtZUs0FBgtoHyI9O0Dq28az8cH9IgOlP39HevxL6fOTF67Xp7X0wkCp7eX3dgoAfskvkzx79+6V1HhXbdddd53efvttLVy4UBUVFerUqZOGDx+u3/zmN+rSpYunQwUAr9YvRlp3i/TvfGnVESmrTKqqcfzQuyVB+n5nqZ37x5WGie5OlG7rIG3IlTYclQ6ecvTLbTUcyZ3bOkphfnk1AgAA4PsCDGnG1dL93aXVRxxjNmaVSnY53t555lppWHvJ6rODCSA6SFqSIqWdllZkS1+clM7aHA979Wkj3ZMoXd2ah/4A4HL45W2ViyV5pk2bpmnTpnk6JADwWVaLoy9mZ/tjhu+ICJTu7er4G7XJ8WZXm2DpzkSzIwMAAIAntAuVplzp+Dt/PdgqSBoeb3Zk8JQroh3dtwEAXI8kDwAAAFyu4vhhZb/4Y9lKCxUQFq3ER95SaOde9erUVlUoc/59qji6X5agUFmj26nzQy8rJD5JknRozgjZSvIli0UBoZHq9LNFCut2jRmr4xUiu8Zp2MKHFdwmUtWl57T1kSU6dSi3Qb27v/iTaiqrVVNRJUn6evFqZa/7rMnlkpR073ANfXGqNv/kBeW8v8ONa9V0/r7+jWE/BAAAAHyfXyZ5Nm/ebHYIAAAAPi3nT1PU9rsPqO3NE1Xy6QplL5yonn9oeDM8dsQDirp2pAzDUMGGJTqyZLKueGaLJKnbzHdljWglSSrZtlrZCyfqqoVfeXAtvMuQuVN0aOmHSn93i7qMvk5DF07T+pGPNlr3Xw8uUPG+7AvO62LlER1jlTz+FhXsTHNB1K7j7+vfGPZDAAAAwPfR6ykAAABcqvpUgc6m71TMjRMkSa2G3KWqwqOqyEuvV88SFKLoAaNk/LcT9vDk61RVkF1Xfv7GsiTVnDtNZ+0XERITpZi+3ZWx8t+SpCMbPld4QowiE+NcuyDD0JA/PKTtv31dtVU21877Mvj7+jeG/RAAAADwD375Jg8AAADcp6rwqAJbx8sIcFxqGoahoNjOqjqZU9cFVGMK1i9Uq0Hfqzcta8GPVLr3E0lSjyc3ui9oLxfeoa3KT5TIXlNbN63sWKHCO7RVaXZ+g/pDFz0sw5BO7k7Xl8++o8qiM00q7zVljAp2HFTR15nuXSEn+fv6N4b9EAAAAPAPJHkAAADglIOzUlRx/HCjZVct2N2seeb941lV5qWry+8/rje96y/fliQVbf6rct+e7bc3mEf98xlFdWt8dOp1t850al7v3fGkzh4rlGENUP/ZP9CwhdP00YRnL1ne6opO6jJ6sN6748nLWpfm8Pf1bwz7IQAAAACJJA8AAACcdOXcbRctNwKDVV2SJ3uNTUaAVXa7XVUncxQU27nR+vmr5+vUtlXq8fRHsgSHNVon5qYf68jLD8p2pkjWqJjLXgdvs3HM4xctr62sVmj71jICLHVvs0R0aKuzxwob1D0/zW6r0f6/rNedny5uUnn7wT0V0amd7vrM8f/Q2FZKmfegQtu1Vtrbmy5vBS/B39e/MeyHAAAAACSSPAAAAHCxwFbtFNa9v4q2LFXbmyfq1GcrFRTTsdEuok6s/aNKUpepx9Mf1Rv7w1Z2SrWV5xQUkyBJOvX5GlkjYxQQ2cZTq+FVKorOqHhvlrrfdb3S392iLqOv09m84gZdlVlDg2UJDFDVmXOSpK53DFXRf7KaVJ729qZ6yYzbVj6l/X9Zr5z3d7h79S7J39e/MeyHAAAAgH8gyQMAAACX6/LQq8peNFH5K55VQGiUEqe/WVeWvXiyWg0aq7Du/ZX7xgwFxXXTod8OlyQZ1mD1nL9dNedOK3PuONVWlcswLLJGxSrpt+vrBodHQ5/NelVDX5yq3tPvVHVZubb+4qW6siHzH9TRTTtVcjBHw1+bKSPAIsOQSo8UaOvD37zJEhIbfdHylszf178x7IcAAACA7zPsdrvd7CAAAIB/GLVJKqiQ2oVIG0eYHQ0uptwmDfOyYTdSR0mhPvAIU/W5Cr3TfYLZYTTL+IylCgwLuez58BmwDwLwXVwPAgDgWhazAwAAAAAAAAAAAIDzSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFrGYHAAAAgJYnJEBKHWV2FM4JCTA7AtewhgZrfMZSs8NoFmtosMvm4++fAfsgAAAAgKYgyQMAAIAGDEMK5UrRFIZhKDAsxOwwTMVnwD4IAAAAoGnorg0AALRI69atU79+/er9dejQQSEhIRctu5Bx48Zp27ZtTsVw+PBhDRkyRMnJyRo4cKD27dt3wbrTp09XYmKiDMPQnj176pUNGzZMWVlZTi0bAADAn3EtCABA05DkAQAALdLYsWO1Z8+eur8tW7YoLCxML7300kXLGvPFF1+ouLhYKSkpTsUwZcoUPfDAAzp06JBmz56tiRMnXrDu3Xffra1bt6pLly4NymbMmKE5c+Y4tWwAAAB/xrUgAABNY9jtdrvZQQAAAP8wapNUUCG1C5E2jmh6u9raWo0ZM0adOnXSK6+80uSy8yZNmqQhQ4Zo0qRJTV5mQUGBkpKSVFxcLKvVKrvdrvj4eG3dulVJSUkXbJeYmKg1a9aoX79+ddOqq6uVkJCg9PR0RUdHNzkGAAAAX9Oc60GuBQEAuDDe5AEAAC3enDlzVFxcrEWLFjlVdt6WLVs0ePBgp5Z59OhRxcfHy2p1DIphGIY6d+6snJwc54KXFBgYqN69eys1NdXptgAAAP6Oa0EAAC6MoTwBAECLtnbtWr3++uvauXOngoKCmlz2bbm5uWrfvn29aSkpKTp8+HCj9Xfv3n35gf+PuLg45ebmuny+AAAAvoxrQQAALo4kDwAAaLHS0tI0adIkrVmzRgkJCU0u+19hYWGqqKioN+1SA+8GBwcrLy9PNputrouOnJwcde7cuVnrUlFRodDQ0Ga1BQAA8EdcCwIAcGl01wYAAFqk0tJS3XHHHXrqqac0dOjQJpc1pk+fPkpLS3Nq+e3atVP//v21dOlSSdLKlSvVsWPHi/bBfjEHDhxQ3759m9UWAADA33AtCABA0xh2u91udhAAAMA/ODPQ7vPPP6/HH39cvXv3blB2zz336Iknnmi0bOPGjQ2e5ly8eLFycnI0b948p+JNS0vTxIkTVVRUpKioKL355pt1y5w8ebLGjh2rsWPHSpKmTJmiDRs2KD8/XzExMYqMjFR6erokKTs7WyNGjFBaWpoMw3AqBgAAAF/S1OtBrgUBAGgakjwAAMBjnEnyuFJZWZmGDBmibdu2KTw83HML/q9HH31USUlJmjx5sseXDQAA0JKYcT3ItSAAwJfRXRsAAPB5ERERWrBggbKyskxZfkJCgn7605+asmwAAAB/x7UgAMCX8SYPAADwGLPe5AEAAEDLwPUgAACuxZs8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBciyQMAAAAAAAAAAOCFSPIAAAAAAAAAAAB4IZI8AAAAAAAAAAAAXogkDwAAAAAAAAAAgBeymh0AAAAAgPrsdqmixuwonBMSIBmGa+Zlt9tlK690zcw8zBoaLOMyPwh/X//zvG0/cOU+AAAAADQVSR4AAACghamokYZtNDsK56SOkkJd9OvCVl6pd7pPcM3MPGx8xlIFhoVc1jz8ff3P87b9wJX7AAAAANBUdNcGAAAAAAAAAADghUjyAAAAAAAAAAAAeCGSPAAAAAAAAAAAAF6IJA8AAAAAAAAAAIAXIskDAAAAAAAAAADghUjyAAAAAAAAAAAAeCGSPAAAAAAAAAAAAF7IanYAAAAAAFyjdO8WHfrt8HrTLCHhCk5IVsyN96vd7Q/LCPDdnwBxKb1026qn6k2rPluuM5l5yljxbx14faPsNbUmRecZ/v4Z+Ps+AAAAAP/D1S0AAADgY1pf/wNFXztKsttVXZKvoi1vK/eNX6ki94C6TP2z2eG5XeaqVOVu3iUZhkJjWylp3A0a9NRERffooG0zXzU7PI/w98/A3/cBAAAA+A+SPAAAAICPCevWXzE3Tqj7f+yon2vfz69U4YevKWHCMwqMjjUxOvcr2pulzJWpdf9Pe+sD3ZG6UMk/vFm7nl+myqIzJkbnGf7+Gfj7PgAAAAD/wZg8AAAAgI8LCAlX+BXXSXa7KvMzzA7H42zllTq567AMi0VRXdqbHY4p/P0z8Pd9AAAAAL6LJA8AAADgB87f2LZGtDE5EnNEJjoSG5WnykyOxDz+/hn4+z4AAAAA30R3bQAAAICPqa08J9uZQtntdtlK8nXy/VdUnrlbYT0GKaRDstnhuZ01NEjBbSLrxqO54kcjFNO7m07uOqwzmXlmh+cR/v4Z+Ps+AAAAAP/h80mewsJCzZ07V6tWrVJubq5iY2N155136tlnn9X06dP1xhtvaPHixZo2bZrZoQIA4LPsdintjFRZ4/i/rdYxzTDMjQueU10r/adEOl0lBQVI3SKkuDCzo/JdecvmKG/ZnHrTWqXcqc5TXjIpIs+6ZtZ9umbWffWmZW/4XNsfe82kiDzP3z8Df98HWiK7XUo/I+WXS3ZJ7UOl5CiuBfyJ7b/XAuevB2tqzY0HAABf4dNJnj179mjkyJHKz89XeHi4rrrqKh0/flyLFi1SRkaGiouLJUn9+vUzN1AAAHxURY20Pkf6R7aUUfrN9OIq6f5/S3cnSqM7SYF0IOuzCiukFdnS6iNSUeU30w1J32kv3dNVGtLOrOh8V9vvPqDWQ8bJXlOt8iN7lb/qBVUV5soIDKmrU7ovVelPj2zQ1m6rkr22RteurvFkyC6V9n+blP3PbbIEWtX6ys66eur3FR4fo5rKqro6liCrxmyap6zVqfp64aq66UNfnKqQ2Fb6aPwzZoTuMv7+Gfj7PtCSVNdKG446rgXSTtcvS4qU7u4qjekkBQeYEh48oKRSWpktrToiFVR8M72oSnp4mzSuqzSsPQk/AACay2eTPIWFhRozZozy8/M1Y8YMzZkzR5GRkZKkuXPnavbs2bJarTIMQ3369DE5WgAAfM+pKulX26WvSxovP3ha+n9fSR8ck+YNlCICPRsf3C/ttPTI51JhZcMyu6StJxx/E7pLj1zFzR1XCo7voah+t0iSoq8dqYieQ5X22FDlvPygus38uyQpstcwXbO8/tgsVUXHdXDGAMWO9u633M9k5isvda8k6djm3TrxxUGNWvt7pbwwRf96aIEkqbbKpq3TF+u21U/r6IdfqmT/EXW+baA63jpAa2/6lZnhu4S/fwb+vg+0FGXV0owvpC+LGi9PL5We/1p6L1f64yApOsiz8cH9skqlhz93vMHVmG0nHX93dZFm9ZECuBYAAMBpPvvc7PTp05Wbm6tp06Zp/vz5dQkeSZo1a5b69u0rm82mxMRERUVFmRgpAAC+p6Lm4gmeb9tRKM3a4XjSF74j96w0bVvjCZ7/tTRDevmg+2PyZxE9h6jNjferZOtylR34rNE6tdWVynz+TkVcNVTx437j4Qjd6+TONGWs+Le6fv87ih1wRd30oq8zte/ldRq26GGFxbdRyrwHtf03r6n8RBMOXl7G3z8Df98HzFBdK/16x4UTPN/2VbH0qy++6cYLvuFEuTR124UTPN+28oj04j73xwQAgC/yySTPgQMHtHz5crVt21bPPfdco3WuvfZaSVLfvn0vOJ+RI0fKMAz97ne/c0eYAAD4rHU5TUvwnPdFobTpmPvigee9dEAqqbp0vfPePOxIDMF94u99QrIE6Pjfnmy0POdPD6q2ukKJj7zl2cA85KsFK1Rrq9E1M++tP/3FlaqtqdHYD+cp/9P/KGvtpyZF6H7+/hn4+z7gae/nSjsLm17/q2Lpn0fdFw8879W0+t2zXcqyTMe4TQAAwDk+meRZtmyZamtrNX78eEVERDRaJzQ0VNKFkzzvvvuu9uzZ464QAQDwWXa7YwwWZzWnDVqmwgppc55zbexy9NcP9wmJT1KbYfep9OuPVbovtV5ZwT8X6fTO9er+2BpZgsNMitC9SrPzlbX2UyVc30ftBvesm2631ejkjjSFxEQrffknJkbofv7+Gfj7PuBp/8h2vs2KLMd1BLzfmSrpg1zn23EtAACA83wyybN582ZJ0vDhwy9YJzfXcbXRWJLnzJkz+sUvfqH58+e7J0AAAHzY/lNSZqnz7faWSNlll66Hlu/9Y1JNM27SbeAJbreLG/e4ZLHUe5Oh9OtPlPv2bHWb9Q8Ft080LzgP+Hqh442Vb7/J0m5wTyXdO1wHXt+oQU//RAEhvj0oiL9/Bv6+D3hKVqnjesBZ6aWO8dzg/T46LlU2oyveDUebdw0BAIA/M+x233tOplOnTsrNzdXu3bvVr1+/BuU2m03x8fEqLCxURkaGunXrVq/84Ycf1t69e7VlyxYZhqE5c+ZcVpdtAwYMUH5+frPbAwDgTYL7jVTrB/7SrLbFC+9TVdpWF0cET4u8a47Cb/5Zs9rmP9xVqql2cUTexwgKVfsXD7t9OZUnsnXw1wMVf98ctbvMgeZP/KKH7FVNGHihCQLtFs2pHeSSeV2MNSxEYz+er/2vrtfBv36gkaufVuFXGdox561mz/MpyxeqNi5vkDFPrb/k+s/AFet/nif2g5a6D3i7oJ7Xq83Df2tW25JXfqrKrze5OCJ4WsTtv1bEqF80q+2JX18t+7lTLo0HAICWLi4uTjt37mxWW6uLY2kRzp51dOheXt74Bfby5ctVWFioyMhIde3atV7Zzp079Ze//EVffvmly+LJz8/XsWMMNAAA8A+tOhWqdTPbFhaeVCnnTK/XsaxU4c1se+xYrlRjc2k83sgSHKb2bl5GbeU5ZTz3fUUPGnvZN7cl6fjx46qtPOeCyKQgI0Bu/wAkDfzdj1SWU6CDb70vSdr6yBKN/Wi+ct7brhOfH2jWPI/nHVeV/fJGj/fU+kuu/wxcsf7nuXs/aMn7gLeLbHtSbZrZtqioUKe5FvB6CaWlarzz/EvLO35MNWdPuTIcAAB8mk8meeLi4lRSUqJdu3YpJSWlXlleXp5mzpwpSerTp48Mw6grq6mp0ZQpUzRt2jT16tXLpfEAAOAvrEalJMlut9c7z17M+bqtA6oU1aGDO8ODB4RWN2/U5JrTBeoQ56E72y2cERTq9mWUfLZS5VlfqeLYIZVsXd6gvNeS/QqK7dzk+SUkJLj0TR655mWQC+pw0zXqOvY7WnvzjLpppUdO6Mtn3tF3FkzVuptmyFZe6fR8E+ITXPImj7vXX3LPZ+CK9T/P3ftBS94HvF1AQJWk5l0LtDIqFcG1gNcLtTWj715JteWlimsdKbVq7uMiAAB4p8vJIfhkd23Tp0/X4sWL1alTJ3300UdKTk6WJO3YsUP333+/MjMzVV1dralTp2rJkiV17RYuXKh58+bp4MGDiohwPHPiiu7aAADwJ3a7dN8WKcPJ3/Z9WktvDHNLSPCwogpp9IeSzcmrzB8nSQ9f5Z6YvE25TRq20ewonJM6Sgp10SNk1ecq9E73Ca6ZmYeNz1iqwLCQy5qHv6//ed62H7hyH/AFE1Ol/5Q41yY5SnrnBqmJeSG0YKXV0m0fOD8uzz1dpVm93RMTAAC+ymJ2AO4wa9YsxcTE6OjRo+rVq5d69+6tHj16aNCgQerWrZtuuukmSVLfvn3r2hQWFuqJJ57Qk08+KZvNplOnTunUqVOSpIqKCp06dUq1tR54nA4AAC9nGNK4ROfbjet66TrwDjEh0s0JzrUxJN3ZxS3hAABMcHdi89qQ4PENkYHSyI7Ot2vOdgMAgL/zySRPx44dlZqaqtGjRyskJETZ2dlq06aNXn31VW3YsEGHDh2SVD/Jk5ubq9LSUk2ZMkWtW7eu+5OkF154Qa1bt1ZOTo4p6wMAgLcZ01nq50Rn/Cmx0q1OJgXQsk3tKcUEN73+z66QOtAzCwD4jNs6SINjm16/f4x0eyf3xQPPm3Kl1N6JXhfv7y51i3RfPAAA+CqffZm8Z8+eWr9+fYPpZWVlys7OlsVi0dVXX103PSkpSZ988kmD+sOHD9ePf/xjTZw4kbF1AABoouAA6Y+DpBlfSLuLL173uljp+YGS1ScfPfFfCWHSSynS9M+lgoqL152YJP0s2TNxAQA8w2qR5g6UZu2Qtp+8eN3+MdIfBklBAZ6JDZ4RG+K4Fnjkc+nYuYvXvbcrXbYCANBcPpvkuZB9+/bJbrcrOTlZYWFhddMjIiJ04403NtomMTHxgmUAAKBxUUGOH/Ybc6V/ZEtpp+uX927t6JLjux1I8PiqpP+OrbDyiLQ6WzrxP8me4XGOvvcHOvGkNwDAe4RbpYWDpfePSSuyG47Rc2W0o7vWkR1I8PiqxAjp7eul1UekldlSXvk3ZYakoe0d28CQdmZFCACA9/O7JM/evXsl1e+qDQAAuEdQgPT9LtL3OksZpY43OgxJcaFSV7rj8Autg6XJyY63dfafkn65XTpd7ejKbd4gs6MDALib1eLohu32TlJmqfSzrY7zQJsg6f+uZwwefxAdJE3sId2fJB04JZ2qkgItUpdwKS7sks0BAMAlkOS5BLvd7s5wAADwC4bheKsjKcrsSGAWq0Xq08bRlZ+qpQBu6gGA3+kW+c15wGohweNvAgzp6tZmRwEAgO8hyQMAAAD4oIrjh5X94o9lKy1UQFi0Eh95S6Gde9WrU1tVocz596ni6H5ZgkJljW6nzg+9rJD4JEnSoTkjZCvJlywWBYRGqtPPFims2zVmrM4lRXaN07CFDyu4TaSqS89p6yNLdOpQboN6d3/xJ9VUVqumokqS9PXi1cpe91mTyyUp6d7hGvriVG3+yQvKeX+HG9fKOXwG9fnbPgAAAAD/5HdJns2bN5sdAgAAAOB2OX+aorbffUBtb56okk9XKHvhRPX8Q8Ob8bEjHlDUtSNlGIYKNizRkSWTdcUzWyRJ3Wa+K2tEK0lSybbVyl44UVct/MqDa9F0Q+ZO0aGlHyr93S3qMvo6DV04TetHPtpo3X89uEDF+7IvOK+LlUd0jFXy+FtUsDPNBVG7Fp9Bff62DwAAAMA/McwxAAAA4GOqTxXobPpOxdw4QZLUashdqio8qoq89Hr1LEEhih4wSsZ/+0wKT75OVQXZdeXnb25LUs250y22b6WQmCjF9O2ujJX/liQd2fC5whNiFJkY59oFGYaG/OEhbf/t66qtsrl23peJz6A+f9sHAAAA4L/87k0eAAAAwNdVFR5VYOt4GQGOy33DMBQU21lVJ3PquqFqTMH6hWo16Hv1pmUt+JFK934iSerx5Eb3BX0Zwju0VfmJEtlrauumlR0rVHiHtirNzm9Qf+iih2UY0snd6fry2XdUWXSmSeW9poxRwY6DKvo6070r1Ax8BvX52z4AAAAA/0WSBwAAAPAyB2elqOL44UbLrlqwu1nzzPvHs6rMS1eX339cb3rXX74tSSra/Fflvj3blJvco/75jKK6xTdatu7WmU7N6707ntTZY4UyrAHqP/sHGrZwmj6a8Owly1td0UldRg/We3c8eVnr0lx8BvX52z4AAAAAXAhJHgAAAMDLXDl320XLjcBgVZfkyV5jkxFgld1uV9XJHAXFdm60fv7q+Tq1bZV6PP2RLMFhjdaJuenHOvLyg7KdKZI1Kuay18EZG8c8ftHy2spqhbZvLSPAUvcmS0SHtjp7rLBB3fPT7LYa7f/Let356eImlbcf3FMRndrprs8c/w+NbaWUeQ8qtF1rpb296fJWsAn4DOrzt30AAAAAuBCSPAAAAICPCWzVTmHd+6toy1K1vXmiTn22UkExHRvtpurE2j+qJHWZejz9Ub3xR2xlp1RbeU5BMQmSpFOfr5E1MkYBkW08tRpNVlF0RsV7s9T9ruuV/u4WdRl9nc7mFTfopswaGixLYICqzpyTJHW9Y6iK/pPVpPK0tzfVS2TctvIp7f/LeuW8v8Pdq9ckfAb1+ds+AAAAAP9FkgcAAADwQV0eelXZiyYqf8WzCgiNUuL0N+vKshdPVqtBYxXWvb9y35ihoLhuOvTb4ZIkwxqsnvO3q+bcaWXOHafaqnIZhkXWqFgl/XZ93QD1Lc1ns17V0Benqvf0O1VdVq6tv3iprmzI/Ad1dNNOlRzM0fDXZsoIsMgwpNIjBdr68DdvsYTERl+0vKXjM6jP3/YBAAAA+CfDbrfbzQ4CAAAA/mHUJqmgQmoXIm0cYXY0LVe5TRrmZcN+pI6SQl30CFn1uQq9032Ca2bmYeMzliowLOSy5uHv63+et+0HrtwHfBnnAQAAANeymB0AAAAAAAAAAAAAnEeSBwAAAAAAAAAAwAuR5AEAAAAAAAAAAPBCJHkAAAAAAAAAAAC8EMNCAgAAAC1MSIBjEHdvEhLgunlZQ4M1PmOp62boQdbQYJfMw5/X/zxv2w9cuQ8AAAAATUWSBwAAAGhhDEMK9eMrdcMwFBgWYnYYpvH39T/P3/cDAAAAoCnorg0AAAAAAAAAAMALkeQBAABAi7Nu3Tr169ev3l+HDh0UEhJy0bILGTdunLZt2+ZUDIcPH9aQIUOUnJysgQMHat++fResO336dCUmJsowDO3Zs6de2bBhw5SVleXUsgEAnAsAAACagiQPAAAAWpyxY8dqz549dX9btmxRWFiYXnrppYuWNeaLL75QcXGxUlJSnIphypQpeuCBB3To0CHNnj1bEydOvGDdu+++W1u3blWXLl0alM2YMUNz5sxxatkAAM4FAAAATWHY7Xa72UEAAADAP4zaJBVUSO1CpI0jmtamtrZWY8aMUadOnfTKK680uey8SZMmaciQIZo0aVKT4ywoKFBSUpKKi4tltVplt9sVHx+vrVu3Kikp6YLtEhMTtWbNGvXr169uWnV1tRISEpSenq7o6OgmxwAAvqg55wGJcwEAAMCF8CYPAAAAWrQ5c+aouLhYixYtcqrsvC1btmjw4MFOLfPo0aOKj4+X1eoY9d0wDHXu3Fk5OTnOBS8pMDBQvXv3VmpqqtNtAQAOnAsAAAAaZzU7AAAAAOBC1q5dq9dff107d+5UUFBQk8u+LTc3V+3bt683LSUlRYcPH260/u7duy8/8P8RFxen3Nxcl88XAPwB5wIAAIALI8kDAACAFiktLU2TJk3SmjVrlJCQ0OSy/xUWFqaKiop60y418HZwcLDy8vJks9nquujJyclR586dm7UuFRUVCg0NbVZbAPBnnAsAAAAuju7aAAAA0OKUlpbqjjvu0FNPPaWhQ4c2uawxffr0UVpamlPLb9eunfr376+lS5dKklauXKmOHTtedAyGizlw4ID69u3brLYA4K84FwAAAFyaYbfb7WYHAQAAAP/Q1AG3n3/+eT3++OPq3bt3g7J77rlHTzzxRKNlGzdubPA09+LFi5WTk6N58+Y5FWtaWpomTpyooqIiRUVF6c0336xb5uTJkzV27FiNHTtWkjRlyhRt2LBB+fn5iomJUWRkpNLT0yVJ2dnZGjFihNLS0mQYhlMxAICvaep5QOJcAAAA0BQkeQAAAOAxztzcc5WysjINGTJE27ZtU3h4uGcW+i2PPvqokpKSNHnyZI8vGwBaGjPOAxLnAgAA4Lvorg0AAAA+LSIiQgsWLFBWVpYpy09ISNBPf/pTU5YNAHDgXAAAAHwVb/IAAADAY8x6ghsA0DJwHgAAAHAt3uQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQlazAwAAAABQn90uVdSYHYVzQgIkw3Dd/Ox2u2zlla6boQdYQ4NluOhDYBsAAAAA0BQkeQAAAIAWpqJGGrbR7CickzpKCnXhrwtbeaXe6T7BdTP0gPEZSxUYFuKSebENAAAAAGgKumsDAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9EkgcAAAAAAAAAAMALkeQBAAAAAAAAAADwQiR5AAAAAAAAAAAAvBBJHgAAAAAAAAAAAC9kNTsAAAAAAK5RuneLDv12eL1plpBwBSckK+bG+9Xu9odlBPjuT4C4lF66bdVT9aZVny3Xmcw8Zaz4tw68vlH2mlqTovMMf98GAAAAAH/D1T0AAADgY1pf/wNFXztKsttVXZKvoi1vK/eNX6ki94C6TP2z2eG5XeaqVOVu3iUZhkJjWylp3A0a9NRERffooG0zXzU7PI/w920AAAAA8BckeQAAAAAfE9atv2JunFD3/9hRP9e+n1+pwg9fU8KEZxQYHWtidO5XtDdLmStT6/6f9tYHuiN1oZJ/eLN2Pb9MlUVnTIzOM/x9GwAAAAD8BWPyAAAAAD4uICRc4VdcJ9ntqszPMDscj7OVV+rkrsMyLBZFdWlvdjim8PdtAAAAAPBVJHkAAAAAP3D+xr41oo3JkZgjMtGR3Kk8VWZyJObx920AAAAA8EV01wYAAAD4mNrKc7KdKZTdbv//7d19VNR1osfxzwwD8gyKKBgYYrAr+JhGaQ83bbPMpI53PXqOVtvuVu7RaHdNPO7eu9xrtyxi8zlv93S9rZXGblk+td0y9V4qLNkszccEURAGHcTyARiGmfsHdylyMsB54Dfzfp3DOfr7fX/f+eD5HpX5zO/7k6PBqtPv/LsaK/YoMiNH4Vdl+jue11kiwtSrT0z7M3l+dP9EJQxL1+lPv9TXFbX+jucTwb4GAAAAgGARFCWPzWZTYWGhNmzYoOrqaiUmJmrq1Kl66qmnlJeXpzVr1mjFihWaO3euv6MCAAAAV6x2fYFq1xd0OBY/dqoGPrLKT4l8a1T+DI3Kn9HhWOXWXfp44Yt+SuR7wb4GAAAAgGAR8CXPZ599pkmTJslqtSoqKkpZWVmqqanR8uXLVV5erjNnzkiSRo4c6d+gAAAAAar6gvRGpbSjVjrd1HaswS5tr5FuSZIsbCDscX3veFi9x02Tq7VFjcf3ybrhGdlt1TKFhrePObe/REcXTbrkWpfDLpezVaPfbPVlZI86/PK7qtxcKnOoRb1/PFBD59yrqOQEtTbb28eYwyya8u6zOvZmifYu29B+/KalcxSeGK9tM5/0R3SPCfY1gJ7lfIu0tVrafOKbfwfONEvryqW7U6XYMP/mAwAAMLKALnlsNpumTJkiq9WqefPmqaCgQDExMZKkwsJCLViwQBaLRSaTScOHD/dzWgAAgMDS4pSe2SttPCG53JzLL5P6R0jPjJGG9vZLxIDVKzlDsSN/IkmKGz1J0UNu0uGFN+nE6tlKn/+aJCkm+2aNKu74fBp7fY0OzRujxMnGvsP96wqrakv2SZJObt+juk8O6a6NT2jsM4/of361RJLktDv0Qd4K3fnmIlW99zc1HDiugXdep5Tbx2jjhN/6M75HBPsaQM/x1nHpj19Ijd/pDB0u6bn90qqD0q+zpWmD/JMPAADA6AL6c5N5eXmqrq7W3LlzVVRU1F7wSFJ+fr5GjBghh8OhtLQ0xcbG+jEpAABAYHE4pfzd0ltuCp5vq2uUZn8k7Tvjs2hBKXrIOPW59T41fFCs8wc/cjvG2dKsiqenKjrrJiVP+52PE3rX6bLDKn/9fzXo3huVOOZH7cfr91Zo/+pNunn5o4pM7qOxz87Wx797UY11DX5M6x3BvgbgH69VSP/2+aUFz7c1O6Vn9klrj/ouFwAAQCAJ2JLn4MGDKi4uVt++fbV48WK3Y0aPHi1JGjFiRPuxnTt3ymQyXfLFdm4AAACdt/aoVFLXubFNrdK8T6Qmh3czBbvk6f8smUNUs+4Pbs+feH62nC1NSnvsJd8G85HPl7wup6NVo+ZP73h86RtytrYq971nZf3wCx3b+KGfEnpfsK8B+NaBs2138HTW8gPSZ/VeiwMAABCwArbkWb9+vZxOp2bOnKno6Gi3YyIiIiR1LHn+btWqVSotLW3/evnll72aFwAAIFA4nNKfj3XtmjN26d0a7+RBm/Dka9Tn5hk6t/d9ndtf0uHcqc3L9VXZFg1e+JbMvSL9lNC7zlVadWzjhxpwy3D1u35I+3GXo1Wndx9WeEKcjhbv8GNC7wv2NQDfKq64/J2c7rzWxX87AAAAEMAlz/bt2yVJ48eP/94x1dXVktyXPFlZWbrhhhvav4YNG+adoAAAAAFmp1WyNXf9utcrPR4F35E07feS2dzhTo5ze3eoeu0Cpef/Rb36p/kvnA/sXdZ218637+bpd/0QXTN9vA7+59vKWfSgQsID+wnwwb4G4Btn7dJ73Sjud9RKtibP5wEAAAhkJpfL1dUP1xhCamqqqqurtWfPHrdbrTkcDiUnJ8tms6m8vFzp6emS2rZrGz9+vHbs2KFbb73VI1nGjBkjq9XqkbkAAAB6uuh7Fir6jjldvs7ldKru0aulwPzvaZeYwiLUf+mXXn+d5rpKHXr8OiXPKFC/yXOvaK66X2fIZW/0UDIp1GVWgTPHY/O5Y4kMV+77RTrwwhYd+tN/a9Kbi2T7vFy7C17q1nz/av5ELSanR7KxBmBkoRk3KOE3r3fr2jMrZ8l+YKdnAwEAAPRwSUlJKisr69a1Fg9n6TEuXLggSWpsdP9DRnFxsWw2m2JiYjRo0KBLzk+fPl02m00JCQnKzc3V008/rb59+3Yri9Vq1cmTJ7t1LQAAgNGktrTK/Wa5l2cym1Vzqp43iSWZe0Wqv5dfw9l8UeWL71VcTu4Vv7kvSTU1NXI2X/RAsjZhphB5+w/hun+5X+dPnNKhl96RJH3w2ErlbivSib9+rLpdB7s8X01tjeyuyzxhvgtYAzCy2P4XlNDNaxvON+osPz8DAAB0WsCWPElJSWpoaNCnn36qsWPHdjhXW1ur+fPnS5KGDx8uk8nUfi4uLk7z58/XLbfcoujoaJWWlmrx4sXatWuXysrKFB4e3q0sAAAAwSLS3L07GVwOuwYk9vFwGmMyhUV4/TUaPnpDjcc+V9PJI2r4oPiS89krDygscWCn5xswYIDH7+SRZ26KceuqCaM0KPdGbbxtXvuxc8fr9LcnX9WNS+Zo04R5cjR2bd/BAckDPHonj7f19DUA4wqN6v62h70jLIq66ioPpgEAAOj5rqRDCNjt2vLy8rRixQqlpqZq27ZtyszMlCTt3r1b9913nyoqKtTS0qI5c+Zo5cqVl51r8+bNys3N1Zo1a/Tggw/6Ij4AAIBh7T0j/fyDrl/3D0nSH727O5dhNDqkm9/2d4quKblLivDgR8haLjbp1cGzPDehD8wsf0WhkV3/UJg7rAEYmb1Vmvye1GDv2nXRFumdiVI46wgAAKDTzP4O4C35+flKSEhQVVWVsrOzNWzYMGVkZCgnJ0fp6emaMGGCJGnEiBE/ONfdd9+tqKiobu+JBwAAEEyG9ZYyY7t+3bQ0j0cBAPhBWIh079Vdv27KQAoeAACArgrYkiclJUUlJSWaPHmywsPDVVlZqT59+uiFF17Q1q1bdeTIEUmdK3n+7tvbugEAAMA9k0n6RWbXrsmOl3ISvRIHAOAHP02TYkM7Pz7KIk2/9HG5AAAA+AEB/RmZIUOGaMuWLZccP3/+vCorK2U2mzV06NAfnGfTpk26cOGCcnLYPwQAAKAzbhsgPTpEWtGJZ9enRUvP5UhmPk8DAAGjf0Tb3+15H0sXHZcfGx7Stl1nSpRvsgEAAASSgC55vs/+/fvlcrmUmZmpyMjIDudmzZql9PR0XXvttYqOjlZpaakKCws1cuRIzZgxw0+JAQAAjOeBjLY3+VYfkk5evPS8xSTdPkB6fJgU1/1ndAMAeqiRCdKLN0pFX0if1rsfM6KPNG+olBXv02gAAAABIyhLnn379klyv1Vbdna21q1bp6VLl6qxsVEpKSl66KGHVFBQoLAw3n0AAADoijtTpIlXSbtOSztqpa/sUi+zNDhWmpIqJXjmGfUAgB4qM076jxul8q+lLVWStbHteL9w6e5UKSPOv/kAAACMjpLnOxYuXKiFCxf6OhIAAEDAMpukcf3avgAAwWlwrPRYtr9TAAAABB5KHgAAACAANdV8qcqlD8hxzqaQyDilPfaSIgZ2fIfVaW9SRdEMNVUdkDksQpa4fhr4q9UKT75GknSkYKIcDVbJbFZIRIxSH1quyPRR/vh2uizniZ9r4B1jFJ3aT5t+8rjO7K/s1rjOztMTBfsaAAAAAIKB2d8B/GH79u1yuVyaPHmyv6MAAAAAXnHi+UfU946HNXT1ESVNXaDKZT9zOy5x4sPKfv6wspZ9rvjr79Hxlb9sP5c+/8/KWr5XWUs/U7/c337vHD3R8a2levuef9L5qlNXNK6z8/REwb4GAAAAgGAQlCUPAAAAEMhazp7ShaNlSrh1liQpftw/ym6rUlPt0Q7jzGHhihtzl0wmkyQpKvMG2U9Vtp+3RMe3/7r14lfS/48zgrpdB3Wx9swVj+vsPD0NawAAAAAIDkG5XRsAAAAQyOy2KoX2TpYppO2/+yaTSWGJA2U/faJ9Gy53Tm1ZpvicezocO7bkfp3bt0OSlPGHt70XGh7FGgAAAACCAyUPAAAAYDCH8seqqeZLt+eyluzp1py1f3lKzbVHdfUT73c4Pug3ayVJ9dv/pOq1C3rEm/x3bX5SsenJbs9tun2+LtbU+ziR7wX7GgAAAADQhpIHAAAAMJgfF5Ze9rwptJdaGmrlanXIFGKRy+WS/fQJhSUOdDve+maRzpZuUMaibTL3inQ7JmHCAzq+erYcX9fLEptwxd/DlXh7yu/9+vo9QbCvAQAAAABteCYPAAAAEGBC4/spcvC1qt/5iiTp7EdvKCwhxe02XXUbn1NDyXplLHqvw/NXHOfPyl5f0/77s7vekiUmQSExfbyeH1eONQAAAAAEB5PL5XL5OwQAAACAbzQ6pJuvcEespurDqlz+MznO1SskIlZpef+liLRhkqTKFb9UfE6uIgdfq32/SFVYUrpCImIkSSZLLw0p+ljNp46ronCanPZGmUxmWWITlfJgkSLTR7p9vZK7pAgP7hPQcrFJrw6e1e3rxxY+rJTbRiuiX7yaG86p5XyjNox7VJI0rmi2qt4tU9W7ZZcd90PzfNfM8lcUGhne7czfxhoAAAAA0BmUPAAAAEAP44k3+H2tp5U8/tDTSh5fo+QBAAAAfI/t2gAAAAAAAAAAAAyIkgcAAAAAAAAAAMCAKHkAAAAAAAAAAAAMiJIHAAAAAAAAAADAgEwul8vl7xAAAAAAvuFySU2t/k7RNeEhksnkuflcLpccjc2em9AHLBG9ZPLQHwJrAAAAAEBnUPIAAAAAAAAAAAAYENu1AQAAAAAAAAAAGBAlDwAAAAAAAAAAgAFR8gAAAAAAAAAAABgQJQ8AAAAAAAAAAIABUfIAAAAAAAAAAAAYECUPAAAAAAAAAACAAVHyAAAAAAAAAAAAGBAlDwAAAAAAAAAAgAFR8gAAAAAAAAAAABgQJQ8AAAAAAAAAAIABUfIAAAAAAAAAAAAYECUPAAAAAAAAAACAAVHyAAAAAAAAAAAAGBAlDwAAAAAAAAAAgAFR8gAAAAAAAAAAABgQJQ8AAAAAAAAAAIABUfIAAAAAAAAAAAAYECUPAAAAAAAAAACAAVHyAAAAAAAAAAAAGBAlDwAAAAAAAAAAgAFR8gAAAAAAAAAAABgQJQ8AAAAAAAAAAIABUfIAAAAAAAAAAAAYECUPAAAAAAAAAACAAVHyAAAAAAAAAAAAGND/ARHWZTVQ6ZRXAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABroAAAN9CAYAAADMvqkjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3Xd8VMX+//H3bnolkAQSeu8dBBEQEBUBQUVREBBsgIJgueDFhuUrCqJIES52EUUQUJGiCMiVLlXpJRAgJCEkBNLr7u8PfkRyE2A3bMluXs/Hw4fmzMyZz+yeOSb72ZljMJvNZgEAAAAAAAAAAAAuxujsAAAAAAAAAAAAAICSINEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLsluiy2Aw6Mcff7S4/rBhw3TvvffeUJ/R0dEyGAzas2dPic/x+uuvq2XLljcUBwAAAAAAAAAAAOzP6kRXfHy8xo4dq7p168rX11eVKlVSx44dNWfOHGVkZNgjRpvq2rWrDAaDDAaDfH191bhxY82ePdvZYVktLi5ODz/8sOrXry+j0ahnn332um2SkpJ01113qXLlyvLx8VG1atU0evRopaSkFNQZNmxYwetz5T9NmjQpqFOzZs1i64waNapQf1u2bNFtt92mgIAABQcH69Zbb1VmZmahOitWrFD79u3l5+en8uXLF0l2njp1Sr1795a/v78qVqyocePGKS8vr6B848aN6tixo0JDQ+Xn56eGDRtq2rRphc7x+uuvF4m1YcOGRV6f68Vb3LjffffdgvKsrCwNGzZMzZo1k6en53UTt5s2bZKnp2eRxOqcOXPUvHlzBQcHKzg4WB06dNCqVasKys+fP69nnnlGDRo0kJ+fn6pXr64xY8bo4sWLBXX++usvDRw4UNWqVZOfn58aNWqk6dOnF4nhm2++UYsWLeTv76/IyEg99thjSkpKumbcAAAAAAAAAACUFp7WVD5+/Lg6duyokJAQTZo0Sc2aNZOPj4/27t2rjz/+WFWqVFHfvn3tFavNPPnkk3rzzTeVkZGhefPmadSoUSpfvrwGDhzo7NAslp2drfDwcL3yyitFEjtXYzQadc899+j//u//FB4ermPHjmnUqFE6f/68vv32W0nS9OnTCyVv8vLy1KJFC/Xv37/g2Pbt25Wfn1/w8759+3THHXcUqrNlyxbdddddmjBhgmbOnClPT0/99ddfMhr/ya0uWbJETz75pCZNmqTbbrtNeXl52rdvX0F5fn6+evfurYiICG3evFlxcXF65JFH5OXlpUmTJkmSAgICNHr0aDVv3lwBAQHauHGjRowYoYCAAA0fPrzgXE2aNNGaNWsKfvb0LHzpWxKvJL355pt68sknC34OCgoqFK+fn5/GjBmjJUuWXPO9uHDhgh555BF1795dZ8+eLVRWtWpVvfvuu6pXr57MZrO++uor3XPPPdq9e7eaNGmi2NhYxcbGaurUqWrcuLFOnjypkSNHKjY2VosXL5Yk7dy5UxUrVtT8+fNVrVo1bd68WcOHD5eHh4dGjx4t6VKi7ZFHHtG0adPUp08fnTlzRiNHjtSTTz6ppUuXXjN+AAAAAAAAAABKBbMVevToYa5atao5LS2t2HKTyVTw35LMP/zwQ8HPf//9t7lbt25mX19fc4UKFcxPPvmkOTU1taB86NCh5nvuucf8+uuvm8PCwsxBQUHmESNGmLOzswvqrFq1ytyxY0dzuXLlzBUqVDD37t3bfOzYsYLyEydOmCWZd+/efdUxdOnSxTx27NhCx+rVq2ceMGCA2Ww2mydOnGhu0aKFed68eeYaNWqYg4ODzQ899JA5JSXF4jiys7PNo0aNMkdERJh9fHzM1atXN0+aNKmgPDk52fz4448XjLNbt27mPXv2XDXm6yluTJaaPn26uWrVqlct/+GHH8wGg8EcHR191Tpjx44116lTp9D73759e/Mrr7xy1Ta5ubnmKlWqmD/99NOr1lm5cqXZaDSa4+PjC47NmTPHHBwcXOi6+F/33XefefDgwQU/X35Pr+V68ZrNZnONGjXM06ZNu2adyy5fz1fz0EMPmV955RWLYjObzeby5ctf87VatGiR2dvb25ybm3vVOk8//bS5W7duBT+/99575tq1axeqM2PGDHOVKlWuGw8AAAAAAAAAAKWBxVsXJiUlafXq1Ro1apQCAgKKrWMwGIo9np6erh49eqh8+fLavn27vv/+e61Zs6ZgZclla9eu1cGDB7V+/XotWLBAS5cu1RtvvFHoPM8//7x27NihtWvXymg06r777pPJZLJ0GMXy8/NTTk5Owc9RUVH68ccftXz5ci1fvlz//e9/C61yul4cM2bM0LJly7Ro0SIdPnxY33zzjWrWrFnQvn///kpISNCqVau0c+dOtW7dWt27d9f58+cl/fOssfXr19/QuK4nNjZWS5cuVZcuXa5a57PPPtPtt9+uGjVqFFuek5Oj+fPn67HHHit4/xMSErRt2zZVrFhRt9xyiypVqqQuXbpo48aNBe127dqlM2fOyGg0qlWrVoqMjFTPnj0LrejasmWLmjVrpkqVKhUc69Gjh1JSUrR///5i49m9e7c2b95cZExHjx5V5cqVVbt2bQ0aNEinTp0qKLMk3sveffddhYaGqlWrVnrvvfcKbaNoqS+++ELHjx/XxIkTr1s3Pz9f3333ndLT09WhQ4er1rt48aKCg4OLrFT73zoVKlQo+LlDhw46ffq0Vq5cKbPZrLNnz2rx4sXq1auXdQMCAAAAAAAAAMBJLN668NixYzKbzWrQoEGh42FhYcrKypIkjRo1SpMnTy7S9ttvv1VWVpbmzZtXkCSbNWuW+vTpo8mTJxckMry9vfX555/L399fTZo00Ztvvqlx48bprbfektFo1P3331/ovJ9//rnCw8N14MABNW3a1LqR61ISYcGCBfr7778LbXNnMpn05ZdfFmxLN2TIEK1du1Zvv/22JF03jlOnTqlevXrq1KmTDAZDoSTRxo0b9eeffyohIUE+Pj6SpKlTp+rHH3/U4sWLNXz4cHl5ealBgwby9/e3ekyWGDhwoH766SdlZmaqT58++vTTT4utFxsbq1WrVhVsa1icH3/8URcuXNCwYcMKjh0/flzSpWdjTZ06VS1bttS8efPUvXt37du3T/Xq1StU54MPPlDNmjX1/vvvq2vXrjpy5IgqVKig+Pj4QkkuSQU/x8fHFzpetWpVnTt3Tnl5eXr99df1xBNPFJS1b99eX375pRo0aKC4uDi98cYb6ty5s/bt26egoCCL4pWkMWPGqHXr1qpQoYI2b96sCRMmKC4uTh988IElL7ukSwm3f//739qwYcM1k1J79+5Vhw4dlJWVpcDAQP3www9q3LhxsXUTExP11ltvFbqG/9fmzZu1cOFCrVixouBYx44d9c033+ihhx5SVlaW8vLy1KdPH3300UcWjwcAAAAAAAAAAGeyeEXX1fz555/as2ePmjRpouzs7GLrHDx4UC1atCi0Eqxjx44ymUw6fPhwwbEWLVoUSu506NBBaWlpOn36tKRLSYKBAweqdu3aCg4OLlgldeXqHEvMnj1bgYGB8vPz05NPPqnnnntOTz31VEF5zZo1Cz17KTIyUgkJCQU/Xy+OYcOGac+ePWrQoIHGjBmj1atXF7T966+/lJaWptDQUAUGBhb8c+LECUVFRUmSqlSpokOHDqldu3ZWjctS06ZN065du/TTTz8pKipKzz//fLH1vvrqK4WEhOjee++96rk+++wz9ezZU5UrVy44dnll24gRI/Too4+qVatWmjZtmho0aKDPP/+8UJ2XX35Z999/v9q0aaMvvvhCBoNB33//vdVj2rBhg3bs2KH//Oc/+vDDD7VgwYKCsp49e6p///5q3ry5evTooZUrV+rChQtatGiRxfFK0vPPP6+uXbuqefPmGjlypN5//33NnDnzqtf9/8rPz9fDDz+sN954Q/Xr179m3QYNGmjPnj3atm2bnnrqKQ0dOlQHDhwoUi8lJUW9e/dW48aN9frrrxd7rn379umee+7RxIkTdeeddxYcP3DggMaOHavXXntNO3fu1C+//KLo6GiNHDnSovEAAAAAAAAAAOBsFq/oqlu3rgwGQ6HElCTVrl1b0qXt/+ytT58+qlGjhj755BNVrlxZJpNJTZs2LbTtoCUGDRqkl19+WX5+foqMjJTRWDjf5+XlVehng8FQaHvE68XRunVrnThxQqtWrdKaNWv04IMP6vbbb9fixYuVlpamyMjIYrclDAkJsWocJRUREaGIiAg1bNhQFSpUUOfOnfXqq68qMjKyoI7ZbNbnn3+uIUOGyNvbu9jznDx5UmvWrNHSpUsLHb98nv9dgdSoUaOCZGBxdXx8fFS7du2COhEREfrzzz8LnePs2bMFZVeqVauWJKlZs2Y6e/asXn/9dQ0cOLDYuENCQlS/fn0dO3bM4niL0759e+Xl5Sk6OrrISsfipKamaseOHdq9e3fBtp0mk0lms1menp5avXq1brvtNkmXVjfWrVtXktSmTRtt375d06dP19y5cwud76677lJQUJB++OGHItetdCmZ1b17dw0fPlyvvPJKobJ33nlHHTt21Lhx4yRJzZs3V0BAgDp37qz/+7//K3Q9AAAAAAAAAABQGlm8ois0NFR33HGHZs2apfT0dKs6adSokf76669C7TZt2iSj0VgoQfDXX38pMzOz4OetW7cqMDBQ1apVU1JSkg4fPqxXXnlF3bt3V6NGjZScnGxVHJeVK1dOdevWVZUqVYokua7H0jiCg4P10EMP6ZNPPtHChQu1ZMkSnT9/Xq1bt1Z8fLw8PT1Vt27dQv+EhYWVaDw34nIC739XJf33v//VsWPH9Pjjj1+17RdffKGKFSuqd+/ehY7XrFlTlStXLpIUPXLkSME2jm3atJGPj0+hOrm5uYqOji6o06FDB+3du7fQarrffvtNwcHBV93G7/KYrrXKKi0tTVFRUQWJHEviLc6ePXtkNBpVsWLFq9a5UnBwsPbu3as9e/YU/DNy5MiC1Vvt27e3eEwpKSm688475e3trWXLlsnX17dIm/3796tbt24aOnRowbabV8rIyChy/Xt4eEi6lOgEAAAAAAAAAKC0s3hFl3Rpy7+OHTuqbdu2ev3119W8eXMZjUZt375dhw4dUps2bYptN2jQIE2cOFFDhw7V66+/rnPnzumZZ57RkCFDCj2DKScnR48//rheeeUVRUdHa+LEiRo9erSMRqPKly+v0NBQffzxx4qMjNSpU6f073//+8ZGXwKWxPHBBx8oMjJSrVq1ktFo1Pfff6+IiAiFhITo9ttvV4cOHXTvvfdqypQpql+/vmJjY7VixQrdd999atu2rc6cOaPu3btr3rx519y+cM+ePZIuJW7OnTunPXv2yNvbuyAJ9MMPP2jChAk6dOiQJGnlypU6e/asbrrpJgUGBmr//v0aN26cOnbsWLD94mWfffaZ2rdvf9Vnn5lMJn3xxRcaOnRokWdNGQwGjRs3ThMnTlSLFi3UsmVLffXVVzp06JAWL14s6VLSZ+TIkZo4caKqVaumGjVq6L333pMk9e/fX5J05513qnHjxhoyZIimTJmi+Ph4vfLKKxo1alTB880++ugjVa9eXQ0bNpQk/fHHH5o6darGjBlTEM+//vWvglV4sbGxmjhxojw8PApWfFkS75YtW7Rt2zZ169ZNQUFB2rJli5577jkNHjxY5cuXL+jrwIEDysnJ0fnz55WamlrwHrVs2VJGo7HI61mxYkX5+voWOj5hwgT17NlT1atXV2pqqr799lutX79ev/76q6R/klwZGRmaP3++UlJSlJKSIkkKDw+Xh4eH9u3bp9tuu009evTQ888/X/BMMw8PD4WHh0u6tDLxySef1Jw5c9SjRw/FxcXp2WefVbt27QptRQkAAAAAAAAAQGllVaKrTp062r17tyZNmqQJEyYoJiZGPj4+aty4sf71r3/p6aefLradv7+/fv31V40dO1Y33XST/P39df/99+uDDz4oVK979+6qV6+ebr31VmVnZ2vgwIEFzx0yGo367rvvNGbMGDVt2lQNGjTQjBkz1LVr1xINvKQsiSMoKEhTpkzR0aNH5eHhoZtuukkrV64sWD2zcuVKvfzyy3r00Ud17tw5RURE6NZbby1I+uXm5urw4cPKyMi4ZiytWrUq+O+dO3fq22+/VY0aNRQdHS1JunjxYqFVSn5+fvrkk0/03HPPKTs7W9WqVVO/fv2KJOouXryoJUuWaPr06Vfte82aNTp16pQee+yxYsufffZZZWVl6bnnntP58+fVokUL/fbbb6pTp05Bnffee0+enp4aMmSIMjMz1b59e61bt64gceTh4aHly5frqaeeUocOHRQQEKChQ4fqzTffLDiHyWTShAkTdOLECXl6eqpOnTqaPHmyRowYUVAnJiZGAwcOVFJSksLDw9WpUydt3bq1IOFjSbw+Pj767rvv9Prrrys7O1u1atXSc889V+T5Zr169dLJkyeLvEfWrJBKSEjQI488ori4OJUrV07NmzfXr7/+qjvuuEOStGvXLm3btk2SCrY3vOzEiROqWbOmFi9erHPnzmn+/PmaP39+QfmV18ewYcOUmpqqWbNm6YUXXlBISIhuu+02TZ482eJYAQAAAAAAAABwJoOZPcoAAAAAAAAAAADggqx7QBUAAAAAAAAAAABQSpDoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACXRKILAAAAAAAAAAAALolEFwAAAAAAAAAAAFwSiS4AAAAAAAAAAAC4JBJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACXRKILAAAAAAAAAAAALolEFwAAAAAAAAAAAFwSiS4AAAAAAAAAAAC4JBJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACXRKILAAAAAAAAAAAALolEFwAAAAAAAAAAAFwSiS4AAAAAAAAAAAC4JBJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACX5OnsAACgOGazlJXv7Cis4+shGQzXr2c2m5WXmW3/gEohTz8fGQyGMvsaXB6/Jdx5DgAAAAAAAAC2QqILQKmUlS91XunsKKyzoZfkZ8FdNS8zW9/UGWz/gEqhQVHz5eXvW2Zfg8vjt4Q7zwEAAAAAAADAVti6EAAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBL8nR2AABgS4lrv9TJGY+qxpgvFNZ9WJHy7LPR2je8lkJvG6qaY790eHzOENGhie5a+kahY7npmUo5HqeoxX/o4GcrZc43OSk6+ytr42cOAAAAAAAAoCwh0QUAZcTxpRsUs26XZDDILzxEdft3Ubs3hqlcvSraMm6us8Ozu7I+fgAAAAAAAMAdkegCgDIiae8JHV+yoeDnw1/+qvs2TFf9h7tr17sLlJ2U4sTo7K+sjx8AAAAAAABwRzyjCwDKqLzMbJ3bdVQGo1HBNSo5OxyHK+vjBwAAAAAAANwBiS4AKMOCal5K8GRfSHNyJM5R1scPAAAAAAAAuDq2LgSAMsLTz1s+FYIKnlHV4JE7Fdqsts7tOqqU43HODs/uyvr4AQAAAAAAAHdUJhJdiYmJmjJlipYuXaqYmBiFh4erX79+mjRpksaMGaPPP/9cM2fO1OjRo50dqt3s2H9O67fHKy0jV4H+Xup6U4TaNgl3dlhwkPx8k1ZtjNG+Y8nKys5XaIiP7ulWQ9UjA50dGhyo1fgBajV+QKFj0Su2atuET50UkWOV9fEDAAAAAAAA7sjtE1179uxRz549FR8fr4CAADVu3FixsbGaMWOGoqKidP78eUlSy5YtnRuonXy/+oTe+/Jvbd+XWKTspqZhGjesufrfWcsJkcERcnNN+uDrvZq98KBOxaUXKnt2yjbdfWs1vTqiZRlNehoK/uv8xkVKWD5DmSf2yDM4TM0+iXZeWHZ0+OvViv55i4xenirfsLqajrpXAZGhys/OcXZoDlHWx19U2ZsDAAAAAAAAcD9u/YyuxMRE9enTR/Hx8XrhhRcUFxenXbt2KT4+XpMnT9aKFSu0fft2GQwGNW/e3Nnh2pTZbNYrM3fowX+tKzbJJUnb9yXqwX+t06uzdjo4OjhCZlae+jyzWv/+cEeRJJckmUxmLVt/Sp2GLtdPv590QoT2YfT2kySZsjOKLTdlX3otjD5+Bcc8A8urYq/Rqjz4bfsH6EQpx+MVt2GvzqzbrX2zf9Laoe8qrGUddZg8wtmhOURZGT9zAAAAAAAAAGWJWye6xowZo5iYGI0ePVpTp05VUFBQQdn48ePVokUL5eXlqWbNmgoODnZipLY3a8EBvf3JXxbV/b+P92jmt/vtHBEcbegrf+jXzWeuWy87x6SHxq3T1r8SHBCV/flUurRCMSvmYLHlWacvHfeu+M9KxuCWd6jCrQPkE17D/gGWIud2HFbU4j9U696OCm/bwNnhOJy7jp85AAAAAAAAgLLEbRNdBw8e1MKFCxUWFqZ33nmn2Dpt2rSRJLVo0aLQ8RMnTqhv374KCgpS+fLl9cgjjygpKcnuMdtKRmaeXvtol1VtJs7epYzMPDtFBEfbvu+cvl99wuL62TkmvTbbPVb2+ddpLa+wakre8J1ykmILlZlyc5SwcpZkMCikXV8nRVi6/DVtsUx5+Wo17iFnh+IU7jh+5gAAAAAAAADKErdNdC1YsEAmk0mDBg1SYGBgsXX8/C5t23Rlois1NVXdunVTTEyMFixYoI8//lgbNmzQ3XffLZPJ5JDYb9R3vxzXhVTrnjmTnJKjhb8et1NEcLTZC4tfyXEtv22J1ZHoi3aIxrEMHp6q8dQc5Wdc1IGxzRXz1Ys69+vHilv4lg4+31pp+/6riPsnyLeq+6zguRGp0fE68dMmVb61uSq2b+TscBzOHcfPHAAAAAAAAEBZ4raJrnXr1kmSunXrdtU6MTExkgonuj7++GOdOXNGP/74o+6++271799f3377rbZu3aply5bZN2gbWVTChNXCX0h0uQOz2axFv1q+mutK1qwCK83Kte2tBu9uUlCzbkpa95VOzR2lsz+9L8/gcNUat1BVhvAcoiv9PX2JTPnutarJGu44fuYAAAAAAAAASjuz2az09HSlp6fLbDaX+DwG8420LsWqVaummJgY7d69Wy1btixSnpeXp8jISCUmJioqKkq1a9eW9E9i7Pfffy9Uv06dOuratas+++wzq2Np27at4uPjrR9ECSUEj1CuZ2Wr23nlnVHFlI/tEBEcySQvxVV4pURtA7K2KCTjFxtHVDIGbz9V+vCoQ/u8sPVHnf7sWTX7JLpE7c8+W0/mnMzr1vMyGzXR1K5Efbi6N4x/KtdgKrOvweXxW8Kd5wAAAAAAAABgMpkUFxcnSWrZsqV2795dovN42jKo0iQ9PV2SlJlZ/AduCxcuVGJiooKCglSrVq2C4wcOHFD//v2L1G/SpIkOHDhQolji4+N15syZErUtEd/MEr2zudmZjo0TduIhVShZy/TUC0qPLx3XgNHHX5Uc1Jc5P1/m/FyZ83Mls1mmnCzJYJDRy8eq88TGxsqUnXHdet4GDzlscKVMbFyscsz5ZfY1uDx+S7jzHAAAAAAAAACudPbs2RK3ddtEV0REhJKTk7Vr1y516NChUFlcXJzGjRsnSWrevLkMBkNBWXJyskJCQoqcr0KFCjp8+HCJY3GkZI8UleRjRn/PVJWvUsXm8cDx4vOTlO8RanW7EL9sBZSSa8Dg7eewvpLWf62TMx4t+Hl3fz95V6xh9aqWypUrW7yiS67xyD+bqxxZuWBFV1l8DS6P3xLuPAcAAAAAAACAK1d0VapU8q98u22i6/bbb9fBgwc1efJk3XHHHapfv74kafv27RoyZIgSExMlqdhtDW1tx44ddu/jSlv+Oqtbhiy3ut3aRa/p5haz7BARHG3K53/rxQ+3W9UmONBLMVuXKsDfy05RWSczT+q80jF9hXUfprDuw274PEeOHJWfBXfV3IwsfVNn8A3354qOHD0iL3/fMvsaXB6/Jdx5DgAAAAAAAADp6ekKDAyUJG3cuLHE5zHaKqDSZvz48QoNDdXp06fVpEkTNWvWTPXq1VO7du1Uu3Zt3XbbbZKkFi1aFGpXvnx5Xbhwocj5zp8/rwoVSrgfnIPd3LyiWjW0bjVP60ahat883E4RwdEeu6++fH08rGrz6D31S02SCwAAAAAAAAAAS7htoqtq1arasGGDevfuLV9fX0VHR6tChQqaO3euVqxYoSNHjkgqmuhq1KhRsc/iOnDggBo1auSQ2G+UwWDQ15O6KCTI26L6IUHe+npSl0JbOMK1hZX31Rdvdra4fsuGFfTW6NZ2jAgAAAAAAAAAANtz20SXdClptXz5cqWmpio1NVXbtm3T8OHDlZ6erujoaBmNRjVt2rRQm7vvvlsbN25UTExMwbFt27YpKipKffr0cfQQSqxJ3fL6/bNeqlzR/5r1Klf01++f9VLjOuUdFBkcZUDPOvrmna7y9rr2NO/YqpJ+m9tTQQGWJUYBAAAAAAAAACgt3DrRdTX79++X2WxWvXr15O9fOBE0fPhwRUZG6p577tHy5cu1ePFiDRw4UO3atdM999zjpIhLpmXDUB1Z9oA+fq2jWjQovO2il6dBH7/WUUeWPaCWVm5zCNfxcO86OrHqQb3+VKsiSc+enarq55l36L+f91JYecueGQQAAAAAAAAAQGlSJhNde/fulVR020JJCg4O1rp16xQZGakBAwboiSee0C233KLly5fLaHS9lyvA30tPPtBQuxfdqwubhigi9FJCI7y8r558oCHPZCoDKlcM0MSnWuvUrw8pIsxPkhQZ7qeVs3vo7i7V5eHhetc1AAAAAAAAAACS5OnsAJzhWokuSapTp46WL1/uyJDszmAwqFyQd0FSg+dxlT0eHkZ5GC+970befwAAAAAAAACAGyDRBcAtZcUeVfSHQ5WXmigP/3KqOfZL+VVvUqiOKSdLx6cOUNbpAzJ6+8mzXEVVf2qOfCPrSpKOTLxTecnxktEoD78gVXtyhvxrt3LGcAoE1YpQ5+nPyKdCkHJTM7Rx7CxdOBJTpN4Df85Wfnau8rNyJEl/z/xB0cs2W1wuSXUf6qZOH47Sukcn69Qv220W240o6+O3lrvOAwAAAAAAAOCyMpnoWrdunbNDAGBnp2aPUFiP4QrrPkzJmxYrevowNXq/aLIi/M7hCm7TUwaDQQkrZunkrCfU4O31kqTa4xbJMzBEkpS85QdFTx+mxtP/cuAoirplyggdmf+bji1arxq9b1an6aO1vOe/i63735HTdH5/9FXPda3ywKrhqj/odiXsOGyX2EqqrI/fWu46DwAAAAAAAIDLeDgPALeTeyFB6cd2KLTrYElSyC33KyfxtLLijhWqZ/T2Vbm2vQq28gyof7NyEqILyi9/uC9J+RkXJSdv+egbGqzQFnUUteQPSdLJFVsVUDlUQTUjbNuRwaBb3n9K2175TKacvFITW1kfv7XcdR4AAAAAAAAAVyqTK7oAuLecxNPyKh8pg8elW5zBYJB3eHXlnDtVsB1bcRKWT1dIu3sKHTsx7RGl7v1dklTvtZX2C9oCAVXClHk2WeZ8U8GxtDOJCqgSptTo+CL1O814RgaDdG73Me2c9I2yk1IsKm8yoo8Sth9S0t/H7RZbSZT18VvLXecBAAAAAAAAcCUSXQBczqHxHZQVe7TYssbTdpfonHHfT1J23DHVeGttoeO1npsnSUpa95Vi5r1o1w/5e/38toJrRxZbtuyOcVada9V9ryn9TKIMnh5q/eJAdZ4+WmsGT7pueUiDaqrRu71W3ffaDY2lJMr6+K3lrvMAAAAAAAAAsAaJLgAup+GULdcsN3j5KDc5Tub8PBk8PGU2m5Vz7pS8w6sXWz/+h6m6sGWp6r25RkYf/2LrhN42VCfnjFReSpI8g0NveAzFWdnn5WuWm7Jz5VepvAwexoKVQ4FVwpR+JrFI3cvHzHn5OvDJcvXbNNOi8krtGymwWkXdv/nSz37hIerw3kj5VSyvw/NWXzW29DOJFsd2NWV9/NZy13kAAAAAAAAAWINndAFwO14hFeVfp7WS1s+XJF3YvETeoVWL3a7t7E8fKHnDAtV787dCzyLKS7ugnKTYgp8vbP1RnkGh8giqYPf4ryYrKUXn955QnftvlSTV6H2z0uPOF9kaz9PPR97B/yQqat3XSUn7TlhUfnjeai1q+aQWt3tai9s9rXO7jmrLuP8UJHk6zXhG1Xu2K3FsN6Ksj99a7joPAAAAAAAAgCuxoguAW6rx1FxFzxim+MWT5OEXrJpjvigoi575hELa9ZV/ndaK+fwFeUfU1pFXukmSDJ4+ajR1m/IzLur4lP4y5WTKYDDKMzhcdV9ZLoPB4KwhSZI2j5+rTh+OUrMx/ZSblqmNz35UUHbL1JE6vXqHkg+dUrdPx8ngYZTBIKWeTNDGZ/5Z0eQbXu6a5dcS1qK2Dn5W/LZ114rNVsr6+K3lrvMAAAAAAAAAuMxgNpvNzg4CjlP19gU6k5ChKhX9FbNmoLPDgYO50vufmSd1drHHAG3oJflZ8PWB3IwsfVNnsP0DsjGf0GB1+WisVg94q8TnGBQ1X17+vi75Gthy/JZw5zkAAAAAAAAApKenKzAwUJKUlpamgICAEp2HrQsBABbJTkq5oSSPqyvr4wcAAAAAAABKIxJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJfHIeAClkq+HtKGXs6Owjq+HZfU8/Xw0KGq+fYMppTz9fAr+XRZfg8vjt4Q7zwEAAAAAAADAVkh0ASiVDAbJz03vUAaDQV7+vs4Ow6l4Da7PnecAAAAAAAAAYCtsXQgAAAAAAAAAAACXRKILAAAAAAAAAAAALolEFwAAAAAAAAAAAFwSiS4AAAAAAAAAAAC4JBJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACXRKILAAAAAAAAAAAALolEFwAAAAAAAAAAAFwSiS4AAAAAAAAAAAC4JBJdAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACX5OnsAIDimM1SVr6zo7COr4dkMDg7CgDuwt3vg2azWXmZ2fYNqBTy9PORwWAo8+O3hLvPAQAAAAAAYBskulAqZeVLnVc6OwrrbOgl+TGjANiIu98H8zKz9U2dwfYNqBQaFDVfXv6+ZX78lnD3OQAAAAAAAGyDrQsBAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC7J09kBwH4Sk7P0x8547difqJ0HExV3LkNnkzIvlV3I0kvTd6htkzDd2iZCYeV9nRwt7CHqdIo27jqrnQcTtftgUsH7n3A+U/c/t1Ztm4SpTeNQ3domQr4+3A4AAAAAAAAAAK6FT7bdjNls1ta/EzR74UEt+vWEcnJNxdbLzjHpnc/+kiR5exn1YI9aevqhRrq5eUUZDAZHhgwby801adn6k5q98KDW/RlXfJ08s5aujdbStdGSpNAQHz12b32NfLChalcNdmC0AAAAAAAAAACUHIkuNxKbkK4Rb27S8j9OW9UuJ9ek+cujNH95lO6+tZrmvtZRlSsG2ClK2NP2fec07NU/dCDqglXtki5k670v9+r9efv0/JCmenNUa/n5cnsAAAAAAAAAAJRufJLtJr5dEaVRkzbrQmrODZ1n+R+n1eS+pfropVv0cO86NorOMVL3rteRV7oVOmb0DZBP5foK7TpEFe9+RgYP97zk8/JMeu2jXZr8xd8ymcwlPo/JZNbUr/Zq+R+n9PWkLmrbJNyGUQJwhMS1X+rkjEdVY8wXCus+rEh59tlo7RteS6G3DVXNsV86PD5niOjQRHctfaPQsdz0TKUcj1PU4j908LOVMucXvwLaHZS18TMHAAAAAAAoW9zzU/8y5p1P/9JLM3bY7HwXUnM0aMJ6nYxL04QnWtjsvI5S/taBKteml2Q2Kzc5Xknr5ynm8+eVFXNQNUZ97OzwbC47J18Dxv+uH9edtNk5D524qC6PrtQPH3bXnbdUtdl5AcCZji/doJh1uySDQX7hIarbv4vavTFM5epV0ZZxc50dnt2V9fEDAAAAAAD3ZHR2ALgx733xt02TXFd6acYOTf1yr13ObU/+tVsrtOtghXYbooh+49RwylZ5hVZV4m+fKvfiOWeHZ1N5eSYNfNG2Sa7LMrLydM/YNVq/vfjnfAGAq0nae0LHl2zQ8cV/aP+cZVrR+yWln0lU/Ye7yyfU/Z9PWNbHDwAAAAAA3BOJLhe2ZusZjZ+23a59jPvgT63Zesaufdibh2+AAhrcLJnNyo6PcnY4NvV/H+/RD2ttn+S6LCs7X/2eW6P4xAy79QEAzpKXma1zu47KYDQquEYlZ4fjcGV9/AAAAAAAwD2Q6HJRKWk5enziBqvbbV/QV6d/G6DtC/pa3OaJ1zcqNf3Gnv3lbJcTXJ6BFZwcie3sOZSktz/dY1Wbkrz/ySk5GvnWJpnNJX/2FwCUVkE1LyV4si+kOTkS5yjr4wcAAAAAAK6vTCS6EhMTNX78eNWtW1e+vr6qVq2axo4dq/T0dD3++OMyGAyaNWuWs8O0ykszduhUXLrV7SLC/FW1UoAiwvwtbnMyNk0vzdhpdV/OYsrOUF5KonIvnlNm9F6d+s8oZR7fLf967eRbpb6zw7MJk8msR1/7Q3l51iWfSvL+S9JPv5/S96tPWNWmNLqYmqOTsak6dz5TJhOJu7LGZDIrMTlLJ2NTdSEl29nhwAk8/bzlUyFIPqHBCmlYXe0nPaHQZrV1btdRpRx3/21ay/r4AQAAAACAe/J0dgD2tmfPHvXs2VPx8fEKCAhQ48aNFRsbqxkzZigqKkrnz5+XJLVs2dK5gVoh6UKWPl16xKF9frr0sF5/qpVCQ3wd2m9JxC2YqLgFEwsdC+nQT9VHfOSkiGzvty1ntOfQeYf2Ofnzv9X/zloyGAwO7fdGZefka8lv0Zq96KA27T5bcLxm5UCN6N9Qj99XX+EV/JwYIewt6UKWvvzpqOYsOqio06kFx9s3C9fTDzXSgz1qydfH7f93CEmtxg9Qq/EDCh2LXrFV2yZ86qSIHKusjx8AAAAAALgnt/5kLzExUX369FF8fLxeeOEFTZw4UUFBQZKkKVOm6MUXX5Snp6cMBoOaN2/u5Ggt98WPR5Wdk+/QPrOy8/XlT0f1wtBmDu23JMJ6DFf5W/rLnJ+rzJN7Fb90snISY2Tw+idJl7p/g4692bNIW3NejsymfLX5wbGvr7VmLzzo8D53HUzS9n2Jatcs3OF9l1T0mVT1GrVaB49fKFoWm6YJ03fo/z7eo0VTb1OvztUcHyDsbt22WPV7bq0uphXdfnXb3nPatvec3py7W6tm91C9GuWcEKEz/ZO0Pr9xkRKWz1DmiT3yDA5Ts0+inReWHR3+erWif94io5enyjesrqaj7lVAZKjys117e15LlfXxF1X25gAAAAAAAO7IrbcuHDNmjGJiYjR69GhNnTq1IMklSePHj1eLFi2Ul5enmjVrKjg42ImRWufTpYed0u8nS5zTr7V8IuspuOXtKtempyL6jVfdl39WxrHtOjVnZEGdoCad1WphWqF/msw+Is+gMFV++C0nRn998YkZWv7Haaf0/cmSQ07ptyTizmWo6+Mri01yXSk9M0/3jPlNqzfHOCYwOMyGnfHq+fSvxSa5rhR1OlVdHlupU3Hu8Ywio/elFYqm7Ixiy03Zl7a9Nfr8s5LRM7C8KvYarcqD37Z/gE6UcjxecRv26sy63do3+yetHfquwlrWUYfJI5wdmkOUlfEzBwAAAAAAKFvcNtF18OBBLVy4UGFhYXrnnXeKrdOmTRtJUosWLQqOXU6MtWvXTj4+PqVum7akC1k6HH3RKX0fjr6opAtZTun7RgQ2ukUVug5R8saFSju4udg6ptxsHX+3nwIbd1Jk/5ccHKF1tv6d4LTnS23+K8Ep/ZbE2MlbdTLWssRFXr5Zgyb8V1nZeXaOCo6Sl2fSwBd/V06uyaL6cecyNPKtTXaOyjF8KtWSJGXFFL/yM+v0pePeFWsVHAtueYcq3DpAPuE17B9gKXJux2FFLf5Dte7tqPC2DZwdjsO56/iZAwAAAAAAlC1um+hasGCBTCaTBg0apMDAwGLr+Pld+ibvlYmuY8eOacmSJYqIiNBNN93kkFitsetgUpnuv6QiH3pVMnoo9tvXii0/NXukTLlZqjn2S8cGVgI7DzjvPTh04qLSM3Kd1r+lYhPStXRttFVtEpOz9P3qE/YJCA63bP0pnUkofjXH1fyyKUZRp1PsFJHj+NdpLa+wakre8J1ykmILlZlyc5SwcpZkMCikXV8nRVi6/DVtsUx5+Wo17iFnh+IU7jh+5gAAAAAAAGWL2ya61q1bJ0nq1q3bVevExFzaquzKRNett96quLg4LVu2TLfffrt9gyyBvw6fd2r/ew65ZqLLN7KuKnQeoNS/1yp1/4ZCZQk/z9DFHctVZ8KPMvr4OylCyznzGjCZzNp7NNlp/Vvq8x+PKD/f+lVvcxe7xvacuL65i63fZtNsdt7WsLZk8PBUjafmKD/jog6Mba6Yr17UuV8/VtzCt3Tw+dZK2/dfRdw/Qb5V3WcFz41IjY7XiZ82qfKtzVWxfSNnh+Nw7jh+5gAAAAAAAGWLp7MDsJeTJ09KkmrUKH4Lmry8PG3adGmbqisTXUaj7XN/bdu2VXx8vE3OleJ3m+TXpdiy7Qv6KiLs2omaiDC/gn+f/m3AVevFJ2bopoHLihx/a9JUTX91nRURl4zB20+VPjxq03NG9H9Z5zcsUOy3r6nB279LklL//l0x815UvddWyadSzRs6f/369WTOybRBpNd2LuhRyatmsWXXuwYsff+lq18Dd9/TX755UZYH7ATnA/pJPi2uX/F/bNl5XFWrVrVDRHC0+HLPSh7lrW734Zzv9PV799k+oBK4kftguba91eDdTYpfOkVJ675SXmqSPHwD5FerlWqNW6gKnR60cbSXWHMf9DIbNVHt7BKHtf6evkS17u2oVuMe0q8PvG7XvurXq69cg6nMj98S7j4HAAAAAAAo60ymfz4j6NSpk3bv3l2i87htois9/dKDxjMzi/+wYeHChUpMTFRQUJBq1apVbB1biY+P15kzZ2xzskrpkl/xRRFh/qpaKcCi03h6GC2ue6XU1DSlnrXRWK7B6OOvSla2CWrWVW1+uvoqHr9qjdTmh/yCn7PPRuv4ew+q6rD3FNSsa8kCvUJsbOxVH3xvU7VzJa/iiyy9Bkr6/ktSUtJ5Kc3+18ANqZYj+VjfzGQ22G6uwrmCDJKH9c2ysnJLzTVQkvvglQLq3aQ6L35vs3gsYc190NvgoRsaoBXit+zXl5EPXLX84tEzmlfVMVv3xcbFKsecX+bHbwl3nwMAAAAAAOAfZ8+eLXFbt010RUREKDk5Wbt27VKHDh0KlcXFxWncuHGSpObNm8tgMNg9FltJ8fVV6lXK4hOv/8FKRJifPD2Myss3KT7x6t84vtq5ggL9FOxZxZJQb4jB+yrZPBsxZWco6p17Va5dX1XsPdom56xcubJDvsWd6G1U9lXKrncNWPr+X+tcYaHl5FPO/tfAjbjga1J6Cdp5KFMRVUr32GCZs4Ys5ZWgnb9PvsqXkmvA3vfBK5nz82XOz5U5P1cym2XKyZIMBhm9rMsYW3Mf9DIbJcsW9riVypGVC1Z0leXxW8Ld5wAAAAAAAGWdyWRSXFycJKlSpZJ/3dVtE1233367Dh48qMmTJ+uOO+5Q/fr1JUnbt2/XkCFDlJiYKElq2bKl3WPZsWOHzc713aooDXxxfbFlxW0z979O/zZAVSsFKD4xU9Xu+M7q/j+e+aYG9KxjdTtrZeZJnVfa7/zJm5co88RfyjpzRMkbFxYpbzLrgLzDq1t1ziNHjsrPATPq6f/bpDmLin/+0PWugRt9/yVpz7ZfVaWEq8EcZcPOeN366Aqr2/175G36v2fG2yEiONqkT/bo5Zk7rW639PMJ6tHxIztEZD173wevlLT+a52c8WjBz7v7+8m7Yg01+yTaqvNYcx/MzcjSN3UGW3V+d3Dk6BF5+fuW+fFbwt3nAAAAAAAAZV16eroCAwMlSRs3bizxedz2T/Hx48fr22+/1enTp9WkSRM1bNhQWVlZOnbsmHr27KmaNWvq119/LfR8LlfQpnFYme7fVkK7DVFotyHODqNEnPkeVAr1U+WK134OXGnQqXUlNa1bXvuOJVvcxmg0aPgDDe0YFRzp8X4N9Pqc3crNs3zJTJ1qQbqjQ+lYzeVoYd2HKaz7MGeHATgNcwAAAAAAANdldHYA9lK1alVt2LBBvXv3lq+vr6Kjo1WhQgXNnTtXK1as0JEjRyTJ5RJddaoFq1yQt1P6LhfkrTrVgp3SN/7RtonzEl1tm4TZfatPWzAYDJr83E0yGi2P9ZmBjVU9MtCOUcGRKoX6afyjzaxq8+5Y664ZAAAAAAAAAM7ntokuSWrUqJGWL1+u1NRUpaamatu2bRo+fLjS09MVHR0to9Gopk2bOjtMqxiNBj1we02n9N3/jpp8CFwKNK9fQQ1qlnNK3w/eWcsp/ZZEr87V9OnrneThcf1rdvDddfT+v9o5ICo40puj2mj4Aw2uW89gkD56qYMecKHrGwAAAAAAAMAlbp3oupr9+/fLbDarXr168vcvug3b4sWLtXjxYh04cKDQz7Z81taNePqhRk7pd9SAxk7pF4UZDAanXAOhIT56sIdrJQIevbe+1n7SUz1uKX47uka1QzTnlVs07+0u8vAok7dDt2Y0GvSfVzvq8zc7q1m98sXWua1dpH79z116mvsbAAAAAAAA4JLc9hld17J3715JV9+2sH///sX+PHToUH355Zd2jc0SrRuH6ZaWFbV5T4LD+rylZUW1bBjqsP5wbY/0qauXZ+5UWkauw/p8ol8D+fq43i2jS9tIdWkbqWOnUrRq42m9PHOnUtNzFRbio/0/9HOJrRhRcgaDQY/eW1/D7qmnzXsS1GvUr0pJy1W5QC9t/aavGtYKcXaIAAAAAAAAAG5AmVzCcL1El9lsLvaf0pDkumzmvztYtCWbLXh6GjRrQgeH9AXLhAT7aPKzbR3WX/XIAL30hGs9z+5/1a0erGcebqLgAC9Jko+3B0muMsRgMKhjq0oK8r/0/gf6e5HkAgAAAAAAANyA6y3PsIHrJbpcQevGYXrpiRZ6a+4eu/f10uMt1apRmN37saes2KOK/nCo8lIT5eFfTjXHfim/6k2K1Dv18Rhd3L5MOQkn1WjabvnXbun4YC008sFGWvxbtH7fHmf3vj59vbOCA73t3g8A27Lk3mfKydLxqQOUdfqAjN5+8ixXUdWfmiPfyLqSpCMT71RecrxkNMrDL0jVnpwh/9qtnDEcSVJQrQh1nv6MfCoEKTc1QxvHztKFIzFF6j3w52zlZ+cqPytHkvT3zB8UvWyzxeWSVPehbur04Site3SyTv2y3Wax3YiyPn5rueMcAAAAAAAAhZXJRNe6deucHYJNvDK8pX7/M04bd5+1uE18Ykahf19Pp1aV9PJw100IXnZq9giF9RiusO7DlLxpsaKnD1Oj94t+aFe+4wOK6Ddehyd0ckKU1jEaDfrirc66efDPik/MtKiNte+/JL3wSFPd0aH4Z1wBKN0svfeF3zlcwW16ymAwKGHFLJ2c9YQavL1eklR73CJ5BoZIkpK3/KDo6cPUePpfDhxFYbdMGaEj83/TsUXrVaP3zeo0fbSW9/x3sXX/O3Kazu+Pvuq5rlUeWDVc9QfdroQdh+0SW0mV9fFbyx3nAAAAAAAAKKxMbl3oLry9PLR81p26qanlq61uGrhM1e74TjcNXHb9uk3DtHzWnfL28riRMJ0u90KC0o/tUGjXwZKkkFvuV07iaWXFHStSN6jJrfIOq+roEEusRuUgrf7PXQov72tRfWvef0l6ol99TXm+3Y2ECMBJLL33Gb19Va5tr4KtPAPq36ychOiC8ssf8EtSfsZFyYlbfvqGBiu0RR1FLflDknRyxVYFVA5VUM0I23ZkMOiW95/Stlc+kyknr9TEVtbHby13nAMAAAAAAKCoMrmiy52UC/LWmo976qFxv+uXTbbbHqjHLVX0/fu3KSjA9bery0k8La/ykTJ4XLrcDQaDvMOrK+fcqYJtiVxZs/oVtOHL3rr7md907FSKzc774mPN9c7YtjzHCnBRJb33JSyfrpB29xQ6dmLaI0rd+7skqd5rK+0X9HUEVAlT5tlkmfNNBcfSziQqoEqYUqPji9TvNOMZGQzSud3HtHPSN8pOSrGovMmIPkrYfkhJfx+3W2wlUdbHby13nAMAAAAAAKAoEl1uIDjQWytn36mPFx/Wv97/U2kZuSU+V6C/l6a+0E7DH2jgMgmOQ+M7KCv2aLFljaftdnA0ztGgVoj++v4+vTRjh2Z8u19mc8nPVatKkD5/s7O63hRpuwAB2Jw97n1x309Sdtwx1XhrbaHjtZ6bJ0lKWveVYua9aLcP+nv9/LaCaxd/71l2xzirzrXqvteUfiZRBk8PtX5xoDpPH601gyddtzykQTXV6N1eq+577YbGUhJlffzWcsc5AAAAAAAArEeiy00YDAaN6N9Qd3Wsonc/+1tfLz+m9EzLthuSpAA/Tw2+u64mPN5cNSoH2TFS22s4Zcs1yw1ePspNjpM5P08GD0+ZzWblnDsl7/DqDorQMfz9PPXhizfrwR61NPnzv7X8j9MymSzPeFWu6K8RDzTU8480VaC/lx0jBWALtr73xf8wVRe2LFW9N9fI6ONfbJ3Q24bq5JyRyktJkmdw6A2P4X+t7PPyNctN2bnyq1ReBg9jwcqhwCphSj+TWKTu5WPmvHwd+GS5+m2aaVF5pfaNFFitou7ffOlnv/AQdXhvpPwqltfheauvGlv6mUSLY7uasj5+a7njHAAAAAAAANYj0eVmalQO0pxXO2ryczfp6+XH9NuWM9qxP1FnEjKK1K1S0V9tm4Tpjg5VNOTuugoOdP1tCovjFVJR/nVaK2n9fIV1H6YLm5fIO7SqW2xbWJxbWlbSTzPu0Km4NH3+wxFt2BWvnQeTdDE1p1A9g0FqULOc2jQO0/2311SfLtXl6clj+wB3Yc297+xPHyh5wwLVe3NNoecR5aVdkCk7Q96hlSVJF7b+KM+gUHkEVXDUMArJSkrR+b0nVOf+W3Vs0XrV6H2z0uPOF9kaz9PPR0YvD+WkXPp/X637Oilp3wmLyg/PW10ooXPXkjd04JPlOvXLdkmXtvs7tWqbTq36s0SxMX7Hccc5AAAAAAAAiiLR5aaCA701akBjjRrQWJJ0NilTcecylJ2TLx9vD0WG+6tSqJ+To3ScGk/NVfSMYYpfPEkefsGqOeaLgrLomU8opF1fhbTvq5OzR+jijhXKTY7X0dd7yMMvSE3nHrvGmUuv6pGBev3p1pIks9ms6DNpSk7JVm6eSX6+nqpVJdAtnsEG4Oosuff512mtmM9fkHdEbR15pZskyeDpo0ZTtyk/46KOT+kvU06mDAajPIPDVfeV5U7d2nbz+Lnq9OEoNRvTT7lpmdr47EcFZbdMHanTq3co+dApdft0nAweRhkMUurJBG185p8VTb7h5a5Zfi1hLWrr4GfFb1t3rdhspayP31ruOAcAAAAAAEBhBrP5Rp7mA9hHZp7U2cUef7Ghl+RH6rjUq3r7Ap1JyFCViv6KWTPQ2eHAwVzp/Xf3+2BuRpa+qTPYvgHZmE9osLp8NFarB7xV4nMMipovL3/fMj9+S7j7HAAAAAAAoKxLT09XYGCgJCktLU0BAQElOg/7lAEAAFggOynlhpI8rq6sjx8AAAAAAJROJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBL4nHZKJV8PS490N2V+Ho4OwIA7sTd74Oefj4aFDXffsGUUp5+PgX/Lsvjt4S7zwEAAAAAAGAbJLpQKhkMkh9XJ4AyzN3vgwaDQV7+vs4Ow2nK+vgt4e5zAAAAAAAA2AZbFwIAAAAAAAAAAMAlkegCAAAAAAAAAACASyLRBQAAAAAAAAAAAJdEogsAAAAAAAAAAAAuiUQXAAAAAAAAAAAAXBKJLgAAAAAAAAAAALgkEl0AAAAAAAAAAABwSSS6AAAAAAAAAAAA4JJIdAEAAAAAAAAAAMAlkegCAAAAAAAAAACASyLRBQAAAAAAAAAAAJdEogsAAAAAAAAAAAAuiUQXAAAAAAAAAAAAXBKJLgAAAAAAAAAAALgkEl0AAAAAAAAAAABwSSS6AAAAAAAAAAAA4JJIdAEAAAAAAAAAAMAlkegCAAAAAAAAAACAS/J0dgAAgKLMZikr39lRWMfXQzIYnB0FAHfh7vdBs9msvMxs+wZUCnn6+chgMJT58VvC3ecAAAAAANgKiS4AKIWy8qXOK50dhXU29JL8+L8KABtx9/tgXma2vqkz2L4BlUKDoubLy9+3zI/fEu4+BwAAAADAVti6EAAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJPCoYgFszm82KOZuuHfsTdSouTanpuZKkjMw87Tt6Xg1rhcjTk5y/O8vPN+lw9EXtOpiktIxL739aRq6W/HZCbRqHqUblQBkMBidHCQAAAAAAAKAkSHQBcEs7DyRq9sKD+nn9KZ1LzipSnpyao2b3/yA/Xw91bh2hkf0bqk+X6iS93ER+vkmrNsboP98f0vrtcUrPzCtUfjEtVw+8sE6SFBrio96dq+nphxqpXbNwkl4AAAAAAACACyHRBcCtbNwVrxem/qk/952zqH5mVr5Wbz6j1ZvPqGqlAL38ZAsNf6ChjEaSHa7IbDbry5+O6o3/7NbJ2DSL2iRdyNa8n49p3s/H1LpRqN57vp1ua1/ZzpECAAAAAAAAsAUSXQDcQkZmnl6euUPTv9kvs7lk54g5m66n/m+zFv16Qp+90Vm1qgbZNkgHSN27Xkde6VbomNE3QD6V6yu06xBVvPsZGTzc89YfE5+uJ9/YqF82xZT4HLsOJqn7k6v01IMNNeX5dgr097JhhAAcIXHtlzo541HVGPOFwroPK1KefTZa+4bXUuhtQ1Vz7JcOj88ZIjo00V1L3yh0LDc9UynH4xS1+A8d/GylzPkmJ0Vnf2Vt/MwBAAAAAGWNe37aCaBMiU1IV4+Rv2rfsWSbnO/37XFq/sAP+mn67S67sqf8rQNVrk0vyWxWbnK8ktbPU8znzysr5qBqjPrY2eHZ3KbdZ3X36NW6kJpjk/PNWXRIa7fF6beP71L1yECbnBMAnO340g2KWbdLMhjkFx6iuv27qN0bw1SuXhVtGTfX2eHZXVkfPwAAAAC4Kx5GA8ClxZ3LUJfHVtosyXVZWkaueo1arTVbz9j0vI7iX7u1QrsOVmi3IYroN04Np2yVV2hVJf72qXIvWrato6vYuCted474xWZJrsuOnLyozsOW61ScZVsgAkBpl7T3hI4v2aDji//Q/jnLtKL3S0o/k6j6D3eXT2iws8Ozu7I+fgAAAABwVyS6ALisrOw83fXUrzp2KsUu58/Oyde9Y9do39Hzdjm/I3n4Biigwc2S2azs+Chnh2MzR09eVO/Rq5WRlWeX85+KS9edI35RekauXc4PAM6Ul5mtc7uOymA0KrhGJWeH43BlffwAAAAA4C5IdAFwWRNn79LfR6xLQm1f0Fenfxug7Qv6WlQ/PTNPw17doNxc1392x+UEl2dgBSdHYhv5+SY9+toGpaRZnoSy9v2XpMPRF/Xv6TtKEiIAlHpBNS8leLIvlM3Vq2V9/AAAAADgDnhGFwCXtO3vBE39ap/V7SLC/FW1UoBVbXYeSNSUL/7Wy8NbWt2fs5iyM5SXkiiz2ay85Hid++U/yjy+W/712sm3Sn1nh2cTM789oE27z1rVpiTvvyTNWnBA999eU11virS6LQCUFp5+3vKpEFTwjKoGj9yp0Ga1dW7XUaUcj3N2eHZX1scPAAAAAO6qTCS6EhMTNWXKFC1dulQxMTEKDw9Xv379NGnSJI0ZM0aff/65Zs6cqdGjRzs7VAAWmjB9h0wms8P6e/vTPXp6QCOVD/ZxWJ83Im7BRMUtmFjoWEiHfqo+4iMnRWRb6Rm5ev0/ux3a54vTtmvbt5avBCtNcnNNWrb+pL7/7YQSk7Pl7WVUo9ohGvFAQ9WvWc7Z4cEBLqbmaN7PR7V2W6xS03MV4OelTq0q6bH76iusvK+zw4ODtBo/QK3GDyh0LHrFVm2b8KmTInKssj5+AAAAAHBXbp/o2rNnj3r27Kn4+HgFBASocePGio2N1YwZMxQVFaXz5y9te9ayZUvnBgrAYgePX9Dv2x37zevMrHzNW3ZUYwc3dWi/JRXWY7jK39Jf5vxcZZ7cq/ilk5WTGCOD1z8faKfu36Bjb/Ys0taclyOzKV9tfsh3ZMhW+XZllC6m5ji0zz/3ndPOA4lq0zjMof3eqC9+PKJXZu1UbEJGoeOrNsbog3n7dEeHyvr09c6qHhnopAhhT3l5Jk2YvkNzFh1UembhZ9n9/N9Tem32Lg3tW1cfjr9Zfr5u/2vh/zAU/Nf5jYuUsHyGMk/skWdwmJp9Eu28sOzo8NerFf3zFhm9PFW+YXU1HXWvAiJDlZ/t2Pups5T18RdV9uYAAAAAAPfk1s/oSkxMVJ8+fRQfH68XXnhBcXFx2rVrl+Lj4zV58mStWLFC27dvl8FgUPPmzZ0dLgALzVl00Cn9zl54SGaz41aR3QifyHoKbnm7yrXpqYh+41X35Z+VcWy7Ts0ZWVAnqElntVqYVuifJrOPyDMoTJUffsuJ0V/fbCddA3MWOqffknrn07/02GsbiiS5rvTblljdPPhnHTuV4sDI4Ai5uSb1e26tpn61t0iS67LsnHx9vPiw7hzxizKuUsfVGL39JF3awrU4puz0S/V8/AqOeQaWV8Veo1V58Nv2D9CJUo7HK27DXp1Zt1v7Zv+ktUPfVVjLOuoweYSzQ3OIsjJ+5gAAAACAssatE11jxoxRTEyMRo8eralTpyooKKigbPz48WrRooXy8vJUs2ZNBQcHOzFSANZYtTHGKf0eOXlRJ86kOqXvGxXY6BZV6DpEyRsXKu3g5mLrmHKzdfzdfgps3EmR/V9ycISWi0/M0J5D553S96pNzrn2SuKHtdF6acYOi+rGnctQr1G/Kjun9K7ig/X+PX27fv7vKYvqbtx9ViPe2mjniBzDp1ItSVJWTPGJ6azTl457V6xVcCy45R2qcOsA+YTXsH+Apci5HYcVtfgP1bq3o8LbNnB2OA7nruNnDgAAAAAoa9w20XXw4EEtXLhQYWFheuedd4qt06ZNG0lSixYtCo4tXrxY999/v2rUqCF/f381bNhQL7/8stLS0hwSN4Bru5ia49SVJzsPJDmt7xsV+dCrktFDsd++Vmz5qdkjZcrNUs2xXzo2MCvtPJDotL5jEzIUd+7qq6NKk3c/+9uq+kdPpmjpmmj7BAOHS07Jtnr16zcrohTtosn8K/nXaS2vsGpK3vCdcpJiC5WZcnOUsHKWZDAopJ1rPnPP1v6atlimvHy1GveQs0NxCnccP3MAAAAAQFnjtomuBQsWyGQyadCgQQoMLP65I35+l7bruDLRNXXqVHl4eGjSpElatWqVnnrqKc2ZM0d33XWXTCaTQ2IHcHW7DjovySFJO/afc2r/N8I3sq4qdB6g1L/XKnX/hkJlCT/P0MUdy1Vnwo8y+vg7KULLODvZ6MxEm6V2HkjUn/usv1Znu9jWjLi6r346qsws61bomc3Sx4sP2ykixzF4eKrGU3OUn3FRB8Y2V8xXL+rcrx8rbuFbOvh8a6Xt+68i7p8g36rus4LnRqRGx+vET5tU+dbmqti+kbPDcTh3HD9zAAAAAEBZ47aJrnXr1kmSunXrdtU6MTGXtqC6MtH1888/a9GiRRo0aJC6dOmisWPHatasWdq0aZM2bnSPLX0AVxZzNt3J/bvGap6riej/smQ0FlrVlfr374qZ96Jqj/9ePpVqOi84Czn/GnBu/5b4bcuZErXbuPusMrPc4zlNZd1vW0t2DZS0XWlTrm1vNXh3k4KadVPSuq90au4onf3pfXkGh6vWuIWqMoTnEF3p7+lLZMp3r1VN1nDH8TMHAAAAAJQlBrPZbHZ2EPZQrVo1xcTEaPfu3WrZsmWR8ry8PEVGRioxMVFRUVGqXbv2Vc915MgRNWjQQN9++60GDhxodSxt27ZVfHy81e0AFJXu01oXAu4ptmz7gr6KCLv2aqSIMD95ehiVl29SfGLmVevFJ2bopoHLihz3zdmv0LRF1gVdAgZvP1X68Kjd+8k+G61D/7pJkQMmqmLv0Td0rrPP1pM55+qvqa2cD7hPmT4tiy273jVg6fsvXf0aKJe+SoHZW62K2dEu+nVXmt+tJWobkTxFHubSn8zDtZ0Lekw5XtY/a8cjP1ERF2faISLrOeo+eKULW3/U6c+eVbNPokvU3pr7oJfZqImmdiXqx5W9YfxTuQZTmR+/Jdx9DgAAAACAyWRSXFycJKlly5bavXt3ic7jacugSpP09Esf0mVmFv+H1sKFC5WYmKigoCDVqlWr2DqX/f7775KkRo1Ktp1JfHy8zpxxj29IA04XUl0KKL4oIsxfVStdpfB/eHoYLa57payMNIfMZ6OPvyrZuQ9Tdoai3rlX5dr1veEklyTFxsbKlO2AFW9VUiSf4ossvQZK+v5L0sULSbp4vpTf08MTJb+SNY0/Ey2Zc2waDpygZorkZX2z/Jz0UvM7iyPug5eZ8/Nlzs+VOT9XMptlysmSDAYZva5ys7kKa+6D3gYPOWyApUhsXKxyzPllfvyWcPc5AAAAAABXOnv2bInbum2iKyIiQsnJydq1a5c6dOhQqCwuLk7jxo2TJDVv3lwGg+Gq5zlz5oxeffVV3XXXXcWuDLM0FgC2keXlpas9oSk+8fofrFizoqs4Ab4mhVSpYkmoN8TgXcIshRWSNy9R5om/lHXmiJI3LixS3mTWAXmHV7f4fJUrV3bIt7hT/MxKvUrZ9a4Ba1d0FadCsKf8/Ox/DdyIbM+LSpQuPXTpGv+P+1+eefGqWDlclrdAaZXice6q8+RaAgzxDrnHWcIR98HLktZ/rZMzHi34eXd/P3lXrGH1qhZr7oNeZqNUBh//WjmycsGKrrI8fku4+xwAAAAAgCtXdFWqVPKv+rnt1oVjxozRzJkzVa1aNa1Zs0b169eXJG3fvl1DhgzR8ePHlZubq1GjRmnWrFnFniMtLU1du3ZVfHy8tm/frsjISEcOAUAxzp3PVMWu35a4/enfBqhqpQDFnE1XtTu+s7r915O6aPDddUvcv6Uy86TOK+3ejU1t6CX5OeDrE0vXROv+59eWqO2Nvv+SFP3Lg6pROahEbR3FbDar8b1LdOjERava/efVjhrRv6GdooIjxSakq0aPhcrLt+7XvH1L+6lJ3fJ2iso67n4fzM3I0jd1Bts3oFJoUNR8efn7lvnxW8Ld5wAAAAAApKenKzAwUNKlfExAQMl2YDLaMqjSZPz48QoNDdXp06fVpEkTNWvWTPXq1VO7du1Uu3Zt3XbbbZKkFi1aFNs+MzNTffr00YkTJ7R69WqSXEApEV7BT9UiSnbDs4U2jcOc1jcuadM41Gl9h4b4qHpkoNP6t5TBYNDzQ5pa1Sa8vK8G9a5jp4jgaJUrBmhgT+vezx63VCk1SS4AAAAAAABLuW2iq2rVqtqwYYN69+4tX19fRUdHq0KFCpo7d65WrFihI0eOSCo+0ZWbm6sHHnhAO3bs0KpVq9S4cWNHhw/gGrq3r+yUfqtU9Ff9GsFO6Rv/qB4ZqLrVnfM+dG9f+Zrb3ZYmT9zfQMMfaGBR3QA/T/088w4F+pfgoU4otWa/covaNrEsOV+/Rjl9PamLnSMCAAAAAACwPbdNdElSo0aNtHz5cqWmpio1NVXbtm3T8OHDlZ6erujoaBmNRjVtWvgb7yaTSYMGDdLatWv1008/qV27dk6KHsDVPPVgI6f0O6J/Q3l4uPVt0yUYDAaNdNL2es669krCYDBozisd9eqIlvLx9rhqvXo1gvXHF73VvnlFB0YHRwj099K6T3vq/ttrXrPeHR0qa+NXvRVewXHPAwIAAAAAALCVMvmJ7f79+2U2m1WvXj35+/sXKhs1apS+//57Pffcc/L399fWrVsL/jl37pyTIgZwpXbNwi1epWArnp4GPdHPstUxsL9H760vX5+rJ2/soVHtEHVpG+HQPm+U0WjQm6Pa6MyaAXrv+XZq1zRcHsZLK9J8fTz063966NBPD6g1W3K6raAAby3+oLuO/PyAnn+kqZrXr1BwDfj7euqvxfdp9dyeJLkAAAAAAIDLKpOJrr1790oqftvCVatWSZLeffdddejQodA/K1ascGicAK7uzadbO7S/px9spMhw/+tXhENUKOej5wZb9wyqG/Xm061dZtvC/xUa4qt/DWumbd/2VUTYpYRGaDkf3XlLVRmNrjkmWKdejXJ6/1/t9dfi+wqugfLB3mpev4KTIwMAAAAAALgxns4OwBmuleiKjo52cDQASqJn52oadk89ffnTUbv3VadakCaNaWv3fmCdiU+10k/rT+pA1AW799X/zlp64M5adu8HAK4nqFaEOk9/Rj4VgpSbmqGNY2fpwpGYIvUe+HO28rNzlZ+VI0n6e+YPil622eJySar7UDd1+nCU1j06Wad+2W6z2G5EWR8/AAAAAKAoEl0AXNa0ce21dlusTsenW9wmPjGj0L+vx8PDoM/f6KwAf68SxVhaZMUeVfSHQ5WXmigP/3KqOfZL+VVvUqTeqY/H6OL2ZcpJOKlG03bLv3ZLxwdrIR9vD3351q3q+Mhy5eaZLGpj7fsvSZVC/fTRSx1KFCMA57Lk3mfKydLxqQOUdfqAjN5+8ixXUdWfmiPfyLqSpCMT71RecrxkNMrDL0jVnpwh/9qtnDEcSdItU0boyPzfdGzRetXofbM6TR+t5T3/XWzd/46cpvP7o696rmuVB1YNV/1Btythx2G7xFZSZX381nLHOQAAAAAA/6tMbl24bt06mc1m9e7d29mhALgBIcE++vU/dymsvK/FbW4auEzV7vhONw1cZlH9z9/orFvbRpY0xFLj1OwRCusxXE3nHFFEvxcVPX1YsfXKd3xADd7ZKO+KNRwbYAnd1DRc37zb1eLt96x9/8sFeeuXOT14fhHgoiy994XfOVxNZh9W4+l/KaT9PTo564mCstrjFqnxjL/V+MM9qtj3+auewxF8Q4MV2qKOopb8IUk6uWKrAiqHKqimjZ8faDDolvef0rZXPpMpJ6/UxFbWx18S7jYHAAAAAKA4ZTLRBcB9NKodovWf9bL587M8PAya9/ateqRvPZue1xlyLyQo/dgOhXYdLEkKueV+5SSeVlbcsSJ1g5rcKu+wqo4O8Yb0v7OWFk7pJi9P2/4vLay8r9Z90lMtG4ba9LwAHMPSe5/R21fl2vYqeAZfQP2blZMQXVDuGRhS8N/5GRclJz6rL6BKmDLPJsuc/88q1rQziQqoElZs/U4zntE9697XLe8/JZ/QYIvLm4zoo4Tth5T093G7xVYSZX381nLHOQAAAAAAxSmTWxcCcC9N6pbXroX3aORbm/TT76du+HwNapbTF291VocWlWwQnfPlJJ6WV/lIGTwu3fINBoO8w6sr59ypgm2JXN0Dd9ZSrapBGvbKH9p3LPmGz3dXx6r6eGJHVYsItEF0AJyhpPe+hOXTFdLunkLHTkx7RKl7f5ck1Xttpd1i7vXz2wquXfwq4mV3jLPqXKvue03pZxJl8PRQ6xcHqvP00VozeNJ1y0MaVFON3u216r7XbmgsJVHWx29rrjgHAAAAAKAkSHQBcAsRYf764cPbtWDlcf3rgz8Vd87yZzBd5uvjoWcGNtYbT7eWn6/r3B4Pje+grNijxZY1nrbbwdE4T5vGYdrx3T16+5M9ev+rfcrIsmy7qStVrOCrd8bepEfvrVfwzXYApZM97n1x309Sdtwx1XhrbaHjtZ6bJ0lKWveVYua9aLcP+lf2efma5absXPlVKi+Dh7Fg5VBglTCln0ksUvfyMXNevg58slz9Ns20qLxS+0YKrFZR92++9LNfeIg6vDdSfhXL6/C81VeNLf1MosWxXU1ZH7+13HEOAAAAAEBJuM4nuQBwHQaDQQ/3rqP+d9bST7+f1EcLD+q/O+JkNl+7Xb0awRrZv6GG3VNfFcr5OCZYG2o4Zcs1yw1ePspNjpM5P08GD0+ZzWblnDsl7/DqDorQcXy8PfTmqDZ64ZFmmvfzUc1ZdEgHj1+4brtOrSpp1IBG6nd7TXl7edg/UAA3zNb3vvgfpurClqWq9+YaGX2K3w439LahOjlnpPJSkuQZ7PhtTbOSUnR+7wnVuf9WHVu0XjV636z0uPNKjY4vVM/Tz0dGLw/lpFz60ket+zopad8Ji8oPz1tdKKFz15I3dOCT5Tr1y3ZJl7b7O7Vqm06t+rNEsTF+2ymLcwAAAAAAikOiC4Db8fIy6oE7a+mBO2spNT1Huw8maefBJJ2MTVNWTr68vYwKC/FV60ahatM4zObP9yptvEIqyr9OayWtn6+w7sN0YfMSeYdWdZttC4tTLshbzzzcRM883ERnkzK180Cidh1MVML5LOXkmuTr7aFqEQFq0zhMrRqGqlyQt7NDBmBj1tz7zv70gZI3LFC9N9cUeh5RXtoFmbIz5B1aWZJ0YeuP8gwKlUdQBUcNo4jN4+eq04ej1GxMP+WmZWrjsx8VlN0ydaROr96h5EOn1O3TcTJ4GGUwSKknE7TxmX9WNPmGl7tm+bWEtaitg58Vv5rnWrHZSlkfvzXcdQ4AAAAAwP8ymM3XW+sAAHC0zDypsw13BcqKOazoGcOUl5okD79g1RzzhfxqNpMkRc98QiHt+iqkfV+dnD1CF3esUG5y/KUPsvyC1HTuseuc/ZINvSQ/vj5R6lW9fYHOJGSoSkV/xawZ6Oxw4ASucg3Y4j5oyb3Pv05r7X28mrwjasvDL0iSZPD0UaOp25SdcFLHp/SXKSdTBoNRnsHhqvroVPnXbllsf9bcB3MzsvRNncE3NkAH8wkNVpePxmr1gLdKfI5BUfPl5e9b5sdvCXefAwAAAACQnp6uwMBASVJaWpoCAgJKdB4SXQBQCtk60eUIfLjlGlwlyQH7cZVrwN3vg66Y6LEFV0502YKjE12Oxu8CAAAAAKxhq0SX0ZZBAQAAAAAAAAAAAI5CogsAAAAAAAAAAAAuiUQXAAAAAAAAAAAAXBI7qANAKeTrcek5F67E18PZEQBwJ+5+H/T089GgqPn2C6aU8vTzKfh3WR6/Jdx9DgAAAACArZDoAoBSyGDgYe4AyjZ3vw8aDAZ5+fs6OwynKevjt4S7zwEAAAAAsBW2LgQAAAAAAAAAAIBLItEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl+Tp7AAAAAD+l9ksZeU7Owrr+HpIBoOzowDgLtz9Pmg2m5WXmW3fgEohTz8fGQyGMj9+S7j7HAAAAIDtkOgCAAClTla+1Hmls6OwzoZekh+/WQGwEXe/D+ZlZuubOoPtG1ApNChqvrz8fcv8+C3h7nMAAAAAtsPWhQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBL4jGpAACUAWazWemZeco3mQt+RtliMpmVmp7LNQAAAAAAANwKiS4AANzU3iPntfi3aO04cE47DyTpbFJmQVnsuUw1v3+p2jQOU8eWlfTQXbUUFODtxGhhayaTWWu2ntEvm2K080CSdh9KUmp6bkF53LlMdXzkZ7VuFKY7bq6sXp2rydOTxf4AAAAAAMC1kOgCAMCNmExmfb/6hGYtOKCNu89es+7eo8naezRZX/50VM9P3aZH+tTV2EFNVK9GOQdFC3tIy8jVx4sPac6iQzp2KuWq9cySNu9J0OY9CZq14ICqRQRoxAMN9fSARiof7OO4gAEAAAAAAG4AiS4AANzE8ZgUPT5xo9Zvj7O6bWp6rj767qA+XXpEbz7dWi8MbSoPD9db3ZO6d72OvNKt0DGjb4B8KtdXaNchqnj3MzJ4uO+vP+u3x+mx1zboxJlUq9uejk/XK7N2atZ3B/Txa53Up2t1O0QIwN4S136pkzMeVY0xXyis+7Ai5dlno7VveC2F3jZUNcd+6fD4nCGiQxPdtfSNQsdy0zOVcjxOUYv/0MHPVsqcb3JSdPZX1sbPHAAAACh73PeTHgAAypCvfjqqUZM2Kz0z74bOk52Trxc/3K6la6O1+P3uqhoRYKMIHav8rQNVrk0vyWxWbnK8ktbPU8znzysr5qBqjPrY2eHZXH6+Sf96/099OH//DZ8rPjFTfcf8pqF962nuax3l4+1hgwgBwPmOL92gmHW7JINBfuEhqtu/i9q9MUzl6lXRlnFznR2e3ZX18QMAAMB9ud5XtQEAQCEffr1Pw17944aTXFfatvecOg1bruMxV9/6rjTzr91aoV0HK7TbEEX0G6eGU7bKK7SqEn/7VLkXzzk7PJvKyzPp4X+vt0mS60pfLTuqPs+sVmaW7a4rAHCmpL0ndHzJBh1f/If2z1mmFb1fUvqZRNV/uLt8QoOdHZ7dlfXxAwAAwH2R6AIAwIV9uuSwnntvm13OfTI2TXcM/0XxiRl2Ob8jefgGKKDBzZLZrOz4KGeHYzNms1lPvL5Ri349YZfz/7YlVv3/tU55ee6zpRUAXJaXma1zu47KYDQquEYlZ4fjcGV9/AAAAHAfJLoAAHBR+48la9SkzXbt43hMqp54faPMZrNd+3GEywkuz8AKTo7Edr5adlRfLTtq1z5W/HFaH8zbZ9c+AMBZgmpeSvBkX0hzciTOUdbHDwAAAPfAM7oAAHBBeXkmDXv1D+XkWrfSZvuCvooI81d8YoZuGrjMojYr/jitr38+pkf61itJqE5hys5QXkqizGaz8pLjde6X/yjz+G7512sn3yr1nR2eTZw5m65np1i/mq8k18Brs3epT9fqalQ7xOr+AKC08PTzlk+FoIJnVDV45E6FNqutc7uOKuV4nLPDs7uyPn4AAAC4rzKR6EpMTNSUKVO0dOlSxcTEKDw8XP369dOkSZM0ZswYff7555o5c6ZGjx7t7FABALDIf74/pB37E61uFxHmr6qVAqxuN3byVt17Ww0FB3pb3dYZ4hZMVNyCiYWOhXTop+ojPnJSRLb3/NRtupiaY3W7klwD2Tn5eur/Nmn9572t7q+0yM83acOus4pNyJCHh0G1qgTppqZhMhgMzg4NDpKWkav/7ohTckqO/Hw81KJBqOpW57lEZUmr8QPUavyAQseiV2zVtgmfOikixyrr4wcAoKzLzTXpj53xOpuUKU9Pg+pUC1brRqH8TVSGXEzN0R8743UxLUf+vp5q3ShUNasEOTssm3D7RNeePXvUs2dPxcfHKyAgQI0bN1ZsbKxmzJihqKgonT9/XpLUsmVL5wYKAICFTCazZny736F9XkjN0dfLj2nUgMYO7bekwnoMV/lb+sucn6vMk3sVv3SychJjZPDyLaiTun+Djr3Zs0hbc16OzKZ8tfkh35EhWyUmPl2Lf4t2aJ//3RGvvw4nqUWDUIf2e6MupuZo9sKD+s/3B3UqLr1QWdO65fX0Q430eL/68vbycFKEsLfjMSma9vV+fbXsqFLTcwuV3dGhssY83ER3d6nupOic6Z8PNM5vXKSE5TOUeWKPPIPD1OyTaOeFZUeHv16t6J+3yOjlqfINq6vpqHsVEBmq/GzrvzTgisr6+Isqe3MAAFA2JV3I0qwFB/TxksOKTSj8DO5WDUP19EONNOyeevL05ClH7urwiQuaNn+/5i8/pvTMvILjBoPUq3M1jR3URHd0qOLECG+cW1+9iYmJ6tOnj+Lj4/XCCy8oLi5Ou3btUnx8vCZPnqwVK1Zo+/btMhgMat68ubPDBQDAImu3xeroyRSH9zt74UGXeVaXT2Q9Bbe8XeXa9FREv/Gq+/LPyji2XafmjCyoE9Sks1otTCv0T5PZR+QZFKbKD7/lxOiv7+Mlh2QyOf69mLPokMP7vBEx8enq+MjPemnGjiJJLknadyxZT7+9WT2f+lUpaWX1g1739seOOLV+8CfNWnCgSJJLkn7bEqs+z/ymf03d5jL3t+sxevtJurSFa3FM2ZfmgtHHr+CYZ2B5Vew1WpUHv23/AJ0o5Xi84jbs1Zl1u7Vv9k9aO/RdhbWsow6TRzg7NIcoK+NnDgAA8I+o0ylqP2iZXp+zu0iSS5J2H0rSk29s1L3PrlHGFQkQuI9fNsaozYCfNPf7Q4WSXJJkNl96XMWdI37R67N3ufTfRG6d6BozZoxiYmI0evRoTZ06VUFB/yzDGz9+vFq0aKG8vDzVrFlTwcFsWwIAcA3frIhySr8Hoi5o98Ekp/R9owIb3aIKXYcoeeNCpR3cXGwdU262jr/bT4GNOymy/0sOjtA6zroGvl0Zpfx8654L5ywXU3PU46lftD/qwnXrrvszTv3/tU55ea4xNljmr8NJ6j16tS5akMR8f94+vTFntwOisj+fSrUkSVkxB4stzzp96bh3xVoFx4Jb3qEKtw6QT3gN+wdYipzbcVhRi/9QrXs7KrxtA2eH43DuOn7mAAAAl5w7n6k7R/yiqNOp16274o/TGvzSeqd8oRL2s/WvBN333JoiCa7ivPGf3fpg3j4HRGUfbpvoOnjwoBYuXKiwsDC98847xdZp06aNJKlFixYFxzZs2KDbb79dkZGR8vHxUdWqVfXQQw/p4MHif0kGAMDR/tx3zml97zhg/XPBSovIh16VjB6K/fa1YstPzR4pU26Wao790rGBWSnpQpaOx1z/DxV7SE3P1REnrCYsiZkL9uuABUmuy1ZvPqMf1p20X0BwuPHTtistw/Jvpb718R7FxBdd+edq/Ou0lldYNSVv+E45SbGFyky5OUpYOUsyGBTSrq+TIixd/pq2WKa8fLUa95CzQ3EKdxw/cwAAgEve+3KvVX87/rD2pH7bcsaOEcHRnntvq7KyLX8sw8szdyrpQpYdI7Ift010LViwQCaTSYMGDVJgYGCxdfz8Lm1VcGWiKzk5Wc2aNdOMGTO0evVqTZ48Wfv371eHDh0UExPjkNgBALiatIxcHTpxwWn973ThRJdvZF1V6DxAqX+vVer+DYXKEn6eoYs7lqvOhB9l9PF3UoSWcfZ74Oz+LZGXZ9Lc7w9b3W72Qr7Y5C6Onryo1Zut+yPdZDLr4yWutT1ncQwenqrx1BzlZ1zUgbHNFfPVizr368eKW/iWDj7fWmn7/quI+yfIt6r7rOC5EanR8Trx0yZVvrW5KrZv5OxwHM4dx88cAABAyszK02c/HLG6HX8TuY9dBxK19W/rviidnZOvL348aqeI7MttE13r1q2TJHXr1u2qdS4nrq5MdPXt21fTpk1T//791aVLFw0aNEhLly7VxYsXtWTJEvsGDQDAdRyOvihnbplszQqZ0iii/8uS0VhoVVfq378rZt6Lqj3+e/lUqum84Czk7PfA2f1bYv2OOMWctX5lzvrtcToVl2aHiOBo85eXbHvPeT8fs3EkzlGubW81eHeTgpp1U9K6r3Rq7iid/el9eQaHq9a4haoyhOcQXenv6UtkynevVU3WcMfxMwcAAGXdqo0xOn8x2+p2y/84XaJ2KH2+Xl6yv23m/eyaiS6D2ZWfMHYN1apVU0xMjHbv3q2WLVsWKc/Ly1NkZKQSExMVFRWl2rVrX/VcSUlJCgsL06xZszRq1CirY2nbtq3i4+OtbgcAwP/K9qyhxODHii3bvqCvIsKuvRopIsxPnh5G5eWbFJ+YedV68YkZumngsiLHvfJiVTFlrnVBl4DB20+VPrT/L1fZZ6N16F83KXLARFXsPfqGznX22Xoy51z9NbWVVN9bleLfvdgyR1wDAVlbFZKxyrqgHSzDu4WSA/uVqG34xU/knc8qfleX7N9XGb5trG9ozlfl5DdlsH1IVnPUffBKF7b+qNOfPatmn0SXqL0190Evs1ETTe1K1I8re8P4p3INpjI/fku4+xwAAMCe0nza6WJA7xK1rXhhlrxMzntkAmzjfEB/Zfo0tbqdwZShyhcm2yGi4plMJsXFxUmSWrZsqd27S/bsZE9bBlWapKdf+hZvZmbxv2QuXLhQiYmJCgoKUq1atYqU5+fny2Qy6eTJk5owYYIiIiL04IMPliiW+Ph4nTnD/qYAABvw95eCiy+KCPNX1UoBFp3G08Nocd0r5ebmOuT/aUYff1Wycx+m7AxFvXOvyrXre8NJLkmKjY2VKTvDBpFdR/hF6Sq5LEdcA+lpqUqPK+W/14RUk4rfufq6zp1LkDJL+fhwfVXSJN8StDObFFtKfm93xH3wMnN+vsz5uTLn50pms0w5WZLBIKOXj1XnseY+6G3wkMMGWIrExsUqx5xf5sdvCXefAwAA2FWFC5L1f+5JkhIS4qVsFm24vGoZknW/ykiSzKZ8p+Uyzp49W+K2bpvoioiIUHJysnbt2qUOHToUKouLi9O4ceMkSc2bN5fBUPQ7m126dNGmTZskSXXr1tW6desUHh5e4lgAALCFHI9gXe17VfGJ1/9gxZrVPMXx9jQrvEoVS0K9IQZvP7v3kbx5iTJP/KWsM0eUvHFhkfImsw7IO7y6xeerXLmyQ77Fnebjq4tXKXPENRAU4K1gB1wDNyLb06BESTKbpWJ+z7sqs1kRod7yMJfu8eH6Un1zlVKCdp7mi6pUSq5vR9wHL0ta/7VOzni04Ofd/f3kXbGG1atarLkPepmNkmULe9xK5cjKBSu6yvL4LeHucwAAAHvK8jIrqSQNzfmKDPeXkb+JXN5Fn2yVZGN+L6WoogP/JrpyRVelSiX/mpPbbl04ZswYzZw5U9WqVdOaNWtUv359SdL27ds1ZMgQHT9+XLm5uRo1apRmzZpVpP3hw4d14cIFnThxQu+9954SEhK0adMmVa9u+QdeAADYWmZWnoI6zFN+fsn+9336twGqWilAMWfTVe2O76xuP2pAI8166ZYS9W2NzDyp80q7d2NTG3pJfg74CtHvf8bqtidKvnXgjV4D303ppofuuvqWz6WByWRWw3sW6+hJ61IdvW+tpuWz7rRTVHCkmPh01ey50Op75bvPttWLj7W4fkUHcPf7YG5Glr6pM9i+AZVCg6Lmy8vft8yP3xLuPgcAALCn3FyTavZcqNgE61YaD+xZW99O7manqOBIh09cUMN7lljdbvbLt+iphxrZIaLipaenKzDw0pYsaWlpCggo2VJEoy2DKk3Gjx+v0NBQnT59Wk2aNFGzZs1Ur149tWvXTrVr19Ztt90mSWrRovg/ZBs0aKD27dtrwIABWrt2rVJTUzVlyhRHDgEAgCL8fD3VtG55p/XfpnGY0/rGJa0bOfc9aNuk9F8DRqNBTz9o/S/moxz4yzzsq2pEgPp2te4Laj7eHnr8vgZ2iggAAABwHC8vo0Y80NDqdk/zN5HbaFArRLffXNmqNoH+nhp8dx07RWRfbpvoqlq1qjZs2KDevXvL19dX0dHRqlChgubOnasVK1boyJEjkq6e6LpSSEiI6tatq2PHjtk7bAAArqt9s5JtpevqfeOSckHealQ7xCl9h4b4qHbVIKf0ba2RDzZUx1aWb3vwcK866tGxqh0jgqNNfaGdKlaw/EFd08a1V1j5kjzYCwAAACh9nhvSRK0ahlpcf0R/6/6GQuk3498dFBLkbXH92S/foqAAy+uXJm6b6JKkRo0aafny5UpNTVVqaqq2bdum4cOHKz09XdHR0TIajWratOl1z5OQkKDDhw+rTh3XzGYCANzL0L71nNLvTU3D1LiO81aT4R9D+9Z1Ur/1in22aWnk6+Opn2feoVvbXP9ZqQ/3qqPP3+wso9E1xgbL1K4arDUf91TVStfe+sJgkD4Y196h23MAAAAA9hYU4K1f5vTQTU2vvyvHE/3qa9aEDi7z9x4s06h2iH77+K7rfgHQw8Ogua911JA+zvm8yRbK5O7R+/fvl9lsVv369eXv71+obPDgwapbt65atmypkJAQHT16VNOmTZOnp6eee+45J0UMAMA/OrSoqBYNKuivw+cd2i9bGJQej91bX699tEs5uSaH9juyv/VbXzhT+WAf/fbxXVr4y3HNWXRIW/5KKFR+V8eqeurBhrq7S3WSXG6qWf0K2vP9vfps6RHNWXRQ0bGFH8f82H31NeqhRmrNtqwAAABwQxVD/fTfz3trwarj+ui7A9p1MKlQed+u1fXUg43Uo2MVklxuqm2TcP29pJ8+WXJIc78/rJiz6QVlBknD+zfUqIcaqVn9Cs4L0gbcekXX1ezdu1dS8dsW3nzzzVq5cqUeffRR9ezZU++99546d+6sPXv2qG5d53x7GgCAKxkMBj0/5Porkm0pMtxfD/Wo7dA+cXXhFfz0SB/H/l7Sp0t11atRzqF92oK3l4eG9KmnzV/30dHl/RUW4iNJigj11ao5PdS3Ww2SXG4uNMRX4x9rrmMr+uuvxfcVXAORYX767I3OJLkAAADg1vx8PfXYffW147t7dHjZA1f8TeSnn2bcobs6VSXJ5eYqhfrpleGtdGLVg9q96N5/roEwP/3n1Y4un+SSyuiKrmslukaPHq3Ro0c7OiQAAKwypE9dfb38mNZsjXVIf3Nf7Sg/3zL5a0OpNfm5dlr+x2nFJ2bava+gAC/NeqmD3fuxt7rVg+Xj7SFJ8vAok9/3KtM8PIxqXr9CwTVAghMAAABlicFgUP2a5a74m4jfh8saT0+jWjYMdcu/icrkJ1bXSnQBAOAKDAaDPn29k5rd/4NS03MtbhefmFHo35YYcndd9ela3eoYS5Os2KOK/nCo8lIT5eFfTjXHfim/6k2K1Dv18Rhd3L5MOQkn1WjabvnXbun4YC1UoZyP5r7aUfeMXWNVu5JcAx/8q72qRwZa1Q8A57Pk3mfKydLxqQOUdfqAjN5+8ixXUdWfmiPfyEurRo9MvFN5yfGS0SgPvyBVe3KG/Gu3csZwJElBtSLUefoz8qkQpNzUDG0cO0sXjsQUqffAn7OVn52r/KwcSdLfM39Q9LLNFpdLUt2HuqnTh6O07tHJOvXLdpvFdqN4DSznjnMAAAAARZXJRNe6deucHQIAADesRuUgfT2pi+5/fq3y880Wtblp4DKr+mjVMFQzJ7j+Sp5Ts0corMdwhXUfpuRNixU9fZgavV/0A7vyHR9QRL/xOjyhkxOitF7fbjX04mPNNfnzvy1uY+018Oi99fR4v/rWhgagFLD03hd+53AFt+kpg8GghBWzdHLWE2rw9npJUu1xi+QZGCJJSt7yg6KnD1Pj6X85cBSF3TJlhI7M/03HFq1Xjd43q9P00Vre89/F1v3vyGk6vz/6que6Vnlg1XDVH3S7EnYctktsN4LXwHLuOAcAAABQFHu2AADgwu7pVkPzJ3WRp6ftl5u3bFhBv/6nh8oFedv83I6UeyFB6cd2KLTrYElSyC33KyfxtLLijhWpG9TkVnmHVXV0iDfknbFt9ezgoqvTbGHw3XX0ycRO7NcOuCBL731Gb1+Va9urYJ4H1L9ZOQnRBeWXP+CXpPyMi5IT7we+ocEKbVFHUUv+kCSdXLFVAZVDFVQzwrYdGQy65f2ntO2Vz2TKyStVsfEaWM4d5wAAAACKVyZXdAEA4E4G9Kyj8sE+GvbqHzZ7XtO9t9XQF292Vkiwj03O50w5iaflVT5SBo9Lv/YYDAZ5h1dXzrlTBdsSuTKDwaAPxrVXtYgATZi+Qzm5phs+p9Fo0ITHm+vNUW3cas9uoCwp6b0vYfl0hbS7p9CxE9MeUere3yVJ9V5bab+gryOgSpgyzybLnP/PfS7tTKICqoQpNTq+SP1OM56RwSCd231MOyd9o+ykFIvKm4zoo4Tth5T093G7xVZSvAaWc8c5AAAAgOKR6AIAwA306FhV+3+4X2Pe3aJvVkSV+DwVyvlo5r87aGCv2i6ziufQ+A7Kij1abFnjabsdHI1zGAwGPf9IM93VsaqGvfqHtu9LLPG5GtcJ0Zdv3aqbmobbMEIAtmaPe1/c95OUHXdMNd5aW+h4refmSZKS1n2lmHkv2u2D/l4/v63g2pHFli27Y5xV51p132tKP5Mog6eHWr84UJ2nj9aawZOuWx7SoJpq9G6vVfe9dkNjKSleA8u54xwAAABAyZDoAgDATVQo56P573TVyP4NNXvhQS3+LVq5eZat7qlROVAj+zfUE/0aKKy8r50jta2GU7Zcs9zg5aPc5DiZ8/Nk8PCU2WxWzrlT8g6v7qAIHadxnfLaPK+Plq6N1pxFh7R+e5zFbds1DdfTDzXSgJ615ePtYccoAdiCre998T9M1YUtS1XvzTUy+vgXWyf0tqE6OWek8lKS5BkcesNj+F8r+7x8zXJTdq78KpWXwcNYsGoosEqY0s8UTe5fPmbOy9eBT5ar36aZFpVXat9IgdUq6v7Nl372Cw9Rh/dGyq9ieR2et/qqsaWfSbQ4tmvhNbCcO84BAAAAlAyJLgAA3Eyn1hHq1DpC08ZnatnvJ7XzYJJ2HkjUkZMXlZmVL09Pg8oH+6hlgwpq0zhMHVtW0u03V5aHh3s+utMrpKL867RW0vr5Cus+TBc2L5F3aFW32LawOJ6eRj3Yo7Ye7FFbB6KS9evmM9p5IFE79ifqTEKGsnPy5e1lVESYn9o0DlObRmG6/ebKat04zNmhA7Aha+59Z3/6QMkbFqjem2sKPY8oL+2CTNkZ8g6tLEm6sPVHeQaFyiOogqOGUUhWUorO7z2hOvffqmOL1qtG75uVHne+yLZ4nn4+Mnp5KCclQ5JU675OStp3wqLyw/NWF0rm3LXkDR34ZLlO/bJd0qWt/k6t2qZTq/4sUWy8Bo7jjnMAAAAAxSPRBQCAm6oU6qcnH2ioJ50dSClQ46m5ip4xTPGLJ8nDL1g1x3xRUBY98wmFtOurkPZ9dXL2CF3csUK5yfE6+noPefgFqencY9c4c+nWuE55Na5T3tlhAHASS+59/nVaK+bzF+QdUVtHXukmSTJ4+qjR1G3Kz7io41P6y5STKYPBKM/gcNV9ZblTt7bdPH6uOn04Ss3G9FNuWqY2PvtRQdktU0fq9OodSj50St0+HSeDh1EGg5R6MkEbn/lnNZNveLlrll9LWIvaOvhZ8dvWXSs2W+I1sJw7zgEAAAAUZTCbzWZnBwEAAHClzDyps4s9/mJDL8mPrxCVelVvX6AzCRmqUtFfMWsGOjscOIGrXAPufh/MzcjSN3UG2zcgG/MJDVaXj8Zq9YC3SnyOQVHz5eXv65Ljl278Nbg8fku4+xwAAMBZXOX3YdhPaboG0tPTFRgYKElKS0tTQEBAic7jnnsUAQAAAABgQ9lJKTeU5HIHvAYAAAAojUh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl8RjUgEAQKnj63Hpge6uxNfD2REAcCfufh/09PPRoKj59gumlPL08yn4d1kevyXcfQ4AAADAdkh0AQCAUsdgkPz4LQVAGebu90GDwSAvf19nh+E0ZX38lnD3OQAAAADbYetCAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCQSXQAAAAAAAAAAAHBJJLoAAAAAAAAAAADgkkh0AQAAAAAAAAAAwCWR6AIAAAAAAAAAAIBLItEFAAAAAAAAAAAAl0SiCwAAAAAAAAAAAC6JRBcAAAAAAAAAAABcEokuAAAAAAAAAAAAuCRPZwcAAAAAoDCzWcrKd3YU1vH1kAwGZ0cBwF24+33QbDYrLzPbvgGVQp5+PjIYDGV2/NI/r8H1uPscAIDr4T4Ia5DoAgAAAEqZrHyp80pnR2GdDb0kP/66AGAj7n4fzMvM1jd1Bts3oFJoUNR8efn7ltnxS/+8Btfj7nMAAK6H+yCswdaFAAAAAAAAAAAAcEkkugAAAAAAAAAAAOCSSHQBAAAAAAAAAADAJZHoAgAAAAAAAAAAgEsi0QUAAAAAAAAAAACX5OnsAAAAAAB7iU/M0I79idp5IFEHT1xQ0oUsSdL5i9l697O/1LZJmNo0DlP5YB8nRwp7MJvNOnYqRTsPJGrngSQdj0lV4v+/BpJTsvXRdwfUplGYWjasIF8f/jQCAACA+zlzNl07Dlz6m+hw9MVCfxO998XfatP40t9E5YK8nRwp7MFkMuvIyYv//2+iRJ2MTS/0N9F/Fh1Um8Zhal6/gny8PZwcbcnx1xwAAADcSl6eScvWn9LshQe19v+xd9/xUdT5H8ffm94pSSCBAKGE3puAgKCiAoqKoiii2EARQc8Dz4btLCg2RBTPdlgQRVQE8RQBARWkKiVIDRCSABsCpJfd/f3BTxRJYHezu5PZvJ6PB487d+b7/X42O1tm3jPfWZ1R7jqFxTY98MpaSVJgoEVX9G+ku4a3Ur9uibJYLL4sF15wPK9E7y/YqRlzUrV119Fy1ykosmnc0z9LkmKignXTkBTdeU0rtWpS03eFAgAAAF5QUmrT59/v1Wsfb9WK9QfLXaew2KZJL62RJAUHBejqAckae20rndupLvtEfiDneLHe+3KHXv8kVTv2Hi93nYIim+7890+SpFoxIbr5iua685pWatYwxpelegRBFwAAAPzG/35M15gnf9TejDyn29hsDn22OE2fLU5Tp5axevvx3urUKs6LVcJb7HaHXv1oix6evl55BaVOtzueV6pXP9qqVz/aqqsuTNZrD/VS3dhwL1YKAAAAeMeXS/dq7FM/KeNQgdNtSsvsmr1ot2Yv2q0e7eP11mN91KZZLS9WCW8pK7Nr6n836YmZG1RYZHO6Xc7xEr04a7NenLVZIwY31Sv391BszTAvVupZBF0AAAAwveN5Jbpv6mq9NW97pfrZsC1b3UfM1wO3dtAjozspONhct7TN3bRM2x/uf8pjAWGRCq3XXLH9RqrOpXfLEuifuwA79x3XzY8s18oN5Z+x6qzPFqdp6ZpMvfZgTw0f2NRD1QHwFev372nvtJvVaPy7irtg1GnLiw+mafPoxoo9/yYlT3jP5/UZIaFnG10y7/FTHivNL9Tx3ZnaNXe5Ut/+Wg6b3aDqvK+6PX/eA0D1deRYse5+5md99PWuSvWz6rfD6nztF3rszs6adHM7BQayT2QWW3flaNQjy7Vms7VS/Xy4cJcWr8rQzMnn6vL+jTxUnXf55ysKAACAauNQdqEuvvMbbdx2xCP9lZU59OTMjVq7xaq5L1ygiHDz/WSu1fc61egySHI4VJqTpexls5T+zj9UlJ6qRne9aXR5HvfLpsMaOPZ/OnKs2CP9HTlWrOvuX6atu4/q8bGdmboFgF/YPW+F0peslywWhcfXVLNh56n746NUI6W+fp440+jyvK66P38A/i09K18DxizStj3HPNJfSaldD05bq/WpVn3wTD9T3rupuu0T/bA2U5fd/Z1y852f2eJMDmYX6ooJi/Xcvd008eb2HunTm8wVxwIAAAB/kX20SOff9rXHQq6/WrQyXVfeu1jFJc5P91BVRDTprNh+Nyi2/0glDJ2ols+tUnBskqzfvaXSY4eNLs+j1m+1asCYRR4Luf7qyZkb9diMDR7vFwCMkL1pj3Z/tkK75y7Xltfna+HgB5V/wKrm11+g0Fjz3YvDVdX9+QPwX1nWAvW/7WuPhVx/Nfe7NF1//zKVlZnvytfqtE+0cn2WBo79n8dCrr+a9NIaTX1vk8f79TSCLgAAAJiS3e7QtROXasuuo14b49ufDuieKau81r+vBIZFKrJFD8nhUHFW5aYyqUqyjxZp8LhvdTzP8zt0f3hi5gZ9tNB//mYA8IeywmIdXr9DloAAxTSqa3Q5Plfdnz8A/1BWZtcVExZr577jXhtj3vdpeujVtV7r31f8dZ8o41C+hoz/zqX7cblq4ou/aMEP+7zWvycQdAEAAMCUZn66Td+vznCpzZrZQ7T/u+FaM3uI023e+HSbvl/l2jhV0R87c0FRtQ2uxHPufuZnZVkLXWrjzjZw97M/K8vq/M28AcAsopNPBDzFR/MMrsQY1f35AzC/F2Zt0upNrl2d5M7v4an/3axVvx5ytbwqx9/2iRwOh0Y/8aNyjpe41M6dbeDEOJ6fRcNTCLoAAABgOvsy8zTxxV9cbpcQF6GkupFKiItwqd2tj61QfoH3rhryNHtxgcqOW1V67LAK0zZp3xt3qXD3BkWkdFdY/eZGl+cRXy7dq9mLdrvczp1t4MixYo196ieXxwKAqiQoPEShtaMVGhujmi0b6pynb1NsuyY6vH6Hju/ONLo8r6vuzx+A/9m256gmv7be5Xbu/B622x26efJyU03rXh32iT5cuEsLl+93uZ0720Dm4YIqPduJ+e6s7SKr1arnnntO8+bNU3p6uuLj4zV06FA9/fTTGj9+vN555x29+uqrGjdunNGlAgAAwEkvf7BZ+YVlPhtvb0aePli4S2OGtfTZmJWROftRZc5+9JTHavYcqoZjXjOoIs/795sbfTre59/v1ZadOWrTrJZPx/WEI8eK9e4X2/XOF9uVdiBPdodDiXERGnlpM91+VQslJUQaXSK8bOe+43rjk1TN+d8eHTpSqOCgALVIrqHRV7fUiMFNFRURbHSJ8IFOk4ar06ThpzyWtnCVVj/wlkEV+VZ1f/7V3abtR/T6J6n6fMleZR8tVlhooNql1NIdw1pq2EWNFRbq94dIqzW73aHFqw7o9U+26Ye1mcorKFNURJD6dUvU2Gtb6YJz6slisRhdpsumvrdJJaW+u3fWtj3H9Nl3abp+cFOfjVkZ/r5P5HA49OTMjT4d8/0FO/X42M5Krh/t03Gd4def4hs3btTAgQOVlZWlyMhItW7dWhkZGZo2bZp27dqlI0dO3LS8Y8eOxhYKAAAApxUUlundL3b4fNwZc1I1+uoWptgJjrt4tGr1GiaHrVSFezcpa94UlVjTZQkOO7lO7pYV2vnEwNPaOspK5LDb1OXzqnu25prNh7V2i9Xn477+SaqmP9jL5+NWxtvzfte4Z35WUfGpr+eeA7l6YuYGPfXWRj18e0c9emcnU2zbcE1ZmV0TpqzSjDmppzxeUmrX+tRs3fHkj5r00i96/6nzNKR/I4OqNMqf2/uRlZ/o0IJpKtyzUUExcWr3nzTjyvKi39//Vmlf/ayA4CDVatlQbe+6QpGJsbIVuzbdkVlV9+d/uurxHigsKtPNk5drzjd7Tnm8tMyunzYe0k8bD+mfL/yiuS9coD5dEgyqEt60LzNPl0/4Thu3HTnl8ZzjJfr8+736/Pu96twqVl++MsBUJ//kHC/WR4t8f5+p1z9JNU3Q5e/7REtWZ2r73mM+HdPhkN6c+7uentDVp+M6w2+nLrRarbrsssuUlZWl++67T5mZmVq/fr2ysrI0ZcoULVy4UGvWrJHFYlH79u2NLhcAAABO+vTbPTqa6/uDUr9tP6LVv7k2/71RQhNTFNPxQtXoMlAJQyep2UNfqWDnGu17/Y6T60S36aNOc/JO+ddmxnYFRcep3vVPGlj92c38dJsh4876aqcKfHglYWW99vFW3fbYytNCrr+y2Rx6/I0NmviC61OBomqz2x268aEfTgu5/u54XqmuvPd7zVuc5pvCvCwgJFzSiemKymMvzj+xXmj4yceComqpzqBxqnfDU94v0EDHd2cpc8UmHViyQZtnfKnvb3pWcR2bqueUMUaX5hPV5fnzHvhTSalNQ8Z/d1rI9XeHjhRpwJhFWr6WKSz9zYGD+ep904LTQq6/W5+ard6jFijzsHnuyfrBgp0qLPJ9CLNyw0Ft2Znj83Hd4ff7RHON2Sd6a97vKivz3ZWEzvLboGv8+PFKT0/XuHHjNHXqVEVH/3k53aRJk9ShQweVlZUpOTlZMTExBlYKAAAAV/ywzriDEEaOXRlRrXqpdr+Rylk5R3mp5d9ryl5arN3PDlVU695KHPagjyt0zQ/rsgwZNze/VBt/zzZkbFf9tv2Ixj/r/Bz6L8zarPlL93qxIvjam3O3OX0fO7vdoREPLDPVAb6KhNZtLEkqSi8/4Cvaf+LxkDqNTz4W03GAavcdrtD46nVV2+G1v2vX3OVqfMW5iu/awuhyfM5fnz/vgT899eavWrwqw6l1i0vsuvLe75Vnonuy4uxGPviD9mflO7Xu3ow83fTwD16uyHN+WGvM72FJWm7Qb/HK8qd9IofDoR8MCucP5xRp256jhox9Jn4ZdKWmpmrOnDmKi4vTM888U+46Xbp0kSR16NChwn4GDhwoi8Wixx57zBtlAgAAwA3rthoXNBg5dmUlXvuIFBCojI8ml7t834w7ZC8tUvKE93xbmIuOHi/Wzn3HDRt/3VbfT5nojumzt8pud7jU5tXZW71UDXzN4XBo2keuvZ5FxTb957PfvVSR70Q07azguAbKWfGxSrJPPcBtLy3Roa+nSxaLanYfYlCFVcuvL82VvcymThOvNboUQ/jj8+c9cEJxiU2vf3LmK1r/7sixYs3+2vdTwcE7Nm0/oqVrXAsCvvs5Q6m7j3qnIA8z8jepWX4Pl8df9okOHCzQoSNFho1fFfeL/TLomj17tux2u0aMGKGoqKhy1wkPP3GJdkVB1yeffKKNGzd6q0QAAAC4objEpi27jJsqY32qeXfqwhKbqXaf4cr97XvlbllxyrJDX03TsbUL1PSBLxQQGmFQhc7Z+PuZp57xtvWpVW+n7u+O55Xow4WuH6hbvCpD29N8O88/vOOHtVluHaibOXebbLaqNxWNKyyBQWp05+uyFRzT1gntlf7f+3X4f28qc86TSv1HZ+Vt/kEJVz2gsCT/uYKnMnLTsrTnyx9Vr2971TmnldHl+Jw/Pn/eAyfMW5ymwzmuHwSe4WI4hqrL1aCzsu18Ked4sdIy8gwbfx37RIbbsM3YfZKquA0EGV2ANyxZskSS1L9//wrXSU9Pl1R+0HX8+HHdc889mjp1qm644YZK19O1a1dlZZnzkk4AAICqxGaJlK3WpAqXr5k9RAlxFe+UJMSFn/zf/d8Nr3C9LGuBul03/7THd+89pKSkJBcqdo8lJFx1X97h8X4Thj2kIytmK+OjyWrx1FJJUu5vS5U+636lTF6k0LrJbvfdvHmKHCWFHqq0YoXBraXo8s+8P9vrL1V+G/j406/03bvXu1Cx75UE1lNBDffuOdOz/zCFl3Jll9nlhfaUIi9xuV3GoQIlJbdWoMO4g2d/qMznYI2ug9Xi2R+VNe85ZS/5r8pysxUYFqnwxp3UeOIc1e59jYerPcGVz8FgR4AeVXev1OGq3175TI2vOFedJl6r/139mFfHap7SXKUWe7V9/tKff4Oz8ff3gLcdCx8ghfd2ud3GVKvqJzWQRa5dFY2q51DMbVJQA5fbzfzv15o3fZgXKvKcsoDaUs0JFS739j7Rpi272SeqgK8+B/NDOkpRV5a7zBf7RG+9+7HH3id2+5/fib1799aGDRvc6scvg669e0/MLd+oUflzC5eVlenHH3+UVH7Q9dBDD6l58+YaMWKER4KurKwsHThwoNL9AAAAVHtBNaRaFS9OiItQUt3Is3cTGODUen/ncFh88rsuIDRCdd1oF92un7p8WfGBmfAGrdTl8z9vWl18ME27n79GSaOeV3S7fm6M+KeMjIwKb3zvUTXqSdHlL3L29Zfc3waKikur/m/7iAiphntNjxzNk45W8eeHs4svkFzfvCVJWQezpVLjz9J193PwD5Ep3dT0/k89Vo8zXPkcDLEEqlJP0AVZP2/Re4lXV7j82I4DmpXkm6n7MjIzVOKwVdvnL/35Nzgbf38PeF1isRTuRjtLgDIysiRHmcdLgo+FO9w68l1S6qj6v/VCbVLNihd7e5/IZhf7RBXw2edgrSZS+RPZ+WSfqLCw2CvbwMGDB91u65dBV37+iZsMFhaWn57OmTNHVqtV0dHRaty48SnL1q5dq//85z9at26dx+pJSEjwWF8AAADVmc0SrjNdJ59lPfNORUJcuIICA1RmsyvLWvGZdhX1E2CxKbF+fWdKrRRLiDtHZlxjLy7QrmeuUI3uQ1Rn8LhK91evXj0fXdEVo4omLzzb6y9VfhsICw1SrA+2gcooDYzSITfb1q4ZrvDIqv38cHZ5oSFydxLKxLo1FOAI9Wg97vDF5+AfHDabHLZSOWylksMhe0mRZLEoINi1v4Mrn4PBjgDJ3LNEuqVeYr2TV3RVx+cv/fk3OBt/fw942/HwQOW609BRqnr16sri6YLgc4eDbCpxo11osF1xVfy3XllATZ0pDvD2PlFggEMJ7BOVy1efgwUh0apoQn9f7BOFhwertoe2AbvdrszME/fTq1vX/VM8LA6Hw++uxW3durVSU1M1ffp03XXXXacsy8zMVJcuXZSZmalzzz1XK1euPLnMZrOpe/fu6t+/v6ZOnSpJslgsevTRR/XYY4/58ikAAACgHHa7QzXPfV+5+aVutd//3XAl1Y1U+sF8NRjwscvtu7aJ05rZl7s1tisKy6Q+X3t3jOyl7yvt5RtlCQmXJeD0W/e2mb5VIfENne5vxSAp3Aen0W3clq1O13zhdvvKbgP3jmyjFyf2cHt8X7DbHWo2+FPtOeDaIb6oiCAdWHydYqJCvFQZfGVvRq4aD/xEru7t9+5UVyv+e6l3inKRLz4H/2D9/j3tnXbzKY+F1Gmkdv9Jc6kfVz4HSwuK9GHTys8gYzYjdn2g4Iiwavv8pT//Bmfj7+8Bb1uz+bC6X3/6dFtnM+yixvpk6vleqAi+9uKsTbpv6i8ut5v2rx66+/o2XqjIc4pLbIruMUulZe6dMVDZ38P9uyVqyduD3BrbFewTnWGcdVnqe/NCt9tXdhuYPKaTHr+rs9vj/1V+fr6iok5cnpaXl6fISPemJagiXz+edeGFFyo1NVVTpkzRgAED1Lx5c0nSmjVrNHLkSFmtJ6Zh6Nix4yntpk+froMHDxJqAQAAVFEBARZ1bhWrH9Yac//TLq3jDBnXG2L7j1Rs/5FGl+GyNk1rKTQkUMUlZ5/2yRvMsA0EBFh05zUtNemlNS61G3lpM0IuP9GoXrQu7dtQX/2wz6V2Y69t5aWKqra4C0Yp7oJRRpcBGMYf3wPd2sara5s4rd3i2lSs1fVz0B+Nury5Hnp1nYqKnf/NGBEWpBsvS/FiVZ4RGhKodim1tD4125DxzfB72Flm3Sfq1CpWFotcPqnJU7q0jjVm4DM4Pab0A5MmTVJsbKz279+vNm3aqF27dkpJSVH37t3VpEkTnX/+iTMz/np/LqvVqkceeUSTJ09WWVmZjh49qqNHj0qSioqKdPTo0VNujAYAAABjdDVwx6pLq6r3g766CQ4OUIfmtQ0b3yw79rcObeHSfPvRkcG6d2RbL1YEX3vwtg4KDnJ+l79ts1oaemGy9woCAB979I5OLq1/XtcEndeV24/4i9o1QjVhhGtXZv3jxraqEW2Ok36M/E1aFUOO6iYqIlgtkt28Ka8HVMV9Ir8MupKSkrRixQoNHjxYYWFhSktLU+3atTVz5kwtXLhQ27dvl3Rq0JWenq7c3FyNGTNGtWrVOvlPkqZMmaJatWpp3z7XzoYDAACA513ev5Eh4wYGWjSoTwNDxsapLu/v/PQhntS8UQ01b2TcDqUratcI1aIZF6lO7bNPjxURFqTPX7pQKSZ5bnBOjw519P7T5yko8Ox3mmmSFK2vZ1yk0JBAH1QGAL5x6XkN9eoDPZ1at2PL2pr30oWyWLg7lz956u4uum5gE6fWHXlpMz0+1jNTsfmCUb+Hw0IDNaBn1b6HWXVh1H5xl9ZxqlcnwpCxz8Qvgy5JatWqlRYsWKDc3Fzl5uZq9erVGj16tPLz85WWlqaAgAC1bfvnGYvNmjXT0qVLT/snSTfddJOWLl2qhATO6gAAADBa78511bZZLZ+Pe0X/RqrvwhUy8J5bh7Zw6UoVTxl7bUsFBJjnAFjblNpa9cEQXd6/YYV1n989UcvfG6wLetTzcXXwhWsvaaJvZ16ic9rFl7s8JDhAIwY31c/vX6YGCVE+rg4AvG/cda31+csXVPjbMSIsSGOGtdTydwerdo1QH1cHbwsMDNAHz/TTs/d0Vd3Y8HLXSYyP0HP3dtN7/+5rqt95l5ybpOR6vv/uHn5JE8XWPPuJVPC+MVe3lBHZ/NhrW1XJkwL88h5dZ7JlyxY5HA41b95cERF/Jo9RUVHq169fuW2Sk5MrXAYAAADfslgsGnttK4196iefjss9G6qOurHhunpAsmYv2u2zMSPCgnTTkKp/z4a/a5wUrS9eGaD9WXn67/wdeuatX1VQZFNURJB++ehytWpS0+gS4WX9u9fTqg+HaN1Wqz5etFsz5mxVQZFNMZHB2rFgmOpUcOAPAPzFFecn6/L+jbRy/UHN+z5NM+duU2GRTTWigpX2zbWqGUPA5c8CAiy6/5YOundkW32xZK9umbxC+YVligwP0rtP9tUV/RspONh814IEBgbojmta6l8vr/XpuOwTVR2Nk6I1qE8DLVy+32dj1owO0fBLnLtK0tfM9y6upE2bNkk6ddpCAAAAmMutQ5urXYrvruoa0q+h+ndP9Nl4OLun7u6qyHDfnbf3+NjOpj4Q1iAhSg+P7qRa//8cakSFEHJVM11ax+n5+7qf3AaiI4MJuQBUGxaLRX26JOilST1U+/8/B6Migk393Q7XhAQH6pqLm6jm/9+Dq2Z0iIZd1NiUIdcfxg1vraYNon023ojBTdWtbflXicMYz93bTSE+3IafvaebIny4D+aKqlmVF7kadDkcDm+WAwAAADeEBAfqvSf7qvuI+bLZvPt7rVZMiN545NwqOT1DddY4KVrP3dtNdz39s9fH6tE+XveOdO1m5gDgDdGNE9TnlbsVWjtapbkFWjlhuo5uTz9tvat/mSFbcalsRSWSpN9e/Vxp839yerkkNbu2v3q/fJeW3DxF+75Z47HaKou/AQCcEBkRrHef6Kvzblkobx/CTogL17R/OXfPO/hO66a19PjYznrgFe9f2Xdhj3oafXULr4/jLoIuAAAAmFLn1nF6YmxnPfTqOqfbZFkLTvlfZ8yc3FuJ8VXvZruuKMrYobSXb1JZrlWBETWUPOE9hTc8PbjZ9+Z4HVszXyWH9qrVSxsU0aSj74t1wR3XtNLCFfv19QrnDyK6ug3UiA7Re0/2VWCgec/2BaorZz777CVF2j11uIr2b1VASLiCatRRwztfV1hiM0nS9kcvUllOlhQQoMDwaDW4fZoimnQy4ulIkno9N0bbP/hOOz9ZpkaDe6j3K+O0YOC/yl33hzte0pEtaRX2dablUUnxaj7iQh1a+7tXaqsM/gbO88f3AIBT9emSoEk3t9eUd35zuo2rv4cDAix65/E+pr+Pnb/uE/3zpnZatDJdy9dlOd3G1W0gvlaY3nqsd5U++bPa7a0tWbJEDodDgwcPNroUAAAAVNIDt3XQhBHOX2nT7br5ajDgY3W7br5T609/sKeGXdTY3fKqjH0zxiju4tFq+/p2JQy9X2mvjCp3vVrnXq0Wz6xUSJ1Gvi3QTQEBFn3y/Pnq3amu021c2QaiIoL19WsXqUXjmpWoEoBRnP3si79otNrM+F2tX/lVNc+5XHun33ZyWZOJn6j1tN/U+uWNqjPkHxX24QthsTGK7dBUuz5bLknau3CVIuvFKjo5wbMDWSzq9cKdWv3w27KXlFWp2vgbuMbf3gMAyvf0+K665crmTq/vyu9hi0V65/E+GtinQWVKrBL8dZ8oKChA86cNUOdWsU63cWUbqBkdov+9cbEa1fPdNJnuqHZBFwAAAPyHxWLRS5PO0UO3e/Zq/aAgi956rLfuGt7ao/0aofToIeXvXKvYfjdIkmr2ukol1v0qytx52rrRbfoqJC7J1yVWSmREsL55/WIN7O3ZuuNrhen7/wxUr47Oh2gAqg5nP/sCQsJUo+ugk2coRzbvoZJDaSeXB0XVPPn/bQXHThzxM0hk/TgVHsyRw2Y/+VjeAasi68eVu37vaXfr8iUvqNcLdyo0Nsbp5W3GXKZDa7Yp+7fdXqvNXfwNnOeP7wEA5QsIsOg/j/Z26QRAZ4SGBOqjZ/vppstTPNqvEfx9n6hGdIiWvDVI53X17MkV9epE6Id3B6tTK2O+y1xR7aYuBAAAgH+xWCz6991d1a9bom59dIX2ZeZXqr+OLWvrvSf7qkML58+Iq8pKrPsVXCtRlsATP/0tFotC4huq5PC+k9MSmV1kRLAWTL9IM+ak6v6X1qigyLmz7yty9YBkvfZgL9WJDfdQhQB8zd3PvkMLXlHN7pef8tiel25U7qalkqSUyV97reZBXz2lmCaJ5S6bP2CiS30tunKy8g9YZQkKVOf7r1OfV8Zp8Q1Pn3V5zRYN1GjwOVp05eRKPRd38TfwHDO+BwC4LyDAopfv76ELzqmnMU/+qMzDzk/VXp5z2sXr3Sf7qlWTmp4p0GDVYZ+oRnSIvv/PQL04a7MeeW29iktslepv5KXN9PL9PUwzZSVBFwAAAPzChT3qa/O8oXrijY36z7zfdSy3xKX29epEaML1bXTvyLYKDjbPxAfbJvVUUcaOcpe1fmmDj6sxTkCAReOua61BfZL04LS1+mxxmsrKXLsrd4cWtfXw7R11tR9MVwn4O2989mV++rSKM3eq0ZPfn/J443tnSZKyl/xX6bPu99qB/q8ve+iMy+3FpQqvW0uWwICTVw1F1Y9T/gHraev+8ZijzKat/1mgoT++6tTyuue0UlSDOrrqpxP/HR5fUz2fv0PhdWrp91nfVlhb/gGr07WdCX8D5/njewBA5V3Wr6F6d66rR2es13tf7lBufqlL7RsmRureG9rq7utbm+oetewTnRAYGKCJN7fXZf0a6sFpazV/2T7ZbK7tE3VrG6fJYzrp0vMaeqlK7yDoAgAAgN+IjgzR8/d112N3dtLH3+zWhwt3ae1Wa4U7eHG1wnROu3jdfHmKhvRrZKqA6w8tn/v5jMstwaEqzcmUw1YmS2CQHA6HSg7vU0i8uXZcnNUkKUYfP3e+sqwFemve7/piyT5t2nFEJaX2ctdPrhelvl0SdMc1LdWjfZ0qfYNlAH/y9Gdf1udTdfTneUp5YrECQiPKXSf2/Ju09/U7VHY8W0Exvr/qtyj7uI5s2qOmV/XVzk+WqdHgHsrPPKLctFNvPh8UHqqA4ECVHD9xNn/jK3sre/Mep5b/PuvbU8KcSz57XFv/s0D7vlkj6cRUf/sWrda+Rb+4VRt/A8+pju8BAM6pFROqaf/qqafu7qIPF+7S7EW7tT41W3kF5e8T1Y0NV4/28br1yhYa1CfJVAHXH9gnOlXLxjU176ULlZ6Vr5lzt2nh8v3atPNIhScCNm0QrX5dEzVmWEt1axvv42o9g6ALAAAAficyIli3Dm2hW4e2kN3u0M59x5W656gKCstksUjRkcFql1JbDRIi/T7YCK5ZRxFNOyt72QeKu2CUjv70mUJik/xmio6KJMRF6OHRnfTw6E4qKbVp844c7TmQq6ISm4KDAhRbI0wdW9ZWbM0wo0sF4AWufPYd/PJF5ayYrZQnFp9yP6KyvKOyFxcoJLaeJOnoqi8UFB2rwOjavnoap/lp0kz1fvkutRs/VKV5hVp5z2snl/Waeof2f7tWOdv2qf9bE2UJDJDFIuXuPaSVd/95NVNYfI0zLj+TuA5NlPp2+VfznKk2T+Jv4Bx/fQ8AcF50ZIjuuKaV7rimlWw2u3bsO65te46qoNCmwECLoiOD1aF5bdWrE8E+kZ9KSojUk+O66MlxXVRcYtOmHUe0NyNPRSU2hQQHKq5mqDq1jFXNGHNMT3gmFofD4dq1awAAAAC8qrBM6uPBWYGK0n9X2rRRKsvNVmB4jJLHv6vw5HaSpLRXb1PN7kNU85wh2jtjjI6tXajSnKwTB7LCo9V25uk3aC7PikFSOKfRVXlJF87WgUMFql8nQumLrzO6HBjALNuAJz4Hnfnsi2jaWZtubaCQhCYKDI+WJFmCQtVq6moVH9qr3c8Nk72kUBZLgIJi4pV081RFNOlY7niufA6WFhTpw6Y3VO4J+lhobIzOe22Cvh3+pNt9jNj1gYIjwkz5/CXP/g3Oxt/fA0Yyy+cgvIPX3zzYJ6oe8vPzFRUVJUnKy8tTZGSkW/3wZwcAAAD8XFhSiwqn80i++62T/7/R2Jm+KgkAvM7Zz74uX5Z//m9onUZqNfWXcpdVR8XZxysV8PgDs/0NeA8AwJ/YJ/Jv5ptwEwAAAAAAAAAAABBBFwAAAAAAAAAAAEyKoAsAAAAAAAAAAACmxD26AAAAgComLPDEjYzNJCzQ6AoA+BN//xwMCg/ViF0feK+YKiooPPTk/1bH5y/9+Tc4G39/DwDA2fA5CFcQdAEAAABVjMUihfNLHUA15u+fgxaLRcERYUaXYZjq/vyd4e/vAQA4Gz4H4QqmLgQAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUgowuAAAAAACAv3M4pCKb0VU4LyxQsliMrsJ/mO31lyq3DTgcDpUVFnu2oCogKDxUFjf/KNVtGwD+jvcAADiPoAsAAAAAUOUU2aQ+XxtdhfNWDJLC2cP2GLO9/lLltoGywmJ92PQGzxZUBYzY9YGCI8LcalvdtgHg73gPAIDzmLoQAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlLg9IAAAAAD4uUPZhdq0I0eFxWWSpKJim/Zn5SmpbqQsFovB1cHbHA6Hdqfnasfe4yosOrENFJfYdORYsWrXCDW4OgDwPrvdoe17j2l3eu4pn4PH80oUExVicHXwheISmzbvzFFhsU2SVFhs0/qtVrVNqaWQ4ECDqwNQWQRdAAAAAOBnbDa7Fq1M13tf7tDqTYeVfjD/lOXZx4rV8KI5iq8Vpm5t4zRiUDNdNSBZoSEc6PEX+QWl+ujrXZrzvz1at9Wqo7klpyy3Hi1WbJ8P1Lh+tHp1rKPbhrbQeV0TCD4B+I2jx4v13/k7NO/7vVqfmq28gtJTlluPFqtGr/fVvFEN9elcV6OvbqlubeP4HPQje9JzNXPuNn370wFt3pmj0jL7yWVHjhWry/AvFRwUoHYptXRxrySNvrqFkutHG1gxAHcRdAEAAACAnygrs+u1j7fq5Q+2KC0j76zrH84p0tcr0vX1inTd81yY7rimpf51SwdFhLOraFY5x4v1xBsb9M4X23U8r/Ss6+85kKs9B3L14cJdatWkpiaOaqdRl6dwoBeAaWUeLtCjM9brg4U7VVhkO+v62/ce0/a9x/T259vVpXWcHrytg4ZemOz9QuE167ZaNfm1dVq0Ml0Ox5nXLS2za31qttanZuvZd37V4D4N9MRdndWpVZxvigXgEey9AAAAAIAf2LorRzc/skK/bD7sVvvDOUV6cuZGffzNbr37RF+d26muhyv0vtxNy7T94f6nPBYQFqnQes0V22+k6lx6tyyB/rsbvHD5Po1+4kdlHCpwq33q7qO6ZfIKzV60S2891kcNE6M8XKH3Wb9/T3un3axG499V3AWjTltefDBNm0c3Vuz5Nyl5wns+r88ICT3b6JJ5j5/yWGl+oY7vztSuucuV+vbXctjsFbQ2H7aB6svhcOijr3fp7md+Vs7xkrM3KMe6rVZd9Y/vNeyixnrtwZ6Krx3u4Sq9rzp/FxaX2PTEGxs05d3fZLOdJeEqh8MhLVi+X9/8lK4Hb+2oh0Z3YFpDwCT881MNAAAAAKqR97/aodseW6mS0sofrN6x97j6jFqgf4/rogdu62DKK3tq9b1ONboMkhwOleZkKXvZLKW/8w8Vpaeq0V1vGl2ex9ntDt373CpN+2irR/r77ucMtR06T588f74u6Z3kkT5hvN3zVih9yXrJYlF4fE01G3aeuj8+SjVS6uvniTONLg+olJJSm0Y9vFyzF+32SH+ffrtHy9Zkav60AerRoY5H+vS16vZdmHm4QIPu+p82bjtS6b7Kyhx6YuYGLVi+T1/PuFh1Y80XeALVTYDRBQAAAAAA3Pfm3G268aHlHgm5/uBwSA+9uk4PTVvnsT59KaJJZ8X2u0Gx/UcqYehEtXxulYJjk2T97i2VHnPvireqym536JbJKzwWcv0hN79UQ8Z/py+X7vVovzBO9qY92v3ZCu2eu1xbXp+vhYMfVP4Bq5pff4FCY2OMLg9wW0mpTVfes9hjIdcfDucU6cLRi7RyfZZH+/WV6vRdeOBgvnrftMAjIddfrU/NVp9RC5R52L0rpQH4DkEXAAAAAJjU59+n6Y4nf/Ra/8+8/atefn+z1/r3lcCwSEW26CE5HCrO2mV0OR416cVf9N/5O7zSd2mZXdf8c4l+3HDQK/3DWGWFxTq8focsAQGKaWS+qUoB6cR0hTc/skJfr0j3Sv/5hWUaPO5bbd2V45X+fclfvwtz80t00R3faHd6rlf637H3uC4a843yC85+30sAxiHoAgAAAAATOphdqNseW3nWm6z/1ZrZQ7T/u+FaM3uI020mvbRGm3d49gxpI/xxUC8oqrbBlXjOktUZemGWa0Gkq9tASaldNz70Awf4/FR08omAq/honsGVAO75eNFuffS1a6GNq5+Dx/NKddPDy1VWZv572fnjd+H9L63R1l1HnV7fnd9Cm3fm6MFpa92oDoCvEHQBAAAAgMk4HA7d+e8fdeRYsUvtEuIilFQ3UglxEU63KS2z6+bJK0x1gM9eXKCy41aVHjuswrRN2vfGXSrcvUERKd0VVr+50eV5RF5BqW59dIXL7dzZBnan5+oBDvCZXlB4iEJrRys0NkY1WzbUOU/fpth2TXR4/Q4d351pdHmAy7KsBRr3zM8ut3Pnc3DtFquef2+Ty2MZqTp8Fy5ZnaHXP9nmUht3Xn9JmvbRVi1fy2clUFVVi6DLarVq0qRJatasmcLCwtSgQQNNmDBB+fn5uvXWW2WxWDR9+nSjywQAAAAApyxbk6nPv/fdvZPWbrFq1lc7fTZeZWXOflS/jozXbzfW0dYJ7XV40QzV7DlUzR760ujSPObFWZuVluG7q3Be/Wirft9z1GfjwfM6TRqu67a8q+s2v6Mrlr6oVjdforSFq7Rk1BSjSwPc8vjrG1w+4aNS472xQYePFPpsvMry9+9Ch8OhCVNW+XTMCc+tksOVS+kB+EyQ0QV428aNGzVw4EBlZWUpMjJSrVu3VkZGhqZNm6Zdu3bpyJETU3B07NjR2EIBAAAAwEmvfZxqwJhbdfMVKbJYLD4f21VxF49WrV7D5LCVqnDvJmXNm6ISa7oswWEn18ndskI7nxh4WltHWYkcdpu6fG7zZckuKS21a+Zc185g94TXP9mml+/v4fNxvePP7fjIyk90aME0Fe7ZqKCYOLX7T5pxZXnR7+9/q7SvflZAcJBqtWyotnddocjEWNmKS4wuzSDVbxvwJ8dyS/T+At+egFFcYtM7X2zX/bd08Om47vL378Ll67K0eadv7522cdsR/fzrIfXqyH0NgarGr6/oslqtuuyyy5SVlaX77rtPmZmZWr9+vbKysjRlyhQtXLhQa9askcViUfv27Y0uFwAAAADO6sDBfH2x1HdXc/1hfWq2ftl02OfjuiM0MUUxHS9UjS4DlTB0kpo99JUKdq7RvtfvOLlOdJs+6jQn75R/bWZsV1B0nOpd/6SB1Z/d/GV7lXGowOfjvjd/R5W/V1dASLikE1N2lcdenH9ivdDwk48FRdVSnUHjVO+Gp7xfoIGO785S5opNOrBkgzbP+FLf3/Ss4jo2Vc8pY4wuzaPYBqqH9xfsVH5hmc/HfeOTbbLZzDGVr79/F86Y4/uTfowcF8CZ+XXQNX78eKWnp2vcuHGaOnWqoqOjTy6bNGmSOnTooLKyMiUnJysmJsbASgEAAADAOQuW75fNZsy0OZ8v8X3A5glRrXqpdr+Rylk5R3mpP5W7jr20WLufHaqo1r2VOOxBH1foGqNeh2O5JVpWxe9PElq3sSSpKL38A5FF+088HlKn8cnHYjoOUO2+wxUa38j7BVYhh9f+rl1zl6vxFecqvmsLo8vxGLaB6uHz79MMGTctI0+//n7EkLEry5++C8vK7Prqh32GjP3l0n2y25m+EKhq/DboSk1N1Zw5cxQXF6dnnnmm3HW6dOkiSerQ4c9LjpctWyaLxXLaP6Y2BAAAAFAVrNtqrZZjV1bitY9IAYHK+Ghyucv3zbhD9tIiJU94z7eFucHYbSDbsLGdEdG0s4LjGihnxccqyc44ZZm9tESHvp4uWSyq2X2IQRVWLb++NFf2Mps6TbzW6FI8hm3A/zkcDq1PNe6ziO9C46XuPqrCImOmVcwrKNX2vccMGRtAxfz2Hl2zZ8+W3W7XiBEjFBUVVe464eEnLlP/a9D1h9dee02dO3c++d+RkZHeKRQAAAAAXGB00OVwOExxn66/C0tsptp9huvIDx8qd8sKRbfpc3LZoa+m6djaBWo5dY0CQiMMrPLscvNL9HuacQfYqvoBXktgkBrd+bp2PXOltk5or7gBtyo0oanKjh7UkZVzVLRvixKuflBhSf5zBVNl5KZlac+XP6rpVX1V55xWOrTa/FNysQ34v93puTqaa9y95dalZut2w0avHH/5LlyXaux30bqtVrVsXNPQGgCcym+v6FqyZIkkqX///hWuk56eLqn8oKt169bq0aPHyX/t2rXzTqEAAAAA4II9B3INGzvneImOGXhwsbIShj0kBQScciZ77m9LlT7rfjWZ9KlC6yYbV5yT9mbkyWHgjEm7043b/pxVo+tgtXj2R0W366/sJf/Vvpl36eCXLygoJl6NJ85R/ZHch+mvfnvlM9lt/nVVF9uAfzPye1CSdqcfN3T8yvKH70Kjv4uMHh/A6SwOh5E/kb2nQYMGSk9P14YNG8qddrCsrEyJiYmyWq3atWuXmjRpIunE1IX9+/fX0qVL1a9fP4/U0rVrV2VlZXmkLwAAAADVW0ath+SwhJS7bM3sIUqIq/gs7IS4cAUFBqjMZleWtbDC9bKsBep23fzy+8h5XoGOPNeKdoMlJFx1X97h1TGKD6Zp2z+7KXH4o6ozeFyl+jp4T4ocJRX/TT2lJDBRh2vcUe6ys73+UuW3gUBbthKOTXOtaDf44vX/u6OrvtD+t+9Ru/+kudW+MttAsCNAj9q7u9W2Kns84BeVWuxuta1u2wCcVxjcXEeiR5S7zBefgyGlaYrPfde1ot3gq/eAGb8Lj4UPUF5473KXeeq3kFTxNhBVuFw1Cr93rWgA5bLb7crMPHEP2I4dO2rDhg1u9eO3Uxfm5+dLkgoLy//AmjNnjqxWq6Kjo9W4cePTll977bWyWq2KjY3VkCFD9OyzzyouLs6tWrKysnTgwAG32gIAAADAKWrYpMDyFyXERSip7tmnXQ8KDHBqvfJkZaZLtny32roiIDRCdb3Yv724QLueuUI1ug+p9IE9ScrIyJC9uMADlZ1FmEWqUf4iZ19/yf1twFZa7JP9W2+//n/lsNnksJXKYSuVHA7ZS4oki0UBwaEu9VOZbSDEEiifPWEfysjMUInDvfvoVLdtAC6IqilFl7/IF5+DJcWFfvM5aNrvwrrHpPDyF/nit1De8aPKO8SxXsDTDh486HZbvw26EhISlJOTo/Xr16tnz56nLMvMzNTEiRMlSe3btz9lfvkaNWpo4sSJ6tu3r6KiovTzzz/rmWee0apVq7R27VqFhYW5VQsAAAAAeEKWimSr4OhOlvXMB5dcOYu9XA6b6iXEyqKazpbrNktIBUewPCTnp89UuOdXFR3YrpyVc05b3mb6VoXEN3S6v3r16vnkLPaygGhVdAjgbK+/VPltICSwTPH16ztTaqV4+/X/q+xl72vvtJtP/veGYeEKqdPI5at6KrMNBDsCJPcufKrS6iXWq9QVXb5SFbYBOK8kMEKHK1jmi8/BsBC7Yv3kc9Cs34W5YUGqaAJJT/0WOlNfNaKCFRXs/W0AqA4cDof+mHQwMTHR7X78durC8ePH69VXX1WDBg20ePFiNW/eXJK0Zs0ajRw5Urt371ZpaanuuusuTZ8+/Yx9ffXVVxoyZIjeeecd3XzzzWdcFwAAAAC86cp7FuuLJXvdarv/u+FKqhup9IP5ajDgY5fbd2hRWxs/vdKtsV1VWCb1+donQ3nEikFSuA9OJXU4HIo/70NlHy12q31lt4Fx17XWqw/0PPuKlWS211+q3DZQWlCkD5ve4NmCqoARuz5QcITrJwxL1W8bgPMKi8oU3XOWbDb3DmlW9nPwqbu76MHbO7o1tit4D1RsyeoMXXD7IrfaVvb1l6Tl7w5Wny5c2ABUJQFGF+AtkyZNUmxsrPbv3682bdqoXbt2SklJUffu3dWkSROdf/75kqQOHTqcta9LL71UkZGRWrt2rbfLBgAAAIAz6tI61sCx3ZvOHZ5jsVgMfR2M3P4AQJLCw4LUuklNw8bnu9B4nVsZ911ksUidDBwfQPn8NuhKSkrSihUrNHjwYIWFhSktLU21a9fWzJkztXDhQm3fvl2Sc0HXH/46xSEAAAAAGKFvZ+POIO7T2Q9vImRCRm4DvTtxBjsA4/U16GqakOAAdW8Xb8jY+FPNmFC1b17bkLE7tYxVVESwIWMDqJjfBl2S1KpVKy1YsEC5ubnKzc3V6tWrNXr0aOXn5ystLU0BAQFq27btWfuZP3++8vPz1b17dx9UDQAAAAAV69MlQS2Sa/h83BrRIbrmoiY+Hxenu/mKFAUG+v5EzAvOqadmDWN8Pi4A/N3tV7UwZNxrLm6sWjGhhoyNU42+2phtYMywloaMC+DM/DroqsiWLVvkcDiUkpKiiIiIU5bdcMMNmjx5sr744gstXrxYTz75pG644QZ17NhRw4cPN6hiAAAAADjBYrFo7LWtfD7uzZenKIKbz1QJ9epE6srzG/l8XCO2OwAoT4cWsTq3k++vMuZzsOoYeWkzRfr4d0lMVLCuH9TUp2MCcE61DLo2bdokqfxpC9u0aaPPP/9cN954owYOHKh33nlHt99+u5YtW6aQkBBflwoAAAAApxl1eYrq1Yk4+4oeEhEWpAkj2vhsPJzd/be0V0CA767qatuslob0a+iz8QDgbB66zfnbkXhC/26J6tG+jk/HRMViokI0/nrf/ja5Z0Rbpi0EqiiCrr954IEHtGnTJh0/flylpaXas2ePXnzxRdWo4fupQQAAAACgPDFRIXpz8rk+G2/Kvd2UXD/aZ+Ph7Lq2idfEUe18MlZgoEXv/buvgoKq5SGEKq37k7fo6l9maFTmXNVuk+z2es7283fRjRM0aP5TunLlNF266FnVbJ7k+pMA3DSwTwPdeFkzn4wVGR6ktx7vLYvF99PGomKT7+ioVk1q+mSsts1q6cHbfRuuAnBetZx34kxBFwAAAACYweC+DTXq8hS99+UOp9tkWQtO+V9nnNc1wfRTNRVl7FDayzepLNeqwIgaSp7wnsIbnn4W+L43x+vYmvkqObRXrV7aoIgmHX1frAseu7OTvvphn7buOup0G3e2gX/d0l5dWse5Wp7hnHnd7SVF2j11uIr2b1VASLiCatRRwztfV1jiiYPn2x+9SGU5WVJAgALDo9Xg9mmKaNLJiKdTrr0Lf9bmGV9o0Jf/rtR6zvbzd72eG6PtH3ynnZ8sU6PBPdT7lXFaMPBfLvXhTdVhG6juXr6/hxavzlDGIec/09z5HJxybzc1STL3PQr98bswLDRI7z3ZV71u/Eo2m8OpNu68/kFBJ074CA0JdKtOAN5XLYOuJUuWGF0CAAAAAFTaaw/20u70XC1fl+XU+t2um+9S/y0b19CnU8/36RR53rBvxhjFXTxacReMUs6Pc5X2yii1emHNaevVOvdqJQydpN8f6G1Ala4LCw3SV68OUO+bFirzsHMH7FzdBq4ekKzHx3Z2pzzDOfu6x180WjFdBspisejQwunaO/02tXhqmSSpycRPFBRVU5KU8/PnSntllFq/8qsPn8WZHVyV6pH1nO3nr8JiYxTboam+Hf6kJGnvwlXq8fStik5OUG6ac59J3lYdtoHqrlZMqBa8OkD9b1ukY7klTrVx9XNw7LWtTH/Ch+S/34Xd28Xr7cf6aNQjy51a39XX32KR/vvkeaY84QOoTph3AAAAAABMKiI8SAumD1D/boke77tts1pa8tYgxdcO93jfvlR69JDyd65VbL8bJEk1e12lEut+FWXuPG3d6DZ9FRJnrqnXmiTFaNnbg9QgIdLjfV9zcWN9+Gw/BQaa79CBs697QEiYanQddHI6ssjmPVRyKO3k8j8CDkmyFRw7ccQTkqTI+nEqPJgjh81+8rG8A1ZF1q8aB4PZBqqPTq3itPjNSxRbM9Tjfd81vJVefaCn6acs9PfvwpsuT9E7T/Tx+Ik5gYEW/ffffXX94KYe7ReA51XLK7oAAAAAwF9ER4bo6xkX6ZHp6/XCrE1yODdzzxmNvLSZXvlXD9WK8fxBQ18rse5XcK1EWQJP7P5aLBaFxDdUyeF9J6cmM7vmyTW0+sMhuv3xlVq4fH+l+wsJDtBjd3bWpJvbmTLkktx/3Q8teEU1u19+ymN7XrpRuZuWSpJSJn/tvaL/ZtBXTymmSfkh9vwBE1WQke2zWszIH7YBOK9rm3it+mCIbn5kuVZuOFjp/iLDg/T8P7rrjmtamj7kkqrHd+HNVzRXw4Qo3fLocu3LzK90f8n1ovTuk33VzwsnEwHwPIIuAAAAADC5sNAgPX9fdw29sJFumbxC2/Ycc6ufenUi9MbD5+qyfg09XKH3bJvUU0UZ5d+nrPVLG3xcjXES4yP01asDNGv+Tt37/CrlHHduCq+/69Y2Tu883kdtU2p7uELP8sbrnvnp0yrO3KlGT35/yuON750lScpe8l+lz7rfZ0HH15c95JNx3JV/wKrwurVkCQw4eVVXVP045R+w+mT86rANwDXNGsboh3cH69WPtuihV9cpv7DMrX4uOKee3nqst5LrR3u4Qu/hu/CEC3rU06bPhmrii7/oP5/97tbJPxaLdMewlnruH90VFRHs+SIBeAVBFwAAAAD4iZ4d6mrzvKH65sd0zZiTqkUr0506yNO7U12NvbaVhl6YbLobrbd87uczLrcEh6o0J1MOW5ksgUFyOBwqObxPIfHmCfOcZbFYdNPlKbp6QLJmL9qt1+Zs1cZtR87aLijIoqEXJGvsta3Ut0uCKa5e8PTrnvX5VB39eZ5SnlisgNCIcteJPf8m7X39DpUdz1ZQTGyln4NZ9J52t/YtWq19i3455fGi7OM6smmPml7VVzs/WaZGg3soP/OIz+7PxTaA8gQEWDThhra6aUiKZn21UzPmpOr3tLOf/BEWGqjhlzTR2GtbqVvbeB9U6ll8F/4pJipEMyf31r9u6aCZc7fp7c+3y5pTdNZ28bXCdNvQFhp9dQtThZwATiDoAgAAAAA/EhgYoMF9G2pw34bKshZozWar1m21atOOHOUVlspudygyPEitmtRU19Zx6tomTo3q+e8BneCadRTRtLOyl32guAtG6ehPnykkNslvpmoqT2REsG67qoVuHdpcO/cd19otJ7aB39OOqajEpsAAi2KiQtSxRW11+f9tILZmmNFle5Qrr/vBL19UzorZSnli8Sn3YyrLOyp7cYFCYutJko6u+kJB0bEKjK46V7v1fG60ki7oovA6NTVg9sMqzSvUvF53S5J6Tb1D+79dq/3frj3jemfrJ65DE6W+Xf4VTD9NmqneL9+lduOHqjSvUCvvec37T9pJ1WUbQPlqxoRq/Ig2uvv61tq666jWbT3xObgrPVdFxTYFBwWoZnSIOreKPfk5GBMVYnTZXlMdvwsbJ0Xr2Xu66fGxnbVxW/aJbSA1W5mHC1RSaldoSIAS4iLUtXWcurSOU8eWtRUSbK6TfQD8yeJweGIGdwAAAAAAPKewTOrjodnBitJ/V9q0USrLzVZgeIySx7+r8OR2kqS0V29Tze5DVPOcIdo7Y4yOrV2o0pysEwezw6PVduZOp8ZYMUgK51RSj/HE6+/M6x7RtLM23dpAIQlNFBh+IvC1BIWq1dTVKj60V7ufGyZ7SaEslgAFxcQr6eapimjSsdzxKrMNlBYU6cOmN7jX2ItCY2N03msT9O3wJ91qP2LXBwqOcC9ErW7bAPB3nvwelPguBODfCLoAAAAAAFWOpw/weRsH9zzLbK+/5J9BV2UZHXT5Gp8D8CTeAwDgvACjCwAAAAAAAAAAAADcQdAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCULA6Hw2F0EQAAAAAA/JXDIRXZjK7CeWGBksVidBX+w2yvv1S5bcDhcKissNizBVUBQeGhsrj5R6lu2wDwd7wHAMB5BF0AAAAAAAAAAAAwJaYuBAAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgClVi6DLarVq0qRJatasmcLCwtSgQQNNmDBB+fn5uvXWW2WxWDR9+nSjywQAwCuO5ZZo+uytOu/mhWpz5WfqdM3nuv7+pVq+NlMOh8Po8uADezNy9dC0tTrn+vlqfcVn6nbdl7r3uVXannbM6NIAAAAAAAAqxeLw8yNcGzdu1MCBA5WVlaXIyEg1b95cGRkZOnjwoAYPHqwjR47o559/1ooVK9S7d2+jywUAwGMcDoeeffs3PfWfjcovLCt3nXYptfTRs/3UNqW2j6uDL+QXlGrMkz9q9qLdstvL/8l32XkN9d+n+qpWTKiPqwMAAAAAAKg8vw66rFarOnXqpPT0dN1333169NFHFR0dLUl67rnndP/99ysoKEg2m01Hjx5VTEyMwRUDAOAZDodD90xZpWkfbT3rujFRwVr61iB1bh3ng8rgKwWFZRowZpF+2njorOu2aVpTK/57KWEXAAAAAAAwHb+eunD8+PFKT0/XuHHjNHXq1JMhlyRNmjRJHTp0UFlZmZKTkwm5AAB+Zdb8nU6FXJJ0PK9Ul979nfILSr1cFXxp/LM/OxVySdKWXUd144M/eLkiAAAAAAAAz/PboCs1NVVz5sxRXFycnnnmmXLX6dKliySpQ4cOpzy+Z88eDRkyRNHR0apVq5ZuvPFGZWdne71mAAA8weFwaOp/N7nUJvNwgT7+ZreXKoKvHcwu1KyvdrrUZsHy/dq256h3CgIAAAAAAPASvw26Zs+eLbvdrhEjRigqKqrcdcLDwyWdGnTl5uaqf//+Sk9P1+zZs/Xmm29qxYoVuvTSS2W3212qweFwKD8/X/n5+fLjGSIBAFXMyvUHtXlnjsvtXvs4le8rP/H2vN9VWuba7xZJen1OqheqAQAAAAAA8J4gowvwliVLlkiS+vfvX+E66enpkk4Nut58800dOHBAy5cvV8OGDSVJSUlJ6tWrl+bPn68rrrjC6RoKCgpOhmyJiYkKCPDbXBEAUIXkhvWRIi50ud2Gbdmq36CJAsQUhmZnjbpBCklxud3rsxbrs+nDvFARAAAAAABAxRISErR27Vq32vpt0LV3715JUqNGjcpdXlZWph9//FHSqUHXggUL1Lt375MhlyT17NlTTZo00VdffeVS0PVXmZmZbrUDAMBldYulCPeaZh48IpUd92w98L0mDinE9WaltgAdOHDA8/UAAAAAAAB4id8GXfn5+ZKkwsLCcpfPmTNHVqtV0dHRaty48cnHt27dqmHDTj+TuU2bNtq6davb9XBFFwDAV3LDQuRuVJVYt7YCFO3ReuB71mCp2I12wYE21alf3+P1AAAAAAAAnElCQoLbbf026EpISFBOTo7Wr1+vnj17nrIsMzNTEydOlCS1b99eFovl5LKcnBzVrFnztP5q166t33//3e16duzYocjISLfbAwDgrF82HdY5I+a73K5H+3j9/MEeL1QEX3vhv5v0zxd+cbndvbdfoin3TvZCRQAAAAAAAN7ht5cYXXjhiXuTTJkyRdu3bz/5+Jo1a9S/f39ZrVZJUseOHY0oDwAAr+nWNk5dWse53G7sta28UA2MMOryFIWFBrrUxmKRxgxr6aWKAAAAAAAAvMNvg65JkyYpNjZW+/fvV5s2bdSuXTulpKSoe/fuatKkic4//3xJp96fS5Jq1aqlo0ePntbfkSNHVLt2bV+UDgBApVgsFk26uZ1LbZLrRWnYRY3PviJMIbZmmG6/qoVLbYZd1FhNkmK8VBEAAAAAAIB3+G3QlZSUpBUrVmjw4MEKCwtTWlqaateurZkzZ2rhwoUnr/L6e9DVqlWrcu/FtXXrVrVqxZnuAABzuObiJnpkTEen1o2vFaavZ1yssFC/ndG4Wpp6X3dd1Mu5+211bxuvtx/v4+WKAAAAAAAAPM/icDgcRhfha3l5eYqJiZHFYlFubq4iIiJOLps6daoefPBB7d69W0lJSZKk1atXq0ePHpo3b56uvPJKp8fJz89XVFTUyTG5RxcAwNden5OqyTPWy5pTVO7yPp3r6r1/9+VKHj9VUmrTfVN/0X8++13FJbbTlgcFWnT9oKaa8VAvRUYEG1AhAAAAAABA5VTLoOuP4KpFixbatm3bKcuOHz+udu3aKS4uTo8//riKioo0adIkxcfH6+eff1ZAgPMXwRF0AQCqguISm+Z+t0effrtHi1amq6TUrsjwIP30/mVq35xpeauD7KNFeveLHVq86oCW/pKpkjK7oiODte3Lq1SvDr9PAAAAAACAefnt1IVnsmnTJkmnT1soSTExMVqyZIkSExM1fPhw3XbbberVq5cWLFjgUsgFAEBVERoSqBGDm+mLVwYovlaYJKlmdAghVzUSWzNM/xzVTt+8cYnia5/YBmIigwm5AAAAAACA6VXLm3GcKeiSpKZNm2rBggW+LAkAAAAAAAAAAAAuqpaXKJ0t6AIAAAAAAAAAAEDVVy2v6FqyZInRJQAAAAAAAAAAAKCSquUVXQAAAAAAAAAAADA/gi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKQUZXQAAAMDfORxSkc3oKlwTFihZLEZXAQAAAAAAUL0QdAEAgCqnyCb1+droKlyzYpAUzi8rAAAAAAAAn2LqQgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFPilukAAFQDxSU27cvMU2mZXZJks9nlcDhksVgMrgy+cjyvRBmHC1RaemIbsNsdBlcEAAAAAABQeQRdAAD4Ibvdoe9XZ2jud3u0dotVm3bknAy5JCkru0h1+32kLq3jdG6nOho1pLmSEiINrBieVlRcpk/+t0ff/JiudVuztX3vsVOWZ1oL1WTgJ+rSOlYX9qiv6wc1UXRkiEHVAgAAAAAAuMficDg4nddL8vPzFRUVJUnKy8tTZCQHEAEA3lVcYtPrc1I145NU7dh73Ol2gYEWXd6vkSaOaqceHep4sULnFJZJfb42ugrXrBgkhVeBU4gOZRfq+fc26Z0vtuvIsWKn20VHBuvGy5pp0s3t1TAxyosVAgAAAAAAeA5BlxcRdAEAfGndVqtGPbxcm3fmuN2HxSJNGNFGT93dVREGpjbuBl25m5Zp+8P9T3ksICxSofWaK7bfSNW59G5ZAr3zvIwOuhwOhz753x7d9fRPyj7qfMD1d9GRwZp6X3fdflULprYEAAAAAABVXhU47xgAAFSGw+HQc+/+podeXSebrXLnrzgc0ssfbNGC5fs1f9oAtWpS0zNF+litvtepRpdBksOh0pwsZS+bpfR3/qGi9FQ1uutNo8vzuKLiMo16ZLnmfLOn0n3l5pdqzBM/at7iNH0y9XzFRDGdIQAAAAAAqLoCjC4AAAC4z+Fw6IFX1upfL6+tdMj1Vzv3HVffmxfq19+zPdanL0U06azYfjcotv9IJQydqJbPrVJwbJKs372l0mOHjS7PowqLynTpuO88EnL91f9+OqALbl+ko8fdvzoMAAAAAADA2wi6AAAwsWff/k1T3vnNK31bc4p00ZhvtDvd+Xt9VVWBYZGKbNFDcjhUnLXL6HI8xmaz65p/LtH3qzO80v/aLVYNHvetiorLvNI/AAAAAABAZRF0AQBgUqt+PaSHp69zqc2a2UO0/7vhWjN7iFPrHzpSpJseWi673fy39Pwj4AqKqm1wJZ4z7aOtWrB8v0ttXN0Gftp4SI+/scGd8gAAAAAAALyOoAsAABMqKi7TzZNdD6AS4iKUVDdSCXERTrdZueGgXv1oi6slGspeXKCy41aVHjuswrRN2vfGXSrcvUERKd0VVr+50eV5xPa0Y3pw2lqX27mzDTz37ib9ssm/pnwEAAAAAAD+oVoEXVarVZMmTVKzZs0UFhamBg0aaMKECcrPz9ett94qi8Wi6dOnG10mAC/al5mn/8zdpuff/U2vfbxVq387JIfD/FeowHnrtlo14+Otev7d3/Tm3G3ak55rdEmV8tL7W7RtzzGfjffAtLWy5hT5bLzKypz9qH4dGa/fbqyjrRPa6/CiGarZc6iaPfSl0aV5zD3PrVJRsc0nY9ntDo196ic+NwEAAAAAQJUTZHQB3rZx40YNHDhQWVlZioyMVOvWrZWRkaFp06Zp165dOnLkiCSpY8eOxhYKwCtW/XpIz77zq776Yf9pV750ahmrCSPa6MYhzWSxWAyqEN7kcDg055vdeun9Lfpl86lXo1gs0sDeSbr/5vbq2zXRoArdU1Zm1+ufpPp0zMIim975fLsm3dLep+O6K+7i0arVa5gctlIV7t2krHlTVGJNlyU47OQ6uVtWaOcTA09r6ygrkcNuU5fPfRMiuWPnvuNatDLdp2Ou22rV6t8Oq0eHOj4dFwAAAAAA4Ez8+oouq9Wqyy67TFlZWbrvvvuUmZmp9evXKysrS1OmTNHChQu1Zs0aWSwWtW9vjgN3AJz30cJd6jNqgb5cuq/c6d02bMvWqEeWa/TjK/3i/kM4lcPh0L3PrdZ19y87LeQ6sVz6ekW6zr99kd6e97sBFbpv4Yr92p+V7/Nx3/h0m2w2u8/HdUdoYopiOl6oGl0GKmHoJDV76CsV7Fyjfa/fcXKd6DZ91GlO3in/2szYrqDoONW7/kkDqz+7N3wcdP5hxhxjxgUAAAAAAKiIXwdd48ePV3p6usaNG6epU6cqOjr65LJJkyapQ4cOKisrU3JysmJiYgysFICnfffzAd348A8qs509wHpr3nY98MoaH1QFX/r3mxv1yodnv6+UzebQ7Y+v1JdL9/qgKs/4eNFuQ8bdcyBXazZbDRm7sqJa9VLtfiOVs3KO8lJ/Kncde2mxdj87VFGteytx2IM+rtA1H39jzDYwd/EelZWZI+wEAAAAAADVg98GXampqZozZ47i4uL0zDPPlLtOly5dJEkdOnQ4+dgfwVj37t0VGhrKdGaACTkcDk166RfZnAi5/vDCrM1KN+AKGXiHNadI/35zo9PrOxzSxBd/Mc2VfWu3Ghc2rUs1Z9AlSYnXPiIFBCrjo8nlLt834w7ZS4uUPOE93xbmoixrgQ4cKjBk7MIim7buPmrI2AAAAAAAAOXx26Br9uzZstvtGjFihKKiospdJzw8XNKpQdfOnTv12WefKSEhQd26dfNJrQA8a9Vvh7Rx2xGX2thsDv3nM3NNX4eKvfP5dpWUunbVyY69x7XklwwvVeQ5x3JLtHPfccPGX2dgyFZZYYnNVLvPcOX+9r1yt6w4Zdmhr6bp2NoFavrAFwoIjTCoQucY/RoYPT4AAAAAAMBf+W3QtWTJEklS//79K1wnPf3ETdz/GnT17dtXmZmZmj9/vi688ELvFgnAK2a7Oa3b7G92ebgSGMXd19LdbceXtu89Zuj4v6cZO35lJQx7SAoIOOWqrtzflip91v1qMulThdZNNq44Jxn9Ghg9PgAAAAAAwF9ZHA6HOeZpclGDBg2Unp6uDRs2qGPHjqctLysrU2JioqxWq3bt2qUmTZqcts5jjz2mxx9/XO7+ifLz809eTZaYmKiAAL/NFYEq5Ujk1SoMbedyO4u9SPWOlj/VKcwls+Z9sge4fu/FsJLfFZv3kRcq8pzioEayxtxS7rI1s4coIe7MVyMlxIUrKDBAZTa7sqyFFa6XZS1Qt+vmn/Z4cFmm6hx/w7Wi3WAJCVfdl3d4fZzig2na9s9uShz+qOoMHlepvg7ekyJHScV/U0/JDeur4xEXlLvMF9tAZNEq1SxY5FrRAAAAAAAAZ5CQkKC1a9e61TbIw7VUGfn5J+61U1hY/gGcOXPmyGq1Kjo6Wo0bN/Z6PZmZmV4fA8D/S8qXQl1v5rCX6sCBA56vB74XVSqFuN6sqDC/6m8DEeFSBRleQlyEkupGOtVNUGCA0+v+VWlJsU/+RgGhEarr5THsxQXa9cwVqtF9SKVDLknKyMiQvdgH986KPypVkGX5YhvIz8tVfmYVf58AAAAAAIBqw2+DroSEBOXk5Gj9+vXq2bPnKcsyMzM1ceJESVL79u1lsVi8Xg9XdAG+czy0ULlutAtx5Ci+fn2P1wPfs1qOqlixLreLCilQjSq+DZQGRutQBcuyrGcPWVy5mqc8IcF2n7xPLCHhXh8j56fPVLjnVxUd2K6clXNOW95m+laFxDd0ur969er55IquvNBQVTR5oC+2gejIYMVU8fcJAAAAAAAwl4SEBLfb+m3QdeGFFyo1NVVTpkzRgAED1Lx5c0nSmjVrNHLkSFmtJ26kXt60ht6wY8cORUa6ftY0ANftz8pT8iWfyG53bdrRN54ZoZuveNxLVcGXPvnfbl07canL7dYvflkpjWp4oSLPKSm1KbrHLJWU2k9bVt40c3+3/7vhSqobqSxroRoM+Njl8cfefJlemvSUy+1cVVgm9fnau2PE9h+p2P4jPdbf9u07FO6DX1Yr12epz6iF5S7zxTbw3utPauiFyS63AwAAAAAA8Aa/vcRo0qRJio2N1f79+9WmTRu1a9dOKSkp6t69u5o0aaLzzz9fktShQweDKwXgaQ0SojSkn/NXYUhSrZgQXXvx6ffqgzldcX4jJcS5dkXQgJ71qnzIJUkhwYFq37y2YeN3aR1n2Ng4oWPLWAUEeP9q9Ip0bcM2AAAAAAAAqg6/DbqSkpK0YsUKDR48WGFhYUpLS1Pt2rU1c+ZMLVy4UNu3b5dE0AX4q1f/1VP161RwE5u/CQiwaNZT5ynCF5diwCdCggP1wdP9FBToXBhQp3aY3njkXC9X5Tk9O9QxbOwe7Y0bGydERQSrffNahoxdr06EGiRwhToAAAAAAKg6/DbokqRWrVppwYIFys3NVW5urlavXq3Ro0crPz9faWlpCggIUNu2bY0uE4AXJCVEatk7g9WsYcwZ1wsLDdTcF87Xpee5dgUYqr4LetTT/GkDFHmWALNhYqSWvj1ITZLOvK1UJbdc0dyQcc/rmnDW9xR849YrWxg0bnOf3NsUAAAAAADAWX4ddFVky5YtcjgcSklJUUTE6Vd8zJ07V3PnztXWrVtP+e+1a9f6ulQAldCsYYx+/fRKvf14H3VuFXvKsoAAix69o5N2LhimKy9INqZAeN3APg20c+Ew/Xtcl9OuQmnfvLbeeORcbfn8KrVuaszVMe7q2DJWvTr6/sqqsde28vmYKN/IS5udNcT1tMBAi0Zf1dKnYwIAAAAAAJxNtQy6Nm3aJKniaQuHDRumYcOG6dNPPz3lv6dPn+6zGgF4RkR4kG65srnWfny5spZerzq1wyRJCbFhemxsZ9WvyxRc/i4hLkIPje6oPYuuUULsH69/uDZ+eoXGDGupqIhggyt0z8RR7Xw6XtMG0bry/GSfjomK1YgO0Zhhvg2dhl/SRElMWwgAAAAAAKoYgq5yOByOcv+99957PqwSgCdZLBbVjQ1XcFDAyf9G9RIYGKDAwID///8W028DV5yfrKsHJPtsvHce76Pg4Gr5s6HKemJsZzVJivbJWPG1wvTSxHN8MhYAAAAAAIArquURq7MFXQAAmMFrD/ZSXK0wl9pkWQuUfjBfWdYCp9uMv761+nZNdLW8KqUoY4e2TeqlzXc2V+p93VS4b0u56+17c7w23Z6sdZdbVLB7o2+LdFFkRLDeeaKPy+3c2QZef7iX4muHuzwWAAAAAACAt/n25g5VxJIlS4wuAQCASqsTG655L16gi+74RkXFNqfadLtuvktjnN89UVPu7eZOeVXKvhljFHfxaMVdMEo5P85V2iuj1OqFNaetV+vcq5UwdJJ+f6C3AVW67ryuiXpp4jm69/nVTrdxdRv4163tddWAxq6WBgAAAAAA4BPV8oouAAD8RZ8uCfrq1QGKCPP8uSv9uyXqy2kDFBZq7vNiSo8eUv7OtYrtd4MkqWavq1Ri3a+izJ2nrRvdpq9C4pJ8XWKl3DOyrabc450w8r4b2+rp8V290jcAAAAAAIAnEHQBAGByF/aorx/eHaQWyTU81ued17TU1zMuUlREsMf6NEqJdb+CayXKEngisLNYLAqJb6iSw/sMrsxzJt3SXh8+0081o0M80l9EWJBee7Cnnr+vu+nvZwcAAAAAAPybuU/RBgAAkqSubeK14ZMrNPm19Xph1iY5HO7106helN55vI/OP6eeZwv0om2TeqooY0e5y1q/tMHH1Rjn+sFNdV7XBI158kctXL7f7X76dknQO0/0UdMGMR6sDgAAAAAAwDsIugAA8BPhYUF6/r7uGn11C73x6Ta98/l2Hc0tcapt97bxGnttK11zcWOFe2EaRG9q+dzPZ1xuCQ5VaU6mHLYyWQKD5HA4VHJ4n0LiG/qoQt+pXzdSX706QCvXH9SMOan6bHGaSsvsZ20XEGDRZec10NhrW+nCHvUVEMBVXAAAAAAAwBzMdSQLAACcVUqjGnrhn+foybu6aMkvGVq31ap1W7O1fe8xFRaXKSgwQLViQtWxRW11aR2nczvVVfvmtY0u22uCa9ZRRNPOyl72geIuGKWjP32mkNgkhSU2M7o0r7BYLOrTJUF9uiToYHahlv6SoXVbs7V2q1UHDuWruMSmkOBAJcSGq0vrOHVpHat+3RLVICHK6NIBAAAAAABcRtAFAICfiggP0qXnNdSl5/nflUuuanTnTKVNG6WsuU8rMDxGyePfPbks7dXbVLP7ENU8Z4j2zhijY2sXqjQnSzseu1iB4dFqO3OngZVXTt3YcA0f2FTDBzY1uhQAAAAAAACvIOgCAAB+LyypRYVTHCbf/dbJ/99o7ExflQQAAAAAAAAPCDC6AAAAAAAAAAAAAMAdBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEwpyOgCAAAA/i4sUFoxyOgqXBMWaHQFAAAAAAAA1Q9BFwAAqHIsFimcXykAAAAAAAA4C6YuBAAAAAAAAAAAgCkRdAEAAAAAAAAAAMCUCLoAAAAAAAAAAABgSgRdAAAAAAAAAAAAMCWCLgAAAAAAAAAAAJgSQRcAAAAAAAAAAABMiaALAAAAAAAAAAAApkTQBQAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKQUZXQAA4HQOh1RkM7oK14QFShaL0VUAAAAAAAAAqE4IugCgCiqySX2+NroK16wYJIXzrQIAAAAAAADAh5i6EAAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKQUYXAADeUlRcplW/Hda6rVat3WLVvqw8HTpSKEmyHi3S5NfWqUvrOPXqUEfxtcMNrhbecORYsX7aeFBrt1i1PjVbh44USZIOHynStROXqEurOHVtE6eeHeooPIyvRAAAAAAAAMBsLA6Hw2F0Ef4qPz9fUVFRkqS8vDxFRkYaXBFQPexJz9Ubn6bq7c+3K/to8VnXDw4K0FUXJuuu4a10bqe6slgsPqjyzArLpD5fG12Fa1YMksKrQFbkcDi0+rfDmjEnVZ98u0fFJbaztqkVE6Kbr2iuO4a1VEqjGj6oEgAAAAAAAIAnEHR5EUEX4FsFhWV66NW1euXDLXL3k61/t0S9/XgfNU6K9mxxLiLocs/+rDyNfvxHffNjutt93DGspZ77RzdFR4Z4sDIAAAAAAAAA3kDQ5UUEXYDv/LTxoG56eLl27jte6b4iw4P0/D+6645rWhp2dZe7QVfupmXa/nD/Ux4LCItUaL3miu03UnUuvVuWQO+kUUYHXe9+sV33PLdKx/NKK91Xo3pReveJPurfvZ4HKgMAAAAAAADgLVVgkikAqJwvlqTp2olLVVJq90h/+YVlGvvUT9q+95henHhOlZjK0FW1+l6nGl0GSQ6HSnOylL1sltLf+YeK0lPV6K43jS7PoxwOhx5+dZ2efutXj/W5NyNPF93xjWb9+zxdN6ipx/oFAAAAAAAA4FkEXQBMbeHyfRr2zyUqK/P8xakvf7BFFov0wj/NF3ZFNOms2H43nPzv+EFjtWVsS1m/e0v1bnhKwTXiDazOsya/tt6jIdcfysocuuHBHxQcFKCrL2rs8f4BAAAAAAAAVF6A0QUAgLt27T+ua/651Csh1x9een+LZs3f6bX+fSUwLFKRLXpIDoeKs3YZXY7HfPrtHv37zY1e699ud2jEA8u0dVeO18YAAAAAAAAA4D6CLgCmZLc7dMvkFSooKnOp3ZrZQ7T/u+FaM3uI020mPLdKBw7mu1pilfNHwBUUVdvgSjzj8JFCjX3qJ5fauPP6l5TaNeqR5Sor88zUmAAAAAAAAAA8p1oEXVarVZMmTVKzZs0UFhamBg0aaMKECcrPz9ett94qi8Wi6dOnG12m1xWX2JR9tEjFJTajS4EBHA6H8gtKlX20yC8O2M/8dJuWr8tyuV1CXISS6kYqIS7C6TbHckt0579dC1SMZi8uUNlxq0qPHVZh2ibte+MuFe7eoIiU7gqr39zo8jxiwpRVsuYUudTGnddfktZstuql9ze71AYAAAAAAACA9/n9Pbo2btyogQMHKisrS5GRkWrdurUyMjI0bdo07dq1S0eOHJEkdezY0dhCvaSouEyffrtHM+akatVvh08+3qN9vMZe20rDLmqssFC/3wyqNWtOkd75fLve+HSb9hzIlSQFBlo0pF9Djb22lS44p57p7j9ls9n13Lu/+XTMr37Yp627ctS6aS2fjuuuzNmPKnP2o6c8VrPnUDUc85pBFXnWnvRcffzNbp+O+eL7mzXhhjYKCQ706bgAAAAAAAAAKubXCYfVatVll12mrKws3XfffXr00UcVHR0tSXruued0//33KygoSBaLRe3btze4Ws/bsjNHg8d9q70ZeactW/XbYa367bAeeW29Fk6/SG2amePgPVwzb3GabnhwmQqLTr2Kz2Zz6PPv9+rz7/fq/O6J+uzFC1QzJtSgKl33zY/pSitnu/a21z/Zplcf6Onzcd0Rd/Fo1eo1TA5bqQr3blLWvCkqsabLEhx2cp3cLSu084mBp7V1lJXIYbepy+dV9+rPmXO3yeG9W7OVK8taqC+W7NU1Fzfx7cAAAAAAAAAAKuTXUxeOHz9e6enpGjdunKZOnXoy5JKkSZMmqUOHDiorK1NycrJiYmIMrNTztqcd03m3LCw35PqrvRl5Ou+WhdqedsxHlcFX5i1O09X3fX9ayPV3S37J1EV3fKP8glIfVVZ5//nsd0PGnfXVDtNM/RmamKKYjheqRpeBShg6Sc0e+koFO9do3+t3nFwnuk0fdZqTd8q/NjO2Kyg6TvWuf9LA6s/MZrPr7c+3GzK2UdseAAAAAAAAgPL5bdCVmpqqOXPmKC4uTs8880y563Tp0kWS1KFDh5OPzZ07V1dddZUaNWqkiIgItWzZUg899JDy8nx/9UhljHzwB2UfLXZq3eyjxRr54A9ergi+dOTYidfU2Ste1my26tEZ671blIc4HA6t3HDQkLGP55Vq884cQ8aurKhWvVS730jlrJyjvNTy7zdmLy3W7meHKqp1byUOe9DHFTpv+97jLt+by1N+/vWQbDbz3+MOAAAAAAAA8Bd+G3TNnj1bdrtdI0aMUFRUVLnrhIeHSzo16Jo6daoCAwP19NNPa9GiRbrzzjv1+uuv65JLLpHdbo6Dm2s2H9Yvmw+ffcW/+GXzYa1xsQ2qrve+3K6CojKX2rzzxXYVFLrWxgj7MvOcDnG9Yd1Wq2FjV1bitY9IAYHK+Ghyucv3zbhD9tIiJU94z7eFucjI1yC/sEzb9x43bHwAAAAAAAAAp/Lbe3QtWbJEktS/f/8K10lPT5d0atD11VdfKT4+/uR/n3feeYqPj9eIESO0cuVK9e3b10sVe87MT7e53a5b2/izr4gqb+anrk+vlnO8RJ9+u0c3XZ7ihYo8Z+PvRwwdf0NqtqHjV0ZYYjPV7jNcR374ULlbVii6TZ+Tyw59NU3H1i5Qy6lrFBAaYWCVZ7dxm7GvwYbUbLVqUtPQGgAAAAAAAACcYHE4nJ3czFwaNGig9PR0bdiwQR07djxteVlZmRITE2W1WrVr1y41adKkwr62b9+uFi1a6KOPPtJ1113ndA35+fknryZLTExUQIBvLqA7FHObSoMauNwupHSf4nPf9kJF8CWHApRR+1G32kYVrlSNwu88XJFn5Yd00NGooeUuWzN7iBLizhzSJMSFKygwQGU2u7KshRWul2UtULfr5p/2eHjxJtXOn+ta0W6whISr7ss7XG6Xu2mZtj/cX/VHPa+EK/952vLC/anaOr6tolr3VYunlp5o89tS7XhykFImL1J0u35u13zwnhQ5Sir+m3pKTsQQFYR1KXfZ2bYBZ19/qeJtoEb+QkUV/+Ja0QAAAAAAAAAqlJCQoLVr17rV1m+v6MrPz5ckFRaWfyBzzpw5slqtio6OVuPGjc/Y19KlJw4Gt2rVyu16MjMz3W7rsnC7W69sSZlDBw4c8Hw98C1LiFTbvaZ5+YXKy6zi20CtxlL5s5EqIS5CSXUjneomKDDA6XX/qrCo2Cfvk4DQCNV1o110u37q8mXF5y+EN2ilLp/bTv538cE07X7+GiWNer5SIZckZWRkyF5cUKk+nJJUJIWVv8jZbcDd11+Sjh07rmPZVfx9AgAAAAAAAFQTfht0JSQkKCcnR+vXr1fPnj1PWZaZmamJEydKktq3by+LxVJhPwcOHNAjjzyiSy65pNwrw5zlyyu6rEGlcucORqFBpYqrX9/j9cC3HJIyHKWSJdjlttERAYqp4ttAQUiUcipYlmU9e8jiyhVd5QkPC1ZtH/yNLCHhXh/DXlygXc9coRrdh6jO4HGV7q9evXo+uaLraHiI8itYdrZtwNUruspTs0akIsOq9vsEAAAAAAAAMJOEhAS32/rt1IXjx4/Xq6++qgYNGmjx4sVq3ry5JGnNmjUaOXKkdu/erdLSUt11112aPn16uX3k5eWpX79+ysrK0po1a5SYmOhSDX+dujAvL0+Rke5dPeCqN+du05gnfnS93eRzdfvVLb1QEXxt5IPL9MGCXS632/rFVVX+3kOrfzukHjd85Xb7/d8NV1LdSKUfzFeDAR+73P7xsZ01+Y5Obo/vrMIyqc/X3h0je+n7Snv5RllCwmUpJ4hvM32rQuIbOt3fikFSuA9On5j63iZNfNG9qQMr+/pL0pK3Bqp/93putQUAAAAAAADgWX57RdekSZP00Ucfaf/+/WrTpo1atmypoqIi7dy5UwMHDlRycrL+97//qUOHDuW2Lyws1GWXXaY9e/ZoxYoVLodcRhoxqKkmvviLjueVOt2mRnSIrh/U1ItVwZfuura1y0FX/26JVT7kkqT2zWsrMNAim82YjL5L61hDxvWG2P4jFdt/pNFluMzo16BzqzhDxwcAAAAAAADwJ9/MpWeApKQkrVixQoMHD1ZYWJjS0tJUu3ZtzZw5UwsXLtT27dslqdygq7S0VFdffbXWrl2rRYsWqXXr1r4uv1IiI4I1eYxrV5w8MrqjIiNcn+oOVdM57eN1eX/nr8QJDgrQE3d19mJFnhMeFqS2zWoZNn6X1oQcRjMyaGrWMEY1okMMGx8AAAAAAADAqfw26JKkVq1aacGCBcrNzVVubq5Wr16t0aNHKz8/X2lpaQoICFDbtm1PaWO32zVixAh9//33+vLLL9W9e3eDqq+cf9zYVvfd2PbsK0q678a2+oeT68IcLBaLPnymn/p1O/uViMFBAfrw2X7q3dn9OVB97eoByYaM27tTXSXERRgyNv5UIzpEF/Uy5h5ZwwY0NmRcAAAAAAAAAOXz66CrIlu2bJHD4VBKSooiIk49aH3XXXfp008/1b333quIiAitWrXq5L/Dhw8bVLHrLBaLpv7zHM16qm+FV7+0S6mlWU/11dR/niOLxeLjCuFtkRHB+ub1i/XYnZ2UEBde7joX9aqvpW8P0rCLzHXw/rahLRQU5Pttduy1rXw+JspnxGthsUhjhrXw+bgAAAAAAAAAKlYtg65NmzZJKn/awkWLFkmSnn32WfXs2fOUfwsXLvRpnZ4w8rIU/fbZlVrx3mA9Oa6zoiJO3JYtrmaofp17pUZelmJwhfCm0JBAPXpnZ+3937X6dOr5iv7/1z8mMljbv7pa/3vjEp3bqa7BVbouIS5CV1/o23Cubmy4hl6Y7NMxUbHBfRqoUb0on455ad+GalQv2qdjAgAAAAAAADgzgq6/SUtLk8PhKPffqFGjfFypZ1gsFvXunKCHR3dSjagT95YJDQnkKq5qJCQ4UFdf1Fgx///6R0cGK6VRDYOrqpwp93ZTdKTv7iv38qRzFBoS6LPxcGZBQQF69V89fTZeeFigXvinOaeyBQAAAAAAAPwZQRcAU2qYGKWp9/kmeBh6QbKuvaSJT8bylqKMHdo2qZc239lcqfd1U+G+LeWut+/N8dp0e7LWXW5Rwe6Nvi3SRZf1a6gbLm3qk7Gevrur6cNhAAAAAAAAwB9Vy6BryZIlcjgcGjx4sNGlAKiE269qoaEXJLvUJstaoPSD+cqyFji1fqN6UXr94V6mvwJy34wxirt4tNq+vl0JQ+9X2iujyl2v1rlXq8UzKxVSp5FvC3TTK/f3VEqjGKfXd/X1l6RLzk3S+BFt3CkPAAAAAAAAgJcFGV0AALjLYrHow2fP0+UTSvXtTwecatPtuvlO91+vToQWvzlQdWLD3S2xSig9ekj5O9cq5fFvJUk1e12lfW+OU1HmToUlNjtl3eg2fY0o0W21a4Tqu5mX6LxbvtbejLyzru/K6y9JfTrX1dwXzldAgLmDTgAAAAAAAMBfVcsrugD4j7DQIM2fNkDXXtLYo/22bFxDK9+7VM0aOn+1UFVVYt2v4FqJsgSeOLfBYrEoJL6hSg7vM7gyz2hUL1or37tUHVrU9mi/l/dvqG9ev0SREb67FxwAAAAAAAAA13BFFwDTCw0J1Owp/TXkvEa6+9mfdeRYsdt9BQRYdN+NbfX42M4KDzPHR+S2ST1VlLGj3GWtX9rg42qMkZQQqV8+GqInZ27UM2//KpvN4XZfMVHBenlSD426PMX0U1YCAAAAAAAA/s4cR3EB4CwsFouuH9xU55+TqH+/uVGzvtqp3PxSF9pLl/ZtqIdu76Bz2tfxYqWe1/K5n8+43BIcqtKcTDlsZbIEBsnhcKjk8D6FxDf0UYW+ERIcqCfHddGV5zfSU//5VV8u2+tS4BUZHqQRg5vqkdGdlJQQ6cVKAQAAAAAAAHgKQRcAv5IQF6HpD/bSMxO66oMFu7Rg+T6t25qtg9mFp60bGR6kji1j1a9rgm4b2kLJ9aMNqNj7gmvWUUTTzspe9oHiLhiloz99ppDYpNPuz+UvOreO02cvXaD0rHy9Ne93LV2TqfWp2corOD34jK8Vpi6t4zSoT5JuvCxFNaJDDKgYAAAAAAAAgLssDofD/fmdcEb5+fmKioqSJOXl5Sky0vgrBJIunK0DhwpUv06E0hdfZ3Q58LHq+vo7HA5lHCrQ3sw8FRXbFBIcoLhaYUppGKPAwKp5q8LCMqnP157rryj9d6VNG6Wy3GwFhscoefy7Ck9uJ0lKe/U21ew+RDXPGaK9M8bo2NqFKs3JUlB0rALDo9V25k6nxlgxSAqvoqdP2O0O7dx3XIeOFKqk1K6w0EA1SIhUUt1IpicEAAAAAAAATKyKHpIEAM+xWCyqXzdS9esaHzYbJSypRYVTHCbf/dbJ/99o7ExfleRTAQEWNU+uoebJNYwuBQAAAAAAAIAHVc1LGQAAAAAAAAAAAICzIOgCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKQUYXAAA4XVigtGKQ0VW4JizQ6AoAAAAAAAAAVDcEXQBQBVksUjif0AAAAAAAAABwRkxdCAAAAAAAAAAAAFMi6AIAAAAAAAAAAIApEXQBAAAAAAAAAADAlAi6AAAAAAAAAAAAYEoEXQAAAAAAAAAAADAlgi4AAAAAAAAAAACYEkEXAAAAAAAAAAAATImgCwAAAAAAAAAAAKZE0AUAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKBF0AAAAAAAAAAAAwJYIuAAAAAAAAAAAAmBJBFwAAAAAAAAAAAEyJoAsAAAAAAAAAAACmRNAFAAAAAAAAAAAAUyLoAgAAAAAAAAAAgCkFGV0AUB6HQyqyGV2Fa8ICJYvF6CoAAAAAAAAAAKg+CLpQJRXZpD5fG12Fa1YMksJ5RwEAAAAAAAAA4DNMXQgAAAAAAAAAAABTIugCAAAAAAAAAACAKRF0AQAAAAAAAAAAwJQIugAAAAAAAAAAAGBKQUYXAO/LPFygdVutyjxcoLyCUklSYbFNmYcLlBgfYXB18Da73aFd+49rw7Zs5ReeeP3zC8u0bE2mOreKVUxUiMEVAgAAAAAAAADgHovD4XAYXYS/ys/PV1RUlCQpLy9PkZGRPhnX4XDol02H9fon2/TtzweUebigwnUT4yN0Uc/6uvOalureLl4Wi8UnNZ5NYZnU52ujq3DNikFSeBWJjsvK7FqwfJ/enPu7ftx4UMfzSitcN6VRjK66MFljrm6p5PrRPqwSAAAAAAAAAIDKIejyIiOCrv/9mK4Hp63V+tRsl9t2bhWrp8d31cXnJnmhMtcQdLnHbnfotY+36rl3Nyn9YL5LbS0W6dK+DfX8P7qpReOa3ikQAAAAAAAAAAAPIujyIl8GXcdyS3Tf1NV6+/Ptle7r1iub64V/nqMa0cZNaedO0JW7aZm2P9z/lMcCwiIVWq+5YvuNVJ1L75Yl0HtJlNFB1859x3XzI8u1csPBSvUTFhqof4/rontuaKPAQG7jBwAAAAAAAACouqrIRGuojB17j+miMd8oLSPPI/29/fl2fb86Q9/OvEQpjWp4pE9fqtX3OtXoMkhyOFSak6XsZbOU/s4/VJSeqkZ3vWl0eV6xcPk+DfvnEhUW2SrdV1GxTf984Rf976d0zXvpQkVFBHugQgAAAAAAAAAAPI/LNUxue9ox9Rm10GMh1x/SMvLUZ9RCbU875tF+fSGiSWfF9rtBsf1HKmHoRLV8bpWCY5Nk/e4tlR47bHR5HvfFkjRdcc9ij4Rcf/Xdzxm6+I5vlF9Q8f29AAAAAAAAAAAwEkGXiWUfLdKAMYt0MLvQK/0fzC7UgDGLlH20yCv9+0pgWKQiW/SQHA4VZ+0yuhyPWvXrIV07canKyrwzA+lPGw/pmolLxAynAPB/7d1vlJb1fefxzw0IAzMgwqiDBQUCGEFglIrixlSMbkuMtNttolukiWtT28pCssbZpfmjbbOLGHJiCbE1aTc9PUkoPTFNUzHbJrHZUqINiDQsElEMwsiMeisoM4IwzOyDnrChDMKMM3N7Da/XOTxwftd1/b6Tex7lfX7XDQAAAMDbkdBVYIvveSy7mlq7dM+G1fOz+zs3ZcPq+ad0/a6m1ixZ/lh3xntb+WngGlQzqsKT9JwDB9vywU/8Yw4dbj/le7r6+SfJw+sa88WvP9WdEQEAAAAAoFcJXQX1zUd25msPd/10Ul3tsIw9tzp1tcNO+Z6vrt2Rv/mH57q8V6W0v/F62l4r5/CrL+XAzi3Z9Se358CzT2TY5Nmp+rkplR6vx3xi1ePZ/lzXXi3Znc8/ST722R9m5/P7u3QPAAAAAAD0ttMidJXL5TQ0NGTSpEmpqqrKuHHjsmTJkrS2tubWW29NqVTKqlWrKj3mKWtv78jHPvvDPt3zY5/9Ydrbi/H6uqbVd+VfFp6dH/3GOXlyyYy89O37M3LOr2bSx/+m0qP1mF1NLbnvK1v7bL+W1w/n9//kiT7bDwAAAAAATsWgSg/Q2zZv3px58+alubk51dXVmTp1avbs2ZOVK1dmx44deeWVV5Ik9fX1lR20C77z6PPZsbtvT9c8s+u1fPex5/Pvrxzbp/t2R+0v/lbOuvL96ThyOAee25LmbyzPoXJjSmdUHb1m/9Z1eeYP5h13b0fboXS0H8msvz7SlyN32Re//uM+D49/+b+fzYo7Zmf0yKqTXwwAAAAAAH2gX5/oKpfLueGGG9Lc3Jw77rgjTU1N2bRpU5qbm7N8+fKsXbs2GzZsSKlUyowZMyo97im7f822iuz7hb+szL5dNWTM5IyovzZnzpqXul9tyKSP/21ef2ZDdv3xbx+9Zvi0q3LJmpZj/k27f3sGDa/Neb/+hxWc/uQOHT6SLz3Y99+ZdfCNI/nyN5/u830BAAAAAOBE+nXoWrx4cRobG7No0aKsWLEiw4cPP7rW0NCQmTNnpq2tLePHj8+IESMqOOmpO3y4PX/3g+crsvff/eD5HD7cXpG934qai67MqKsXZu8/rUnLth90ek374Tfy7D2/mpqp78qY9/9eH0/YNRu3lvPiKwcrsvfadbsrsi8AAAAAAHSm34aubdu2Zc2aNamtrc2yZcs6vWbWrFlJkpkzZx792bp163LttddmzJgxGTJkSMaOHZsbb7wx27a9PU4zbd2xN28cqsxr9d44dCRPPru3Inu/VWNu/GQyYGD2fO1Tna7vuv+30374YMYv+fO+HawbHn+yXLG9N20rF+a72gAAAAAA6P/6behavXp12tvbs2DBgtTU1HR6zdChQ5McG7r27t2b6dOnZ+XKlfn7v//7LF++PFu3bs2cOXPS2NjYJ7O/mU3bXq7o/o8/Wdn9u6tqzKSMuuqm7P/R97J/67pj1l7825V5deNDecfSb2bAkGEVmvDUVfIzeK3lcHbsfq1i+wMAAAAAwM8aVOkBessjjzySJJk7d+4Jr/lpuPrZ0DV//vzMnz//mOsuu+yyXHjhhXnwwQezZMmSXpj21O1qajmt938r6t7/8byybnX2fO1TufB//EOSZP+P/iGNf/HfMvlT386Qc8dXdsBTVOnPYFdTayZfcGZFZwAAAAAAgCQpdXR09Mv3kI0bNy6NjY154oknUl9ff9x6W1tbxowZk3K5nB07dmTixIknfNbLL7+c2trarFq1Krfffvspz9Da2nr0NNmYMWMyYMBbP0D36tBr0zL0qk7XNqyen7raNz+RVFc7NIMGDkjbkfY0lw+c8Lrm8uu57D9967if1xxYlzMPfLdrQ3dDafDQnHvf0726xxsv7MyPP3ZZxtx0V865ftFbft4LH5mcjkMn/t+0p7w0/NYcOuP8TtdO9jdwqp9/cuK/gdH7v5Kqw7372QAAAAAAcPqoq6vLxo0bu3Vvvz3R1dramiQ5cKDz/zN/zZo1KZfLGT58eCZMmHDc+pEjR9Le3p7nnnsuS5cuTV1dXT7wgQ90e56mpqZu33uMc/YlQztfqqsdlrHnVp/SYwYNHHDK1/6sltf2puXF57t8X1cNGDIs5/bi89vfeD07lv1Kzpw9v0ciV5Ls2bMn7W+83iPPelMTXk/O6HzpVP8Guvv5J8nLL72QtPb+3wAAAAAAAJxMvw1ddXV12bt3bzZt2pQ5c+Ycs9bU1JQ777wzSTJjxoyUSqXj7v+FX/iFrF+/PkkyadKkPPLIIzn77LO7PU9PnehqGTIwr55grbl88sjSlRNdnTmzZlBqzvi5Uxn1LSkNPkHN6yF7f/BgDvzkX3Lw+e3Z+09rjlufturJDD6781NTJ3Leeef1yYmulwcfycETrJ3sb6CrJ7o6c/boYRk8svf/BgAAAAAAOD3U1dV1+95+++rCxYsX5/Of/3zGjRuX7373u5kyZUqSZMOGDVm4cGGeffbZHD58OLfffntWrVp13P1PPfVU9u3bl5/85Cf5zGc+kxdffDHr16/P+UDKYVgAABMuSURBVOefevz42VcXtrS0pLq6eydoftb6J17Iuz74ULfv3/2dmzL23Oo0vtCacdf9Zdf3/4v35cr63jxr9a8OtCVXPdzr2/Sode9NhvZBOr7nz/4lS/+oe0c43+rnP2TwwLz26MIMPmNgt/YHAAAAAICe9NaPGL1NNTQ0ZPTo0dm9e3emTZuW6dOnZ/LkyZk9e3YmTpyYa665Jkkyc+bMTu+/8MILc/nll+emm27K9773vezfvz/33ntvX/4Knaq/cFQGDDj+BFpfGDCglPoLR1dkb/6/WVNrK7b3jClniVwAAAAAALxt9NvQNXbs2Kxbty7XX399qqqqsnPnzowaNSoPPPBA1q5dm+3btyc5cej6WSNHjsykSZPyzDPP9PbYJ1U97IzMvrgyoePy6WdnWF8cWeJNXT797AytqkxsmnvZmIrsCwAAAAAAnenX1eKiiy7KQw8d/5q/lpaW7Ny5MwMGDMjFF1980ue8+OKLeeqpp3L55Zf3xphd9tvvvyiP/eilCuz7zj7fk+ONqBmcX5/3jvzZX2/v031LpeS3fs3fAAAAAAAAbx/9OnSdyNatW9PR0ZEpU6Zk2LBhx6zdfPPNmTRpUurr6zNy5Mg8/fTT+dznPpdBgwblox/9aIUmPtaNvzQh/3XFP+eVV9/osz1HjxySD/zihD7bjzf3uzde1Oeh65f+3di8Y9yIPt0TAAAAAADeTL99deGb2bJlS5LOX1t4xRVX5OGHH84tt9ySefPm5TOf+UyuuuqqbN68OZMmTerrUTtVNWRQlt568lcu9qT//p9npmrIadlF35YunVqb+Vef32f7lUrJJ36rvs/2AwAAAACAU3Falos3C12LFi3KokWL+nqkLvvowmn5+nd+kn/e0vuvMLxixtn56MJpvb4PXfPHn7gy//h4c/btP9Tre3104cW5sv7cXt8HAAAAAAC6womugho4cED+/NPvztCqgV26r7n8ehpfaE1z+fVTun5o1cB8+Q/fnYEDi/2ncnDP0/lxw5X5v78zJdvuuCwHdm3t9LpdX1ycLR8en8d/uZTXn93ct0N20XnnVOfzS+d06Z6ufv5JcuH4M/PpRbO6Oh4AAAAAAPS6UkdHR0elh+ivWltbU1NTkyRpaWlJdXV1j+/x7XW7M3/Jd9LW1vMf46BBpXzrj67LvKvG9fizT+ZAW3LVwz33vO2fuCaj5v5Gat/zoexd//U0f2N5LvrshuOu27/1HzPk3Il5aum78o6l38ywifWnvMe69yZDK3BG8u77N+X3/+SJXnn2eecMyz/9+fsyYezwXnk+AAAAAAC8FcU+pkPmXTUu37zv2lQN6drJrpOpGjIwf1OhyNXTDu97Ma3PbMzoq29Okoy88j/mUHl3DjY9c9y1w6e9O4Nrx/b1iG/JXb9zSf7g9kt7/Lnjz6vJ//lf14tcAAAAAAC8bQld/cD17z4/j33lhtS/c1SPPK/+naPy2FduyHv7QeRKkkPl3TnjrDEpDfzX41alUimDzz4/h17aVeHJekapVMonb7sk3/jce3LOqKoeeeavXTc+//zV+Zl0/ogeeR4AAAAAAPSGCrxojd4w88LR+eFXfzn/8083594vb8nrB9u6/IxhVYPScMv0/N5v1ueMM4rTQH/cMCcH9zzd6drUz/XOK/3ejv7De8bnqkvrsmT5Y1n97R3pzktJx5w9LPc1XJ4P/OLEnh8QAAAAAAB6mNDVj5xxxoDc9TuXZsmCafmLv30m96/Zlqd2vnrS+y4cf2Z+98aL8hs3TMrIEUP6YNKe9c57H33T9dIZQ3J4b1M6jrSlNHBQOjo6cuilXRl89vl9NGHfqT2rKl+95+p8etGsfPHBH+dPv7E95b0HT3rf1ZeNye/eeFF+Ze4FhYqcAAAAAACc3oSufmjkiCFZvGBa/suvT83u5tY8/mQ5jz9ZTlP5QN44dCRDBg/MmNqhmTW1Nj8/rTZjz61OqVSq9Ni95oyR52TYOy7Ny9//Smrf86Hs+8GDGTx6bKrGTKr0aL1mwtjhWbbksnx60aw8tfPVPP5kOU/8+OXsfe1QDre1Z+iQgXnHuBH5+Wm1ufSi2ow6s3iBEwAAAAAASh0d3XnBGaeitbU1NTU1SZKWlpZUV1dXeKLiONCWXPVwzz3vYONT2bnyQ2nb/3IGDh2R8Yu/nKHjpydJdn7+NzNy9vyMvHx+nrv/try6cW0O723OoOGjM3Do8Fz8wDOntMe69yZDpWMAAAAAAOgzQlcvErq6r6dDV18QugAAAAAAoG/5Mh4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJAGVXoA6EzVwGTdeys9RddUDaz0BAAAAAAAcHoRunhbKpWSof46AQAAAACAN+HVhQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAh9fvQVS6X09DQkEmTJqWqqirjxo3LkiVL0tramltvvTWlUimrVq2q9JgAAAAAAAB00aBKD9CbNm/enHnz5qW5uTnV1dWZOnVq9uzZk5UrV2bHjh155ZVXkiT19fWVHRQAAAAAAIAu67cnusrlcm644YY0NzfnjjvuSFNTUzZt2pTm5uYsX748a9euzYYNG1IqlTJjxoxKjwsAAAAAAEAX9dvQtXjx4jQ2NmbRokVZsWJFhg8ffnStoaEhM2fOTFtbW8aPH58RI0ZUcFIAAAAAAAC6o1+Grm3btmXNmjWpra3NsmXLOr1m1qxZSZKZM2ee8Dnz5s1LqVTK3Xff3RtjAgAAAAAA8Bb0y9C1evXqtLe3Z8GCBampqen0mqFDhyY5cej6q7/6q2zevLm3RgQAAAAAAOAt6peh65FHHkmSzJ0794TXNDY2Juk8dL322mv5yEc+khUrVvTOgAAAAAAAALxlgyo9QG947rnnkiQXXHBBp+ttbW1Zv359ks5D18c//vFMmTIlCxYsyM0339wjM02ePDkDBvTLrggAAAAAANBtdXV12bhxY7fu7Zehq7W1NUly4MCBTtfXrFmTcrmc4cOHZ8KECcesbdy4MV/60pfy+OOP9+hMTU1NPfo8AAAAAACA012/DF11dXXZu3dvNm3alDlz5hyz1tTUlDvvvDNJMmPGjJRKpaNrR44cyW233ZZFixZl2rRpPTrTmDFjnOgCAAAAAAD4N+rq6rp9b78MXddee222bduW5cuX57rrrsuUKVOSJBs2bMjChQtTLpeTJPX19cfct2rVqrzwwgu5++67e3ymp59+OtXV1T3+XAAAAAAAgNNVvzxi1NDQkNGjR2f37t2ZNm1apk+fnsmTJ2f27NmZOHFirrnmmiTHfj9XuVzOJz/5yXzqU59KW1tb9u3bl3379iVJDh48mH379qW9vb0Svw4AAAAAAACd6Jeha+zYsVm3bl2uv/76VFVVZefOnRk1alQeeOCBrF27Ntu3b09ybOhqbGzM/v37c9ttt+Wss846+i9Jli9fnrPOOiu7du2qyO8DAAAAAADA8UodHR0dlR6iL7W0tGTEiBEplUrZv39/hg0bdvTnGzduPO76uXPn5oMf/GA+9KEP5YorrkhVVdUp79Xa2pqampqjz/fqQgAAAAAAgJ7TL7+j681s3bo1HR0dmTJlytHIlSQ1NTW5+uqrO71n/PjxJ1wDAAAAAACgMvrlqwvfzJYtW5Ic+9pCAAAAAAAAiue0O9HV1dB1mr3ZEQAAAAAAoDCc6AIAAAAAAKCQSh2OLPWa1tbW1NTUJElaWlpSXV1d4YkAAAAAAAD6j9PuRBcAAAAAAAD9g9AFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCEJXQAAAAAAABSS0AUAAAAAAEAhCV0AAAAAAAAUktAFAAAAAABAIQldAAAAAAAAFJLQBQAAAAAAQCGdFqGrXC6noaEhkyZNSlVVVcaNG5clS5aktbU1t956a0qlUlatWlXpMQEAAAAAAOiCQZUeoLdt3rw58+bNS3Nzc6qrqzN16tTs2bMnK1euzI4dO/LKK68kSerr6ys7KAAAAAAAAF3Sr090lcvl3HDDDWlubs4dd9yRpqambNq0Kc3NzVm+fHnWrl2bDRs2pFQqZcaMGZUeFwAAAAAAgC7o16Fr8eLFaWxszKJFi7JixYoMHz786FpDQ0NmzpyZtra2jB8/PiNGjKjgpAAAAAAAAHRVvw1d27Zty5o1a1JbW5tly5Z1es2sWbOSJDNnzjz6s+9///splUrH/fNqQwAAAAAAgLeXfvsdXatXr057e3sWLFiQmpqaTq8ZOnRokmND10994QtfyKWXXnr0v6urq3tnUAAAAAAAALql34auRx55JEkyd+7cE17T2NiYpPPQNXXq1FxxxRU9Ns/kyZMzYEC/PUAHAAAAAADQLXV1ddm4cWO37u23oeu5555LklxwwQWdrre1tWX9+vVJOg9dPa2pqanX9wAAAAAAADid9NvQ1dramiQ5cOBAp+tr1qxJuVzO8OHDM2HChOPWb7zxxpTL5YwePTrz58/PPffck9ra2i7NMGzYsLS0tORd73pXXnzxxZRKpa7/IgAAAAAAAP1YXV1dt+/tt6Grrq4ue/fuzaZNmzJnzpxj1pqamnLnnXcmSWbMmHFMgDrzzDNz55135t3vfndqamry6KOPZtmyZXnssceycePGVFVVnfIMpVIp1dXVeeKJJ3rmlwIAAAAAAOCofhu6rr322mzbti3Lly/PddddlylTpiRJNmzYkIULF6ZcLidJ6uvrj7nvkksuySWXXHL0v6+++upcfPHFmT9/flavXp1bbrmlz34HAAAAAAAATmxApQfoLQ0NDRk9enR2796dadOmZfr06Zk8eXJmz56diRMn5pprrklyat/P9b73vS/V1dXd/iI0AAAAAAAAel6/DV1jx47NunXrcv3116eqqio7d+7MqFGj8sADD2Tt2rXZvn17klMLXT/lO7YAAAAAAADePvrtqwuT5KKLLspDDz103M9bWlqyc+fODBgwIBdffPFJn/Otb30rra2tmT17dm+MCQAAAAAAQDf069B1Ilu3bk1HR0emTJmSYcOGHbN28803Z+LEibn00ktTU1OTRx99NPfee2/q6+tz0003VWhiAAAAAAAA/q3TMnRt2bIlSeevLZw2bVq+9rWv5b777suBAwcyduzYfPjDH85dd92VwYMH9/WoAAAAAAAAnIDQ9W8sXbo0S5cu7euRAAAAAAAA6KIBlR6gEt4sdAEAAAAAAFAMpY6Ojo5KDwEAAAAAAABddVqe6AIAAAAAAKD4hC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQhC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQhC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQhC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQhC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQhC4AAAAAAAAKSegCAAAAAACgkIQuAAAAAAAACknoAgAAAAAAoJCELgAAAAAAAApJ6AIAAAAAAKCQ/h8SxNU1C+rTEQAAAABJRU5ErkJggg==", "text/plain": [ - "
" + "
" ] }, "execution_count": 20, @@ -795,7 +786,7 @@ "\"\"\"\n", ")\n", "\n", - "# And finall\n", + "# And finally\n", "circuit.draw(\"mpl\")" ] }, @@ -815,10 +806,10 @@ "Trotter step with Suzuki Trotter (4th order)\n", "--------------------------------------------\n", "\n", - " Depth: 70\n", - " Gate count: 165\n", - " Nonlocal gate count: 50\n", - " Gate breakdown: RZ: 60, RX: 55, RZZ: 50\n", + " Depth: 170\n", + " Gate count: 265\n", + " Nonlocal gate count: 100\n", + " Gate breakdown: CX: 100, U1: 60, R: 55, RZ: 50\n", "\n", "\n" ] @@ -863,7 +854,9 @@ "source": [ "from qiskit.synthesis import SuzukiTrotter\n", "\n", - "trotter = TrotterQRTE(SuzukiTrotter(order=4), num_timesteps=num_timesteps, estimator=Estimator())\n", + "trotter = TrotterQRTE(\n", + " SuzukiTrotter(order=4), num_timesteps=num_timesteps, estimator=StatevectorEstimator()\n", + ")\n", "problem = TimeEvolutionProblem(\n", " H,\n", " initial_state=initial_state,\n", @@ -890,7 +883,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHbCAYAAABWVwzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd1xTZ9sH8N9JQsLeGxmigoA4cCJubd1WrXXPOlt9uuyy1oW1W9u3S1x11FG1jtZV9wQURZwoLvYeQpgJyTnvH2kiIYwACUS9vs/Hz9MkZ1w5OQnnOvd93TfDcRwHQgghhBBCCGkAXlMHQAghhBBCCHn+UWJBCCGEEEIIaTBKLAghhBBCCCENRokFIYQQQgghpMEosSCEEEIIIYQ0GCUWhBBCCCGEkAajxIIQQgghhBDSYJRYEEIIIYQQQhqMEgtCCCGEEEJIg1FiQchzbPny5WAYBjk5OU0dil4kJCSAYRh8//33tS6rPBbPO+V73rJli063+6IcH0IIIYaLEgtCDMzdu3cxefJkuLm5QSQSwdXVFZMmTcLdu3ebOjRi4EpKSrB8+XKcO3euqUMhhBDyEqLEghADsn//fgQFBeH06dOYMWMGfvvtN8ycORNnz55FUFAQDhw40NQhEgNWUlKCFStWVJlYfP755ygtLW38oAghhLw0BE0dACFE4fHjx5gyZQq8vb1x4cIFODg4qF5799130bNnT0yZMgW3bt2Ct7d3E0aqiWVZSKVSGBsbN3UopBoCgQACAf3kE0II0R9qsSDEQHz33XcoKSnB+vXr1ZIKALC3t8e6detQXFyMb7/9VmPdnJwcjB07FpaWlrCzs8O7776LsrIytWVOnjyJHj16wNraGubm5vD19cVnn32mtoxEIsGyZcvQsmVLiEQiuLu74+OPP4ZEIlFbjmEYLFiwADt27EBAQABEIhEOHToEW1tbzJgxQyM+sVgMY2NjfPjhhwAAqVSKpUuXomPHjrCysoKZmRl69uyJs2fPVnt8fvjhB3h6esLExAS9e/fGnTt3aj6g/9m+fTs6duwIExMT2NraYvz48UhOTtZq3dTUVLz55ptwcnKCSCRCQEAAfv/9d9XrmZmZEAgEWLFihca6cXFxYBgGv/zyi+q5J0+e4I033oCtrS1MTU3RrVs3HDlypNY4+vTpgz59+mg8P336dHh5eQFQ1GYoz5sVK1aAYRgwDIPly5cDqLrGQiaTYeXKlWjRogVEIhG8vLzw2WefaXzeXl5eGDZsGC5duoQuXbrA2NgY3t7e2LZtW62xE0IIeXnQ7StCDMShQ4fg5eWFnj17Vvl6r1694OXlVeWF6NixY+Hl5YWvvvoKly9fxk8//YSnT5+qLvzu3r2LYcOGoW3btggNDYVIJMKjR48QHh6u2gbLshgxYgQuXbqEOXPmwM/PD7dv38YPP/yABw8e4ODBg2r7PHPmDPbs2YMFCxbA3t4erVq1wqhRo7B//36sW7cOQqFQtezBgwchkUgwfvx4AIpEY+PGjZgwYQJmz56NwsJCbNq0CQMHDkRUVBTat2+vtq9t27ahsLAQ8+fPR1lZGf7v//4P/fr1w+3bt+Hk5FTtMV21ahWWLFmCsWPHYtasWcjOzsbPP/+MXr16ISYmBtbW1tWum5mZiW7duqmSKAcHBxw7dgwzZ86EWCzGe++9BycnJ/Tu3Rt79uzBsmXL1NbfvXs3+Hw+3njjDdX2unfvjpKSErzzzjuws7PD1q1bMWLECPz1118YNWpUtbFow8HBAWvXrsVbb72FUaNGYfTo0QCAtm3bVrvOrFmzsHXrVowZMwYLFy7ElStX8NVXX+HevXsa3e4ePXqEMWPGYObMmZg2bRp+//13TJ8+HR07dkRAQECDYieEEPKC4AghTS4/P58DwL322ms1LjdixAgOACcWizmO47hly5ZxALgRI0aoLff2229zALibN29yHMdxP/zwAweAy87Ornbbf/zxB8fj8biLFy+qPR8WFsYB4MLDw1XPAeB4PB539+5dtWWPHz/OAeAOHTqk9vyQIUM4b29v1WOZTMZJJBK1ZZ4+fco5OTlxb775puq5+Ph4DgBnYmLCpaSkqJ6/cuUKB4B7//33Vc8pj4VSQkICx+fzuVWrVqnt5/bt25xAINB4vrKZM2dyLi4uXE5Ojtrz48eP56ysrLiSkhKO4zhu3bp1HADu9u3basv5+/tz/fr1Uz1+7733OABqx7ewsJBr3rw55+XlxcnlcrX3vHnzZtVyvXv35nr37q0R47Rp0zhPT0/V4+zsbA4At2zZMo1lKx+fGzducAC4WbNmqS334YcfcgC4M2fOqJ7z9PTkAHAXLlxQPZeVlcWJRCJu4cKFGvsihBDycqKuUIQYgMLCQgCAhYVFjcspXxeLxWrPz58/X+3x//73PwDA0aNHAUB1Z/7vv/8Gy7JVbnvv3r3w8/ND69atkZOTo/rXr18/ANDoptS7d2/4+/urPdevXz/Y29tj9+7dqueePn2KkydPYty4carn+Hy+qkWDZVnk5eVBJpOhU6dOuH79ukZsI0eOhJubm+pxly5d0LVrV9X7q8r+/fvBsizGjh2r9n6cnZ3RqlWrGrtdcRyHffv2Yfjw4eA4Tm39gQMHoqCgQBXn6NGjIRAI1N7znTt3EBsbq/aejx49ii5duqBHjx6q58zNzTFnzhwkJCQgNja22nj0QXnsPvjgA7XnFy5cCAAaLWP+/v5qrWkODg7w9fXFkydP9BwpIYSQ5wUlFoQYAGXCoEwwqlNdAtKqVSu1xy1atACPx0NCQgIAYNy4cQgJCcGsWbPg5OSE8ePHY8+ePWpJxsOHD3H37l04ODio/fPx8QEAZGVlqe2jefPmGvEJBAK8/vrr+Pvvv1X99Pfv34/y8nK1i2wA2Lp1K9q2bQtjY2PY2dnBwcEBR44cQUFBgcZ2K78/APDx8VG9v6o8fPgQHMehVatWGu/p3r17Gu+nouzsbOTn56vqXSr+U9aQKNe3t7dH//79sWfPHtX6u3fvhkAgUHVHAoDExET4+vpq7MvPz0/1emNKTEwEj8dDy5Yt1Z53dnaGtbW1RjweHh4a27CxscHTp0/1GichhJDnB9VYEGIArKys4OLiglu3btW43K1bt+Dm5gZLS8sal6tcpGtiYoILFy7g7NmzOHLkCP7991/s3r0b/fr1w4kTJ8Dn88GyLAIDA7FmzZoqt+nu7q6xzaqMHz8e69atw7FjxzBy5Ejs2bMHrVu3Rrt27VTLbN++HdOnT8fIkSPx0UcfwdHREXw+H1999RUeP35c43vTFsuyYBgGx44dA5/P13jd3Ny8xnUBYPLkyZg2bVqVy1SsXRg/fjxmzJiBGzduoH379tizZw/69+8Pe3v7Br4LBYZhwHGcxvNyuVwn29ZGVccQQJVxEUIIeTlRYkGIgRg2bBg2bNiAS5cuqXWXUbp48SISEhIwd+5cjdcePnyo1oLw6NEjsCyrGjEIAHg8Hvr374/+/ftjzZo1+PLLL7F48WKcPXsWAwYMQIsWLXDz5k3079+/QTM09+rVCy4uLti9ezd69OiBM2fOYPHixWrL/PXXX/D29sb+/fvV9lW5ALri+6vswYMHau+vshYtWoDjODRv3lzV6qItBwcHWFhYQC6XY8CAAbUuP3LkSMydO1fVHerBgwdYtGiR2jKenp6Ii4vTWPf+/fuq16tjY2NTZZejyq0KdfncPD09wbIsHj58qGo1ARRF5vn5+TXGQwghhFSFukIRYiA++ugjmJiYYO7cucjNzVV7LS8vD/PmzYOpqSk++ugjjXV//fVXtcc///wzAGDw4MGq9StTjryk7LI0duxYpKamYsOGDRrLlpaWori4WKv3wePxMGbMGBw6dAh//PEHZDKZRjco5d3vine7r1y5gsjIyCq3efDgQaSmpqoeR0VF4cqVK6r3V5XRo0eDz+djxYoVGnfVOY7TOMaV43v99dexb9++Koe1zc7OVntsbW2NgQMHYs+ePfjzzz8hFAoxcuRItWWGDBmCqKgotfdYXFyM9evXw8vLS6NepaIWLVrg/v37avu9efOm2qheAGBqagoAyM/Pr3ZbFeMBgB9//FHteWWL1dChQ2vdBiGEEFIRtVgQYiBatWqFrVu3YtKkSQgMDMTMmTPRvHlzJCQkYNOmTcjJycGuXbvQokULjXXj4+MxYsQIDBo0CJGRkdi+fTsmTpyo6n4UGhqKCxcuYOjQofD09ERWVhZ+++03NGvWTNU6MmXKFOzZswfz5s3D2bNnERISArlcjvv372PPnj04fvw4OnXqpNV7GTduHH7++WcsW7YMgYGBanfEAUXrzP79+zFq1CgMHToU8fHxCAsLg7+/P4qKijS217JlS/To0QNvvfUWJBIJfvzxR9jZ2eHjjz+uNoYWLVrgiy++wKJFi5CQkICRI0fCwsIC8fHxOHDgAObMmaOaV6MqX3/9Nc6ePYuuXbti9uzZ8Pf3R15eHq5fv45Tp05pJGvjxo3D5MmT8dtvv2HgwIEaQ9l++umn2LVrFwYPHox33nkHtra22Lp1K+Lj47Fv3z7weNXf53nzzTexZs0aDBw4EDNnzkRWVhbCwsIQEBCgVshvYmICf39/7N69Gz4+PrC1tUWbNm3Qpk0bjW22a9cO06ZNw/r165Gfn4/evXsjKioKW7duxciRI9G3b99q4yGEEEKq1GTjURFCqnTr1i1uwoQJnIuLC2dkZMQ5OztzEyZM0BjOlOOeDSEaGxvLjRkzhrOwsOBsbGy4BQsWcKWlparlTp8+zb322mucq6srJxQKOVdXV27ChAncgwcP1LYnlUq5b775hgsICOBEIhFnY2PDdezYkVuxYgVXUFCgWg4AN3/+/GrfA8uynLu7OweA++KLL6p8/csvv+Q8PT05kUjEdejQgTt8+LDG8KnKoVe/++47bvXq1Zy7uzsnEom4nj17qobSrXwsKtu3bx/Xo0cPzszMjDMzM+Nat27NzZ8/n4uLi6s2fqXMzExu/vz5nLu7u+qz6N+/P7d+/XqNZcViMWdiYsIB4LZv317l9h4/fsyNGTOGs7a25oyNjbkuXbpwhw8fVlumquFmOY7jtm/fznl7e3NCoZBr3749d/z4cY3jxXEcFxERwXXs2JETCoVqQ89WdXzKy8u5FStWcM2bN+eMjIw4d3d3btGiRVxZWZnacp6entzQoUM13k91w+ASQgh5OTEcR5V3hBBCCCGEkIahGgtCCCGEEEJIg1FiQQghhBBCCGkwSiwIIYQQQgghDUaJBSGEEEIIIaTBKLEghBBCCCGENBglFoQQQgghhJAGo8SCEEIIIYQQ0mCUWBBCCCGEEEIajBILQgghhBBCSINRYkEIIYQQQghpMEosCCGEEEIIIQ1GiQUhhBBCCCGkwSixIIQQQgghhDQYJRaEEEIIIYSQBqPEghBCCCGEENJglFgQQgghhBBCGowSC0IIIYQQQkiDUWJBCCGEEEIIaTBKLAghhBBCCCENRokFIYQQQgghpMEosSCEEEIIIYQ0GCUWhBBCCCGEkAYTNHUAho5lWaSlpcHCwgIMwzR1OIQQQgh5yXAch8LCQri6uoLHo3vCxHBRYlGLtLQ0uLu7N3UYhBBCCHnJJScno1mzZk0dBiHVosSiFhYWFgAUX2ZLS8tG2+/lry6Dx+OhyyddNF6L+iYKLMui26JujRYPIYQQQpqGWCyGu7u76pqEEENFiUUtlN2fLC0tGzWxsDC1QPjScJgZmyF4SbDq+ciVkbjx5Q2EhIY0ajyEEEIIaVrUJZsYOkosDJQymQhfGq56HLkyEuFLwxESGqKWbBBCCCGEENLUKLEwYBWTi8iVkWDLWUoqCCGEEEKIQaKhBQxc8JJgMHwGbDkLvpBPSQUhhBBCCDFIz01ikZeXh0mTJsHS0hLW1taYOXMmioqKalynT58+YBhG7d+8efMaKWLdiFwZCU7OAQDkUjkiV0Y2cUSEEEIIIYRoem66Qk2aNAnp6ek4efIkysvLMWPGDMyZMwc7d+6scb3Zs2cjNDRU9djU1FTfoeqMsqbC3M0cbDkLSy9LtZoLQgghhBBCDMVz0WJx7949/Pvvv9i4cSO6du2KHj164Oeff8aff/6JtLS0Gtc1NTWFs7Oz6t/zMpJSxUJtjuXQ+aPOyH+Yj+ClwaqaC0IIIYQQQgzFc5FYREZGwtraGp06dVI9N2DAAPB4PFy5cqXGdXfs2AF7e3u0adMGixYtQklJib7D1QlWrijU7vJJFxRnFMN3nC9M7E1g38YeIaEhYOVsU4dICCGEEEKIynPRFSojIwOOjo5qzwkEAtja2iIjI6Pa9SZOnAhPT0+4urri1q1b+OSTTxAXF4f9+/dXu45EIoFEIlE9FovFDX8D9RCyPAQAkB+fD4bHwNzVHAHTA3Bnyx28fuT1JomJEEIIIYSQ6jRpi8Wnn36qUVxd+d/9+/frvf05c+Zg4MCBCAwMxKRJk7Bt2zYcOHAAjx8/rnadr776ClZWVqp/7u7u9d6/LhQmF8LczRw8Pg/+U/yReDIRRWk1F60bkvDl1XfbilwZifDl4Y0cESGEEEII0YcmTSwWLlyIe/fu1fjP29sbzs7OyMrKUltXJpMhLy8Pzs7OWu+va9euAIBHjx5Vu8yiRYtQUFCg+pecnFy/N6cjhUmFsPRQ1IVYulvCvY87YrfHNmlMdcHj86qsCVHWkPD4z0VvPEIIIYQQUosm7Qrl4OAABweHWpcLDg5Gfn4+oqOj0bFjRwDAmTNnwLKsKlnQxo0bNwAALi4u1S4jEokgEom03qa+FSYXwsLdQvW4zYw2iAyNROePOoNhmCaMTDs0gzghhBBCyMvhubhd7Ofnh0GDBmH27NmIiopCeHg4FixYgPHjx8PV1RUAkJqaitatWyMqKgoA8PjxY6xcuRLR0dFISEjAP//8g6lTp6JXr15o27ZtU76dOhEnidUSi5YjW6I4vRgZUdXXlhia4CXBCAkNQfjScPwg+oGSCkIIIYSQF9BzkVgAitGdWrdujf79+2PIkCHo0aMH1q9fr3q9vLwccXFxqlGfhEIhTp06hVdffRWtW7fGwoUL8frrr+PQoUNN9RbqpTD5WVcoADAyMULr8a1xZ/OdJoyq7oLeDQKgmOSPZhAnhBBCCHnxPBejQgGAra1tjZPheXl5geM41WN3d3ecP3++MULTq8pdoQAgYHoA9g3ahz4/9IGRiVETRVY3B0ceVPwH79kM4pRcEEIIIYS8OJ6bFouXlThJrNZiAQAuXV1g5mKGRwerL0I3JBcWXUDy2WQ0H9wcIgsRui/vTpP8EUIIIYS8YCixMGDSQikk+RKNFguGYRAwPQB3t9xtosi0F7kyElFfR8G6lTVGHRoFMID3UG9VzQUlF4QQQgghL4bnpivUy0icLIbARABjW2ON1wKmBCB8STjEyWJYultWsbZhKHtaBp6Ah+G7h4PH58G9tzuSziSpukHRDOKEEEIIIS8GarEwYMrC7aqGlTV3NYfnAE/E/mHYc1rISmRoNboVnDo4AQDc+7oj6WwSgP9Gi/pvhnFCCCGEEPJ8o8TCgFVVuF1RmxltcGfzHbWidUPy9NFT3NlyByGhz5IHj74eSL2YCnm5vAkjU0ezgxNCCCGENBwlFgZMnCSGhUf1iUWL4S1QlluG1PDURoxKexHLI+A3yQ+2vraq5+zb2ENgLEDGVcOZh4NmByeEEEIIaTiqsTBghcmFsPSsun4ifLnigrf1hNa4u+UumvVopnotcmUkWDnbpN2Msm9n4+G+h5hxf4ba8wyPgXtfdySfTYZbd7cmik4dzQ5OCCGEENJwdCvWgBUmFWoMNaukvMvOylnc330f0mIpAMO5y37p80toO6ctrDytNF6rWGdhKCrODr5GuIaSCkIIIYSQOqLEwoDVVGOhvBC+te4WBCYCPNz/0GDusqddTkPS6SR0/axrla979PVAWngaZBJZI0dWs+AlwWD4DNhyFjwjHiUVhBBCCCF1QImFgeI4rtbibWVyUZpdimPTjhlEUgEAlxZfQsf3OsLMyazK121b20JkLUL65fRGjqxmEaER4OQcwABsOUtzbBBCCCGE1AElFgaqNKcUsjJZjYkFoEgueEIewAE8YePfZa88olLi6URkXs9Epw87VTuiEsMwBtcdKnJlJCKWRYAv4mNu0lzwjfk0gV890AhbhBBCyMuLEgsDVZhcCGNbYwjNhDUuF7kyEqxUMckcK238u+wVR1TiOA4XP7uILp90QczPMTXWenj09UDy2eRGjbU6yi5kzl2cETA1ABbNLNDr614wsTcxqOTiebhopxG2CCGEkJcXjQploMRJ4moLt5Uq1lTk3M1BaXap2shGjaHiiEq593IhThSjvLgcl7+4XGO3LI9+Hjg1/xTKS8phZGrUKLFWh5WzCF4WjBu/3EDv73oDANq/3R631t+Cc2dng5kdXHnRDqh/vhXPg6ZGI2wRQgghLy9KLAxUbfUVlS/Wrv90HU+OPVGNbAQ0bnLBcRwilkWAETC1JhUAYOVtBTNnM6RFpMFzgGejxFmdkOUhePTPIxiZG6mG7eUb8dH3x7449MYhDN46uEnjU3peLtorxhmxPAIcyxlUfIQQQgjRD+qXYKBqSyxYOat2seYa4or0yHR0W9wNIaEhjX6Xvc2MNgAATsaBL+TXehFpaHUWsX/Ewn+yPxgeo3rO6xUvuPdxx6XPLzVhZOrUhsUVGe6wuMFLggEewLHanQ+EEEIIef5RYmGgapt1O2S5+sWkYztHsDIWOXdzFBefjTw5XsSKCAAAX8iHXCrXqi7Bo58Hks40fWJRll+Gx4cew2+yn8ZrfVb3QewfsciMyWyCyKrW8rWWABQ1NYZ60R6+PBz4L7fV9nwghBBCyPONEgsDVZhcCEv3mmssKuIJeHDp6oLU8FQ9RlW1yJWRuLPpDiw9LfG+5H3VHfXaLiY9+nog42oGpIXSRoq0ag/2PoB9oD3sWttpvGbdwhpB7wbhzDtnwHFcE0Sn6dC4Q6r/NsSL9siVkYhcEQkjcyN0WNABzp2cDaoInhBCCCH6Ua/Eori4WNdxkEoKkwprbLGoimuIK9LC0/QUUdWUffzd+7qjWW9FfULF7jo1XUxaeljC0tMSKZdSGivcKsVuj0XAlIBqX+/2WTfkP85H3O64RoyqaifeOoG8+3no/FFnuPVwg+cAT4O6aFeeD2493ODzug9aDG+BovQidF/R3aDiJM+P52E0NEIIIQr1SiycnJzw5ptv4tIlw+l7/iJhZSyK0opqncOiMrcQt0ZvsVDWelh6WsKquZXqeWVyUVutR1N3hypIKEBaZBp8x/tWu4zQQgiXri44MfcEykvKNV5vrIubyJWRuBV2C67dXdH7297o+llXZN3MQrcl3Qzmol15PpQXl8NroBea9W4GSYEELYa3aJLan+rQxerzg4YwJoSQ50e9fpG3b9+OvLw89OvXDz4+Pvj666+Rlta4d8pfZEXpRQAAc1fzOq3n2s0VBQkFqvUbg7LWQ5wghpWXldpr2tR6NPV8Fvd23IPXq14wc6x6lnAlxw6OkIql2D90v9rzjXlxU5BQAJ4RDyMPjgQANB/UHBZuFjB1NDWYi/aQ5SFoO6ctsm9mw/MVTwhEAngN9MLjQ4+bpPanOnSxqvA8JFhVtYAa4mhohBBC6plYjBw5EgcPHkRqairmzZuHnTt3wtPTE8OGDcP+/fshk8l0HedLpTCpEGYuZuAb8eu0nshKBIdAhyapsyiIL1BrsdCWe193ZMVkoSy/TA9R1YzjONVoULXpvrQ72s5pi+RzyTi78CyAxr+4KUwqROcPO8PUwRSAYmStLou64Op3V9Hl0y4Gc9GeeDIRjkGOMLVXxNlieAs8PvS4iaNSRxerCs9LglXx8/qe9/1L9zkRQsjzokF/NRwcHPDBBx/g1q1bWLNmDU6dOoUxY8bA1dUVS5cuRUlJia7ifKnUNtRsTZqizkJeLlcUm3tpX2yuZO5iDhsfG6RcaPw6i4xrGShKK0KL11potfyr616FQwcHRK+Jxg+iHxr14ib5QjLSo9LR6cNOas/7vO4DgUiAezvv6T0GbSUcT4DXq16qx95DvJEVk4WitMZrSdNGxYvVxv48DcXzlGAFLwkGI2AADuAZ8QwqNkIIIQoNSiwyMzPx7bffwt/fH59++inGjBmD06dPY/Xq1di/fz9GjhypozBfLtrMul2dpqizKEwpBMNjYOFWv2TIva97k9RZ3Nt+Dz5jfGBkov3M32OOjgGgGI2psYZ65TgO4UvC0fH9jjCxNVF7jcfnocsnXRD1dRQ4tulHreJYDgknEuA10Ev1nKmDKVy6uuDJkSdNF1g12rypmH+lMT9PQ/O8JFiRKyPByRTnOFvOGkRNESGEEHX1Siz279+P4cOHw93dHTt37sTbb7+N1NRUbN++HX379sWUKVPw999/49y5czoO9+XQoBaL7q7IismqsshYX8TxYli4W4AnqF+e2hR1FvJyOe7tugf/KbV3g6ro1oZbABTD+zbWUK9JZ5KQczsHnd7vVOXr/lP8UV5UjocHH+o9ltpk3cyCrFQG12BXtedbDGuBx4cNqzsUAJx9T9GtDYxhDt3bWIKXBKuOgSEmWMpWFHM3c7h2d4WVt5XBDFhACCHkmXpdCc6YMQOurq4IDw/HjRs3sGDBAlhbW6st4+rqisWLF+sixpdOYXJhvVssrLysYOJggoyrGTqOqnoFCfWrr1By7+OOnDs5KMlpvK5zCScSIBAJ4N7bXet1lBc3Du0dFDUNWs7X0RDK1opOH3aCyEpU5TJ8IR+dPuyEK19eafK5NhKOJ8Cjn4dGfZD3cG8knkxEeWnjJby1iVwZiQd/PYBzF2eYOpjCf4r/S3uxemnJJYCDQSZYyu9d8LJglOaUotvn3VCYXIhunxvOaGiEEEIU6pVYpKenY926dejcuXO1y5iYmGDZsmX1DuxlJk4S17vFgmGYRu8OVRBfUK/6CiVTB1PYBdgh+VzjtVrE/hELv0l+YHiMVstX7HceOCMQmdcztZ6voyHi/43H04dPEfROUI3LBc4KhDhBjMRTiXqJQ1sJx9W7QSnZB9jD1MnUIGZaB559niZ2Jui2uBvaz2+P4oziRkkWDU3kykhc/uIyBCYC8AQ8gxq+GHg2hHGrka3AF/LRfGBzWHlZwbmTs8GMhkYIIURBUJ+VZDIZxGKxxvMMw0AkEkEoFDY4sJdZQ7pCAYo6i4STCboLqBbiBDFsfG0atA1ldyjfMdXPJ6ErkgIJHv/9GJOvTdZ6HeXFTfCSYKRcSsGVr68AgKrLiD4ubjiOQ/jScHT5pAuE5jV/p4RmQgS9F4QrX16B1yteOo9FG9IiKVLDUzFw00CN1xiGQYvhLfDk0BO0GKpdsbw+sXIWnT/qjKvfX0Wzns3gGuyKqK+j0Gd1H9XrLwNlguXUyQluIW54uP8h3Hu7g2/ER/hSxVCzTd0tSjna2e1Nt+EY5AiGx6D54OaIPxaPV8JeadLYCCGEqKtXi4W1tTVsbGw0/llbW8PExASenp5YtmwZWPbl+OOsS+Ul5SjNKa3zrNsVuYa4Ii0irdGKeQviCzTmsNCWchx9j34eSDqrfjdbV+PoVx6r/8G+B7D1s4V9gL3W+1DO1wEAju0cUZxRrJovRBfzM1Q1n8Djfx6jMLkQErFEqxg7zO+AzOhMpEU2zZwyyWeTYelpCWtv6ypfbzFcUWfR1N21AMXn6dTJCY7tHGFsY6zqChX9Q7TBzLfRGHNMsHIW3Vd0R0lmCbyHeMO9jzuSzyVrPcFlY8qIzoBTRycAQPPBzfHk2BOdnUvPw3wehBDyPKhXYrFlyxa4urris88+w8GDB3Hw4EF89tlncHNzw9q1azFnzhz89NNP+Prrr3Ud7wuvMKUQfBFfNVdBfTi2d4RcKkfuvVwdRla9htRYKMfRT7+SjqdxT1UX67ocR7/yWP2x22PhP8W/3vsQWghh08oGWTFZDY6tuhg5VtFa4RTkhMsrL2sVY/T/RcOhnQOufHVF47XGuDiKPx5fZTcoJffe7pCKpci6obvj1hDJ55LRrHcz1eOO73XEvZ33UJxR3IRRPdMYc0yELA9Bq9GtUJpbima9mikSi/8GUjCUBEsp63oWnDs6AwCa9W6G0qxSnf3GPS/zeRBCiKGrV1eorVu3YvXq1Rg7dqzqueHDhyMwMBDr1q3D6dOn4eHhgVWrVuGzzz7TWbAvA2U3KIbRru9/VfhGfLh0cUFqeCrsA+x1GJ0mmUSGorSietdYKFsBwpeGw8zFDMnnkpH/KF+nQ15W3IekQILUi6lw7uSMq99drfc+nIKckHk9E95DvBscX+UYAcC2tS0K4guQfStb6xh5fB5SL6WCJ+Ah+3Y2HAIdAKjXh+hT4olE9P6+d7Wv84V81SzcTh2c9BqLNlLOp6DHFz1Uj+387ODR3wMxv8agx8oeNazZOCqfE8FLgvUyx0T80Xh49veEwFgA9z7uODnvJKTFUgjNDKdLKytjkX0zW9ViYWRiBPd+7og/Fg97/4b/xjXWsSaEkBddvRKLiIgIhIWFaTzfoUMHREYq7vj06NEDSUmGUaj5PGlI4XZFygLudnPa6SCq6hUmFYJvxIe5i3m9t1Hxj/rRyUfBsZzO/5irXTgwaFBSAQCOQY5Iv5yus/gAzRjBoU4xVlz/yKQjmH5reqNdHOXH56MgoQAefT1qXM57mDdifolB96Xd9RaLNkqyS5B7LxduPd3Unu+8sDMOjT2Erou6wshU+/lN9KXiZxq5MhJsOavzz/LJ0SdoPa41AMCquRXMnM2QHpkOzwGeOtl++HLFHf+qYo5cGamoX6qlZSQ3NheMgIFNq2e1XM0HN8ejA4/QeWH1g4jURcVjHbEiApxc979DhBDyoqtX+667uzs2bdqk8fymTZvg7q4YvjM3Nxc2Ng0r6H0ZNbRwW6mxZuAuiC+Apael1qMrVSd4STB4Ah44ltPbOPrKsfrBocH7ULZY6FrwkmDwjHj1jjF4STA6vt8RObdzsEa4ptHuuCYcT4Brd1cILWq+y20os3CnXEhRjFRlr97l0L2vO8ybmSP2j9gmikxT8JJggKeYFE7XM05LCiRIC09D88HNASiK7JV1Frqii25GGdEZcOrgpPY74z3YGykXUyAtlOosVuVvBCfnwBPS7N76QPUshLzY6pVYfP/99/jhhx/Qrl07zJo1C7NmzUL79u3x448/YvXq1QCAq1evYty4cToN9mVQmFT/OSwqcg12Rf6TfBRn6re/eEPnsFCKXBkJVqYoFNXXOPoRoREAB/CMGj65nWMHR4gTxCjNK9VhhFDdlW7IfAJ91/QFw2PAlrONNtlZwvEENB/YvNblDGUW7uTz6vUVSgzDoNMHnRD9Q3SDBj/Q5cXTxcUXARaqz/Tch+fqHVdliacSYeNjozb4gq4Ti6qGZa5rS1pmdKaqG5SSdQtrWHlZ6XQI4+Nzjqvm82CldZvd2xAumA0hhtq8KPUsz8OxJqQp1OsbPGLECMTFxWHIkCHIy8tDXl4eBg8ejPv372PYsGEAgLfeegtr1qzRabAvA121WBhbG8PO307v81kUxDc8sVBNgLU0GAxfcWGn63H0I1dGImJZBABgQd6CBs9XYGJrAktPS50WcCuPg0s3FwT9L6jeMUaujFRcFDfSZGfycjmSTifVWLhdUYvhLfD4UPWzcDfGH+yU8ylw71P15Iitx7eGRCzBk6P1T350dfEUuTISV768AjNnM3wg+wCOHR1xbfU1XPr8Ur1jq+jJ0Seq1gol9z7uSI9Kh7S49pYAbT+risnFD6If6tySVlViAUA17KwuRK6MxO0Nt+HWww19f+gLy+aWdfr+GcIFc2PE0NDvZ+VEk2M5jUTzebhoN4TPmxBDVOcai/LycgwaNAhhYWH46quv9BHTS02cLNZJiwXwrM7CZ7SPTrZXFXGCGA7tHOq9fuU/KHF74uAxwAMia5HOxtFX7sNvkh8yr2VCaC6sslizrpyCnJAVkwXP/g3vi17xOCSdSYJDWwcEzgysc4wVt+M30Q9bArfofT6C9Mvp4Bvz4djeUavlWwxvgcjQSJSXlsPIRLOOQfkHG1CPWVdF6KW5pci+nY1mvTRbLABFF7QOCzrg2ppraDGsfnNu6KIYWLm8ja8NAqYGgGEYTIqchM1+m3F51WXwjHjovqz+tSocxyH+WDyGbh+q9nxd6ixq+6y6fNoFDw88RNLZJFUriFwqr1NLWuXC7YqaD2mOE3NOgOO4Bg14oboYFPAwYt8IcHIO5z88j04fdtL6+2MIBeCNEYMuvp8V41RuyzXYFXYBdijJLtH7b4AuVD7WnRZ2wrXV16jgn7z06pxYGBkZ4datW/qI5aXHcRwKk3TTYgEoEosbv93QybaqUxBfgJYjW9Z7/YoTzwGAXYAdcu7k6HTiOeU+lH2nlRq6D8cgR53VWShj7PZ5N1z/v+uwD7Svc4xVXUC8/u/r2Dtgr16Ti4TjCfB61UvrOhs7fzuYOZsh6UxSlZPl6fviKOViCmxb28LM0azaZdrNa4fLqy4jMyaz3iNYqRVehyq6+tUlflbOoutnXXHt+2vwfUMxcSTfiI8p0VOwyWcTHh96rGjlq+cFdfbNbEgLpXDroV7AXrHOorbEovJn1X5+e5xecBr3d92HqZMpor6Jgp2/Hdz7uMPO3w45t3PA8BhVS5o2xyL3fi4YHgMbH82aPffe7ijNLkVubG6DRsBj5Sxs/W3h9YqX6rxw7+MOcxfzOs3nUVOxvS6K2OsaQ0RoBDiZbovQdfX9DF4SjIjlEeBYDjwBDw7tHRCxLAI5d3Ng62sLp05OipH88iXos7pPnfbRmMe6vKRccaz/ey+UVJCXXb1GhZo8eTI2bdpE81TomCRfgvLicp0mFsdnHa/2zrAuNGRyPAAaP+72AfbIvasYm15XP87Kffz9+t9w6eqi9lpDC7jvbb/XoNiUlDEWpRehNK8UdgF2qtfqciFa+Y+aey93vLr+VZx866Te6m3ij8cj6J0grZdnGAbew7xrnIU7eEkwChIK9DIaUsr5FLj3rroblJKJrQnaTG+D6B+iMWTbkHrvK2B6AMKXhYOV1b3wOmR5CGK3x8LWz1ZtNCSRlQiTr07Gjq47cG31NXT+sH6jIj05+gRer3iBL+RrvObe1x13Nt3RajtV3X127uKMzh91RrNezWDmaIbIlZG48esNtJ3bFnF/xiHovSCtk93M6Ew4tnessmuJwFgA977/DTvbgMTC9w1fXP3mqtqxbD2xNW78egNTrk2p07Y6vtcR4UvDFbVSUHRvfXz4sWJumhWNcxdeZCMCAHAyDoyA0fmFbsXP/PIXlyGXyuv8/byw6IIiqTDigS1nYe5ijum3p6M0txSp4alIuZCC4vRiXFtzDdE/RdcpQWqsFo9H/zzCnc13AB70OvAIIc+TeiUWMpkMv//+O06dOoWOHTvCzEz9zh/VVtSPOEkMkZUIIkuRTrZn5W0FY1tjZF7LRLOeVXf7aIjyknKUZJXAsrluum4BihaLhvRtr0lWTBbazdPd8LuOHRyR9yAP0iIphOa6GfM/+1Y2rFtY12sOgeruwLWZ3gZ59/PwYN8DlOaWwsTOpKFhqpTklCDreha8XvHSannlncQWw1vg3xn/YgA3QHXHXXkn0We0Dy4suoDUS6mKIlodF6Enn09Gl4+71B6ngIe4PXHo+VVPWLg9S/a1veOZcjEF+wbvA7hnhdfa3qVXitsbB58xml0ZLT0s4T3cGxcXX4SllyV8x/iqva5NjPFH4xEwLaDK19z7uOPkXO3nswheEqwaopUv5GPylclqsSgv5rot7obHfz+Gex/3ai/+KquuvkJJNexsPRMsALjy1RUETAuARbNnn7PPaB+ceusU8uLyYOtrq/W2Do07BEDRpU4ulSPnTg4STyWiOKMYtq1tEb40HNIiKXp/01svXaUe7H+Acx+cAwDVRfuh8Ycw/M/hOtk+oLiJIbJW/J2qa9c2QHFORH0dBUsvS8yJn6M6DoDiXGg5oiVajmiJPt/3wRrhmjqPiKaLVpWaWj0uLr6IJ0eeQJwohkd/Dzzc91D1edf1O07Ii6Ze1UV37txBUFAQLCws8ODBA8TExKj+3bhxQ8chvjx0VbitxDCMqs5CHwoSCiAwFTRolvDK7APskRub26AReapS9rQMBfEFcOygXR2ANsxdzGHmZIbsm9k622bO7RzVxHa61PPLnmD4DP7o9AfkUrnG6/UtiEw8mQj7QHuYOVffragi5cVkaniqYhbu/4rflX/0H/39CDu67oCtry3av91eMUIPdFeEXpZfhuyb2VWOCFU5zus/XYellyVifolRPa9NYSbHcbix9gb29N+D8uJyhISGYNqtaeAJqi72rI5ELEHC8QRVN6jKLN0twUpZHJl4BGmXnw0trU2MpXmlSLucplG4rWTlZQUzFzOkRWg3ZHX4snDFEK1VjLhWsSWN4THwHuqNJ4efqIp4a+tmVFti0dBhZ58+eooHfz1A50/UExORlQjeQ71xb5f2rZIRKyIQfywePmN98L7kfYSEhiAtMg0B0wMw+epkBEwNgIW7Ba5+exWr+at1nlSkXErB4fGHVS18H0g/gN8kP8TtjsPRqUd1so/M65nY0W2HajAMoG7fT+X5KbIWofd3igk1qxo5TLksW86CEdR9RLSK21xtVPdjXV1x9tFpR3HlyysoLy5H4MxAPNz3ECGhIarPW9cDjxDyvKlXi8XZs2d1HQfBf4mFh+4SC0DRHSrprH4mKhQniGHlZdWgosnKbFrZgC1nUZBYAOvm1jrbbtaNLFg0s9CYt6ChlHUWbiFutS+shexb2bBvq/vZ0hkeA983fHH5i8vYEbwDU65NUWspqG/3gIQTCVqPBgWo30m087fD48OPEbc3DlFfRyn6WQc6YOSBkYj9I1YVU0F8AbJuZumkTiT1YiqsW1rXOqFjxTijf4xGt8XdEP1DtComVl5164NMIsOukF3IvpWt0X3LNcQVfBFf6/fx5PAT2PjYVHu3vGKMe/rvwfTb03Fvxz2tLqASTybCPsBe7Q59RRXrLGprjYpcGYnI0EiY2Jvg7ay3cfmLy2rvsXKrifcwb1z89CL6fN+n1mPAyllk3ciqMbGwbmENq+aKYWdbvlb3eq+or6PQenzrKn9v/Cb64eKii+i+rHutv3ORKyMRsTwCImsRhu1QjI5Y8TNiGEWXpK6LumKNaA1YKQuGr7tuSjmxOfjrlb80zruh24dCLpUj9o9Y8Ix4GLRpUI3bqe5OvUQswV8D/0LGtQy4hbih7GkZuq/ojvij8RBaCbU+r1k5C79Jfkg+m6z2eVWuJ1Nr6fq8G7Z33o5rq69BYCpAj9AeWh2TFiNaIHxpeL26hFVu9ej4fkfs6bcHGVcz0GJECzh1dELEsgi1Y62LQUEIed41aDy0R48e4fjx4ygtVYzlz3G6vcv8shEniWHprrtuRYAisUiLSNN5CwDw3+R4XrqNly/kw8bHRlVnoStZMVlwDNJda4WSrifK01eLBQD0WNkDnRZ2Qtb1LEUXHdR9PoGKw0ByHIfEE4mq+Su0bfVQ3knMjc1FxLIIRH0dBeuW1ph8bTKGbBuillQELwlG5486I/duLjp/2LnBdwOTzyfXWl9RMc7uK7pDXibHT5Y/IXxpOAJmBKDzR52rvJtZlF6ETa02Ke6wd3LSOKbt326P/If56L6iu1bFwHF746ptragYY0hoCGQlMmxsuVHrz/LJ0SdoPqTmeUe0mc9Cef6Yu5kjeFmw6uK5pju3ngM8URBfgKcPn9a4bQDIu58HALBtXXNXpPoOOytOEiN2eyy6Lupa9XaHNEdxZjEyo2v/jrMyFmYuZggJDQFP8OxPa+WWmciVkWCliq49nJzDP2/8U+e4KytMLcS+Qfvg1EXzvAOAEXtGoOVrLRG7PRYZ1zJq3Fblc5vjOMT9FYd1zdYh/XI6nDs6I+V8CkJCQ9B9aXd0W9IN2Tey0W1JN62+nyHLQ1CaW4q2c9uCb6Re36NMRCv/LjEMg4kRE2HhboHLKy8r5iSqRWp4KnZ026F4T0Y8cDIOR6YcqXU9jXj+O5d/svgJGVcz0PH9jhj196hqC7W1bYkj5EVVr8QiNzcX/fv3h4+PD4YMGYL09HQAwMyZM7Fw4UKdBvgy0UeLhWMHR8hKZMiLy9PpdgHdTY5XmX2APXLu5Oh0m1kxWTrtBqXk2MERWdd1M5cFK2MVo9sE6r7FQqnP933Qdm5bJBxPwBqjus/MXfGiI+dODsryy+Aa4lrnsduDlwSDJ1QsyzPiYdbDWXBsp/h8NEYK87ND80HNAR4a/Ae7uonxqtN9aXdFnP/VSST8m4BfbH5ByoUUeA7wVIwGsyIC6VfSsclnEwqTC9FtSTdMipikcUxbjWoFWakMzp2da63PkBZKFV1q3qh9qOjgJcGKAuz/Yqzts+RYxTCz1XWDUnLv446MqIwa57Ng5Szazm0LSb4EAVOf1WvUdHElNBfCva+7VpMk1lS4XVHzwc3x5OiTOt/civo2Ci1Htqy2VcjIxAitRrfCvZ21d4dy7+sOeZkcbWa00XitqgvmD6QfwG+yHx789UAxMZ8WqprfQVIgwf4h+2FibwKPPh7Vfv4jD46Eex93/NnrT2Tf0ey+qbwxUPFi+uwHZ7F/2H4cm3YM0kIpuq/oDq9BXmrfT+8h3rBoZgETWxOtvp9PHz5F8plktJ3dttplqhqIgi/kY3LUZAgthIr6qxrE/xuP3f12Q14mVx1rnzE+uLf9Hk4tOFXjupVVTGr5Qj76rukLQJEgVXesq2qpI+RlUa/E4v3334eRkRGSkpJgavqsa8m4cePw77//6iy4l40uh5oFFH+Eor6JgnMXZ406C11MMtTQEaGqYxdgp/MWi4YMG1oTpyAn5MbmQlYma/C28h7kgeEzsG5h3fDAavBq2KuKPsuyuhdFV7zoOP/heXj09cDVb6/WOUFR3rXlC/mqomalqv5gd/64M26G3UTQO0H1/oMtEUuQdT1L6xaLynFyLId289phSswUtBzZEkILIfjGfEQsj8CObjtQXlSO7iu6V9tNg2/ER9s5bXHj1xu17vfx4cewaWUDu9Z2tS4buTIScqkcPCEPHMvhn3E13wHPiM4AK2XhGuxa43JWXlYwc625ziJkeQhYKQv/Kf4ag07UdHHlPcwbjw9XP0miUub1musrlNx7u6M0RzHsrLaKM4px5/c76PZZtxqX85voh/t/3q/1gvnqd1fR7q121Q7kUFXr4NA/hqL54Oa4veE2zi08V2vMlVsTZBIZDo46iPKScmTFZKm1lFSlWY9mkJXKsDN4J/If52vExsk4xP8bD1mpDBbuFoj+IRoJ/yZAViJTtVBU/n4yDINuS7oh6tsodP6oc63fzxtrb6DlqJY1dkes7qLdzNkMY8+MRVpEGuKPV91CdX/PfRwYcQCsVD05GbF3BNz7uuPGrzdw/uPzNcaoFPNbDI5MVrRyVCzOJoRUr16JxYkTJ/DNN9+gWTP1O3+tWrVCYmKiTgKrbNWqVejevTtMTU1hbW2t1Tocx2Hp0qVwcXGBiYkJBgwYgIcPH+olPl0QJ4t1mlgo/whxHKeWWOhqZlBxglh/LRZ3dddiUV5ajrz7eXppsbD0tITQQqiTFpac2zmwC7DT+4ytkSsjwckUd3br84dSmVwknEhA/L/x9UoqlOtoW/Do1t0NDm0dcCPsRp1irSg1PBWWXpbV1hVoE2fEsgg82PsAHeZ3wGv7X8O7Re+CZ6T4vPhCProvrXnCurZz2iLxZCLy4/NrXO7B3gdatVao3QGXfADf8b54sOcBzn5QfR1c/LF4eL7qqdENpbKKdRbVKc0rxf1d99F+fvtaY63Ie6g3Ui6kQCKW1LhcZnQmnIJqTywExgJ49POoU3eoq6uvwutVLzi0rbnroUdfD3Ash5TzKdUuk3M3B0mnkxD0v+qHXa7qLjwAjD4yGs6dnRG7PbbWAvSKiX1EaAT+nfEv8uLykP8oX6vvoLJ7X3lROf7o9Ady7ubgyKQjqu5sV76+glNvn0JRehG6r+iuSlZruwHRckRLmDqY4vam2zXuv7ykHHc230GH+R1qXK4mzp2c4fmKJw6OPIinj9S7093acAtHJx+Fja9Nlcdj7OmxcGjrgNgdsSgvLa92HxzHIXxZOM4vPK9KUKg4mxDt1OsKpri4WK2lQikvLw8ikW6GSq1MKpXijTfewFtvvaX1Ot9++y1++uknhIWF4cqVKzAzM8PAgQNRVlamlxgbgpWzKEot0tms28CzP0KpF1Px+B/F3UFdDm+ojxoLALBvY4+8e3k666OaczsHIiuRTpM2JYZhdDZRXs7tnFovchqq4ufvFuKGliNb1usPZeePFSPoKIcXrU9SUbHgUZs/2F0+7oLrP16HTFK/1qGU8ylw76Nda4W2cV758opqOFxtkjQLNwt4D/fGzbCb1S4jLfqvG1QVw8zWFuPwXcPh3NkZ0T9EI2JF1f3Q44/W3g1KqbbE4s7mO3Du4gyHNnU7b62bW8PGxwYJJxKqXYaVs8iKqblwu6Ka6iwqdyEqySnBzbU30XVx11pbb3kCHlqPa11jd6hra67Bf7J/jaOjVXcXnmEYTAifAPtAexyeeLjW373gJcHo+llXRCyLwP1d91GcVlyn3/PuS7uj+4rukORLsKXNFtzbeQ9OHZ3Q65temB0/G7OfzMbgzYNRlFKkaq2r7dxmeAy6fd4NUV9H1fj9vLfzHizcLTQmZawrpyAnyMvk2Bm8U5WcRn0bhdP/Ow22nEXrsa2rPdaToibBurk1jk07VmXtIStnceqtU4j+MRqyMlm9fqsIeZnVK7Ho2bMntm3bpnrMMAxYlsW3336Lvn376iy4ilasWIH3338fgYGBWi3PcRx+/PFHfP7553jttdfQtm1bbNu2DWlpaTh48KBeYmyIkswSxSRBbjWPVlNXwUuC0WVRF5TllWGNqO596qsjEUtQllemlxYL6xbW4FgOBfEFOtmesr5Cl6NXVaSrOovsW9l6K9wGNC9E3fu4Q2gprNcfylNvK/op17V7QHV3bbUpePQe6g1jW2PE/hGrdZwVJZ/TvnBbmzjr0/ICAB3e7oA7m+5U233uyeEnsPK2gr1/zbU21cU47tw4mDiYIPGMZutxSXYJMq5mKGpWtODR16PaOguO5XBz7U3FsMD10GJYCzw5XH2dxdMHT8GxHOz8au8OBigSi+qGna3chej6/12HWw83JPyboFXrrd9ERS1EVRfNRelFuLfjHjot7KRVnFXhG/Hh1NEJaZFpuPDJBY3XlclP1o0snJhzAtE/RgP//ZzVZ46X7ku7qyZG5Av5mHJtCvwn+asGD6nPue3zug+ElkLc3Xq3ytc5jsONX2+gw4IODf4tDl4SjO7Lu6M0pxTbu2zHhUUXELEiAnJJ7RP1CUQCvHbgNSSeTMTuvrvVXpOVyXBo7CE82PcAtn62VJxNSD3UK7H49ttvsX79egwePBhSqRQff/wx2rRpgwsXLuCbb77RdYz1Eh8fj4yMDAwYMED1nJWVFbp27YrIyOp/HCUSCcRisdq/xlCYXAgzZzMIRPUaAbhGvb7spZhoTKq7icbECWIILYQwtjHWQYTqeAIebFvb6qyAO/N6pl66QSk5BTkhM6bhLRbZt7P1Wrhd+UJUeTe62+fd6vSHMnJlJO78fgf2gfZ17h7QkIJHhseg88edcfW7q3X+oy4tkiLjWobWhdu1xam8UK3P3Uz3vu4wcTBB3N64Kl+P+ytOq25Q1cVoZGqEsafHIvNaJpLPq7c2JJxIgGN7x1qH21Wy8rKCuZt5lXUWCScSUF5cjlajWmm1rcq8h3njydEn1X6WmdGZcGjnUGvdAKBokbi34x6smlsh8bR6QqWaLPC/z+bi4ouI+TkG5s3Mtb7R4tzFGcZ2xlW2iMT8HAPPVzy1ToCqIzQXoiy3DDd+u4FbG289e2/LFDOa3950GztDdoLjOEWhPFf/fv/Kupyq1q9vqyLDY9BtcTdc+eoK5OWac+WkRaahIL4AfpP86hRrdbov644ui7rgadxTRUtJiUzrm2amDqbwn+KPlAspODj6IABFEfy+wfuQHpWO0pxStBjagoqzCamHeiUWbdq0wYMHD9CjRw+89tprKC4uxujRoxETE4MWLVroOsZ6ychQDKnn5KTejO7k5KR6rSpfffUVrKysVP/c3bUv9GwIcZJu6ysqilwZqRgxhs/orPhMOSKUvloBdFnAnRWTpZfCbSWnICdk38yu8o+ptiRiCcQJYr12hap8IeoS7ILi9GIUJBRo/YdSedFh4WGBju92BNC43QP8JvhBViJTde3TVlpEGiyaWcDKUzctbA1peWEYBu3fbl9lEbe0WIr4o/G1DjNbG4dAB/T+tjeOTj6K0txS1fPxR+NrHWa2suq6Q9347QYCZweq7nzXlWs3V3AyDhlXq/49rm1ivIqUiZ6xrfrFv/J8ZXgM/Cb7wWesD658eQUSsQR3Nt3R+kKUYRj4TfTT6A4lLZTixtobDZr1W0k1dHCpDKfePoXYHbHY1WOXao6QLh91wbzUebD0sMTNsJv17vdfW2tEQ85t33G+4Av5iN2u2ap449cbCJgeoNVM7trq9WUv1ehydb1p1v+n/giYFoBHBx7hn3H/YHef3ShMLURRSpFOJy0k5GVT79vjVlZWWLx4cYN2/umnn9bawnHv3j20bt26Qfupi0WLFuGDDz5QPRaLxY2SXOh61m0l5R8Rz1c8IbQQwrG9o04m7ymI189Qs0q6KuBmZSxybufoZQ4LJZtWNuAZ8ZB3P6/eXZly7uTA1MlUp7OY10ZoJoRzZ2ckn0vWejJCVs6q+lK793v2vag8uZW+8IV8dHy/I6K+UQwTqm1iW9dhZmtTUxKmzfcqYGoALi66iIzoDDh3dFY9/+TIE1h6WcI+oOEtV+3fbo/rP13Hrh67MCN2hmKY2X/jMerQKAAV7uTXklC693HHrQ231J4rSChAwvEEDPhtQDVr1Y4n4CmGiT38BK7dNEeoyozORMCMgCrW1FRxYrLc2Fx0X94d5z48h/s778O6pTViforB5ZWXYR9oD4bHaFWQXJnfRD/8EfQHJGKJagSs27/fhk0rGzTrpZtzq+L7ODpZMVN2wIwADNo0CAzDVNuaoFyn4uOqaLN+Q85tHp+Hrp91xeUvLiNgSoCqtak4sxgP9j3AtFvTaj4AdVRx1DblTbO6fKaDtwxG2dMyPNjzQHVeUFJBSMPUe/iZ/Px8nDhxAtu3b8e2bdvU/mlr4cKFuHfvXo3/vL296xWfs7Pij3VmpnoXlczMTNVrVRGJRLC0tFT71xgKkwt1WrgNqP8R6fJxF2Rez9TZ3WVxglgvhdtK9m3sddJikXs/F+ApLv71heExcGzXsALuxijcroo2k6BVFLI8BG493GDezFwjGWms7gFtZ7dFXlweUi5WP0pPZSnnU+o0zKy+iaxE8J/sj5tr1Yu4H+x90ODWCiWGYdBqdCvk3c/DgdcOICNK0TLg0tWlTiPDqeazKHpWu3Bz3U14D/PWeoSt6lQ37CzHcoohorUYEUopeEkwgpcGQyqWIsw1DPd33odDewcEvRuE0UdG453Cd9BqVCtVUlHX1ls7PzvYtrbFo4OPAChuWkT/EI1OH3bSacutal4SKBLpwb8PVm2/Ia0JulhfG34T/cCxHO7/eV/13O2Nt9GsVzPY+tQ80WFd1LfGqbJRf49STKBXj2STEKKpXi0Whw4dwqRJk1BUVARLS0u1H1WGYTB16lSttuPg4AAHB/1cTDVv3hzOzs44ffo02rdvD0DR+nDlypU6jSzVWMRJYriFNGykjMoq/hEpzS2FOEGMsqdlOrm7XBBfAPe++rtQswuwQ979PLAyVqs+1tXJismCY7vaJ9hqKMcgR2TFZAH1vCGXfUu/9RXVce/jjhOzT9RpnaQzSfDo56GniGontBCi/dvtEfVNFNx71X4OlpeUIz0qHYO3DW6E6LTX7q122Bm8E72/6w1jG2NIi6V4cuQJgpfp7sKm11e9UJxZjLub76LgcQG8BnrhypdX6jSIQ8U6C69XvSArk+H2xtsYvnt4g+PzGuiFo1OOQpwsVhUOA4pJ1NhyFnb+datbCFkRgitfX1HdxZ4W8+wLWfluvfIxoF0rU/jycJg4muDeznsImBqAB389ABjAZ7SP1q0/2qiq/kEZX0Nbyhq6vjYur1K0DF1edRmtJ7QGOOBm2E30/6W/zo5TQ1tuKm+r8shulFwQUn/1utpauHAh3nzzTRQVFSE/Px9Pnz5V/cvL0/0MzwCQlJSEGzduICkpCXK5HDdu3MCNGzdQVFSkWqZ169Y4cOAAAEWC89577+GLL77AP//8g9u3b2Pq1KlwdXXFyJEj9RJjQ+hj1u2KfepN7Exg4WGhuPhFw+8u62tyPCWr5lZgeIzGOOV1pa8ZtytzCnJq0MhQObdz9DoiVHVcu7uiKLUIBQnaj8CVdLppE4vw5eFgZSySzyQj+7b6DMJVDR2aFpkGMyczvXbdqw/Hdo5wCnLCnS13ACjqHyw9dNMNqqLBvw9Gs17NkBubi7i9cfUaGa5iy9aDvx7AxN5EJzcWTGxN4BbipjELt7Jwu7a5NiqrqmuM8vn6Ftsr8fg8JJ5IROLJRBRnFuPqd1fR6YNOuPLVFZ3MC1Q5zud13gQen4fHfz9GUXoRHvz1AI8PPQZ4QNaNLJ0dJ121vLwIx5sQQ1OvFovU1FS88847Vc5loS9Lly7F1q1bVY87dFBMsHP27Fn06dMHABAXF4eCgmcXSB9//DGKi4sxZ84c5Ofno0ePHvj3339hbKz7kYwaSpykfsdOH5w6KEYvauhFIcdxquJtfeHxebD1s0Xu3VytZh+uTlZMls5GIamJU5ATTv/vNDiWA8OrW7cIjuOQfTu7SbpCCc2EcO6iqLOwml7751n2tAxZMVnw6Nt0iQWPz8PVb6/CuZMzrn53FUO2DQHw7CLBvY+72l1HZX2Fso+6ru4sN1T48nCYuZjhxm830PHdjojbqxgNSh9xvnHqDfxo8iM4Wd26e4QvV1wIuvdxx631ijqLmF9j0P7t9rj8xWWdxOg9zBtPDj9B+3ntVc9lRGdoXbitVFOLRE0XosrXa1PxjvjufrtRkl6CkqwSXP7isk765evyLnxTqhjzmXfOwL6NPWx9bBGxPEJn9Qu6aHl5UY43IYamXrcOBg4ciGvXruk6lhpt2bIFHMdp/FMmFYDiAm369OmqxwzDIDQ0FBkZGSgrK8OpU6fg41P7MI6NTSaRoSSzROctFpU5BulmvoWyp2WQiqV6rbEAGl7AzXEcsm40TouFrZ8t2HK2Xi0shSmFkIqlsPXTXf/juqhLnUXy+WTY+NrA3FW3863UhfKuZMa1DNzbeQ/iJLHaRYJHPw+1u47K+gpdzTivKzw+Dw/+eoDi9GI8+ucRnhx5At83fPUSZ9TXUarJDOtSW6AcbSn7VjYyrmYg5WIKcm7noDijWGcxthjWAkmnk1Be8mwm5MzoTLWi9trU1iLB4/N0MnRo8JJgeA/3Rl5sHiRiic6SCqBx6h8ai7LepSSrBElnkpB4KtHgiqJfpONNiCGpV4vF0KFD8dFHHyE2NhaBgYEwMjJSe33EiBE6Ce5lUZRaBJ4RD2ZO1c/aqgtOQU5qBXX1JU4Qw9jWWDUyir7YtbFrUCJUkFCA8qJy2LfRf+0C34gP+0B7ZMVk1blAMed2Dmx8bGBkYlT7wnpQlzqLpq6vUKp4Z3G953oAgENbB8ilclh5WSFgWgDCl4ZDViZD+pV0OLZ3xPWfrhvUxU3F93Bk0hFYNLPAw4MPEbFMd3d2gYbVFlSMUWQlwvFZx2HnZ4crX17RWYy2rW1h5mqGpLNJaDG0BTiWQ9b1LPT7sZ/W29BFi4S2Bm8ejF8dfq3zrPO1aYz6h8YUsiJEMTO9THfzJ+nSi3a8CTEU9UosZs+eDQAIDQ3VeI1hGMjl9R/P/2UkThLD3M28zl1o6sqxgyPy7udBWixt0Fji+q6vULIPsK/3LMsAkHU9C3b+dnqZdLAqTkFOyLyeidbj6jY8clMVbitVrLOo7XNNOpOEkNCm70YEKP74X/7iMuRSORgBA58xPhAnipEWmQZxghgMj8GVL68AgMElFUrBS4IhyZfg2ppryH+cr/ekQrlPQPvuHhWXlxRIAECnMTIMo5qFu8XQFnj66CnkEjnsArTvAtmYF4k3fruhMTmdoZ1XhiByZaQqqaDjRMjLo15XXCxLTYQNtXjXYvDBR+iEUI2hZpfuWgo55Fg1YVW1669LWwcew8Nsl9kar21I3wCWU3xGFZcxdzWHqYMpcm7l4IjXEbAci7muc+u8j4KEAtyYfAMlaSUa+6gcR5Q4Cl0su9QYZ3Ux2AXY4XzP8yhPKcecZnO0fp9KWTFZuDvnLmbHza4xBm1irO19shyLbkHdFCPFVKGmz+svs7+QNDsJmemZDYqhvsdaNZ/F+WT8Kfyz2n389vA3/PPuPyhrVwYfaHYprO3zBLQ7b2tav+I22mxsozZ6DgAkrUxSHYcPnD7ADyY/qM04X9d96OO81tjH6tmI/ilarf5BV8cyqWUS+Dv5CJ6geSf/WMtjOIzDCEb1F3uqfSyZjcjQSLW7z7o8DuI3xLCcYAnuN0VrhX1be/CN+Ab3eaWeT4XlUkuN1p9jLY/Brbdbgz4vXfwO1baNxtqHy3WXao9TelD6C/M+G3pOEfIiqlMH2SFDhqgVR3/99dfIz89XPc7NzYW/v7/OgnuR8cHHEd8jWLprKQqTnk2Ot3TXUhzxPYLHdo+xIX1DletuSN+A60XXEZYeprHMhvQNCEsPA4/hgcfw1JZhGAaOHRyxMXMjwtLDEF0UXa997LPch3O9z1W5j8px8Bl+ja/XFMNe0V5kBWVhXda6Or1PVZxW+3A6+HStMdT2ujbvM7ooGqc7nkbm9UxwHKf1sdyQvgFnQs5AZCZqcAwNOdaxb8ViS8mWGvexqXATRKYibCzYWK99aHverkvT/Lyr2sa6pHVqo7msS1qndhyW7V6mNkLQ0l1L67wPfRzrDekbVBeZYelhWLprqSqpqBinLo6lVx8vHPE9UuUyR3yPILtjtlb7WLprqdrdZ2WM2nx3tDnWf5r+iagRUYpajv8mDazPsdTn55V6PhVHfI9AvFOs1voj3inGEd8jOHvnrF7PKV38BjTGPooSi2o8TkWJRS/E+9RmH4S8lLg64PF4XGZmpuqxhYUF9/jxY9XjjIwMjsfj1WWTBq+goIADwBUUFOh820t2LuGCooO4+Uvnc8cXHuc+/eNTLig6iFuycwm3Pm09FxQdxP2a8CtXVlamWqfi8+tS13FB0UHc+rT1nFQq5X5N+FX1WEn53LrUdRzHcdzibYtV6/+W9Jva8sXFxVxRUZHadsNSwrig6CDut8Tf1Pa/5K8lXFFRESeTyVTPhaWEcUVFRdxvierbVT4OSwnTeA+Vly0pKeGKiopU+52/dD73xfEvFMsn/qq2/m9Jv3FFRUWcVCpVPbcudR1XVFTE/ZqoeN/fR36viOG/9xqWrBlDUVGR6vH6tPVcWVmZxrGUy+Uaz1XcxtrktVxQdBA3bfY0Lj8hnysqKtLYrnKZtclr1dafPHsyl3I7RW1ZiUSi1edZ+TypuI2ioiK1bVRctrS0VOOcmrlwpvrnmfzf5/nfsft47cfc2YVnVce2qhiq+zy1Oad+S/xN7bNfn7aek8lkXFFREVdcXPzs3Nu5hJs8a3KV59TkWZO5M5+fUX23luxcwpWWlqp9tziOU8Xza8Kvat/JiueJxjlV6fNYm1T15/lrwq8ay5aVlXFFRUWqc2B92nqOZVmNuJRxf/rHp6rtK7dR4zmVpBlDUVERJ5fLq/08K58TcrlcdRzCksNU37GKx7K4uFgj5uo+z18Tf9X47MvLy7mioiKupKREtdznOz7nPtv+meK/d37O/dn3T27lPytVx+HTbZ/W+BuhPE9q+n7W9BtR+ThIpVLVcah4nlxadkl1LNYmrVX7PJfsXMIt3v7st7WiiudJTd9PjuOq/Y1Qfp4sy6qeW5v8XwyVzpOG/EZwHFfl35KK26jpN2J92nru0rJL3KI/FlUZw6d/fMqd/uy0WgwlJSUa+ysvL68xhvLy8ho/T46r+e9OcXGx+m/Pf39LlOf9+rT1tf7mVz6nKr5e8TdbV/R5LUKILjEcV+n2ag14PB4yMjLg6KgYZcfCwgI3b95UzY6dmZkJV1fXF6rGQiwWw8rKCgUFBXqZhVvZQsHJODACBkFPgvDBkA9gzBjj06Of4lHzR3C+5owDsw5gU8YmbMzYiJytOUj9PRUxN2NwTnQOWzK3gMfywPJY2EbZYufMnYqNc0BgYCAEgwRwmuYEI8YI5Vw5HPY54PRvpzFo0CAM/H4gNmduxpvOb+L7V76HtJ8UzjOcMdFhIl53eB1/H/4bq6NXw+ENBwgYAWScDAGnA3DlyBUkpybj902/o1uXbvgr+y/syt4FtpwFz4iHSQ6TMMFpAhgwGDZsGDL8M+A09VkMvUt646fhP6GNfxvM3jMbv2f+jpnOM7F7xm48bPkQLjNdMM1xGpy/ckYSk4QfjX6E0xQnVQwTHCbg5Gcncf7ceXz9zdd4ffTr2J29Wy0Gnx0++GLRFxCaC/G/d/6HaItoOE5yVG1jsNFgfDfkO1hYWCAmJga7sxTrM3IGHJ+DT6IP1gxZAzBAVkYWOnfqDKdJTnCc4qh6H643XXHs/WP4+KOP4TrdFZszN2NIzhB8NeYrOE1zUh3LMQ5j8PV3X+NI8RE4jH12LAdjMNaMXwOO4xAZHokTkhPYnb0bDMuA43Fwue2CTRM2gQceGIZBM9dmsB1nC5c3XVQx+CT64MC7BzByzEis+GIF/sr+C/tz94Mr58AYMRhkNAgLfBZAxBPhw6Mf4qb7TdhcsMGp9049u8v4ZxGebHyCfTv3oV2fdtiVtQt7c/aqjuUou1HAXKDTh53w3pr3UNKhBA6vP3sfnfI7YfOkzejWsRvGrR+H3zN+xzyXefh18K/I7JYJ1zmumOI4Ba87vI6T505i+fnlcBjjAAEEkEGG0XajcfjDw4i5GoOwn8NQ0KEA27K24ZWyV/Bt32/R5uM2MBplhDed34TPZh98tuczpPVKg/MMZ1UMfdm++HXCr7AxtcFUbioKQwtx2eMyIAfAB9yuuaHtd23RZV4X2Ay0wbiwcXB50wXzXOZhhvMMbEjfgI0ZG5GxJQNv+72NqW9Oxa7MXdids1t1HN6wfwOvO7wOBgyWL1uO89x5OE54dk69bv46lgUvAyfj8H/3/g+/Z/yOOS5zEPtNLPZI9sB1tismO07G6/av48LPFzB321zYj7aH/Wv2qmNhE2GDiJ8iMNB/IHr+3BM7sndghtMMvOvzLpymO8FlpgtmOM3AZKfJWLNmDTYlb4LzDGfV+TDBYQJWDVwFSbkEh44dgoOzAw7mHMTfeX+r3scEhwmY5jQNxnxjtP+wPaynWGM0fzQWt1usOifSN6fD+4Y3+qb2RcHqAoR7hqt+p/zu+aHZ180QNCsI6W7p+P7K92rHYbrTdISNDMP92Ps4duQY4n3isT5jPXrn98aPA39Ep9BOkA+UY7zDeHju98SnWz4FO4qF3TA7MDIGnIBDq9ut8Pfyv+Fh5oF3T7yLTRmbMM9lHnZM2IG4VnFwfcsVc5znYKLjRFy8chGjx49Gy7dbQjRQpIrDJMoEMT/FYNmyZRgxfAQO5hxUO68nO07GVKepEDJCjPxtJPJ75KNDUgdseG0D1qevx/qM9cjYmgHJSQkuR19GGVuGfdn78E/eP2rnxHjH8Xia9RTDvhsG5xnOmOMyB286v4mN6RuxMWMj0jelY7rrdCz8eCH+yPwDf2T9oVp/nN04jHcaDxYsvv32WxwqOgTH8c+O5Vi7sVjWYxk4lsOtm7dgY2mDXVm7sC1rG1gpC56QhymOUzDBcQJYsGjRsgVs37CF06Rnv5c+ST7Y/7/9GD16NL779jvsztqNndk7Vb8RQ42G4i3ft8CAwbat2/D54s/RY3kPFHQrUG2jaH8R4jfF4+jRo/D398eurF3Ymb1T9T4mOkzEOMdxAIB+/fqhpFuJWgyd8ztj85TN6Nq1K/7c9Sf+zPoTO7J3qM6pnqU98UnnTwAAZ06fwYw3ZyDw3UDgVai2wT/Nx401N7Bh/Qa8OvBV7MrahR1ZO9RiGO84Hhw4TJ06FQ+bPVT7ze/P9sf/jfg/uLm6ISIiAjzwsDNrp+Lz+O9YTnKchHEO4xD3MA5DhgyB+3R3WI60VG3DJtoGF0Mv4vPFn2PWjFn4M/tPbM/arvr+zXOZV2X3qIbS97UIIbpCiUUtGuPL3PFqR4CvGB7VSeCEcqYcZWwZSuWlgH7ruavFBx8CRgBOxqFYXAwjayNVLMZ5xig1KoUccpiZmwE8QA45ZKxMsQwHncfNsRzAQDXLuxFjhPLycrAsC4FAAD5fMZFWOacYspLjOPBlfPCF/z3/37I8I54qNgEEkEqlYMBAKBJqrM+DYlkOWn9FqsQDDwJGALlUDkmJBAJLgSoGc5k58ovzwfAZmFuYgwULCSdRxVBxVvvqMBwDuVQOASOAhYkFBIwAubJc1TZEjAhSSLWOV8SIIOQJUSgrVH2edjw7lGSVwMzZDFnZWZDJZBA6CFXvg8/yIefV/r3ngw8BK0DR0yIY2T47p+wEdsgV54LlseCJePU6f4ScECWFJWBkDOxM7GBmZYZUaSoAxXEwk5mBAwcpTwo5v/ZYBYwARowRStlS1TYsBZbgoBjqurSsFOWycvBN+HWO14gxAl/Ch7hADE7CQdTs2QhrolIRiqXFilHChHU//wSMANJiKVgZC1srW4gEigvtdEm66vM04hmpznVAMWpSlUPHsoCIFcHc2FztnLKDHWQSGeSMHOWCcpSVl9XrcxMxIpjwTZCXmgdJkQQmzU0UHXQ5wCjHCGVmZeCbVpok77/fF4ZjwDHPjg0rZcFIGTDmz4LgFfIgKZfAwtICIpEIHDiI5WLV+9Dm+wUAXDkHc5E5jHnGMOYZI1WSqjqWVgIrlLFlkHLSOn9WHMdByBOC+e9/5eXlKJeUK94z8+wYlUpLwfAYMPza4+XkHMABjKDCcWB5kMll4PF44PP54MCBRf1qJZkK/5NzctVx4DPPPieZTKZYls+o3gfDMWDlLBiGUZ1ryhgq/t4qngBYjgUDRr3DNqv4PjAMo/rsOE7xt4HjOAiYZ2WjcpkcLMeCJ3i2XR7Hg5yV13gcGTCKGzlgIC1T/G7yjJ8FwZQr3jdfwAfDY9SOoxFjhMsdLmt9LOuCEgvyvKhT8XbFL3PF50j9Ld21FPAFeFIeWCGLzrGdETpBMdqWRCJBibQEgx8NRjlXDiPGCCcCT6CspAwMw8DMxAzbsrZhQ8YG1d2SN+3fxFx3RcEYAwbFxcXYlrsNm3M3q5YJ3BKIT8Z/Apf2LhCKhODAof+t/qp9XAy8CCOBYuhTmUyG9anrsSl3k2r9Vrtb4ccvf4SRqRGMjY3B5/NVdzmNGCOUQ/2uTWlpKX7P+h2/5/6u2sYsx1kYZzUODI+ByFgEFiwG3BqgiuFUwCkIBUIkHk/EuffOofxEuVoMM51nYorNFMjlcgiFQhgZGWnE0CuyF1a/txoAUFZWht8zf9fYxiSrSQAAMzMzjfVnOc7CvGbzAAByuRzFpZrHcob9DIy3GY/o1dEQCoUQWgnxfuf3IRfIYcQYIbxdOKJWRYGVs+j8WWdsTN+oFkOPez3Q9VxX9P+lP0xNTbExY6NaDLMdZmNus7lg//tfUVER/sj9A1vztj47lk6zMMVmCgQCAUQikcb7mOE8A7NdZkPKSVEkLUKRpAhjH4+FDDIIGAGOtjkKeZkcV0OvgsvmMGzLMM1jmdYL3l96Y2L4RJSUlGBL9hb1Y+miOJZyRg6+MR9SVorBdwZDxskggAAn25yEqZGp4q5fFefUGw5vYHKryWBZFkKhEBAAUlaqOi8FjACnAk8pLkrAg6RMgj+y1Y/DDJcZmNR6EhiGgampqcZ7mOw2GXObKb4b5fJyFJQUQMJKMPrJaMg4GYwYIxz1PQoey4Op0BRCoVBjG5McJ6nOa4lEgk0Zm9Tex1znuRhrORYyTgaRiQgyyDD4tuL7K4AAJ/xPwFxkDj7DB8dxKCkpwdacrWrbmOo5VfV5CoVCyCBDzxs9Vds43fY0eIyiBatcWo6tGVuxJW/Ls/PBeRYmWk4EAJiYmIDH42m8j5nOMzHDeQbK2DLkFuWijC3D1ISpis+LEeBQ60Pgy/gwFZjCxMREY/03nN/AHNc51f5GzHaejTGWYyBn5RCIBGB4iouxYXeHqY51RPsIVT/00lalCN0XihO8E6rfwldyX8GnPT4Fy7CAEChiizDy7kjFeQsB9rTeAzOhGYx5xjDijCCTyLA1dys25TyL403vNzHVdmq1vxHzXOZhmtM0lHPlKCotQpm8DGOfjFXFeKLNCXASxQWrmZliOPDK25jgOAGzXWZDLpejsLQQElaC1x6/pvotO+x7GJycg8hIBBOhCTZnbsa69HVqn4XynJJKpRq/ETOcZ6h9nhzDYUP6BrXf/bkuczHbeTYYRvGbX/mcUv5eVvkb8d95q/w8pVIpJFIJ/sj7Q+1YzrSfiWl206r9zZ/tMlv1Pqr6jZjtPBuTrSeDx+NVeU7NcZ6jdk5JJBJsy92GjTkb1f5uTLWbCpFIBIFAUGMMpaWl2Jy1WT0Gl9mYZKX4jTAxMQEHDhszNj77PJTH0mU2WJZFaWmp5rF0nVn9OcWVY0P6Br20WBDy3KhTvymG4YYMGcKNGjWKGzVqFCcQCLhXX31V9XjIkCFUY1EHFfsuV/WY45712ex6vatG383K/Tmr6t9Z3TIrD6+s1z5WR62ucxx1ibNyDAWJBdy02dPq/D4/+OGDBsVUl2O5Pm09FxEawX2H77iPfvtI7X0s2bmE+w7fcRGhEdWuv+LACp3E0NBj/eTfJ9z65uur3cbnf3ze4H1ou35Dt2Eo+6hp+411LPW9D10e62lzpnHf4Ttu+tzpOj+Wz8Pn1Ri/AYawD0OIobH2oStUY0GeF3VqsZg2bZra48mTJ2ssM3Xq1IbkOS8NZW3F0LihqhaK0AmhwC7giO8RYJdi4rKw9DDV3X/lnRGliq8BUP1/bcvEH4vHgfYH4JTupLFMbfsY8mQI4u/HI2y4dnFEF0bjatHVOsWpFoMRcHvebUzhTanT+/T7xQ9OQU5axVCfGCsvM2/WPIhbinHa9zQC1wbi15W/4puz3yg+451DcafPnSrXv/b9Nfw96W+kPUhrcAwNPdbTQqYhfEA4bqffVtvGLOdZuPrdVRydfBTZD7Ib9nnW8h6Uj5Xr1Gcb2hyHxthHTcehqv3r41jWZ5mmOtZD44bCcr0l+EI+AtYFwL23O8Kgm2P5PHxeuvgdaozfuobuwxBiaKx9UMsFeRnVqcbiZaSvfo0V57GobOmupYizi8Mj+0cahWDKP1QdzTuis0Xneo3TffePuwiLD4N0vBTXiq7VaR9XvrmCrJgsZPyQoZOxwK8VXqs1BtEuEd72eRt+E/y0ep+SAgl+tv4Zb2W8hZ3szkYZ81z5PobGDYXlREvwBDywMlY1xGJVx7LsaRl+sf0FZo/NcL38ut7HXa/tWM9zmYcbG2/AtZMrFg9erHo9934u/ujwB0wemOBaybUGf561nbfKYSDruw1tPk9970ObY62MQ5/HEtDuvG3qY+0c7QzLiZrzHoh3ipHZMbPBx/J5+LwMZe4Ffe/DEGJ4HuexoBoL8rygxKIWTfVl1sVEYtXJvpONHV13wPiBMfg8fp32cXLeSYhsROj1Va967bsybd6n11IvmDmboccXPbTaZvKFZByZcATzUufpJEZtVHwfqwWrwckV8xK8L3m/2mOZcjEFhyccxryUxolTm2Pt97MfSjJLMOj3QarXYn6LwcP9DzH21Fid7KOhk53p4g+2vvdBx0H7fSSeT4T1BGuN2byVyUX+rnx49vY0+OPQGMeSvLwosSDPC0osavEifplZGYufLH7ClJgpsGttV6d1/xr4F1qNboV2c9vpKTpN1364hpTzKRh5cKRWy0f/XzQSTyZi9OHR+g2sCsqLIaXKF0sVxfwag8eHH2PMsTGNFV6t4o/H49RbpzD7ybOLo7/H/A2nICd0+6xbE0ZGXlThy8PB4/Oq/J5ErowEK2cRsjykCSIjxHC8iNci5MVUpxoL8mLgCXiwb2uPrOtZdU4sChIKYNXcSk+RVc0+wB43fruh9fJZMVlw7OCov4CqoUwqQkJD4NrdFfuH7FclGVVdNOXczoFDW4fGDrNGbt3dIE4SQ5wkhqWHJTiWQ/LZZHT+sHNTh0ZeUDUlDdUl5YQQQgwTzTn/knIKckJmTGad1uFYDuIEMSy9GvduiV2AHfIf56O8tLz2hdE0iUXFpCJ4STA8+3ui9cTWsPGxQfjScESujNRYJ/t2NhwCDSuxEFoI4dzJGcnnkwEAWTezwJazcO7k3MSREUIIIcTQUWLxknLs4Iis61l1Wqc4oxhyqRyWno2bWJi7mkNkJULe/bxal5VJZMiNzW30xIKVsxrdnvp83weSfAl8xvqAlatPRsVxnEG2WACK0ciSzykSi6QzSWjWq5likilCCCGEkBrQ1cJLyinICVkxWahLiU1BfAHMXc0hEDVuDzqGYWAfYI/cu7lVvh6+/FmLQM6dHBiZG8HKS9FdK3JlJMKXh1e5ni6FLNespTCxM0G//+uHlHMpCHonSO01caIYslIZbFvb6j22uqqcWHj092jiiAghhBDyPKDE4iVl38YeErEE4kSx1us0RX2Fkl2AHXLu5FT5Go/PU3U3yrqeBcf2jmAYRtU9icdvutPcd5wvnDs74/xH59Wez76VDRtfG/CF/CaKrHpuIW4QJ4qRH5+PlAsp8OhHiQUhhBBCakfF2y8pgbEA9gH2yIrJUt3dr01BfEGj11co2QfYI+FkQpWvKVsKwpeGw7mzM9x6uGnUPDQVhmEw4LcB2BywGf6T/FUX6YbaDUo5Qo9zJ2dc/e4qBCKBqg6ERughhBBCSE2oxeIl5tjBEZnXtS/gFieIm7TForquUIAiuei+ojsyrmbg+s/XDSKpULL0sETPVT1xYs4JVQG6IRZuA89af3hGPNzeeBvufd3B8Ayj9YcQQgghho2uEl5iyjoLbRXEF2jduqFr9m3sURBfAGmxtMrXi9KLkBGVAQDgZIrJ6QwhqVAqySmBTCJD5ApFLUj2rWzYt7UH0Hh1INoIXhKMkNAQpF5KBVvOwqOfh8G0/hBCCCHEsFFi8RJzDKq5xaJiUTSgXmPR2BfDpo6mMLEzQd49zZGh7u++jy1ttkCcrKgX4Qv5kEvlVQ7x2lT4RnwUpRTh2uprSL+SjqcPnsIh0MEgWwKClwSj22LFZHhn3j1DSQUhhBBCtGI4VzOk0Tm2c0RxRjGKM4qrfL1iUTQrZ1GYVAhLL8tGvRhWJjcMw2gUcF9YdAGb22zG6fmn4fmKJ3Ju5SAkNATvS95HSGhItfNHNAVlSwArY7H3lb0QmgtxZ8sdg71o7/FFD/CEPLDlrMG1/hBCCCHEMFHx9ktMaCGETSsbZMZkwnuwt8brFYuiJfkScCyHu9vuInJFZKNdDCuTG+C/kaHuKhKLI5OP4N6Oe7DxtUGbN9vg6ndX1WKqGHvFx00peEkwWBmLyNBIgAEilkUYZFIB/FeoLWXVWn8MMU5CCCGEGA5KLF5yjh0ckRWTVWViAWheoDdmUlF5/95DvSEtlGJbx23Iup6FlqNa4rV9ryFiRdUX6MrHlSena0ohK0Jw5asrBt0SULmmQvkYMIwEjRBCCCGGiRKLl5xTkBPSo9JrXKbrZ10V9RQsmuRiuHJyAwCdPuiEPqv7AECNw58a2oVw5MpIVVJhiC0BVRVqG2LrDyGEEEIMD9VYvOSULRY12dVjF8ACPCGvyYqig5cEqyaT4wv5qqTieVLxot0Q60AARetOda0/IaEhBtX6QwghhBDDQi0WLznHDo4oeFKAsvwyGFsba7y+b+g+pF9OR8f3OqLvD32brFtM5MpIyKVyg73TX5vnpSXgeWr9IYQQQohhocTiJWdqbwoLdwtk3ciCRx8PtdeOTDqC+KPxCJwdiL4/9AXQNBfDL0Kf/5paApSvE0IIIYQ8zyixIIqJ8q6rJxYZ0RmI2xsH33G+GLh+oNryjXkx/Lzc6a8NtQQQQggh5EVHiQXRqLMQJ4txYPgB9PiiB7p83KXKdRrrYpju9BNCCCGEPB8osXiJhS9XTHLnFOSEuD1xAACJWIL9Q/fD3NUc5cXlTRwh3eknhBBCCHle0KhQLzHl5HPJ55ORdz8PErEEh8YegqxEhszoTPAEdHoQQgghhBDtUIvFS6xirYLAVIADww4gLy4PJVklBjsjNCGEEEIIMUyUWLzkKiYXKRdTAICSCkIIIYQQUmfU14UgeEkweEaKU6EpZtYmhBBCCCHPP0osCCJXRoItZ9UmnyOEEEIIIaQuKLF4yVWcJ+J9yfsICQ1B+NJwSi4IIYQQQkidUI3FS+xFmXyOEEIIIYQ0PUosasFxHABALBY3cSS6V1hSiPaftUfAuwFq7y/g3QAUlxWjsKTwhXzfhBBCyPNE+bdYeU1CiKFiODpLa5SSkgJ3d/emDoMQQgghL7nk5GQ0a9asqcMgpFqUWNSCZVmkpaXBwsICDMPoZR9isRju7u5ITk6GpaWlXvbxsqBjqTt0LHWDjqPu0LHUHTqWutMYx5LjOBQWFsLV1RU8HpXHEsNFXaFqwePxGu3ugKWlJf3A6wgdS92hY6kbdBx1h46l7tCx1B19H0srKyu9bZsQXaG0lxBCCCGEENJglFgQQgghhBBCGowSCwMgEomwbNkyiESipg7luUfHUnfoWOoGHUfdoWOpO3QsdYeOJSHPUPE2IYQQQgghpMGoxYIQQgghhBDSYJRYEEIIIYQQQhqMEgtCCCGEEEJIg1FiQQghhBBCCGkwSiwIIYQQQgghDUaJBSGEEEIIIaTBKLEghBBCCCGENBglFoQQQgghhJAGo8SCEEIIIYQQ0mCUWBBCCCGEEEIajBILQgghhBBCSINRYkEIIYQQQghpMEFTB2DoWJZFWloaLCwswDBMU4dDCCGEkJcMx3EoLCyEq6sreDy6J0wMFyUWtUhLS4O7u3tTh0EIIYSQl1xycjKaNWvW1GEQUq0XOrH46quvsH//fty/fx8mJibo3r07vvnmG/j6+mq9DQsLCwCKL7OlpaXOYgvdGwo++Fj8xmKN11btXQU55Fj6xlKd7Y8QQgghzyexWAx3d3fVNQkhhuqFTizOnz+P+fPno3PnzpDJZPjss8/w6quvIjY2FmZmZlptQ9n9ydLSUqeJhampKY74HoHoiAihE0JVzy/dtRSnOpzC0LihOt0fIYQQQp5v1CWbGDqG4ziuqYNoLNnZ2XB0dMT58+fRq1cvrdYRi8WwsrJCQUGBzi/0l+5aiiO+RzA0bihCJ4RqPCaEEEII0ee1CCG69EK3WFRWUFAAALC1ta12GYlEAolEonosFov1Fk/ohFBgF3DE9wiOXT4G1pelpIIQQgghhDyXXpoWC5ZlMWLECOTn5+PSpUvVLrd8+XKsWLFC43l93SUoLi5Gr3u9AB7Ak/JwtdtVne+jvtalrQOP4WG2y2yN1zakbwDLsZjrOrcJIiOEEEJeHtRiQZ4XL82YZfPnz8edO3fw559/1rjcokWLUFBQoPqXnJys17i+OvgVwAM4OQdWyGLpLsMp2OYxPISlh2FD+ga15zekb0BYehgYUF9PQgghhBCi8FIkFgsWLMDhw4dx9uzZWodpE4lEqkJtXRdsV7Z011Ic8zsG+8v2EGWL8Grsqzjie8Rgkgv/df4YGjdULblQJhWCPQJ83f5rvCQNXoQQQgghpBYvdGLBcRwWLFiAAwcO4MyZM2jevHlTh6RSsVB71/hdKLcvx5u938TQuKEGk1zw+DxYTrRUJRddY7oiLD0Mr8a+iuvfXEd8djzu37/f1GESQgghhBAD8EIXb8+fPx87d+7E33//DQsLC2RkZAAArKysYGJi0qSxySFXK9R2TnDGmZwzqoJuOeRNGh8ABC8JBgCETwwH7yoPMp4MrJTFlSlX8PmYzzF66Wi0bt26iaMkhBBCCCGG4IUu3q5uvOfNmzdj+vTpWm2jsQqmPtz8IR7IH8Ah0gEbN240qLGqla0r4AAwgPdZb+xduLepwyKEEEJeClS8TZ4XBt1icfr0aZw+fRpZWVlgWVbttd9//73W9Z+nnCnIJggnRCdw6PdDmDZtmtbzbOjbhvQNOOJ7BGapZvA65oXYabF40vcJNqRvqHK0KEIIIYQQ8nIy2MRixYoVCA0NRadOneDi4mJQd/D1YVD3QVgdvxpvf/42vL29mzocAM8KtYfGDcUJlxNodk5R+J4yPgVh6WFIT09H8e5i9OjRA8OHD2/iaAkhhBBCSFMy2MQiLCwMW7ZswZQpU5o6lEZh62gL11OuaNOzTa0jVzUWlmMxMHYgLn14CbJDMkxcNRHXf7mODYUbECgORKw4Fru/3Y3Hjx83aWJR03wbX9/5GhaWFpjvMb8JIiOEEEIIeXkYbGIhlUrRvXv3pg6jUfmX+uOa+FpTh6HSdlNbHFt6DNE9ouGV6AWXNi6YdGwS7ky6g0tzL2HaqWkQTBJgzJgxTRqncr4NABjCDsEHH3yAwYMHo6RvCfZK90K6VooB0wfA19e3SeMkhBBCCHmRGWxiMWvWLOzcuRNLlixp6lAaTbBjMFabrcaNGzdw4sQJfPzxx00aDytn0e71dsgIyIDRIyPYjLQBT8DDJys/wd2zd3Er8Ba2z9zepDECULVUhKWHISY9Bnv27METvydgc1mI/xBDsk8Cl0UuTRwlIYQQQsiLzWATi7KyMqxfvx6nTp1C27ZtYWRkpPb6mjVrmigy/endqTdWxa9Czzd6ouhREQYNGoS2bds2WTwhy0MQghDkXswF/gV4AsW0J3at7fDO1XewpOUS3Eq7hbauTRejkiq5QBg6Xu0Ilsdinss8vL7kdSROTaRRNAghhBBC9MxgE4tbt26hffv2AIA7d+6ovfaiFnLbuNjA5aQLLMZYwO6RHfh8flOHBACIZ+PRn9df7blXJ7+KQ78ewrKMZQjrHoYzZ85g/PjxTfLZhC8PB4/Pw4zPZyAsPQwcjwMffLzp/CaivogCK2eBDo0eFiGEEELIS8VgE4uzZ882dQhNwr/EH5ldMrH5q81NHQpkMhlkjAyZZpnws/VTe41hGKwYtwKvxbyGtm+2RdbRLAQEBKi1sESujAQrZxGyPESvcfL4PIQvDcce/z1Ac0AAAWSQ4ZWIVxC8LRjiN8X4c+OfeLz/MWQyGU6cOKFad+mupZBDjlUTVuk1RkIIIYSQFx2vqQPQRkpKClJSUpo6jEYR7BSMhzYPDWIOjoMHD8K9izu4Yg4tW7TUeN3OwQ7N85vD7VM3tHBvgadPn6pei1wZiXVJ63Cs9TG9xxm8JBjinWJcaH4BZkVmiGgXgUEPBqHApAAndp1AZqdMRARFIMYtBmfPnkVJSQmAZxP/8dH0LUP37t3DwoULcfDgwaYOhRBCCCGkXgw2sWBZFqGhobCysoKnpyc8PT1hbW2NlStXakyW9yLp2bknpEZS3Mu+h5KSEpSVlTVZLHfu3AHrxgIPAIc2DlUu06tnLzBmDFosawHBWUUDmDKpuP3WbXj29tR7nMpJ/LhYDoknEjFeOB42E2ww9P5QsDwWYmcxTKWmcH3LFbN/nQ2RSKRKKobGDUXohFC9x7gubR02pG9Qe66oqAhHjx7FhvQNWHlzJdasWYNffvlF77EQQgghhOiDwXaFWrx4MTZt2oSvv/4aISGKrjSXLl3C8uXLUVZWhlWrXsyuK7bNbOF6whVz/pmD8G/DcfDgQbz22mtNEstnn30GcYQY8cfjYTXTqsplZrvMRnZZNvZ12Idf7v+CKFEUbk69idtv3cY8l3mNMjs3yykKtbc92YaMhxlowbYAAFhNsULQO0HgW/BhxVjhzJAzuNLpCrpd7QbWl220pAJQHxJ3tstslJaWYsiQIXjo+xCuzq4Y3248ykaV4c0332yUeAghhBBCdM1gE4utW7di48aNGDFihOq5tm3bws3NDW+//fYLm1gAgF+JH856K2pMHj161GRxCIVC5Ahy4FPqA4ZXfVH2Z80/w938u7g/4T4evf4IrJBttKQCAOa6zgUA7HLehYkPJsJJ6AS5VI6g94IwcdxElGSVoCSzBH3C++DzXp+DFbLgSXmNllQA6kPiAsBMp5mwmWwD106uGC4fDksrSwz+dTCGuQzTWHdD+gawHKt6n4QQQgghhshgu0Ll5eWhdevWGs+3bt0aeXl5TRBR4+nm2A2MP4PMrEwsXLiwyeLgOA4J/AS0FGnWV1TW6sdW4DhOddHeZmObRojwmZNfn0SBaQFccl3wvuR9hISGIHpNNBKOJ6DFsBYInBmIcOdwxRnPAqyQxdJdSxs1xtkuszHPZR7C0sPQ7UY3pHRKwVjRWCzvvBwp51IQlh6m0V1qQ/oGhKWHIeXcy1FjRAghhJDnl8EmFu3atauyv/kvv/yCdu3aNUFEjadn555gwSKTl9lkMTx69AgfrfoIxUbFaO2omeBVFLkyEpHCSDAMA06mSC7WJa1D5MrIRok1cmUkjuw7AqunVmjZWZEEBS8JRkhoCMKXhiNyZSSW7lqKY62PIfdALsrzyxFyPQRHfI80SXLBAw9yyAEAJ+Qn8OmTT2EltYLvDl+EpYdh7j9zce3aNVVSEbg2EEMeD2nUOAkhhBBC6spgu0J9++23GDp0KE6dOoXg4GAAQGRkJJKTk3H06NEmjk6/bJvbwuWkC87iLAJ7BjZJDBEREdhwdAO8A73h5u9W7XLKQu2ct3JgmWuJXo96odnIZgh7Kwzr1q4DViou8vUpNTcVf/r+CZc4F9j426ieV+73T96fuOR7CUPjhiIuMQ6PrB9hqOtQWMdZ44jvEWAXGq1b1JLLSxStOhwPLMOit1VvOAudEdU9Co/aPALEwLVm13BNfg1IBwLXBmKux1y9H0NtrXm4BuZm5pjjOkfjNeqyRQghhLzcDLbFonfv3njw4AFGjRqF/Px85OfnY/To0YiLi0PPnj2bOjy98y/xx6GkQ5gzZw4yMxu/5aJFixboNbEXzOLMYB9gX+1yR1scVRVqdy7tjEwmU9Xl5/Zbt3G0hf6TQElnCYxbGkMWJ4NTWye114KXBMPc21xVqL17225Y51jjqeQpQieEYmjcUFXrgb5tSN+Ao8KjYKUsvHd4Y57LPPyd+zcYMNjosxHnOpzD4IuDwck5gA/wpDyDSCqUI5MVFRVhy+YtWJexDr/Eq7cmKltXeIzB/qQQQgghRM8MtsUCAFxdXV/oIu2adHPohmPux3Dq91MYN24cnJycal9Jh0JCQuBr6ounG5/Cwt2i2uWa9WmGeYyiUHudxTocM1HMW6EsVmad9T808KRJk3DgxgGYLDKB/TzNJKjy5HfNipsh9mksgEZsqdi5BEdbH0VveW9c5F3ExH4T8ZqLYrSvsPQwJJ1NwvI3lsOkkwkYPgNwijqQO7PuIBhNl1ikpaXBz88PY8eOxdixY/FgzQO4l7pj85TNEBmLMNtltiqpaMyCfUIIIbrDcRxYln2hh/Mn9cfj8cDj8cAw1Q/ko2RQicWtW7fQpk0b8Hg83Lp1q8ZlK87w/CLq3rk7+Gl8vL3qbTRr1qxJYnhU+ggdZB1qPJEqdnuRF8qRap+Kc2fPoU/fPo12kSnjZEhhUzD44WBYt7SudfmWopa4y96FRCKBSCTSf4AAOB6HwLWB8Az2RH5IPl7rokgq2mxsg8CkQIh9xXh70du4NvEaAtcGoqB5AcpsyhDW9dkQtY1hXdo68Biean/79u2DWCzG/fv3kdAmAZ+Ef4JB0kG443IHYelh2JSxCeVcOSUVhBDynJLJZMjPz4dUKm3qUIgBEwqFsLa2hkBQc+pgUIlF+/btkZGRAUdHR7Rv315RDFzFDNQMw0Aub5zuK03FrpUdPE56wKenD3x9fRt13xKJBNn52UgVpmKc6Tit17t58SbYCSz2btiLPn376C2+ypLKksBjefAw9wDfqPZZtP/95188HfAUFy5cwCuvvNIIEQJfjP8CkQ8j8dO9n+Bq5Qr4Ahc+vYCob6LQ3rg9Hn38SJVUzPWYiyPCI7hmcg2t1rZC2FuNl1xUnm9jwYIFaN++PU4ITyAsPQzjHMbhsegxYsQxAIByrhxGjBElFYQQ8hziOA7Z2dng8XiwsbEBn8/X6q40eXlwHAe5XA6xWIzs7Gw4OzvXeI4YVGIRHx8PBwcH1X+/zBiGgV+JH66Krzb6vq9evYpX33wVrTe1RivPVlqv90q3V3Ct6BocPR31GJ26tWvX4lzJOVgFWMGxjXb7dWFcUOpVimvHrzVaYgEAFqMsUJhciJJfS7B67GpwLAfrltZ4df2rWJ+5Xq1Qe8X4FUiflw7HLY4IXBuIxP6JwHj9x1h5vo3xjuNx1O0oTuSfgBnPDPsz96NVbivYtFQUyXMsh3JeOTakb0CbjW3AylmELA/Rf6CEEEIaTCaTgeM42NjYQCgUNnU4xIDx+Xzk5ORAJpPByMio2uUMqtLS09NTlQUlJibCzc0Nnp6eav/c3NyQmJjYxJE2jm6O3fDI6hHu3LvTqPtNSEiAiY8JuMdcjYXblY15fQxcC1zh2KzxEosDBw7gUsIl4D5g30a7WL9f9D2EUiE6d+qs5+jUffPdN0i1SkXcvThwLAeeEQ+zHs6CR18PDL4/WK1Qe0yPMeAJebAZaIO5HnMx+P7gRotztstszHWZi7D0MPS52Qcn8k+grVlbfOP9Db458Q34+/gIF4fDLsYOXDkHrzteCEsPw7qkdeDxm/4nZV3aOo35QJQ2pG/AurR1jRwRIYQYNmqlILXR9hxp+quAavTt27fKifAKCgrQt2/fJoio8QX4B6C0tBTdxnWDWCxutP1OnjwZH//wMbzivOqUWACAa7krEkoS9BNYFebOnYuAQQFweeiidWLh5eUFl6cuuJ12W8/RqWOdWIAFmic0ByNgwJazqrk+QpaHqI3+NHXOVLg8dEHbkLaKOTkauRXAJdNF1Q3RiDHCZt/NCLYMxoM3H+D2W7cRuDYQk69PhqPAEQOKByBwbSBuv3Ubd2Y1bhJcFWV3ruomG6SRqwghhBD9MNi/sBzHVZkd5ebmwszMrAkianzNOzVHWXQZ7LrbITk5uVH3/Uj8CG6pbjBzqdux9hR6IolJUg1Rqm+vv/46eO48OEY5ap1YAEBzrjkelT3SY2SaOvp1hNN9J/iL/DHh4gS1CfwqEwqF8C3zRXR2dKPGqPRj4o+K759MUUehvEhnORbzXOZhjvscZP2WBbu9djiXfA5zPeZinss8sFzTjygy22U25jrPVUsuaOQqQgh5OfTp0wfvvfdeU4dRJwkJCWAYBjdu3GjqUBrMoGosAGD06NEAFE0u06dPVxu1Ry6X49atW+jevXtThddolKPzDC8bjrTRaQgICFC91hgTkT2WPcYQbkidm0ePHT2GnB45+PfffzFy5Ej9BFfBU9lTZMuyYZdsB0sPS+1XzAOuCK7gr7/+wpgxY/QX4H8iV0YiqjgKfoF+gBRwaOcA126uAIDwpeEANCcS7GjfEVtNtkIul4PPr70oXVc2pG9Avns+mombYYn5EsS4xKhqLua6zgUrY/Hv438BAC4XXBC1LArdBnVDMNP0k/hJJBJ88sknKCkpwbwV82jkKkIIeQFNnz4dW7du1Xj+4cOH2L9/f401ANpgGAYHDhxolOuYF43BJRZWVlYAFC0WFhYWMDExUb0mFArRrVs3zJ794l8cpJxLwdHWR9G3Q188tnwMKSuFkCdU3Xkdcn8IMFH3+83IyMCCzxagYEEBWtu0rvP6dqwdCj0K8eDiA2Ck7uOrKCUlBVHiKNhJ7eDq5QqGp30SVJxWDGkXKf7Z/E+jJBZymRzSV6RoW94WvDY8GJkofvSUyQQr17zT72TphFybXAT1CMLNyJt6jxF4dmffmGeM0E6haGfeDp3QCYCioJuVsXB+zxkpF1MAAObXzVFqUYohrw3BsX+ONUqMNYmOjsZPP/0EjuPwxrw3wIBBOVcOAQSUVBBCiI6FLw8Hj8+rciLXyJWReh3QY9CgQdi8ebPacw4ODrXeiJNKpU1WqK7PfTfl+6rI4LpCbd68GZs3b8ayZcuwadMm1ePNmzdj3bp1WLRoEezt69bv/3k05PEQBK4NxFnXs4AMuCW+pbroC1wbiCGPh+hlv7du3cKJuycgS5XB1ce1zuv/sPgHCEQCDHlVP/FV9Ntvv2HeF/NQEltSp25QADCx/0QYWRuhf8/+eopOXWhUKBLNE5FzPAdOHTVnB6/qh7ddu3aQJEmQKEhEQUFBo8TJcizG2Y8Dx3HwN/VXPT/bZTbm2M9B7J+xSLuchtLsUoSEhsClgwueRj1FjF0MDn54sFFirEn37t3xzTffYNWpVVjCLAEHDhzLQQZZtQXdhBBC6ofH51XZpTdyZSTCl4brdUAPkUgEZ2dntX98Pl+jK5SXlxdWrlyJqVOnwtLSEnPmzIFUKsWCBQvg4uICY2NjeHp64quvvlItDwCjRo0CwzCqx1W5ffs2+vXrBxMTE9jZ2WHOnDkoKipSvT59+nSMHDkSq1atgqurq2r6gKioKHTo0AHGxsbo1KkTYmJiNLZ9584dDB48GObm5nBycsKUKVOQk5Ojer1Pnz5YsGAB3nvvPdjb22PgwIENOJq6Y3CJhdKyZctemlqKqgQvCcZcj7lotbYVZKYyzH00V5VUVBw9SNdatmyJN95/A1bxVnUu3AaA5u7NYZlniXvJ9/QQnbqysjJY+FnAKsEK9oF1i7V3196weWoDGOspuAqkUimiUqMgl8hhdNUIzp2ctVrP0dERrbJbYcr0KbC0rEM3rwbontsdZ3echYPYAUa8Z03JErEEVlOsEPBrAIrTihESqig27z67O9xvucN/uD9ur75dZb2IrlUe9Sk/P19VaP5r6q+4OvQqjtgdQTlXjkGSQUhYlABeWdUF3YQQQuoveEmwRr2gMqlQ/p0wBN9//z3atWuHmJgYLFmyBD/99BP++ecf7NmzB3FxcdixY4cqgbh6VTHM/+bNm5Genq56XFlxcTEGDhwIGxsbXL16FXv37sWpU6ewYMECteVOnz6NuLg4nDx5EocPH0ZRURGGDRsGf39/REdHY/ny5fjwww/V1snPz0e/fv3QoUMHXLt2Df/++y8yMzMxduxYteW2bt0KoVCI8PBwhIWF6ehoNYzBdYWq6K+//sKePXuQlJSkMSPk9evXmyiqxhO8JBiZH2YiVBYKRsCAJ+XpNakAAG9vb7jIXSBbLYP9hPq1DDkVOeFRof4Lo9esWYPMe5lwXekK+951j9WjzAP3xff1EJk6IyMjfLXzKxzLPQb+XT6cOjnVvtJ/BrgNwKnCU402FOCmjzfhfs/78LjqAfRWPFeaW4p9g/eh7GkZLNwtEDgzUHUO+r7hi1dCX8HBdw6i+5fdwUr0X7xdeRK/sWPHIiUlBX229MEVwRVY8a1QxpapairGrRmHZbxlaGncUm09QgghVeM4DtJC7WbiDno3CDKJTJFcfBEJVsqi6+KuCHo3CBKxROt9Ci2Edfpbd/jwYZibm6seDx48GHv37q1y2X79+mHhwoWqx0lJSWjVqhV69OgBhmHg6empek05n5q1tTWcnau/Ebhz506UlZVh27Ztqhvhv/zyC4YPH45vvvkGTk6Kv/VmZmbYuHGjqpvS+vXrwbIsNm3aBGNjYwQEBCAlJQVvvfWWatu//PILOnTogC+//FL13O+//w53d3c8ePAAPj4+AIBWrVrh22+/1e6ANRKDTSx++uknLF68GNOnT8fff/+NGTNm4PHjx7h69Srmz5/f1OE1muyF2WDSGYADWCGLO7PuIBj6vQMQJ46DV6YXTB1M67V+UVoRDosPY3bObL12W5NxMjwpe4KWl1rC/od6tK6ImuMqdxV37txBmzZt9BChAsMweGr5FCFMCMqLyuEQ6KD1uj0DemJb2jaUiEtgalm/z6MuOrboiPAO4Wh3uh0AoDijGHtf2QtWziL/UT4CpgaoJbYiKxHa92yPyKeRkM+VI8RW/8PiVpzEr6y0DJFXI+HynQuuCK6gh2UP+Jn6gc/wVcu1DWyLKTlT8GfWn5jnMg9yTq73GLWhHKChqiSnMQZoIISQ6kgLpfjZ6uc6r8dKFTeXrqy6giurrtRp3f8V/A8iS1HtC/6nb9++WLt2repxTb1cOnXqpPZ4+vTpeOWVV+Dr64tBgwZh2LBhePXVV+sU771799CuXTu1/YaEhIBlWcTFxakSi8DAQLXah3v37qFt27YwNn7WZSI4WP267ubNmzh79qxa4qT0+PFjVWLRsWPHOsXcGAw2sfjtt9+wfv16TJgwAVu2bMHHH38Mb29vLF26tMr5LV5EypoK3+2+eDD+AQI2BSBsrv7uuLIsi/DL4UgSJqE/v/61B/ej7wNdgNjYWPTq1UuHEapLLEsEwzKwl9jD1LHuF91Jd5PwyO0Rvv7qa2zfsV0PET4TWxKLAYkDwAvkQWCs/deupVNLcCkcZn06Czt+3aH3los+q/vgl1u/wPUXV5zlzuLxP49hZGaEvDt51TZrB0wLgN0JO+wS7oKlkSW6deum1xgB9eTC57TiB3ac/Th87PGxqpgQS54tP9R2KNamrsW+xfvglegFnNZ7iLWq3PKiVHFoXEIIaQpCCyH+V/A/rZeP+jYKV1ZdAU/IU7VYdPm4S533WRdmZmZo2bKl1stWFBQUhPj4eBw7dgynTp3C2LFjMWDAAPz11191iqE++9ZGUVGRquWjMhcXlwZtW98MtsYiKSlJNaysiYkJCgsLAQBTpkzBrl27mjK0RlGxUHuGbAYYOYNRPqMQuDZQb33Fnzx5glenvAqpRAovJ696b+cV31dg7WmtdvLr2smTJzFr+SyI0kVw9Hes1wV3cMtgGHsZg5Hp92J96cqliCuOg+iKSOv6CiU+j4+CWwU4mXMSCQkJ+gmwgpiiGLSxbIOen/ZE9JpoFDwpQPbN7Br7ynr090DKpRRES6Ox5sc1eo9RabbLbDBQfHZGjBE+9vgYQNXFhCKeCM6nnfGk+xPsjdqr0bWyKcx2mY15LvNovg1CiMFhGAYiS5FW/67/33VcWXUFIaEh+EDyAUJCQ3Bl1RVc/7/rWm9DZClq9Nm/LS0tMW7cOGzYsAG7d+/Gvn37VDeujYyMIJfX3Lrt5+eHmzdvori4WPVceHg4eDyeqki7uvVu3bqlNt/X5cuX1ZYJCgrC3bt34eXlhZYtW6r9M8RkoiKDTSycnZ1VH7CHh4fqoMfHx6sKNV9kiecTVYXaPb/qCZNkE6R3SMdcj7kIXBuIxPOJOt9nVlYW3Lq6gY1n4RxYtwvgipb9bxlYFxZWJlY6jE7d1atX8aD0AST3JHUeEUpp+tDpEJWLMO61cTqO7pmUlBSs3rUa0kIppOelGiNC1cbY2BgeYg/4dPXR+1wWd+/exb9P/kU703bw6OcBAOBYDnwhv8a6Hh6fh9dbvQ4enwf7To03YttPyT+BAwcBI1CbxK+6YkKfZT6w8LPAit0rGnVekJrMdJqpSi66xXSjpIIQ8lypqlC7qt9gQ7NmzRrs2rUL9+/fx4MHD7B37144OzvD2toagGJkqNOnTyMjIwNPnz6tchuTJk2CsbExpk2bhjt37uDs2bP43//+hylTpqi6QVVl4sSJYBgGs2fPRmxsLI4ePYrvv/9ebZn58+cjLy8PEyZMwNWrV/H48WMcP34cM2bMqDXhaWoGm1j069cP//zzDwBgxowZeP/99/HKK69g3LhxGDVqVBNHp3+D7w9WFWofPX4UKQkpWH90vWq0qMH3B+t8n927d8c7370D/0T/el+sA4CjmSOExULce6y/kaFGjx6NzqM6o0VGi3rHyuPx4CZ2Q2xWrI6je0Yul2PQvEGwzLOE+Ka4ToXbSp+P/xx8Hz6crOq+bl389NNPuJB+ATf33kT454pJ+/hCPuRSea1/HMZ+Mhbel73hN9pPrzEqbUjfgK3ZW8Ev4GOzaLPGnf+Kf9hW81cjfGk4Bnw8AFM8p+CJ75MmTyyOHTsGKysrCEQCJGUnAYBqvg3RSe37GBNC6qfy6HIVbUjfgHVp6xo5oucTK2erbNFW/gZXNUeTIbCwsMC3336LTp06oXPnzkhISMDRo0fB4ykui1evXo2TJ0/C3d0dHTp0qHIbpqamOH78OPLy8tC5c2eMGTMG/fv3xy+//FLjvs3NzXHo0CHcvn0bHTp0wOLFizW6PLm6uiI8PBxyuRyvvvoqAgMD8d5778Ha2loVo6Ey2BoLZdU8oMjc7OzsEBERgREjRuD/2TvvsKau94F/bkLYG5nKVkEF98K9Z+2yQ22rtYqjrV3f1ta2omJ37R6iWGuXo62jrVitWkcF3AsciIqCDEGm7JDc3x/5EUFAGUGwPZ/n4dEk55773pOb5H3Pu2bO/PcnNFbsa+Dv74/6bzUKL93N1JhVoeLy4rA6YUWLp+tvWEiShH2mPXuv7mXgwIEGlO4G/v7+FKuL6XSiEy3G119WHyMfzmsar4KVp6cnne7rhHm+OeoCdb2MoO4e3SnILODkvpP0GNujEaTUoWihwNjVGO/13lz55wptH2rLvb/cq9+RgprvvRbtWtDu63bsSt7FHJ/ax+XWh/JwoZLkEtJXp2PylkmlnAuAaU7T9BVNZK2MpJQImh+Eb6kv9526j4SiBLzNvBtVzlsxfPhwxjwxhmM9jxFZpltbCYkyynj9yOvk5+fz9NNPN5l8AkF9uVuKEogcJ8Nwq+Z3jamrrFq1qsbXdu/eXelxdWHEwcHBt2y2PG7cOMaNG3dbOQIDA/n7779rfL0mOXv37s3x48crPXdzNE6bNm3YsGFDjXPffJ3NhWZr9igUCoyMbtg9EyZM4PPPP2fOnDnNorPgnaRdu3Y80/oZvAMaXxGKL4jHNdsVU7v6N3i4du0ap0+eZumRpZViCA1Jdlk2GeoMTA6Y1KvfRjkFVwrYb7Gfjz9uvNyAM4VncLrkhGNHR4xM6m7LWyotccly4fdjv6NWqxtBQh3j/jcOz+ueGH9vDBIM+3oYUHu39qiOo0g0TeT4peONGq6olbU87vQ45i3NeWXwK/j6+gI3chZKCktYP3o9sd/GAqBQKZA1MpsnbcbJ2Ilh1sN4c9+bfPFF3Sue1Jbb7Ya+mfgmKdNT6NqlK7nkMst1FtGdo7HOscZ5ijPJfZMbTTaBoDEpV9hvvv/LFXaF1DzUjoo5TstTlpOWliZynAQCA9A8PuHV4OPjw9SpUykpqVwD+dq1a/j4+DSRVE2DJEm0tmnNVYurjXqeUeNHkanIxFFR+3Ko1eHg4IA2WYuFtwVXrlwxkHQ3yMnJYfWe1TioHXCwc8DEpv6hI+aF5tAG/vn7HwNKqEOj0XA59TIXii5gedCyzonbFbl08BLfZn5bbXdOQ3Es/xitr7XG70E/XLq7VCo3XBu3dtcHulJyqoShzw3l9OnGCy8LWB5A/p58ult155UZr1R6zfttb+TuMteTrlN0Tdcd/KXSl/B7xI+za86y66VdtLnQhtOWp1n0+SKKiooaRcbqlKtdu3bx+M+PE5Yaxp7cPQRZBxGnjtMrMSqFip2Dd+Jv7M9WzVbeT6xaDeROI8JFmhd3w/txNxUleNLlSTorO7MsbRljksY0SxkFgruNZmtYXLp0icjISPr3709aWpr+eY1Gw+XLhk9cbu74t/Sn0KKQvLK8Rpk/Ly+PyMRISlJL8PL1atBckiSx4MEF+LTxqXUpuLpw6NAhQleGkno4tUG5IACPD30clY2KSWMnGUi6G8TFxdF+RHvUeWpK9pbUOXG7Io55jlh2tCQuJs6AEt5Aq9Vy5PoRxo0Yh5GpEV6jvKqMCZofdEu3t0ULC1QnVNj2t+XEiRONIifoksX3SHtos69Nped/f/R3jn91HBM7E7LOVi6PO27dOFx6unDkkyN47fPCJN6EkR+MbLQkuJuVq9TUVKb9NY0zrc9gXmrOz+1/xtvUu4oSo5AU/NjhR7pbdmf9tfW8fPxlvv766yrz3ykl8na7z0fyjzR7RRfuDoW8NjLeLd6ArildSf8+nbDUMLof7a5X2Kc6Tr0j5eJvtZazI2Yzd99c9ubs5dHTj5KjzEEu04VLAtgY2aCW1by892U+u/BZtXM0l3tGIGiONI9voWqQJImtW7fSqlUrunXrVmNL9f8KsYmxyNdk3vzizUaZX6VS8fTbT9MiuQWe3Txvf8Bt6Na2GzkuOaiLDR+6o1arce3himWyZYMNi07+nXDIcyBbXX3Vh4Zw4cIFLDtYokxSknE0o16J2+V8+vynWLW3oluLxmmGM+T+IVwuuozmrIZL2y7hPap+YXcvdH8BxyBHHnrkIQNLeIPPsz8nxyeHq3OuEr04Gq1Gy5r+azj38zn8J/nTYXKHapMJJ+yZgIWrBYl/JRI+Ppwk7yRk08YL2apoXNyXeh92D9uhvKQkomME7ibuzHSbWe3OqCRJLGu7jC4mXdil3cX7V9/n+++/179+J5XI2+0+97DqcVcouneDgVQbo6E5eANqUtrz8/MJTw1nSdISdjjuwOlRJ2StjIzuM3aq4BQhP4bQLaQbkz6tfiMnZE0Ib6x5o8Ey1rSWz/z5DAddD7I1ZysLLi1ggtMERjiMQDKSUEkq3fWlLuOBkw+wKXoT3+d+z3ux71Wao3y9r+w2vDdeIPg30Dy+9atBlmUsLS3ZsGEDkydPZuDAgfz4Y+M2MWvOFCmLyL+cz+HEw40yv5mZGRZ+FvjE++DQwaHB8/m7+6Mx0XD+vOETo8eMGUP7ke0ZmTuywYYFgGeZJ+cKzhlAssqMGzeO4LeDGdt6LJoSTYNyQTq5dcKszIz9sftvP7iOlJSUcFp9msL4QoyTjdFqtLj2rF8PksceeQxVkYq/9v1lYCl1JCUlsbd4L1l7s+gyrQuRIZF8rPqY5H3JdJnThXt+uoe+C6vvuWFkasTEfyaSfTabPw78gbWRNb9c+6XKOEMqksGuwShRokGDEiXR90VjbW4NQOTCmnNWohdHM/mXyTglO9Hivhac6HFCL9udDteoqMz2OtaLsNQwul7pyqIei4h9L7bBiu7t1iFyYaRBr6G5Gki3klG5WclXo7/iypUrTHeZzpPOTxKWGkaPwz3u+P1ws9KekJDA/fffT9AXQYSlhrHu6jounLjAWPuxSIobCnu+Jp+tPluxHGtJ3IA45q+dX2nekDUhRPhFoKThFduqW8vPrnzGfuf9UAbti9vz2h+vEbsjluWpy5nlOov9XfYzy3UWOWU5mF00w6qLFZqrGn4p/aXK+xG4NJAxF8Y0WE6B4N9Is60KVbFRyrvvvkuHDh0IDg5m4sSJTShV0zF48GB+Wv0T7QY0XjnPuLw4HE444DC/4YbFlctXkK5KvLrlVX7/+ncDSHeDMrmMi8UX6bCnAy2mN9ywcMaZ/cr9xMTEEBgYaAAJb3Cu5Bzjro1D6iihNK7/D6YkSfhr/TmRZ/gQI2NjY2Z8NIOrqVeRIiU8h3miMKqfIqVUKQnICeCv7L+4Z9A9BpYUHB0daTelHb7HfHl07qMs+XIJaEFhrGDo57fvFm/ra8uIFSP4cOOHpE5NJfxKOGV/ljFj6gzAcBVhyrt/bx69GY1CozcuVqavJGBFAFqNVt/IDypXT6lYF37LPVt47cJr7MjbQc+jPdGgqZMSWS5HdYZWubfnVuFtANHR0brO9E/pPnsAR1sexX6lPQfVB5EKJNqZtyMsNYywK2GghGDHYL2Mt6sSdNn/MrYTbW+5DoYg2DWYc+fPVZLzfof7udfhXlYsWYGXqxdh3KgS1FRGHOiqm32T9g1qWc0AqwFsLd5KyYQSZp2ZRU5yDkWqIpBBq9CCFh5xfIToxdFsbr0Zr0FejVqR6eYKbO5ady5OvYixuzHuGnee2vsUG85uIGJ2hH7tytey/Zr2SB4SCYMT2NJ2C5e2XuK1Nq/xY/SP/NX+L8bGjSV0YmiD5KtOzuWpy9GixcfUhw88PsC7p7fekBkbN5bgrsH6Y5J2JxHhF8Goc6PQFGvYZbuLsNQwVqStoEwu0/eXasyKRwLB3UyzNSxurirz+OOP4+vr+5/oYVEdXl5edFN0I9Mi02BzVvzBjzoQxXnlefzz/DGxNmnwj1BpaSnZF7NJyUlBlmWDdtS8XHwZpazE5KwJ9v72DZ7vdNRpUtqnsHrVat796F0DSKijSFNEQnEClgcssexu2eD55BSZ3S12E7EhgrEPjjWAhDokSSKeeGZ0ncGlkEsEPtUw48pL6cU6+3W8Oe9N3nr3LQNJqSNeE4/aVM3nMz5n24xteqNCW6olenF0rX7s/R7yY9AHg8hR5JAwJYEl15cwIW8C6wrWEZYaxti4sbT/vT0srL+cCqWCjxM/5qLiIlyFLT22sFG9UbfbmVhZMaloXFTXbOr91u/T62gvyihDkiUeMX+kTnLcynjJWZPD6dTTNSqieWV5rI5djWaSzjhSSSrUspoHLB/ADz8U9go0lhquqa9xtuAsslJGlmUO5B/AJt2GIbZDbl/Wc+AsAkIDbrsOt6Im4yUlJYV1BeswNjfGQeXAMYtjuu8jpYSERFReFL9l/oY8XKYktQTHUkf9LrcGDV0TuzLOTVdy8o01b6BEWa3iG7ImBA0a3p749m1lvRVlZWVc/+U69AG1QhdGWigXMmL8CCwKLHA57cLVj68iL5bZ1mYbskZ3LcOPDce7yBurNCu2pm5FU6ZhlvsN47h8rcecHQMGSCcLdg0mX5Ovf19V7irGGo0ltGso4a3CiUmNIXBpIAEeATAf2i9rT2ByIDGzY3hc+ziLchex4OICTvuf5omcJ5DaS/Q/1p/QaYYxKsq5vuU6cicZrUKLkWTEL+1veChbDmzJ2D1jsZ5kTfT5aP19Zx1izdjVY3Eb4MYTqifo834fFk9YTJmyDNQIo0IguA3NNhRKq9Xi5ORU6bmgoCBOnDhxy5rB/2Y8TT1JVhquDGVFl/b/3v+fzhgozTaI+9/X1xdvtTfdenYzaIJsTk4O98y6B3WCGmsfa1RmqgbP2derL6Zepphq6l9i92ZycnJ45OVHUJWoKNxb2KCKUOXknshF7iSzec1mA0hYYd6yXC4UX6C9pj2pB1LxGulV77kiF0ZStLEI2V1m3bZ1lV4zRFjL1qytDLUdypG3jhATHkOrga14qeSlOnd59R7tTa/Pe1G6uxSrflYMPz9cb1RYT7JGoWzYV2Ps9Fguzr6ItkSLIkSBg4MDASsCCFyqU65OPnmSjNgM7Nra4T7IXdfIT/VRtcp0eGo4ZZShkBXIksyIfSMoUteumlVNXcjLzyNppSohQGq1mmUpy3RhLWnraNm5JUpTJY9bPa4PF9lYsJEctxzGe4/nEcdHUEkqZElGoVUgSRI2Khv25O5hXOw4VuxfgeUlyxrDkLSyltjpsXo5P1Z9rJcvdnpsrcLSqoupX7VqFb3f682P139kTcYafs/8ne623ZEkCSOMkJF5sMWDRHeOZlbyLDqf7Mxk+8koUKBBAzLsydjDiMUjyCvLQ4mSCL8IQtaEVDq3IUN4dsbsZJXfKlCAUtbN192qO591+4x3BrzDc7OeQ7lIybY22xgbN5ajPY4yNm4sGqWGouFFnOh7guLLxYRnhLM8ZXmltTZU+E5JSQmPfvAoG65uQPH/KoRKUhHaUWcUaGUts1xnMc1pGpEhkSyRlhC9KJqAFQF0XNaRU6tPsWv2LkZ+OhKpVEKSJGRZxqS9CaXa0gbLV05MQQxrO6xFUkhIGokyuazS/THTbSahE0Pp/UbvSo00LVta0nJuSwq9ClnqvJTNpZtBCbJGBhWsH7beYDIKBP9Gmq3HoiacnZ1v2Sr934yt0pYMywzizsXh19avwfNVdBWbPWCGOkFNwVMFBnH/Gxsbc5//ffyd83elfiQN5cyZM+TZ5KGN1eIcaJj74KUpL7E+ej0d2nQwyHwAJ0+e5MDVAzjHOHPt2DWcv2i4rNOHT+d1i9fxd/Q3gIQ6tFotz33xHHa97bi2/RoO7RywamVV7/kUSgWKHxVYDLeg86DO+ucNEdby3Q/f8Vvb35gUOYmoBVEYmRnxwG86D2Z1u/+3ou+ivpTmlaJ5VcMv+3+hTCrDSGOE9STrWu+S34pCTSFmCjNGHhtJyeESPjH+BG2ZlgHtBmDWwoyonCiKfyjGob0DDu0dkJQScpnOS2tqb0pZcRkH3jvANr9tRPjpQkq6JHdh/E/jafF4C8btH8fcvXMZ8caI28oSND+I6ynXiQyJJGphFLJWpttL3ej9Zm94C5J2JRE2W7fz7H/enzkH56AcrMQ425gu+V044H6g0vfBzaEw5f+/OexllussZhvNZuhbQ7EbZoeNl02lsJTiTcVc1l7G8xlPwlLDGGQ5CFdc0ZbpShr/2eZPIlIjGHN2DNEXqvdGlYdzBS+sLNMEpwn83vp3HDs6osxT8k6Xd4grjKtWToD2x9sToAwg1ioWbb5W55lBjbWJNWbDzRh2bBj9e/an6+muRPhFkPNNDp9P+7xSOE1DQ3i2ZW1jAQtQOaroeqUrX436iu8yv6vk7QlPDdefz3qSNR9P+RhrtTVjfhzDlnZb6JHVgx17d2D2kBnL0paxIm0FGjQELA0wyE57oaaQCZsncLnHZTSRGkz6mei9WOGp4QS7BjPTbSaX/rrE1u+2ggTIOq/inJw5GJka6bzXH+sMMtlYRlGqQGusJTIvkgn7J/BJ10/wNG1YAZHfM3/n7cS30RhrGJAzgI8Hf8yKtBVVPGfnfz/Pqe9OgXSjkebgTwdj6WqJhasF64zWcezaMQKXBnJ11VUyf8xkV5tdfHTmI/7X7n8NklEg+LfSrAyLrl27snPnTuzs7OjSpcstw2eOHj16ByVrHqz/cz2anhq+i/iOd9q+Y5A59UoCYZhqTTmsOGywmGI/Zz9+Vvzc4HkqEhAQwMDHBmL0h5FBErdBFwrUqrAVZ7PPGmQ+0HXc7vdYP0yzTJHLZBzaNzxvZcTgEayIWkFaWdrtB9eSuLg4dibtxDjbmMtJl6stM1sXTk47SVnrMvy2+HG151VyLuZw5qczRIZEkrc6j5MDTxJE3ZUbWZZ5/7f3UQYrSYtMw9XVle7/616ph0m50nSrXhsVGfzJYCK8IvTKT5myjLzVeQRNbHiYQ4Y6g+6W3ZnkPYmN0ka0ZVokhUTA1AAGdRiEQ3sHrL+yRlJIRC+ORtbIKI2VaEo1RIdGs//t/Zx74Rx7/fbeiAF3hQjTCNbErmFr263MHz6fk0knedn95SrnLw9lVBeqSdqRhOt3rjrjRSODBEc/O8oaeQ0Wnhbck3QPLEVnXJiDcrCS4oPFfJTxEdtbb68Ug16OPhY9PoKkNkk1Gh6Xz1wm1DaUc5vPsWDGAkaeHKn3Bpjca8LOnJ34bPXBrciN3QN3o5ipoPM3nSl9spTYtrF0Cu+E32E/Ig/fOhel/Ly5xbm6HIpU3bV0KerCsv7LWLhuIVv8t9QoZz9VP3Iv5RKTGlPZ8CAMn6U+PNDuAa5OuMqvzr+iKdEQ2SWS7ge6I/vJeqPidvks1eU/yLLM1yu+Zm+vvSSUJdzIoelavRGnlbU8oXwCr3VenOc8WrXuXrd53IZOszqhsdAwd9tcijYX8cNPP6Ax0q31fnk/A70HsnnN5tuGc3kM9Kg2rOx0wWmePf8skpOEtF3C5H6TKkZa4s5E2n7Wluy4bNwHu5OfnK+/rw8vOaxfm5sNsvLHBTEFPMqjaGO09Dfpz0dPflStnGcdzjI8cHgVGQuKCxh/YDyZFploFdoa1zJhawK9NvciaXcSrQa04vqV63o5s85k4feQH+Gp4SxPXX4jp0IdxK43drHIaBGrvVeT8FECkwom0SekT7Xvd23ylwSCfyPNyrC47777MDEx0f/fkHH5/wa69ehGfFI8ajvDlnANdg1mWeoyZIWMkWxksETFth5tKVAUsHfPXgYMHGCQOa2srMgyz2LQ+UG0GG8YwwLA18SXi/JFtFotCkXDIwQ9PT2R8iXGqsdCZ11SsyHo6tiV4w7HKcworNTArr6YmJjgO8oX55POXNl+hdHfjW7QfApJQYRfBAONBxLjGsOywGUoC5Xkrc7T7bxL9UuKLisro92UdiSeTOS+e+/j0IFDdH66c5VxddmRDU8NZ1f/XQSGBZLjlENy92Qi/CJwT3W/7WegJiVSlmXGzR5H1hNZzPhiBr//9jvI6JUWTbEGnzE3GnzenEtQ/th/oj8xhTF0XtEZ66XW7Du1j35v9eP6xuvYhdgxZvUYotyjWJOxhlMXTvHtoG8rXVdYahj9d/QnPymfY1OPMfLLkdhPs9fLkbMqhyPtj9D1WFd2+O8gxysHZHRGlhoWH17MwPCBmLxlogujOh9dRam3DrHG410PbHfY6mPpywlYEUBgYiAMhS7eXSj8tpBPfvkEjZ9G7w1ov6c91uusUfdWIw+UURQp0M7QcmT6ESSFRIflHZiknMTWqVu51uUahEBOQg6jvhnF/rf2VzJW7TPseW7zc2T4ZaAwVSAjo5JUrOi7Qve+KORKMf83y3n14avEj46vNKZDeAcCk3Sha17xXvR4uQeDDg1ijekalCuVyCoZSSMxQj2C3MRc/vT/kys7r8DiqgbQssRlFPcqZmvqVuCGkvvSkpfY2XknqjIVnpmeBFwLqNGIO3/8PAN3D+TcL+co6FwA3Liver7ak6eeeorirGKKhxSzVrkW2eiGN8D4YWOWmi3Fp8CH887nYQ2VjIuKiv6V3VfY4r9Ff+5jx4/x6ZlPOeN3Rmd4pHiQc39OlaTn+E3xbOm1hfRB6UzoP4Ejnxypcl8D/Nn6zypentCJobAGIgIjKPqzCONBxuw2283r617nnUffqSJn22ttq3gfcspyGLFvBBp7DaYJprTZ2qbK+91heQcCrwSSokpBZa6iY3BHDr5/sFo5L7e5TODOyvlQg98ejPJtJfOV84n2jybtoTSKMooY+sWNwhGGLjogqJknn3yS7777rsrzI0eOZOvWrY1+/oULF7Jp0yaOHz/e6Oe6m2hWhsWCBQv0/1+4cGHTCdJMmbdwHgc/P0jrgYZpOleuHMVOj0VGRlJLlKl0cajllWsasuOyM2InZT5lzPt0HpEDG14yEiC7LJsMdQaKnQpaLDCcYRF/KJ7YFrH8sOoHpjw1pcHzFWgKuFxyGcuDllh0szCAhLr3S+WkIrVbKr8v/50Jb0zQv1bfHTInTycKcwpZOHIhfy34i5b9WjZIxooeMGWekm1dt+He3p1Yv9gGecI0Sg0Z7hmsHLCSgz0O0mdhnwbl15Qr32PjxmIZbsmHlh/i8qsLLiddKlUGqomakqLnTZpH4lOJXH37KiVXS9AUa6pVWmpKUK4Y0vX4osdxuceFv/74i/1v7+fAuwd0YUwvdGPQhEG89ehbrOq9ipODTjLn1By+6PBFpXj61htbM/bHsXwb9y0RnSMY89MYQh4OYf7G+WxvvR3za+Yc7nAYIycjuvl1Iyk/Sa+IblZt5prPNXzG+NDu8XY1yv3yay/XeF0zQ2cSNEF3PRWVybmD5jL3q7kcePAA/cv681jhY0SPj2bcc+P46PGPKE9VSHgygW/Wf4PKUsWpWaew9rCG+XBq1SmQ0RurbXPbsqp4FXm5eVz/4zqODztWCc95a8JbRMdXL+eMRTM47HGYbhnd8En2IXJFJJELIkGGACkAM0czrrtep0WHFjw64VEKMgvYptyGQq1Aq9LyYtsXyX4nG18rX67NvsaypcvQvKmh31v99EZFzGydJ2QoQ/UKsbOxM1FDo1ChIjAhkBmnZhC1IKqKEbdn7h6sP7RGYaRAelyi09OdOPJxVaVdZaEiaH4Q4anhrE9dT+DSQDp934kjk49wZvYZvKK9uG50HYW9zvj/571/mNd1Hvsy91VS9KMXR+vD467mXuWHgz9g0sZEJ+fSQFoNbUVgXKA+6bnHKz34ZdgvOEU60f/9/lh2s+TIxCM13tfZ72QzlqqhY+XGRYZTBsf+dwzV6yq2tdlG/oZ8ltyzhLfWv1VJzoqhbINsBhEcH4zGXkP2D9ksG7MMSw/LSu/3jmd2cPzr43S368496+4hdX/qLT9/gYMCGTtkbJXNgwFvDKD/hP5senwTZ9eeZcfDO7h26hoPbX2Ig+8fbLB3VlA3Ro0axbffflvpufINakHT0KwMi4r4+Phw6NAhHBwqh5Dk5OTQtWtXLl682ESSNR2SJOGc78yFnAsGmU+hVOh+9FJjAPCb5MegfYMqVa5pCO3btUd9To3saLgmZF9t+grbVraQC3Zt7Aw2r1muGcadjDn03aEGGxZarZZfD/6Kg7kDhf8U4jvN1yAyKpQK/lz0J9c3XydsYZjesGjIDtnJ/JO4GrtSsLUAj8EeGJk0/Csh2DWYy7su86f/n+R8nEOuMrfacJq6sC93Hw4qB7Q/a0GCgCcDGiSjVtbq49T7hvbFzNaMsM/CyHs5j0Exg9C63Dqc6uacjl6v9+K38b9xuudpjE4ZcU/OPVw/er1GpQV0IVvV5XNUDOnyGePDzMSZfGLyiS7sRYJjXx3j9I+nadO9DZ2/6MzV61eJGhdFj6M90KKlJKqEE4oTDD0xlLV/ryXtjzRMRpmwpfMWtpzcAq3Busga5zXObPtnGz2e68Ghlof0iuiJySc4MfsE/hP9kX6RSIlMQWGkM6SiFkUha2R87/XF1teW+E3xuPZyJXB6oD5BXKvWEjAtAJceLpzbcI5fzH8hwi+C/tv7Y/2atS68CB/sWtuxddhWrM5aMSZ0jG6DI1XWGwXDXYcT3yOemFYxSFkSkWMiybmaQ8cvO7LjzR0674SsIMA8gEc3P8pG043EPhxbJTwnaXcSI+NG0ndhX2StXOk6LFtacnjJYdSL1Nj72qNop9CHjClUCp7Lew4j0xufiZA1IWzrtK1KCI/pOFOuWVzDL9GPmNkxrFi6ggPKA8Q8FUPM7Bhmus7E/id79sn7cOztWCk/Zar9VLpFdEOr1eoT2AG6PNuFTfdt4so/V7BvZ8+9v95L/Pr4WyrD5QacPnynRGd4LFuqM26esngKp71OfOjwIXkj8nhN+xpSCwnbHFviWsfRO6I3mm4a7AfZY5RvxEY2YtnVEhTQdmlb3ZwTgpBlmb3H9hIZcsMI6zKnCy/PfVm3YRVa1Zunl7ckiL4Tq/+u0hsbwZB2Io3gQ8FEdo0kKCYI/MCywJK0bmlM3jIZTZEGE3MTwgjTr+cM5xl4mnpiHmlO0MIb61L+frfq34rx28ajMlORHJl8289fTR7QxWsWE/tdLEkdkzj651HsRtnxqdmnyFq5wd5ZQd0wMTHBxaVqcZTdu3czYsQIdu7cSf/+/QH44IMPWLJkCTExMTg7O7N161beeustYmNjUSqVBAUF8dlnn+Hre+M3+8qVK7zyyits27aNkpIS2rVrx1dffcWZM2dYtGgRcKM9wrfffsuTTz7Z+BfdzGm2hsWlS5eqrSZUUlLClSv/3Y6XrWjFqbJTBpkrdnqszqjYCKX9SsH4RmhAzOwYYl1jG7Tj0rNnT/ok9MGpn9PtB9eC4uJivtz0JRZdLTBpY1LvXgvV8b8J/2NawTTu6d3w3gsJCQnM/WouNj1sSD2SyrClwwwgoe4H78GEB1mWvgxsdc/VtSxnRXJzc/nr8l90te5KwtYEWt9vGE9Y9OJobENs4QBIRhJSqVSppGNdiY+P58esHxnuMpzohdEM/nRwg9/7jt905HrIDcW/p6YnzzzzDI99+xgX0y8y9oOx8GnNxy9LWYZiuoI+ch+9cpU4JJGsgVlM9phMulM6fUffWmm5lXep4nH739qPVq3Vh730mtcL79HepB5IZardVBI+S+C7Ud+hVel6GhRcL8DY35iTJSfJsM9AnipjWmxKsbYYSSFhJBmxq+8uov+OxneoL1vbb61WEV03ex12r9sx/fPpZMVlsSpgla68qUJCU6Lh+NLjlBWWoS5Qoy7UhWeWx/xf3n6ZlKgUVBYq0h5IY4DRAAYfHky8Ih5Zq8snefvJt/FK9ULroiV2cGy1idUDHAZw+eHLtHuyHcZjjTk19RSnppwCBVw/ep1h7w3Dw9aDyCmRxPaNrbEnQVFWEQUzCojfFA+gL9M66CNdvotdGzuMTI2IXhzNhd8v6Nf60IeHaswLAJ0irPlJw9Z2W2l9rjXqjmqs1FbEzI4hZnoMqMA6zZrvy76ntH8pubG5FG0swuVxFzTowsK6/dBN/xnuMqcL12Kv6e6p/zcwOs7oyIhluiT9uJ/jbqkMr760msC/K4fvBM0PgsWwbOkyUoem8kzwM5hHmBOiDkFSSUhlEj1+6UFOQg7birehLdXyzuh3kNIlVj2+Cq1Ki6JUwT2x95B2NY1vO3xLbkIuZUW6nibloX7lfWRqe1/fDpdOLmxou4Ggk0HIKhlZLdP11674DfEjKyOL3Xt3c8nsEq7BrqDQVabquLIjke9FEvBUAHvn7eXS1kv691uhUjBh7w0vb0PklCSJTU9u4svkL/mWb9n601ZGTBxB3Mw4TvqdvKO9TxqTggJdyJ25ubleeS4tLUWtVmNkZFTJM1A+1szMTB9OrFarKS0tRalUYmpqesuxhmbQoEG88MILPPHEE5w4cYKLFy8yf/58fvnlF30BoIKCAl566SU6duxIfn4+ISEhPPDAAxw/fhyFQkF+fj4DBw6kZcuW/P7777i4uHD06FG0Wi2PPvoosbGxbN26lR07dgBgY2PTKNdyt9HsDIvff7/RTG3btm2V3iiNRsPOnTvx9vZuCtGaBXuP7SWjZwaHDx+me/fuDZqrvCzgeZfzRJ+Pxu2cmz6EIdY1Fq1cuyTYmlAoFHioPLigrr+HpWJ9+ry8PNoMaUPumVx8O/sarOETQOd2nXHc48j5zIZ3Cr969SoturdAdVWFAgUO/g1P3AbdWqjeVtHjYA/K/Mv42ORjtKVafVnOkykn67QWmzdvZk3JGlzjXbH5x4bhYcMbLGO5oZO3Og+MQEJCNpZJXJyoj3Wuq3Hx6bJPOfHQCbKfz+Yh14doO75tg+W82VugVOribz5/4nPuP3A/mxduRnpRYvAng6scG704mis+V9jSbgt9FX1xx51LNpc49tox+rv254eMH5g1eBZBk6q/zrpcf005GAqjGzvC4anhyKk34ukf6vMQvTJ68ZDPQ/D/6RxLzi5hTeGayiFC84OJWBtRpeFXRUX08tDLSBMkzv1yrlKCecu+LatNpC5/veP0jvrXn+AJ/Zhzv567kaS+OJrg+dU3oqsYUvdW1Fu4fObCxb4X+fnQz2gUGlCDMlhJt+nd8Pf3Z0/CHroldMP6E2ui4qPo+WpPtk3bhvVP1nSa1YkcixyUpkp8x/kSuzJWL0P2uWz8H/W/5VqXr4kGTbXVn95+7G2Ua3QNEEPbhfL5qs/5seOPoNIptH2P98XusB2KvxWslFdi84iN3qhQy2qWJS5j7PCxXN55mejQaOz87PReE6WxUm9UwO2VYe1CLQqPGrwFi0F7VvedfiDvALhyIwdjgDFffvIlvot9sSuxwy3FjT9d/9QbFVpjLaeCT/FQwUN0mtUJGx8bzq45S3RodKX309D9HRZvWozsJyOVSmAMxY7FWL5tScHRAvwc/Mi8N1NnVHBjLTsad+RixEW8R3lj28aW9OPpjSbjsy2fJSkyiR2td/DL/l9ASYO9s80JS0td/6X09HQcHR0B+PDDD3nzzTeZPn064eE3yvc6OTlRWFhIQkICXl5eAHz11Ve8+OKLTJo0iZ9++kk/1svLi2vXrhEbG0uHDg2rxrh582a9nOW8/vrrvP7667z11lts376dGTNmEBsby5QpU7j33nv148aPH1/puJUrV+Lo6Mjp06cJCAhg9erVZGRkcOjQIeztdT2zWre+sQFnaWmJkZFRtR6T/zLNzrC4//77Ad2OwJQplUNSVCoVXl5efPRR1UoR/xVyEnNQOig5cfZEgw2LciX03XHv4v6xO85aZ5TGSoLmBxksNtTX1pcoRVS9j7+5uZZ7kDv3XLqHQ/cdYnPq5gZ3SK6IF17El8Q3eJ4+ffrQ1qYt95+6H1UXlcE8K+Vr0bdDXy4mXkT7jW4XO3b6jd3eunA59TLm/c3xivTCyt0Ku9YNDy3TarQ3QgFcZ9HRoiMvxL9A5JhIrDys0F6su7Ga1yaP0ouluO10o/+G/kiKhhd1qElBs8GGXum9iJoXRYsHWoAEgz++YVyUK5vunu50GdeFyKmR2Fy24VLrS7TIbsGOnB0G2628XQ4GoH/vK4Yx/T37b9q2vWF8haeGs6ZwTbVlVkefHX1bRfR2CvftXq/uWiqO0U7TVrtm5Y8v77lM4SeF5K3OQ6P4f4Vcpebh1Q+TPSmbstAyvl78NSeWniDSPJKoBVFELdB957j1cWPiExNx6+3G/rf3E/lF9TKUr+mt1vrt+TU3vys3NqIXR3Mi8QR0AoVWgVap5UrCFcZ2GYvXa14kH0hmV99dBC4NJHBloD5Uyu5vO6ZYTGH0d6M5/f3pSkZaXZTh2uzC11SRiY0Q+rbuOsJTw4lKjap0X22bvQ1vV2+CXYOJXhxNdGj0Ld/zhlKtnGMicPR15JUBr/Dp4U/BHV3C/YoAnQd+dgydn+7M7E6zde/3be7LhhK9OBrHEEeUB5VolBp9yer6emcFdWfw4MEsXbq00nPlRoCxsTE//fQTHTt2xNPTk08++aTSuPj4eEJCQjhw4ADXrl1Dq9X9PiUmJhIQEMDx48fp0qWLfj5B7Wh2hkX5G+vt7c2hQ4do0cJwCbr/Bl6f9jrv5b5H+8HtDTbn0XNHcYp3QqFSGHxXJ+1SGun+6bzzzju8/vrrdT6+YolALVouFl/ExNSEk60N7242zTPlkNkh4s7E4deubn1CKnpWrpddJ7EkEdvDtlh2szSYZ6XiWii7KSmWijk/+XylEpl1YdjMYfyT8A/3Ku7FepR1g2Qr5/TM00SkRujlkWUZb1NvCk8UsjVgK17DvejLrXNBbu6ibDHEgof/eZi23dqyPWA72hTDeKmqY/Xq1Xwy9RM6rOjA2dCzGL9kjCTpQma2Ttuq2+02URLwVADtStpRvLKYM7PPYCvbopE01VYeqi+3y8HY4ruFLalbqg1jKu9LAdTsDUgNY9bMmu+b2iSYJ+1OIvHvxFsq5OX/r2lMX2oO4wt2DSbybCTbVt/o51GxFOzY1WPRxmkxtjCmx8s96DSrE1/YfYFcptvtnxSpazN9u+twH+R+23j723FzorZeztlhLFu6DI8LHuzqu4tp1tMo+rYIWSvTcZXOs7N8yHLau7anaEVRoyrDNYVzsQadcbEG3Ae5643V6u6rpN1JWIdY3/I9b6ist5Mz/lQ859zPMct1Fte/v44WLZ2+70Tf0L6EpYaRtS6r0WWs6J3VKP/f4FWqyVudR+QkwxowTUV+fj6gC4Uq55VXXuGFF16o0p8qPT0d0IU3lfPMM88QHBys9wiXc+nSpSpj64uFhUUlL8LNREXpNhmysrLIysrCwuJGMZVx48bh6elJeHg4bm5uaLVaAgICKC0tNZh8/0WanWFRTkJCgv7/xcXFleLz6spXX33Fhx9+SFpaGp06deKLL76gZ8+ehhDzjjP60dGEbQgjvXW6Qeb77ZXfuDTuEvYX7Hm+4HkOvnfQoD9kqmIVmMDuw7t5nbobFlC1lvvJUSeZajbVYEZFeXWsoxlHye6XzbYN2/B7Q2dY1LbaUkXPSifLTrgYu1AQWUDsm7FsSN1gMM9KwIoAvK54cWnmJTZEb0BSSbVWZm9W2I9eP0o3q25k7c4iPjyeCykXGqywl4fXlZ/j888/Z+vvW2kzvw2BKwMpmlMErreeo2K5y/sd7ufo9aM8sOgB0n5N46fUnxhzdgxMapCYNTJp0iSWLVuGj5MPcV3iaD+pPYc/PszhTw6DrFO6slZm8fuh30nbkUbCtAQkJJB0Md4zPWYa7PNzu93n2oQxuQ9wv6U34Hbhjrczbi7vvFwrhbwhSvvNxmpF+cMI0xkF/2+sHvnkiN6oqLhJUptE+Zrer9q+j1t8txAzNqZ6OWeHUXStiFmuswhYEUCkpkLY2HcdmTV9Fpf3XCY3JLdRleGawrnKlXYNGi7vqVpmteJ9le2TzejQ0Q0ywhoq51mHszfWsvTGWgasCGDW9FlcirvUYEPxdtzsna3O4L3bqaiEl2NsbIyxsXGtxqpUKlSqqtX7qhvbGFy4cIEXX3yR8PBw1q1bx5QpU9ixYwcKhYLMzEzi4uIIDw/XJ3fv27ev0vEdO3ZkxYoVZGVlVeu1MDY2rjYX+L9OszUstFotb7/9NmFhYVy9epVz587h4+PD/Pnz8fLyYtq0abWaZ926dbz00kuEhYXRq1cvPv30U0aOHElcXBxOToZJKr6TmNqaYnfVjrirceDesLmiF0ez+sfVaB7WsDttN0qV0uA/ZKNHjmbNuTWMeWBMg+YJdg1m6ZWlSEpdMvAzXZ5p0HwVKS8d6v+oP0e8jmAeo9udqUu1pUrGzymwNrHmr45/EeNcP29CdZTLM/v12czVzkVSSSg1ylorszeHlR3NP0r/sv78PfRvTlqfNEgVk5sNE39/f7JfzEaaK+Hl4kW7T9vB0hoO/n/GXBijL3d5MPMg3ineZDyfwR7lHgKXBjLGo2H30q0wNjYmKiqKFWkrOJt6lr/m/sWgjYMwLzJHYawg66csVqStQOGhoNX4Vox0HslvWb/p4+Vjp8fSl74GUVxuR23CmPpOqPnerc09eTvj5lb3W22+O2oz5mZjtZybjaNbhVsZKqH4VrQa1IpZ0i3kdNHqFOFqZOxLX9pr2t+ympIh7qm3J94+nCtyYeSt76sSrb7i0s0Yai1rI2dN73df+hI8v+Z721Ay1sXgFTQeJSUlpKVVbhprZGSEnZ0djz/+OCNHjmTq1KmMGjWKwMBAPvroI1555RXs7OxwcHBg+fLluLq6kpiYyGuvvVZpnokTJ/LOO+9w//338+677+Lq6sqxY8dwc3MjKCgILy8vEhISOH78OK1atcLKykqUugWQmymLFi2SfXx85B9//FE2MzOTL1y4IMuyLK9du1bu3bt3refp2bOn/Mwzz+gfazQa2c3NTX733XdrdXxubq4MyLm5uXW7gEaitLRUnvDKBHns2rGyVqtt0Fz7FuyTn3vjObnzxs7y/f73V3otKjRK3rdgX4PmL+eRNY/IH679sEFzLE1aKnc90lXucrCL3PVIV3l5ynKDyCbLshyWHCbPXz1f/oAP5N77ess/vvWjHBUaJX/Ih/L81fPlsOSwWs8VcjCkkpzLkpcZTM59C/bJUaFR8vKU5XLXI13lroe76teitu9X+bEjvxopd93fVZ7601SDr2dFysrK5IMHD8qbr22W7zl6j7zEfImcfSH7tsdFhUbJI2aM0K3lAd1aTpk+RY4KjWoUOatjWcoyueuRrnK78HZyf+P+8thPxspdj3SVe+zuIVsHWctjl46ttHbla9tYaymomfLP6833R03PNwV3g4x3C81hLcOSw2r8rC9PWV6n343a0Fi6SGlpqZycnCyXlpYadN47wZQpU2R0rT0r/fn5+cmLFi2SXV1d5WvXrunHr1+/XjY2NpaPHz8uy7Isb9++XW7Xrp1sYmIid+zYUd69e7cMyBs3btQfc+nSJXn8+PGytbW1bG5uLnfv3l0+cOCALMuyXFxcLI8fP162tbWVAfnbb7+9k5d/x6ntvSLJsmy4JgMGpHXr1ixbtoyhQ4diZWXFiRMn8PHx4ezZswQFBZGdnX3bOUpLSzE3N+fXX3/VJ4UDTJkyhZycHH777bcqx5SUlFBSUqJ/nJeXh7u7O7m5uVhbGyYOvSGUlpbiPNIZ11mu7BywE1fX28SV3IZvUr9hz449PJv6LD3nNk542EurX6JUU8qXT3xZ52MjF0ayzU8XX20tWdNpfSeMWxqzs9dOxsaN1denbwgVm6UdLDyIzyYffDb7VHFz14ZrWdcYmTASJFCWKTnY82CDZKtJ1hmuM9iQsQGbLTZcGHGhTjIuT1nOsrRlyLKMJEmMuzCOhQ8vNKicN6OW1Tx46kH6/taXTvGdGL1q9G2PGf7FcDKDMpEUEopSBZ9v//yOxixHL47m9fzXyXs0T79WHls9GJUwio+tP8byMcsq615dhSNB41NTJ3Sof/NIQ3M3yHi38F9cy7y8PGxsbAyui6jVajIyMnB0dKw2bEkgKKe290qzDYVKTk6uNiFHq9WiVqtrNce1a9fQaDT6msXlODs7c/bs2WqPeffdd/VNT5ojxsbGtJXbUuZRRmFRYYPnO198HssYSxyHOBpAuuqxl+3ZI+/h7Nmz+Pv71+nYcqNiRPwItrfZTvcL3Wnn2A7TOFNdsiE02N1c0X3tEOtAZptMCmYU1Ktb9NLrS3VGhUaJxkij7/xrCG5WWku1pRxpfYRhh4YR1uP23aLLCXYNZnnacpB05Saf8TdcWFlNqCQVk+wnsXbEWkzeMqHnqz1xaFdzGd6fz/1MXvc8vVGhNdYSO71hfVXqQnlYxTuh7/Cc/BxaSYtKUjFXM5fIFZGM/2m8vkJORWqbuyAwLHci1Kmh3A0y3i2ItRQImi+N05nEALRv355//vmnyvO//vorXbp0abTzzps3j9zcXP1fUlJSo52rvnz73LdIRhJmLRteseBcwTlM9pvQIrDxqm8djD5IqkMqa9eurfOxLQe2ZGzcWEo+K8GhwIGig0WkH0/HepI1Y+PG0nJgS4PIGOwazNi4sWQGZBI/KZ7Ymf/fbKsORkF4ajibMjfRxrQNzz/3POPTxxOWGkZ4avjtD64FFWPNZVmm4K8CYjxiMHvLjBmOM26rzEYu1HVG/uTKJ8jIGMlGaI21bGqxSadIL4y85fENITo6mpd6v0RSfhLKN5W6br01sD1iOx9mf0iZSRmBSwOZNHASgUsDDbqWt6M82Td2eqzeqNDnUIT2Zey5mu+NYNfgRqtaJRAIBAJBc6bZeixCQkKYMmUKycnJaLVaNmzYQFxcHN9//z2bN2+u1RwtWrRAqVRy9erVSs9fvXq1xoYmJiYmzT75xrGtI5YXLLnU9hJuJm71nic9K52EogRiLsbwvuP7BpSwMj28epDsmoyZZd0NoZluM2EijE8dT9HuIpIuJpF78f8rp0w03M5U9OJorEOsb3SLVtetW/T81fPZ4r8Fc7U5AzQDuHrsKjO9ZuJo40hYahiJuxJZPGlxg2SsqKxKksQPS35A/aKak2NPMnH/RPwevnWJXIVSoSuHmRGDj6kPz656lgjvCMJ6hRGYqKsC01j4+/uTn51P7tpctt+3nSFvDyH9eDpOnW8UUIhcEMmZPWdYvnA5WpX2lmVUGzvMqO/CvlU8RPrH00WYk0AgEAgE1dFsPRb33Xcff/zxBzt27MDCwoKQkBDOnDnDH3/8wfDhtesQbGxsTLdu3di5c6f+Oa1Wy86dOwkKunvdpba+tlhftOZc+rkGzfPPhX/QFGrIyMiotnycoXjjpTdQ5avoP6R/vec4Z3OOMzFnyCRT38TPUNzcLRoZZJWsq0ceotvlvx2yQsbrBy8KpAJeGvUSspGMfVt7AlYEELg0EFlh+FSmWbNmMVAxkIKHC4j9Pva248sbSFECft/7ceHPC/Tf3Z/ApYHEzI4hdvrt56gvdnZ27Nq1i6WtlpJhnkHpQ6Xsm3+jtN/fz/9N1OIofp/wO0U5RaQvTWewanClcpczPWYSuDSQy3suN5qc5dTUDXqW66w76jkRCAQCgeBuotl6LAD69+/P9u3bGzTHSy+9xJQpU+jevTs9e/bk008/paCggKlTpxpIyjvPqbhTxCXF8emvn/LkvCfrPY/USqLloZY8NvoxwwlXDQqFAocMB87mnaVP1z51Pr5MU4apvyktPmyBq+Rq8CZ+N9cj16q1rD28VtegqZb1yN+a8BavXnuV8yfP4yv50rJbS33n15mhMwmaYHhDds6cORRpihhxYgRHE48yKn0UFk411wfXylr81H4ciTvC5+9/znzmkxWbxczQmcS6xjZ6XkD37t2hO+xZt4e9PfeieklFyv4UDn5wkPMbz5MUmoS6p5qih4qQ8iQmpVZuVlGxjGpjU9sSpwKBQCAQCG7QrA0L0FVBSk9P13fkLsfDw6NWxz/66KNkZGQQEhJCWloanTt3ZuvWrVUSuu8mbG1tyUzIxKGtAxqNpkpXy9pyWXMZt0Q3Rt0zysASVsW52JmLpRfrdexvn/+GooeCF3mRbp90ozSv1KBN/G6uR55QlMDKlisZnTCaCL+IWtcjLxlVwvgD4zHPNCc5Mpkre69U26TJkJgpzRjVYhQXgi8QtzaOrs91rXHsNNdpbEjbQLukdrjggoSk9/7cqaToZSnLcOnnQuaVTK75XmN10GoAVG+qOHDPAe6zv4+I8xFcuXKl2qoTdyox81Y5EiIMSiAQCASC6mm2oVDx8fH0798fMzMzPD098fb2xtvbGy8vL7y9ves017PPPsvly5cpKSnhwIED9OrVq5GkvjO4u7sz2W0yLu1dUCjq/xbGF8VjdtgMx8DGqwhVTlJ8EusT19c6P6ac6MXRbP9nO96F3hSnFtNqQCuC5gfRN7RvrcOUbsfNu9Mx22OQ02USIhJ0Hoxa7E4Xa4s5eP0gkx6YBBLIGtngIVvVoVar8U315WyPsxxfe/yWY3fl7EJlrOLJ008yjnEojBV678+dQtbIrLq6iuwz2RybdgyAQo9C1j24jjK5DEdjRxQKRa03DgQCgUAgEDQfmq3H4sknn8TIyIjNmzfj6uqKJElNLVKzQalUMq7DOPZY7qFIW4S50rxe85zMPInLMReULevn8agNb6x5AyVKtBla6AunT5/mnnvuASBkTQgaNLfssqrVaNE8pqGzQ2cAHDvqjCBDdqO9eXf6wIEDXLl2BU07Dd+YfYOprelt5zhy/Qh2Rnacf/48yKA0Vho8ZKs6Zs+ezTfffEP/nf055nyMa6eu0aJD9RW+fkr/iR7RPTi/9jx+j/oxbu24St2J74Q3YJb7LNb9vA4GQ3pZOrkdctm1ZBclcgltTrdhWudpjS6DQCAQCASCxqHZeiyOHz/OsmXLGD16NJ07d6ZTp06V/v7reHh7YFJgwuWS+iWyZqmzKDIuYuOFjaRmphpYuhsoURLhF4FrJ1csPSx56qmnAJ1REeEXgZJbGzV9F/blmNkxlryyhHS/dBTKG7ds0PygRmmCdN999zHRbyKKfgrObq++38nNbE3dyqk1p3hhxQs4dnfkxZIXDepVqYk+ffrg4OCAe6I7yU8mc/qH09WOO5l/kricOEpeLMGpmxPj1o4DMLj3pzY8feVp2i5tC0aw5fstFDkVkbIshXVPrOOFF164IzIIBAKBQCAwPM3WsGjfvj3Xrl1rajGaLbnGuXARftn7S72OP5t/FsU1Bb7Gvvj6+hpYuhuETgxlbNxYznQ/g9ZUS15Rnt6oGBs3ltCJobc8Pkedg9ZJS+6xXNr3bd9oclakZ8+eLHlxCS1KWvDX2b9uO16WZXal7CJ7TzZFUhEjvh4B3Bml/YknniA9PZ0vH/+S5FbJRO+MrtaL82P6jygjlLxb8C4XRl2o9Fq5nIbw/tyO6MXRXP70Ms95PIeRpHOYGklGLJYXM4c5PGj7YKPLIBAIBAKBIRk0aFCz2BjbvXs3kiSRk5PTZDI0W8Pi/fffZ+7cuezevZvMzEzy8vIq/f3XOXLhCCmXU9h2dFu9jr+kvkTb3LZ8O+dbLC0tDSxdZcqNCxTwSMojtTYqAE4VnsLd1J150jz6Pmh470RNSJLEINNBHLQ8iKy9danYi8UXKbMsY5HNIh73fByX7jd6pDS20q5SqVAoFNgZ2THQdiBxQ+JI2lW5qWNySTJ7sveQvzIfgI5dOlaZp7G8PzdTsfFcmVyGSlJRJpchL5KZGDoRlaJqwrZAIBAIBBV58sknkSSpyt/58+cb9byGVtyzsrJ44YUX8PT0xNjYGDc3N5566ikSExMNMn9T0GwNi2HDhrF//36GDh2Kk5MTdnZ22NnZYWtri52dXVOL1+R06doF22RbrH2s63V8fFE8Vmes9DkLjU3oxFDQ6vpDKEoVtTIqAE4WnMRf4499sT2terVqZClvoFaraU1rLve4zKXDl2459p/cf+ht3xu3Ejfuf+b+KvlAd0pp97vmR/zYeE7+cLLS8z9d+QnPaE/CXwgnPT2d0aNHN7osNdF3oc6oKO8Rsb/Lfn1viNjpsXdknQQCgUBgGJalLKuxr094ajjLUpY12rlHjRpFampqpb+6FvepC2q12qDzZWVl0bt3b3bs2EFYWBjnz59n7dq1nD9/nh49enDxYs2VNEtLSw0qiyHnbraGxa5du9i1axd///13pb/y5/7rdO/enUdtH8XU7faJxdURlx+H6X5TWgRWn+hraELWhIBCFzakNdbqHteCmIIYXC644NrbFaVx4yWZ38yvv/7KQ0EPoc5S8+fRP285dl/ePrprunPlnyu0f/zOhGvdTFhYGNP7TKewtJDdybspzdd9MVzXXGdjxkb6Hu1L95e64+joiLl5/ZL9DYFoPCcQCAT/HhSSotrv7vLveoXUeGqmiYkJLi4ulf7Ky+/v2bOHnj17YmJigqurK6+99hplZWX6Y728vPj0008rzde5c2cWLlyofyxJEkuXLuXee+/FwsKC4OBgBg8eDOiavkqSxJNPPqkfr9VqmTt3Lvb29ri4uFSaqzreeOMNUlJS2LFjB6NHj8bDw4MBAwawbds2VCoVzzzzjH7soEGDePbZZ3nhhRdo0aIFI0eOBGDLli20bdsWMzMzBg8ezKVLl6qcZ9++ffoqq+7u7jz33HMUFBRUWovFixczefJkrK2tmTFjxi3lvh3N1rAYOHDgLf8E4G3pTapJap2bdWlkDXHX41h9ZjWHEw43knQ3KM+psP3dFrKgTWwbIvwibmtcaGQNR7KPsDN8J6X+jWedV0e/fv2ws7PDPMacffK+GsflluVy/PpxNr24CYLAwqXmBnWNyT333IOZkRmWkZZcevQS8RviAQjbFoZ8VqaVaSuiQqOaRLaK3KrxXG1L+woEAoGgeVDdxlB1G0h3kuTkZMaMGUOPHj04ceIES5cu5ZtvvuGtt96q81wLFy7kgQceICYmhkWLFrF+/XoA4uLiSE1N5bPPPtOP/e6777CwsODAgQN88MEHhIaG1tjkWavVsnbtWh577DFcXFwqvWZmZsbTTz/Ntm3byMrKqjS/sbExkZGRhIWFkZSUxIMPPsi4ceM4fvw406dP57XXXqs014ULFxg1ahTjx4/n5MmTrFu3jn379vHss89WGrdkyRI6derEsWPHmD9/fp3XqSLNttzsyZMnq31ekiRMTU3x8PDAxMTkDkvVvGjt0poyZRlXCq7gYVn7uv+JxYloZS0ZSRm4urk2ooRUTtReGMqMT2dg0s6EtnFtifCLgDXUGBaVUJyAukxNxPYIHlr8UKPKeTPu7u5cu3aNE6knmHVhFpkpmTi4OVQZF50XjZwss/7P9XR/pvsdlbEirVq14ukVT5NyPIX40fEcfOcgLn1d+IVfiP8hnpd9XmZC2wm1avTXmIjGcwKBQND8kWWZAm3B7QcCE50mUiqXEpYaxjdp36CW1Tzl8hQTnSaSr8mv9TktFBZ1ai2wefPmSjmio0eP5pdffuHrr7/G3d2dL7/8EkmS8Pf3JyUlhVdffZWQkJA69f+aNGkSU6dO1T9OSEgAwMnJCVtb20pjO3bsyIIFCwBo06YNX375JTt37mT48OFV5s3IyCAnJ4d27dpVe9527dohyzLnz5+nZ8+e+jk/+OAD/ZjXX38dX19fPvroIwD8/PyIiYnh/fff14959913eeyxx/SJ5W3atOHzzz9n4MCBLF26FFNTXdTLkCFD+N///lfrdbkVzdaw6Ny58y1vMJVKxaOPPsqyZcv0C/NfY8XOFRQ7F/PZ8c/4aPpHtT7ufPF5WhW0YuKIiTXe1IZCg6ZSovYoy1F8aP0hfw//G9bpXq+JkwUncS10xVxrzpBHhjSqnNWhUCjo7NYZi1MWRERHMHn85Cpj9uXuo3NRZ0xMTHjs5cfuuIwV8Rvmx64Ou7C4YsE+m32cf+88puNNcfR1xGqWFT6uPk0qn0AgEAjuDgq0BQw8UffoELWsy0NYmbaSlWkr63Tsnk57sFTWvpjM4MGDWbp0qf6xhYUuYuDMmTMEBQVV0iH79u1Lfn4+V65cqVMD1u7da79h2LFj5cIorq6upKen3/IYWb51cZiKdOvWrdLjM2fOVGn4HBRUuR/ViRMnOHnyJD/99FOlc2q1WhISEvQ6YF2u83Y0W8Ni48aNvPrqq7zyyit6a+3gwYN89NFHLFiwgLKyMl577TXefPNNlixZ0sTSNg22rrYUXyrmvKZuVRDOF52nRWILho4YipFR494CNze/GzxkMF8c/YLtKdtvm8AdUxBDD00P2vZui4dv03RiliSJbjnd2FW0i8lUNiw0soaovCgePfYoj818DHcv9yaRsZzyHf8wwjg++Tg2yTZYn7OmYFZBk7mkBQKBQHD3YaGwYE+nPbUe/93V71iZthKVpNJ7LKY4T6nzOes03sKC1q1b1+mYchQKRRWlvrrk7HJjpTaoVJWrGkqShFZbfXivo6Mjtra2nDlzptrXz5w5gyRJla6vLrKUk5+fz8yZM3nuueeqvFbRwKrP3DXRbA2Lt99+m88++0yfoAIQGBhIq1atmD9/PgcPHsTCwoL//e9//1nDYs7Lc4j/PJ7ACYF1Oi6+KB6L4xY43n9nKkKVU1paSp+xfcjtncsvDr9wb6t7bzn+ZP5J+h/sT6sBd64aVEXS09O5//77uai9iNcHXhQVF2FmaqZ/PaYgBmQo+KqAgH8CmkTGmwl2DeantT9xfeB1cm1zyZVyhVEhEAgEgjohSVKtvQfhqeGsTFup/60pz7Ewloyb5LenXbt2rF+/HlmW9V6LyMhIrKysaNVKp084OjqSmnqjOXBeXp4+zOlWGBsbA6DR1BxtURsUCgWPPPIIP/30E6GhoZXyLIqKivj6668ZOXIk9vb2Nc7Rrl07fv/990rP7d+/v9Ljrl27cvr06XobYPWh2SZvx8TE4OnpWeV5T09PYmJiAF24VMUb479Gy5Yt8Snx4XJh3bpvH7hygLgDcWhd7myirLGxMQUFBVz78xpnLc5yTV1zA8Tcslwul1zm+q/Xadm/5R2U8gYtWrTg9OnTXD1wFWWBkj8PVq4O9U/OP1ifsUbpqcSps1OTyFgdU+OnImtkkEBRqiBgRfMwegQCgUDw76I5Vvp7+umnSUpKYs6cOZw9e5bffvuNBQsW8NJLL+nzK4YMGcIPP/zAP//8Q0xMDFOmTNFXlLoVnp6eSJLE5s2bycjIID+/9jkkN/POO+/g4uLC8OHD+fPPP0lKSmLv3r2MHDkStVrNV199dcvjZ82aRXx8PK+88gpxcXGsXr2aVatWVRrz6quvEhUVxbPPPsvx48eJj4/nt99+q5K8bUiarWHh7+/Pe++9V6merlqt5r333sPf3x/QZf47Ozs3lYjNAncjd65wpdbjMwsyKbYqZvf53UgWtU+SMhSbNm3i4HcHcTzhyJ/pNZdxjS2IRcqQCDkZwtbzW++ghDdQKBT8+uuvnD9/nm6p3dh2tXIzwu1Xt7N31V7eOP9GpTJ2TUn04mh2qXchKSWUshKtsZZlicsarfO3QCAQCP67NMdKfy1btmTLli0cPHiQTp06MWvWLKZNm8abb76pHzNv3jwGDhzIPffcw9ixY7n//vvx9fWt1dyLFi3itddew9nZuUEKuoODA/v372fw4MHMnDkTX19fHnnkEXx9fTl06BA+PrfOi/Tw8GD9+vVs2rSJTp06ERYWxjvvvFNpTMeOHdmzZw/nzp2jf//+dOnShZCQENzc3Oot9+2Q5LpkjtxBoqKiuPfee1EoFPqEmJiYGDQaDZs3b6Z379788MMPpKWl8corrzSaHHl5edjY2JCbm4u1df2a0TUmn835jO+nfM9Tx5/imenP3Hb8/vT9vHD2BUwnmLIreVedKjAYClmW+d+0/3F55mXW91pf7ZilKUtZuX4lR587yp5/9tCvX787LGVlIiIieNv6bfb03YNKoSK1NJV7Y+4lfUg6Xfp3YdPmTU0qH+iMimWJy4iZHVPFJR24NJCZHjMJmh90+4kEAoFA0KxoLF1ErVaTkZGBo6NjlRwBgaAitb1Xmq3Hok+fPiQkJBAaGkrHjh3p2LEjoaGhJCQk0Lt3bwCeeOKJRjUq7gayC7PRFGpYvWN1rcanKFLwzPVk4aSFTWJUgC52c5jDMJJJ5nxR9YnnMQUx3CvdS8TTEfr3uykZ2n8oynwlu+J3ARCZG4l3pjefD/2c9b9Vbxzdabb4bqlkVMCNXaOY2TFs8d3SxBIKBAKBQCD4N9Nsk7cBrKysmDVrVlOL0SxZlrIMhaRg9D2jiUiKYNSTo/SvhaeGo5W11fYMiC+Kx+acDY4d72zidkV27tzJ14e/xtLJkgi3CJ53f77S6xpZQ2xBLN5bvfGZ6tPolatux8aNG/njjz8w9TElgghG+I3gn5x/cIhwIGBqQK3iMu8ErQa1YpZUvUsauOM5NQKBQCAQCP5bNGvDAuD06dMkJiZWyrUAuPfeW1cU+rejkBSEpYYxvdN03Fe749hHZyhUTKSqjqPpR2lxoAUt5rW4k+JWYteuXUTsjiBQG0jEkAiebfUsSumGcn6x+CJaWYu8TablyqZJ3K7ImjVr2Ge3Dy9LLw5bHaZAU8DB3IOMjRqL1xKvWxpydxLRfE4gEAgEAkFT0mwNi4sXL+rbqEuSpK83XB6+09BSX3c7+p4FqWG4uroSnxVPuGnV6gwVycrK4uz1s1yIuUCo2617SDQmjz/+OMXFxbifd2dDyQaOXD9CT+ue+tdjCmIwSjBinek6up7syrBhw5pMVoBVq1bx2BePkTggEaMCI75K/Ap1hpr5h+eTtjONaKdoxpwdA5OaVEyBQCAQCASCJqXZ5lg8//zzeHt7k56ejrm5OadOnWLv3r10796d3bt3N7V4TU7kwkgCVgQwy3UWqV1S2c1uvVERsCKAyIWRVY45fvk4SgslFlcscHB2aAKpdfj7+7NkyRLGTh2L905vIrIiKr1+OOswF3dd5Gj+0WaRTGZubs7c0rkELg2kzKKMdVnrUO1R4TLdhWinaAKXBjLmwpimFlMgEAgEAoGgSWm2hkV0dDShoaG0aNEChUKBQqGgX79+vPvuu9V2EPyvoVAqiAzRGRcKjQIkkMtk/ML8iAyJRKGs+tYa+xjjUuTCp8M/vfMCV4PncE/c17uzM2snRdoi/fNn1WcZnzueFx55gYEDBzahhDcImh/ETI+Z+GzyAQnUD6pxm+1GwNIAUW1JIBAIBHc1zbRAqKAZUdt7pNkaFhqNBisrK0DXqCwlJQXQNSeJi4trStGaBUHzg+gb2pdlicvQKrXIZTKSkcRHZR/RN7RvtYpufFE8La60wLubdxNIXJVzCec4W3QWy1xLdufsBm40xmuxpQWLlixqWgFvImh+EFMSpyBpJGQjGUWpglkes4RRIRAIBIK7kvLiIzfnsQoEN1N+j9yuYE2zzbEICAjgxIkTeHt706tXLz744AOMjY1Zvnz5bZuG/FeInR5LTGoMgUsDabeiHf989g9Xxl8h0jGSIKo3LCxjLXEMarqKUBWZMWMGUeeiGPnbSLa4b2G0/WgOXTuEi8YFRytHrN2bX9+Q5MXJyBk6o0JrrCV2emy1ay0QCAQCQXNHoVBgbm5OXl4eAMbGxk1Wil7QPJFlmdLSUvLy8jA3N9d3L6+JZmtYvPnmmxQUFACwaNEixo0bR//+/XFwcGDt2rVNLF3TU7H60/Xvr6NFy5CXhxATE8OajDWYKEyY03KOfnxSUhJbY7ZiEm2CQ3DT5VdUZMqUKdha2eL0sxMHJh9gX8w+pn8zHR9/H1r2a/pqUDcTnhrO8ozlBC4NpNP3nTgx+QRhs8MAUXVJIBAIBHcnNjY2AHrjQiCoDnNzc/29ciuarWExcuRI/f/btGnD2bNnycrKws7OTljTgFbW3kjULo1EUkpo1Vqe+PYJlj6xlC1ZWwh2DcZUYQpA1MEocIfk88nYeN3+xrgTzJgxA/kemdPfnqZ1bmu+SvgKlZ+K6weu4z7QvdmUcQWqdrAuCdJ1ul66TBgXAoFAILhrkSQJW1tbrK2t//MVNwXVo1Qqb+upKKfZGRZPPfVUrcatXLmykSVp3sx0m0n04mgiQyLpG9qX3m/2ZoDdABa8v4CPcj/i4AsHeTPhTd73eR+lpMSrtxfGScY8YPlAszLMFJKCfaP30Sa2DfSGFoUt6PplV3b/bzffpX5XYz+OO83lPZcJ3BlYKVE7aH4QLIZlS5dxeehlmNDEQgoEAoFAUE/KC+UIBA2h2RkWq1atwtPTky5duogqBbegolFRruja9rGl8M9CNodt5nnP53l39Ls8FfcUq/xWkWmaScu8ltwz6B7g1t257yTBrsHkpeexOmA1ymIlKklFycgSviv9rsZ+HE3B6LOjUXgoqiRqlxsX2rOiq7VAIBAIBIL/NpLczLT3Z555hjVr1uDp6cnUqVN5/PHHsbe3bzJ58vLysLGxITc3F2vr5pNMHLlQV1K2oqJ78OBB0mPTOT3zNIFPBHJ60WlWZ6wmyCqINmZtiPkjhmfkZzj8wOFbNtK7k5SUlGBqaorLdBfcZrshyRKyJDcL2QQCgUAgaA40V11EILiZZmdYgE7Z3LBhAytXriQqKoqxY8cybdo0RowYccfDeO7GD/PRL45y8P2DTD42mU8LP2V95npUZSr8lvnRMbgjq41XNxvFPXJhJPPWzeNowlH89/ojG8kYaY040P0A0Yuj0Wq09F3Yt6nFFAgEAoGgybgbdRHBf5NmGUxnYmLCxIkT2b59O6dPn6ZDhw48/fTTeHl5kZ+f39TiNXu6PNsFtyA3tjyxhXnu87CNs0VtpCZmRkyzMipA1+hv4NmBDHljiL43RJmijJA1ITU2+hMIBAKBQCAQND+avdamUCiQJAlZlkW1gloQExPDmDFjONv5LKkHUvllxC983vFzZLWMpJJQSSqCXYN1ORoLI5taXILmByGtlkgem0yXb7swefRkxsaNJcIvgrzVeaL5nEAgEAgEAsFdQrM0LEpKSlizZg3Dhw+nbdu2xMTE8OWXX5KYmIilpWVTi9es2bJlC1u3bmVv9F78J/iTuDOR7/Z+h6SSUJYpUcvqZuUNCE8NJ8IvgrFxY/H/0p+SvBKsJ1nrjYvw1PCmFlEgEAgEAoFAUAuaXVWop59+mrVr1+Lu7s5TTz3FmjVraNGiRVOLddcwY8YMTp06Rbdu3Rj+/HC2+G5hb6+99PylJ5OkSWwP3K5T5FePJWhi03sDyvtxBHcN5uMnP0ZbqkVprCR0Yijuqe5oZVFtSSAQCAQCgeBuoNklbysUCjw8POjSpcstE7U3bNhwR+S5mxOmypu69VrfC593fFAYKdCWaclbnUeEX0SzyrUoL5+rNFaiKdVUKqMrEAgEAsF/mbtZFxH8t2h2HovJkyc3qwZudzPl3oDJr07mi/e+QFvWPL0BN/fkKH8MCONCIBAIBAKB4C6h2RkWq1atamoR/jWUN7+LXhwNWvTegOjF0QTPb16eiooeivJ/hXEhEAgEAoFAcPfQ7AwLgWFp7t4ArUZbbdhT+WOtpnl4VQQCgUAgEAgEt0YYFv9i7gZvwK2a3zW1bAKBQCAQCASC2iMMi9tQntuel5fXxJLUneuF1+n8emc6PN+hkvwdnu9AQXEB1wuv35XXJRAIBALBf4ny3+pmVm9HIKhCs6sK1dy4cuUK7u7uTS2GQCAQCASC/zhJSUm0atWqqcUQCGpEGBa3QavVkpKSgpWVVaNVq8rLy8Pd3Z2kpCRRRq6BiLU0HGItDYNYR8Mh1tJwiLU0HHdiLWVZ5vr167i5uaFQNH1zW4GgJkQo1G1QKBR3bHfA2tpafMEbCLGWhkOspWEQ62g4xFoaDrGWhqOx19LGxqbR5hYIDIUwewUCgUAgEAgEAkGDaXSPRUFBAe+99x47d+4kPT0drbZy+dCLFy82tggCgUAgEAgEAoGgkWl0w2L69Ons2bOHJ554AldXV9FVuxpMTExYsGABJiYmTS3KXY9YS8Mh1tIwiHU0HGItDYdYS8Mh1lIguEGjJ2/b2toSERFB37419ysQCAQCgUAgEAgEdzeNnmNhZ2eHvb19Y59GIBAIBAKBQCAQNCGNblgsXryYkJAQCgsLG/tUAoFAIBAIBAKBoIlo9FCoLl26cOHCBWRZxsvLC5VKVen1o0ePNubpBQKBQCAQCAQCwR2g0ZO377///sY+hUAgEAgEAoFAIGhiROdtgUAgEAgEAoFA0GDuWOftI0eOcObMGQA6dOhAly5d7tSpBQKBQCAQCAQCQSPT6IZFeno6EyZMYPfu3dja2gKQk5PD4MGDWbt2LY6Ojo0tgkAgEAgEAoFAIGhkGr0q1Jw5c7h+/TqnTp0iKyuLrKwsYmNjycvL47nnnmvs0wsEAoFAIBAIBII7QKPnWNjY2LBjxw569OhR6fmDBw8yYsQIcnJyGvP0AoFAIBAIBAKB4A7Q6B4LrVZbpcQsgEqlQqvVNvbpBQKBQCAQCAQCwR2g0Q2LIUOG8Pzzz5OSkqJ/Ljk5mRdffJGhQ4c29ukFAoFAIBAIBALBHaDRQ6GSkpK49957OXXqFO7u7vrnAgIC+P3332nVqlVjnl4gEAgEAoFAIBDcAe5IHwtZltmxYwdnz54FoF27dgwbNqyxTysQCAQCgUAgEAjuEKJB3m3QarWkpKRgZWWFJElNLY5AIBAIBIL/GLIsc/36ddzc3FAoGj2KXSCoN43Sx+Lzzz9nxowZmJqa8vnnn99ybHMvOZuSkqIP4RIIBAKBQCBoKpKSkkQIuaBZ0ygeC29vbw4fPoyDgwPe3t41n1ySuHjxoqFPb1Byc3OxtbUlKSkJa2vrphZHIKiR/e/uR6FQ0PPVnlVeO/j+QbRaLb3n9W4CyW6wMnUlCknBky5PVnltVdoqtLKWp1yfuvOCCQQCQTMmLy8Pd3d3cnJysLGxaWpxBIIaaRSPRUJCQrX/vxspD3+ytrYWhoWgWWNlbkVkSCQWphYEzQ/SPx+9OJrj7xynb2jfJr+HLQosCEsNw6zAjGDXYP3z4anhfJf/HbNcZzW5jAKBQNBcESHZguZOowfqhYaGUlhYWOX5oqIiQkNDG/v0AsF/hqD5QfQN7UtkSCTRi6MBnVERGRJJ39C+lYyNpiLYNZhZrrMISw0jPDUc0BkVYalhzHKdVcnYEAgEAoFAcHfR6MnbSqWS1NRUnJycKj2fmZmJk5MTGo2mTvN99dVXfPjhh6SlpdGpUye++OILevasGvoBEB4ezvfff09sbCwA3bp145133qlxfHXk5eVhY2NDbm6uQXdS31jzBkqUhE6salyFrAlBg4a3J75tsPMJ/juUGxMKIwXaMm2zMSoqUm5MKFCgRSuMCoFAILgFjaWLCASGptE9FrIsV+u6O3HiBPb29nWaa926dbz00kssWLCAo0eP0qlTJ0aOHEl6enq143fv3s3EiRPZtWsX0dHRuLu7M2LECJKTk+t1LYZEiZIIvwhC1oRUej5kTQgRfhEoUTaRZP89lqUs0++e30x4ajjLUpbdYYnqR/l1BM0PAgm0ZVqUxkqC5gc1u+sIdg3GCCO0aFFJKmFUCAQCgUDwL6DRDAs7Ozvs7e2RJIm2bdtib2+v/7OxsWH48OE88sgjdZrz448/Jjg4mKlTp9K+fXvCwsIwNzdn5cqV1Y7/6aefePrpp+ncuTP+/v6sWLECrVbLzp07DXGJDSJ0Yihj48ZWMi7KjYqxcWOr9WQIGgeFpKgUmlOOflddujtK+5VfR8iaEJABCTSlGkLWhDS76wg5EEIZZQCoZXWNhp1AIBAIBIK7h0ZJ3gb49NNPkWWZp556ikWLFlWqYmBsbIyXlxdBQbUPzygtLeXIkSPMmzdP/5xCoWDYsGFER0fXao7CwkLUavUtPSUlJSWUlJToH+fl5dVaxroSOjEU1kCEXwR/7v8TrZ9WGBVNQPlueVhqmP7x3Rj3H+wazNHfjxLRI4KA6QEMih5EwhsJemM1uGvzuI5FhxcRoYpAfVGNykfFWPuxldZeIDA0kQsjUSgV1YYERi+ORqvR0ndh3yaQTCAQCP5dNJphMWXKFEBXerZPnz6oVKoGzXft2jU0Gg3Ozs6Vnnd2dtZ39L4dr776Km5ubrfs+v3uu++yaNGiBslaF54d+iwRiRFojbUoShXCqGgiKhoX4SnhaCTNXWFUJCQksHTpUjp37oz3BW/+CfmHzOmZMBtOTzuN1lhnrFpPsib6fHST51qEp4bzu+J3UpamYDfcDlNM6WLZBXcTd2FcCBoNhVJBZEgkQJWKaeXFDQQCgUDQcBo9NmLgwIF6o6K4uJi8vLxKf3eK9957j7Vr17Jx40ZMTU1rHDdv3jxyc3P1f0lJSY0q1wd/fgAKkDUyWmNtlZwLwZ0j2DUYNKCRNBhhdFcouEeOHOHDDz/kiy++QFOmoV2vduT/kA9a0Brr8hdCJ4bSN7QvWo22qcVFK+sStU9/fBrL1pZ0sexCemm6vlqUVm56GQX/Pu6GimkCgUDwb6DRPBblFBYWMnfuXH7++WcyMzOrvF7bqlAtWrRAqVRy9erVSs9fvXoVFxeXWx67ZMkS3nvvPXbs2EHHjh1vOdbExAQTE5NaydRQQtaEsCtwF6oTKqyKrehm1Y2I9hGwBuG5aAKWpyynPGe+jDLCU8ObvXHh5eXFnDlz8PDwoN/L/ei3qB8zP5rJYcVh0IJaoctfCJ7fPK5jpttMAM4WnsVMaUYny05cVes+0819rQVVuZtCjMpljAyJZP9b+9GUaoRRIRAIBAam0T0Wr7zyCn///TdLly7FxMSEFStWsGjRItzc3Pj+++9rPY+xsTHdunWrlHhdnoh9q1yNDz74gMWLF7N161a6d+/eoGsxJBUTtWc7zkblouK9x9+rktAtuDOEp4azLG0ZrY1bo5AVdDDrQFhqGPP3z+eDDz6gkasy15vu3bvz+eef8/LLLwO66zg8+DAKWYHbWTcmFE6oNjG9KTl9+jSxObG0MWuDndaOpPzG9Qr+l4lceGOH/maiF0cTuTCyQfOXhxjdfA59yWNl8ykYADrjQlJIaEo1+oppAoFAIDAcjf6t/8cff/D1118zfvx4jIyM6N+/P2+++SbvvPMOP/30U53meumllwgPD+e7777jzJkzzJ49m4KCAqZOnQrA5MmTKyV3v//++8yfP5+VK1fi5eVFWloaaWlp5OfnG/Qa64MGjT5Ru61rWzIdM5FlWV8tSkPd+nsI6k/FRG1zlTn3tbiPZHUyk+0ms8V4C5/Ef8Knn37a1GLelvLrMCowwuaIDZesLiGtlqo0pGtKioqKCAgI4MWPXyTvVB7PTX6O06mnm1qsfy2NrfjfbSFG0YujkbWy3rioyegSCAQCQf1o9FCorKwsfHx8ALC2tiYrKwuAfv36MXv27DrN9eijj5KRkUFISAhpaWl07tyZrVu36hO6ExMTUShu/FAuXbqU0tJSHnrooUrzLFiwgIULFzbgqhpOxeZ3HXw7UHa+jD93/cmYIWNEGNQdpjzuP9g1mLUZa3mp1UtE5UXR1a4rp2NOc8jtEMHBzTNMJzU1FRcXFyRJQitr6XW9F2eKz2B5wpJrk66RdDmJl1113ozmkL/wx6t/YGVqhVV7K7o6duWPpD8oNitGlmX2v7W/WYXO/BuoGP5T/tjQin/Fc0SFRiGXyc3WqIgMicTIzAi3IDfcB7lXm9AtEAgEgvrT6IaFj48PCQkJeHh44O/vz88//0zPnj35448/sLW1rfN8zz77LM8++2y1r+3evbvS40uXLtVd4CbgasZVStJKmPzuZK4OvIpSKZrj3UnK4/4/C/+MnG45lCaWMtp+NH9m/8mye5ehGatplu9JXl4ebm5uWFhYcPXqVWa6zeThkw/T92JfHn7+YZ7Kf4q+HjolvbnkL7g7uvNm0Zv81v43xgaMpc/aPrwovciu93ZxNOSoqM7TCFRU/KPfikZbavhu7OUGi1atRWFcfc5FTSxLWYZCUlR7j4anhqOVtfrPaH0pNyp6vd6LA+8cIO9yXrVGl0AgEAgaRqOHQk2dOpUTJ04A8Nprr/HVV19hamrKiy++yCuvvNLYp78r8PHxQX1ZjV0buyrJ6YI7x/fbvkedrSbxbCJj7MewO2c3BZqCZmlUAFy+fBmlUomFhQUWFhbEF8WTaJfIaJPRdGzTERONCdnF2U0tZiWC5gfR4YMOFCuLyfosi/5d+2NcZsyu8F3Ncpf730LX57oCoC3VGjS3ICIigldeeYXIRZFo1Vr9OeoSYnRl95VbNqi8svtKg+XUanTGVJsH24AE15OuI2tlfShXc6iYJhAIBP8GGt1j8eKLL+r/P2zYMM6ePcuRI0do3br1bSs0/VdQKpUMNhuM+Rhz3Nzcmlqc/xzllW36PtiXo0VH6dKlC15mXniZehH+XThtz7Ylo0MGeXl5zJkzp6nF1RMYGEhhYaHeGP0l4xe8dnrRelRrJEnCXmtPekl6E0tZFcsZljgfd+bQm4c4NP8QJr+a4PWyFz1m9Ghq0ZoUWZY5efIkGo2Grl27GnTuPXP3ACAZ3cgtMIRxkZiYyIbvN1CSXkL3bt1JP5JOu8fb1ckLMObCGJJ2JRE2u2qDysClgYzxGFMv2WRZRpIkAH143dmfz+LY0ZGMExkUpBVg6WYpjFmBQCAwIHe8ZIenpycPPvigMCpuwtvUm2QpuanF+E9SnuBqrbBmSMAQvLy8AGh3tB3bi7eTU5TDk08+yRtvvNHsqkMZGxvj7u5OviafiGsRtFnXhhYBLcjMzESboyWqNKqpRazE7Nmz+XDNh/jY+aAwUoAMZellLDm2hG+++cYg51iWsqzGRPXw1HCWpSy7I3PUlc8++4zOnTuzYMECg84bvTiak8tPAtAnpE+VZOuGEPZeGBfTL+L8iDNoQFJIeAz2qNM5guYHMdNjJgFLAwhLDaPbwW56o2Kmx8x6K/7R0dE4ODhw33336Z/LvZCLQ3sHLFwtyL2UW695BQKBQFAzjeKx+Pzzz2s99rnnnmsMEe46Wtu1Zpu0ranF+E9Srrh8ePFDAuVA8Pr/6jFfyKRvSWfglIEMPTOUdu3aUVxcjJmZWdMKXA0RmRG0LGqJn7EfSmNdv5czh89QZl2GukiNykzV1CIiyzJr1qzB3tse7/3eaMv+P/zkKuRIOfz666/MnNmwWHoAhaSotot3xepfd2KOujJkyBDMzc2xsLCotNveEMpzC1oNaMWVvVfIu5zHyBUjgdrlFlSX/1BcXMyePXtI7JhIx5c78uDeB5n41kQ2tttIy74tyU/J189Z2xCjoPlBxD8TT4wmBslIQlGqaJBRAbqu9FlZWZUaseZcyMHW15bchFzyLufRsk/Les8vEAgEgqo0imHxySef1GqcJEnCsPh/HC0cyTXLZdCwQezesbupxfnP4R3sjeaUhuz3s1ny+BLQwvDQ4aTapLIrfxc7duxoahGr8PrrrwMQHBzML0W/0Pt4b1y66ZpFtmzZEndLd4qcishLysOhrUNTigro+s589dVXfOnwJSwGay9rlMZKfEt9MXY2Zp7zvNtPUgvKleCKhkFFg6A2iew3z2G7z5Yrna/w4/Ufaz3H7aiotGs0Gvz9/cnMzMTU1LTBScuyLPPss89im2zL8PnDyT2di11bO/Iu65Ts2ir+1RlYL774IpvKNuHm6Mash2YRPCeYlOgUTO1Nce3tSkFqQaVz1JaSN0uQUiV91/jY6bEEUX/D4oEHHuCPP/7g7bff5pFHHuHnn38m50IOLfu1JDs+W78WAoFAIDAcjWJYJCQkNMa0/2o6duiINk7LgYsHSEtLu203cYFhmfvqXC49dYnSpFI8tB4AGJkZMcp2FOuureNx58ebWMKqLF++nMzMTAIfDiRLkYXrJlecH9WVXraxsWHWxFlsWL+BgpSCZmFYKJVKWl5uSalfKaPHjebc2+cYtGQQx6OO4zbRjaOjj2JmbGaQmPeKhsGy1GXIyHU2CCrOofXQoriuwCfGh8kdJjdYPqistHdP606PHj3o3r070zZOa7BX5OzZs3z99deYmJjw5po3WdtjLV4jvLi07ZJ+TG3W+WYDa7rLdDJ6ZeDW0Y2h+UP1r6cdSsOlhwuWbpYk7al7w8Nyw09RrMAsywyf33wq5VzUB3Nzc7p06cL+/fs5cOAA2dnZeo+Ftae1MCwEAoGgEbhjORalpaXExcVRVlZ2p055V2HrYItZshn/e+N/WFtbN7U4/znS8tMwsjLC4bIDklIXgnLgvQNkPpJJQlECv370K1GhUZXCKsoxRAfjuqLVannzzTd5+umnOWhxkPsc7iPzYCbO3Zz1YxxVjhS7FJN/xXANIRvayfmKxRUs1ZZ0G9sNZGg/uT0mV0woci4yeHWeYNdglCiRkTGSjOqloE53mQ4yKFQKtKVafn3yV32VO0PIV968cFXmKjQaDdoxWsJSw5jWYlqDvCIWFhbMmzeP4OBgigqLyDmfg9dIL/IS8+qcJ1RRzqDjQSR0TOAh1UN8MOADioqKOHr0KDsiduDSwwULNwu9x6K2lBsVfj/4oTXVUuhUyATVBAKXBja4sWPLli0JDQ1l06ZNqCQV169cx9bXFhsvG2FYCAQCQSPQ6IZFYWEh06ZNw9zcnA4dOpCYmAjAnDlzeO+99xr79HcV3vneWDhaYG5u3tSi/OeYPHgyJhkmdLPoxn0b7qNvaF+KM4sxLTXFdacrPxf9zNAFQ+kX0K/ScYbqYFxXFAoFL7zwAiGfhBBVEMWw/GFoSjS06NBCP8ZR5UiBXQF5SYZToBrSyTk2Npbswdm0s2/H1UNXce7mjMpMhZerF1dLr7JLuYsdkuFCzsJTw/Ud7MvksnopqG8nvg0SSEgojBWM+HwEJiYmBpOxXGnfZ7+PHkd6oLlHg9XfVrzY5kXOnTtX73k9PDy4//77WbVqFb169ELWyrgPdEdToqEwvbBecipRopbVqCQV8wJ1YWsnTpygW7duvP/3+7h0d8HS1ZL8lLoZspf3XEa1VEV2fjZGV4yQjWTW565npsdMApcGcnnP5TrLC7qQ3J9++okXXniBe++9l5LUEoxMjbBwtcDa01okbwsEAkEj0Oja0Lx58zhx4gS7d+/G1NRU//ywYcNYt25dY5/+rqKltiWXS+v3IyqoP9GLo4n6K4pWUiu02VocOznq69unRKUwoGQAKd1TKJaKuZh0kajQKP1xhuxgXB/WX1tPkFUQimMKHDs6ojS+0XNj6btLyTXP5fs/vzfY+crXpaJxUdt1mDdvHh+u+ZDi88WkHkjFtZcrAH7t/ShSFTH/rfl8+OGHBpGzfBe8jVkbPE08cTByqPPud3hqOBszN+KkcsJYMmaGywyu9b3GQaeDBpGxnHLPhAYNKkmFapuK0tJSdu3a1aB5XV1dyc/PJyk5CWsfa4ytjDF3Mq/XTn1FI00tq/Xr2KpVK1xdXLEqs8K5uzOWbpYUpBYga2vvFRkcM5iY72M4znHUMWrU19TEpMfoq0WNPju6zvKWlJTwv//9j8cff5zCQp0hlXMhBxsfGyRJ0odC1cV70xSVwgQCgeBuo9H7WGzatIl169bRu3fvSlVOOnTowIULFxr79HcV7ibu/CH9wdq1a5kwYUJTi/OfQavRYvO4DbYtbFFZqLD20IWilSvJpZpSfnf5nbdeewvVhyqiFkRx4O0DaEo1TWZUJCUlgRFsuraJhZ4LSTuchnN350pjjAuNkYwkkgsNW8a4vp2czczMsGxnSQfrDqQdTKPXG70AaBvUFmWxkkdnPYqniScaTcM6nVdM1P477W9GWoxkZelKJjpOrLbS063msFBY8GqrV1mUuIj+Nv1rrBbVEJamLNX/Xy2r6fdeP76w+AI/P796zZeSkkJ6ejqBgYGcOXOGrD+ySI/S9TMpV6hde7rWer7ytSg4VYBFBws6mXS6sQatgtm/Zj9/Tv4TSxdL1IVqtGVaijKLMHesned14KKBbBiwgQ/zPsThDweyemTh5ewF1L8bdlFREVOnTuXKlSs4OTlx/vx5vvn+G9q2bAvo1qGssEwnZ4vaydkUlcIEAoHgbqPRPRYZGRk4OTlVeb6goMAg5RT/TbiYu3DV7iqTJk2ioKBuccqC+nOpzSUOcICsI1k4dnSsdF8GzQ9i4IKBjLAfAbPg8b26JG5NqcagHYxrQ8Ud09dee41OUztRkldCb+vebLTfSPTYyuFJr7z4CuZqc3q17GVwWYLmB4FUt07Oa9etxb6jPWPajyEjJkOv3Lr1csM83Zxps6bx7rvvNrjTuVbW6hO143PimTtxLu7X3XFUOTLLdRZa+fZ5HFpZywMOD1BcVMyjgY9in2tPTEEMwa7BPGn3JOoydYNkLCc8NZwVaSuQtBIuuS70MOvB79Lv/GPzT72/H3/44Qe6dOnCE088gb+/P/nn87H3sweoc9JyudI81X4qDioHFOcV5JGnz7kITw3XJW531xWbUJmrMLExqVM4lJGRESNHjsTUx5TW11oT2CoQraSl9Hpp3S68Ara2tnzzzTds27YNSZKYMGEC7/3yHuckXXiZsaUxZg5mdVqLirkm5Z/DulYbEwgEgn87jW5YdO/enYiICP3j8h/LFStWEBQkOp5WJCgwCCNbIwaPG0xWVlZTi/OfYfv27aRqUsk4moFjR8dqx4yxH8P27O2c//s8AAojhb6D8Z2ifMc0PDWcgoICHB9xpHdxb75J/YbI0ZFYu1VO+vfw8MDJyIk82fBJqtGLo0EGJGq9DsklyahlNeZnzDF3NMfK3QrQKaO2RbacO1P/nIKKzHSbSbBrMDkFOcg2MiXJJYxxHsOOnB0EuwbXqoTrTLeZWCgtKDlYQnpyOr6SLzEFMQwfPpznfJ6j7M2yBiWxww2ldJTVKIquFLF/yX6ulV3TK6/zV8+v1zkKCgqwsLCgVy+dQZkVl4Wdnx1Qd8Oi3Eh71utZPDt5EjoslFR1KoNsBumNtPKKUOXUJ4E7X5NPqpSKe7E7La1bUta6jLQjaXWa41aMGTOG9vbtcfa84dWz9rQm71LdPhvBrsHMcJ1BWGoYvY/1FkaFQCAQ3ESjh0K98847jB49mtOnT1NWVsZnn33GOc0lcgAAne5JREFU6dOniYqKYs+ePY19+rsKN283zHaasWjJItzd3ZtaHINQXYOtchpaq99QPP7E45y2Ok2btW1wHFu9YRFoEYgiW8GbO9/E29WbZ154Bk2JplZNxgxFxdKfD3/+MOmZ6bg6uBKWFkbH5R2Z88WcKsc4mTiRo8rRe1gMQXlOBeg2Cnq82qNW63Cu6By+pr5k7srEpadLpR15ZxNnElISKC0tRZblBiVIRy6MJLswmzavt8FYMuZ09Gkc3B0IOxnG5iWbscq1YuDigbecQ5ZlduTs4JPHPoFAULZT8vHVj7Gz0ynoiZmJlH5fWuWaK+ab3I5ypd2y1JIDJgfo7NSZRE0i/Wz6kZGRwa6LuzgYcpCFLKzTOUJDQ5k/fz5qtZqjR4/y3eHvGN53OIEEYu1pzeXttc/jqvjZTFen42niyUCbgWzN3sqclrr77dGdj3I57jJzPObw2GOP1SmB+48//iAhIYGA+wKwLrXGxdqF+GvxZLhncH7veTwGedRa1oqUlZVhZHTj5y00NBSvn70Y/OBg/XP1LTk71HYoy1OX6xPZ/21GReRCXRGG6j7L0Yuj0Wq09F14+/tbIBD8N2l0j0W/fv04ceIEZWVlBAYG8tdff+Hk5ER0dDTdunVr7NPfVSiMFNil23E25WxTi2IwKu6ygy6pctu2bYRdCdPVrZfubDWl6ujYvyNaIy2uh11r9Fjsf2s/RmuNuDL6CseNjpN5JrPaRObGpjwc45drv6CW1fxw7QfGZ4xn2PFhKFWVDYf8/Hxyk3M57Xi6zpV6aqJcqe00qxOmdqa0CGyBU2en267D8uXLCQkPQUqWdInbN8X4u7dwZ+fVnZiYmLB69eoGyahQKpj94Wx6jumJtdoaH28fbIxs8E7zZu6Judz70b2Ult46zCa2MJZ8TT797PsxZMgQuth2IbkkmTfee4OMjAyWbF5S7yT2cso9K/nG+fRp14efvv2JYXbD+CPzD7qmdGXH/B0ctz7OvpB9RIVGIctyrc+hUqkwNzfncPRhthZsZUvUFqD+ynSptpTssmwcjR0ZaTeSv7L/QpZlCq8VkpyVzIGTB4iNjQXQJ3DXhk8++YTnn3+eNfvW4JrpimVLS5a/t5yLqosc2X2kznKW8+ijj+Lo6MjatWsBXR5VbkIutr62+jH1XYvy7zIFikqJ7P8WGlL5TSAQCBrVY6FWq5k5cybz588nPPzf9eXbWDgXOnMx9yKyLP8rclBubrDlf96fZ/58BhtHG2a6zGwWu32JJYk4KZ1Qp6ppEdCi2jGbW2/Gy9uLrLZZjE4YTdYxXaha0Pwg/mz9J5vZ3KAuwXVhust0XdM2tKgkFUHbgtB001QZV1payu5Nu1E5qci4kIGNl02Dz63V6BK17fzsuHrkKq0GtuLy9suMXDFS/3p1HDhwgLQOafim+pJ6MJWOwR0rve7r5Qu6NADS09MbJGPQ/CC0n2gxbmmMeaouMTd6cTS2R22RHpDI+zGPQ4cO0bdvzbuuO7J3MNBmIMYKYwCsjazxNPEk1yGXTjad9OeBuiex30y6Oh1nlS5EZ5z9OF6++DIz+89k+vTpjBo1CudYZ6IWRBEdGo2skW95jpu/N1rbtaafaT8em/yY7jrqqUx/9M1HyJ1kvnz7S94IeYPrmuvEFsZiediSga0G8uyHz9K5c2cALFwtamXIyrLM+PHjKSoqwqGzA+b/mGPZ0hJfrS/pLdNJP13/+yAhIYFr165hYWEBQH5yPlqNFvOW5mRkZODo6Ii1pzVJu+vWzC88NZwdOTtQoqS7VXe6WHYxeDJ/U1Pxvi5/3Bwq4AkEgruDRt16UKlUrF+/vjFP8a+jhaYFW5K24OzsjEZTVVm824hcGEnAigB93PjLFi9jM9mGlKUpmL9jfscby91McnIykecjcSx0xNbXFmNL42rHeQ3y4kj7I7Qwa0Hr6a3JOpOFLMuEp4YT4ReB1yCvOybznH90ISgKrW7HdKP9xioVoQDs7Oxo79Yel5YuZF/ONsi5+y7UKRY553Owa2OH13AvLv11CVmWdR6cGkIkXnjhBdz7uDPUcyh5l/OqyNvSuiV2HnbsX7GfuXPnNljOK5lXeOyBx1DtV/GR0UdEhkTyUK+HMO9gTtTZKPr06VPjsbIs81fmX/z9wd8sWbJEX5I00CKQ2ILYSmN7v9kbFHVLYr+ZpPwkWhjpDNrOlp2xVFpypPQI4eHhjB8/ni6zuujk0si3PcfQoUMZMmSIvomfc5kzT3d/mqlTpwJg7WFNSW4JJbkldZLxYtZF1NfU5F/Px1hhzBDbIWzL2kbaoTSC+gcxYcIE/P39AZ3HojaGhSRJPPPMM0RHR5OiTME2zhbLlpb88NkPSLYSLbJbUJBWvyIWu3fv5vjx4wwYMADQlZo9a38WR2dHZs+eDYC1V/0S2X1MfRhtP5rj+cd50vnJKgnd/waC5gfRZ1EfIkMi+cTkE2FUCASCWtPoPs3777+fTZs2NfZp/jX42/pT5lJGRkZGgxpkNRfK3eqOa3QhRmWUoZSVvKt6l7Sv0prcrb569Wo+/O5D4iPjawyDghshSBnqDH4x+oWSvBK+jv/6jidvhqeGE20ZTWl6Kd1WdGOmy0wix0Sys8vOKmMlSSJkTggOng5g4FoA2fHZ2La2pWX/lhSmF5J97taGi2c7T64bX6fT9U7Y+9ljamta6XVnY2eKnYu5fuy6QTx1kiRh3NsY6zRrZI0MEgx4egDdrbuTYJdwy3PEFsaSU5pD1IooVq9erR8baBFITEEMP//8M1OmTGHXrl1svHcj/L+Tpr7J/IcvHubpCU/zxx9/oJAU3ONwD5uzNutf/+PhP/T/v9U5rl+/zt69e9m1axe2traALnHb3t9eP8bE1gRjK+M6ey2GPTKMtk5tmTVLV1K1PBwq5XBKpcRt0Hks6pK8rZE1nC86j+UxS6xaWuGgcsBIMsKkjwlph+qXwG1tbU2nTp2wsdF56XIu5ODl6cX169c5efIksizXuUleeU5MqbqU/N35mCnNOJhxkF3/2wWboExTVi9ZmyteI7yApqmAdzsiF9Ycdlnb4gkCgaBxaPTk7TZt2hAaGkpkZCTdunXTu6bLee655xpbhLuKdm7tMDUzJfZ0LG3btm1qcRpM0PwgNLKGF/xfAHQdjDWShr/lv5kdOpug+UFNGvalVqux9LXENtH2loYF6IyLQk0h36d/z7rodWjztXfcqAhLDcNX9kVSS4wfP56uuV3ZH76fH4J/wCLVooosjsaO5Fvnc/3KdYPKknM+B48hHqjMVLTq34pL2y/pS5pWR3xRPM4qZ/IP5OPS06XK607GThSZFJGwP8FgMp67dA6PJA+QABlW+q+k/77+7MjewSSnSTUetyN7B30t+jLpo0l6BR10hsVnyZ9R8lcJ33//PWWnyuhypAttHmzD+U3n6T2/d72S+TXWGopSinB11eWd3GN/D9+kfUOmOpO9/9vLhn828Mjjj5C+PR3fcb41nsPS0pJTp04RHR2Np6cnAFlns3Dt7Up6ejpGRkbY29vrwqES8257v1ek1LwUX9mXNj5tAOhu1R2A4yXH6dalG0eOHCE5OZlx48bVymNRVlbGqVOn8PDwIMc0BwDlYSWWLS1RSAqcVE6o+qpIPZiK7zjfWstZE2tN1lI2rYwjy47QuXNnfZO8kpwSwi6FIRlLty0iMdNtJtnXs1l6ZSlb521l4saJnNGc4bfffqOwsBCbLBuinaPrnfTc3Apd7J27FwBJKekN2uZiXJRvWEH9iycIBILGodENi2+++QZbW1uOHDnCkSOVk/EkSRKGxU34+fohJUuYtTRrcD3/5sKnQz5FNpe5uvwqT37/JHvW7eFU8ClOupzE6YITjz32GCtXrqR9+/Z3XLbXX3+dY6eP4f+uP47jb69o5XyTgzxWRqvSYqQ1uqNx1eU7poeuH2JM0BiGtxjO6R9PM/T4UIJcg6rtz9BC1YIC0wIyUzINKkvO+RzsWusqJHmO8OTyX5fp+mzXascmJyezIW4DLVu0JO1AGr73VlUUbZW2qFDxc8bPpC9M542Fb9Rbtp07d/LVvK9IeS+FgQ4D6fRcJ0xsTYheFE3+sHxifolh1rxZPDzsYYYOHVrpWFmW2Zmzk7nucxkwZ0Cl13zMfNCiZcAjA5DPyVj9Y4X7IHfGrRvHJ6af0GFKhxoVnpoo1BSisFRwcNtB2rrpNhLcTNzoZNGJsHVhfPHFF1zlKg+NewjXXFcc2jvok8ZvPockSfj5+VVqrPdn+z85rznPTuedvP/++8ydO1efZ1EXZTVdnY6T6kY/IqWkZIBqACd7nMQ+0B7vFt4AZGZm6pK303TdtyVF9RsGSUlJdO7cGRMTEzYlb8JH5YO2QItVKyv279/P1aSrrM9bj3Nc1RC/6qiolB8+fJitW7fSq1cvhg8fTnhqOHEWcVzqcIk2rm3oqtDdp6Z2ppx5+gzHs47XurndNaNrKLVKurfuTgejDhwtOMpXX32Fo6MjptGmDVJ2m1MDvujF0Vz55woWrha49XHDqZPTHa2AdztEHohA0HxpVMNClmV2796Nk5MTZmZmjXmqfw02LW2wOmjFGcsz+AT4NLU4Dea9xPdIME/A/B9z2i1rhy22jJk4hh1/72B52nK+/fVbDhw4wKxZs9izZ08lz8WdKG2okTUklSTRIaoDjotub1hk9MrQKUtaKFOUEZ4afseMi5luM9HIGr6/+j2vtHoFgLTDuuZkQ12HVnvM0veWIo+U+Tb+Wx7m4QbLsCxlGbJapiCtANvWtgB4DfciOjSa5VeWIyvkKorqjh07+PHCj7S0aknHgx3p93a/KvNKkoStbEukcyQxX8Q0yLBY9846fjv9G51tO+OqcsXK3Yoe/+uBpJCIWhAFR2HDxQ2kz0tn6MHK63aq8BTZBdloP9NCSOV5jSQj2pu3x6arDYMLBlPsWczD2x9GYaTA2sOavIQ8vUJTUxL7zVxVX8VEMqGDZ4dK9/44h3Esa7mM9qr2uPq4YmRkhEtPF9IOpnHPmnsAXUGB2NTYGne4NVoNJRklZD+QjcsFF31SvLWnNb9a/srW1K21VlYPnjuIh8aDfLt8LC0tAeic0Jktw7dgZmdGQEAAZmZmXL9+HTdXN7TqW3ffzsrKwtHREVtbW+KL4/FUe2JsZYyxlTGlpaVkxGWQb5RP2qG0Wnk0Kyrl2X9nM3/+fB577DEuBVzS9Zw43pseNj0I44biviJtBcenHeeRvEcI7lq7z3BCUQJ+1n78sPcHLhZf5ImzT/DZ5M9QKVQwFsxNzOut7N5c6CLYNbhJGvCVyywpJEYsG8FfM//i3l/uBWi2xkVDiicIBALD0uiGRZs2bTh16hRt2rRpzFP9a5AUEnaZdmyI3EDcX3G89NJLTS1SvVFr1fyd8zcdtB3o/EpnNPx/L4UCGPHACP5Y/QdWA6zo9G4nXun9ShWj4k64tK+WXkUja7DJtLlt1aTw1HCinaIZajWUs+ln8d7rTdjIO1sR5kzWGdQaNdYF1mAOV49cJXBaYI3jVUYq1JlqMo0N47FQSArCMsPo8kwXzFroNgscOzoSOy2Wo+lHq1VUTUxMcOjsgEecB2VFZTWG4LiautKtUzc8lPXrXVBOZ4/OPOz8MInaRNTxaqzG6Rrx9QnpgyRJxMTFIA+TcZjhUCW847s/v0M6LXHs/DEGygOrKLSBFoHsi92Hd4I3k49PRmGkyxGy9roRr18XxSa9NB1nY+cq5xlqO5R3Ld/lgZEP8PLvLyNJEpcsLxH7baz+HLGpsXol9D7lfbzzzjsMHz6clK4phKWG8aTJkwSuDKTr3K6smr0KP1edJ2PfoH1s9d1aa2VVlmVOXD7B9nXbeS78Ob1hYR1pjdlwM/Zf309MTEylY0xsTChILajRsOjWrRvp6emo1WpeuvwS7fLaYdpSl3cTEBDAyOKRKK2UqL9Sk3PhhnesJioq5UN6DWHq1KmYjjclLDWMJ5yeIGNnBh4PeNDFVFfFKexKGChhwM4BjDAfAYNuuwwAXCi+QGuz1kiShI+pD2ZKM04VnqKzZWegsrK7/639aEo1dVJ2K17HN2nfoJbVd7wBn1ajxXu0N1q1Fo+hHhRlFJGXWHej+U4QND+IqIVRDSqeIBAIDEujZs4qFAratGlDZqZhwzD+7TgUOrA9cTuvvPLKbevtN2c+Pf8pdgo7uo7uilatpV9oP14seZG+oX1RpiiZsmQK2WbZtFrbirMfnq3SDyBvdR4np51sNPn+/vtvHn7mYYyzjXFu71xj2AZUDkeY5z2PFNMUvL7zuuMVYf469xfZJ7Lp3bM3Wo2Wq0evVlsRqpypU6fS1qEt3ay7oS2rv0KwZ88eli9fjsdJDx7KeohjTx1jRdoKAFZcXcHRyUcZc2ZMtQrQQ48+hIm3CcG+wTh1caqxUV8ri1aMHD+SEZoR9ZYT4Olvn2bm1zPxtPCk4EqBvsM36BSRJe8sQdFVgZezV6V6/VGLo4gyjeLUzlO89MNLHD9+vMrcvgW+HM88zpBlQzh/7by+wIKNt02dEoHLiYiOIO9yHjt3Vk6+N5VN8drjRfbz2Xqjw7m7M7kXcym8VgjcKCgQlhrGW8ff4rPPPuPNw2/qunnbjULKkIgNiSWJJBxVjoSlhtHrWC/+8P2DPn/0qbWyWlxcjLWXNX5Ofjg53QiHSj+cTu/83mzL2lblmNqWnFWpVJwrOodzqjOWLXUGi729PUO7DEXpqMSpixNpB2uXwF2+Hn9b/c3JZ09ywPUASpT8kP4D/8feeUdHVa19+JmZzKT3HtIggYSQQocQBGnSRKkKotIlXOzlKvqBCnjtXjuhqFjoSG+KICAhoYReEkhI770n0873x9wMGVKBhICeZ62slcxpe/Y5mdnv3u/v9x556wgHTA7gZuyGoBVABkYYMTppdLPv2+LFi9nw1wakWbqvTYlEQg+LHpwoOkF0dDQbNmwAoM+CPvqK9Lcz2J3jOgcjiVGbFeALeycMjVKDzyM+yM3kOHVzIuNYBkCjzm9twbHFx3T3k9s3TxAREWlZWt2S54MPPuC1117TF08SaZpOJp1w7OTIrFmzqKysbOvm3BZ7Lu9hbd5acmfkUp1XTb93++m/YGsKyxXvKqZvWl8yO2byZ8SfBtaGJWtL2O23u1UL6MXExHC15CrqZDWOIY2nQdXoG+a4zsHWyBZvhTdJbkk8bfY04a7h9eobWoMETQLSVCl+fn4UxBWAAPb+9g3u7+LigpetFypH1W1bdxYUFPDss88SHh7OF198weBTgxn01yAiMiPofbo3EZkRjM8ej/9X/vUen1yVjAQJ2khtncJ4tXGSO6H0VJJ9Ohtl6Z0F1BnVGbjKXSnLLDMILEAnaA+yCMJ+vT1ShVT/3O3csBPBQWBGnxk88sgjdOvWzeA4jUpD2nNpFHsXs+zkMnr06ME333wDgLW3NSWJt14fIuZ6DAmnEoiMNHSxidsYh99hP447HkelVSEIAjILGbYdbQ2ckmoG05EOkXQ/1R3pGCkKiYKEqgRilDEoHBQEmgfyivsrAKgFNUaCEQERzdczGZsYgzVsWrlJXxFdEASyTmUxynkUh4oPUak1/JxqruVsgaqAPFUeNtdt9IEF6FzCspRZuPRyIfNEZrPbOs15mq59CMiQsTFgI1tUW5gyYwrfdf4OD1MP3QSCoHOoO/rg0WY7ZO3Zs4dceS4mBTcczXpa9uR40XFCQ0OZOnUqVVVV7Hx8Jwjog4tbHeyuzFyJWtA5TN1cgO9uuCFVFVWRdjhNL5p3C3XTBxb3ElFLojj29jEkUgld53fFzt/urhYrFRERqZ9WDyyefvppTpw4QUhICKamptjZ2Rn8iNTF184Xcy9zVqxYobdLvJ+o0lbxacGnZK7KJPlMMr1e60W/RYZ1A2qCi0nXJjHJYRLZvbJZ//l61inXcWnuJXb77W71FICJEyfy6JxHcc93b9Ihp6ZKMsDGjRspPFFIXN848q/kM8d1zl1za6lwrOCTZz9h9+7dZJ/Kxqmbkz4dpyGcjJ1Qeatu2xnKzs6Os2fP8uabb9K3b1+K4ot4KO8hBEFAgwYjjHg++HmyTmVRVVhV5/irlVfpaNqR7Ojseh2hanBWOFOoKMSknQlJR5Juq62CIHDt2jVSKlJwVDoikUiwcLWos98Q2yEctz+O+2fugG4AmPJQCoNsBvHZR5/xWtfX6gxQjr19DEWmAtsKWzQaDTY2NkildVOhbgW3Lm508+7GwIEDDd7D8Q+OM2b0GMxkZjy/6nkcHBz45ptvcO3jSubxGwNtjaChXPO/gFECcomcqG5RrO+8nim/TuGJ5Cd42vlp1h7UVTOXIkUtUXP84eOoq5pnj1qgLkCDBkf5jf+R4uvFKEuV9A7qjZPcif/u/y8DBw7kzTffBJquvv3GG28wffp09lzYQztFOzTJGizb3QgAq9KrSKtIQ+ggNHvFAuCz1M8AXT9o0LC/cD8VCRXY+NroVx2fdHoSqUTKbJfZ7PTZye8Bvzfr3AsWLsDU05TB/oP1r/Ww6MEV1RUCggIYMmQI+/9vP9e2XMPjQQ+kMim9X+99S4PdFRkriMiMwERqgkWSBXZqO4MV0Tutir08Y3mDq6srM1eyPGM5SfuSsOtsp08Ndet37wUWNe+308ROOPdwpu+bfSlOLKbbc93E4EJEpI1pdVeozz//vLUv8bfDz92PcpNyyjRlWMjqDoqaIicnh0WLFvH+++9ja9t4bvKdUp9F4rKMZTiZOWFibEKv/b0YPGhwvcfWrGCEEcblo5e59MAl1MfVnDc6z+i40c0WVN4u7du3x0xjhslGExynN996MyYmhjNnzuA7x5f8K/m49XVrxVbeQCWoiKuII8A8AJlMRnZMNs49GnfNUavVJJ1N4rr9dfITb7+tMpmMpUuXArD+wfX8OfVPJBIJglZALVWzXroeOz87Uv5ModP4GzbJ169f55UfXsHB04Hcs7m49ml4xcJZ7syx2GN8kfIFS1cv5a3Rty7gLi4uplOnTvj814cXer6A3FVeb+DlkOLAOe05tr23jQUsQGYkI3VwKs7hzuxw3IGRmRGXf7oM6J7T5APJnP7yNIEzArH4ywL77vYUfFKgT1Oybm9NceKtBxambqY80fkJBjreCCyu775OZW4lwdODebjgYXZ57KKgoIATJ04wsN9AEvfqLHkrNZW8lfQWZ8vOArrBdM0M9xzXORTEFRA4PZCVmSs53/48ZRfKGNRuED0CehAxL4Jl8ct4LvC5JtuYq8rFxsgGY6mx/rWsU1k4hjgiN5Ezwm4E+3P2c+TIEUxMdLP5TaVC7dy5k8uXL+Mx2wM/Gz/K0ssMgvv/Lvwv1W9Vc6b6DEanjdCoNMjkjbvkrcxcyab8TShzleTMzmHRiUVEZEaQKkmlckolBzMPEu4azmyX2ewt2EuoVSiVaZWseWRNs0wYAgYFYHrVlB7te+hfq9FZfHvsWyr/W0nkokgU1gom/jaR9QPXY+Nr06CL180sT1/OiuwVmJ42RRugJXp+NF22d2GS5aQbgu6FujberkC8Oc5TCTsT8H3EV7/NrZ8bOedyUJYpGywgerfRanRC7fLscizaWWDhZkHAUwEoS5WELQ5rER1I5Du6QO127YNFRP6ptHpgMW3atNa+xN8Or45eKC4oiC+MJ8AqAIXi1j7MJ0yYwNGjR1EqlXz//fet1EodN39RnSk7w6+5v+Kzx4esOVm0c23X5DmilkQRvCiYSycuITGSIFPLsHrCiqj41vdNT65IxveiLw5BDs0+ZsyYMZi6mLKr/S7St6YTRMPi6ZYksTIRI4kRXsa6GgVZp7IImRvS6DEymYytP2zFeoQ1yVeSW6StB7sfJMY6hhCjEJZ4LeHxxMeJyIxg+CvDcf/d3SCwOHnyJEpnJUXnipBbyLHxsWnwvE4KJwQbXb709bPXb6tt2dnZmJubY+ppin2hPYKHUO9+g7sOpnptNU59nQjwDcDhFQfWxa/D6JgR5X3LKbxaiLG1MZGLIinLLCN+azyeQzw58/UZev3Ui+w+2QaCa2tva8oyylBXqzEybv7HapYyC2fFjeBQEASOv3+cHi/1wMjEiNH2o/ne+XsOnDhA/5D+5J/JJ+rdKLKrs3np+kuUakop1hQzxWwKr/q/qh8gAqhiVfwe8DtrMtfQN7svVSZV4Ahz3OYQ80UMqx9fjUmmSZMD6p93/UyeLI8F6xbw/vvv69p9UudGBvCQ7UN8b/09qzesJshX93xZuFmQdiStwXO+8847xMfHk2eXh5+pH6VppQapUEG+QRyoOoCxrzESEwl5F/Jw7t5wEF3zvjuqO3I85jimpqY3hNBE0DGvo34FVKVS4Y03fyb+yVzPuZxfeB7VQlWjfQBwveo67U3aG9z3Gp1FTGkM/mp/zJzMCH07FJlCRqeJnbi6+SoT900EmhY9p6SlkLEqA0tPS6YNmYbvMF9KlaV4WnkSbnEj3TJ0YSiqcpV+Zl6rar4bUlPOUzMdZvLtnm/1bQaw8rDCwtWCrJNZeA5q2ljhbgzILz5zEalEivFoY3q/0RuAXq/14sfgH5GflSO3khPGnV1DrJUhInJ73JWyxxqNhl9//ZWlS5eydOlStm7dikajuRuXvi8xdTDFKNWIMXPHMGXKlFs+/qOPPqJr1670l/dv9XzcgOUBjI4bTURmBC8dfonw4+G4XHXh4qiLjI4bTcDyxnO5awu1kQECaIw0lKwtadUl7crKSrZs30KGKgNXrSvGVsZNH/Q/+vfvzzsvvYNTlRPnqs61Svvq42L5RSrjKnnqyafIz80n52xOkysWEomEAcEDsHG3oTL79vQ6zz33HI888gjHjh0jIjmCmCdjkCLlw84f0s66Hf9p/x/kEjm/df2NX61+NTh20qRJeIR68Kjjo7j0dmnUNtRZ7ozWTMvlE5fpktKl2ak6tfHz86OkpASr9laYpZrV0VfUcPL9k/Te35uec3vy8EcP88XRL8g7kMdWu62k/ZVGSHgII1aPwLaTLeeWnaMip4KEHQmELQ5jzPgxXCi/gCDcCFos3CyQGkkpTWl+ullpaSlZ1Vk4ym7M1KcfTSf/Uj4h4SEsz1jO3oK9hFiEkOWVhUKhwDHEkUzXTCZcmkCeKo8MZQY2h214rfNrfPXVVwaC7hNjTqCwVxDuGs43I79h6vCplCh0eoLBpwYzLmNcs7RBaWVplKeVU1JyQ4uQdTJLX3Hb28SbDqYdsBtiR/fuuhoRTa1YTJo0iQULFpBKKp1MO1GWXoal+4179dGHH9Hepj09hvVols6iRgPVyakTL015ib179wK6gXPY7jAChUD9oHrdunXs/HonG49vxMzJjJCfQ5hcObnR8ycnJ3M08SgeMo8623pa9iSmLEYX+EghaKYuuOo0oRMpB1OoLKhsluh5ae+l7H1uL04jnBjpMJKffvqJ6f7T2VOwxyDdsjK/Ur9qpVXduhvS0TeOEnQ9SC/mr21nmx6ZjsxYVqea+q2kQzWVrpV2OO2Ov5dqJrQO9jxIu366ySu7TnakfZDGDxU/tIg2ryZdt/Z7EWtliIg0TasHFvHx8XTu3Jmnn36aLVu2sGXLFp588km6dOlCQkJCa1/+vkQikWCVb4XGWXNLfaRSqRg/fjy//fYbx44do7N75zvKx20OUpkUqyesGH55OEcsj6CyVpHYMZERF0dg9YRVk9fQarR6oXa4aziva15HXiZnt99uStaWtJq1YXx8PE889wQalYYObrdXLyRIGsRVi6st3LKG2bV/F5lRmWzZsgVluk7cbOev0yk19oX8wRsfYORohEmxSb3bm+LgwYPs3LmT8vJyKgorcD3lSl+rvvqc+wHWA3jY7mFcjVypLKukKKFIf2yhppASSQndU7o3KtwGsDGyQS6RYx5kjomtiYFI+VYo0hRRJVRhHG/cYGCxy3cXDo86cM3xGkXqIvK88/Ap9OHtT96mdG0pe/z20HFsR2bFzUKqkCJoBf0Azs/UjwptBT/u+ZH+/fvzxhtvIJHqKjnfis5i5+87KRfKmT1+tv614+8fp+v8rhhbGesHT5YyS3bl7wLgr6q/+G3Vb1RSibeJzpXMeL8xUqmU3r11M7dzXOcwVTMVmaWMZ32e1Q+o2ynakVadhiAIWHlZMejkoGZpgwIfCGRUv1H6YqZajZbsmGxcernoc/ZH2I3g98IbWgULNwuO9D/C8ozlDZ63WltNUlUSPjIfKvMqDVYsQBdoZqt0upymnoUaDVRSVRL+1v74+Nwowtj5287MtJqp/7t9+/aorqlQe6h1983TqkkB988//8zaP9dybm/diYQeFj04U3qG4U8P51M+xchEt2Jl7W2NY4gjCTua9xkukUio8q7C3MRcb1872HYwiVWJbD+5nY8//pjKwko2P7QZjerGxNytCMQPHTrETz/9xC+Tf0GCBLWgNnCeStiRgM/DPnUc8tz6uZF+LL1Z12hqQO452POOv5fmuM5hSuUULoRfYL1sPaBbtTo04BBdV3WluqK6SS3Jrb6Xz4w/E4MKEZFm0OqBxfPPP4+Pjw+pqamcPn2a06dPk5KSQvv27cWq243gjz8Dhwys4xbTGJcvX2br1q18/vnnmJiYcH7WeUrWlnBg0YEWt3IVBIGoqCg6zutI2OIwMg9mgqCrwyHTyLCdZtusD+DLcy8bCLX7teuHkC/gnOTMbr/dXJ57+bbb2BjV1dUEDgmELHAObl5139pUVlZiW2JLok/ibc2s3w55znn0vtyb5x96nvxz+Th3c0Yqkzb5hewod6TaqJr8vNuzff76669ZtmwZISEhPJz4MJXulYyxGwPogo4xY8ZQsboCqVSKg5MDSfuT9MderbxKO0U7Co4WNCrcBt0spJPciWxVNu4D3BtNpWmMdGU6dkZ2VCdWG8yC18b7QW8OdjiIndyOb9K/oVpWzd5P91I5pJLdfrvxftAb+F/qxv888msGcAqpgs5mnTlXeo7IyEiuXbsG3LrO4ujOo2irtLR31lWtzjmbQ+qhVLq/0J2oJVEELA8g3DWcQ8WHiK+MZ8KWCfw7/t9o5VqGnx3Oik4rmOM6hz179pCfn0/Pnj315x5+ZTjDTg0zuJ5ZhRnl2nKK1cX66tvNoUxeRqB7oL6id0FcAYIgYN/ZXh/85KnyOF5ynLU715Kfn89Wu62ceuIU0nq+YrKzszl37hzncs9hJjPDItcCiUyCmZNhzQsXhYveGao5Am5BEEiqSsLbxFv/mrJcSXlWOdY+N0ww+vXrR+y+WLSOWko1pc3qC6lUikUnC9obt6+zrYNJBxQaBdnts7medZ3S0hurVjXpUM3l98LfGWozVD/jbimzJMwijOfXPM+///1vPh/wOcpyJQVXCghdFIqxtTHBzwQ3e3V34MCBrFq1ihG7RiAgIEGi1+UIgqALLB7xqXOcWz83MqMy9dauTVF7QP6p/FMiF0XS4+Ue9HmzT4usBGRlZbFlxhbsturE7T1P99SJ3o+YkLw9maS/kuq1Aa9J+7qVFY3gZ4IB0Cq1SBX1p3iJiIjcoNU1FocPHyY6OtrAAcre3p4PPviAsDAxR7EhfM19uWJxBXNz82Yf4+zszBdffEFFRQUSiQSpRMpuv93kh+eTtChJn4+rXyGQNF51t6Fc2YSEBAb3HUxKXgqffvYp0qekXMm6AhKQKqVoFLpUptApTX8A17ZxBTh18hTxq+KpDK9kntO8VrNx7dmzJy9/+DJbd25t0hGqPmbMmMGWQ1sI2hFEelw6XiFerdDKG1Rrq8m2y+b/Hvo/4l6L41z2OVz7ujbrC9lSZolCUJBZ0XzbztoMGjSIQYMGAXAw+yCVwZUMtNGJjXNzc9m1axeJiYmseWUN4aPC8f/On6505Y033iAjKAP3Lu4UXi1scsUCwEpjxcpNK7HWWtPnSB+4Rf32p59+ynHtcawGWVGaVtrgikXtXPMt+VvoVtmNH7N/NEgLublva/4GCJoRRF6XPDZu3KgfcFt7W1OS1HzL2Z59enIp+xLTPacDcPyD4wTODOT88vP669ZuZ6JXIhKJhPHZ42n/XXu4MQmPjY2NwbkL4gqw9bth3FBZWYmnoyfBB4K5knsFKy8rUg+lNquduapceljcECxnnczSBbVGUoP2afO0vPDTC8yyncV+s/0ELQti6n+m1jnf5s2befbZZxn2zjA6TelEeUY5Fq4WBoFxWloae9fsRWmj5OmxT5N3KQ9lqRKFZcN6szx1HuXactZ/uZ4ZU2fg4eFB8fVi5BZyg0J9MpkMB5kDLgoXYitisfJuOrB45Y1X2Hp2K28Of7Pe7W7n3Wg/qz0LHlpg8JndaUInji06RnVxNcbWDadb/vTTT1y4fIHjjx3ny05fGmwb4zSGI48ewWmNE1XFVRSmFuqfydLUUuRm8mYLxCUSCfnD8snMy+Rh24c5+tZRCl4oICIzgorcCoR0Aa+hdT/LnLo6oa5SU3C1oF5768LCQhYsWEBSUhJjvx+LTCJjzsI5HHvnGIJaF4yc/uI0P5X9hMJewbDTw3Dp7XJbOhGAN998k9Oq0/Tu2xsJEn2QVBlWSbFHMZmnMxkRNoKIzAiqqqp41vtZVmWtuq0q5hsHb9T1nVSCVqnlyJtHGPCfAc0+XkTkn0arr1gYGxsbzODUUFZWdsui5H8SHR06km+df0sDaxcXF55//nneeOMNQDd48ozxxH6OPSdnn0Sr0t6SlWtDubLZa7IZnjccb3tvdmt3sz5lPSqFiqCIIB4PfZzgFcHs9tvdrKJxtW1cAUaNGkVIUQhmmOFm5NaqNq7JFckYXzG+rcCib9++2EvsMco34njK8VZonSHXKq9hLjXn4Vcept+7/cg8nsmZb840a5YvIiKCsvQytmi2NHvGsSGOmB+he0Z3vUPQsGHD+OCDD/jll18IsQhhrGwsG4ZsIL8ony+//JK/Ev/CLMUM6/bWDVZhro1JpQk7ju5gx5kdpEem33JRv+3bt3PkyhFMykwoTS3FysOqwX3nuM7B8rgu8Dhncq7RoAIMZ2GN9xmTIk9h0qRJBAfrZjRvtUiew2MOuJm7cfY/Zzn44kHit8UjU8jqXHeO6xyMMNJNFmilhLcPJ+d0DhqVxkDnUZuC2AJ9mhyAqakpnp6eCLkCV/Ku3NKKxbW8a8RGx+o1FrX1FTXtC3cNR+ogxfN1T/ab7SfcNZwem3rUazmrVqtxcHDA2NeYjqYdKUsvq5MGZWZmRlx0HCVGJRjZGWHhZkH26exG25lclYw6W83bC94mLy8PgKKEImx8bOrV9gSYBXC5/HKz+iK5KhlTqSkuirqrbqmHU7H9yxaToSb4+fnpLYgBbH1tsQ+wJ2Fn4+lQq1atYsWRFaiL1QSbBxts62XUS1fMr89ohj411ODZ8J/iT+yGWPq82adRN6SkpCTUajURGRFsyNtAV/OuvNv+XSY+MJHSvaU4qhz5Sf0TyUuSkZvJ6xwvk8tw6elCxrGMei1rzczMWLVqFec8zhGdH01EZgQvrHqBvdq9CEa6Z7TopyLOzz2P7yhfOo7riMdAXU0RrerWVgIEQWDQwkEE/ByAk40TAgJyiRwBgV75vRgvG4/cQc6pXN2K2erC1fQ41eO2goqdk3eSfzmfXq/34sWqF7HrbMeJ90/w15t/NfscIiL/NFo9sHj44Yd55plnOH78OIIgIAgC0dHRhIeH88gjj7T25e9b/Lz9UMvUvPnJm0RHR9/WOQRB4Kk/n8L2J1uM5hmxIWoD55/5n5VrMz5c61uy/uPZPzj29jE6W3em+5vdUYYqUVmoGB03msCVgcgUMros76IXdN9qRWqFQsEfh/+g94befJ/2PRqh9UT+1wuvY5VmhXWHW68VMn/+fDIyMgjKD+JM+ZlWaJ0hl8svY1VoxenTp1HY6gJyQS00S7hpampKdXY1FQ4VVORU3NJ1r169yoEDB8jIyKBaW83Z9mcZrL5hH2xnZ8frr79O165dAbBwtqDKtopvr3zLN998g1sfN3yzfHHt49qs3GYvKy9CHgzh6RlPI5VLyT7T+GDyZubPn0/f0X3paNORiuyKBlcsavisz2cIagGtRGuQa15jZ3lz39b8T3jme3K14qpBYTgrb6tbSoXKUmbRsZMulfD0F6fRqrTE/DemznVXZq5EjS4XXivVssVqC1KFlOQTybi5uTFp0iTKyw0H8AVxBdj5GdYJunbtGqN6jULmJMPKy4rS1NJmaZjyNfm888I75OTk6Np9U2ABuuBCLpGDFIwkRsxxndOggPuFF14gNzcXl54u+Jn51RtY2Nra8tqs1/Du7o1MJsO1t2uTAu7EqkTcJG5MmzaNDh10uqmawOJmIiIiOPXrKf6I/6NZ2pj6HKFqiF4SzeCgwZyvOo9KW9ddquOEjk2mQz3//PN0ebwLLjtdOL70xkSFukrNL8G/4LHXg9yZuTzw3gMGz4bnIE8EjUDakbQGBeIVFRUMHTqU3r17czj3MA5GDkR01LlCzZs3j+2zt1NmXEZQZBC2/g3bk9cIuGvS32p/thsbG/Pk+idxm+dGT8uejIodxdHuR7k0+xLtfmxHydoS9vjvYXTcaF7r/xohc0NQWCp0Ex0SXZpR7Qmsm4OX5ORkVq1aRYm6hMeuPEZEYQQ+h3xINE0k3DWc6G7RhLuGc8rpFB59PFjgsYDxk8fzg+sPCGoBiUyCVJDeUlBxZMER4jbE0WliJwZ+MBCZXMa0s9Ow9bPl+PvH+estMbgQEamPVg8svvzyS3x8fAgNDcXExAQTExPCwsLw9fXliy++aO3L37c4dXSCdPh2y7f88ccfTe6v1Wo5cOAA+fk38uhPfXqK5N+SMemgE+1qFVqMNEY6K9dm5OMuz1jOxdkX9cHFJ9JPOPPNGWy623Dg9wOUDClhgucERseNxuoJK8IWh/FS9UuELQ7D6gkrRseNvq1UJqmRlIdMH6K0spSDRQdv+fjmMHz4cE7nnMZUa3pbIna5XI5EIqGLtgtXzK60QgsNOZ59nBMbT9AvtB8HX9b1Se28/8Z49NFHeajPQ/T16nvLRfLWrFnD0KFDeeeddzhSfASTQhN6tevV4P4KmYJK+0p2Gu2ky4QuqOxVGB81JmZiTLNymzs5dMLFwYXBwmDa9W9H+l+GgtGmXGMef/xx3ILd6GjcEamRFDPnxldJYlxjkBhJDGpAAIS90/AqUOjCUB7+98PYym3ZFrONLVu2UFpaekupUOXl5fyy6xcuHrlIrwW6/qwtEK+hthVozeApIiuChDcS2Lt+L1lZWZw8eRIzsxvvU6vRUnStqE5goVAocDN2I12ZjqW7JVqNttEidgBF1UVIzaR079AdZ2dnNEoNuedy6wQWKzNXohJUugJ8gpqVmSt11bcz63eGEgSBq1W6wok3W82CLmVnyvAplMpKkRnJdALuJnQWyVXJDO4ymNWrV+sLizYUWJw5c4aYzTEkColNrlhcunSJRRGLyD2XW2db+rF0sk5mMWr6KEwkJny29TNWrVplsE+niZ1I3JfYaDX5R8c/iuJBBRPbT9RP5Kir1awOXk3x9WIedn6YCx0ukFuYS1raDe2R1EhKp0mdiF0f22j7CwoKKHIrIkWbwvJOy5FLb6xKdHHvwmMWj5FllsWL3V5scBWsRsBd23lsWeoyQHf/L3S4QLhrOMFrgpG/JMdipwVu89z43O9zdvvt1n9PRC2JMlgR7L+kP3adDatm1w5elEoljzzyCC998xIjz47ketV1PMo8uD7qusEKRO12He53GCMTI7af3Y7ESBdUaCVa/pv23wb76WbWydeR8EYCYzaO0b8mU8iYdm4a8a/H85PyJ6pLqpt9PhGRfwqtHljY2Niwfft2rl69yubNm9m8eTNxcXFs3br1vqwqfbcwtjLGMt2SsNFh+tngxkhISGDo0KF4eHigVqtJ3JfI4YWHOfTmISp6/G+WWgtqmbrZVq41H+4XZ19EIpNQKpTyucXn/PzVz2QaZTLWYSx9fuijDypuThmxesKK4O+CG71GQ/iM9sFmtQ2fxn7a4Bfd7SIIAkePH0WwF/C28r6jc/W060m6SzpV2roVp1uSeFU8HYQOtNe0R6qWGgRxTd1LW1tbOth1QPAWbjmwsLS0xM/PD39/f3bm7sRzuye2voazmlqtliNHjrBo0SJmOM5gXMY4NDINLyS8gKnMlGN2x9jRfkez0hCcFE4UmRYRuSgSjVJjIOBurmtMujId6wJrzN3MG9233kF7M1fZJBIJQWZBLPpxERMmTODq1atYt7emPKscVWXTNRESEhLIqMrg9IHTHFt0DACpQmoQKNZuX02/TTSZyDjpOI4OP0pS5ySOHTvGV199ZTCTXpJUgiAIWLev+/nqbuxOenU6MoUMCzeLJlOACrQFmEpNOfr7USwtLcm7mIeRiZHBYL12O3cE7kCGjIjMCE6OO0l5Rv2BS5Yyi0pNJR1MOtS7YgG6SuxKQUmhulAn4G7CGSqp2lC4DVCcUFxvYDF58mQWz1pMpXklgodAWXqZgdNSba5cuUK+cT55F/LqbIteGk3X+V0xszejg7oDn+/5nEWLFhnsY+9vj42vDdd3N1ybJbo0GnOZOVOenaL/n/7c7HOKrhXR580+TH15KrJyGZ0nd+attwyFR52ndObq5qtolPW3v1evXkRdiML7XW9e8XilTh8BhB4LpciniAffepCDB+ufzHELdaMgtoDKgkrmuM5hpv1MVuWuokeMLs3IWmbNLzm/8NLIl9i+dzvKAbpASiPRIJfIWTxlMWGLw0g5mGKQ7uc71peSpBL6Luyr/yyrHSSsyFyBx3wPfCN8qZJWEe4ajsdlD0ZeHFnn86TmOAGBzM8y2eK8hXCXcE72OIm/qT+/5PxCREZEg/ehhoRdCagKVZyYdIJVWTcCxe3bt/Np/KecfOwkMqmM1UGrUZbVDRhbys5dROR+5K7UsQDw9fVlzJgxjBkzBl9f36YPEMGvyo/gPsE8/PDDTe6bm5uLj48PwcHBlCSUsOOJHZxbcY7i0GKKTYtxT3RHW6zlwYQHm23lWvvD/cKMC0TZRmG3yY4ykzJmu8xmfrv5TaaM3K5d7InCE2xbs43Msky2J22/rXM0hCAI/LjnR2QqGT0DezZ9QAPs3LmTZ19/Fm2+lvOlt++w1RSVmkoyyOCRQ48wWzu7wbz/xoILJ7kT1a7VtxxYvPrqq8TGxjLtuWkcLzuO70FfzF0MDQUEQWDcuHEsWbKEEydOEKoOxTHCEaWgpFxTzumnT/OMwzPNSkNwljtTbl9Oz4U9uf77dZJ+T0LQCs0SqRcXFxMbF0tWdRbm6eaN6ivqG7TXft6bE1wEmQfh1NeJvn37otVqMXM2w8jEqFnaBWdnZ7y7edPfpj8n3j+BwlLBy9UvG9zLm40NDh8+jJ2dHT899hOPFT9GaWYpoaGhjBkzxuDcBXEF2Pja1Kk4Hh8fz8///ZmYlBiAZmkLclQ5OMmd9IFL1sksnHs66+1Ia/djr+xeTB42GZOTJvia+HKw30G2OW0zOJ9KpWLo0KHM/3A+XsZeGEuN69SwqCEzORMzjRl/XfoLl54ulKSUUJ7d8ApLYkUiLhiupBQlFGHja1Nn30GDBvHiMy/ibuxOqk0qSKAsvf7VlX79+tE+rD1hmjCD/7GsmCxSD6fS8+WeRC2JwvOsJ+5D3Rk3bhxqtaFTXKeJnYjbHFfn3NXV1fz444/sytzFUJuhSCQSQheGIpFJQKsLNh947wHd65JQrIdbk5iYaHAOt1A35OZyAze22giCwPKq5XS36c44+3H17pOxPQOr36yoGlXFhx9/WO8+Zo5m2PrakhmtS0m7cvWKbtJHAjJkvN/+fVZ1XMVvQb+x6uwqehzSCf5rO0+FLgzFfaC7wf+xfYA9Fu0scOnpYvCdMcd1DnNc5vBD/g9k9sxEKpfq/x86f9GZGbYz6m3nHNc5pB1KY6vbVnr80oNBp3TGE6s6rcJKYsXKrJVM/2p6vccCVBVVsX/ufl7o/oLB58GOHTuYt3seG6s38qTlk9iH2HPgoQOs7LISZfmN4CJqSRTLU5az139vg9cQEfk70+qBxYQJE/jww7ofVB999BGTJk1q7cvf17hL3ElVN8+5pV+/fsTHx7N/5362jt3K5ZWXyQzJpNSklHDXcIq/LUZQCFTsqCDcNbzZVq6BqwIJWhbEhXkXyP8jH4WTApflLnT9rivQdMrI7VZYfWraUwRaB+J51JPNlZtbdNVCKpViH2CPTYYNHj3qFrxqLhKJhPOXz1NxpoLotNvTwTSH2PJYzErNsKm2od87/W4riLsUeYlkk2TSrt6ehevegr34VfnhYelRJ89cJpMxefJknnzySczMzPh+0/f8tvI3JGqdW4tMJWOuZ/NE+E4KJwrVhQz+cDAmT5mgrlTzX5P/Nkuk/vvvvxP8YDBqrRrjRGMs3OvOgtdw86C9hprgojkpfEHmQViFWBEVFUWvXr109WeaqbNwdnamSl6F114vOjzcAbdQN8AwUAz+LtigfUFBN6qmz/Saie97vvWm1xTE1u/cIwgCe37ag9JCiUqjalZgEbkpEuP0G25GtfUVUUuiSDqUpO9HiUTCkSNHuPblNVKrUxmUPojqcsNUkYyMDA4cOMCJzBP4menctErT66ZCASxbtoy8a3n8evBXjK2NsfOza3DVolJbSZYqiyEBQ3j33XcB0Kq1lCSXNFrtvYtZF2KrYrF0t2xQZ2HvYk+xophhdsMMAvjj7x0nZG4I5yLOEbkoksDSQOT+cj7/6nOMjAwNFztN7ETinkSDASjogsUZc2bwe67OZhbgj/l/IGgEpHKpgfZgTvAc7B+0Z/tBw4kWiVSC/2R/YtfFGmgTysvLSUxM5Ne8X7lScQUvEy9WZK6o8/7UVWqSfkvig8EfYOdix7SIaQ32V43O4rvM7zjjeAaJRIJMkKFBw/ny83Q064iD3IHV2auJejSKcNdwtvhsQaaR6QfoN39nSCQSfB/1JX5bvMF3hiAIFKmLkKD7vKnRQFXmV1IQV4BraMMuc4JUIGhZEA9deogTH5xAEARMZabYvmeLVqnlZMXJOsGf/p68ehiHQAcCp+uKKk53nk5EZgSL3RfjGu6K4ylHnu/wPJbBliTMS+Dbh74loksEqgqVPqi4MO8CXgNb1ylQRORepdUDiyNHjjBq1Kg6r48cOZIjR4609uXva7wtvMkyyaK4uLhOpfK31r3FonWGS+5ajZbfpv3Gpnc3candJUbZjdJ/6b/0/Et45HugdlE3e/BUM0v8WPVjSDQ3Ptz/z/3/WrUqNugG/xu/2sjoHaPJUGUQXdqyA/frBdcxTzDHIcjhts/Rv39/NmzYwMDUgZwqOdWCrTNk16+7sI+z56lTT9Hv7X717tNUELdxxUaKzIq4dvXa7bWhYBc9E3vWO/sL8M033/Dzzz/TtWtXOnfuTMf5HRGMBGQaGRq5ptkifjsjO1CD3EmO00gnnbCzmdWFS0tLse5gjVGpERWpjQu3b3Yjq03tKseN0dmsM/mqfLKVNwTmVt5WzdJZlGvKqZRX8uDMB7HyssI+8EYg0FCgaGdnR35+PlevXuVswlmOWB7hz41/1jn3zVazNXh7e7No/iKkRlKyq7ObFVicKj5FTHQMU8KmAJB1ShdY1Hw2PBz/sL4ffX19Wb9+PZtXbGaM/RgqrSrpud5wRdDGxoZffvmF3uN708msE4IgUJ5RjmW7uvfK398fsyozjF11gY1L74YrcKdWpSJRSlDlqXBx0QU+JSklIKHe50AQBJKSkpBnyLlYdrHRvkiqSsJUasrIV0fqg74/nv2DxL2Jeue8sMVhjHtxHKYyUy5VXKpzDocuDlh5WukrZtegVqvpOrUrJhoTAs0DiXwnkrPfnsV9gDsvKw1XsNpbtCfQPJD9hfvr9tUUf+K3x4Ma/QB+48aNBAwO4MPrH9LHsg+rs1fXq3FK+TMFE3sTug3txsLAhawpXdNgaqdbPze2yrfyXdZ3VGl1aUknepwwmNn/5uo3HB1+lJkWM5njOoc35r1B/KJ4pKq6ou8afMf6krAzweCZn/fjPDZnbta7PtWsemREZ2Db0RYzh4b1U0snL2Wu51ySfk8i+3Q26UfTiVoSRe9fe2O/0R7Xh1wpEere76T9ScRtjGPYimFIJBKuVFxhX+E+A0vbgp4F/CvhX6hL1RRsKMBkngnHhx3nS8sv9UHFrbpPiYj8nWj1OhYN2crK5XK9faFI/fg7+1NsXYytiy1Xzl7R++WDbul5t99uWAeLpywG4MibR1j1xCpyfXMZnDCYl/u+rN//0UcfpfBaIZvSN6EsVTbrQ68mzWmX5y4EmYAMGSpBpRN0c/tpTs2lw6gO7H16L+Ml4/ku6zv6Wvat15XlVjlx4gSHMg5hVmCGic3tVaMG3SDpscceo+RACauMVqHUKlFIb89CuaGaIbEbYjmRdYKzyWcZvX40Bw4cuK0+GBE6gmjHaITC5q/8XL58mccffxz/h/zJfCqTDtEdsOrYcHpRzftQ+imxHGVJr429ePDYg8S/Hk8EEaQeSmV43PBGAyCpRIqzsTOfnfgM+Uo56UI6EplErz1oLLiYOXMmDo84sCNvB6WppXgNad0ZQ1OZKb6mvlwov4CzQldksbmWs8euHEOBggdfeZBfh/1Kl6e7GGxv6H3W1AP65Zdf2FmyE9tfbBk+a7jBPgWxBQTODKxzrFwu56033iLqYhRZmiysPK2IPxvfaDtV7VWUHyzn+rHrHF10lLyLeWREZnDqs1N1VpDMzc15/PHHAfBR+jAudxzuRu4G57O2tmbq1KlsuLiBTqadqMyrRKPU1LtiMXPmTPJS83RuU4Brb9cGbVuTqpMIsA1gf8F+/WpBUXwR1t7WDepsunTpgtRfSt9VfRnmNazBwGLj0Y04OzijVqv17zdyUSQSqYSTn5w06IceFj2IKY3BR/DB0vJGQCORSPTF8vwm3vgcHzVqFMc6H8PByIHopdFEvRuFqaMpE3+fCGBwPYCR4SPZXbCbxxwfM2ijU1cnLNtZEnY8DGl/3QC+vaw93v/xxrbUlp3ynQ0OdhN2JuAzxgeJRMIw22H8nPMzG3I2MNVhap2Vl1N9TnGk4kidFb/a9Uw6FXai/4n+zF8wH4BnnnmG6JnReJV6gRv1Ov25hbqBBDKOZeD+gDvH049z3P84UrmUsLwwvnzoS33aXXJBMmH9ml4Jr9136weuBwEeePsBXn/7dRYkLuC5A8/xr5P/Imyh7lzKUiW/z/mdAR8O4PJPl4l2jWZ9yHraa9uTJc/SBzeTnSbjpnDjkOQQDo85YCO1IXZeLFdnX0Urr38lVETkn0Srr1gEBQWxYcOGOq+vX7+egICA1r78fY23jzfaMi0mHiYkJycbbFs8ZTGj40az2283r6x+BZ92PrzS6RVyA3IZdH0QH0/6uM75BrgPILd7LknRSc26ftg7YVycfZF9QftAA++UvqOfmbo4++Jtpzk1F4WFguT/JBN7NpazuWd5d927BtubY19aHxERERzPOU5xYfOtQRvDz8kPRbWCyxW3XyW8vpohWTFZ7HlqD3l+eZRcKKG4uPi2A6tPF34KRqBQNT/wuXbtGhcvXuS683UG2wym4kpFgysWNWzrsI3dfrsZeXkknT7tREZ0BuHe4fpn9Te/35q8rquJK+f2nOPY28fwGuZFx3Edm6UjAchQZuBu4k5pasPF8VoS+2J73lr1FtOnTwd0RfKakwr18pKXKUku4c8//yT/Yj4Ogbe2cjZixAgGBQ7CT/Crs60+q9natFO0I0OZobOcTWlcc+Pk58TzTz3Pi8+9SPSSaASNUG9QcTMuChdGGI/g5JiTddIYyzRlpCvT6WTaibL0MoxtjOutnQA6zU2WUpf+VFOBu760yJqK27a2tvoBfVFCkUHF7dpIJBL8/f1xVblSqC1E6CTUG1hUVFQQsT2CE9tO6Osx1QRt9bl4maWa8enOTxk9enSdc3Wa2Inru68biPurtFUcLj7McPvhlGWUITWSMn73eIyMbwzoa69gDbEewsWSi3QM60h29o2VMolEgt9kP2LXxeqE1S4zSQxMxMzPjHy7/AYHu4IgcH3ndXwf0ekepRIpzhpnvkr+iiGPDDHo6y15W1ipXYlJkgklP5VQsdHQurpmJdz2qC2znWfrXx84cCDXrl1j5cCVFKmL8DKpG/BLZVJ8H/Hl2rZrlKpLeSPvDaQKKR4xHnwx7AuD8+/tspeY8TF1zlEfoQtDkSqk8L+3cfbbsxx84SCz82aTbJPMQruFPNn/SQRB4MiCI7oVx7wSFnkuYm3QWrL3ZHNNfo3HTR7XGzysyVlDqaaUiI4R/BHyBw+ffhi0oJVrkSqlBK6qG9SLiPyTaPXAYuHChSxZsoRp06bx448/8uOPP/L000/z3nvvsXDhwta+/H2Nra8ttkm2rN62moceeqjO9prg4lDwIay3WUM3GJg4kE8mflLv+bTpWowqjdh3bl+zrl8zQ6T+S03p6VL2b9t/ywLXO8WxsyNRgVGUXCphc+VmlEqlQduasi+tDy8vL8y9zelk2umO21dYWEhkXiSSsxJOl52+7fPcLMIuzypn4+CNVBlXofRW8vvK3/nmm29u+/wmUhMssSRXldtsvUr//v3ZvW835oPNedjuYYri6xfC1vDxxx+zJnIN5lvNsXnKBnM3c4xMjLi6+arefrjdwHZNXld2VcbZo2cJWxxGt/ndKIgraLZIPUOZgZuxG6WppY1qLFqKdtXtKLIv4tQpXSqcdfvmWc4aORqhzlFjb2pPZX4l9gF1NRH1UVhYyLRp0/j000/5/vPvsb9ueFxVURUV2RUNBhaFhYUYlxpzLuOcPv2nseehSFJE7069mfLlFJ2gGBpNS4uLi9O7AM7ymEXaA2lczrwRcF+4cIG9F/ZiL7PHTm5Xr9VsbVwULsRfjydqSRSOIY4oy5QUJRTpt9e47yRVJeFlbDhgbchqtoZTp05x9fxVvE29yffLrzewKCwsxK2XG5YllvrVov1z9+v74Wa7597WvVF0URAbH1unXx1DHDF3Nif5d90kUU5ODseKjmFrZEtHo45kncii12u9cO1VVztQk+pop7BDOC9QHljOvn2Gn+Odp3Tm+p7rHM08yu783XW0CaBbUazd3pyzOVQXV+M+0F3fl+3k7RDkAlkTszh79iwAO/N38lHqR6gEFeqTauK/iOfy5boTKRNKJ9Dx/Y50HN9R/5pEIkEmk2Ert+VNzzf5KPUjcpV1rXt9x+oCi7eT38ZaZs1c17lsm7PNYDJlluMsQlaFYObRdLFN0D0fWqUulRKgw8MdUJWr2DNsD+6H3CkOLebIwCO80P8FLq2+hElfE97q9hYFQQUEWAVgP8Yev1g/Xuv8GlDX4OHy+5c5E3UGpLp+1iq0LE9Z3qppwiIi9zqtHliMGTOGbdu2ER8fz7/+9S9eeeUV0tLS+OOPPxg7dmxrX/6+xsjECKc8J1KKUxrc57UBryHRSJDIJEhUEj6b8FmD+06ZMoWMvzI4WNG82hBaQctjJY/hZuVGsCaY559/Hrg1geud8nKflwmMCMSypyXm3cyJU8XV6+hzK7z2f68hdZAy+YHJd9y+7OxsFkQs4OrRq3ess6g9eF7mtgxliRLXD1xxVbjSJ6APffv2vaPzOyocKbEpoTK/sumdAXt7eyz6WGBhbEFXRVdKUkrqWM3WpkePHmSuyCTpxyTCFodRmlKKskzJsXeOEbY4jMVTFjevkno+ZHTP4ILzBez87Si8WohWo21SpP7EE09w+PJhzErNqMyrbNQV6k6pEcmO6DQCm2AbVv6gC7KtvK04HHq4yZW0eW/N4/GHHseuyg4rbysUFs1bSbK0tGTz5s3ExMRQbFVMaVqpQa2IwrhCzJzMMLGtP8Xvyy+/ZNO3mzhy6QhWXlaoylVUFTRslVzjChW1JApBIyAxkjRaO2XJkiWMHTuWbdu24W7tju9vvnyX/Z1++xtvvMG//vMvzAt0zmJl6WX16itAN5v+/mvvk6BJYN+ifZz86CROXZ30Au7a9sOxRbHsXb2XiIgbVqJNBRY1A9YAswAy3TLrDQjbtWtHu17tWLl4pf6a13dfp/2o9vXaPQ/pPARrU2t2X9xdZ3WxdjoUwCOPPML81fPpXNaZU5+cQl2lJvTtxnVEyzOW08WvCwGzApgwYYLBtvWW6/l9ze+8nvY6PgqfOtoEqLsymrAjAe/h3pz86KS+L1/u9DJdcrtg0dWCPx3+5LeC31iashSVoCLcNZz3zd/nxb4v8uqrr9Zp35W1V+gwqkO9KaaCICA5I8Eh04ElKUvqBF6eQzzZ8eAOLhZcZLX/ap5xfabOOXLP59J1TVdeCn6p0X4CDJzkau7VpR8uYe1tzbysebzr8y5W561wnOBIbtdcMjtm8v6o96lwq2C2y2z6WffjGednWPvEWoN7WfP9l3w42UBTUbOicWHeBTG4EPlH0+oaC4DRo0fXuzQs0jQuShcSyxLr3VZVWcWEYxMQfASkKilauZZF6xbpNRc3ExoaytG0o+QNykOr1taxo7yZuW5z2f3FbjZP2sz3Qd/janxjJu1u5ZCa2pnycOLDdEjqwA7vHcyIm4GAcEd5rMkVycjL5PgE+Nxx+zp16sRDQx+iIqaCc2XnUAtqjCR1/63eWvcWMmT13ptF6xahQcP/Df8/1FX/cyoRdDOikgkSAiruPGVw06ZNXMi/QKxzLGVpZQ0KH5dnLEcquVGhdlfBLkbbjaY0qZTLcy+zRrKGcMLrPXbw4MFs2LABPz8/QkJCiF4ajUapaZbwujb27vYcOH+A1etWM2vGLASNQElKCTbtbRo8T1VVFevWrSPwqUBsi23Jkedg5tS8Wc3boabGC65gJjfD2leXcrPVbiunp52mh6pHo8dnK7NxMXah4HLBLaVBGRkZ8eWXX+Lm5oZvgC+nA06TdSIL30d1qSxNpUF5eXlhFmeGykaFwkKBiZ0JJcklmNqb1tlXqdXVkFj33DqMfzDGTGrGrKuzuPLLFX3O/833IzAwkN69e2Nvr1tJ6fNHH9Y/sp6EygR8THW6A7sgOzoodJWxS9MbXlmSSCTEn4zHaZ4THvM8iFwUqS+UVxRfpB809vm/PqTHpHN+1XkKvAoID9c9n0UJRQTOaDotJcAsgMMWh1Gk6ipB11jpgi5VKa06DR8TH/1AVSKVMCximMH7j1wUye6Ou/Ea6EUfmz5cUF6gFzcKSa7MXIlW0PLoxEfZOGQjRflFxCbE4t3bmweqHiB6aTSPH3rcIAWqPqQSKZfMLqGQKLjOdYLR1Ql6N+lddhTswM7FDtc/XTk29BgdLnRg07RN+okYgDkL5+jbC7rAwsrbqo7r2k/Df2Ly5cmsyV0DOYAEvM56Maf7HJIGJNH5l8507NjRoG2CIBC7NpYH3n+g3rbv2LGDsWPH4vacG55PebI9fztjHcbe6KOolaQ/k07Fngoq2lVg42ZT5xzpx9JxC3UzuEf1UZ899c16ldCFoRwUDjLuwjiuzrrK1ZlXQQLdUroxr/u8Rs8/x3UOC7UL6wi19VqTeRHsid1DKM3/3BMR+btw1+pYiNwetmpbzpWdq1MUqVJTyeiDo8n3yWfwtcGc7HNSn8d+s1tUDV9++SX7vtpHVccq4s83Ltqs4WjxUTxUHgZBxd2m4/iO+H3uh1wi18/C3UlgE5sci2WaJXadGh6ANRepVMpv+3/jSc2TGGmNiK2ovwJujdj+5nuzaN0idvvtpux6GSvbryR2g+74mjSLA9EHSD6czJYtW+6onZaWllRlVaFyUjVay6J2xdsfN//IocJDDDUfyqqsVZybcw6ZVNbodR577DFCQkKIWhKlDyqaUx28Np1dOuMW4MakSZOQyWXY+NhQEFvQ6DGCILBs5TIUTgpcy1yxdLdscvBxJ9ROibAxsuFC+QVWZq7ku+Lv6LqqKxNKJzR6fM1KQP6lW9dXzJo1i5EjR2Jubo5rb1cDp6SC2ALs/Bt+rqdPn862ldtQuOlWSBpzQ8pV5SKoBd778T3sRtlh29FWH9w1lJb2xhtvcPz4cWbNmgXo9DL98/vrZ8zXr19Pnwl9GN5ZJzhvqDheDcs/0gW6D773IGGLw8g6kUXMFzEGg8YcVQ4aqYZXp73K1KlTAd3zUHy9/uJ4NVy8eJGxY8ey8eONXOMaaqWa8izDOhlJVUmYy8xxlDui1WjxHeeLU3cng9Wwmv6QaCVEZEZQra3mVOmN1cuagX1MWQw72+3ExNaE/Oh81l9ej4uJCwWvFZAXkccO9x0NtrWGmudOKSj5JO0TKrWVTI+dzo6CHYRZhfGI3SMkDk0kY1kGjscdDY6p+b+uff+yT2dzbcu1ejUzn/n8b/VbAlqlFs12nejatY8rJckllGUY1v3IOpVFeXY57Ue1r7ftjz76KF9//TVd/builCn5IPUDMqt1z262MptfbH5BKpdik2+jd/a6mYxjGbj1c2uyn5pbX0kikTB/z3zQ6t6noBT4ceKPJCUlNXkN9wfdG7Wsdn/QvYEjRUT+3oiBxT2Os8KZMvsyPv/8c/3ScZG6iJGHR1LkWsQD5x/Ap9CHEydOGAi6GwounEyccMh14M/YujaVN5Mcm8yhDofopLxzLcKd4DvWl33++1AJKhBAJahYnn7rom2AAwcO8MaKNyjJLGmygvOt4ODvgG+Rb4M6i5vvjSAI/N8v/8duv90ErwwmdH8onSZ2ojih2GDp/prRNfYu28vixfWvQjWX/v37M2viLPoE9Wk0sKg9CFmasZTiC8XsyNzBRquNDDw0sFkBXX0pCLdiT9y9fXdM3Ex46SVduoOtny2FcYWNHmNqasrIJ0eikCqQp8rrLbjW0tT0VUp1Ch+nfqxPz+t/pH+jOos9e/ZwMv4kMX/EkHcxD4cut295XDODX0NDVrO1aadoR746n0ptZaOBRY4yB2mRlBCPEFwcXfAe4a3f1twCmOau5gy+MJjDxYeJr4xHLaiJr4yno5lutruxVCiA0SNG46RwolReaiDElcpvOKglVyXTzrgdSxYt0Qc0FdkVqMpVWHeoX7wNoNFo2L59O0fXHaVEUwJB1OmLlz95mYr4Co4dO0bYO2EIaoFO4+t+HoYuDGXJE0sIdw3naMlRThSd4KtlXxmkbTqfcta5Gr2TzNXNVzlUeogeiT2IGhbF3sC9pB1qXo2ZOa5zGGY6jEsVl+h/pj8XKi4w2XEyX/p+icJaQb9d/VhsvpgXX3zR4Jja6audn+jM/yQYDa4o7i7YDYAcOVKFlNHLdFkHxlbGOAY5khGVYbB/7NpYOo7viNy0fiE+wPz589k1bxfhruGoBBVzr82lvLqc6XHTqaaaJ4yfYOK3ExssVphxLIN2/ZrWaTW3vlLUkijWJKwBKcgEGRKFhKEzhpL5c/22xrVpCctqEZG/I2JgcY9Sk8Pdz78fMjMZL73zEiqVikxlJmPPjKVaqGZwzGAedn+YefPm8cQTTwA3BrAa6lr61RBUEcTJqpNNtmHDig1Uhlby26dNO/m0JutYx4XwCzyS+giFqwupvF7JiuwVtyUev3btGtV21WizW1YfYuNvg/l5c06XNizgrh1c9DjZg70Be+m5tifvPvYuXkO8uPj9RYNZNv83/FG5qQi4EkBfhzvTV1hYWODn7IfKWUVZWv1f2jXMcZ3DDNsZWPW3wryLOesr1zMsZhiPZD7S5HUaSkG4leDCWeFMgboApVYn1Lfzt6MgrvEVC4B0ZTquClfK08rviiMU/C/1QQOCRECmlTHHdY7OcrYRZ6gzZ85QaVpJ0ukk8i7l3fKKRW1ce7uSdTILQaubdGhqxQLA1sgWE6kJGdUZTa5YBHoFcibxDHl/5tF+pOFMdHMKYFq4WXDI5hC+pr6sylxFapWu4KensScAB3scZI//nkbP4aJwIUuZpRfiSmQStCotxxYfA/7nCGXsbXBMUUIRFm4WjQ5yfX19+frrr1m9YjU+pj6UhZXV6YvEqkRyzuYgkUhQlipJ+j3JQJh8M3Nc5/BA4QMIMoEfev5ARGYEE+wnMMFhAiMTRhK0LIh9wfvYaLORI0VHuH72OicmniBoWRCjEurWe2qI/on9dfdcAkYY8ZqHTlw8120uM+1nYnnakk6dDAOgmsHutW3X+KHLD/p0y/pWFGsHRNHdddqB5Vk3iu+59XMj/Vi6fn+tRkvs+lgCpjadtimRSHTOVc4zSVemM+DiAHJUOcx2mc0rXV7Ba6CXribHTZSml1KaWopL7/pXM26V2sXswl3DOd79OLMdZpMzL0fUSIiI3AFiYHGPUpOSctjnMObZ5jz6zKMka5KZdHESpbJSxmjH8PGcj1EoFAwfPpyhQ4fqj108ZTHvTXmv3vOGh4ezYeUGLrtcRqttfHCdLcvGqMKIiX0ntuh7uxUWrl1IRGYEY66PocuyLszrNw8rbytmOs4kIjOChWtvzVns8ccfp2NgR4Z5DGuxNqpUKh7/7nG+W/UdMaUx9fq0g04M7/6gOwggMZIgqAUiPo7Ac5BnvUv3lysu42nsyX///V+e6v/UHbfTUe5IuW15oysWNUxsp7vnEpkEuUROz809se3Y+Ew4ND8FoTHsjOyQISO1NBW1Wo2dn12TqVBJSUmcST2Ds5HzXbOaBd0ADBkggEaqKwRo7d14LYvBowZjZGnEmO5jUJWpmgwEGsMhyAFNtYbCazqBe1F8UaMaC4C5c+dSnVbNqaRTjQYW2apsnOROFMQWUJlTifuAplM7SkpKGDBgAL6+vqjVaizcLFAXq7lccZkDhQeY+tVUTAtMkUlkrMxcyfEJxzGxbLiWTGZmJupcNVvXbNUHrM+XPo+xjTHH3j6mq/5dnYRlhSUVFTfsT4sSGncwA13djfnz5zNq1Cg6m3WmKKiozn0LnRDKpLBJBAYGkrgvERsfmyb7963gt0Cj+9+RIOFA8QGGXRjGqw+/SvZT2ShSFZx/6jzVQjVXJ1wlaFkQcz3n3pIOKbNbJhKpBKlWihq1fsAvCAKdJnYiIyqDklTD+6pRaTj06iF2Td6FplrT4IpifeYYN6dTufVzIzPqxqx+6p+pCIKAxyCPZr+HkdUjEVS64EgmyJjnptM11FThvpmMqAwcghwwtjKus+122OOzx0AjIZFImOc5Ty/A3uPTeMArIiJSP2JgcY8SsDyA0XGjWV29GolawpbULTwd+zSVVBK2J4yBkQMBGDBgAPv27TNwQ2mMoqIi0o+kU21XzZXEK43um+OSwwjjEbz15luN7teaCFKBoGVBDIwcSMrBFJ4d8SwOJg4Y7zYmaFkQgrT5Bd8AbG1tqbCvYHDI4BZro1wux72dO6qrKjQaDfGVN74UNRoNy5cvZ+5Lc3kx4UV+SvpJl8ur1jnsvLj1RaD+pfvLFZfpbNa5WTPDzSEuOo4sWRbnLp9rct+PUj/Svbf/ucr8EfJHo45QNTQ3BaExZBIZqlwVIQ+GcPbs2WatWPznP//hP8v/Q/al7LsWWNQegHmbeDPSdiQRmREcffBoo6lQLv4uGEuM6WPTBxtfG4xMbt9DQyaX4dTdiczjOlcjQRCw9m44/Qfg2LFjFF4r5ErelSZXLJzkTiTuTcRjkEejs/81mJubExUVRUJCArm5uZi7mtN9U3ddGo5ES9WgKlTXVfq+C1oWxDPudd1/ati/fz8HNx0kKj1KH7DKTeWM+nkURqZGRC6K5MylM0S8E4G5uTn5+flA045QNxNgFkCOd06dvsg3yWdiv4lYWVlxbcs1Oo5reLWihm3qbSBDrwmb7DiZo12PsrbzWt7u+jbWh60RNLoBtVQpveWgovZzd7LnSf2Af9GJRUilUt54+g08BnkQtzFOf0xpeimrfFdxLuKcPqhoaEXx5uJ3NdROp3ILdSM7JltvNnFl7RX8J/vfUnrpAdMDSOQSJBoJGolGHxz5POpD2uE0qgoN3cqaq69oLqJGQkSkdWj1wEKj0fDdd9/xxBNPMHToUAYPHmzwI1I/UplU7/1f5lHG79W/oxSU9N7UG8+FnretD3j99deJ/DMSt+tuHIg90OB+pZmlXA++zsiOI2/3LbQISycvZa7nXGI+j8HU3pTE3Yl0vNqR/Sn7mes5l6WTlzZ5jrfWvaXXnOTm51JlXUVQ5yBAJ55+a92dB06PrX2MyTMm092iOzFlN4o3Xb58mfeS3iP60WguJl+k0riSPpv7cKrnKfxz/TnqfZTXNr1W7znPl5zHXeXe7LoTTbF3/V7UFmrOpTceWKzMXMnh4sP0suhFdLdo5jrN5eTkk+xwa1pc2lJIiiUoXBTk5ORg52dHeWY51SXVDe4vCAJmnma4KXQ1LFpbY3HzrG6QeRBuxm6Eu4azo/0Ofu/ye4PHZqmycFG43FZhvPqoEXDnx+Zj29G2Sbe3d999lyEhQ5A5yRoNLE4lnGLVJ6v4v8//j/Yj6hfk3oxMJuODDz7g2rVruLq6YuFmQVlGGXNc5zDGeAwSmYTK7pVEZEYwXTGd4B+DG3QoA/Dx8cGm0gYbf0NHMJ+HffAa6oVTDyeyzLMwyjXSOU79r9ZEUXzzAovs7GwOHTqEabYpaQ5pFCffWLGo1FaSXp2Oj4kP6io1CbsSGk2DgptSiP5nPxqRGcEv2b/gbeJNX6u+DJ49WLeaoZSgVWi5OPtik+2s7/w3rybsNtqNy2wXDv1+CLm5nNh1OiOI5D+S+a7Td5SmlOLUw6nJFcXmaAdsfGxQWCvIPq0LLq7+epXOUzvf1vs41euUwWqItZc1DkEOXN9z3eCY5uormouokRARaR1a3W72hRdeYPXq1YwePZrAwMDbrhz8T0NvjfdEJEQDckAJPh/46L8YNBoNgiBgZNT829itWzcAQi6FcMqk4boL6/euR/AV6OPW507eRotQ2yZw77S9qHqpSH0/lT+j/2yWnV+NIxProOJ6BUb9jLAOsNY7Mo2Ou3MrZEdnR36d9ytBJUHsL93PE046zctqs9U4TnLEJN+EYvtigpcH8+6z7yKVSvnloV8Y9+c4Dvoc5K0Nb/He44bpa+dLzvPDMz+wyWYTf/7ZtNi+KUb3H81y7XLM5eY6T/l6/hdrvvAlaglR/45i2/RtTAyYSNSKKH545geMM43vitXwgC4DmLtsLiO9RiKRSDB1MKUgrqDe4mEAK1eu5KnYpxjjOIZraddafcXi5lndIPMgDhQd4NuO31KWWcbFkoYHi1GxUViZWJF7MbdFAguX3i7E/DcGmw5Np+kATJgwgeocnXORlacVlfmVKMuVKMwNa2nka/LJicvBPN28jr6iMV555RX97+au5pRnliMIAu90eYc9p/egkWiQS+Q8mvco+9z2NereFRYWxlddvqpXTzXoi0Gs7LWSUvNSLh+8jFGlkf6ZLkoowmdM03bSn3zyCZ988gnPvfQcyqlKUitT9dv2xOzBGGNK00opuaKz5HXq5tTguW4e9FdXV2O0z4jOpp2J4MaK8oaqDQQtCyLkpxDOPX2OiHn/s4Jtxv9VY6sJapWa+CfjGek0krP/OYtEJuGPZ//g/IrzaFX1pyjW5lZWTSQSCe36tSPjWAblWeWYOZnh0rN52oeGgiNAb4vbZWwX4rfF6zUb6io12aezcQttuRULERGR1qHVA4v169ezceNGRo1qvjBNREfowlD2+u4Fuc7uT6qQUrK2hNApui+Ao0ePMmLECB566CG2b99+S+cOcwrjgO2BBusuLL++nPy0fNYkrmHatGkt8n7uhNCFobplepUW4axAhayCzzZ9xksvvoSpaV0P/tosnrIY1sFuv90UphYiT5bzbvq7/B7wO6PjRjdY9+NWmOM6h7OrzhI9OhpNpYaM3Az+nf9vrlRc4WG7h1HHqSk5VsLQvKE4BulsICUSCU8UPsHS8qVE2keiETTIJDo71xxlDuXScqqvVeM10auxSzebZ2Y/w6/nfsXB0oHq4up6i1hpBS1j7ceyLWkb53ecR/u0Lm9/wF8D6Pd2v7tSFBHAy9qLYqFYP1Cs0Vk0FFgApFen44orFwoutHpgUXs289q1a3zy1icoX1Ci9dUyr/08vv7ia6rfrcbY2jAfvKqqio9XfYxxO2P6nOuDz+g7r6Xi2tuVnLM52HW2a7Zew13hzrbqbZg6mGJkakRpSin2nQ2reMvsZSyctJCSSyVN6hUawtzVHK1KS2V+JWtUa9Cg0afX/VL9C+3dmw5YasTbN2PT3gbPRZ4YlxtjLbFGZnXDCrkooQhrn8ZTwgD8/Pzo2LEjdlZ2dJB2INkqWR90b/hrA3k2eayKX8XAnIF0HN+x0Ymxmwf9MTExzJw5E4VCwQcXP+BU6SlOlZ26oamo1n2mLV+2vNnBRWOz6PM854EnMBDMTcyJXBTJ2W/OAjQZVNwKke/oCum59XMj41gGGVEZdH6iMxKJRPcZrdE2mvLYWHBUs73j2I6c/Ogk6io1RiZGZMdkY2Jr0qjLl4iIyL1Bq6dCKRQKfH19W/syf0tWZq5kt99uuizvwoTQCQSvCGa332797F1CQgLV1dUoFM2r2lvD4cOHiT4WjVal5Wz22TrbBUFA3UNN4aFCQkJCWuKt3DE1QYXESIJXtRfy83JGvzUajaZh96vaLJ6ymIFnB2I71BbzLuYtGlTUYHrAFDaAzFTGmJQxXKm4wlSnqbzr/S4LHlyAz4c+hC4y/HI/fPAwl6depkJTwRfpX+hfv1xxmQ6mHSjOKebDDz9ssTY6KhxReiobFHDPdZuLvdye/nb92bN7D/3799ellfja3NX0AGeFMznKHP3fTVnOlmvKKdYUY5VrhcxYhqlD48FmS2JsbEz0lmi0aEmsTMTE1gRja+N6BdwFBQXY+9ojLZZSFVd1RysWke/ocuKtO1hjbGVMwvYEvdVs1JIoIt+JrPe4srIyCq8V6mfn60uH0gpa8jR5uMW7EfZo2C2vNF+/fp0XXniBhYsXYmxtzIq0FURkRjBWMpa/Av8i3DWcXx1/JWZSTJPncpG7UKwpplJTt2K8xeMW2KTZcH75ef1r1SXVVOZVNisVavbs2Vy9epV33nmHQKtAcnxy9JXpFV4KLMssCQoMIn57fJP6iptTa/r168fEiRNZunQps11m43jaEctlloRUh9D9390B3YTJXM+5BC0LIvlwcpPtbS56a14atpO9XWqqdxdcLSD1cCrXd1+n8xOdDSqhN0ZzUpAcghwwdTQl+YCuT9KPpePWz03MeBARuQ9o9cDilVde4YsvvmixPPF/CjXLxaPjRhO8IhhzhTldlndhdNxofS7qzJkz2b9//y0PPD/++GMWf7AY0/Om/Hm1borNpaRLKJwVRH4dSXBwcEu9pdumtoXpK6pXcA9zp/fe3hTZFGFh0XBxrdqoq9X029QPtDq3FqlS2qJBBcADDzzAqMOjkCABiU68+bL7ywCc/Ogk3sO9cQoxTKV4//33ee+t9xjnN47NuZtZ+tdSHnvsMVb8toIAswDMzMzYod3B8ozbq9txM44KRyo6VFCS0rC4OLokmofcHmLkyJE4OTlReK3wtmesb5fytHLOJJ/h559/BnSWs/mx+fXue/XqVcbNGYdMJYN0dMXx7uIAxNXVlU3rN9HJuBMXyi8AYOVtVa/lrJubGw+Of5B3Z7+LoBGa5bTVEDUDvOil0bj0dqG6uBp7f/smB3jHjh1j/IDxKCW6ytr1BRaF6kI0aCjYWtBsfUVtUlJS+PLLL/n22285H36en7U/kxmRyaLui8jNzWWO6xweOvMQfz7wZ5O20V998BVCtcAXP39RZ1uKJgVBJfDsS88SuV8XSBUlFGFsY4yp3a0Fl4HWgRQFF+n7wrGrIy9PfpkwtzAkUsltCYc3bdrEa6+9hqWlJf1O9+Ov7/7i5Z9fJjs7W79PTXAxMrbl9Gw11ry3U6CyKWr0GBe/u0h1UTUOgQ7EbYyrYzN9J0gkEjqO7ah3h2pp4baIiEjr0eqBxdGjR1mzZg0+Pj6MGTOG8ePHG/yI1I9W0DI6bjRWT1gZ2ALWCLprUlKGDBlChw4dbuncI0aMYMqUKXTI6cDJyrr1LHZd2YXXVS+6BHRBKm1b47D66iJMOTKFLjldSLdMZ9cHu5o8h0apYedjO9n6wFaQ6pxYtAptg0UEb5eQB0LIHZirrw6uEnTuN+VZ5Zxbfq7OagWAlZUVr7/+Og7GDlQL1Ww33c6+tH3Ea+IJMA/QB5hSyZ3fB61Wy65fdrFTspPrl67Xu0+hqpArFVfoa3WjbkZhfGGzHKFakrxreeSqc1m7di2gS4VqaMXi2rVrnLh+AnWWmrLUsrtmNVuDXC5n4sSJhLmGcbFCp62w9rZu0BkqR5mDcaoxdn52yOSNVzJvjNpuPupKnTtP/I74Jgd4Hh4euNq7IimVkK5MrzewyFHlYKIyITo+GrPghsXVDTFw4EDmz5/P5s2bMbExYWTySNxOu+Hq6oqzszMAfff2Zcz1MU2m11VWVFKdVc251LqmA0lVSWRezuSY6hgHPtSZUdyqI1QNAeYBFHQqoCi5CICEygR8THy4tuUavmN977igZvDzwcx5Zg4jRozA09PTYFtLOb/BnReobA41z56gFcg5m9OiQUUNvmN9SdiRgFajbXHhtoiISOvR6qNGGxsbxo0bx8CBA3FwcMDa2trgR6R+gr8L1gcVoQtD+eGHH1iVtArVZBV7n9iL91fet33uZ599lrVr1zKl4xQSbROp0FQYbI8iit7Vve/wHbQM9dVFkEglzD40G6dYJ9YlrSMqquEvTK1ay64ndrHXZy+xI2JpX9Cek31PNlmh/HbY5bmLk4+f5BnHZwwcYd7b+x5ew7xw7ubc4LF6K0epFr8v/DDyM+JaxbU6Isc7QSqVIi+XI3eQkxCbUO8+0aXReEg82P7zdk6f1hX7q0mFupv09OmJ3F7O6Ed1wno7fzt9rYabCQ4O5qmXnsLH2ueu1rC4mUDzwBuBRfuGa1lkKbOQxclaRLhdM8BLPaRLazr+n+NNDvA6d+5MWloagS6BpFc3EFgoddarP2l+IiM3o4EzNYxEIuHrr79m+PDhjLg4goevPMypU6fIyMhAJtMFU2VpZUxWT24yvW7GjBkEtQvikWl1CzQmVyczIWwCT/V5Cs1hDWl/pdUJLBpLCwNdOlTXrl0piS1BkAlczb3K9r3byVBm0MGkA/Fb45t0g2qKqKgoFi9ezNdff83evXvv6FyNXqcFClQ2l5p0K0EjtHi6VeQ7kaQeSkXQCFxZe4Wqwiqce+g+P5u6nyIiIm1Lq4u3f/jhh9a+xN+SmwfUe/bsYfPmzfrti39dzPD3h9/RNbr17oZZghkni04y0F5XF+Nq9lVSHVI5/t1xVDNVyOVNe9e3Jg3N4inMFdhp7IgOiCZ1ZipHrhyps49Wo2XP03vY5b6L00+eBg2cfesse1V7DQTdrOOO06JWZq7kh4of6PpdV8aHjwcPXbCgKlPxXch3OAY7NnmO2s4o1VSzJX9LiwUVNbw6+1V+S/iN9in1p7dElURhlmjGrFmzmDJlCj//+DMlSSV3lLJzOwzuMRjZGRkTZkwAdAN1QSNQklyCTQcbg309PDzwxBNviTela1vfarY+YmNjSYlNId4znnJNOVbeVqQcTKmz34dffEj5A+Wc3HuSsf3Htsi1QxeGEr00Go1Sc0sDvHaKdmQoM/D08iRxT6LBthxVDiaFJnTr0A03tztLQamxnL2ZsvQyLNo1ncrYqVMn/JP8KTG6qeCboCGlKoUPhn1A5tlMIo9HsmPiDjqM7qAPLGoPtBvi8uXLnDt3juvx13G3dOdA9gF+/OZH2n/Vnvg98ShLlXgO8mzw+Kaorq7m0UcfJTc3l0GDBjFlypTbPldTNFagsmZ7S1FfulVLBRc1aX6O3RyJXBiJcw9njEyMmnU/RURE2haxQN49ys2Fxh577DEWL17MihUr6NatG9/t+O6OryF3k+Ny2oVDiYf0r604soLyC+VcunSpzYOKppjRawaWvS3RpGrYPsnQFUvQCvw2+zeS9yejcFDgVeiFKkpFwokETEx0bkiLpyxmdNxoNDRPAN4YNU4nD554kPwrN7QAAcsDGHBwAGauzUsnmeM6B7lE1+9yibzFrV39nf0pt6q/+rZW0BJdEk2wNJjhw4fTp08f3Uy2hLu+CiCTyHCQO5Cl0rkByeQybHxtGiyUl6HM0NWwSGubFYvPP/+cGeNmYFxhzOWKy1i3rz8V6q+Lf6Gp1JB2Pg37Lvb1nOnWiVoSpQ8qbiWfvp1xO9Kq0+pdscisyMQn3Yf9u/bj6tqwE1dTFBcXszthN6v/XG3wulajpSyzeYEF6MT82apsg9eylFmoBTXtjNsRujCU0LdDqcip4NKPl7Dxtal39r4+3n33XXbv3s2DDz6Ij9KHYvti2oe1x6TQhMqoSjo83AGZ4vZT1oyNjXnllVeYOXMmPXr0uO3zNIeWKFDZHFo73apmlSX3TC4lySW49XNr9v0UERFpW1plxaJ79+4cOHAAW1tbunXr1qiQsibdQqRxJk2apP999uzZdyxOnTp1KmvXrmXyzMmcqrxRzyLbPptux7sx+YPJd3T+u8GQwCF4X/Sm36v9uPbuNX575jeGrxiOIAjsn7efhB0JVBVUMdZoLG/bvc3Xj3yNpJvEwOmqpQTcNekcezrvoeCKbvBbnlPO2WVnef3w67i4Nd/jXSWoDDQaLRlcOCocKTIuqjewuFp5lSptFS898hL/HvtvABL3JWLTweaO88tvB2eFM6llqQSbBiOTyfSWsx1GGmqKjh07RqJZIo/YPkJyanKbBBZdunQhNDQU10pXLpRfYIz3GIoTi+vUC3lk2iOsE9bhluPWIqlQNw+2av6GxusSfPjhh2zL3YbrOFesvKwoyyhDo9LoNR/J6clYVVo12762Ic6dO8fHWz4GILZnLAsWLGDChAlU5FQgaAQs3JoXWFRlVHG86Dgnsk/Qu7cuTTOpKgkXmQvxsfF4e3sT9k4YJcklXFp9if3h+5tVuwFg2LBh+t/9Tfy55HSJJ157gnKhnMTXE3ng/Qdu893f4PXXX7/jc9wrNJRuBTTr2WsuoQtD0ag0RC+J5syXZ9Cqm3c/RURE2pZWCSweffRRjI11/u1jx45tjUv8o2kJxxtHR11qjjxLTqZpJrnKXExlpsRZxrHAccF9c98G2AygZEYJgacCubDyAgoLBVq1lriNcVQXVRO2OIwL0y4QUhbCAO8B4N267bHvbE/OOZ1N6qlPTuE5yPO2C0fV/A3NK57VHKqzq6mUVrI+fT0zmGGw7VjJMXpZ9kIuvbFSVRh/9x2haji+7zh7YvYQuSgSX19fnc7iJgG3IAiMGDGCDns6oM5St5nG4rnnnuO5557jl+xfOF12mqneU1GWKqkqrDJwJ3Lyd8InzQc3uRvW7e9MY3YnA7xr165x8exFjMYaYeFmgUQqoTStFJv2NgCkFaYR4hZyx581DzzwACMeGMG+v/YRExNDfr5uNa8svUxXQ8OkeV9BUbujSApKYufhnfrAIrk6GW26loDRAUyfPp0ffviBkT+M5MqaK2hV2ltKC/s84XMK8gp4xOERIiwjSNGmEFIRQmlqKQd7HOTPjD/FSsz/426mW/Vf3J8TH5y45fspIiLSdrRKYPH222/X+7vIvcMbb7zB//3f/1F1pYpZ12ZxzPMYP676EWM/Y3r0bt3l+pZkoPVA/p34b2atmEXZuDJi/nvDFz9scRjd3urGwosLWezdstayN1NTNMohyIHY9bFU5FZw9tuzPPbnY80qGtWcarQtEVyoi9Roq7UctzqOslSJwvJGDZTokmgesn3IYJa9KL7orusrapAUS1A4KcjJycHX1xdbP1su/XjJYJ/y8nI8u3giM5MRbB/MueJzbaKxqCHQPJCfsn9C0UGBiZ0JxYnFBoFFjioHyyJL7Dvb3/Eq0J0M8GbNmkWfzD4sN1uORqrBwt1Cp1+pCSzUaRz/7ThJV5JYsWLFbbdRIpGw9vu1LOm8hO4/dCc0VNe25uoraugf0J/rbtfpouqify2pKgmzUjOsrKz0zng19W5uJe+/srKSXzf/SsWwCkpyS5CYSjhRcoIex3uQsjSFw/mHCXcNv413//eksc+xlh743879FBERaVvuWn7DqVOn+Pnnn/n555+JiWm6KJJI6+Li4sKvyl/Z7bUb5yhntpzfwhnOoPlTQ5VLFSszV7ZY7YTWJNgimKLSIvxH+OP0thMSmW5AXDO7tTt/N/ZG9hjFGfHVV18RHR3dKu2oERum/plKQVwBJz8+ifsAd5L2JTWraFRj1WjDXcNbrOK1r68vJtUm9HbtTXHqDdeiMk0ZZ8vO0q6oHdbW1vTp0wdBENrEEaqGf03+FxPmTNAPRu397eusWFhYWLD+j/XYGtliVGCEkakRJnZ1K4rfLfzN/ClSF5GpzKyjsygrK+Nc6jk0SRrsA+9cX3En+fShoaHMHDcTKVKyldlYeVpRmqJLjyu6XkS1XTXZ8dkUFjZclLC5mLua46Z2Y/yI8fj46CqNl6aX3lJgMWv8LASFwMgJN2o9JFUl8eTQJykqKmLBggW3nfdfWlrKybdPkrMih78c/8K4xBg1ao4VHOPwg4db3EBBpHncDdtcERGRlqfVA4u0tDQeeOABevfuzQsvvMALL7xAr1696N+/P2lpabd8vm+++QZvb29MTEzo06cPJ06caHT/TZs24e/vj4mJCUFBQezZs+d238rfDqlEyoq8FeAHSeZJOAx0oOB4Ad/lfdditRNaGyOJEbaptlgPtGbX57v01ocapYbIJZH8kvMLTzk/xe5du3n++ef5/vvvW6UdNWLD01+eRqvSEvPfGCw9LJstNmxONdqWwMLCgs6unenauSsVGTdshk+WnsTd2J3kmGRKS0uRSCRIJJI2KY5XQyfHThQIBfrVE1s/W8qzyqkurjbYL6P6f8Lt/6VBtUV13vLycvr164d/B386mnTkYvnFOkXyzp8/z28nfmPXb7taRF9xp8gkMlyNXetYzl7efxnBXGDv2r0tsuKsMFdgbG1MeUa5/rWytDIs2zV/ZclcZo6lzJIsZZb+taSqJLyNvZFIJJx8/+Rt26w6OTmxatYqvrX6lnDXcMrdykGAmJExzLaZTeCqQNHe9C5zN21zRUREWpZWHznOnj0blUrFlStXKCgooKCggCtXrqDVapk9e/YtnWvDhg28/PLLvP3225w+fZqQkBCGDx9OTk5OvfsfO3aMKVOmMGvWLM6cOcPYsWMZO3YsFy9ebIm3dt8TsDyA0XGjuRR6iQqjCsxV5jz28mP8Yf4Ho+NGE7A8oK2b2CxmdJ9B8Lhg2u9vbzC7tengJkqKShhuOxx/f3/Gjx9Pv379Wq0dtYtGaTVazq84f0+KDZ3kTqi91QYC7qiSKPpZ9ePxxx/n6tWrfPXVV2jVWooTi+96cbzlGctZmbkSZ7kzOaob/9umdqbEvRDHV9e+Mtg/XZlOO+N2bVrDwszMjNOnT5OcnIy34M2Figt1allUVVVh4WGBWY4ZDl3aNrBQqVScPHkSRbGiTpG8S8cvodAoGNhrIIGBgS1yPXNXc8oyb1jO3uqKBYCz3JnU8lTKysooVZeSr87Hy8QLaDwtLGxxWJN5/z4uPsR9HEfgqkCkGilIQKaW0XVN12atOIq0LHd6P0VERNqOVv+0PHz4MMuWLcPPz0//mp+fH1999RVHjtStPdAYn332GXPmzGHGjBkEBAQQERGBmZlZg7PQX3zxBSNGjOC1116jc+fOLFmyhO7du/P111/f0Xv6uyCVSbF6wopBRwehlWkpMy9jt99ufcXv++XL1OVXF/LM8/D72M9gdiv9rXS8l3tz6r1TTJkyhV9//ZXp06e3altCF4YiNZKCwD0nNox8RzfT5yB3oMyljOTYZEAngD6UcgjrHdZIJBI6duxIr169KEktAQGsvKzuajulEikRmRH8cuUXcpW5rN+0HtDpUE4/fZrq3BsrFosWLeL77d9TlVZFSWpJm+krJBIJW7duJSoqit72vblQfqFO9e3Bgwdj5WXF2LSxbb5iUVlZSe/evTm++zhJpUn6wEJdrSb+ejyOMscWXfm5uZbFrWosAPKu5jH1ual8//33JFUnYSWxYtKoSbz88st3bLNaM2BdnrIcrUyLVClFY6Rhecrye3Jy4O/O3bLNFRERaXlafeTo4eGBSqWq87pGo7mlwktKpZKYmBiGDh2qf00qlTJ06NAGKy9HRUUZ7A8wfPjwRis1V1dXU1JSYvDzd6Xmy9TlBRekSimCTECmkRlU/L4fMK42pmNRR0qfvjEDf67sHNkO2UztPPWuzm5FLYlCq9beck2Bu0GNDuTID0f4o+gPvtn+DQDb/7udQlkhnYo6GexfFF+EdXtrXaB0F6nRlRyQHUAQBDb9vkkvbh96YigDjg7Q7/vXX3+RpclCUaLQpde00YoFwMiRI+nbty/dbboTVxGHqbepQSpUmaaMcm051qXWbdpOACsrKzp37oyLzIXkymR9YJF+NB2VpwpZhYwNGzaQm5vbItczdzWnPLNWKtRtBBZWGiuMnIy4evUqyVXJ2FXbsX//fvbv398ibbw4+yIX5l0gaFkQj4c+TtCyIC7Mu8DF2eIKt4iIiEhzafURw8cff8xzzz3HqVM3aiWcOnWKF154gU8++aTZ58nLy0Oj0eDs7GzwurOzM1lZWfUek5WVdUv7A7z//vtYW1vrfzw8PJrdxvuR0IWhlKwtQav43yydTEPJ2pL7JqgA3exWP49+RByL4JFHHgHg5+yfGe8wnkFvDCLWI5aioqJWb8e9LjasCSTVUWrkjnKKioqIWhLF7lO76VTSCaMHjXjxxRf5/fffAdpUXzHHdQ4jq0cikUpIDk/WO2ZNLJtoUCRv6dKluHd1p1+nfm2aClUbd2N3TKWm5HnlUZykq2UBkKPMQaFV4Orl2iY6kJu5fPky7730HoXSQl1gkVLC9T3XkfWRcfHoRSZPnkx6enqLXKu+FYtbXV0aFDKIx8Mf56uvviKpKolO1p344YcfeOONN+64fbVd2YJ/DAYg5KcQwl3DiciMYGXmyju+hoiIiMg/gVYPLKZPn87Zs2fp06cPxsbGGBsb06dPH06fPs3MmTOxs7PT/9wLLFiwgOLiYv1PampqWzepVVmZuZLdfrsJitDN0gWvCGa33+776ot0ecZy8iX5lLmVsefPPZzJOENkSSRTnKbwVtRbLDyxEH9/f6qrq5s+2W1yv4gNQxeGMm7EOJwcnRifNZ7IRZFUTKlgVNdR7N69my+++IIv3/gSoI4jVNSSqLsqYl0auhQZMgSJgAQJYx3GYuevK5JXQ99+fakwraC7Z/c2TYUCSEpKYvPmzRw9epRA80CSbJJQV6ipyNWJ5N/8+E1UmSpKXO+dVdC81XkkFSVh5WmFplpD7NpYVJ1U+Dn5EdAugNKtdQsp3g4Wbhb6FQtlqRJlqfKWVyx8bX0plhUjkUhIqkoiwE5Xv2Lq1Kl33L4aV7bAVYEG9qaBqwJb1JVNRERE5O9Oq9SxqM3nn3/eIudxcHBAJpORnZ1t8Hp2djYuLvUXIHNxcbml/QF98PNPoGaWbnTcaKxWWiFTyOiyvAseAz2IoGULs7UmUomUHZU7MNWY8sm+T9ij3MMw22HsyN/Bbya/4ejgSP8J/Vv1vt7NolF3yvC5w1lxdgUCAhpTDdfsr1H4r0K8Pb0Z230s1qetiVoSRVF8EV7DdOLY2oHT3WJl5ko0aDCSGKEW1Iy5OIZn2j/D4QcPo8pQ8YzbM+SqctEKWlzkLpSmlrLDbQemGaZtUsxsy5YtvPLKK0yePJnBnw3mctVl3J3cKUkqwdzJnNNJpxEcBcy9zO962xrCsdqRckU5R/57BDNnMypyK9B6aOmf2Z8H0x/EyKhlviLMXc31Kxal6aUYmRhhYntrtsDOCmeyVbrP86TqJB51eLRF2gY6V7aGqpiHcf+khYqIiIi0Na0eWEybNq1FzqNQKOjRowcHDhzQV4XWarUcOHCAZ599tt5jQkNDOXDgAC+++KL+tf379+t98f/paAWtXqht8GX6RCSj145G63LvDIYbo3YhuT8Vf5JbmMsj9o/oUxtmL51NRUVFE2e5M+5m0ag75fpn19GO0KJ2VJPnk4el1pLQQaFc+fkKAy4NwCbAhshFkZjYmxAyL6Te1ZjWpnZqyjj5ONYUr+Gn4p/4Rf0L1Y9UczHrIiUlJVhmWmJva4+2VMuZyWe4oL1AuKRtipn5+fnRr18/OnXqRJB5EDvzdxLgHUBxYjGuvV0Z8/QYTkedptuAbm3Svpv59ddf+WzXZ0gfkHLghwN4GHngFurGkcwjSH+Q8vjix1vsftdOhSpL0+krbjUdzEXhQnZ1NuHPhpMyI4Xc87nEOsbi4+ODXC5v+gSNcCdVzEVEREREbtDqqVCnT5/mwoUL+r+3b9/O2LFjefPNN1Eqlbd0rpdffpmVK1fy448/cuXKFebNm0d5eTkzZswA4Omnn2bBggX6/V944QX27dvHp59+SmxsLO+88w6nTp1qMBD5pxH8XXAdoXZN+o7VE1YEfxfcxi1sPnNc5zDOfhxpyjSUgpJNeZv0ha0kEgnm5vfOLHFbErUkilNvnUJWJeP01NMUPlOI/T57lIVKnjz+JE+ffRrfsb4orBRU5Vexbey2Ng0qLn14CUdHR4p+KSLcNZxiTTEOWQ7ItDLWVazj44sfU3y9mGVJy7gw70KbFjMbPXo0kZGRvPvuu3Qx60KGMgNZF5nectbS3RKPVA98Qn3apH03U1RUxLHIY0gLpXi86kFZehlJx5LIUefQd1zfFr3fNeJtQRBuy2oWdDbJWrSsiV6DVqtl+pjpdO7cmfj4+Dtun2hvKiIiItIytHpgMXfuXK5evQrA9evXefzxxzEzM2PTpk38+9//vqVzPf7443zyyScsWrSIrl27cvbsWfbt26cXaKekpJCZmanfv1+/fqxdu5YVK1YQEhLC5s2b2bZtW4t5s9/v/N2+TN/0fBMAAQGZIMPphBNa7f31HlqT2rOyklIJv5/4neSOyQzyGsSWRVvY8vIW7PzseOC9B3iu8Dmkcilapfau2+bWrkLevn17ADIyMvRuUR3yO7D4xGJsqmywDrNG6aXkZ83P9N7U+55J3bM0ssTbxJvCkEK95Wx6cTrWZdaYOZu1cet0DBkyhI0bNxLsFozFoxbIFDLiZHEo7ZWsOryqRa9l7mqOVqWlMr/ythyhAORSOZZaSx568SEctY508O6AlZUV3t7ed9w+0d5UREREpGVo9VSoq1ev0rVrV0BXBXvgwIGsXbuWyMhIJk+efMsajGeffbbBFYdDhw7VeW3SpElMmjTpFlv9z+B+St9pDt9lfQeAVqkFBYTvCmfr1q2sXr26bRt2j1A7kGx3tB2dXuxErFksT858ktGfjeaT/37C1z5fM3/+fKLfizYQsUYtibprz0RtfcSMGTOYMWMGVla6WhpzXOdwJOcIVQVVHPjXAfqc7oNaosZIa8TgmMF3pX3NJcg8iGyfbJz2OpGWlkZSSRI95T3vCUcoAG9vb7y9vUlLSyMmMoZ2ynbkuechqAUs01pWBK8wV6CwUlCeWX7bgQWAp6Un9AQfhQ97z+5FEIR7pj9FRERERO7CioUgCPpZ4z/++INRo0YBuvoWeXl5rX15kX8INekzg0sH47rYFc0WDW7z3HCc4djWTbtnuPjMRb0nf6B7IAWdCwg2D8ZSZolkpoR24e3o2bPnPWWba2VlpQ8qarDz0zlDrcxciRo1cokctVTNyXEn73r7bmb06NF4eXlx6dIlAs0CSXZIpiSphG3btpEry+Wv63+1dRProDyoJD4tnrDFYSy5sgQbpQ1BJ4Ja/H7X6Cxu1Wq2phI76HQWlysu42WsMxVYlbWK5RnLW7SdIiIiIiK3T6sHFj179mTp0qX8/PPPHD58mNGjRwOQmJhYp8aEiMjtUDsn/+OBH7Nnzx7OLj3LTLuZHLQ8eF9Z57YmNRWtV2auxFHuSJYyi35W/ViZuZKyIWW8ueBNVPtU97xtrp2/HQe6H9Df8+hu0QyJHsKBPgfa/F6npaWRkpJCamoqQeZBJCgSKEwpRCPXILOQ0d6yfZu272ZW/2s1x5cfRxWsInRhKLnKXDwdPRm5eGSL3+8ay9lb1VjUfm5dFC4ICCgKFfz32n+JyIxAKrm7BRxFRERERBrmrtjNTp06lW3btvHWW2/h6+sLwObNm+nXr19rX17kH0DtnPzazPeej8JYIXrQ/4/a7llhVro0uIsZFzkiOaLvv0ihfqF2W9rm7ty5k/Xr1zNs2DCmT5/OdqftnH7qNMpNSnZe2smsbbPouaUnVp5WbW6T/M0332BkZESXLl0wNTVFkAgUuRbx+MjHWZu6lv+89p82aVdDLN68mAyzDEIsQ9AKWnJUOTjJnVrlftdYzpall2HZrvkrFrWf236Wuu+MJWuX4DjRkcGlg5nT/d7Q1YiIiIiI3IXAIjg42MAVqoaPP/4YmUzW2pcX+QfQWM2Ce0XMe69Qe5AmCAJHJEd40vJJ/ev3ou7mwoULrF27FkEQmD59OlITKR1+6MDmrzdT2K4QqVRKWVoZU+VTcXZ1btNAsn///gZ/B5gHUNq/lKtXr2JaYorDgw5t1LL66T+iP1cTr6KSqHjmtWeI7xBPz949oUPL328LNwtKU0opzyq/ZY1F7ecWwHGiIxnLMggecP8414mIiIj8E2j1wKIhTExurTiSiIhIyzDHdQ7fZX2HChWCSmBht4UcGnKIL774okUcdlqakSNHAvDAAw8AukBSHiPnodcewrGfI4Ig6Kpue1jeU4FkSUkJgeaBnO51mthLsVhaWGJqZ9rWzTLgp59+AmDkhZHsO7UPhYOCB1UPtsq1zF3NST2Uqv/9VpnjOodVWatQC2qMBCPeC31P/0yIiIiIiNwbiMmpIiL/MFZmrkQlqJBL5EjkEiynWLJz505sbW3bumn10q1bN958802DQaR7oDv+Rv6MHTuWqsIq1BVqrDysGjnL3aOgoIAnnniC/v3709m4M9kds1kTt4bM3EwKCwvbunn14qZw4/WPX8e3ly89fXq2yjUs3CzIPZeLmZMZMvmtr1avzFyJWvifWF+iRjNSc08GwiIiIiL/ZMTAQkTkH0RtoXt0t2iecXoGt3luzN05F2tr67ZuXrOx9bOlIK4AgNLUUhRWChSWijZulQ6NRsPe7Xu5dPESJWdLyHXIpdKzkoyUDMzNzXWuW+9EtnUzDWhn3A5jd2MUzgrcTN1a5RoWbhZolJpb0lfUcPNzG+4arhd0i4iIiIjcO7RZKpSIiMjdpfbgrCZlaK77XKQyKRHoBmn3UipRbSoqKjh//jwWFhYEBgZypvgMV09dZVDJIErTSrH0aNm6C3eCo6Mjj378KMVninGLcsN2qC2SMAmBskBiPoxhecpy3Ie4E0bbF127cOEC8+bNQ/KIhEGPDSJXlYujomUtmiPfiUQqk+I/xR/AQF8RtSRKV1+lEW1Pfc/tzZqLe/W5FREREfmnIa5YiIj8Q7jZPevy5ctMmzaNM0vOEO4afk+7Z/3nP/8hNDRUX1Bz6fdL+TTlU86fPU9p6r0VWACEjQsjZV4Ky1OW45bihtZcS7fqbixPWc6FeRfwGujV1k0EwMjIiMjISC4fuczJvJOoBTVOcqcWvYZUJiVyUSSXfrwEgIW7LrCoqZcilTX+NdSQ61tNJfZ7+bkVERER+afR6isWGo2G1atXc+DAAXJycvTF8mo4ePBgazdBRESEuu5ZpaWlevGu9hvtPV3BuGvXrjg7O2Nubo4gCHTt3hVluhIHuQO5qbm3VHDtbqCfUZ8XgUOkA3SEY6XHuDbvWr2D5LbC29ub8PBwfo7+mRxpDtYya4ylxi16jRp3qchFkciMZVi2szQowtiU+5To+iYiIiJy/9DqgcULL7zA6tWrGT16NIGBgff04EVE5J9E165d6dq1K66urvf8/+X48eOZOHGi/u8dO3bwQ5cfkBfIKU0txcbXpu0a1wBzXOdQWlrKmrA1AFx7/N4KKgB+KvwJ55nODFcOJ4kknBU3ipauzFyJVtA2OrBvLrWDi8h3IhHUQrOCChERERGR+4tWDyzWr1/Pxo0bGTVqVGtfSkRE5BYwNjbmzJkzbd2MZiGV1k2XsfO3oyC2gNK0UjwGebRBq5omdEMovwz7BYlCAkoIXBUIC9u6VTeQSqTslO1k7tK5/JD1A45ynb6itq6hpQhdGErU4ii0ai0yhUwMKkRERET+hrS6xkKhUOirbYuIiIi0FHZ+dhTGFVKaWnrPWM3WJmpJFMtTliNRSDASjEABy1OWE7Ukqq2bpqdGp7A8czmmUlOc5E71iqVbgqglN4IKjVJzT/WDiIiIiEjL0OqBxSuvvMIXX3yBIAitfSkREZG/MZs2baJ3795IJBICAwM5mHWQgtgCytLK9ILge4WaoOLCvAuEu4ZzvMdxwl3DuTDvwj0bXBRritmev73VgooaTcVL1S8RtjiMyEWR91Q/iIiIiIjcOa2eCnX06FH+/PNP9u7dS5cuXZDL5Qbbt2zZ0tpNEBER+RtQWVnJyZMnAbh06RKTh08m61QW6ir1PecKtcdnDxdGX6jfInVeBHti9xDKvZMKVLuqtVwib7Wgoib9qbbmovbfIiIiIiL3N60eWNjY2DBu3LjWvoyIiMjfnCFDhrBhwwayd2ejQcPIaSPZ+dlOTGxNUJjriuM1py7C3cD9QXfCJfVbpAJoXe4ti9TaVa1VgqpFa5poNdp6hdo1f2s191ZfiIiIiIjcPhJBzFFqlJKSEqytrSkuLsbK6t7L4xYR+adRewb8zDdnMHc2Z9q5abdkYSpyg5s1Fa2lsRAREbl9xLGIyP2CWHlbRETkvqJ2Go2VlxUW7hZiUHGbiFWtRURERERakrsSWGzevJmNGzeSkpKCUqk02Hb69Om70QQREZG/AVFRUSxYsID+/fszevFoIhdFUppaSuKeRDGouA0aq2pds11ERERERKS5tLor1JdffsmMGTNwdnbmzJkz9O7dG3t7e65fv87IkSNb+/IiIiJ/I9auXcvhw4d57733CF0YilQhRdAKYl2E22Su29wGVyTmuM5pkeJ4IiIiIiL/HFo9sPj2229ZsWIFX331FQqFgn//+9/s37+f559/nuLi4ta+vIiIyN+IpUuXMmPGDP744w+dUFsp1kUQERERERG5V2j1wCIlJYV+/foBYGpqSmlpKQBPPfUU69ata+3Li4iI/I2wtrbm+++/x+yYmVgXQURERERE5B6j1TUWLi4uFBQU4OXlhaenJ9HR0YSEhJCYmCgWzRMREbllxLoIIiIiIiIi9yatHlgMHjyYHTt20K1bN2bMmMFLL73E5s2bOXXqFOPHj2/ty4uIiPzNEOsiiIiIiIiI3Ju0eh0LrVaLVqvFyEgXw6xfv55jx47RsWNH5s6di0KhaM3L3zHFxcXY2NiQmpoqekeLiIiIiIiI3HVKSkrw8PCgqKgIa2vrtm6OiEiDiAXymiAtLQ0PD4+2boaIiIiIiIjIP5zU1FTc3d3buhkiIg1yVwKLv/76i+XLl5OQkMDmzZtp164dP//8M+3bt6d///6tffk7QqvVkpGRgaWlJRKJpFWuUTMTIa6K3DliX7YcYl+2DGI/thxiX7YcYl+2HHejLwVBoLS0FDc3N6TSVvfdERG5bVpdY/Hrr7/y1FNPMXXqVM6cOUN1dTWgSzH6z3/+w549e1q7CXeEVCq9a7MDVlZW4gd8CyH2Zcsh9mXLIPZjyyH2Zcsh9mXL0dp9KaZAidwPtHrYu3TpUiIiIli5ciVyuVz/elhYmFh1W0RERERERERERORvQqsHFnFxcQwYMKDO69bW1hQVFbX25UVERERERERERERE7gKtHli4uLgQHx9f5/WjR4/SoUOH1r78fYGxsTFvv/02xsbGbd2U+x6xL1sOsS9bBrEfWw6xL1sOsS9bDrEvRURu0Ori7ffff59ffvmF77//nmHDhrFnzx6Sk5N56aWXWLhwIc8991xrXl5ERERERERERERE5C7Q6uLtN954A61Wy5AhQ6ioqGDAgAEYGxvz6quvikGFiIiIiIiIiIiIyN+Eu1bHQqlUEh8fT1lZGQEBAVhYWNyNy4qIiIiIiIiIiIiI3AXEAnkiIiIiIiIiIiIiIndMq6VCzZw5s1n7ff/9963VBBERERERERERERGRu0SruUKtXr2aP//8k6KiIgoLCxv8+afzzTff4O3tjYmJCX369OHEiRNt3aT7jnfeeQeJRGLw4+/v39bNui84cuQIY8aMwc3NDYlEwrZt2wy2C4LAokWLcHV1xdTUlKFDh3Lt2rW2aew9TlN9OX369DrP6YgRI9qmsfc477//Pr169cLS0hInJyfGjh1LXFycwT5VVVXMnz8fe3t7LCwsmDBhAtnZ2W3U4nuT5vTjgw8+WOe5DA8Pb6MW37ssW7aM4OBgfRG80NBQ9u7dq98uPo8iIjpaLbCYN28excXFJCYmMmjQIL777ju2bt1a5+efzIYNG3j55Zd5++23OX36NCEhIQwfPpycnJy2btp9R5cuXcjMzNT/HD16tK2bdF9QXl5OSEgI33zzTb3bP/roI7788ksiIiI4fvw45ubmDB8+nKqqqrvc0nufpvoSYMSIEQbP6bp16+5iC+8fDh8+zPz584mOjmb//v2oVCoeeughysvL9fu89NJL7Ny5k02bNnH48GEyMjIYP358G7b63qM5/QgwZ84cg+fyo48+aqMW37u4u7vzwQcfEBMTw6lTpxg8eDCPPvooly5dAsTnUUREj9CKVFVVCWvXrhWGDh0qmJmZCZMmTRL27dsnaLXa1rzsfUPv3r2F+fPn6//WaDSCm5ub8P7777dhq+4/3n77bSEkJKStm3HfAwhbt27V/63VagUXFxfh448/1r9WVFQkGBsbC+vWrWuDFt4/3NyXgiAI06ZNEx599NE2ac/9Tk5OjgAIhw8fFgRB9xzK5XJh06ZN+n2uXLkiAEJUVFRbNfOe5+Z+FARBGDhwoPDCCy+0XaPuY2xtbYVVq1aJz6OISC1atUCesbExU6ZMYf/+/Vy+fJkuXbrwr3/9C29vb8rKylrz0vc8SqWSmJgYhg4dqn9NKpUydOhQoqKi2rBl9yfXrl3Dzc2NDh06MHXqVFJSUtq6Sfc9iYmJZGVlGTyj1tbW9OnTR3xGb5NDhw7h5OSEn58f8+bNIz8/v62bdF9QXFwMgJ2dHQAxMTGoVCqDZ9Pf3x9PT0/x2WyEm/uxhjVr1uDg4EBgYCALFiygoqKiLZp336DRaFi/fj3l5eWEhoaKz6OISC1avY5FDVKpFIlEgiAIaDSau3XZe5a8vDw0Gg3Ozs4Grzs7OxMbG9tGrbo/6dOnD6tXr8bPz4/MzEzeffddHnjgAS5evIilpWVbN+++JSsrC6DeZ7Rmm0jzGTFiBOPHj6d9+/YkJCTw5ptvMnLkSKKiopDJZG3dvHsWrVbLiy++SFhYGIGBgYDu2VQoFNjY2BjsKz6bDVNfPwI88cQTeHl54ebmxvnz53n99deJi4tjy5Ytbdjae5MLFy4QGhpKVVUVFhYWbN26lYCAAM6ePSs+jyIi/6NVA4vq6mq2bNnC999/z9GjR3n44Yf5+uuvGTFiBFJpqy6WiPyDGDlypP734OBg+vTpg5eXFxs3bmTWrFlt2DIRkRtMnjxZ/3tQUBDBwcH4+Phw6NAhhgwZ0oYtu7eZP38+Fy9eFHVTd0hD/fjMM8/ofw8KCsLV1ZUhQ4aQkJCAj4/P3W7mPY2fnx9nz56luLiYzZs3M23aNA4fPtzWzRIRuadotdH9v/71L1xdXfnggw94+OGHSU1NZdOmTYwaNUoMKgAHBwdkMlkd14js7GxcXFzaqFV/D2xsbOjUqRPx8fFt3ZT7mprnUHxGW4cOHTrg4OAgPqeN8Oyzz7Jr1y7+/PNP3N3d9a+7uLigVCopKioy2F98NuunoX6sjz59+gCIz2U9KBQKfH196dGjB++//z4hISF88cUX4vMoIlKLVhvhR0REYGVlRYcOHTh8+DDPPPMM48ePr/PzT0WhUNCjRw8OHDigf02r1XLgwAFCQ0PbsGX3P2VlZSQkJODq6trWTbmvad++PS4uLgbPaElJCcePHxef0RYgLS2N/Px88TmtB0EQePbZZ9m6dSsHDx6kffv2Btt79OiBXC43eDbj4uJISUkRn81aNNWP9XH27FkA8blsBlqtlurqavF5FBGpRaulQj399NNIJJLWOv3fgpdffplp06bRs2dPevfuzeeff055eTkzZsxo66bdV7z66quMGTMGLy8vMjIyePvtt5HJZEyZMqWtm3bPU1ZWZjAzmZiYyNmzZ7Gzs8PT05MXX3yRpUuX0rFjR9q3b8/ChQtxc3Nj7Nixbdfoe5TG+tLOzo53332XCRMm4OLiQkJCAv/+97/x9fVl+PDhbdjqe5P58+ezdu1atm/fjqWlpT5P3draGlNTU6ytrZk1axYvv/wydnZ2WFlZ8dxzzxEaGkrfvn3buPX3Dk31Y0LC/7d3P6HwrXEcxz/zw5BGjD+NobBANmgsLCwkaoqysEAW8qcskBoLC8XYKUuxU2SjLKz92YyNElImm5HZ2PgTIv9WPHfx605XfvHrnut3xvV+1akzz5lmvs/pdOpzOs/zRLW0tKSmpiZlZWUpHA5reHhYtbW1qqiosLn6+DI6OqrGxkYVFBTo7u5OS0tL2tzc1Pr6Otcj8E82z0r17c3MzJiCggLjdDpNdXW12d7etrukL6e9vd14vV7jdDpNfn6+aW9vN8fHx3aX9SWEQiEj6c3W1dVljPk55ez4+LjxeDwmOTnZNDQ0mEgkYm/Rceq9c/n4+Gj8fr/JyckxSUlJprCw0PT19ZmzszO7y45LvzqPkszCwkLsO09PT2ZgYMC43W6TmppqWlpazOnpqX1Fx6GPzuPJyYmpra01mZmZJjk52RQXF5uRkRFze3trb+FxqLe31xQWFhqn02lycnJMQ0OD2djYiB3negR+chhjzJ8MMgAAAAD+fxhFDQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAIBF3d3drEYOAPj2Eu0uAADimcPhePf4xMSEpqenxVqjAIDvjmABAO84PT2N7S8vLysYDCoSicTaXC6XXC6XHaUBABBXeBUKAN6Rm5sb29LT0+VwOF61uVyuN69C1dXVaWhoSIFAQG63Wx6PR3Nzc3p4eFBPT4/S0tJUXFys1dXVV/91eHioxsZGuVwueTwedXZ26vLy8g/3GACAf4dgAQCfYHFxUdnZ2drZ2dHQ0JD6+/vV2tqqmpoa7e/vy+/3q7OzU4+Pj5Kkm5sb1dfXy+fzaW9vT2trazo/P1dbW5vNPQEA4PcQLADgE1RWVmpsbEwlJSUaHR1VSkqKsrOz1dfXp5KSEgWDQV1dXSkcDkuSZmdn5fP5NDk5qbKyMvl8Ps3PzysUCuno6Mjm3gAA8DHGWADAJ6ioqIjtJyQkKCsrS+Xl5bE2j8cjSbq4uJAkHRwcKBQK/XK8RjQaVWlp6SdXDACANQQLAPgESUlJrz47HI5XbX/PNvXy8iJJur+/V3Nzs6ampt78ltfr/cRKAQD4bxAsACAOVFVVaWVlRUVFRUpM5NYMAPh6GGMBAHFgcHBQ19fX6ujo0O7urqLRqNbX19XT06Pn52e7ywMA4EMECwCIA3l5edra2tLz87P8fr/Ky8sVCASUkZGhHz+4VQMA4p/DsFwsAAAAAIt4DAYAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACwjGABAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALDsL2QPfdtmHPLCAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxYAAAHbCAYAAABWVwzkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQABAABJREFUeJzs3XdcU2fbB/DfSULC3hsZooKAOHAibm3dVq11zzpbfbrsstaFtVvbt0tcddRRtY7WVfcEFEWcKC72HkKYCck57x9pIiGMAAlEvb7Px8/TJGdcOTkJ5zr3fd03w3EcB0IIIYQQQghpAF5TB0AIIYQQQgh5/lFiQQghhBBCCGkwSiwIIYQQQgghDUaJBSGEEEIIIaTBKLEghBBCCCGENBglFoQQQgghhJAGo8SCEEIIIYQQ0mCUWBBCCCGEEEIajBILQgghhBBCSINRYkHIc2z58uVgGAY5OTlNHYpeJCQkgGEYfP/997UuqzwWzzvle96yZYtOt/uiHB9CCCGGixILQgzM3bt3MXnyZLi5uUEkEsHV1RWTJk3C3bt3mzo0YuBKSkqwfPlynDt3rqlDIYQQ8hKixIIQA7J//34EBQXh9OnTmDFjBn777TfMnDkTZ8+eRVBQEA4cONDUIRIDVlJSghUrVlSZWHz++ecoLS1t/KAIIYS8NARNHQAhROHx48eYMmUKvL29ceHCBTg4OKhee/fdd9GzZ09MmTIFt27dgre3dxNGqollWUilUhgbGzd1KKQaAoEAAgH95BNCCNEfarEgxEB89913KCkpwfr169WSCgCwt7fHunXrUFxcjG+//VZj3ZycHIwdOxaWlpaws7PDu+++i7KyMrVlTp48iR49esDa2hrm5ubw9fXFZ599praMRCLBsmXL0LJlS4hEIri7u+Pjjz+GRCJRW45hGCxYsAA7duxAQEAARCIRDh06BFtbW8yYMUMjPrFYDGNjY3z44YcAAKlUiqVLl6Jjx46wsrKCmZkZevbsibNnz1Z7fH744Qd4enrCxMQEvXv3xp07d2o+oP/Zvn07OnbsCBMTE9ja2mL8+PFITk7Wat3U1FS8+eabcHJygkgkQkBAAH7//XfV65mZmRAIBFixYoXGunFxcWAYBr/88ovquSdPnuCNN96Ara0tTE1N0a1bNxw5cqTWOPr06YM+ffpoPD99+nR4eXkBUNRmKM+bFStWgGEYMAyD5cuXA6i6xkImk2HlypVo0aIFRCIRvLy88Nlnn2l83l5eXhg2bBguXbqELl26wNjYGN7e3ti2bVutsRNCCHl50O0rQgzEoUOH4OXlhZ49e1b5eq9eveDl5VXlhejYsWPh5eWFr776CpcvX8ZPP/2Ep0+fqi787t69i2HDhqFt27YIDQ2FSCTCo0ePEB4ertoGy7IYMWIELl26hDlz5sDPzw+3b9/GDz/8gAcPHuDgwYNq+zxz5gz27NmDBQsWwN7eHq1atcKoUaOwf/9+rFu3DkKhULXswYMHIZFIMH78eACKRGPjxo2YMGECZs+ejcLCQmzatAkDBw5EVFQU2rdvr7avbdu2obCwEPPnz0dZWRn+7//+D/369cPt27fh5ORU7TFdtWoVlixZgrFjx2LWrFnIzs7Gzz//jF69eiEmJgbW1tbVrpuZmYlu3bqpkigHBwccO3YMM2fOhFgsxnvvvQcnJyf07t0be/bswbJly9TW3717N/h8Pt544w3V9rp3746SkhK88847sLOzw9atWzFixAj89ddfGDVqVLWxaMPBwQFr167FW2+9hVGjRmH06NEAgLZt21a7zqxZs7B161aMGTMGCxcuxJUrV/DVV1/h3r17Gt3uHj16hDFjxmDmzJmYNm0afv/9d0yfPh0dO3ZEQEBAg2InhBDyguAIIU0uPz+fA8C99tprNS43YsQIDgAnFos5juO4ZcuWcQC4ESNGqC339ttvcwC4mzdvchzHcT/88AMHgMvOzq5223/88QfH4/G4ixcvqj0fFhbGAeDCw8NVzwHgeDwed/fuXbVljx8/zgHgDh06pPb8kCFDOG9vb9VjmUzGSSQStWWePn3KOTk5cW+++abqufj4eA4AZ2JiwqWkpKiev3LlCgeAe//991XPKY+FUkJCAsfn87lVq1ap7ef27ducQCDQeL6ymTNnci4uLlxOTo7a8+PHj+esrKy4kpISjuM4bt26dRwA7vbt22rL+fv7c/369VM9fu+99zgAase3sLCQa968Oefl5cXJ5XK197x582bVcr179+Z69+6tEeO0adM4T09P1ePs7GwOALds2TKNZSsfnxs3bnAAuFmzZqkt9+GHH3IAuDNnzqie8/T05ABwFy5cUD2XlZXFiUQibuHChRr7IoQQ8nKirlCEGIDCwkIAgIWFRY3LKV8Xi8Vqz8+fP1/t8f/+9z8AwNGjRwFAdWf+77//BsuyVW5779698PPzQ+vWrZGTk6P6169fPwDQ6KbUu3dv+Pv7qz3Xr18/2NvbY/fu3arnnj59ipMnT2LcuHGq5/h8vqpFg2VZ5OXlQSaToVOnTrh+/bpGbCNHjoSbm5vqcZcuXdC1a1fV+6vK/v37wbIsxo4dq/Z+nJ2d0apVqxq7XXEch3379mH48OHgOE5t/YEDB6KgoEAV5+jRoyEQCNTe8507dxAbG6v2no8ePYouXbqgR48equfMzc0xZ84cJCQkIDY2ttp49EF57D744AO15xcuXAgAGi1j/v7+aq1pDg4O8PX1xZMnT/QcKSGEkOcFJRaEGABlwqBMMKpTXQLSqlUrtcctWrQAj8dDQkICAGDcuHEICQnBrFmz4OTkhPHjx2PPnj1qScbDhw9x9+5dODg4qP3z8fEBAGRlZanto3nz5hrxCQQCvP766/j7779V/fT379+P8vJytYtsANi6dSvatm0LY2Nj2NnZwcHBAUeOHEFBQYHGdiu/PwDw8fFRvb+qPHz4EBzHoVWrVhrv6d69exrvp6Ls7Gzk5+er6l0q/lPWkCjXt7e3R//+/bFnzx7V+rt374ZAIFB1RwKAxMRE+Pr6auzLz89P9XpjSkxMBI/HQ8uWLdWed3Z2hrW1tUY8Hh4eGtuwsbHB06dP9RonIYSQ5wfVWBBiAKysrODi4oJbt27VuNytW7fg5uYGS0vLGperXKRrYmKCCxcu4OzZszhy5Aj+/fdf7N69G/369cOJEyfA5/PBsiwCAwOxZs2aKrfp7u6usc2qjB8/HuvWrcOxY8cwcuRI7NmzB61bt0a7du1Uy2zfvh3Tp0/HyJEj8dFHH8HR0RF8Ph9fffUVHj9+XON70xbLsmAYBseOHQOfz9d43dzcvMZ1AWDy5MmYNm1alctUrF0YP348ZsyYgRs3bqB9+/bYs2cP+vfvD3t7+wa+CwWGYcBxnMbzcrlcJ9vWRlXHEECVcRFCCHk5UWJBiIEYNmwYNmzYgEuXLql1l1G6ePEiEhISMHfuXI3XHj58qNaC8OjRI7AsqxoxCAB4PB769++P/v37Y82aNfjyyy+xePFinD17FgMGDECLFi1w8+ZN9O/fv0EzNPfq1QsuLi7YvXs3evTogTNnzmDx4sVqy/z111/w9vbG/v371fZVuQC64vur7MGDB2rvr7IWLVqA4zg0b95c1eqiLQcHB1hYWEAul2PAgAG1Lj9y5EjMnTtX1R3qwYMHWLRokdoynp6eiIuL01j3/v37qterY2NjU2WXo8qtCnX53Dw9PcGyLB4+fKhqNQEUReb5+fk1xkMIIYRUhbpCEWIgPvroI5iYmGDu3LnIzc1Vey0vLw/z5s2DqakpPvroI411f/31V7XHP//8MwBg8ODBqvUrU468pOyyNHbsWKSmpmLDhg0ay5aWlqK4uFir98Hj8TBmzBgcOnQIf/zxB2QymUY3KOXd74p3u69cuYLIyMgqt3nw4EGkpqaqHkdFReHKlSuq91eV0aNHg8/nY8WKFRp31TmO0zjGleN7/fXXsW/fviqHtc3OzlZ7bG1tjYEDB2LPnj34888/IRQKMXLkSLVlhgwZgqioKLX3WFxcjPXr18PLy0ujXqWiFi1a4P79+2r7vXnzptqoXgBgamoKAMjPz692WxXjAYAff/xR7Xlli9XQoUNr3QYhhBBSEbVYEGIgWrVqha1bt2LSpEkIDAzEzJkz0bx5cyQkJGDTpk3IycnBrl270KJFC4114+PjMWLECAwaNAiRkZHYvn07Jk6cqOp+FBoaigsXLmDo0KHw9PREVlYWfvvtNzRr1kzVOjJlyhTs2bMH8+bNw9mzZxESEgK5XI779+9jz549OH78ODp16qTVexk3bhx+/vlnLFu2DIGBgWp3xAFF68z+/fsxatQoDB06FPHx8QgLC4O/vz+Kioo0tteyZUv06NEDb731FiQSCX788UfY2dnh448/rjaGFi1a4IsvvsCiRYuQkJCAkSNHwsLCAvHx8Thw4ADmzJmjmlejKl9//TXOnj2Lrl27Yvbs2fD390deXh6uX7+OU6dOaSRr48aNw+TJk/Hbb79h4MCBGkPZfvrpp9i1axcGDx6Md955B7a2tti6dSvi4+Oxb98+8HjV3+d58803sWbNGgwcOBAzZ85EVlYWwsLCEBAQoFbIb2JiAn9/f+zevRs+Pj6wtbVFmzZt0KZNG41ttmvXDtOmTcP69euRn5+P3r17IyoqClu3bsXIkSPRt2/fauMhhBBCqtRk41ERQqp069YtbsKECZyLiwtnZGTEOTs7cxMmTNAYzpTjng0hGhsby40ZM4azsLDgbGxsuAULFnClpaWq5U6fPs299tprnKurKycUCjlXV1duwoQJ3IMHD9S2J5VKuW+++YYLCAjgRCIRZ2Njw3Xs2JFbsWIFV1BQoFoOADd//vxq3wPLspy7uzsHgPviiy+qfP3LL7/kPD09OZFIxHXo0IE7fPiwxvCpyqFXv/vuO2716tWcu7s7JxKJuJ49e6qG0q18LCrbt28f16NHD87MzIwzMzPjWrduzc2fP5+Li4urNn6lzMxMbv78+Zy7u7vqs+jfvz+3fv16jWXFYjFnYmLCAeC2b99e5fYeP37MjRkzhrO2tuaMjY25Ll26cIcPH1ZbpqrhZjmO47Zv3855e3tzQqGQa9++PXf8+HGN48VxHBcREcF17NiREwqFakPPVnV8ysvLuRUrVnDNmzfnjIyMOHd3d27RokVcWVmZ2nKenp7c0KFDNd5PdcPgEkIIeTkxHEeVd4QQQgghhJCGoRoLQgghhBBCSINRYkEIIYQQQghpMEosCCGEEEIIIQ1GiQUhhBBCCCGkwSixIIQQQgghhDQYJRaEEEIIIYSQBqPEghBCCCGEENJglFgQQgghhBBCGowSC0IIIYQQQkiDUWJBCCGEEEIIaTBKLAghhBBCCCENRokFIYQQQgghpMEosSCEEEIIIYQ0GCUWhBBCCCGEkAajxIIQQgghhBDSYJRYEEIIIYQQQhqMEgtCCCGEEEJIg1FiQQghhBBCCGkwSiwIIYQQQgghDUaJBSGEEEIIIaTBKLEghBBCCCGENBglFoQQQgghhJAGEzR1AIaOZVmkpaXBwsICDMM0dTiEEEIIeclwHIfCwkK4urqCx6N7wsRwUWJRi7S0NLi7uzd1GIQQQgh5ySUnJ6NZs2ZNHQYh1aLEohYWFhYAFF9mS0vLRtvv5a8ug8fjocsnXTRei/omCizLotuibo0WDyGEEEKahlgshru7u+qahBBDRYlFLZTdnywtLRs1sbAwtUD40nCYGZsheEmw6vnIlZG48eUNhISGNGo8hBBCCGla1CWbGDpKLAyUMpkIXxquehy5MhLhS8MREhqilmwQQgghhBDS1CixMGAVk4vIlZFgy1lKKgghhBBCiEGioQUMXPCSYDB8Bmw5C76QT0kFIYQQQggxSM9NYpGXl4dJkybB0tIS1tbWmDlzJoqKimpcp0+fPmAYRu3fvHnzGili3YhcGQlOzgEA5FI5IldGNnFEhBBCCCGEaHpuukJNmjQJ6enpOHnyJMrLyzFjxgzMmTMHO3furHG92bNnIzQ0VPXY1NRU36HqjLKmwtzNHGw5C0svS7WaC0IIIYQQQgzFc9Fice/ePfz777/YuHEjunbtih49euDnn3/Gn3/+ibS0tBrXNTU1hbOzs+rf8zKSUsVCbY7l0Pmjzsh/mI/gpcGqmgtCCCGEEEIMxXORWERGRsLa2hqdOnVSPTdgwADweDxcuXKlxnV37NgBe3t7tGnTBosWLUJJSYm+w9UJVq4o1O7ySRcUZxTDd5wvTOxNYN/GHiGhIWDlbFOHSAghhBBCiMpz0RUqIyMDjo6Oas8JBALY2toiIyOj2vUmTpwIT09PuLq64tatW/jkk08QFxeH/fv3V7uORCKBRCJRPRaLxQ1/A/UQsjwEAJAfnw+Gx8Dc1RwB0wNwZ8sdvH7k9SaJiRBCCCGEkOo0aYvFp59+qlFcXfnf/fv36739OXPmYODAgQgMDMSkSZOwbds2HDhwAI8fP652na+++gpWVlaqf+7u7vXevy4UJhfC3M0cPD4P/lP8kXgyEUVpNRetG5Lw5dV324pcGYnw5eGNHBEhhBBCCNGHJk0sFi5ciHv37tX4z9vbG87OzsjKylJbVyaTIS8vD87Ozlrvr2vXrgCAR48eVbvMokWLUFBQoPqXnJxcvzenI4VJhbD0UNSFWLpbwr2PO2K3xzZpTHXB4/OqrAlR1pDw+M9FbzxCCCGEEFKLJu0K5eDgAAcHh1qXCw4ORn5+PqKjo9GxY0cAwJkzZ8CyrCpZ0MaNGzcAAC4uLtUuIxKJIBKJtN6mvhUmF8LC3UL1uM2MNogMjUTnjzqDYZgmjEw7NIM4IYQQQsjL4bm4Xezn54dBgwZh9uzZiIqKQnh4OBYsWIDx48fD1dUVAJCamorWrVsjKioKAPD48WOsXLkS0dHRSEhIwD///IOpU6eiV69eaNu2bVO+nToRJ4nVEouWI1uiOL0YGVHV15YYmuAlwQgJDUH40nD8IPqBkgpCCCGEkBfQc5FYAIrRnVq3bo3+/ftjyJAh6NGjB9avX696vby8HHFxcapRn4RCIU6dOoVXX30VrVu3xsKFC/H666/j0KFDTfUW6qUw+VlXKAAwMjFC6/GtcWfznSaMqu6C3g0CoJjkj2YQJ4QQQgh58TwXo0IBgK2tbY2T4Xl5eYHjONVjd3d3nD9/vjFC06vKXaEAIGB6APYN2oc+P/SBkYlRE0VWNwdHHlT8B+/ZDOKUXBBCCCGEvDiemxaLl5U4SazWYgEALl1dYOZihkcHqy9CNyQXFl1A8tlkNB/cHCILEbov706T/BFCCCGEvGAosTBg0kIpJPkSjRYLhmEQMD0Ad7fcbaLItBe5MhJRX0fBupU1Rh0aBTCA91BvVc0FJReEEEIIIS+G56Yr1MtInCyGwEQAY1tjjdcCpgQgfEk4xMliWLpbVrG2YSh7WgaegIfhu4eDx+fBvbc7ks4kqbpB0QzihBBCCCEvBmqxMGDKwu2qhpU1dzWH5wBPxP5h2HNayEpkaDW6FZw6OAEA3Pu6I+lsEoD/Rov6b4ZxQgghhBDyfKPEwoBVVbhdUZsZbXBn8x21onVD8vTRU9zZcgchoc+SB4++Hki9mAp5ubwJI1NHs4MTQgghhDQcJRYGTJwkhoVH9YlFi+EtUJZbhtTw1EaMSnsRyyPgN8kPtr62qufs29hDYCxAxlXDmYeDZgcnhBBCCGk4qrEwYIXJhbD0rLp+Iny54oK39YTWuLvlLpr1aKZ6LXJlJFg526TdjLJvZ+PhvoeYcX+G2vMMj4F7X3ckn02GW3e3JopOHc0OTgghhBDScHQr1oAVJhVqDDWrpLzLzspZ3N99H9JiKQDDuct+6fNLaDunLaw8rTReq1hnYSgqzg6+RriGkgpCCCGEkDqixMKA1VRjobwQvrXuFgQmAjzc/9Bg7rKnXU5D0ukkdP2sa5Wve/T1QFp4GmQSWSNHVrPgJcFg+AzYchY8Ix4lFYQQQgghdUCJhYHiOK7W4m1lclGaXYpj044ZRFIBAJcWX0LH9zrCzMmsytdtW9tCZC1C+uX0Ro6sZhGhEeDkHMAAbDlLc2wQQgghhNQBJRYGqjSnFLIyWY2JBaBILnhCHsABPGHj32WvPKJS4ulEZF7PRKcPO1U7ohLDMAbXHSpyZSQilkWAL+JjbtJc8I35NIFfPdAIW4QQQsjLixILA1WYXAhjW2MIzYQ1Lhe5MhKsVDHJHCtt/LvsFUdU4jgOFz+7iC6fdEHMzzE11np49PVA8tnkRo21OsouZM5dnBEwNQAWzSzQ6+teMLE3Majk4nm4aKcRtgghhJCXF40KZaDESeJqC7eVKtZU5NzNQWl2qdrIRo2h4ohKufdyIU4Uo7y4HJe/uFxjtyyPfh44Nf8UykvKYWRq1CixVoeVswheFowbv9xA7+96AwDav90et9bfgnNnZ4OZHVx50Q6of74Vz4OmRiNsEUIIIS8vSiwMVG31FZUv1q7/dB1Pjj1RjWwENG5ywXEcIpZFgBEwtSYVAGDlbQUzZzOkRaTBc4Bno8RZnZDlIXj0zyMYmRuphu3lG/HR98e+OPTGIQzeOrhJ41N6Xi7aK8YZsTwCHMsZVHyEEEII0Q/ql2CgakssWDmrdrHmGuKK9Mh0dFvcDSGhIY1+l73NjDYAAE7GgS/k13oRaWh1FrF/xMJ/sj8YHqN6zusVL7j3ccelzy81YWTq1IbFFRnusLjBS4IBHsCx2p0PhBBCCHn+UWJhoGqbdTtkufrFpGM7R7AyFjl3cxQXn408OV7EiggAAF/Ih1wq16ouwaOfB5LONH1iUZZfhseHHsNvsp/Ga31W90HsH7HIjMlsgsiq1vK1lgAUNTWGetEevjwc+C+31fZ8IIQQQsjzjRILA1WYXAhL95prLCriCXhw6eqC1PBUPUZVtciVkbiz6Q4sPS3xvuR91R312i4mPfp6IONqBqSF0kaKtGoP9j6AfaA97Frbabxm3cIaQe8G4cw7Z8BxXBNEp+nQuEOq/zbEi/bIlZGIXBEJI3MjdFjQAc6dnA2qCJ4QQggh+lGvxKK4uFjXcZBKCpMKa2yxqIpriCvSwtP0FFHVlH383fu6o1lvRX1Cxe46NV1MWnpYwtLTEimXUhor3CrFbo9FwJSAal/v9lk35D/OR9zuuEaMqmon3jqBvPt56PxRZ7j1cIPnAE+DumhXng9uPdzg87oPWgxvgaL0InRf0d2g4iTPj+dhNDRCCCEK9UosnJyc8Oabb+LSJcPpe/4iYWUsitKKap3DojK3ELdGb7FQ1npYelrCqrmV6nllclFbrUdTd4cqSChAWmQafMf7VruM0EIIl64uODH3BMpLyjVeb6yLm8iVkbgVdguu3V3R+9ve6PpZV2TdzEK3Jd0M5qJdeT6UF5fDa6AXmvVuBkmBBC2Gt2iS2p/q0MXq84OGMCaEkOdHvX6Rt2/fjry8PPTr1w8+Pj74+uuvkZbWuHfKX2RF6UUAAHNX8zqt59rNFQUJBar1G4Oy1kOcIIaVl5Xaa9rUejT1fBb3dtyD16teMHOsepZwJccOjpCKpdg/dL/a8415cVOQUACeEQ8jD44EADQf1BwWbhYwdTQ1mIv2kOUhaDunLbJvZsPzFU8IRAJ4DfTC40OPm6T2pzp0sarwPCRYVbWAGuJoaIQQQuqZWIwcORIHDx5Eamoq5s2bh507d8LT0xPDhg3D/v37IZPJdB3nS6UwqRBmLmbgG/HrtJ7ISgSHQIcmqbMoiC9Qa7HQlntfd2TFZKEsv0wPUdWM4zjVaFC16b60O9rOaYvkc8k4u/AsgMa/uClMKkTnDzvD1MEUgGJkrS6LuuDqd1fR5dMuBnPRnngyEY5BjjC1V8TZYngLPD70uImjUkcXqwrPS4JV8fP6nvf9S/c5EULI86JBfzUcHBzwwQcf4NatW1izZg1OnTqFMWPGwNXVFUuXLkVJSYmu4nyp1DbUbE2aos5CXi5XFJt7aV9srmTuYg4bHxukXGj8OouMaxkoSitCi9daaLX8q+tehUMHB0SvicYPoh8a9eIm+UIy0qPS0enDTmrP+7zuA4FIgHs77+k9Bm0lHE+A16teqsfeQ7yRFZOForTGa0nTRsWL1cb+PA3F85RgBS8JBiNgAA7gGfEMKjZCCCEKDUosMjMz8e2338Lf3x+ffvopxowZg9OnT2P16tXYv38/Ro4cqaMwXy7azLpdnaaosyhMKQTDY2DhVr9kyL2ve5PUWdzbfg8+Y3xgZKL9zN9jjo4BoBiNqbGGeuU4DuFLwtHx/Y4wsTVRe43H56HLJ10Q9XUUOLbpR63iWA4JJxLgNdBL9ZypgylcurrgyZEnTRdYNdq8qZh/pTE/T0PzvCRYkSsjwckU5zhbzhpETREhhBB19Uos9u/fj+HDh8Pd3R07d+7E22+/jdTUVGzfvh19+/bFlClT8Pfff+PcuXM6Dvfl0KAWi+6uyIrJqrLIWF/E8WJYuFuAJ6hfntoUdRbycjnu7boH/ym1d4Oq6NaGWwAUw/s21lCvSWeSkHM7B53e71Tl6/5T/FFeVI6HBx/qPZbaZN3MgqxUBtdgV7XnWwxrgceHDas7FACcfU/RrQ2MYQ7d21iClwSrjoEhJljKVhRzN3O4dneFlbeVwQxYQAgh5Jl6XQnOmDEDrq6uCA8Px40bN7BgwQJYW1urLePq6orFixfrIsaXTmFyYb1bLKy8rGDiYIKMqxk6jqp6BQn1q69Qcu/jjpw7OSjJabyucwknEiAQCeDe213rdZQXNw7tHRQ1DVrO19EQytaKTh92gshKVOUyfCEfnT7shCtfXmnyuTYSjifAo5+HRn2Q93BvJJ5MRHlp4yW8tYlcGYkHfz2AcxdnmDqYwn+K/0t7sXppySWAg0EmWMrvXfCyYJTmlKLb591QmFyIbp8bzmhohBBCFOqVWKSnp2PdunXo3LlztcuYmJhg2bJl9Q7sZSZOEte7xYJhmEbvDlUQX1Cv+golUwdT2AXYIflc47VaxP4RC79JfmB4jFbLV+x3HjgjEJnXM7Wer6Mh4v+Nx9OHTxH0TlCNywXOCoQ4QYzEU4l6iUNbCcfVu0Ep2QfYw9TJ1CBmWgeefZ4mdibotrgb2s9vj+KM4kZJFg1N5MpIXP7iMgQmAvAEPIMavhh4NoRxq5GtwBfy0Xxgc1h5WcG5k7PBjIZGCCFEQVCflWQyGcRiscbzDMNAJBJBKBQ2OLCXWUO6QgGKOouEkwm6C6gW4gQxbHxtGrQNZXco3zHVzyehK5ICCR7//RiTr03Weh3lxU3wkmCkXErBla+vAICqy4g+Lm44jkP40nB0+aQLhOY1f6eEZkIEvReEK19egdcrXjqPRRvSIilSw1MxcNNAjdcYhkGL4S3w5NATtBiqXbG8PrFyFp0/6oyr319Fs57N4Brsiqivo9BndR/V6y8DZYLl1MkJbiFueLj/Idx7u4NvxEf4UsVQs03dLUo52tntTbfhGOQIhseg+eDmiD8Wj1fCXmnS2AghhKirV4uFtbU1bGxsNP5ZW1vDxMQEnp6eWLZsGVj25fjjrEvlJeUozSmt86zbFbmGuCItIq3RinkL4gs05rDQlnIcfY9+Hkg6q343W1fj6Fceq//Bvgew9bOFfYC91vtQztcBAI7tHFGcUayaL0QX8zNUNZ/A438eozC5EBKxRKsYO8zvgMzoTKRFNs2cMslnk2HpaQlrb+sqX28xXFFn0dTdtQDF5+nUyQmO7RxhbGOs6goV/UO0wcy30RhzTLByFt1XdEdJZgm8h3jDvY87ks8laz3BZWPKiM6AU0cnAEDzwc3x5NgTnZ1Lz8N8HoQQ8jyoV2KxZcsWuLq64rPPPsPBgwdx8OBBfPbZZ3Bzc8PatWsxZ84c/PTTT/j66691He8LrzClEHwRXzVXQX04tneEXCpH7r1cHUZWvYbUWCjH0U+/ko6ncU9VF+u6HEe/8lj9sdtj4T/Fv977EFoIYdPKBlkxWQ2OrboYOVbRWuEU5ITLKy9rFWP0/0XDoZ0Drnx1ReO1xrg4ij8eX2U3KCX33u6QiqXIuqG749YQyeeS0ax3M9Xjju91xL2d91CcUdyEUT3TGHNMhCwPQavRrVCaW4pmvZopEov/BlIwlARLKet6Fpw7OgMAmvVuhtKsUp39xj0v83kQQoihq1dXqK1bt2L16tUYO3as6rnhw4cjMDAQ69atw+nTp+Hh4YFVq1bhs88+01mwLwNlNyiG0a7vf1X4Rny4dHFBangq7APsdRidJplEhqK0onrXWChbAcKXhsPMxQzJ55KR/yhfp0NeVtyHpECC1IupcO7kjKvfXa33PpyCnJB5PRPeQ7wbHF/lGAHAtrUtCuILkH0rW+sYeXweUi+lgifgIft2NhwCHQCo14foU+KJRPT+vne1r/OFfNUs3E4dnPQaizZSzqegxxc9VI/t/Ozg0d8DMb/GoMfKHjWs2TgqnxPBS4L1MsdE/NF4ePb3hMBYAPc+7jg57ySkxVIIzQynSysrY5F9M1vVYmFkYgT3fu6IPxYPe/+G/8Y11rEmhJAXXb0Si4iICISFhWk836FDB0RGKu749OjRA0lJhlGo+TxpSOF2RcoC7nZz2ukgquoVJhWCb8SHuYt5vbdR8Y/60clHwbGczv+Yq104MGhQUgEAjkGOSL+crrP4AM0YwaFOMVZc/8ikI5h+a3qjXRzlx+ejIKEAHn09alzOe5g3Yn6JQfel3fUWizZKskuQey8Xbj3d1J7vvLAzDo09hK6LusLIVPv5TfSl4mcauTISbDmr88/yydEnaD2uNQDAqrkVzJzNkB6ZDs8BnjrZfvhyxR3/qmKOXBmpqF+qpWUkNzYXjICBTatntVzNBzfHowOP0Hlh9YOI1EXFYx2xIgKcXPe/Q4QQ8qKrV/uuu7s7Nm3apPH8pk2b4O6uGL4zNzcXNjYNK+h9GTW0cFupsWbgLogvgKWnpdajK1UneEkweAIeOJbT2zj6yrH6waHB+1C2WOha8JJg8Ix49Y4xeEkwOr7fETm3c7BGuKbR7rgmHE+Aa3dXCC1qvsttKLNwp1xIUYxUZa/e5dC9rzvMm5kj9o/YJopMU/CSYICnmBRO1zNOSwokSAtPQ/PBzQEoiuyVdRa6ootuRhnRGXDq4KT2O+M92BspF1MgLZTqLFblbwQn58AT0uze+kD1LIS82OqVWHz//ff44Ycf0K5dO8yaNQuzZs1C+/bt8eOPP2L16tUAgKtXr2LcuHE6DfZlUJhU/zksKnINdkX+k3wUZ+q3v3hD57BQilwZCVamKBTV1zj6EaERAAfwjBo+uZ1jB0eIE8QozSvVYYRQ3ZVuyHwCfdf0BcNjwJazjTbZWcLxBDQf2LzW5QxlFu7k8+r1FUoMw6DTB50Q/UN0gwY/0OXF08XFFwEWqs/03Ifn6h1XZYmnEmHjY6M2+IKuE4uqhmWua0taZnSmqhuUknULa1h5Wel0COPjc46r5vNgpXWb3dsQLpgNIYbavCj1LM/DsSakKdTrGzxixAjExcVhyJAhyMvLQ15eHgYPHoz79+9j2LBhAIC33noLa9as0WmwLwNdtVgYWxvDzt9O7/NZFMQ3PLFQTYC1NBgMX3Fhp+tx9CNXRiJiWQQAYEHeggbPV2BiawJLT0udFnArj4NLNxcE/S+o3jFGroxUXBQ30mRn8nI5kk4n1Vi4XVGL4S3w+FD1s3A3xh/slPMpcO9T9eSIrce3hkQswZOj9U9+dHXxFLkyEle+vAIzZzN8IPsAjh0dcW31NVz6/FK9Y6voydEnqtYKJfc+7kiPSoe0uPaWAG0/q4rJxQ+iH+rcklZVYgFANeysLkSujMTtDbfh1sMNfX/oC8vmlnX6/hnCBXNjxNDQ72flRJNjOY1E83m4aDeEz5sQQ1TnGovy8nIMGjQIYWFh+Oqrr/QR00tNnCzWSYsF8KzOwme0j062VxVxghgO7RzqvX7lPyhxe+LgMcADImuRzsbRV+7Db5IfMq9lQmgurLJYs66cgpyQFZMFz/4N74te8TgknUmCQ1sHBM4MrHOMFbfjN9EPWwK36H0+gvTL6eAb8+HY3lGr5VsMb4HI0EiUl5bDyESzjkH5BxtQj1lXReiluaXIvp2NZr00WywARRe0Dgs64Nqaa2gxrH5zbuiiGFi5vI2vDQKmBoBhGEyKnITNfptxedVl8Ix46L6s/rUqHMch/lg8hm4fqvZ8XeosavusunzaBQ8PPETS2SRVK4hcKq9TS1rlwu2Kmg9pjhNzToDjuAYNeKG6GBTwMGLfCHByDuc/PI9OH3bS+vtjCAXgjRGDLr6fFeNUbss12BV2AXYoyS7R+2+ALlQ+1p0WdsK11deo4J+89OqcWBgZGeHWrVv6iOWlx3EcCpN002IBKBKLG7/d0Mm2qlMQX4CWI1vWe/2KE88BgF2AHXLu5Oh04jnlPpR9p5Uaug/HIEed1VkoY+z2eTdc/7/rsA+0r3OMVV1AvP7v69g7YK9ek4uE4wnwetVL6zobO387mDmbIelMUpWT5en74ijlYgpsW9vCzNGs2mXazWuHy6suIzMms94jWKkVXocquvrVJX5WzqLrZ11x7ftr8H1DMXEk34iPKdFTsMlnEx4feqxo5avnBXX2zWxIC6Vw66FewF6xzqK2xKLyZ9V+fnucXnAa93fdh6mTKaK+iYKdvx3c+7jDzt8OObdzwPAYVUuaNsci934uGB4DGx/Nmj333u4ozS5Fbmxug0bAY+UsbP1t4fWKl+q8cO/jDnMX8zrN51FTsb0uitjrGkNEaAQ4mW6L0HX1/QxeEoyI5RHgWA48AQ8O7R0QsSwCOXdzYOtrC6dOToqR/PIl6LO6T5320ZjHurykXHGs/3svlFSQl129RoWaPHkyNm3aRPNU6JgkX4Ly4nKdJhbHZx2v9s6wLjRkcjwAGj/u9gH2yL2rGJteVz/Oyn38/frfcOnqovZaQwu4722/16DYlJQxFqUXoTSvFHYBdqrX6nIhWvmPmnsvd7y6/lWcfOuk3upt4o/HI+idIK2XZxgG3sO8a5yFO3hJMAoSCvQyGlLK+RS49666G5SSia0J2kxvg+gfojFk25B67ytgegDCl4WDldW98DpkeQhit8fC1s9WbTQkkZUIk69Oxo6uO3Bt9TV0/rB+oyI9OfoEXq94gS/ka7zm3tcddzbd0Wo7Vd19du7ijM4fdUazXs1g5miGyJWRuPHrDbSd2xZxf8Yh6L0grZPdzOhMOLZ3rLJricBYAPe+/w0724DEwvcNX1z95qrasWw9sTVu/HoDU65NqdO2Or7XEeFLwxW1UlB0b318+LFibpoVjXMXXmQjAgBwMg6MgNH5hW7Fz/zyF5chl8rr/P28sOiCIqkw4oEtZ2HuYo7pt6ejNLcUqeGpSLmQguL0Ylxbcw3RP0XXKUFqrBaPR/88wp3NdwAe9DrwCCHPk3olFjKZDL///jtOnTqFjh07wsxM/c4f1VbUjzhJDJGVCCJLkU62Z+VtBWNbY2Rey0SznlV3+2iI8pJylGSVwLK5brpuAYoWi4b0ba9JVkwW2s3T3fC7jh0ckfcgD9IiKYTmuhnzP/tWNqxbWNdrDoHq7sC1md4Geffz8GDfA5TmlsLEzqShYaqU5JQg63oWvF7x0mp55Z3EFsNb4N8Z/2IAN0B1x115J9FntA8uLLqA1EupiiJaHRehJ59PRpePu9Qep4CHuD1x6PlVT1i4PUv2tb3jmXIxBfsG7wO4Z4XX2t6lV4rbGwefMZpdGS09LOE93BsXF1+EpZclfMf4qr2uTYzxR+MRMC2gytfc+7jj5Fzt57MIXhKsGqKVL+Rj8pXJarEoL+a6Le6Gx38/hnsf92ov/iqrrr5CSTXsbD0TLAC48tUVBEwLgEWzZ5+zz2gfnHrrFPLi8mDra6v1tg6NOwRA0aVOLpUj504OEk8lojijGLatbRG+NBzSIil6f9NbL12lHux/gHMfnAMA1UX7ofGHMPzP4TrZPqC4iSGyVvydqmvXNkBxTkR9HQVLL0vMiZ+jOg6A4lxoOaIlWo5oiT7f98Ea4Zo6j4imi1aVmlo9Li6+iCdHnkCcKIZHfw883PdQ9XnX9TtOyIumXtVFd+7cQVBQECwsLPDgwQPExMSo/t24cUPHIb48dFW4rcQwjKrOQh8KEgogMBU0aJbwyuwD7JEbm9ugEXmqUva0DAXxBXDsoF0dgDbMXcxh5mSG7JvZOttmzu0c1cR2utTzy55g+Az+6PQH5FK5xuv1LYhMPJkI+0B7mDlX362oIuXFZGp4qmIW7v+K35V/9B/9/Qg7uu6Ara8t2r/dXjFCD3RXhF6WX4bsm9lVjghVOc7rP12HpZclYn6JUT2vTWEmx3G4sfYG9vTfg/LicoSEhmDarWngCaou9qyORCxBwvEEVTeoyizdLcFKWRyZeARpl58NLa1NjKV5pUi7nKZRuK1k5WUFMxczpEVoN2R1+LJwxRCtVYy4VrEljeEx8B7qjSeHn6iKeGvrZlRbYtHQYWefPnqKB389QOdP1BMTkZUI3kO9cW+X9q2SESsiEH8sHj5jffC+5H2EhIYgLTINAdMDMPnqZARMDYCFuwWufnsVq/mrdZ5UpFxKweHxh1UtfB9IP4DfJD/E7Y7D0alHdbKPzOuZ2NFth2owDKBu30/l+SmyFqH3d4oJNasaOUy5LFvOghHUfUS0ittcbVT3Y11dcfbRaUdx5csrKC8uR+DMQDzc9xAhoSGqz1vXA48Q8rypV4vF2bNndR0HwX+JhYfuEgtA0R0q6ax+JioUJ4hh5WXVoKLJymxa2YAtZ1GQWADr5tY6227WjSxYNLPQmLegoZR1Fm4hbrUvrIXsW9mwb6v72dIZHgPfN3xx+YvL2BG8A1OuTVFrKahv94CEEwlajwYFqN9JtPO3w+PDjxG3Nw5RX0cp+lkHOmDkgZGI/SNWFVNBfAGybmbppE4k9WIqrFta1zqhY8U4o3+MRrfF3RD9Q7QqJlZedeuDTCLDrpBdyL6VrdF9yzXEFXwRX+v38eTwE9j42FR7t7xijHv678H029Nxb8c9rS6gEk8mwj7AXu0OfUUV6yxqa42KXBmJyNBImNib4O2st3H5i8tq77Fyq4n3MG9c/PQi+nzfp9ZjwMpZZN3IqjGxsG5hDavmimFnW75W93qvqK+j0Hp86yp/b/wm+uHioovovqx7rb9zkSsjEbE8AiJrEYbtUIyOWPEzYhhFl6Sui7pijWgNWCkLhq+7bko5sTn465W/NM67oduHQi6VI/aPWPCMeBi0aVCN26nuTr1ELMFfA/9CxrUMuIW4oexpGbqv6I74o/EQWgm1Pq9ZOQu/SX5IPpus9nlVridTa+n6vBu2d96Oa6uvQWAqQI/QHlodkxYjWiB8aXi9uoRVbvXo+H5H7Om3BxlXM9BiRAs4dXRCxLIItWOti0FBCHneNWg8tEePHuH48eMoLVWM5c9xur3L/LIRJ4lh6a67bkWAIrFIi0jTeQsA8N/keF66jZcv5MPGx0ZVZ6ErWTFZcAzSXWuFkq4nytNXiwUA9FjZA50WdkLW9SxFFx3UfT6BisNAchyHxBOJqvkrtG31UN5JzI3NRcSyCER9HQXrltaYfG0yhmwbopZUBC8JRuePOiP3bi46f9i5wXcDk88n11pfUTHO7iu6Q14mx0+WPyF8aTgCZgSg80edq7ybWZRehE2tNinusHdy0jim7d9uj/yH+ei+ortWxcBxe+Oqba2oGGNIaAhkJTJsbLlR68/yydEnaD6k5nlHtJnPQnn+mLuZI3hZsOriuaY7t54DPFEQX4CnD5/WuG0AyLufBwCwbV1zV6T6DjsrThIjdnssui7qWvV2hzRHcWYxMqNr/46zMhZmLmYICQ0BT/DsT2vllpnIlZFgpYquPZycwz9v/FPnuCsrTC3EvkH74NRF87wDgBF7RqDlay0Ruz0WGdcyatxW5XOb4zjE/RWHdc3WIf1yOpw7OiPlfApCQkPQfWl3dFvSDdk3stFtSTetvp8hy0NQmluKtnPbgm+kXt+jTEQr/y4xDIOJERNh4W6ByysvK+YkqkVqeCp2dNuheE9GPHAyDkemHKl1PY14/juXf7L4CRlXM9Dx/Y4Y9feoagu1tW2JI+RFVa/EIjc3F/3794ePjw+GDBmC9PR0AMDMmTOxcOFCnQb4MtFHi4VjB0fISmTIi8vT6XYB3U2OV5l9gD1y7uTodJtZMVk67Qal5NjBEVnXdTOXBStjFaPbBOq+xUKpz/d90HZuWyQcT8Aao7rPzF3xoiPnTg7K8svgGuJa57Hbg5cEgydULMsz4mHWw1lwbKf4fDRGCvOzQ/NBzQEeGvwHu7qJ8arTfWl3RZz/1Ukk/JuAX2x+QcqFFHgO8FSMBrMiAulX0rHJZxMKkwvRbUk3TIqYpHFMW41qBVmpDM6dnWutz5AWShVdat6ofajo4CXBigLs/2Ks7bPkWMUws9V1g1Jy7+OOjKiMGuezYOUs2s5tC0m+BAFTn9Vr1HRxJTQXwr2vu1aTJNZUuF1R88HN8eTokzrf3Ir6NgotR7astlXIyMQIrUa3wr2dtXeHcu/rDnmZHG1mtNF4raoL5g+kH8Bvsh8e/PVAMTGfFqqa30FSIMH+IfthYm8Cjz4e1X7+Iw+OhHsfd/zZ609k39Hsvqm8MVDxYvrsB2exf9h+HJt2DNJCKbqv6A6vQV5q30/vId6waGYBE1sTrb6fTx8+RfKZZLSd3bbaZaoaiIIv5GNy1GQILYSK+qsaxP8bj939dkNeJlcda58xPri3/R5OLThV47qVVUxq+UI++q7pC0CRIFV3rKtqqSPkZVGvxOL999+HkZERkpKSYGr6rGvJuHHj8O+//+osuJeNLoeaBRR/hKK+iYJzF2eNOgtdTDLU0BGhqmMXYKfzFouGDBtaE6cgJ+TG5kJWJmvwtvIe5IHhM7BuYd3wwGrwatirij7LsroXRVe86Dj/4Xl49PXA1W+v1jlBUd615Qv5qqJmpar+YHf+uDNuht1E0DtB9f6DLRFLkHU9S+sWi8pxciyHdvPaYUrMFLQc2RJCCyH4xnxELI/Ajm47UF5Uju4rulfbTYNvxEfbOW1x49cbte738eHHsGllA7vWdrUuG7kyEnKpHDwhDxzL4Z9xNd8Bz4jOACtl4RrsWuNyVl5WMHOtuc4iZHkIWCkL/yn+GoNO1HRx5T3MG48PVz9JolLm9ZrrK5Tce7ujNEcx7Ky2ijOKcef3O+j2Wbcal/Ob6If7f96v9YL56ndX0e6tdtUO5FBV6+DQP4ai+eDmuL3hNs4tPFdrzJVbE2QSGQ6OOojyknJkxWSptZRUpVmPZpCVyrAzeCfyH+drxMbJOMT/Gw9ZqQwW7haI/iEaCf8mQFYiU7VQVP5+MgyDbku6IerbKHT+qHOt388ba2+g5aiWNXZHrO6i3czZDGPPjEVaRBrij1fdQnV/z30cGHEArFQ9ORmxdwTc+7rjxq83cP7j8zXGqBTzWwyOTFa0clQsziaEVK9eicWJEyfwzTffoFkz9Tt/rVq1QmJiok4Cq2zVqlXo3r07TE1NYW1trdU6HMdh6dKlcHFxgYmJCQYMGICHDx/qJT5dECeLdZpYKP8IcRynlljoamZQcYJYfy0Wd3XXYlFeWo68+3l6abGw9LSE0EKokxaWnNs5sAuw0/uMrZErI8HJFHd26/OHUplcJJxIQPy/8fVKKpTraFvw6NbdDQ5tHXAj7EadYq0oNTwVll6W1dYVaBNnxLIIPNj7AB3md8Br+1/Du0Xvgmek+Lz4Qj66L615wrq2c9oi8WQi8uPza1zuwd4HWrVWqN0Bl3wA3/G+eLDnAc5+UH0dXPyxeHi+6qnRDaWyinUW1SnNK8X9XffRfn77WmOtyHuoN1IupEAiltS4XGZ0JpyCak8sBMYCePTzqFN3qKurr8LrVS84tK2566FHXw9wLIeU8ynVLpNzNwdJp5MQ9L/qh12u6i48AIw+MhrOnZ0Ruz221gL0iol9RGgE/p3xL/Li8pD/KF+r76Cye195UTn+6PQHcu7m4MikI6rubFe+voJTb59CUXoRuq/orkpWa7sB0XJES5g6mOL2pts17r+8pBx3Nt9Bh/kdalyuJs6dnOH5iicOjjyIp4/Uu9Pd2nALRycfhY2vTZXHY+zpsXBo64DYHbEoLy2vdh8cxyF8WTjOLzyvSlCoOJsQ7dTrCqa4uFitpUIpLy8PIpFuhkqtTCqV4o033sBbb72l9TrffvstfvrpJ4SFheHKlSswMzPDwIEDUVZWppcYG4KVsyhKLdLZrNvAsz9CqRdT8fgfxd1BXQ5vqI8aCwCwb2OPvHt5OuujmnM7ByIrkU6TNiWGYXQ2UV7O7ZxaL3IaquLn7xbihpYjW9brD2XnjxUj6CiHF61PUlGx4FGbP9hdPu6C6z9eh0xSv9ahlPMpcO+jXWuFtnFe+fKKajhcbZI0CzcLeA/3xs2wm9UuIy36rxtUFcPM1hbj8F3D4dzZGdE/RCNiRdX90OOP1t4NSqm2xOLO5jtw7uIMhzZ1O2+tm1vDxscGCScSql2GlbPIiqm5cLuimuosKnchKskpwc21N9F1cddaW295Ah5aj2tdY3eoa2uuwX+yf42jo1V3F55hGEwInwD7QHscnni41t+94CXB6PpZV0Qsi8D9XfdRnFZcp9/z7ku7o/uK7pDkS7ClzRbc23kPTh2d0OubXpgdPxuzn8zG4M2DUZRSpGqtq+3cZngMun3eDVFfR9X4/by38x4s3C00JmWsK6cgJ8jL5NgZvFOVnEZ9G4XT/zsNtpxF67Gtqz3Wk6Imwbq5NY5NO1Zl7SErZ3HqrVOI/jEasjJZvX6rCHmZ1Sux6NmzJ7Zt26Z6zDAMWJbFt99+i759++osuIpWrFiB999/H4GBgVotz3EcfvzxR3z++ed47bXX0LZtW2zbtg1paWk4ePCgXmJsiJLMEsUkQW41j1ZTV8FLgtFlUReU5ZVhjajufeqrIxFLUJZXppcWC+sW1uBYDgXxBTrZnrK+QpejV1WkqzqL7FvZeivcBjQvRN37uENoKazXH8pTbyv6Kde1e0B1d221KXj0HuoNY1tjxP4Rq3WcFSWf075wW5s469PyAgAd3u6AO5vuVNt97snhJ7DytoK9f821NtXFOO7cOJg4mCDxjGbrcUl2CTKuZihqVrTg0dej2joLjuVwc+1NxbDA9dBiWAs8OVx9ncXTB0/BsRzs/GrvDgYoEovqhp2t3IXo+v9dh1sPNyT8m6BV663fREUtRFUXzUXpRbi34x46LeykVZxV4Rvx4dTRCWmRabjwyQWN15XJT9aNLJyYcwLRP0YD//2c1WeOl+5Lu6smRuQL+ZhybQr8J/mrBg+pz7nt87oPhJZC3N16t8rXOY7DjV9voMOCDg3+LQ5eEozuy7ujNKcU27tsx4VFFxCxIgJySe0T9QlEArx24DUknkzE7r671V6TlclwaOwhPNj3ALZ+tlScTUg91Cux+Pbbb7F+/XoMHjwYUqkUH3/8Mdq0aYMLFy7gm2++0XWM9RIfH4+MjAwMGDBA9ZyVlRW6du2KyMjqfxwlEgnEYrHav8ZQmFwIM2czCET1GgG4Rr2+7KWYaEyqu4nGxAliCC2EMLYx1kGE6ngCHmxb2+qsgDvzeqZeukEpOQU5ITOm4S0W2bez9Vq4XflCVHk3utvn3er0hzJyZSTu/H4H9oH2de4e0JCCR4bHoPPHnXH1u6t1/qMuLZIi41qG1oXbtcWpvFCtz91M977uMHEwQdzeuCpfj/srTqtuUNXFaGRqhLGnxyLzWiaSz6u3NiScSIBje8dah9tVsvKygrmbeZV1FgknElBeXI5Wo1ppta3KvId548nRJ9V+lpnRmXBo51Br3QCgaJG4t+MerJpbIfG0ekKlmizwv8/m4uKLiPk5BubNzLW+0eLcxRnGdsZVtojE/BwDz1c8tU6AqiM0F6Istww3fruBWxtvPXtvyxQzmt/edBs7Q3aC4zhFoTxX/37/yrqcqtavb6siw2PQbXE3XPnqCuTlmnPlpEWmoSC+AH6T/OoUa3W6L+uOLou64GncU0VLSYlM65tmpg6m8J/ij5QLKTg4+iAARRH8vsH7kB6VjtKcUrQY2oKKswmph3olFm3atMGDBw/Qo0cPvPbaayguLsbo0aMRExODFi1a6DrGesnIUAyp5+Sk3ozu5OSkeq0qX331FaysrFT/3N21L/RsCHGSbusrKopcGakYMYbP6Kz4TDkilL5aAXRZwJ0Vk6WXwm0lpyAnZN/MrvKPqbYkYgnECWK9doWqfCHqEuyC4vRiFCQUaP2HUnnRYeFhgY7vdgTQuN0D/Cb4QVYiU3Xt01ZaRBosmlnAylM3LWwNaXlhGAbt325fZRG3tFiK+KPxtQ4zWxuHQAf0/rY3jk4+itLcUtXz8Ufjax1mtrLqukPd+O0GAmcHqu5815VrN1dwMg4ZV6v+Pa5tYryKlImesa36xb/yfGV4DPwm+8FnrA+ufHkFErEEdzbd0fpClGEY+E300+gOJS2U4sbaGw2a9VtJNXRwqQyn3j6F2B2x2NVjl2qOkC4fdcG81Hmw9LDEzbCb9e73X1trREPObd9xvuAL+YjdrtmqeOPXGwiYHqDVTO7a6vVlL9XocnW9adb/p/4ImBaARwce4Z9x/2B3n90oTC1EUUqRTictJORlU+/b41ZWVli8eHGDdv7pp5/W2sJx7949tG7dukH7qYtFixbhgw8+UD0Wi8WNklzoetZtJeUfEc9XPCG0EMKxvaNOJu8piNfPULNKuirgZmUscm7n6GUOCyWbVjbgGfGQdz+v3l2Zcu7kwNTJVKezmNdGaCaEc2dnJJ9L1noyQlbOqvpSu/d79r2oPLmVvvCFfHR8vyOivlEME6ptYlvXYWZrU1MSps33KmBqAC4uuoiM6Aw4d3RWPf/kyBNYelnCPqDhLVft326P6z9dx64euzAjdoZimNl/4zHq0CgAFe7k15JQuvdxx60Nt9SeK0goQMLxBAz4bUA1a9WOJ+Aphok9/ASu3TRHqMqMzkTAjIAq1tRUcWKy3NhcdF/eHec+PIf7O+/DuqU1Yn6KweWVl2EfaA+Gx2hVkFyZ30Q//BH0ByRiiWoErNu/34ZNKxs066Wbc6vi+zg6WTFTdsCMAAzaNAgMw1TbmqBcp+LjqmizfkPObR6fh66fdcXlLy4jYEqAqrWpOLMYD/Y9wLRb02o+AHVUcdQ25U2zunymg7cMRtnTMjzY80B1XlBSQUjD1Hv4mfz8fJw4cQLbt2/Htm3b1P5pa+HChbh3716N/7y9vesVn7Oz4o91ZqZ6F5XMzEzVa1URiUSwtLRU+9cYCpMLdVq4Daj/EenycRdkXs/U2d1lcYJYL4XbSvZt7HXSYpF7PxfgKS7+9YXhMXBs17AC7sYo3K6KNpOgVRSyPARuPdxg3sxcIxlprO4BbWe3RV5cHlIuVj9KT2Up51PqNMysvomsRPCf7I+ba9WLuB/sfdDg1golhmHQanQr5N3Pw4HXDiAjStEy4NLVpU4jw6nmsyh6Vrtwc91NeA/z1nqErepUN+wsx3KKIaK1GBFKKXhJMIKXBkMqliLMNQz3d96HQ3sHBL0bhNFHRuOdwnfQalQrVVJR19ZbOz872La2xaODjwAoblpE/xCNTh920mnLrWpeEigS6cG/D1ZtvyGtCbpYXxt+E/3AsRzu/3lf9dztjbfRrFcz2PrUPNFhXdS3xqmyUX+PUkygV49kkxCiqV4tFocOHcKkSZNQVFQES0tLtR9VhmEwdepUrbbj4OAABwf9XEw1b94czs7OOH36NNq3bw9A0fpw5cqVOo0s1VjESWK4hTRspIzKKv4RKc0thThBjLKnZTq5u1wQXwD3vvq7ULMLsEPe/TywMlarPtbVyYrJgmO72ifYaijHIEdkxWQB9bwhl31Lv/UV1XHv444Ts0/UaZ2kM0nw6Oehp4hqJ7QQov3b7RH1TRTce9V+DpaXlCM9Kh2Dtw1uhOi01+6tdtgZvBO9v+sNYxtjSIuleHLkCYKX6e7CptdXvVCcWYy7m++i4HEBvAZ64cqXV+o0iEPFOguvV70gK5Ph9sbbGL57eIPj8xrohaNTjkKcLFYVDgOKSdTYchZ2/nWrWwhZEYIrX19R3cWeFvPsC1n5br3yMaBdK1P48nCYOJrg3s57CJgagAd/PQAYwGe0j9atP9qoqv5BGV9DW8oaur42Lq9StAxdXnUZrSe0BjjgZthN9P+lv86OU0Nbbipvq/LIbpRcEFJ/9braWrhwId58800UFRUhPz8fT58+Vf3Ly9P9DM8AkJSUhBs3biApKQlyuRw3btzAjRs3UFRUpFqmdevWOHDgAABFgvPee+/hiy++wD///IPbt29j6tSpcHV1xciRI/USY0PoY9btin3qTexMYOFhobj4RcPvLutrcjwlq+ZWYHiMxjjldaWvGbcrcwpyatDIUDm3c/Q6IlR1XLu7oii1CAUJ2o/AlXS6aROL8OXhYGUsks8kI/u2+gzCVQ0dmhaZBjMnM7123asPx3aOcApywp0tdwAo6h8sPXTTDaqiwb8PRrNezZAbm4u4vXH1GhmuYsvWg78ewMTeRCc3FkxsTeAW4qYxC7eycLu2uTYqq6prjPL5+hbbK/H4PCSeSETiyUQUZxbj6ndX0emDTrjy1RWdzAtUOc7ndd4EHp+Hx38/RlF6ER789QCPDz0GeEDWjSydHSddtby8CMebEENTrxaL1NRUvPPOO1XOZaEvS5cuxdatW1WPO3RQTLBz9uxZ9OnTBwAQFxeHgoJnF0gff/wxiouLMWfOHOTn56NHjx74999/YWys+5GMGkqcpH7HTh+cOihGL2roRSHHcaribX3h8Xmw9bNF7t1crWYfrk5WTJbORiGpiVOQE07/7zQ4lgPDq1u3CI7jkH07u0m6QgnNhHDuoqizsJpe++dZ9rQMWTFZ8OjbdIkFj8/D1W+vwrmTM65+dxVDtg0B8Owiwb2Pu9pdR2V9hbKPuq7uLDdU+PJwmLmY4cZvN9Dx3Y6I26sYDUofcb5x6g38aPIjOFndunuEL1dcCLr3ccet9Yo6i5hfY9D+7fa4/MVlncToPcwbTw4/Qft57VXPZURnaF24rVRTi0RNF6LK12tT8Y747n67UZJegpKsElz+4rJO+uXr8i58U6oY85l3zsC+jT1sfWwRsTxCZ/ULumh5eVGONyGGpl63DgYOHIhr167pOpYabdmyBRzHafxTJhWA4gJt+vTpqscMwyA0NBQZGRkoKyvDqVOn4ONT+zCOjU0mkaEks0TnLRaVOQbpZr6FsqdlkIqleq2xABpewM1xHLJuNE6Lha2fLdhytl4tLIUphZCKpbD1013/47qoS51F8vlk2PjawNxVt/Ot1IXyrmTGtQzc23kP4iSx2kWCRz8PtbuOyvoKXc04rys8Pg8P/nqA4vRiPPrnEZ4ceQLfN3z1EmfU11GqyQzrUlugHG0p+1Y2Mq5mIOViCnJu56A4o1hnMbYY1gJJp5NQXvJsJuTM6Ey1ovba1NYiwePzdDJ0aPCSYHgP90ZebB4kYonOkgqgceofGouy3qUkqwRJZ5KQeCrR4IqiX6TjTYghqVeLxdChQ/HRRx8hNjYWgYGBMDIyUnt9xIgROgnuZVGUWgSeEQ9mTtXP2qoLTkFOagV19SVOEMPY1lg1Moq+2LWxa1AiVJBQgPKicti30X/tAt+ID/tAe2TFZNW5QDHndg5sfGxgZGJU+8J6UJc6i6aur1CqeGdxved6AIBDWwfIpXJYeVkhYFoAwpeGQ1YmQ/qVdDi2d8T1n64b1MVNxfdwZNIRWDSzwMODDxGxTHd3doGG1RZUjFFkJcLxWcdh52eHK19e0VmMtq1tYeZqhqSzSWgxtAU4lkPW9Sz0+7Gf1tvQRYuEtgZvHoxfHX6t86zztWmM+ofGFLIiRDEzvUx38yfp0ot2vAkxFPVKLGbPng0ACA0N1XiNYRjI5fUfz/9lJE4Sw9zNvM5daOrKsYMj8u7nQVosbdBY4vqur1CyD7Cv9yzLAJB1PQt2/nZ6mXSwKk5BTsi8nonW4+o2PHJTFW4rVayzqO1zTTqThJDQpu9GBCj++F/+4jLkUjkYAQOfMT4QJ4qRFpkGcYIYDI/BlS+vAIDBJRVKwUuCIcmX4Nqaa8h/nK/3pEK5T0D77h4Vl5cUSABApzEyDKOahbvF0BZ4+ugp5BI57AK07wLZmBeJN367oTE5naGdV4YgcmWkKqmg40TIy6NeV1wsS02EDbV412LwwUfohFCNoWaX7loKOeRYNWFVteuvS1sHHsPDbJfZGq9tSN8AllN8RhWXMXc1h6mDKXJu5eCI1xGwHIu5rnPrvI+ChALcmHwDJWklGvuoHEeUOApdLLvUGGd1MdgF2OF8z/MoTynHnGZztH6fSlkxWbg75y5mx82uMQZtYqztfbIci25B3RQjxVShps/rL7O/kDQ7CZnpmQ2Kob7HWjWfxflk/Cn8s9p9/PbwN/zz7j8oa1cGH2h2Kazt8wS0O29rWr/iNtpsbKM2eg4AJK1MUh2HD5w+wA8mP6jNOF/XfejjvNbYx+rZiP4pWq3+QVfHMqllEvg7+QieoHkn/1jLYziMwwhG9Rd7qn0smY3I0Ei1u8+6PA7iN8SwnGAJ7jdFa4V9W3vwjfgG93mlnk+F5VJLjdafYy2Pwa23W4M+L138DtW2jcbah8t1l2qPU3pQ+gvzPht6ThHyIqpTB9khQ4aoFUd//fXXyM/PVz3Ozc2Fv7+/zoJ7kfHBxxHfI1i6aykKk55Njrd011Ic8T2Cx3aPsSF9Q5XrbkjfgOtF1xGWHqaxzIb0DQhLDwOP4YHH8NSWYRgGjh0csTFzI8LSwxBdFF2vfeyz3Idzvc9VuY/KcfAZfo2v1xTDXtFeZAVlYV3Wujq9T1WcVvtwOvh0rTHU9ro27zO6KBqnO55G5vVMcByn9bHckL4BZ0LOQGQmanAMDTnWsW/FYkvJlhr3salwE0SmImws2FivfWh73q5L0/y8q9rGuqR1aqO5rEtap3Yclu1epjZC0NJdS+u8D30c6w3pG1QXmWHpYVi6a6kqqagYpy6OpVcfLxzxPVLlMkd8jyC7Y7ZW+1i6a6na3WdljNp8d7Q51n+a/omoEVGKWo7/Jg2sz7HU5+eVej4VR3yPQLxTrNb6I94pxhHfIzh756xezyld/AY0xj6KEotqPE5FiUUvxPvUZh+EvJS4OuDxeFxmZqbqsYWFBff48WPV44yMDI7H49VlkwavoKCAA8AVFBTofNtLdi7hgqKDuPlL53PHFx7nPv3jUy4oOohbsnMJtz5tPRcUHcT9mvArV1ZWplqn4vPrUtdxQdFB3Pq09ZxUKuV+TfhV9VhJ+dy61HUcx3Hc4m2LVev/lvSb2vLFxcVcUVGR2nbDUsK4oOgg7rfE39T2v+SvJVxRUREnk8lUz4WlhHFFRUXcb4nq21U+DksJ03gPlZctKSnhioqKVPudv3Q+98XxLxTLJ/6qtv5vSb9xRUVFnFQqVT23LnUdV1RUxP2aqHjf30d+r4jhv/calqwZQ1FRkerx+rT1XFlZmcaxlMvlGs9V3Mba5LVcUHQQN232NC4/IZ8rKirS2K5ymbXJa9XWnzx7MpdyO0VtWYlEotXnWfk8qbiNoqIitW1UXLa0tFTjnJq5cKb655n83+f537H7eO3H3NmFZ1XHtqoYqvs8tTmnfkv8Te2zX5+2npPJZFxRURFXXFz87NzbuYSbPGtylefU5FmTuTOfn1F9t5bsXMKVlpaqfbc4jlPF82vCr2rfyYrnicY5VenzWJtU9ef5a8KvGsuWlZVxRUVFqnNgfdp6jmVZjbiUcX/6x6eq7Su3UeM5laQZQ1FRESeXy6v9PCufE3K5XHUcwpLDVN+xiseyuLhYI+bqPs9fE3/V+OzLy8u5oqIirqSkRLXc5zs+5z7b/pniv3d+zv3Z909u5T8rVcfh022f1vgboTxPavp+1vQbUfk4SKVS1XGoeJ5cWnZJdSzWJq1V+zyX7FzCLd7+7Le1oornSU3fT47jqv2NUH6eLMuqnlub/F8Mlc6ThvxGcBxX5d+Situo6Tdifdp67tKyS9yiPxZVGcOnf3zKnf7stFoMJSUlGvsrLy+vMYby8vIaP0+Oq/nvTnFxsfpvz39/S5Tn/fq09bX+5lc+pyq+XvE3W1f0eS1CiC4xHFfp9moNeDweMjIy4OioGGXHwsICN2/eVM2OnZmZCVdX1xeqxkIsFsPKygoFBQV6mYVb2ULByTgwAgZBT4LwwZAPYMwY49Ojn+JR80dwvuaMA7MOYFPGJmzM2IicrTlI/T0VMTdjcE50Dlsyt4DH8sDyWNhG2WLnzJ2KjXNAYGAgBIMEcJrmBCPGCOVcORz2OeD0b6cxaNAgDPx+IDZnbsabzm/i+1e+h7SfFM4znDHRYSJed3gdfx/+G6ujV8PhDQcIGAFknAwBpwNw5cgVJKcm4/dNv6Nbl274K/sv7MreBbacBc+Ih0kOkzDBaQIYMBg2bBgy/DPgNPVZDL1LeuOn4T+hjX8bzN4zG79n/o6ZzjOxe8ZuPGz5EC4zXTDNcRqcv3JGEpOEH41+hNMUJ1UMExwm4ORnJ3H+3Hl8/c3XeH3069idvVstBp8dPvhi0RcQmgvxv3f+h2iLaDhOclRtY7DRYHw35DtYWFggJiYGu7MU6zNyBhyfg0+iD9YMWQMwQFZGFjp36gynSU5wnOKoeh+uN11x7P1j+Pijj+E63RWbMzdjSM4QfDXmKzhNc1IdyzEOY/D1d1/jSPEROIx9diwHYzDWjF8DjuMQGR6JE5IT2J29GwzLgONxcLntgk0TNoEHHhiGQTPXZrAdZwuXN11UMfgk+uDAuwcwcsxIrPhiBf7K/gv7c/eDK+fAGDEYZDQIC3wWQMQT4cOjH+Km+03YXLDBqfdOPbvL+GcRnmx8gn0796Fdn3bYlbULe3P2qo7lKLtRwFyg04ed8N6a91DSoQQOrz97H53yO2HzpM3o1rEbxq0fh98zfsc8l3n4dfCvyOyWCdc5rpjiOAWvO7yOk+dOYvn55XAY4wABBJBBhtF2o3H4w8OIuRqDsJ/DUNChANuytuGVslfwbd9v0ebjNjAaZYQ3nd+Ez2YffLbnM6T1SoPzDGdVDH3Zvvh1wq+wMbXBVG4qCkMLcdnjMiAHwAfcrrmh7Xdt0WVeF9gMtMG4sHFwedMF81zmYYbzDGxI34CNGRuRsSUDb/u9jalvTsWuzF3YnbNbdRzesH8Drzu8DgYMli9bjvPceThOeHZOvW7+OpYFLwMn4/B/9/4Pv2f8jjkucxD7TSz2SPbAdbYrJjtOxuv2r+PCzxcwd9tc2I+2h/1r9qpjYRNhg4ifIjDQfyB6/twTO7J3YIbTDLzr8y6cpjvBZaYLZjjNwGSnyVizZg02JW+C8wxn1fkwwWECVg1cBUm5BIeOHYKDswMO5hzE33l/q97HBIcJmOY0DcZ8Y7T/sD2sp1hjNH80FrdbrDon0jenw/uGN/qm9kXB6gKEe4arfqf87vmh2dfNEDQrCOlu6fj+yvdqx2G603SEjQzD/dj7OHbkGOJ94rE+Yz165/fGjwN/RKfQTpAPlGO8w3h47vfEp1s+BTuKhd0wOzAyBpyAQ6vbrfD38r/hYeaBd0+8i00ZmzDPZR52TNiBuFZxcH3LFXOc52Ci40RcvHIRo8ePRsu3W0I0UKSKwyTKBDE/xWDZsmUYMXwEDuYcVDuvJztOxlSnqRAyQoz8bSTye+SjQ1IHbHhtA9anr8f6jPXI2JoByUkJLkdfRhlbhn3Z+/BP3j9q58R4x/F4mvUUw74bBucZzpjjMgdvOr+JjekbsTFjI9I3pWO663Qs/Hgh/sj8A39k/aFaf5zdOIx3Gg8WLL799lscKjoEx/HPjuVYu7FY1mMZOJbDrZu3YGNpg11Zu7AtaxtYKQuekIcpjlMwwXECWLBo0bIFbN+whdOkZ7+XPkk+2P+//Rg9ejS++/Y77M7ajZ3ZO1W/EUONhuIt37fAgMG2rdvw+eLP0WN5DxR0K1Bto2h/EeI3xePo0aPw9/fHrqxd2Jm9U/U+JjpMxDjHcQCAfv36oaRbiVoMnfM7Y/OUzejatSv+3PUn/sz6Ezuyd6jOqZ6lPfFJ508AAGdOn8GMN2cg8N1A4FWotsE/zceNNTewYf0GvDrwVezK2oUdWTvUYhjvOB4cOEydOhUPmz1U+83vz/bH/434P7i5uiEiIgI88LAza6fi8/jvWE5ynIRxDuMQ9zAOQ4YMgft0d1iOtFRtwybaBhdDL+LzxZ9j1oxZ+DP7T2zP2q76/s1zmVdl96iG0ve1CCG6QolFLRrjy9zxakeArxge1UnghHKmHGVsGUrlpYB+67mrxQcfAkYATsahWFwMI2sjVSzGecYoNSqFHHKYmZsBPEAOOWSsTLEMB53HzbEcwEA1y7sRY4Ty8nKwLAuBQAA+XzGRVjmnGLKS4zjwZXzwhf89/9+yPCOeKjYBBJBKpWDAQCgSaqzPg2JZDlp/RarEAw8CRgC5VA5JiQQCS4EqBnOZOfKL88HwGZhbmIMFCwknUcVQcVb76jAcA7lUDgEjgIWJBQSMALmyXNU2RIwIUki1jlfEiCDkCVEoK1R9nnY8O5RklcDM2QxZ2VmQyWQQOghV74PP8iHn1f6954MPAStA0dMiGNk+O6fsBHbIFeeC5bHgiXj1On+EnBAlhSVgZAzsTOxgZmWGVGkqAMVxMJOZgQMHKU8KOb/2WAWMAEaMEUrZUtU2LAWW4KAY6rq0rBTlsnLwTfh1jteIMQJfwoe4QAxOwkHU7NkIa6JSEYqlxYpRwoR1P/8EjADSYilYGQtbK1uIBIoL7XRJuurzNOIZqc51QDFqUpVDx7KAiBXB3Nhc7Zyygx1kEhnkjBzlgnKUlZfV63MTMSKY8E2Ql5oHSZEEJs1NFB10OcAoxwhlZmXgm1aaJO+/3xeGY8Axz44NK2XBSBkw5s+C4BXyICmXwMLSAiKRCBw4iOVi1fvQ5vsFAFw5B3OROYx5xjDmGSNVkqo6llYCK5SxZZBy0jp/VhzHQcgTgvnvf+Xl5SiXlCveM/PsGJVKS8HwGDD82uPl5BzAAYygwnFgeZDJZeDxeODz+eDAgUX9aiWZCv+Tc3LVceAzzz4nmUymWJbPqN4HwzFg5SwYhlGda8oYKv7eKp4AWI4FA0a9wzar+D4wDKP67DhO8beB4zgImGdlo3KZHCzHgid4tl0ex4Ocldd4HBkwihs5YCAtU/xu8oyfBcGUK943X8AHw2PUjqMRY4TLHS5rfSzrghIL8ryoU/F2xS9zxedI/S3dtRTwBXhSHlghi86xnRE6QTHalkQiQYm0BIMfDUY5Vw4jxggnAk+grKQMDMPAzMQM27K2YUPGBtXdkjft38Rcd0XBGAMGxcXF2Ja7DZtzN6uWCdwSiE/GfwKX9i4QioTgwKH/rf6qfVwMvAgjgWLoU5lMhvWp67Epd5Nq/Va7W+HHL3+EkakRjI2NwefzVXc5jRgjlEP9rk1paSl+z/odv+f+rtrGLMdZGGc1DgyPgchYBBYsBtwaoIrhVMApCAVCJB5PxLn3zqH8RLlaDDOdZ2KKzRTI5XIIhUIYGRlpxNArshdWv7caAFBWVobfM3/X2MYkq0kAADMzM431ZznOwrxm8wAAcrkcxaWax3KG/QyMtxmP6NXREAqFEFoJ8X7n9yEXyGHEGCG8XTiiVkWBlbPo/FlnbEzfqBZDj3s90PVcV/T/pT9MTU2xMWOjWgyzHWZjbrO5YP/7X1FREf7I/QNb87Y+O5ZOszDFZgoEAgFEIpHG+5jhPAOzXWZDyklRJC1CkaQIYx+PhQwyCBgBjrY5CnmZHFdDr4LL5jBsyzDNY5nWC95femNi+ESUlJRgS/YW9WPpojiWckYOvjEfUlaKwXcGQ8bJIIAAJ9uchKmRqeKuXxXn1BsOb2Byq8lgWRZCoRAQAFJWqjovBYwApwJPKS5KwIOkTII/stWPwwyXGZjUehIYhoGpqanGe5jsNhlzmym+G+XychSUFEDCSjD6yWjIOBmMGCMc9T0KHsuDqdAUQqFQYxuTHCepzmuJRIJNGZvU3sdc57kYazkWMk4GkYkIMsgw+Lbi+yuAACf8T8BcZA4+wwfHcSgpKcHWnK1q25jqOVX1eQqFQsggQ88bPVXbON32NHiMogWrXFqOrRlbsSVvy7PzwXkWJlpOBACYmJiAx+NpvI+ZzjMxw3kGytgy5Bbloowtw9SEqYrPixHgUOtD4Mv4MBWYwsTERGP9N5zfwBzXOdX+Rsx2no0xlmMgZ+UQiARgeIqLsWF3h6mOdUT7CFU/9NJWpQjdF4oTvBOq38JXcl/Bpz0+BcuwgBAoYosw8u5IxXkLAfa03gMzoRmMecYw4owgk8iwNXcrNuU8i+NN7zcx1XZqtb8R81zmYZrTNJRz5SgqLUKZvAxjn4xVxXiizQlwEsUFq5mZYjjwytuY4DgBs11mQy6Xo7C0EBJWgtcev6b6LTvsexicnIPISAQToQk2Z27GuvR1ap+F8pySSqUavxEznGeofZ4cw2FD+ga13/25LnMx23k2GEbxm1/5nFL+Xlb5G/Hfeav8PKVSKSRSCf7I+0PtWM60n4lpdtOq/c2f7TJb9T6q+o2Y7Twbk60ng8fjVXlOzXGeo3ZOSSQSbMvdho05G9X+bky1mwqRSASBQFBjDKWlpdictVk9BpfZmGSl+I0wMTEBBw4bMzY++zyUx9JlNliWRWlpqeaxdJ1Z/TnFlWND+ga9tFgQ8tyoU78phuGGDBnCjRo1ihs1ahQnEAi4V199VfV4yJAhVGNRBxX7Llf1mOOe9dnser2rRt/Nyv05q+rfWd0yKw+vrNc+VketrnMcdYmzcgwFiQXctNnT6vw+P/jhgwbFVJdjuT5tPRcRGsF9h++4j377SO19LNm5hPsO33ERoRHVrr/iwAqdxNDQY/3k3yfc+ubrq93G53983uB9aLt+Q7dhKPuoafuNdSz1vQ9dHutpc6Zx3+E7bvrc6To/ls/D59UYvwGGsA9DiKGx9qErVGNBnhd1arGYNm2a2uPJkydrLDN16tSG5DkvDWVtxdC4oaoWitAJocAu4IjvEWCXYuKysPQw1d1/5Z0RpYqvAVD9f23LxB+Lx4H2B+CU7qSxTG37GPJkCOLvxyNsuHZxRBdG42rR1TrFqRaDEXB73m1M4U2p0/v0+8UPTkFOWsVQnxgrLzNv1jyIW4px2vc0AtcG4teVv+Kbs98oPuOdQ3Gnz50q17/2/TX8PelvpD1Ia3AMDT3W00KmIXxAOG6n31bbxiznWbj63VUcnXwU2Q+yG/Z51vIelI+V69RnG9och8bYR03Hoar96+NY1meZpjrWQ+OGwnK9JfhCPgLWBcC9tzvCoJtj+Tx8Xrr4HWqM37qG7sMQYmisfVDLBXkZ1anG4mWkr36NFeexqGzprqWIs4vDI/tHGoVgyj9UHc07orNF53qN0333j7sIiw+DdLwU14qu1WkfV765gqyYLGT8kKGTscCvFV6rNQbRLhHe9nkbfhP8tHqfkgIJfrb+GW9lvIWd7M5GGfNc+T6Gxg2F5URL8AQ8sDJWNcRiVcey7GkZfrH9BWaPzXC9/Lrex12v7VjPc5mHGxtvwLWTKxYPXqx6Pfd+Lv7o8AdMHpjgWsm1Bn+etZ23ymEg67sNbT5Pfe9Dm2OtjEOfxxLQ7rxt6mPtHO0My4ma8x6Id4qR2TGzwcfyefi8DGXuBX3vwxBieB7nsaAaC/K8oMSiFk31ZdbFRGLVyb6TjR1dd8D4gTH4PH6d9nFy3kmIbETo9VWveu27Mm3ep9dSL5g5m6HHFz202mbyhWQcmXAE81Ln6SRGbVR8H6sFq8HJFfMSvC95v9pjmXIxBYcnHMa8lMaJU5tj7fezH0oySzDo90Gq12J+i8HD/Q8x9tRYneyjoZOd6eIPtr73QcdB+30knk+E9QRrjdm8lclF/q58ePb2NPjj0BjHkry8KLEgzwtKLGrxIn6ZWRmLnyx+wpSYKbBrbVendf8a+BdajW6FdnPb6Sk6Tdd+uIaU8ykYeXCkVstH/180Ek8mYvTh0foNrArKiyGlyhdLFcX8GoPHhx9jzLExjRVereKPx+PUW6cw+8mzi6O/x/wNpyAndPusWxNGRl5U4cvDwePzqvyeRK6MBCtnEbI8pAkiI8RwvIjXIuTFVKcaC/Ji4Al4sG9rj6zrWXVOLAoSCmDV3EpPkVXNPsAeN367ofXyWTFZcOzgqL+AqqFMKkJCQ+Da3RX7h+xXJRlVXTTl3M6BQ1uHxg6zRm7d3SBOEkOcJIalhyU4lkPy2WR0/rBzU4dGXlA1JQ3VJeWEEEIME805/5JyCnJCZkxmndbhWA7iBDEsvRr3boldgB3yH+ejvLS89oXRNIlFxaQieEkwPPt7ovXE1rDxsUH40nBErozUWCf7djYcAg0rsRBaCOHcyRnJ55MBAFk3s8CWs3Du5NzEkRFCCCHE0FFi8ZJy7OCIrOtZdVqnOKMYcqkclp6Nm1iYu5pDZCVC3v28WpeVSWTIjc1t9MSClbMa3Z76fN8HknwJfMb6gJWrT0bFcZxBtlgAitHIks8pEoukM0lo1quZYpIpQgghhJAa0NXCS8opyAlZMVmoS4lNQXwBzF3NIRA1bg86hmFgH2CP3Lu5Vb4evvxZi0DOnRwYmRvBykvRXStyZSTCl4dXuZ4uhSzXrKUwsTNBv//rh5RzKQh6J0jtNXGiGLJSGWxb2+o9trqqnFh49Pdo4ogIIYQQ8jygxOIlZd/GHhKxBOJEsdbrNEV9hZJdgB1y7uRU+RqPz1N1N8q6ngXH9o5gGEbVPYnHb7rT3HecL5w7O+P8R+fVns++lQ0bXxvwhfwmiqx6biFuECeKkR+fj5QLKfDoR4kFIYQQQmpHxdsvKYGxAPYB9siKyVLd3a9NQXxBo9dXKNkH2CPhZEKVrylbCsKXhsO5szPcerhp1Dw0FYZhMOC3AdgcsBn+k/xVF+mG2g1KOUKPcydnXP3uKgQigaoOhEboIYQQQkhNqMXiJebYwRGZ17Uv4BYniJu0xaK6rlCAIrnovqI7Mq5m4PrP1w0iqVCy9LBEz1U9cWLOCVUBuiEWbgPPWn94Rjzc3ngb7n3dwfAMo/WHEEIIIYaNrhJeYso6C20VxBdo3bqha/Zt7FEQXwBpsbTK14vSi5ARlQEA4GSKyekMIalQKskpgUwiQ+QKRS1I9q1s2Le1B9B4dSDaCF4SjJDQEKReSgVbzsKjn4fBtP4QQgghxLBRYvEScwyqucWiYlE0oF5j0dgXw6aOpjCxM0HePc2Roe7vvo8tbbZAnKyoF+EL+ZBL5VUO8dpU+EZ8FKUU4drqa0i/ko6nD57CIdDBIFsCgpcEo9tixWR4Z949Q0kFIYQQQrRiOFczpNE5tnNEcUYxijOKq3y9YlE0K2dRmFQISy/LRr0YViY3DMNoFHBfWHQBm9tsxun5p+H5iidybuUgJDQE70veR0hoSLXzRzQFZUsAK2Ox95W9EJoLcWfLHYO9aO/xRQ/whDyw5azBtf4QQgghxDBR8fZLTGghhE0rG2TGZMJ7sLfG6xWLoiX5EnAsh7vb7iJyRWSjXQwrkxvgv5Gh7ioSiyOTj+Dejnuw8bVBmzfb4Op3V9Viqhh7xcdNKXhJMFgZi8jQSIABIpZFGGRSAfxXqC1l1Vp/DDFOQgghhBgOSixeco4dHJEVk1VlYgFoXqA3ZlJRef/eQ70hLZRiW8dtyLqehZajWuK1fa8hYkXVF+jKx5Unp2tKIStCcOWrKwbdElC5pkL5GDCMBI0QQgghhokSi5ecU5AT0qPSa1ym62ddFfUULJrkYrhycgMAnT7ohD6r+wBAjcOfGtqFcOTKSFVSYYgtAVUVahti6w8hhBBCDA/VWLzklC0WNdnVYxfAAjwhr8mKooOXBKsmk+ML+aqk4nlS8aLdEOtAAEXrTnWtPyGhIQbV+kMIIYQQw0ItFi85xw6OKHhSgLL8MhhbG2u8vm/oPqRfTkfH9zqi7w99m6xbTOTKSMilcoO901+b56Ul4Hlq/SGEEEKIYaHE4iVnam8KC3cLZN3IgkcfD7XXjkw6gvij8QicHYi+P/QF0DQXwy9Cn/+aWgKUrxNCCCGEPM8osSCKifKuqycWGdEZiNsbB99xvhi4fqDa8o15Mfy83OmvDbUEEEIIIeRFR4kF0aizECeLcWD4AfT4oge6fNylynUa62KY7vQTQgghhDwfKLF4iYUvV0xy5xTkhLg9cQAAiViC/UP3w9zVHOXF5U0cId3pJ4QQQgh5XtCoUC8x5eRzyeeTkXc/DxKxBIfGHoKsRIbM6EzwBHR6EEIIIYQQ7VCLxUusYq2CwFSAA8MOIC8uDyVZJQY7IzQhhBBCCDFMlFi85ComFykXUwCAkgpCCCGEEFJn1NeFIHhJMHhGilOhKWbWJoQQQgghzz9KLAgiV0aCLWfVJp8jhBBCCCGkLiixeMlVnCfifcn7CAkNQfjScEouCCGEEEJInVCNxUvsRZl8jhBCCCGEND1KLGrBcRwAQCwWN3EkuldYUoj2n7VHwLsBau8v4N0AFJcVo7Ck8IV834QQQsjzRPm3WHlNQoihYjg6S2uUkpICd3f3pg6DEEIIIS+55ORkNGvWrKnDIKRalFjUgmVZpKWlwcLCAgzD6GUfYrEY7u7uSE5OhqWlpV728bKgY6k7dCx1g46j7tCx1B06lrrTGMeS4zgUFhbC1dUVPB6VxxLDRV2hasHj8Rrt7oClpSX9wOsIHUvdoWOpG3QcdYeOpe7QsdQdfR9LKysrvW2bEF2htJcQQgghhBDSYJRYEEIIIYQQQhqMEgsDIBKJsGzZMohEoqYO5blHx1J36FjqBh1H3aFjqTt0LHWHjiUhz1DxNiGEEEIIIaTBqMWCEEIIIYQQ0mCUWBBCCCGEEEIajBILQgghhBBCSINRYkEIIYQQQghpMEosCCGEEEIIIQ1GiQUhhBBCCCGkwSixIIQQQgghhDQYJRaEEEIIIYSQBqPEghBCCCGEENJglFgQQgghhBBCGowSC0IIIYQQQkiDUWJBCCGEEEIIaTBBUwdg6FiWRVpaGiwsLMAwTFOHQwghhJCXDMdxKCwshKurK3g8uidMDBclFrVIS0uDu7t7U4dBCCGEkJdccnIymjVr1tRhEFKtFzqx+Oqrr7B//37cv38fJiYm6N69O7755hv4+vpqvQ0LCwsAii+zpaWlzmIL3RsKPvhY/MZijddW7V0FOeRY+sZSne2PEEIIIc8nsVgMd3d31TUJIYbqhU4szp8/j/nz56Nz586QyWT47LPP8OqrryI2NhZmZmZabUPZ/cnS0lKniYWpqSmO+B6B6IgIoRNCVc8v3bUUpzqcwtC4oTrdHyGEEEKeb9Qlmxg6huM4rqmDaCzZ2dlwdHTE+fPn0atXL63WEYvFsLKyQkFBgc4v9JfuWoojvkcwNG4oQieEajwmhBBCCNHntQghuvRCt1hUVlBQAACwtbWtdhmJRAKJRKJ6LBaL9RZP6IRQYBdwxPcIjl0+BtaXpaSCEEIIIYQ8l16aFguWZTFixAjk5+fj0qVL1S63fPlyrFixQuN5fd0lKC4uRq97vQAewJPycLXbVZ3vo77Wpa0Dj+Fhtstsjdc2pG8Ay7GY6zq3CSIjhBBCXh7UYkGeFy/NmGXz58/HnTt38Oeff9a43KJFi1BQUKD6l5ycrNe4vjr4FcADODkHVshi6S7DKdjmMTyEpYdhQ/oGtec3pG9AWHoYGFBfT0IIIYQQovBSJBYLFizA4cOHcfbs2VqHaROJRKpCbV0XbFe2dNdSHPM7BvvL9hBli/Bq7Ks44nvEYJIL/3X+GBo3VC25UCYVgj0CfN3+a7wkDV6EEEIIIaQWL3RiwXEcFixYgAMHDuDMmTNo3rx5U4ekUrFQe9f4XSi3L8ebvd/E0LihBpNc8Pg8WE60VCUXXWO6Iiw9DK/Gvorr31xHfHY87t+/39RhEkIIIYQQA/BCF2/Pnz8fO3fuxN9//w0LCwtkZGQAAKysrGBiYtKksckhVyvUdk5wxpmcM6qCbjnkTRofAAQvCQYAhE8MB+8qDzKeDKyUxZUpV/D5mM8xeulotG7duomjJIQQQgghhuCFLt6ubrznzZs3Y/r06Vpto7EKpj7c/CEeyB/AIdIBGzduNKixqpWtK+AAMID3WW/sXbi3qcMihBBCXgpUvE2eFwbdYnH69GmcPn0aWVlZYFlW7bXff/+91vWfp5wpyCYIJ0QncOj3Q5g2bZrW82zo24b0DTjiewRmqWbwOuaF2GmxeNL3CTakb6hytChCCCGEEPJyMtjEYsWKFQgNDUWnTp3g4uJiUHfw9WFQ90FYHb8ab3/+Nry9vZs6HADPCrWHxg3FCZcTaHZOUfieMj4FYelhSE9PR/HuYvTo0QPDhw9v4mgJIYQQQkhTMtjEIiwsDFu2bMGUKVOaOpRGYetoC9dTrmjTs02tI1c1FpZjMTB2IC59eAmyQzJMXDUR13+5jg2FGxAoDkSsOBa7v92Nx48fN2liUdN8G1/f+RoWlhaY7zG/CSIjhBBCCHl5GGxiIZVK0b1796YOo1H5l/rjmvhaU4eh0nZTWxxbegzRPaLhlegFlzYumHRsEu5MuoNLcy9h2qlpEEwSYMyYMU0ap3K+DQAYwg7BBx98gMGDB6Okbwn2SvdCulaKAdMHwNfXt0njJIQQQgh5kRlsYjFr1izs3LkTS5YsaepQGk2wYzBWm63GjRs3cOLECXz88cdNGg8rZ9Hu9XbICMiA0SMj2Iy0AU/AwycrP8Hds3dxK/AWts/c3qQxAlC1VISlhyEmPQZ79uzBE78nYHNZiP8QQ7JPApdFLk0cJSGEEELIi81gE4uysjKsX78ep06dQtu2bWFkZKT2+po1a5ooMv3p3ak3VsWvQs83eqLoUREGDRqEtm3bNlk8IctDEIIQ5F7MBf4FeALFtCd2re3wztV3sKTlEtxKu4W2rk0Xo5IquUAYOl7tCJbHYp7LPLy+5HUkTk2kUTQIIYQQQvTMYBOLW7duoX379gCAO3fuqL32ohZy27jYwOWkCyzGWMDukR34fH5ThwQAiGfj0Z/XX+25Vye/ikO/HsKyjGUI6x6GM2fOYPz48U3y2YQvDwePz8OMz2cgLD0MHI8DH3y86fwmor6IAitngQ6NHhYhhBBCyEvFYBOLs2fPNnUITcK/xB+ZXTKx+avNTR0KZDIZZIwMmWaZ8LP1U3uNYRisGLcCr8W8hrZvtkXW0SwEBASotbBErowEK2cRsjxEr3Hy+DyELw3HHv89QHNAAAFkkOGViFcQvC0Y4jfF+HPjn3i8/zFkMhlOnDihWnfprqWQQ45VE1bpNUZCCCGEkBcdr6kD0EZKSgpSUlKaOoxGEewUjIc2Dw1iDo6DBw/CvYs7uGIOLVu01HjdzsEOzfObw+1TN7Rwb4GnT5+qXotcGYl1SetwrPUxvccZvCQY4p1iXGh+AWZFZohoF4FBDwahwKQAJ3adQGanTEQERSDGLQZnz55FSUkJgGcT//HR9C1D9+7dw8KFC3Hw4MGmDoUQQgghpF4MNrFgWRahoaGwsrKCp6cnPD09YW1tjZUrV2pMlvci6dm5J6RGUtzLvoeSkhKUlZU1WSx37twB68YCDwCHNg5VLtOrZy8wZgxaLGsBwVlFA5gyqbj91m149vbUe5zKSfy4WA6JJxIxXjgeNhNsMPT+ULA8FmJnMUylpnB9yxWzf50NkUikSiqGxg1F6IRQvce4Lm0dNqRvUHuuqKgIR48exYb0DVh5cyXWrFmDX375Re+xEEIIIYTog8F2hVq8eDE2bdqEr7/+GiEhiq40ly5dwvLly1FWVoZVq17Mriu2zWzhesIVc/6Zg/Bvw3Hw4EG89tprTRLLZ599BnGEGPHH42E106rKZWa7zEZ2WTb2ddiHX+7/gihRFG5OvYnbb93GPJd5jTI7N8spCrW3PdmGjIcZaMG2AABYTbFC0DtB4FvwYcVY4cyQM7jS6Qq6Xe0G1pdttKQCUB8Sd7bLbJSWlmLIkCF46PsQrs6uGN9uPMpGleHNN99slHgIIYQQQnTNYBOLrVu3YuPGjRgxYoTqubZt28LNzQ1vv/32C5tYAIBfiR/OeitqTB49etRkcQiFQuQIcuBT6gOGV31R9mfNP8Pd/Lu4P+E+Hr3+CKyQbbSkAgDmus4FAOxy3oWJDybCSegEuVSOoPeCMHHcRJRklaAkswR9wvvg816fgxWy4El5jZZUAOpD4gLATKeZsJlsA9dOrhguHw5LK0sM/nUwhrkM01h3Q/oGsByrep+EEEIIIYbIYLtC5eXloXXr1hrPt27dGnl5eU0QUePp5tgNjD+DzKxMLFy4sMni4DgOCfwEtBRp1ldU1urHVuA4TnXR3mZjm0aI8JmTX59EgWkBXHJd8L7kfYSEhiB6TTQSjiegxbAWCJwZiHDncMUZzwKskMXSXUsbNcbZLrMxz2UewtLD0O1GN6R0SsFY0Vgs77wcKedSEJYeptFdakP6BoSlhyHl3MtRY0QIIYSQ55fBJhbt2rWrsr/5L7/8gnbt2jVBRI2nZ+eeYMEik5fZZDE8evQIH636CMVGxWjtqJngVRS5MhKRwkgwDANOpkgu1iWtQ+TKyEaJNXJlJI7sOwKrp1Zo2VmRBAUvCUZIaAjCl4YjcmUklu5aimOtjyH3QC7K88sRcj0ER3yPNElywQMPcsgBACfkJ/Dpk09hJbWC7w5fhKWHYe4/c3Ht2jVVUhG4NhBDHg9p1DgJIYQQQurKYLtCffvttxg6dChOnTqF4OBgAEBkZCSSk5Nx9OjRJo5Ov2yb28LlpAvO4iwCewY2SQwRERHYcHQDvAO94ebvVu1yykLtnLdyYJlriV6PeqHZyGYIeysM69auA1YqLvL1KTU3FX/6/gmXOBfY+Nuonlfu90/en7jkewlD44YiLjEOj6wfYajrUFjHWeOI7xFgFxqtW9SSy0sUrTocDyzDordVbzgLnRHVPQqP2jwCxMC1ZtdwTX4NSAcC1wZirsdcvR9Dba15uAbmZuaY4zpH4zXqskUIIYS83Ay2xaJ379548OABRo0ahfz8fOTn52P06NGIi4tDz549mzo8vfMv8cehpEOYM2cOMjMbv+WiRYsW6DWxF8zizGAfYF/tckdbHFUVancu7YxMJlPV5ef2W7dxtIX+k0BJZwmMWxpDFieDU1sntdeClwTD3NtcVai9e9tuWOdY46nkKUInhGJo3FBV64G+bUjfgKPCo2ClLLx3eGOeyzz8nfs3GDDY6LMR5zqcw+CLg8HJOYAP8KQ8g0gqlCOTFRUVYcvmLViXsQ6/xKu3JipbV3iMwf6kEEIIIUTPDLbFAgBcXV1f6CLtmnRz6IZj7sdw6vdTGDduHJycnGpfSYdCQkLga+qLpxufwsLdotrlmvVphnmMolB7ncU6HDNRzFuhLFZmnfU/NPCkSZNw4MYBmCwygf08zSSo8uR3zYqbIfZpLIBGbKnYuQRHWx9Fb3lvXORdxMR+E/Gai2K0r7D0MCSdTcLyN5bDpJMJGD4DcIo6kDuz7iAYTZdYpKWlwc/PD2PHjsXYsWPxYM0DuJe6Y/OUzRAZizDbZbYqqWjMgn1CCCG6w3EcWJZ9oYfzJ/XH4/HA4/HAMNUP5KNkUInFrVu30KZNG/B4PNy6davGZSvO8Pwi6t65O/hpfLy96m00a9asSWJ4VPoIHWQdajyRKnZ7kRfKkWqfinNnz6FP3z6NdpEp42RIYVMw+OFgWLe0rnX5lqKWuMvehUQigUgk0n+AADgeh8C1gfAM9kR+SD5e66JIKtpsbIPApECIfcV4e9HbuDbxGgLXBqKgeQHKbMoQ1vXZELWNYV3aOvAYnmp/+/btg1gsxv3795HQJgGfhH+CQdJBuONyB2HpYdiUsQnlXDklFYQQ8pySyWTIz8+HVCpt6lCIARMKhbC2toZAUHPqYFCJRfv27ZGRkQFHR0e0b99eUQxcxQzUDMNALm+c7itNxa6VHTxOesCnpw98fX0bdd8SiQTZ+dlIFaZinOk4rde7efEm2Aks9m7Yiz59++gtvsqSypLAY3nwMPcA36j2WbT//edfPB3wFBcuXMArr7zSCBECX4z/ApEPI/HTvZ/gauUK+AIXPr2AqG+i0N64PR59/EiVVMz1mIsjwiO4ZnINrda2QthbjZdcVJ5vY8GCBWjfvj1OCE8gLD0M4xzG4bHoMWLEMQCAcq4cRowRJRWEEPIc4jgO2dnZ4PF4sLGxAZ/P1+quNHl5cBwHuVwOsViM7OxsODs713iOGFRiER8fDwcHB9V/v8wYhoFfiR+uiq82+r6vXr2KV998Fa03tUYrz1Zar/dKt1dwregaHD0d9RidurVr1+JcyTlYBVjBsY12+3VhXFDqVYprx681WmIBABajLFCYXIiSX0uweuxqcCwH65bWeHX9q1ifuV6tUHvF+BVIn5cOxy2OCFwbiMT+icB4/cdYeb6N8Y7jcdTtKE7kn4AZzwz7M/ejVW4r2LRUFMlzLIdyXjk2pG9Am41twMpZhCwP0X+ghBBCGkwmk4HjONjY2EAoFDZ1OMSA8fl85OTkQCaTwcjIqNrlDKrS0tPTU5UFJSYmws3NDZ6enmr/3NzckJiY2MSRNo5ujt3wyOoR7ty706j7TUhIgImPCbjHXI2F25WNeX0MXAtc4dis8RKLAwcO4FLCJeA+YN9Gu1i/X/Q9hFIhOnfqrOfo1H3z3TdItUpF3L04cCwHnhEPsx7OgkdfDwy+P1itUHtMjzHgCXmwGWiDuR5zMfj+4EaLc7bLbMx1mYuw9DD0udkHJ/JPoK1ZW3zj/Q2+OfEN+Pv4CBeHwy7GDlw5B687XghLD8O6pHXg8Zv+J2Vd2jqN+UCUNqRvwLq0dY0cESGEGDZqpSC10fYcafqrgGr07du3yonwCgoK0Ldv3yaIqPEF+AegtLQU3cZ1g1gsbrT9Tp48GR//8DG84rzqlFgAgGu5KxJKEvQTWBXmzp2LgEEBcHnoonVi4eXlBZenLriddlvP0aljnViABZonNAcjYMCWs6q5PkKWh6iN/jR1zlS4PHRB25C2ijk5GrkVwCXTRdUN0YgxwmbfzQi2DMaDNx/g9lu3Ebg2EJOvT4ajwBEDigcgcG0gbr91G3dmNW4SXBVld67qJhukkasIIYQQ/TDYv7Acx1WZHeXm5sLMzKwJImp8zTs1R1l0Gey62yE5OblR9/1I/AhuqW4wc6nbsfYUeiKJSVINUapvr7/+OnjuPDhGOWqdWABAc645HpU90mNkmjr6dYTTfSf4i/wx4eIEtQn8KhMKhfAt80V0dnSjxqj0Y+KPiu+fTFFHobxIZzkW81zmYY77HGT9lgW7vXY4l3wOcz3mYp7LPLBc048oMttlNuY6z1VLLmjkKkIIeTn06dMH7733XlOHUScJCQlgGAY3btxo6lAazKBqLABg9OjRABRNLtOnT1cbtUcul+PWrVvo3r17U4XXaJSj8wwvG4600WkICAhQvdYYE5E9lj3GEG5InZtHjx09hpweOfj3338xcuRI/QRXwVPZU2TLsmGXbAdLD0vtV8wDrgiu4K+//sKYMWP0F+B/IldGIqo4Cn6BfoAUcGjnANdurgCA8KXhADQnEuxo3xFbTbZCLpeDz6+9KF1XNqRvQL57PpqJm2GJ+RLEuMSoai7mus4FK2Px7+N/AQAuF1wQtSwK3QZ1QzDT9JP4SSQSfPLJJygpKcG8FfNo5CpCCHkBTZ8+HVu3btV4/uHDh9i/f3+NNQDaYBgGBw4caJTrmBeNwSUWVlZWABQtFhYWFjAxMVG9JhQK0a1bN8ye/eJfHKScS8HR1kfRt0NfPLZ8DCkrhZAnVN15HXJ/CDBR9/vNyMjAgs8WoGBBAVrbtK7z+nasHQo9CvHg4gNgpO7jqyglJQVR4ijYSe3g6uUKhqd9ElScVgxpFyn+2fxPoyQWcpkc0lekaFveFrw2PBiZKH70lMkEK9e80+9k6YRcm1wE9QjCzcibeo8ReHZn35hnjNBOoWhn3g6d0AmAoqCblbFwfs8ZKRdTAADm181RalGKIa8NwbF/jjVKjDWJjo7GTz/9BI7j8Ma8N8CAQTlXDgEElFQQQoiOhS8PB4/Pq3Ii18iVkXod0GPQoEHYvHmz2nMODg613oiTSqVNVqiuz3035fuqyOC6Qm3evBmbN2/GsmXLsGnTJtXjzZs3Y926dVi0aBHs7evW7/95NOTxEASuDcRZ17OADLglvqW66AtcG4ghj4foZb+3bt3CibsnIEuVwdXHtc7r/7D4BwhEAgx5VT/xVfTbb79h3hfzUBJbUqduUAAwsf9EGFkboX/P/nqKTl1oVCgSzRORczwHTh01Zwev6oe3Xbt2kCRJkChIREFBQaPEyXIsxtmPA8dx8Df1Vz0/22U25tjPQeyfsUi7nIbS7FKEhIbApYMLnkY9RYxdDA5+eLBRYqxJ9+7d8c0332DVqVVYwiwBBw4cy0EGWbUF3YQQQuqHx+dV2aU3cmUkwpeG63VAD5FIBGdnZ7V/fD5foyuUl5cXVq5cialTp8LS0hJz5syBVCrFggUL4OLiAmNjY3h6euKrr75SLQ8Ao0aNAsMwqsdVuX37Nvr16wcTExPY2dlhzpw5KCoqUr0+ffp0jBw5EqtWrYKrq6tq+oCoqCh06NABxsbG6NSpE2JiYjS2fefOHQwePBjm5uZwcnLClClTkJOTo3q9T58+WLBgAd577z3Y29tj4MCBDTiaumNwiYXSsmXLXppaiqoELwnGXI+5aLW2FWSmMsx9NFeVVFQcPUjXWrZsiTfefwNW8VZ1LtwGgObuzWGZZ4l7yff0EJ26srIyWPhZwCrBCvaBdYu1d9fesHlqAxjrKbgKpFIpolKjIJfIYXTVCM6dnLVaz9HREa2yW2HK9CmwtKxDN68G6J7bHWd3nIWD2AFGvGdNyRKxBFZTrBDwawCK04oREqooNu8+uzvcb7nDf7g/bq++XWW9iK5VHvUpPz9fVWj+a+qvuDr0Ko7YHUE5V45BkkFIWJQAXlnVBd2EEELqL3hJsEa9oDKpUP6dMATff/892rVrh5iYGCxZsgQ//fQT/vnnH+zZswdxcXHYsWOHKoG4elUxzP/mzZuRnp6uelxZcXExBg4cCBsbG1y9ehV79+7FqVOnsGDBArXlTp8+jbi4OJw8eRKHDx9GUVERhg0bBn9/f0RHR2P58uX48MMP1dbJz89Hv3790KFDB1y7dg3//vsvMjMzMXbsWLXltm7dCqFQiPDwcISFhenoaDWMwXWFquivv/7Cnj17kJSUpDEj5PXr15soqsYTvCQYmR9mIlQWCkbAgCfl6TWpAABvb2+4yF0gWy2D/YT6tQw5FTnhUaH+C6PXrFmDzHuZcF3pCvvedY/Vo8wD98X39RCZOiMjI3y18yscyz0G/l0+nDo51b7Sfwa4DcCpwlONNhTgpo834X7P+/C46gH0VjxXmluKfYP3oexpGSzcLRA4M1B1Dvq+4YtXQl/BwXcOovuX3cFK9F+8XXkSv7FjxyIlJQV9tvTBFcEVWPGtUMaWqWoqxq0Zh2W8ZWhp3FJtPUIIIVXjOA7SQu1m4g56NwgyiUyRXHwRCVbKouvirgh6NwgSsUTrfQothHX6W3f48GGYm5urHg8ePBh79+6tctl+/fph4cKFqsdJSUlo1aoVevToAYZh4OnpqXpNOZ+atbU1nJ2rvxG4c+dOlJWVYdu2baob4b/88guGDx+Ob775Bk5Oir/1ZmZm2Lhxo6qb0vr168GyLDZt2gRjY2MEBAQgJSUFb731lmrbv/zyCzp06IAvv/xS9dzvv/8Od3d3PHjwAD4+PgCAVq1a4dtvv9XugDUSg00sfvrpJyxevBjTp0/H33//jRkzZuDx48e4evUq5s+f39ThNZrshdlg0hmAA1ghizuz7iAY+r0DECeOg1emF0wdTOu1flFaEQ6LD2N2zmy9dluTcTI8KXuClpdawv6HerSuiJrjKncVd+7cQZs2bfQQoQLDMHhq+RQhTAjKi8rhEOig9bo9A3piW9o2lIhLYGpZv8+jLjq26IjwDuFod7odAKA4oxh7X9kLVs4i/1E+AqYGqCW2IisR2vdsj8inkZDPlSPEVv/D4lacxK+stAyRVyPh8p0LrgiuoIdlD/iZ+oHP8FXLtQ1siyk5U/Bn1p+Y5zIPck6u9xi1oRygoaokpzEGaCCEkOpIC6X42ernOq/HShU3l66suoIrq67Uad3/FfwPIktR7Qv+p2/fvli7dq3qcU29XDp16qT2ePr06XjllVfg6+uLQYMGYdiwYXj11VfrFO+9e/fQrl07tf2GhISAZVnExcWpEovAwEC12od79+6hbdu2MDZ+1mUiOFj9uu7mzZs4e/asWuKk9PjxY1Vi0bFjxzrF3BgMNrH47bffsH79ekyYMAFbtmzBxx9/DG9vbyxdurTK+S1eRMqaCt/tvngw/gECNgUgbK7+7riyLIvwy+FIEiahP7/+tQf3o+8DXYDY2Fj06tVLhxGqSyxLBMMysJfYw9Sx7hfdSXeT8MjtEb7+6mts37FdDxE+E1sSiwGJA8AL5EFgrP3XrqVTS3ApHGZ9Ogs7ft2h95aLPqv74Jdbv8D1F1ec5c7i8T+PYWRmhLw7edU2awdMC4DdCTvsEu6CpZElunXrptcYAfXkwue04gd2nP04fOzxsaqYEEueLT/UdijWpq7FvsX74JXoBZzWe4i1qtzyolRxaFxCCGkKQgsh/lfwP62Xj/o2CldWXQFPyFO1WHT5uEud91kXZmZmaNmypdbLVhQUFIT4+HgcO3YMp06dwtixYzFgwAD89ddfdYqhPvvWRlFRkarlozIXF5cGbVvfDLbGIikpSTWsrImJCQoLCwEAU6ZMwa5du5oytEZRsVB7hmwGGDmDUT6jELg2UG99xZ88eYJXp7wKqUQKLyevem/nFd9XYO1prXby69rJkycxa/ksiNJFcPR3rNcFd3DLYBh7GYOR6fdifenKpYgrjoPoikjr+golPo+PglsFOJlzEgkJCfoJsIKYohi0sWyDnp/2RPSaaBQ8KUD2zewa+8p69PdAyqUUREujsebHNXqPUWm2y2wwUHx2RowRPvb4GEDVxYQingjOp53xpPsT7I3aq9G1sinMdpmNeS7zaL4NQojBYRgGIkuRVv+u/991XFl1BSGhIfhA8gFCQkNwZdUVXP+/61pvQ2QpavTZvy0tLTFu3Dhs2LABu3fvxr59+1Q3ro2MjCCX19y67efnh5s3b6K4uFj1XHh4OHg8nqpIu7r1bt26pTbf1+XLl9WWCQoKwt27d+Hl5YWWLVuq/TPEZKIig00snJ2dVR+wh4eH6qDHx8erCjVfZInnE1WF2j2/6gmTZBOkd0jHXI+5CFwbiMTziTrfZ1ZWFty6uoGNZ+EcWLcL4IqW/W8ZWBcWViZWOoxO3dWrV/Gg9AEk9yR1HhFKafrQ6RCVizDutXE6ju6ZlJQUrN61GtJCKaTnpRojQtXG2NgYHmIP+HT10ftcFnfv3sW/T/5FO9N28OjnAQDgWA58Ib/Guh4en4fXW70OHp8H+06NN2LbT8k/gQMHASNQm8SvumJCn2U+sPCzwIrdKxp1XpCazHSaqUouusV0o6SCEPJcqapQu6rfYEOzZs0a7Nq1C/fv38eDBw+wd+9eODs7w9raGoBiZKjTp08jIyMDT58+rXIbkyZNgrGxMaZNm4Y7d+7g7Nmz+N///ocpU6aoukFVZeLEiWAYBrNnz0ZsbCyOHj2K77//Xm2Z+fPnIy8vDxMmTMDVq1fx+PFjHD9+HDNmzKg14WlqBptY9OvXD//88w8AYMaMGXj//ffxyiuvYNy4cRg1alQTR6d/g+8PVhVqHz1+FCkJKVh/dL1qtKjB9wfrfJ/du3fHO9+9A/9E/3pfrAOAo5kjhMVC3Husv5GhRo8ejc6jOqNFRot6x8rj8eAmdkNsVqyOo3tGLpdj0LxBsMyzhPimuE6F20qfj/8cfB8+nKzqvm5d/PTTT7iQfgE3995E+OeKSfv4Qj7kUnmtfxzGfjIW3pe94TfaT68xKm1I34Ct2VvBL+Bjs2izxp3/in/YVvNXI3xpOAZ8PABTPKfgie+TJk8sjh07BisrKwhEAiRlJwGAar4N0Unt+xgTQuqn8uhyFW1I34B1aesaOaLnEytnq2zRVv4GVzVHkyGwsLDAt99+i06dOqFz585ISEjA0aNHweMpLotXr16NkydPwt3dHR06dKhyG6ampjh+/Djy8vLQuXNnjBkzBv3798cvv/xS477Nzc1x6NAh3L59Gx06dMDixYs1ujy5uroiPDwccrkcr776KgIDA/Hee+/B2tpaFaOhMtgaC2XVPKDI3Ozs7BAREYERI0bg/9k777CmrveBf25C2BuZylZBBffCvWftskNtq7WKo61d39bWtqJid+0eolhrl6Oto61YrVpHBdwLHIiKggxBpuyQ3N8f+RFBQBlBsD2f5+HRJOee+96Tm+R9z7tmzvz3JzRW7Gvg7++P+m81Ci/dzdSYVaHi8uKwOmFFi6frb1hIkoR9pj17r+5l4MCBBpTuBv7+/hSri+l0ohMtxtdfVh8jH85rGq+ClaenJ53u64R5vjnqAnW9jKDuHt0pyCzg5L6T9BjboxGk1KFoocDY1Rjv9d5c+ecKbR9qy72/3KvfkYKa770W7VrQ7ut27ErexRyf2sfl1ofycKGS5BLSV6dj8pZJpZwLgGlO0/QVTWStjKSUCJofhG+pL/eduo+EogS8zbwbVc5bMXz4cMY8MYZjPY8RWaZbWwmJMsp4/cjr5Ofn8/TTTzeZfAJBfblbihKIHCfDcKvmd42pq6xatarG13bv3l3pcXVhxMHBwbdstjxu3DjGjRt3WzkCAwP5+++/a3y9Jjl79+7N8ePHKz13czROmzZt2LBhQ41z33ydzYVma/YoFAqMjG7YPRMmTODzzz9nzpw5zaKz4J2kXbt2PNP6GbwDGl8Rii+IxzXbFVO7+jd4uHbtGqdPnmbpkaWVYggNSXZZNhnqDEwOmNSr30Y5BVcK2G+xn48/brzcgDOFZ3C65IRjR0eMTOpuy1sqLXHJcuH3Y7+jVqsbQUId4/43Ds/rnhh/bwwSDPt6GFB7t/aojqNINE3k+KXjjRquqJW1PO70OOYtzXll8Cv4+voCN3IWSgpLWD96PbHfxgKgUCmQNTKbJ23GydiJYdbDeHPfm3zxRd0rntSW2+2Gvpn4JinTU+japSu55DLLdRbRnaOxzrHGeYozyX2TG002gaAxKVfYb77/yxV2hdQ81I6KOU7LU5aTlpYmcpwEAgPQPD7h1eDj48PUqVMpKalcA/natWv4+Pg0kVRNgyRJtLZpzVWLq416nlHjR5GpyMRRUftyqNXh4OCANlmLhbcFV65cMZB0N8jJyWH1ntU4qB1wsHPAxKb+oSPmhebQBv75+x8DSqhDo9FwOfUyF4ouYHnQss6J2xW5dPAS32Z+W213TkNxLP8Yra+1xu9BP1y6u1QqN1wbt3bXB7pScqqEoc8N5fTpxgsvC1geQP6efLpbdeeVGa9Ues37bW/k7jLXk65TdE3XHfyl0pfwe8SPs2vOsuulXbS50IbTlqdZ9PkiioqKGkXG6pSrXbt28fjPjxOWGsae3D0EWQcRp47TKzEqhYqdg3fib+zPVs1W3k+sWg3kTiPCRZoXd8P7cTcVJXjS5Uk6KzuzLG0ZY5LGNEsZBYK7jWZrWFy6dInIyEj69+9PWlqa/nmNRsPly4ZPXG7u+Lf0p9CikLyyvEaZPy8vj8jESEpSS/Dy9WrQXJIkseDBBfi08al1Kbi6cOjQIUJXhpJ6OLVBuSAAjw99HJWNikljJxlIuhvExcXRfkR71HlqSvaW1DlxuyKOeY5YdrQkLibOgBLeQKvVcuT6EcaNGIeRqRFeo7yqjAmaH3RLt7dFCwtUJ1TY9rflxIkTjSIn6JLF90h7aLOvTaXnf3/0d45/dRwTOxOyzlYujztu3Thcerpw5JMjeO3zwiTehJEfjGy0JLiblavU1FSm/TWNM63PYF5qzs/tf8bb1LuKEqOQFPzY4Ue6W3Zn/bX1vHz8Zb7++usq898pJfJ2u89H8o80e0UX7g6FvDYy3i3egK4pXUn/Pp2w1DC6H+2uV9inOk69I+Xib7WWsyNmM3ffXPbm7OXR04+So8xBLtOFSwLYGNmgltW8vPdlPrvwWbVzNJd7RiBojjSPb6FqkCSJrVu30qpVK7p161ZjS/X/CrGJscjXZN784s1GmV+lUvH020/TIrkFnt08b3/AbejWths5Ljmoiw0fuqNWq3Ht4YplsmWDDYtO/p1wyHMgW1191YeGcOHCBSw7WKJMUpJxNKNeidvlfPr8p1i1t6Jbi8ZphjPk/iFcLrqM5qyGS9su4T2qfmF3L3R/AccgRx565CEDS3iDz7M/J8cnh6tzrhK9OBqtRsua/ms49/M5/Cf502Fyh2qTCSfsmYCFqwWJfyUSPj6cJO8kZNPGC9mqaFzcl3ofdg/bobykJKJjBO4m7sx0m1ntzqgkSSxru4wuJl3Ypd3F+1ff5/vvv9e/fieVyNvtPvew6nFXKLp3g4FUG6OhOXgDalLa8/PzCU8NZ0nSEnY47sDpUSdkrYyM7jN2quAUIT+G0C2kG5M+rX4jJ2RNCG+seaPBMta0ls/8+QwHXQ+yNWcrCy4tYILTBEY4jEAyklBJKt31pS7jgZMPsCl6E9/nfs97se9VmqN8va/sNrw3XiD4N9A8vvWrQZZlLC0t2bBhA5MnT2bgwIH8+GPjNjFrzhQpi8i/nM/hxMONMr+ZmRkWfhb4xPvg0MGhwfP5u/ujMdFw/rzhE6PHjBlD+5HtGZk7ssGGBYBnmSfnCs4ZQLLKjBs3juC3gxnbeiyaEk2DckE6uXXCrMyM/bH7bz+4jpSUlHBafZrC+EKMk43RarS49qxfD5LHHnkMVZGKv/b9ZWApdSQlJbG3eC9Ze7PoMq0LkSGRfKz6mOR9yXSZ04V7frqHvgur77lhZGrExH8mkn02mz8O/IG1kTW/XPulyjhDKpLBrsEoUaJBgxIl0fdFY21uDUDkwppzVqIXRzP5l8k4JTvR4r4WnOhxQi/bnQ7XqKjM9jrWi7DUMLpe6cqiHouIfS+2wYru7dYhcmGkQa+huRpIt5JRuVnJV6O/4sqVK0x3mc6Tzk8SlhpGj8M97vj9cLPSnpCQwP3330/QF0GEpYax7uo6Lpy4wFj7sUiKGwp7viafrT5bsRxrSdyAOOavnV9p3pA1IUT4RaCk4RXbqlvLz658xn7n/VAG7Yvb89ofrxG7I5blqcuZ5TqL/V32M8t1FjllOZhdNMOqixWaqxp+Kf2lyvsRuDSQMRfGNFhOgeDfSLOtClWxUcq7775Lhw4dCA4OZuLEiU0oVdMxePBgflr9E+0GNF45z7i8OBxOOOAwv+GGxZXLV5CuSry65VV+//p3A0h3gzK5jIvFF+mwpwMtpjfcsHDGmf3K/cTExBAYGGgACW9wruQc466NQ+oooTSu/w+mJEn4a/05kWf4ECNjY2NmfDSDq6lXkSIlPId5ojCqnyKlVCkJyAngr+y/uGfQPQaWFBwdHWk3pR2+x3x5dO6jLPlyCWhBYaxg6Oe37xZv62vLiBUj+HDjh6ROTSX8Sjhlf5YxY+oMwHAVYcq7f28evRmNQqM3LlamryRgRQBajVbfyA8qV0+pWBd+yz1beO3Ca+zI20HPoz3RoKmTElkuR3WGVrm351bhbQDR0dG6zvRP6T57AEdbHsV+pT0H1QeRCiTambcjLDWMsCthoIRgx2C9jLerEnTZ/zK2E21vuQ6GINg1mHPnz1WS836H+7nX4V5WLFmBl6sXYdyoEtRURhzoqpt9k/YNalnNAKsBbC3eSsmEEmadmUVOcg5FqiKQQavQghYecXyE6MXRbG69Ga9BXo1akenmCmzuWncuTr2Isbsx7hp3ntr7FBvObiBidoR+7crXsv2a9kgeEgmDE9jSdguXtl7itTav8WP0j/zV/i/Gxo0ldGJog+SrTs7lqcvRosXH1IcPPD7Au6e33pAZGzeW4K7B+mOSdicR4RfBqHOj0BRr2GW7i7DUMFakraBMLtP3l2rMikcCwd1MszUsbq4q8/jjj+Pr6/uf6GFRHV5eXnRTdCPTItNgc1b8wY86EMV55Xn88/wxsTZp8I9QaWkp2RezSclJQZZlg3bUvFx8GaWsxOSsCfb+9g2e73TUaVLap7B61Wre/ehdA0ioo0hTREJxApYHLLHsbtng+eQUmd0tdhOxIYKxD441gIQ6JEkinnhmdJ3BpZBLBD7VMOPKS+nFOvt1vDnvTd569y0DSakjXhOP2lTN5zM+Z9uMbXqjQluqJXpxdK1+7P0e8mPQB4PIUeSQMCWBJdeXMCFvAusK1hGWGsbYuLG0/709LKy/nAqlgo8TP+ai4iJchS09trBRvVG325lYWTGpaFxU12zq/dbv0+toL8ooQ5IlHjF/pE5y3Mp4yVmTw+nU0zUqonlleayOXY1mks44Ukkq1LKaBywfwA8/FPYKNJYarqmvcbbgLLJSRpZlDuQfwCbdhiG2Q25f1nPgLAJCA267DreiJuMlJSWFdQXrMDY3xkHlwDGLY7rvI6WEhERUXhS/Zf6GPFymJLUEx1JH/S63Bg1dE7syzk1XcvKNNW+gRFmt4huyJgQNGt6e+PZtZb0VZWVlXP/lOvQBtUIXRlooFzJi/AgsCixwOe3C1Y+vIi+W2dZmG7JGdy3Djw3Hu8gbqzQrtqZuRVOmYZb7DeO4fK3HnB0DBkgnC3YNJl+Tr39fVe4qxhqNJbRrKOGtwolJjSFwaSABHgEwH9ova09gciAxs2N4XPs4i3IXseDiAk77n+aJnCeQ2kv0P9af0GmGMSrKub7lOnInGa1Ci5FkxC/tb3goWw5sydg9Y7GeZE30+Wj9fWcdYs3Y1WNxG+DGE6on6PN+HxZPWEyZsgzUCKNCILgNzTYUSqvV4uTkVOm5oKAgTpw4ccuawf9mPE09SVYargxlRZf2/97/n84YKM02iPvf19cXb7U33Xp2M2iCbE5ODvfMugd1ghprH2tUZqoGz9nXqy+mXqaYaupfYvdmcnJyeOTlR1CVqCjcW9igilDl5J7IRe4ks3nNZgNIWGHeslwuFF+gvaY9qQdS8RrpVe+5IhdGUrSxCNldZt22dZVeM0RYy9asrQy1HcqRt44QEx5Dq4GteKnkpTp3efUe7U2vz3tRursUq35WDD8/XG9UWE+yRqFs2Fdj7PRYLs6+iLZEiyJEgYODAwErAghcqlOuTj55kozYDOza2uE+yF3XyE/1UbXKdHhqOGWUoZAVyJLMiH0jKFLXrppVTV3Iy88jaaUqIUBqtZplKct0YS1p62jZuSVKUyWPWz2uDxfZWLCRHLccxnuP5xHHR1BJKmRJRqFVIEkSNiob9uTuYVzsOFbsX4HlJcsaw5C0spbY6bF6OT9WfayXL3Z6bK3C0qqLqV+1ahW93+vNj9d/ZE3GGn7P/J3utt2RJAkjjJCRebDFg0R3jmZW8iw6n+zMZPvJKFCgQQMy7MnYw4jFI8gry0OJkgi/CELWhFQ6tyFDeHbG7GSV3ypQgFLWzdfdqjufdfuMdwa8w3OznkO5SMm2NtsYGzeWoz2OMjZuLBqlhqLhRZzoe4Liy8WEZ4SzPGV5pbU2VPhOSUkJj37wKBuubkDx/yqESlIR2lFnFGhlLbNcZzHNaRqRIZEskZYQvSiagBUBdFzWkVOrT7Fr9i5GfjoSqVRCkiRkWcakvQml2tIGy1dOTEEMazusRVJISBqJMrms0v0x020moRND6f1G70qNNC1bWtJybksKvQpZ6ryUzaWbQQmyRgYVrB+23mAyCgT/Rpqtx6ImnJ2db9kq/d+MrdKWDMsM4s7F4dfWr8HzVXQVmz1ghjpBTcFTBQZx/xsbG3Of/338nfN3pX4kDeXMmTPk2eShjdXiHGiY++ClKS+xPno9Hdp0MMh8ACdPnuTA1QM4xzhz7dg1nL9ouKzTh0/ndYvX8Xf0N4CEOrRaLc998Rx2ve24tv0aDu0csGplVe/5FEoFih8VWAy3oPOgzvrnDRHW8t0P3/Fb29+YFDmJqAVRGJkZ8cBvOg9mdbv/t6Lvor6U5pWieVXDL/t/oUwqw0hjhPUk61rvkt+KQk0hZgozRh4bScnhEj4x/gRtmZYB7QZg1sKMqJwoin8oxqG9Aw7tHZCUEnKZzktram9KWXEZB947wDa/bUT46UJKuiR3YfxP42nxeAvG7R/H3L1zGfHGiNvKEjQ/iOsp14kMiSRqYRSyVqbbS93o/WZveAuSdiURNlu38+x/3p85B+egHKzEONuYLvldOOB+oNL3wc2hMOX/vznsZZbrLGYbzWboW0OxG2aHjZdNpbCU4k3FXNZexvMZT8JSwxhkOQhXXNGW6Uoa/9nmTyJSIxhzdgzRF6r3RpWHcwUvrCzTBKcJ/N76dxw7OqLMU/JOl3eIK4yrVk6A9sfbE6AMINYqFm2+VueZQY21iTVmw80YdmwY/Xv2p+vprkT4RZDzTQ6fT/u8UjhNQ0N4tmVtYwELUDmq6HqlK1+N+orvMr+r5O0JTw3Xn896kjUfT/kYa7U1Y34cw5Z2W+iR1YMde3dg9pAZy9KWsSJtBRo0BCwNMMhOe6GmkAmbJ3C5x2U0kRpM+pnovVjhqeEEuwYz020ml/66xNbvtoIEyDqv4pycORiZGum81x/rDDLZWEZRqkBrrCUyL5IJ+yfwSddP8DRtWAGR3zN/5+3Et9EYaxiQM4CPB3/MirQVVTxn538/z6nvToF0o5Hm4E8HY+lqiYWrBeuM1nHs2jEClwZyddVVMn/MZFebXXx05iP+1+5/DZJRIPi30qwMi65du7Jz507s7Ozo0qXLLcNnjh49egclax6s/3M9mp4avov4jnfavmOQOfVKAmGYak05rDhssJhiP2c/flb83OB5KhIQEMDAxwZi9IeRQRK3QRcK1KqwFWezzxpkPtB13O73WD9Ms0yRy2Qc2jc8b2XE4BGsiFpBWlna7QfXkri4OHYm7cQ425jLSZerLTNbF05OO0lZ6zL8tvhxtedVci7mcOanM0SGRJK3Oo+TA08SRN2VG1mWef+391EGK0mLTMPV1ZXu/+teqYdJudJ0q14bFRn8yWAivCL0yk+Zsoy81XkETWx4mEOGOoPult2Z5D2JjdJGtGVaJIVEwNQABnUYhEN7B6y/skZSSEQvjkbWyCiNlWhKNUSHRrP/7f2ce+Ece/323ogBd4UI0wjWxK5ha9utzB8+n5NJJ3nZ/eUq5y8PZVQXqknakYTrd64640UjgwRHPzvKGnkNFp4W3JN0DyxFZ1yYg3KwkuKDxXyU8RHbW2+vFINejj4WPT6CpDZJNRoel89cJtQ2lHObz7FgxgJGnhyp9waY3GvCzpyd+Gz1wa3Ijd0Dd6OYqaDzN50pfbKU2LaxdArvhN9hPyIP3zoXpfy8ucW5uhyKVN21dCnqwrL+y1i4biFb/LfUKGc/VT9yL+USkxpT2fAgDJ+lPjzQ7gGuTrjKr86/oinRENklku4HuiP7yXqj4nb5LNXlP8iyzNcrvmZvr70klCXcyKHpWr0Rp5W1PKF8Aq91XpznPFq17l63edyGTrM6obHQMHfbXIo2F/HDTz+gMdKt9X55PwO9B7J5zebbhnN5DPSoNqzsdMFpnj3/LJKThLRdwuR+kypGWuLORNp+1pbsuGzcB7uTn5yvv68PLzmsX5ubDbLyxwUxBTzKo2hjtPQ36c9HT35UrZxnHc4yPHB4FRkLigsYf2A8mRaZaBXaGtcyYWsCvTb3Iml3Eq0GtOL6let6ObPOZOH3kB/hqeEsT11+I6dCHcSuN3axyGgRq71Xk/BRApMKJtEnpE+173dt8pcEgn8jzcqwuO+++zAxMdH/35Bx+f8GuvXoRnxSPGo7w5ZwDXYNZlnqMmSFjJFsZLBExbYebSlQFLB3z14GDBxgkDmtrKzIMs9i0PlBtBhvGMMCwNfEl4vyRbRaLQpFwyMEPT09kfIlxqrHQmddUrMh6OrYleMOxynMKKzUwK6+mJiY4DvKF+eTzlzZfoXR341u0HwKSUGEXwQDjQcS4xrDssBlKAuV5K3O0+28S/VLii4rK6PdlHYknkzkvnvv49CBQ3R+unOVcXXZkQ1PDWdX/10EhgWS45RDcvdkIvwicE91v+1noCYlUpZlxs0eR9YTWcz4Yga///Y7yOiVFk2xBp8xNxp83pxLUP7Yf6I/MYUxdF7RGeul1uw7tY9+b/Xj+sbr2IXYMWb1GKLco1iTsYZTF07x7aBvK11XWGoY/Xf0Jz8pn2NTjzHyy5HYT7PXy5GzKocj7Y/Q9VhXdvjvIMcrB2R0RpYaFh9ezMDwgZi8ZaILozofXUWptw6xxuNdD2x32Opj6csJWBFAYGIgDIUu3l0o/LaQT375BI2fRu8NaL+nPdbrrFH3ViMPlFEUKdDO0HJk+hEkhUSH5R2YpJzE1qlbudblGoRATkIOo74Zxf639lcyVu0z7Hlu83Nk+GWgMFUgI6OSVKzou0L3vijkSjH/N8t59eGrxI+OrzSmQ3gHApN0oWte8V70eLkHgw4NYo3pGpQrlcgqGUkjMUI9gtzEXP70/5MrO6/A4qoG0LLEZRT3KmZr6lbghpL70pKX2Nl5J6oyFZ6ZngRcC6jRiDt//DwDdw/k3C/nKOhcANy4r3q+2pOnnnqK4qxiiocUs1a5FtnohjfA+GFjlpotxafAh/PO52ENlYyLior+ld1X2OK/RX/uY8eP8emZTznjd0ZneKR4kHN/TpWk5/hN8WzptYX0QelM6D+BI58cqXJfA/zZ+s8qXp7QiaGwBiICIyj6swjjQcbsNtvN6+te551H36kiZ9trbat4H3LKchixbwQaew2mCaa02dqmyvvdYXkHAq8EkqJKQWWuomNwRw6+f7BaOS+3uUzgzsr5UIPfHozybSXzlfOJ9o8m7aE0ijKKGPrFjcIRhi46IKiZJ598ku+++67K8yNHjmTr1q2Nfv6FCxeyadMmjh8/3ujnuptoVobFggUL9P9fuHBh0wnSTJm3cB4HPz9I64GGaTpXrhzFTo9FRkZSS5SpdHGo5ZVrGrLjsjNiJ2U+Zcz7dB6RAxteMhIguyybDHUGip0KWiwwnGERfyie2Bax/LDqB6Y8NaXB8xVoCrhcchnLg5ZYdLMwgIS690vlpCK1Wyq/L/+dCW9M0L9W3x0yJ08nCnMKWThyIX8t+IuW/Vo2SMaKHjBlnpJtXbfh3t6dWL/YBnnCNEoNGe4ZrBywkoM9DtJnYZ8G5deUK99j48ZiGW7Jh5Yf4vKrCy4nXSpVBqqJmpKi502aR+JTiVx9+yolV0vQFGuqVVpqSlCuGNL1+KLHcbnHhb/++Iv9b+/nwLsHdGFML3Rj0IRBvPXoW6zqvYqTg04y59QcvujwRaV4+tYbWzP2x7F8G/ctEZ0jGPPTGEIeDmH+xvlsb70d82vmHO5wGCMnI7r5dSMpP0mviG5WbeaazzV8xvjQ7vF2Ncr98msv13hdM0NnEjRBdz0Vlcm5g+Yy96u5HHjwAP3L+vNY4WNEj49m3HPj+OjxjyhPVUh4MoFv1n+DylLFqVmnsPawhvlwatUpkNEbq21z27KqeBV5uXlc/+M6jg87VgnPeWvCW0THVy/njEUzOOxxmG4Z3fBJ9iFyRSSRCyJBhgApADNHM667XqdFhxY8OuFRCjIL2KbchkKtQKvS8mLbF8l+JxtfK1+uzb7GsqXL0Lypod9b/fRGRcxsnSdkKEP1CrGzsTNRQ6NQoSIwIZAZp2YQtSCqihG3Z+4erD+0RmGkQHpcotPTnTjycVWlXWWhImh+EOGp4axPXU/g0kA6fd+JI5OPcGb2GbyivbhudB2Fvc74/+e9f5jXdR77MvdVUvSjF0frw+Ou5l7lh4M/YNLGRCfn0kBaDW1FYFygPum5xys9+GXYLzhFOtH//f5YdrPkyMQjNd7X2e9kM5aqoWPlxkWGUwbH/ncM1esqtrXZRv6GfJbcs4S31r9VSc6KoWyDbAYRHB+Mxl5D9g/ZLBuzDEsPy0rv945ndnD86+N0t+vOPevuIXV/6i0/f4GDAhk7ZGyVzYMBbwyg/4T+bHp8E2fXnmXHwzu4duoaD219iIPvH2ywd1ZQN0aNGsW3335b6bnyDWpB09CsDIuK+Pj4cOjQIRwcKoeQ5OTk0LVrVy5evNhEkjUdkiThnO/MhZwLBplPoVTofvRSYwDwm+THoH2DKlWuaQjt27VHfU6N7Gi4JmRfbfoK21a2kAt2bewMNq9ZrhnGnYw59N2hBhsWWq2WXw/+ioO5A4X/FOI7zdcgMiqUCv5c9CfXN18nbGGY3rBoyA7ZyfyTuBq7UrC1AI/BHhiZNPwrIdg1mMu7LvOn/5/kfJxDrjK32nCaurAvdx8OKge0P2tBgoAnAxoko1bW6uPU+4b2xczWjLDPwsh7OY9BMYPQutw6nOrmnI5er/fit/G/cbrnaYxOGXFPzj1cP3q9RqUFdCFb1eVzVAzp8hnjw8zEmXxi8oku7EWCY18d4/SPp2nTvQ2dv+jM1etXiRoXRY+jPdCipSSqhBOKEww9MZS1f68l7Y80TEaZsKXzFrac3AKtwbrIGuc1zmz7Zxs9nuvBoZaH9IroicknODH7BP4T/ZF+kUiJTEFhpDOkohZFIWtkfO/1xdbXlvhN8bj2ciVweqA+QVyr1hIwLQCXHi6c23COX8x/IcIvgv7b+2P9mrUuvAgf7FrbsXXYVqzOWjEmdIxugyNV1hsFw12HE98jnphWMUhZEpFjIsm5mkPHLzuy480dOu+ErCDAPIBHNz/KRtONxD4cWyU8J2l3EiPjRtJ3YV9krVzpOixbWnJ4yWHUi9TY+9qjaKfQh4wpVAqey3sOI9Mbn4mQNSFs67StSgiP6ThTrllcwy/Rj5jZMaxYuoIDygPEPBVDzOwYZrrOxP4ne/bJ+3Ds7VgpP2Wq/VS6RXRDq9XqE9gBujzbhU33beLKP1ewb2fPvb/eS/z6+Fsqw+UGnD58p0RneCxbqjNunrJ4Cqe9Tnzo8CF5I/J4TfsaUgsJ2xxb4lrH0TuiN5puGuwH2WOUb8RGNmLZ1RIU0HZpW92cE4KQZZm9x/YSGXLDCOsypwsvz31Zt2EVWtWbp5e3JIi+E6v/rtIbG8GQdiKN4EPBRHaNJCgmCPzAssCStG5pTN4yGU2RBhNzE8II06/nDOcZeJp6Yh5pTtDCG+tS/n636t+K8dvGozJTkRyZfNvPX00e0MVrFhP7XSxJHZM4+udR7EbZ8anZp8haucHeWUHdMDExwcWlanGU3bt3M2LECHbu3En//v0B+OCDD1iyZAkxMTE4OzuzdetW3nrrLWJjY1EqlQQFBfHZZ5/h63vjN/vKlSu88sorbNu2jZKSEtq1a8dXX33FmTNnWLRoEXCjPcK3337Lk08+2fgX3cxptobFpUuXqq0mVFJSwpUr/92Ol61oxamyUwaZK3Z6rM6o2Ail/UrB+EZoQMzsGGJdYxu049KzZ0/6JPTBqZ/T7QfXguLiYr7c9CUWXS0waWNS714L1fG/Cf9jWsE07und8N4LCQkJzP1qLjY9bEg9ksqwpcMMIKHuB+/BhAdZlr4MbHXP1bUsZ0Vyc3P56/JfdLXuSsLWBFrfbxhPWPTiaGxDbOEASEYSUqlUqaRjXYmPj+fHrB8Z7jKc6IXRDP50cIPf+47fdOR6yA3Fv6emJ8888wyPffsYF9MvMvaDsfBpzccvS1mGYrqCPnIfvXKVOCSRrIFZTPaYTLpTOn1H31ppuZV3qeJx+9/aj1at1Ye99JrXC+/R3qQeSGWq3VQSPkvgu1HfoVXpehoUXC/A2N+YkyUnybDPQJ4qY1psSrG2GEkhYSQZsavvLqL/jsZ3qC9b22+tVhFdN3sddq/bMf3z6WTFZbEqYJWuvKlCQlOi4fjS45QVlqEuUKMu1IVnlsf8X95+mZSoFFQWKtIeSGOA0QAGHx5MvCIeWavLJ3n7ybfxSvVC66IldnBstYnVAxwGcPnhy7R7sh3GY405NfUUp6acAgVcP3qdYe8Nw8PWg8gpkcT2ja2xJ0FRVhEFMwqI3xQPoC/TOugjXb6LXRs7jEyNiF4czYXfL+jX+tCHh2rMCwCdIqz5ScPWdltpfa416o5qrNRWxMyOIWZ6DKjAOs2a78u+p7R/KbmxuRRtLMLlcRc06MLCuv3QTf8Z7jKnC9dir+nuqf83MDrO6MiIZbok/bif426pDK++tJrAvyuH7wTND4LFsGzpMlKHpvJM8DOYR5gTog5BUklIZRI9fulBTkIO24q3oS3V8s7od5DSJVY9vgqtSouiVME9sfeQdjWNbzt8S25CLmVFup4m5aF+5X1kantf3w6XTi5saLuBoJNByCoZWS3T9deu+A3xIysji917d3PJ7BKuwa6g0FWm6riyI5HvRRLwVAB75+3l0tZL+vdboVIwYe8NL29D5JQkiU1PbuLL5C/5lm/Z+tNWRkwcQdzMOE76nbyjvU8ak4ICXcidubm5XnkuLS1FrVZjZGRUyTNQPtbMzEwfTqxWqyktLUWpVGJqanrLsYZm0KBBvPDCCzzxxBOcOHGCixcvMn/+fH755Rd9AaCCggJeeuklOnbsSH5+PiEhITzwwAMcP34chUJBfn4+AwcOpGXLlvz++++4uLhw9OhRtFotjz76KLGxsWzdupUdO3YAYGNj0yjXcrfR7AyL33+/0Uxt27Ztld4ojUbDzp078fb2bgrRmgV7j+0lo2cGhw8fpnv37g2aq7ws4HmX80Sfj8btnJs+hCHWNRatXLsk2JpQKBR4qDy4oK6/h6Viffq8vDzaDGlD7plcfDv7GqzhE0Dndp1x3OPI+cyGdwq/evUqLbq3QHVVhQIFDv4NT9wG3Vqo3lbR42APyvzL+NjkY7SlWn1ZzpMpJ+u0Fps3b2ZNyRpc412x+ceG4WHDGyxjuaGTtzoPjEBCQjaWSVycqI91rqtx8emyTznx0Amyn8/mIdeHaDu+bYPlvNlboFTq4m8+f+Jz7j9wP5sXbkZ6UWLwJ4OrHBu9OJorPlfY0m4LfRV9ccedSzaXOPbaMfq79ueHjB+YNXgWQZOqv866XH9NORgKoxs7wuGp4cipN+LpH+rzEL0yevGQz0Pw/+kcS84uYU3hmsohQvODiVgbUaXhV0VF9PLQy0gTJM79cq5SgnnLvi2rTaQuf73j9I7615/gCf2Yc7+eu5Gkvjia4PnVN6KrGFL3VtRbuHzmwsW+F/n50M9oFBpQgzJYSbfp3fD392dPwh66JXTD+hNrouKj6PlqT7ZN24b1T9Z0mtWJHIsclKZKfMf5ErsyVi9D9rls/B/1v+Val6+JBk211Z/efuxtlGt0DRBD24Xy+arP+bHjj6DSKbR9j/fF7rAdir8VrJRXYvOIjd6oUMtqliUuY+zwsVzeeZno0Gjs/Oz0XhOlsVJvVMDtlWHtQi0Kjxq8BYtBe1b3nX4g7wC4ciMHY4AxX37yJb6LfbErscMtxY0/Xf/UGxVaYy2ngk/xUMFDdJrVCRsfG86uOUt0aHSl99PQ/R0Wb1qM7CcjlUpgDMWOxVi+bUnB0QL8HPzIvDdTZ1RwYy07GnfkYsRFvEd5Y9vGlvTj6Y0m47MtnyUpMokdrXfwy/5fQEmDvbPNCUtLXf+l9PR0HB0dAfjwww958803mT59OuHhN8r3Ojk5UVhYSEJCAl5eXgB89dVXvPjii0yaNImffvpJP9bLy4tr164RGxtLhw4Nq8a4efNmvZzlvP7667z++uu89dZbbN++nRkzZhAbG8uUKVO499579ePGjx9f6biVK1fi6OjI6dOnCQgIYPXq1WRkZHDo0CHs7XU9s1q3vrEBZ2lpiZGRUbUek/8yzc6wuP/++wHdjsCUKZVDUlQqFV5eXnz0UdVKEf8VchJzUDooOXH2RIMNi3Il9N1x7+L+sTvOWmeUxkqC5gcZLDbU19aXKEVUvY+/ubmWe5A791y6h0P3HWJz6uYGd0iuiBdexJfEN3iePn360NamLfefuh9VF5XBPCvla9G3Q18uJl5E+41uFzt2+o3d3rpwOfUy5v3N8Yr0wsrdCrvWDQ8t02q0N0IBXGfR0aIjL8S/QOSYSKw8rNBerLuxmtcmj9KLpbjtdKP/hv5IioYXdahJQbPBhl7pvYiaF0WLB1qABIM/vmFclCub7p7udBnXhcipkdhctuFS60u0yG7BjpwdBtutvF0OBqB/7yuGMf09+2/atr1hfIWnhrOmcE21ZVZHnx19W0X0dgr37V6v7loqjtFO01a7ZuWPL++5TOEnheStzkOj+H+FXKXm4dUPkz0pm7LQMr5e/DUnlp4g0jySqAVRRC3Qfee49XFj4hMTcevtxv639xP5RfUylK/prdb67fk1N78rNzaiF0dzIvEEdAKFVoFWqeVKwhXGdhmL12teJB9IZlffXQQuDSRwZaA+VMrubzumWExh9HejOf396UpGWl2U4drswtdUkYmNEPq27jrCU8OJSo2qdF9tm70Nb1dvgl2DiV4cTXRo9C3f84ZSrZxjInD0deSVAa/w6eFPwR1dwv2KAJ0HfnYMnZ/uzOxOs3Xv923uy4YSvTgaxxBHlAeVaJQafcnq+npnBXVn8ODBLF26tNJz5UaAsbExP/30Ex07dsTT05NPPvmk0rj4+HhCQkI4cOAA165dQ6vV/T4lJiYSEBDA8ePH6dKli34+Qe1odoZF+Rvr7e3NoUOHaNHCcAm6/wZen/Y67+W+R/vB7Q0259FzR3GKd0KhUhh8VyftUhrp/um88847vP7663U+vmKJQC1aLhZfxMTUhJOtDe9uNs0z5ZDZIeLOxOHXrm59Qip6Vq6XXSexJBHbw7ZYdrM0mGel4loouykploo5P/l8pRKZdWHYzGH8k/AP9yruxXqUdYNkK+f0zNNEpEbo5ZFlGW9TbwpPFLI1YCtew73oy61zQW7uomwxxIKH/3mYtt3asj1gO9oUw3ipqmP16tV8MvUTOqzowNnQsxi/ZIwk6UJmtk7bqtvtNlES8FQA7UraUbyymDOzz2Ar26KRNNVWHqovt8vB2OK7hS2pW6oNYyrvSwHU7A1IDWPWzJrvm9okmCftTiLx78RbKuTl/69pTF9qDuMLdg0m8mwk21bf6OdRsRTs2NVj0cZpMbYwpsfLPeg0qxNf2H2BXKbb7Z8UqWszfbvrcB/kftt4+9txc6K2Xs7ZYSxbugyPCx7s6ruLadbTKPq2CFkr03GVzrOzfMhy2ru2p2hFUaMqwzWFc7EGnXGxBtwHueuN1eruq6TdSViHWN/yPW+orLeTM/5UPOfczzHLdRbXv7+OFi2dvu9E39C+hKWGkbUuq9FlrOid1Sj/3+BVqslbnUfkJMMaME1Ffn4+oAuFKueVV17hhRdeqNKfKj09HdCFN5XzzDPPEBwcrPcIl3Pp0qUqY+uLhYVFJS/CzURF6TYZsrKyyMrKwsLiRjGVcePG4enpSXh4OG5ubmi1WgICAigtLTWYfP9Fmp1hUU5CQoL+/8XFxZXi8+rKV199xYcffkhaWhqdOnXiiy++oGfPnoYQ844z+tHRhG0II711ukHm++2V37g07hL2F+x5vuB5Dr530KA/ZKpiFZjA7sO7eZ26GxZQtZb7yVEnmWo21WBGRXl1rKMZR8nul822Ddvwe0NnWNS22lJFz0ony064GLtQEFlA7JuxbEjdYDDPSsCKALyueHFp5iU2RG9AUkm1VmZvVtiPXj9KN6tuZO3OIj48ngspFxqssJeH15Wf4/PPP2fr71tpM78NgSsDKZpTBK63nqNiucv7He7n6PWjPLDoAdJ+TeOn1J8Yc3YMTGqQmDUyadIkli1bho+TD3Fd4mg/qT2HPz7M4U8Og6xTurJWZvH7od9J25FGwrQEJCSQdDHeMz1mGuzzc7vd59qEMbkPcL+lN+B24Y63M24u77xcK4W8IUr7zcZqRfnDCNMZBf9vrB755IjeqKi4SVKbRPma3q/avo9bfLcQMzamejlnh1F0rYhZrrMIWBFApKZC2Nh3HZk1fRaX91wmNyS3UZXhmsK5ypV2DRou76laZrXifZXtk83o0NENMsIaKudZh7M31rL0xloGrAhg1vRZXIq71GBD8Xbc7J2tzuC926mohJdjbGyMsbFxrcaqVCpUqqrV+6ob2xhcuHCBF198kfDwcNatW8eUKVPYsWMHCoWCzMxM4uLiCA8P1yd379u3r9LxHTt2ZMWKFWRlZVXrtTA2Nq42F/i/TrM1LLRaLW+//TZhYWFcvXqVc+fO4ePjw/z58/Hy8mLatGm1mmfdunW89NJLhIWF0atXLz799FNGjhxJXFwcTk6GSSq+k5jammJ31Y64q3Hg3rC5ohdHs/rH1Wge1rA7bTdKldLgP2SjR45mzbk1jHlgTIPmCXYNZumVpUhKXTLwM12eadB8FSkvHer/qD9HvI5gHqPbnalLtaVKxs8psDax5q+OfxHjXD9vQnWUyzP79dnM1c5FUkkoNcpaK7M3h5UdzT9K/7L+/D30b05anzRIFZObDRN/f3+yX8xGmivh5eJFu0/bwdIaDv5/xlwYoy93eTDzIN4p3mQ8n8Ee5R4ClwYyxqNh99KtMDY2JioqihVpKzibepa/5v7FoI2DMC8yR2GsIOunLFakrUDhoaDV+FaMdB7Jb1m/6ePlY6fH0pe+BlFcbkdtwpj6Tqj53q3NPXk74+ZW91ttvjtqM+ZmY7Wcm42jW4VbGSqh+Fa0GtSKWdIt5HTR6hThamTsS1/aa9rfspqSIe6ptyfePpwrcmHkre+rEq2+4tLNGGotayNnTe93X/oSPL/me9tQMtbF4BU0HiUlJaSlVW4aa2RkhJ2dHY8//jgjR45k6tSpjBo1isDAQD766CNeeeUV7OzscHBwYPny5bi6upKYmMhrr71WaZ6JEyfyzjvvcP/99/Puu+/i6urKsWPHcHNzIygoCC8vLxISEjh+/DitWrXCyspKlLoFkJspixYtkn18fOQff/xRNjMzky9cuCDLsiyvXbtW7t27d63n6dmzp/zMM8/oH2s0GtnNzU1+9913a3V8bm6uDMi5ubl1u4BGorS0VJ7wygR57NqxslarbdBc+xbsk5974zm588bO8v3+91d6LSo0St63YF+D5i/nkTWPyB+u/bBBcyxNWip3PdJV7nKwi9z1SFd5ecpyg8gmy7Iclhwmz189X/6AD+Te+3rLP771oxwVGiV/yIfy/NXz5bDksFrPFXIwpJKcy5KXGUzOfQv2yVGhUfLylOVy1yNd5a6Hu+rXorbvV/mxI78aKXfd31We+tNUg69nRcrKyuSDBw/Km69tlu85eo+8xHyJnH0h+7bHRYVGySNmjNCt5QHdWk6ZPkWOCo1qFDmrY1nKMrnrka5yu/B2cn/j/vLYT8bKXY90lXvs7iFbB1nLY5eOrbR25WvbWGspqJnyz+vN90dNzzcFd4OMdwvNYS3DksNq/KwvT1lep9+N2tBYukhpaamcnJwsl5aWGnTeO8GUKVNkdK09K/35+fnJixYtkl1dXeVr167px69fv142NjaWjx8/LsuyLG/fvl1u166dbGJiInfs2FHevXu3DMgbN27UH3Pp0iV5/PjxsrW1tWxubi53795dPnDggCzLslxcXCyPHz9etrW1lQH522+/vZOXf8ep7b0iybJsuCYDBqR169YsW7aMoUOHYmVlxYkTJ/Dx8eHs2bMEBQWRnZ192zlKS0sxNzfn119/1SeFA0yZMoWcnBx+++23KseUlJRQUlKif5yXl4e7uzu5ublYWxsmDr0hlJaW4jzSGddZruwcsBNX19vEldyGb1K/Yc+OPTyb+iw95zZOeNhLq1+iVFPKl098WedjIxdGss1PF19tLVnTaX0njFsas7PXTsbGjdXXp28IFZulHSw8iM8mH3w2+1Rxc9eGa1nXGJkwEiRQlik52PNgg2SrSdYZrjPYkLEBmy02XBhxoU4yLk9ZzrK0ZciyjCRJjLswjoUPLzSonDejltU8eOpB+v7Wl07xnRi9avRtjxn+xXAygzKRFBKKUgWfb//8jsYsRy+O5vX818l7NE+/Vh5bPRiVMIqPrT/G8jHLKuteXYUjQeNTUyd0qH/zSENzN8h4t/BfXMu8vDxsbGwMrouo1WoyMjJwdHSsNmxJICintvdKsw2FSk5OrjYhR6vVolarazXHtWvX0Gg0+prF5Tg7O3P27Nlqj3n33Xf1TU+aI8bGxrSV21LmUUZhUWGD5ztffB7LGEschzgaQLrqsZft2SPv4ezZs/j7+9fp2HKjYkT8CLa32U73C91p59gO0zhTXbIhNNjdXNF97RDrQGabTApmFNSrW/TS60t1RoVGicZIo+/8awhuVlpLtaUcaX2EYYeGEdbj9t2iywl2DWZ52nKQdOUmn/E3XFhZTagkFZPsJ7F2xFpM3jKh56s9cWhXcxnen8/9TF73PL1RoTXWEju9YX1V6kJ5WMU7oe/wnPwcWkmLSlIxVzOXyBWRjP9pvL5CTkVqm7sgMCx3ItSpodwNMt4tiLUUCJovjdOZxAC0b9+ef/75p8rzv/76K126dGm0886bN4/c3Fz9X1JSUqOdq758+9y3SEYSZi0bXrHgXME5TPab0CKw8apvHYw+SKpDKmvXrq3zsS0HtmRs3FhKPivBocCBooNFpB9Px3qSNWPjxtJyYEuDyBjsGszYuLFkBmQSPyme2Jn/32yrDkZBeGo4mzI30ca0Dc8/9zzj08cTlhpGeGr47Q+uBRVjzWVZpuCvAmI8YjB7y4wZjjNuq8xGLtR1Rv7kyifIyBjJRmiNtWxqsUmnSC+MvOXxDSE6OpqXer9EUn4SyjeVum69NbA9YjsfZn9ImUkZgUsDmTRwEoFLAw26lrejPNk3dnqs3qjQ51CE9mXsuZrvjWDX4EarWiUQCAQCQXOm2XosQkJCmDJlCsnJyWi1WjZs2EBcXBzff/89mzdvrtUcLVq0QKlUcvXq1UrPX716tcaGJiYmJs0++caxrSOWFyy51PYSbiZu9Z4nPSudhKIEYi7G8L7j+waUsDI9vHqQ7JqMmWXdDaGZbjNhIoxPHU/R7iKSLiaRe/H/K6dMNNzOVPTiaKxDrG90i1bXrVv0/NXz2eK/BXO1OQM0A7h67CozvWbiaONIWGoYibsSWTxpcYNkrKisSpLED0t+QP2impNjTzJx/0T8Hr51iVyFUqErh5kRg4+pD8+uepYI7wjCeoURmKirAtNY+Pv7k5+dT+7aXLbft50hbw8h/Xg6Tp1vFFCIXBDJmT1nWL5wOVqV9pZlVBs7zKjvwr5VPET6x9NFmJNAIBAIBNXRbD0W9913H3/88Qc7duzAwsKCkJAQzpw5wx9//MHw4bXrEGxsbEy3bt3YuXOn/jmtVsvOnTsJCrp73aW2vrZYX7TmXPq5Bs3zz4V/0BRqyMjIqLZ8nKF446U3UOWr6D+kf73nOGdzjjMxZ8gkU9/Ez1Dc3C0aGWSVrKtHHqLb5b8dskLG6wcvCqQCXhr1ErKRjH1bewJWBBC4NBBZYfhUplmzZjFQMZCChwuI/T72tuPLG0hRAn7f+3Hhzwv0392fwKWBxMyOIXb67eeoL3Z2duzatYulrZaSYZ5B6UOl7Jt/o7Tf38//TdTiKH6f8DtFOUWkL01nsGpwpXKXMz1mErg0kMt7LjeanOXU1A16luusO+o5EQgEAoHgbqLZeiwA+vfvz/bt2xs0x0svvcSUKVPo3r07PXv25NNPP6WgoICpU6caSMo7z6m4U8QlxfHpr5/y5Lwn6z2P1Eqi5aGWPDb6McMJVw0KhQKHDAfO5p2lT9c+dT6+TFOGqb8pLT5sgavkavAmfjfXI9eqtaw9vFbXoKmW9cjfmvAWr157lfMnz+Mr+dKyW0t959eZoTMJmmB4Q3bOnDkUaYoYcWIERxOPMip9FBZONdcH18pa/NR+HIk7wufvf8585pMVm8XM0JnEusY2el5A9+7doTvsWbeHvT33onpJRcr+FA5+cJDzG8+TFJqEuqeaooeKkPIkJqVWblZRsYxqY1PbEqcCgUAgEAhu0KwNC9BVQUpPT9d35C7Hw8OjVsc/+uijZGRkEBISQlpaGp07d2br1q1VErrvJmxtbclMyMShrQMajaZKV8vacllzGbdEN0bdM8rAElbFudiZi6UX63Xsb5//hqKHghd5kW6fdKM0r9SgTfxurkeeUJTAypYrGZ0wmgi/iFrXIy8ZVcL4A+MxzzQnOTKZK3uvVNukyZCYKc0Y1WIUF4IvELc2jq7Pda1x7DTXaWxI20C7pHa44IKEpPf+3Kmk6GUpy3Dp50LmlUyu+V5jddBqAFRvqjhwzwHus7+PiPMRXLlypdqqE3cqMfNWORIiDEogEAgEgupptqFQ8fHx9O/fHzMzMzw9PfH29sbb2xsvLy+8vb3rNNezzz7L5cuXKSkp4cCBA/Tq1auRpL4zuLu7M9ltMi7tXVAo6v8WxhfFY3bYDMfAxqsIVU5SfBLrE9fXOj+mnOjF0Wz/Zzvehd4UpxbTakArguYH0Te0b63DlG7HzbvTMdtjkNNlEiISdB6MWuxOF2uLOXj9IJMemAQSyBrZ4CFb1aFWq/FN9eVsj7McX3v8lmN35exCZaziydNPMo5xKIwVeu/PnULWyKy6uorsM9kcm3YMgEKPQtY9uI4yuQxHY0cUCkWtNw4EAoFAIBA0H5qtx+LJJ5/EyMiIzZs34+rqiiRJTS1Ss0GpVDKuwzj2WO6hSFuEudK8XvOczDyJyzEXlC3r5/GoDW+seQMlSrQZWugLp0+f5p577gEgZE0IGjS37LKq1WjRPKahs0NnABw76owgQ3ajvXl3+sCBA1y5dgVNOw3fmH2Dqa3pbec4cv0IdkZ2nH/+PMigNFYaPGSrOmbPns0333xD/539OeZ8jGunrtGiQ/UVvn5K/4ke0T04v/Y8fo/6MW7tuErdie+EN2CW+yzW/bwOBkN6WTq5HXLZtWQXJXIJbU63YVrnaY0ug0AgEAgEgsah2Xosjh8/zrJlyxg9ejSdO3emU6dOlf7+63h4e2BSYMLlkvolsmapsygyLmLjhY2kZqYaWLobKFES4ReBaydXLD0seeqppwCdURHhF4GSWxs1fRf25ZjZMZa8soR0v3QUyhu3bND8oEZpgnTfffcx0W8iin4Kzm6vvt/JzWxN3cqpNad4YcULOHZ35MWSFw3qVamJPn364ODggHuiO8lPJnP6h9PVjjuZf5K4nDhKXizBqZsT49aOAzC496c2PH3ladoubQtGsOX7LRQ5FZGyLIV1T6zjhRdeuCMyCAQCgUAgMDzN1rBo3749165da2oxmi25xrlwEX7Z+0u9jj+bfxbFNQW+xr74+voaWLobhE4MZWzcWM50P4PWVEteUZ7eqBgbN5bQiaG3PD5HnYPWSUvusVza923faHJWpGfPnix5cQktSlrw19m/bjtelmV2pewie082RVIRI74eAdwZpf2JJ54gPT2dLx//kuRWyUTvjK7Wi/Nj+o8oI5S8W/AuF0ZdqPRauZyG8P7cjujF0Vz+9DLPeTyHkaRzmBpJRiyWFzOHOTxo+2CjyyAQCAQCgSEZNGhQs9gY2717N5IkkZOT02QyNFvD4v3332fu3Lns3r2bzMxM8vLyKv391zly4Qgpl1PYdnRbvY6/pL5E29y2fDvnWywtLQ0sXWXKjQsU8EjKI7U2KgBOFZ7C3dSdedI8+j5oeO9ETUiSxCDTQRy0PIisvXWp2IvFFymzLGORzSIe93wcl+43eqQ0ttKuUqlQKBTYGdkx0HYgcUPiSNpVualjckkye7L3kL8yH4COXTpWmaexvD83U7HxXJlchkpSUSaXIS+SmRg6EZWiasK2QCAQCAQVefLJJ5Ekqcrf+fPnG/W8hlbcs7KyeOGFF/D09MTY2Bg3NzeeeuopEhMTDTJ/U9BsDYthw4axf/9+hg4dipOTE3Z2dtjZ2WFra4udnV1Ti9fkdOnaBdtkW6x9rOt1fHxRPFZnrPQ5C41N6MRQ0Or6QyhKFbUyKgBOFpzEX+OPfbE9rXq1amQpb6BWq2lNay73uMylw5duOfaf3H/obd8btxI37n/m/ir5QHdKafe75kf82HhO/nCy0vM/XfkJz2hPwl8IJz09ndGjRze6LDXRd6HOqCjvEbG/y359b4jY6bF3ZJ0EAoFAYBiWpSyrsa9PeGo4y1KWNdq5R40aRWpqaqW/uhb3qQtqtdqg82VlZdG7d2927NhBWFgY58+fZ+3atZw/f54ePXpw8WLNlTRLS0sNKosh5262hsWuXbvYtWsXf//9d6W/8uf+63Tv3p1HbR/F1O32icXVEZcfh+l+U1oEVp/oa2hC1oSAQhc2pDXW6h7XgpiCGFwuuODa2xWlceMlmd/Mr7/+ykNBD6HOUvPn0T9vOXZf3j66a7pz5Z8rtH/8zoRr3UxYWBjT+0ynsLSQ3cm7Kc3XfTFc11xnY8ZG+h7tS/eXuuPo6Ii5ef2S/Q2BaDwnEAgE/x4UkqLa7+7y73qF1HhqpomJCS4uLpX+ysvv79mzh549e2JiYoKrqyuvvfYaZWVl+mO9vLz49NNPK83XuXNnFi5cqH8sSRJLly7l3nvvxcLCguDgYAYPHgzomr5KksSTTz6pH6/Vapk7dy729va4uLhUmqs63njjDVJSUtixYwejR4/Gw8ODAQMGsG3bNlQqFc8884x+7KBBg3j22Wd54YUXaNGiBSNHjgRgy5YttG3bFjMzMwYPHsylS5eqnGffvn36Kqvu7u4899xzFBQUVFqLxYsXM3nyZKytrZkxY8Yt5b4dzdawGDhw4C3/BOBt6U2qSWqdm3VpZA1x1+NYfWY1hxMON5J0NyjPqbD93RayoE1sGyL8Im5rXGhkDUeyj7AzfCel/o1nnVdHv379sLOzwzzGnH3yvhrH5Zblcvz6cTa9uAmCwMKl5gZ1jck999yDmZEZlpGWXHr0EvEb4gEI2xaGfFamlWkrokKjmkS2ityq8VxtS/sKBAKBoHlQ3cZQdRtId5Lk5GTGjBlDjx49OHHiBEuXLuWbb77hrbfeqvNcCxcu5IEHHiAmJoZFixaxfv16AOLi4khNTeWzzz7Tj/3uu++wsLDgwIEDfPDBB4SGhtbY5Fmr1bJ27Voee+wxXFxcKr1mZmbG008/zbZt28jKyqo0v7GxMZGRkYSFhZGUlMSDDz7IuHHjOH78ONOnT+e1116rNNeFCxcYNWoU48eP5+TJk6xbt459+/bx7LPPVhq3ZMkSOnXqxLFjx5g/f36d16kizbbc7MmTJ6t9XpIkTE1N8fDwwMTE5A5L1bxo7dKaMmUZVwqu4GFZ+7r/icWJaGUtGUkZuLq5NqKEVE7UXhjKjE9nYNLOhLZxbYnwi4A11BgWlVCcgLpMTcT2CB5a/FCjynkz7u7uXLt2jROpJ5h1YRaZKZk4uDlUGRedF42cLLP+z/V0f6b7HZWxIq1ateLpFU+TcjyF+NHxHHznIC59XfiFX4j/IZ6XfV5mQtsJtWr015iIxnMCgUDQ/JFlmQJtwe0HAhOdJlIqlxKWGsY3ad+gltU85fIUE50mkq/Jr/U5LRQWdWotsHnz5ko5oqNHj+aXX37h66+/xt3dnS+//BJJkvD39yclJYVXX32VkJCQOvX/mjRpElOnTtU/TkhIAMDJyQlbW9tKYzt27MiCBQsAaNOmDV9++SU7d+5k+PDhVebNyMggJyeHdu3aVXvedu3aIcsy58+fp2fPnvo5P/jgA/2Y119/HV9fXz766CMA/Pz8iImJ4f3339ePeffdd3nsscf0ieVt2rTh888/Z+DAgSxduhRTU13Uy5AhQ/jf//5X63W5Fc3WsOjcufMtbzCVSsWjjz7KsmXL9AvzX2PFzhUUOxfz2fHP+Gj6R7U+7nzxeVoVtGLiiIk13tSGQoOmUqL2KMtRfGj9IX8P/xvW6V6viZMFJ3EtdMVca86QR4Y0qpzVoVAo6OzWGYtTFkRERzB5/OQqY/bl7qNzUWdMTEx47OXH7riMFfEb5seuDruwuGLBPpt9nH/vPKbjTXH0dcRqlhU+rj5NKp9AIBAI7g4KtAUMPFH36BC1rMtDWJm2kpVpK+t07J5Oe7BU1r6YzODBg1m6dKn+sYWFLmLgzJkzBAUFVdIh+/btS35+PleuXKlTA9bu3Wu/YdixY+XCKK6urqSnp9/yGFm+dXGYinTr1q3S4zNnzlRp+BwUVLkf1YkTJzh58iQ//fRTpXNqtVoSEhL0OmBdrvN2NFvDYuPGjbz66qu88soremvt4MGDfPTRRyxYsICysjJee+013nzzTZYsWdLE0jYNtq62FF8q5rymblUQzhedp0ViC4aOGIqRUePeAjc3vxs8ZDBfHP2C7Snbb5vAHVMQQw9ND9r2bouHb9N0YpYkiW453dhVtIvJVDYsNLKGqLwoHj32KI/NfAx3L/cmkbGc8h3/MMI4Pvk4Nsk2WJ+zpmBWQZO5pAUCgUBw92GhsGBPpz21Hv/d1e9YmbYSlaTSeyymOE+p8znrNN7CgtatW9fpmHIUCkUVpb665OxyY6U2qFSVqxpKkoRWW314r6OjI7a2tpw5c6ba18+cOYMkSZWury6ylJOfn8/MmTN57rnnqrxW0cCqz9w10WwNi7fffpvPPvtMn6ACEBgYSKtWrZg/fz4HDx7EwsKC//3vf/9Zw2LOy3OI/zyewAmBdTouvigei+MWON5/ZypClVNaWkqfsX3I7Z3LLw6/cG+re285/mT+Sfof7E+rAXeuGlRF0tPTuf/++7movYjXB14UFRdhZmqmfz2mIAZkKPiqgIB/AppExpsJdg3mp7U/cX3gdXJtc8mVcoVRIRAIBII6IUlSrb0H4anhrExbqf+tKc+xMJaMm+S3p127dqxfvx5ZlvVei8jISKysrGjVSqdPODo6kpp6ozlwXl6ePszpVhgbGwOg0dQcbVEbFAoFjzzyCD/99BOhoaGV8iyKior4+uuvGTlyJPb29jXO0a5dO37//fdKz+3fv7/S465du3L69Ol6G2D1odkmb8fExODp6VnleU9PT2JiYgBduFTFG+O/RsuWLfEp8eFyYd26bx+4coC4A3FoXe5soqyxsTEFBQVc+/MaZy3Ock1dcwPE3LJcLpdc5vqv12nZv+UdlPIGLVq04PTp01w9cBVlgZI/D1auDvVPzj9Yn7FG6anEqbNTk8hYHVPjpyJrZJBAUaogYEXzMHoEAoFA8O+iOVb6e/rpp0lKSmLOnDmcPXuW3377jQULFvDSSy/p8yuGDBnCDz/8wD///ENMTAxTpkzRV5S6FZ6enkiSxObNm8nIyCA/v/Y5JDfzzjvv4OLiwvDhw/nzzz9JSkpi7969jBw5ErVazVdffXXL42fNmkV8fDyvvPIKcXFxrF69mlWrVlUa8+qrrxIVFcWzzz7L8ePHiY+P57fffquSvG1Imq1h4e/vz3vvvVepnq5area9997D398f0GX+Ozs7N5WIzQJ3I3eucKXW4zMLMim2Kmb3+d1IFrVPkjIUmzZt4uB3B3E84cif6TWXcY0tiEXKkAg5GcLW81vvoIQ3UCgU/Prrr5w/f55uqd3YdrVyM8LtV7ezd9Ve3jj/RqUydk1J9OJodql3ISkllLISrbGWZYnLGq3zt0AgEAj+uzTHSn8tW7Zky5YtHDx4kE6dOjFr1iymTZvGm2++qR8zb948Bg4cyD333MPYsWO5//778fX1rdXcixYt4rXXXsPZ2blBCrqDgwP79+9n8ODBzJw5E19fXx555BF8fX05dOgQPj63zov08PBg/fr1bNq0iU6dOhEWFsY777xTaUzHjh3Zs2cP586do3///nTp0oWQkBDc3NzqLfftkOS6ZI7cQaKiorj33ntRKBT6hJiYmBg0Gg2bN2+md+/e/PDDD6SlpfHKK680mhx5eXnY2NiQm5uLtXX9mtE1Jp/N+Yzvp3zPU8ef4pnpz9x2/P70/bxw9gVMJ5iyK3lXnSowGApZlvnftP9xeeZl1vdaX+2YpSlLWbl+JUefO8qef/bQr1+/OyxlZSIiInjb+m329N2DSqEitTSVe2PuJX1IOl36d2HT5k1NKh/ojIplicuImR1TxSUduDSQmR4zCZofdPuJBAKBQNCsaCxdRK1Wk5GRgaOjY5UcAYGgIrW9V5qtx6JPnz4kJCQQGhpKx44d6dixI6GhoSQkJNC7d28AnnjiiUY1Ku4Gsguz0RRqWL1jda3GpyhS8Mz1ZOGkhU1iVIAudnOYwzCSSeZ8UfWJ5zEFMdwr3UvE0xH697spGdp/KMp8JbvidwEQmRuJd6Y3nw/9nPW/VW8c3Wm2+G6pZFTAjV2jmNkxbPHd0sQSCgQCgUAg+DfTbJO3AaysrJg1a1ZTi9EsWZayDIWkYPQ9o4lIimDUk6P0r4WnhqOVtdX2DIgvisfmnA2OHe9s4nZFdu7cydeHv8bSyZIItwied3++0usaWUNsQSzeW73xmerT6JWrbsfGjRv5448/MPUxJYIIRviN4J+cf3CIcCBgakCt4jLvBK0GtWKWVL1LGrjjOTUCgUAgEAj+WzRrwwLg9OnTJCYmVsq1ALj33ltXFPq3o5AUhKWGMb3TdNxXu+PYR2coVEykqo6j6UdpcaAFLea1uJPiVmLXrl1E7I4gUBtIxJAInm31LErphnJ+sfgiWlmLvE2m5cqmSdyuyJo1a9hntw8vSy8OWx2mQFPAwdyDjI0ai9cSr1sacncS0XxOIBAIBAJBU9JsDYuLFy/q26hLkqSvN1wevtPQUl93O/qeBalhuLq6Ep8VT7hp1eoMFcnKyuLs9bNciLlAqNute0g0Jo8//jjFxcW4n3dnQ8kGjlw/Qk/rnvrXYwpiMEowYp3pOrqe7MqwYcOaTFaAVatW8dgXj5E4IBGjAiO+SvwKdYaa+Yfnk7YzjWinaMacHQOTmlRMgUAgEAgEgial2eZYPP/883h7e5Oeno65uTmnTp1i7969dO/end27dze1eE1O5MJIAlYEMMt1FqldUtnNbr1REbAigMiFkVWOOX75OEoLJRZXLHBwdmgCqXX4+/uzZMkSxk4di/dObyKyIiq9fjjrMBd3XeRo/tFmkUxmbm7O3NK5BC4NpMyijHVZ61DtUeEy3YVop2gClwYy5sKYphZTIBAIBAKBoElptoZFdHQ0oaGhtGjRAoVCgUKhoF+/frz77rvVdhD8r6FQKogM0RkXCo0CJJDLZPzC/IgMiUShrPrWGvsY41LkwqfDP73zAleD53BP3Ne7szNrJ0XaIv3zZ9VnGZ87nhceeYGBAwc2oYQ3CJofxEyPmfhs8gEJ1A+qcZvtRsDSAFFtSSAQCAR3Nc20QKigGVHbe6TZGhYajQYrKytA16gsJSUF0DUniYuLa0rRmgVB84PoG9qXZYnL0Cq1yGUykpHER2Uf0Te0b7WKbnxRPC2utMC7m3cTSFyVcwnnOFt0FstcS3bn7AZuNMZrsaUFi5YsaloBbyJofhBTEqcgaSRkIxlFqYJZHrOEUSEQCASCu5Ly4iM357EKBDdTfo/crmBNs82xCAgI4MSJE3h7e9OrVy8++OADjI2NWb58+W2bhvxXiJ0eS0xqDIFLA2m3oh3/fPYPV8ZfIdIxkiCqNywsYy1xDGq6ilAVmTFjBlHnohj520i2uG9htP1oDl07hIvGBUcrR6zdm1/fkOTFycgZOqNCa6wldnpstWstEAgEAkFzR6FQYG5uTl5eHgDGxsZNVope0DyRZZnS0lLy8vIwNzfXdy+viWZrWLz55psUFBQAsGjRIsaNG0f//v1xcHBg7dq1TSxd01Ox+tP176+jRcuQl4cQExPDmow1mChMmNNyjn58UlISW2O2YhJtgkNw0+VXVGTKlCnYWtni9LMTByYfYF/MPqZ/Mx0ffx9a9mv6alA3E54azvKM5QQuDaTT9504MfkEYbPDAFF1SSAQCAR3JzY2NgB640IgqA5zc3P9vXIrmq1hMXLkSP3/27Rpw9mzZ8nKysLOzk5Y04BW1t5I1C6NRFJKaNVanvj2CZY+sZQtWVsIdg3GVGEKQNTBKHCH5PPJ2Hjd/sa4E8yYMQP5HpnT356mdW5rvkr4CpWfiusHruM+0L3ZlHEFqnawLgnSdbpeukwYFwKBQCC4a5EkCVtbW6ytrf/zFTcF1aNUKm/rqSin2RkWTz31VK3GrVy5spElad7MdJtJ9OJoIkMi6Rval95v9maA3QAWvL+Aj3I/4uALB3kz4U3e93kfpaTEq7cXxknGPGD5QLMyzBSSgn2j99Emtg30hhaFLej6ZVd2/28336V+V2M/jjvN5T2XCdwZWClRO2h+ECyGZUuXcXnoZZjQxEIKBAKBQFBPygvlCAQNodkZFqtWrcLT05MuXbqIKgW3oKJRUa7o2vaxpfDPQjaHbeZ5z+d5d/S7PBX3FKv8VpFpmknLvJbcM+ge4Nbdue8kwa7B5KXnsTpgNcpiJSpJRcnIEr4r/a7GfhxNweizo1F4KKokapcbF9qzoqu1QCAQCASC/zaS3My092eeeYY1a9bg6enJ1KlTefzxx7G3t28yefLy8rCxsSE3Nxdr6+aTTBy5UFdStqKie/DgQdJj0zk98zSBTwRyetFpVmesJsgqiDZmbYj5I4Zn5Gc4/MDhWzbSu5OUlJRgamqKy3QX3Ga7IckSsiQ3C9kEAoFAIGgONFddRCC4mWZnWIBO2dywYQMrV64kKiqKsWPHMm3aNEaMGHHHw3juxg/z0S+OcvD9g0w+NplPCz9lfeZ6VGUq/Jb50TG4I6uNVzcbxT1yYSTz1s3jaMJR/Pf6IxvJGGmNOND9ANGLo9FqtPRd2LepxRQIBAKBoMm4G3URwX+TZhlMZ2JiwsSJE9m+fTunT5+mQ4cOPP3003h5eZGfn9/U4jV7ujzbBbcgN7Y8sYV57vOwjbNFbaQmZkZMszIqQNfob+DZgQx5Y4i+N0SZooyQNSE1NvoTCAQCgUAgEDQ/mr3WplAokCQJWZZFtYJaEBMTw5gxYzjb+SypB1L5ZcQvfN7xc2S1jKSSUEkqgl2DdTkaCyObWlyC5gchrZZIHptMl2+7MHn0ZMbGjSXCL4K81Xmi+ZxAIBAIBALBXUKzNCxKSkpYs2YNw4cPp23btsTExPDll1+SmJiIpaVlU4vXrNmyZQtbt25lb/Re/Cf4k7gzke/2foekklCWKVHL6mblDQhPDSfCL4KxcWPx/9KfkrwSrCdZ642L8NTwphZRIBAIBAKBQFALml1VqKeffpq1a9fi7u7OU089xZo1a2jRokVTi3XXMGPGDE6dOkW3bt0Y/vxwtvhuYW+vvfT8pSeTpElsD9yuU+RXjyVoYtN7A8r7cQR3DebjJz9GW6pFaawkdGIo7qnuaGVRbUkgEAgEAoHgbqDZJW8rFAo8PDzo0qXLLRO1N2zYcEfkuZsTpsqbuvVa3wufd3xQGCnQlmnJW51HhF9Es8q1KC+fqzRWoinVVCqjKxAIBALBf5m7WRcR/Ldodh6LyZMnN6sGbncz5d6Aya9O5ov3vkBb1jy9ATf35Ch/DAjjQiAQCAQCgeAuodkZFqtWrWpqEf41lDe/i14cDVr03oDoxdEEz29enoqKHoryf4VxIRAIBAKBQHD30OwMC4Fhae7eAK1GW23YU/ljraZ5eFUEAoFAIBAIBLdGGBb/Yu4Gb8Ctmt81tWwCgUAgEAgEgtojDIvbUJ7bnpeX18SS1J3rhdfp/HpnOjzfoZL8HZ7vQEFxAdcLr9+V1yUQCAQCwX+J8t/qZlZvRyCoQrOrCtXcuHLlCu7u7k0thkAgEAgEgv84SUlJtGrVqqnFEAhqRBgWt0Gr1ZKSkoKVlVWjVavKy8vD3d2dpKQkUUaugYi1NBxiLQ2DWEfDIdbScIi1NBx3Yi1lWeb69eu4ubmhUDR9c1uBoCZEKNRtUCgUd2x3wNraWnzBGwixloZDrKVhEOtoOMRaGg6xloajsdfSxsam0eYWCAyFMHsFAoFAIBAIBAJBg2l0j0VBQQHvvfceO3fuJD09Ha22cvnQixcvNrYIAoFAIBAIBAKBoJFpdMNi+vTp7NmzhyeeeAJXV1fRVbsaTExMWLBgASYmJk0tyl2PWEvDIdbSMIh1NBxiLQ2HWEvDIdZSILhBoydv29raEhERQd++NfcrEAgEAoFAIBAIBHc3jZ5jYWdnh729fWOfRiAQCAQCgUAgEDQhjW5YLF68mJCQEAoLCxv7VAKBQCAQCAQCgaCJaPRQqC5dunDhwgVkWcbLywuVSlXp9aNHjzbm6QUCgUAgEAgEAsEdoNGTt++///7GPoVAIBAIBAKBQCBoYkTnbYFAIBAIBAKBQNBg7ljn7SNHjnDmzBkAOnToQJcuXe7UqQUCgUAgEAgEAkEj0+iGRXp6OhMmTGD37t3Y2toCkJOTw+DBg1m7di2Ojo6NLYJAIBAIBAKBQCBoZBq9KtScOXO4fv06p06dIisri6ysLGJjY8nLy+O5555r7NMLBAKBQCAQCASCO0Cj51jY2NiwY8cOevToUen5gwcPMmLECHJychrz9AKBQCAQCAQCgeAO0OgeC61WW6XELIBKpUKr1Tb26QUCgUAgEAgEAsEdoNENiyFDhvD888+TkpKify45OZkXX3yRoUOHNvbpBQKBQCAQCAQCwR2g0UOhkpKSuPfeezl16hTu7u765wICAvj9999p1apVY55eIBAIBAKBQCAQ3AHuSB8LWZbZsWMHZ8+eBaBdu3YMGzassU8rEAgEAoFAIBAI7hCiQd5t0Gq1pKSkYGVlhSRJTS2OQCAQCASC/xiyLHP9+nXc3NxQKBo9il0gqDeN0sfi888/Z8aMGZiamvL555/fcmxzLzmbkpKiD+ESCAQCgUAgaCqSkpJECLmgWdMoHgtvb28OHz6Mg4MD3t7eNZ9ckrh48aKhT29QcnNzsbW1JSkpCWtr66YWRyCokf3v7kehUNDz1Z5VXjv4/kG0Wi295/VuAslusDJ1JQpJwZMuT1Z5bVXaKrSylqdcn7rzggkEAkEzJi8vD3d3d3JycrCxsWlqcQSCGmkUj0VCQkK1/78bKQ9/sra2FoaFoFljZW5FZEgkFqYWBM0P0j8fvTia4+8cp29o3ya/hy0KLAhLDcOswIxg12D98+Gp4XyX/x2zXGc1uYwCgUDQXBEh2YLmTqMH6oWGhlJYWFjl+aKiIkJDQxv79ALBf4ag+UH0De1LZEgk0YujAZ1RERkSSd/QvpWMjaYi2DWYWa6zCEsNIzw1HNAZFWGpYcxynVXJ2BAIBAKBQHB30ejJ20qlktTUVJycnCo9n5mZiZOTExqNpk7zffXVV3z44YekpaXRqVMnvvjiC3r2rBr6ARAeHs73339PbGwsAN26deOdd96pcXx15OXlYWNjQ25urkF3Ut9Y8wZKlIROrGpchawJQYOGtye+bbDzCf47lBsTCiMF2jJtszEqKlJuTChQoEUrjAqBQCC4BY2liwgEhqbRPRayLFfrujtx4gT29vZ1mmvdunW89NJLLFiwgKNHj9KpUydGjhxJenp6teN3797NxIkT2bVrF9HR0bi7uzNixAiSk5PrdS2GRImSCL8IQtaEVHo+ZE0IEX4RKFE2kWT/PZalLNPvnt9MeGo4y1KW3WGJ6kf5dQTNDwIJtGValMZKguYHNbvrCHYNxggjtGhRSSphVAgEAoFA8C+g0QwLOzs77O3tkSSJtm3bYm9vr/+zsbFh+PDhPPLII3Wa8+OPPyY4OJipU6fSvn17wsLCMDc3Z+XKldWO/+mnn3j66afp3Lkz/v7+rFixAq1Wy86dOw1xiQ0idGIoY+PGVjIuyo2KsXFjq/VkCBoHhaSoFJpTjn5XXbo7SvuVX0fImhCQAQk0pRpC1oQ0u+sIORBCGWUAqGV1jYadQCAQCASCu4dGSd4G+PTTT5FlmaeeeopFixZVqmJgbGyMl5cXQUG1D88oLS3lyJEjzJs3T/+cQqFg2LBhREdH12qOwsJC1Gr1LT0lJSUllJSU6B/n5eXVWsa6EjoxFNZAhF8Ef+7/E62fVhgVTUD5bnlYapj+8d0Y9x/sGszR348S0SOCgOkBDIoeRMIbCXpjNbhr87iORYcXEaGKQH1RjcpHxVj7sZXWXiAwNJELI1EoFdWGBEYvjkar0dJ3Yd8mkEwgEAj+XTSaYTFlyhRAV3q2T58+qFSqBs137do1NBoNzs7OlZ53dnbWd/S+Ha+++ipubm637Pr97rvvsmjRogbJWheeHfosEYkRaI21KEoVwqhoIioaF+Ep4WgkzV1hVCQkJLB06VI6d+6M9wVv/gn5h8zpmTAbTk87jdZYZ6xaT7Im+nx0k+dahKeG87vid1KWpmA33A5TTOli2QV3E3dhXAgaDYVSQWRIJECVimnlxQ0EAoFA0HAaPTZi4MCBeqOiuLiYvLy8Sn93ivfee4+1a9eyceNGTE1Naxw3b948cnNz9X9JSUmNKtcHf34ACpA1MlpjbZWcC8GdI9g1GDSgkTQYYXRXKLhHjhzhww8/5IsvvkBTpqFdr3bk/5APWtAa6/IXQieG0je0L1qNtqnFRSvrErVPf3way9aWdLHsQnppur5alFZuehkF/z7uhoppAoFA8G+g0TwW5RQWFjJ37lx+/vlnMjMzq7xe26pQLVq0QKlUcvXq1UrPX716FRcXl1seu2TJEt577z127NhBx44dbznWxMQEExOTWsnUUELWhLArcBeqEyqsiq3oZtWNiPYRsAbhuWgClqcspzxnvowywlPDm71x4eXlxZw5c/Dw8KDfy/3ot6gfMz+ayWHFYdCCWqHLXwie3zyuY6bbTADOFp7FTGlGJ8tOXFXrPtPNfa0FVbmbQozKZYwMiWT/W/vRlGqEUSEQCAQGptE9Fq+88gp///03S5cuxcTEhBUrVrBo0SLc3Nz4/vvvaz2PsbEx3bp1q5R4XZ6IfatcjQ8++IDFixezdetWunfv3qBrMSQVE7VnO85G5aLivcffq5LQLbgzhKeGsyxtGa2NW6OQFXQw60BYahjz98/ngw8+oJGrMteb7t278/nnn/Pyyy8Duus4PPgwClmB21k3JhROqDYxvSk5ffo0sTmxtDFrg53WjqT8xvUK/peJXHhjh/5mohdHE7kwskHzl4cY3XwOfcljZfMpGAA640JSSGhKNfqKaQKBQCAwHI3+rf/HH3/w9ddfM378eIyMjOjfvz9vvvkm77zzDj/99FOd5nrppZcIDw/nu+++48yZM8yePZuCggKmTp0KwOTJkysld7///vvMnz+flStX4uXlRVpaGmlpaeTn5xv0GuuDBo0+Ubuta1syHTORZVlfLUpD3fp7COpPxURtc5U597W4j2R1MpPtJrPFeAufxH/Cp59+2tRi3pby6zAqMMLmiA2XrC4hrZaqNKRrSoqKiggICODFj18k71Qez01+jtOpp5tarH8tja34320hRtGLo5G1st64qMnoEggEAkH9aPRQqKysLHx8fACwtrYmKysLgH79+jF79uw6zfXoo4+SkZFBSEgIaWlpdO7cma1bt+oTuhMTE1EobvxQLl26lNLSUh566KFK8yxYsICFCxc24KoaTsXmdx18O1B2vow/d/3JmCFjRBjUHaY87j/YNZi1GWt5qdVLROVF0dWuK6djTnPI7RDBwc0zTCc1NRUXFxckSUIra+l1vRdnis9gecKSa5OukXQ5iZdddd6M5pC/8Merf2BlaoVVeyu6Onblj6Q/KDYrRpZl9r+1v1mFzvwbqBj+U/7Y0Ip/xXNEhUYhl8nN1qiIDInEyMwItyA33Ae5V5vQLRAIBIL60+iGhY+PDwkJCXh4eODv78/PP/9Mz549+eOPP7C1ta3zfM8++yzPPvtsta/t3r270uNLly7VXeAm4GrGVUrSSpj87mSuDryKUima491JyuP+Pwv/jJxuOZQmljLafjR/Zv/JsnuXoRmraZbvSV5eHm5ublhYWHD16lVmus3k4ZMP0/diXx5+/mGeyn+Kvh46Jb255C+4O7rzZtGb/Nb+N8YGjKXP2j68KL3Irvd2cTTkqKjO0whUVPyj34pGW2r4buzlBotWrUVhXH3ORU0sS1mGQlJUe4+Gp4ajlbX6z2h9KTcqer3eiwPvHCDvcl61RpdAIBAIGkajh0JNnTqVEydOAPDaa6/x1VdfYWpqyosvvsgrr7zS2Ke/K/Dx8UF9WY1dG7sqyemCO8f3275Hna0m8WwiY+zHsDtnNwWagmZpVABcvnwZpVKJhYUFFhYWxBfFk2iXyGiT0XRs0xETjQnZxdlNLWYlguYH0eGDDhQri8n6LIv+XftjXGbMrvBdzXKX+99C1+e6AqAt1Ro0tyAiIoJXXnmFyEWRaNVa/TnqEmJ0ZfeVWzaovLL7SoPl1Gp0xlSbB9uABNeTriNrZX0oV3OomCYQCAT/BhrdY/Hiiy/q/z9s2DDOnj3LkSNHaN269W0rNP1XUCqVDDYbjPkYc9zc3JpanP8c5ZVt+j7Yl6NFR+nSpQteZl54mXoR/l04bc+2JaNDBnl5ecyZM6epxdUTGBhIYWGh3hj9JeMXvHZ60XpUayRJwl5rT3pJehNLWRXLGZY4H3fm0JuHODT/ECa/muD1shc9ZvRoatGaFFmWOXnyJBqNhq5duxp07j1z9wAgGd3ILTCEcZGYmMiG7zdQkl5C927dST+STrvH29XJCzDmwhiSdiURNrtqg8rApYGM8RhTL9lkWUaSJAB9eN3Zn8/i2NGRjBMZFKQVYOlmKYxZgUAgMCB3vGSHp6cnDz74oDAqbsLb1JtkKbmpxfhPUp7gaq2wZkjAELy8vABod7Qd24u3k1OUw5NPPskbb7zR7KpDGRsb4+7uTr4mn4hrEbRZ14YWAS3IzMxEm6MlqjSqqUWsxOzZs/lwzYf42PmgMFKADGXpZSw5toRvvvnGIOdYlrKsxkT18NRwlqUsuyNz1JXPPvuMzp07s2DBAoPOG704mpPLTwLQJ6RPlWTrhhD2XhgX0y/i/IgzaEBSSHgM9qjTOYLmBzHTYyYBSwMISw2j28FueqNipsfMeiv+0dHRODg4cN999+mfy72Qi0N7ByxcLci9lFuveQUCgUBQM43isfj8889rPfa5555rDBHuOlrbtWabtK2pxfhPUq64fHjxQwLlQPD6/+oxX8ikb0ln4JSBDD0zlHbt2lFcXIyZmVnTClwNEZkRtCxqiZ+xH0pjXb+XM4fPUGZdhrpIjcpM1dQiIssya9aswd7bHu/93mjL/j/85CrkSDn8+uuvzJzZsFh6AIWkqLaLd8XqX3dijroyZMgQzM3NsbCwqLTb3hDKcwtaDWjFlb1XyLucx8gVI4Ha5RZUl/9QXFzMnj17SOyYSMeXO/Lg3geZ+NZENrbbSMu+LclPydfPWdsQo6D5QcQ/E0+MJgbJSEJRqmiQUQG6rvRZWVmVGrHmXMjB1teW3IRc8i7n0bJPy3rPLxAIBIKqNIph8cknn9RqnCRJwrD4fxwtHMk1y2XQsEHs3rG7qcX5z+Ed7I3mlIbs97NZ8vgS0MLw0OGk2qSyK38XO3bsaGoRq/D6668DEBwczC9Fv9D7eG9cuumaRbZs2RJ3S3eKnIrIS8rDoa1DU4oK6PrOfPXVV3zp8CUsBmsva5TGSnxLfTF2Nmae87zbT1ILypXgioZBRYOgNonsN89hu8+WK52v8OP1H2s9x+2oqLRrNBr8/f3JzMzE1NS0wUnLsizz7LPPYptsy/D5w8k9nYtdWzvyLuuU7Noq/tUZWC+++CKbyjbh5ujGrIdmETwnmJToFEztTXHt7UpBakGlc9SWkjdLkFIlfdf42OmxBFF/w+KBBx7gjz/+4O233+aRRx7h559/JudCDi37tSQ7Plu/FgKBQCAwHI1iWCQkJDTGtP9qOnboiDZOy4GLB0hLS7ttN3GBYZn76lwuPXWJ0qRSPLQeABiZGTHKdhTrrq3jcefHm1jCqixfvpzMzEwCHw4kS5GF6yZXnB/VlV62sbFh1sRZbFi/gYKUgmZhWCiVSlpebkmpXymjx43m3NvnGLRkEMejjuM20Y2jo49iZmxmkJj3iobBstRlyMh1NggqzqH10KK4rsAnxofJHSY3WD6orLR3T+tOjx496N69O9M2TmuwV+Ts2bN8/fXXmJiY8OaaN1nbYy1eI7y4tO2Sfkxt1vlmA2u6y3QyemXg1tGNoflD9a+nHUrDpYcLlm6WJO2pe8PDcsNPUazALMsMn998KuVc1Adzc3O6dOnC/v37OXDgANnZ2XqPhbWntTAsBAKBoBG4YzkWpaWlxMXFUVZWdqdOeVdh62CLWbIZ/3vjf1hbWze1OP850vLTMLIywuGyA5JSF4Jy4L0DZD6SSUJRAr9+9CtRoVGVwirKMUQH47qi1Wp58803efrppzlocZD7HO4j82Amzt2c9WMcVY4UuxSTf8VwDSEb2sn5isUVLNWWdBvbDWRoP7k9JldMKHIuMnh1nmDXYJQokZExkozqpaBOd5kOMihUCrSlWn598ld9lTtDyFfevHBV5io0Gg3aMVrCUsOY1mJag7wiFhYWzJs3j+DgYIoKi8g5n4PXSC/yEvPqnCdUUc6g40EkdEzgIdVDfDDgA4qKijh69Cg7Inbg0sMFCzcLvceitpQbFX4/+KE11VLoVMgE1QQClwY2uLFjy5YtCQ0NZdOmTagkFdevXMfW1xYbLxthWAgEAkEj0OiGRWFhIdOmTcPc3JwOHTqQmJgIwJw5c3jvvfca+/R3Fd753lg4WmBubt7UovznmDx4MiYZJnSz6MZ9G+6jb2hfijOLMS01xXWnKz8X/czQBUPpF9Cv0nGG6mBcVxQKBS+88AIhn4QQVRDFsPxhaEo0tOjQQj/GUeVIgV0BeUmGU6Aa0sk5NjaW7MHZtLNvx9VDV3Hu5ozKTIWXqxdXS6+yS7mLHZLhQs7CU8P1HezL5LJ6KahvJ74NEkhIKIwVjPh8BCYmJgaTsVxp32e/jx5HeqC5R4PV31a82OZFzp07V+95PTw8uP/++1m1ahW9evRC1sq4D3RHU6KhML2wXnIqUaKW1agkFfMCdWFrJ06coFu3brz/9/u4dHfB0tWS/JS6GbKX91xGtVRFdn42RleMkI1k1ueuZ6bHTAKXBnJ5z+U6ywu6kNyffvqJF154gXvvvZeS1BKMTI2wcLXA2tNaJG8LBAJBI9Do2tC8efM4ceIEu3fvxtTUVP/8sGHDWLduXWOf/q6ipbYll0vr9yMqqD/Ri6OJ+iuKVlIrtNlaHDs56uvbp0SlMKBkACndUyiWirmYdJGo0Cj9cYbsYFwf1l9bT5BVEIpjChw7OqI0vtFzY+m7S8k1z+X7P7832PnK16WicVHbdZg3bx4frvmQ4vPFpB5IxbWXKwB+7f0oUhUx/635fPjhhwaRs3wXvI1ZGzxNPHEwcqjz7nd4ajgbMzfipHLCWDJmhssMrvW9xkGngwaRsZxyz4QGDSpJhWqbitLSUnbt2tWgeV1dXcnPzycpOQlrH2uMrYwxdzKv1059RSNNLav169iqVStcXVyxKrPCubszlm6WFKQWIGtr7xUZHDOYmO9jOM5x1DFq1NfUxKTH6KtFjT47us7ylpSU8L///Y/HH3+cwkKdIZVzIQcbHxskSdKHQtXFe9MUlcIEAoHgbqPR+1hs2rSJdevW0bt370pVTjp06MCFCxca+/R3Fe4m7vwh/cHatWuZMGFCU4vzn0Gr0WLzuA22LWxRWaiw9tCFopUryaWaUn53+Z23XnsL1YcqohZEceDtA2hKNU1mVCQlJYERbLq2iYWeC0k7nIZzd+dKY4wLjZGMJJILDVvGuL6dnM3MzLBsZ0kH6w6kHUyj1xu9AGgb1BZlsZJHZz2Kp4knGk3DOp1XTNT+O+1vRlqMZGXpSiY6Tqy20tOt5rBQWPBqq1dZlLiI/jb9a6wW1RCWpizV/18tq+n3Xj++sPgCPz+/es2XkpJCeno6gYGBnDlzhqw/skiP0vUzKVeoXXu61nq+8rUoOFWARQcLOpl0urEGrYLZv2Y/f07+E0sXS9SFarRlWooyizB3rJ3ndeCigWwYsIEP8z7E4Q8Hsnpk4eXsBdS/G3ZRURFTp07lypUrODk5cf78eb75/hvatmwL6NahrLBMJ2eL2snZFJXCBAKB4G6j0T0WGRkZODk5VXm+oKDAIOUU/024mLtw1e4qkyZNoqCgbnHKgvpzqc0lDnCArCNZOHZ0rHRfBs0PYuCCgYywHwGz4PG9uiRuTanGoB2Ma0PFHdPXXnuNTlM7UZJXQm/r3my030j02MrhSa+8+ArmanN6texlcFmC5geBVLdOzmvXrcW+oz1j2o8hIyZDr9y69XLDPN2cabOm8e677za407lW1uoTteNz4pk7cS7u191xVDkyy3UWWvn2eRxaWcsDDg9QXFTMo4GPYp9rT0xBDMGuwTxp9yTqMnWDZCwnPDWcFWkrkLQSLrku9DDrwe/S7/xj80+9vx9/+OEHunTpwhNPPIG/vz/55/Ox97MHqHPScrnSPNV+Kg4qBxTnFeSRp8+5CE8N1yVud9cVm1CZqzCxMalTOJSRkREjR47E1MeU1tdaE9gqEK2kpfR6ad0uvAK2trZ88803bNu2DUmSmDBhAu/98h7nJF14mbGlMWYOZnVai4q5JuWfw7pWGxMIBIJ/O41uWHTv3p2IiAj94/IfyxUrVhAUJDqeViQoMAgjWyMGjxtMVlZWU4vzn2H79u2kalLJOJqBY0fHaseMsR/D9uztnP/7PAAKI4W+g/GdonzHNDw1nIKCAhwfcaR3cW++Sf2GyNGRWLtVTvr38PDAyciJPNnwSarRi6NBBiRqvQ7JJcmoZTXmZ8wxdzTHyt0K0CmjtkW2nDtT/5yCisx0m0mwazA5BTnINjIlySWMcR7DjpwdBLsG16qE60y3mVgoLSg5WEJ6cjq+ki8xBTEMHz6c53yeo+zNsgYlscMNpXSU1SiKrhSxf8l+rpVd0yuv81fPr9c5CgoKsLCwoFcvnUGZFZeFnZ8dUHfDotxIe9brWTw7eRI6LJRUdSqDbAbpjbTyilDl1CeBO1+TT6qUinuxOy2tW1LWuoy0I2l1muNWjBkzhvb27XH2vOHVs/a0Ju9S3T4bwa7BzHCdQVhqGL2P9RZGhUAgENxEo4dCvfPOO4wePZrTp09TVlbGZ599xjnNJXIAAJ3uSURBVOnTp4mKimLPnj2Nffq7CjdvN8x2mrFoySLc3d2bWhyDUF2DrXIaWqvfUDz+xOOctjpNm7VtcBxbvWERaBGIIlvBmzvfxNvVm2deeAZNiaZWTcYMRcXSnw9//jDpmem4OrgSlhZGx+UdmfPFnCrHOJk4kaPK0XtYDEF5TgXoNgp6vNqjVutwrugcvqa+ZO7KxKWnS6UdeWcTZxJSEigtLUWW5QYlSEcujCS7MJs2r7fBWDLmdPRpHNwdCDsZxuYlm7HKtWLg4oG3nEOWZXbk7OCTxz6BQFC2U/Lx1Y+xs9Mp6ImZiZR+X1rlmivmm9yOcqXdstSSAyYH6OzUmURNIv1s+pGRkcGui7s4GHKQhSys0zlCQ0OZP38+arWao0eP8t3h7xjedziBBGLtac3l7bXP46r42UxXp+Np4slAm4Fszd7KnJa6++3RnY9yOe4yczzm8Nhjj9UpgfuPP/4gISGBgPsCsC61xsXahfhr8WS4Z3B+73k8BnnUWtaKlJWVYWR04+ctNDQUr5+9GPzgYP1z9S05O9R2KMtTl+sT2f9tRkXkQl0Rhuo+y9GLo9FqtPRdePv7WyAQ/DdpdI9Fv379OHHiBGVlZQQGBvLXX3/h5OREdHQ03bp1a+zT31UojBTYpdtxNuVsU4tiMCrusoMuqXLbtm2EXQnT1a2X7mw1pero2L8jWiMtrodda/RY7H9rP0Zrjbgy+grHjY6TeSaz2kTmxqY8HOOXa7+gltX8cO0HxmeMZ9jxYShVlQ2H/Px8cpNzOe14us6VemqiXKntNKsTpnamtAhsgVNnp9uuw/LlywkJD0FKlnSJ2zfF+Lu3cGfn1Z2YmJiwevXqBsmoUCqY/eFseo7pibXaGh9vH2yMbPBO82buibnc+9G9lJbeOswmtjCWfE0+/ez7MWTIELrYdiG5JJk33nuDjIwMlmxeUu8k9nLKPSv5xvn0adeHn779iWF2w/gj8w+6pnRlx/wdHLc+zr6QfUSFRiHLcq3PoVKpMDc353D0YbYWbGVL1Bag/sp0qbaU7LJsHI0dGWk3kr+y/0KWZQqvFZKclcyBkweIjY0F0Cdw14ZPPvmE559/njX71uCa6YplS0uWv7eci6qLHNl9pM5ylvPoo4/i6OjI2rVrAV0eVW5CLra+tvox9V2L8u8yBYpKiez/FhpS+U0gEAga1WOhVquZOXMm8+fPJzz83/Xl21g4FzpzMfcisiz/K3JQbm6w5X/en2f+fAYbRxtmusxsFrt9iSWJOCmdUKeqaRHQotoxm1tvxsvbi6y2WYxOGE3WMV2oWtD8IP5s/Seb2dygLsF1YbrLdF3TNrSoJBVB24LQdNNUGVdaWsruTbtROanIuJCBjZdNg8+t1egSte387Lh65CqtBrbi8vbLjFwxUv96dRw4cIC0Dmn4pvqSejCVjsEdK73u6+ULujQA0tPTGyRj0PwgtJ9oMW5pjHmqLjE3enE0tkdtkR6QyPsxj0OHDtG3b827rjuydzDQZiDGCmMArI2s8TTxJNchl042nfTngbonsd9MujodZ5UuRGec/ThevvgyM/vPZPr06YwaNQrnWGeiFkQRHRqNrJFveY6bvzda27Wmn2k/Hpv8mO466qlMf/TNR8idZL58+0veCHmD65rrxBbGYnnYkoGtBvLsh8/SuXNnACxcLWplyMqyzPjx4ykqKsKhswPm/5hj2dISX60v6S3TST9d//sgISGBa9euYWFhAUB+cj5ajRbzluZkZGTg6OiItac1Sbvr1swvPDWcHTk7UKKku1V3ulh2MXgyf1NT8b4uf9wcKuAJBIK7g0bdelCpVKxfv74xT/Gvo4WmBVuStuDs7IxGU1VZvNuIXBhJwIoAfdz4yxYvYzPZhpSlKZi/Y37HG8vdTHJyMpHnI3EsdMTW1xZjS+Nqx3kN8uJI+yO0MGtB6+mtyTqThSzLhKeGE+EXgdcgrzsm85x/dCEoCq1ux3Sj/cYqFaEA7OzsaO/WHpeWLmRfzjbIufsu1CkWOedzsGtjh9dwLy79dQlZlnUenBpCJF544QXc+7gz1HMoeZfzqsjb0roldh527F+xn7lz5zZYziuZV3jsgcdQ7VfxkdFHRIZE8lCvhzDvYE7U2Sj69OlT47GyLPNX5l/8/cHfLFmyRF+SNNAikNiC2Epje7/ZGxR1S2K/maT8JFoY6QzazpadsVRacqT0COHh4YwfP54us7ro5NLItz3H0KFDGTJkiL6Jn3OZM093f5qpU6cCYO1hTUluCSW5JXWS8WLWRdTX1ORfz8dYYcwQ2yFsy9pG2qE0gvoHMWHCBPz9/QGdx6I2hoUkSTzzzDNER0eTokzBNs4Wy5aW/PDZD0i2Ei2yW1CQVr8iFrt37+b48eMMGDAA0JWaPWt/FkdnR2bPng2AtVf9Etl9TH0YbT+a4/nHedL5ySoJ3f8GguYH0WdRHyJDIvnE5BNhVAgEglrT6D7N+++/n02bNjX2af41+Nv6U+ZSRkZGRoMaZDUXyt3qjmt0IUZllKGUlbyrepe0r9Ka3K2+evVqPvzuQ+Ij42sMg4IbIUgZ6gx+MfqFkrwSvo7/+o4nb4anhhNtGU1peindVnRjpstMIsdEsrPLzipjJUkiZE4IDp4OYOBaANnx2di2tqVl/5YUpheSfe7WhotnO0+uG1+n0/VO2PvZY2prWul1Z2Nnip2LuX7sukE8dZIkYdzbGOs0a2SNDBIMeHoA3a27k2CXcMtzxBbGklOaQ9SKKFavXq0fG2gRSExBDD///DNTpkxh165dbLx3I/y/k6a+yfyHLx7m6QlP88cff6CQFNzjcA+bszbrX//j4T/0/7/VOa5fv87evXvZtWsXtra2gC5x297fXj/GxNYEYyvjOnsthj0yjLZObZk1S1dStTwcKuVwSqXEbdB5LOqSvK2RNZwvOo/lMUusWlrhoHLASDLCpI8JaYfql8BtbW1Np06dsLHReelyLuTg5enF9evXOXnyJLIs17lJXnlOTKm6lPzd+ZgpzTiYcZBd/9sFm6BMU1YvWZsrXiO8gKapgHc7IhfWHHZZ2+IJAoGgcWj05O02bdoQGhpKZGQk3bp107umy3nuuecaW4S7inZu7TA1MyX2dCxt27ZtanEaTND8IDSyhhf8XwB0HYw1koa/5b+ZHTqboPlBTRr2pVarsfS1xDbR9paGBeiMi0JNId+nf8+66HVo87V33KgISw3DV/ZFUkuMHz+errld2R++nx+Cf8Ai1aKKLI7GjuRb53P9ynWDypJzPgePIR6ozFS06t+KS9sv6UuaVkd8UTzOKmfyD+Tj0tOlyutOxk4UmRSRsD/BYDKeu3QOjyQPkAAZVvqvpP++/uzI3sEkp0k1Hrcjewd9Lfoy6aNJegUddIbFZ8mfUfJXCd9//z1lp8rocqQLbR5sw/lN5+k9v3e9kvk11hqKUopwddXlndxjfw/fpH1DpjqTvf/by4Z/NvDI44+Qvj0d33G+NZ7D0tKSU6dOER0djaenJwBZZ7Nw7e1Keno6RkZG2Nvb68KhEvNue79XpNS8FF/ZlzY+bQDobtUdgOMlx+nWpRtHjhwhOTmZcePG1cpjUVZWxqlTp/Dw8CDHNAcA5WElli0tUUgKnFROqPqqSD2Yiu8431rLWRNrTdZSNq2MI8uO0LlzZ32TvJKcEsIuhSEZS7ctIjHTbSbZ17NZemUpW+dtZeLGiZzRnOG3336jsLAQmywbop2j65303NwKXeyduxcASSnpDdrmYlyUb1hB/YsnCASCxqHRDYtvvvkGW1tbjhw5wpEjlZPxJEkShsVN+Pn6ISVLmLU0a3A9/+bCp0M+RTaXubr8Kk9+/yR71u3hVPApTrqcxOmCE4899hgrV66kffv2d1y2119/nWOnj+H/rj+O42+vaOV8k4M8Vkar0mKkNbqjcdXlO6aHrh9iTNAYhrcYzukfTzP0+FCCXIOq7c/QQtWCAtMCMlMyDSpLzvkc7FrrKiR5jvDk8l+X6fps12rHJicnsyFuAy1btCTtQBq+91ZVFG2VtqhQ8XPGz6QvTOeNhW/UW7adO3fy1byvSHkvhYEOA+n0XCdMbE2IXhRN/rB8Yn6JYda8WTw87GGGDh1a6VhZltmZs5O57nMZMGdApdd8zHzQomXAIwOQz8lY/WOF+yB3xq0bxyemn9BhSocaFZ6aKNQUorBUcHDbQdq66TYS3Ezc6GTRibB1YXzxxRdc5SoPjXsI11xXHNo76JPGbz6HJEn4+flVaqz3Z/s/Oa85z07nnbz//vvMnTtXn2dRF2U1XZ2Ok+pGPyKlpGSAagAne5zEPtAe7xbeAGRmZuqSt9N03bclRfUbBklJSXTu3BkTExM2JW/CR+WDtkCLVSsr9u/fz9Wkq6zPW49zXNUQv+qoqJQfPnyYrVu30qtXL4YPH054ajhxFnFc6nCJNq5t6KrQ3aemdqacefoMx7OO17q53TWjayi1Srq37k4How4cLTjKV199haOjI6bRpg1SdptTA77oxdFc+ecKFq4WuPVxw6mT0x2tgHc7RB6IQNB8aVTDQpZldu/ejZOTE2ZmZo15qn8NNi1tsDpoxRnLM/gE+DS1OA3mvcT3SDBPwPwfc9ota4cttoyZOIYdf+9gedpyvv31Ww4cOMCsWbPYs2dPJc/FnShtqJE1JJUk0SGqA46Lbm9YZPTK0ClLWihTlBGeGn7HjIuZbjPRyBq+v/o9r7R6BYC0w7rmZENdh1Z7zNL3liKPlPk2/lse5uEGy7AsZRmyWqYgrQDb1rYAeA33Ijo0muVXliMr5CqK6o4dO/jxwo+0tGpJx4Md6fd2vyrzSpKErWxLpHMkMV/ENMiwWPfOOn47/RudbTvjqnLFyt2KHv/rgaSQiFoQBUdhw8UNpM9LZ+jByut2qvAU2QXZaD/TQkjleY0kI9qbt8emqw2DCwZT7FnMw9sfRmGkwNrDmryEPL1CU1MS+81cVV/FRDKhg2eHSvf+OIdxLGu5jPaq9rj6uGJkZIRLTxfSDqZxz5p7AF1BgdjU2Bp3uDVaDSUZJWQ/kI3LBRd9Ury1pzW/Wv7K1tSttVZWD547iIfGg3y7fCwtLQHonNCZLcO3YGZnRkBAAGZmZly/fh03Vze06lt3387KysLR0RFbW1vii+PxVHtibGWMsZUxpaWlZMRlkG+UT9qhtFp5NCsq5dl/ZzN//nwee+wxLgVc0vWcON6bHjY9COOG4r4ibQXHpx3nkbxHCO5au89wQlECftZ+/LD3By4WX+SJs0/w2eTPUClUMBbMTczrrezeXOgi2DW4SRrwlcssKSRGLBvBXzP/4t5f7gVotsZFQ4onCAQCw9LohkWbNm04deoUbdq0acxT/WuQFBJ2mXZsiNxA3F9xvPTSS00tUr1Ra9X8nfM3HbQd6PxKZzT8fy+FAhjxwAj+WP0HVgOs6PRuJ17p/UoVo+JOuLSvll5FI2uwybS5bdWk8NRwop2iGWo1lLPpZ/He603YyDtbEeZM1hnUGjXWBdZgDlePXCVwWmCN41VGKtSZajKNDeOxUEgKwjLD6PJMF8xa6DYLHDs6EjstlqPpR6tVVE1MTHDo7IBHnAdlRWU1huC4mrrSrVM3PJT1611QTmePzjzs/DCJ2kTU8Wqsxuka8fUJ6YMkScTExSAPk3GY4VAlvOO7P79DOi1x7PwxBsoDqyi0gRaB7Ivdh3eCN5OPT0ZhpMsRsva6Ea9fF8UmvTQdZ2PnKucZajuUdy3f5YGRD/Dy7y8jSRKXLC8R+22s/hyxqbF6JfQ+5X288847DB8+nJSuKYSlhvGkyZMErgyk69yurJq9Cj9XnSdj36B9bPXdWmtlVZZlTlw+wfZ123ku/Dm9YWEdaY3ZcDP2X99PTExMpWNMbEwoSC2o0bDo1q0b6enpqNVqXrr8Eu3y2mHaUpd3ExAQwMjikSitlKi/UpNz4YZ3rCYqKuVDeg1h6tSpmI43JSw1jCecniBjZwYeD3jQxVRXxSnsShgoYcDOAYwwHwGDbrsMAFwovkBrs9ZIkoSPqQ9mSjNOFZ6is2VnoLKyu/+t/WhKNXVSditexzdp36CW1Xe8AZ9Wo8V7tDdatRaPoR4UZRSRl1h3o/lOEDQ/iKiFUQ0qniAQCAxLo2bOKhQK2rRpQ2amYcMw/u04FDqwPXE7r7zyym3r7TdnPj3/KXYKO7qO7opWraVfaD9eLHmRvqF9UaYombJkCtlm2bRa24qzH56t0g8gb3UeJ6edbDT5/v77bx5+5mGMs41xbu9cY9gGVA5HmOc9jxTTFLy+87rjFWH+OvcX2Sey6d2zN1qNlqtHr1ZbEaqcqVOn0tahLd2su6Etq79CsGfPHpYvX47HSQ8eynqIY08dY0XaCgBWXF3B0clHGXNmTLUK0EOPPoSJtwnBvsE4dXGqsVFfK4tWjBw/khGaEfWWE+Dpb59m5tcz8bTwpOBKgb7DN+gUkSXvLEHRVYGXs1elev1Ri6OIMo3i1M5TvPTDSxw/frzK3L4FvhzPPM6QZUM4f+28vsCCjbdNnRKBy4mIjiDvch47d1ZOvjeVTfHa40X289l6o8O5uzO5F3MpvFYI3CgoEJYaxlvH3+Kzzz7jzcNv6rp5241CypCIDYkliSQcVY6EpYbR61gv/vD9gz5/9Km1slpcXIy1lzV+Tn44Od0Ih0o/nE7v/N5sy9pW5ZjalpxVqVScKzqHc6ozli11Bou9vT1DuwxF6ajEqYsTaQdrl8Bdvh5/W/3NyWdPcsD1AEqU/JD+A//H3nlHR1WtffiZmcyk9x7SIIGEkEKHEARp0kSpCqLSJVzs5Sr6gQp47V47oahY6EhviiAgIaGEXhJISO+9J9PO98fcDBlSgYSAnmetrJXMaXv2OZnZ797v7/ceeesIB0wO4GbshqAVQAZGGDE6aXSz79vixYvZ8NcGpFm6r02JREIPix6cKDpBdHQ0GzZsAKDPgj76ivS3M9id4zoHI4lRmxXgC3snDI1Sg88jPsjN5Dh1cyLjWAZAo85vbcGxxcd095PbN08QERFpWVrdkueDDz7gtdde0xdPEmmaTiadcOzkyKxZs6isrGzr5twWey7vYW3eWnJn5FKdV02/d/vpv2BrCssV7yqmb1pfMjtm8mfEnwbWhiVrS9jtt7tVC+jFxMRwteQq6mQ1jiGNp0HV6BvmuM7B1sgWb4U3SW5JPG32NOGu4fXqG1qDBE0C0lQpfn5+FMQVgAD2/vYN7u/i4oKXrRcqR9VtW3cWFBTw7LPPEh4ezhdffMHgU4MZ9NcgIjIj6H26NxGZEYzPHo//V/71Hp9clYwECdpIbZ3CeLVxkjuh9FSSfTobZemdBdQZ1Rm4yl0pyywzCCxAJ2gPsgjCfr09UoVU/9zt3LATwUFgRp8ZPPLII3Tr1s3gOI1KQ9pzaRR7F7Ps5DJ69OjBN998A4C1tzUlibdeHyLmegwJpxKIjDR0sYnbGIffYT+OOx5HpVUhCAIyCxm2HW0NnJJqBtORDpF0P9Ud6RgpComChKoEYpQxKBwUBJoH8or7KwCoBTVGghEBEc3XMxmbGIM1bFq5SV8RXRAEsk5lMcp5FIeKD1GpNfycaq7lbIGqgDxVHjbXbfSBBehcwrKUWbj0ciHzRGaz2zrNeZqufQjIkLExYCNbVFuYMmMK33X+Dg9TD90EgqBzqDv64NFmO2Tt2bOHXHkuJgU3HM16WvbkeNFxQkNDmTp1KlVVVex8fCcI6IOLWx3srsxciVrQOUzdXIDvbrghVRVVkXY4TS+adwt10wcW9xJRS6I49vYxJFIJXed3xc7f7q4WKxUREamfVg8snn76aU6cOEFISAimpqbY2dkZ/IjUxdfOF3Mvc1asWKG3S7yfqNJW8WnBp2SuyiT5TDK9XutFv0WGdQNqgotJ1yYxyWES2b2yWf/5etYp13Fp7iV2++1u9RSAiRMn8uicR3HPd2/SIaemSjLAxo0bKTxRSFzfOPKv5DPHdc5dc2upcKzgk2c/Yffu3WSfysapm5M+HachnIydUHmrbtsZys7OjrNnz/Lmm2/St29fiuKLeCjvIQRBQIMGI4x4Pvh5sk5lUVVYVef4q5VX6Wjakezo7HodoWpwVjhTqCjEpJ0JSUeSbqutgiBw7do1UipScFQ6IpFIsHC1qLPfENshHLc/jvtn7oBuAJjyUAqDbAbx2Uef8VrX1+oMUI69fQxFpgLbCls0Gg02NjZIpXVToW4Fty5udPPuxsCBAw3ew/EPjjNm9BjMZGY8v+p5HBwc+Oabb3Dt40rm8RsDbY2goVzzv4BRAnKJnKhuUazvvJ4pv07hieQneNr5adYe1FUzlyJFLVFz/OHjqKuaZ49aoC5AgwZH+Y3/keLrxShLlfQO6o2T3In/7v8vAwcO5M033wSarr79xhtvMH36dPZc2EM7RTs0yRos290IAKvSq0irSEPoIDR7xQLgs9TPAF0/aNCwv3A/FQkV2Pja6Fcdn3R6EqlEymyX2ez02cnvAb8369wLFi7A1NOUwf6D9a/1sOjBFdUVAoICGDJkCPv/bz/XtlzD40EPpDIpvV/vfUuD3RUZK4jIjMBEaoJFkgV2ajuDFdE7rYq9PGN5g6urKzNXsjxjOUn7krDrbKdPDXXrd+8FFjXvt9PETjj3cKbvm30pTiym23PdxOBCRKSNaXVXqM8//7y1L/G3w8/dj3KTcso0ZVjI6g6KmiInJ4dFixbx/vvvY2vbeG7ynVKfReKyjGU4mTlhYmxCr/29GDxocL3H1qxghBHG5aOXufTAJdTH1Zw3Os/ouNHNFlTeLu3bt8dMY4bJRhMcpzffejMmJoYzZ87gO8eX/Cv5uPV1a8VW3kAlqIiriCPAPACZTEZ2TDbOPRp3zVGr1SSdTeK6/XXyE2+/rTKZjKVLlwKw/sH1/Dn1TyQSCYJWQC1Vs166Hjs/O1L+TKHT+Bs2ydevX+eVH17BwdOB3LO5uPZpeMXCWe7MsdhjfJHyBUtXL+Wt0bcu4C4uLqZTp074/NeHF3q+gNxVXm/g5ZDiwDntOba9t40FLEBmJCN1cCrO4c7scNyBkZkRl3+6DOie0+QDyZz+8jSBMwKx+MsC++72FHxSoE9Tsm5vTXHirQcWpm6mPNH5CQY63ggsru++TmVuJcHTg3m44GF2eeyioKCAEydOMLDfQBL36ix5KzWVvJX0FmfLzgK6wXTNDPcc1zkUxBUQOD2QlZkrOd/+PGUXyhjUbhA9AnoQMS+CZfHLeC7wuSbbmKvKxcbIBmOpsf61rFNZOIY4IjeRM8JuBPtz9nPkyBFMTHSz+U2lQu3cuZPLly/jMdsDPxs/ytLLDIL7/y78L9VvVXOm+gxGp43QqDTI5I275K3MXMmm/E0oc5XkzM5h0YlFRGRGkCpJpXJKJQczDxLuGs5sl9nsLdhLqFUolWmVrHlkTbNMGAIGBWB61ZQe7XvoX6vRWXx77Fsq/1tJ5KJIFNYKJv42kfUD12Pja9Ogi9fNLE9fzorsFZieNkUboCV6fjRdtndhkuWkG4Luhbo23q5AvDnOUwk7E/B9xFe/za2fGznnclCWKRssIHq30Wp0Qu3y7HIs2llg4WZBwFMBKEuVhC0OaxEdSOQ7ukDtdu2DRUT+qbR6YDFt2rTWvsTfDq+OXiguKIgvjCfAKgCF4tY+zCdMmMDRo0dRKpV8//33rdRKHTd/UZ0pO8Ovub/is8eHrDlZtHNt1+Q5opZEEbwomEsnLiExkiBTy7B6woqo+Nb3TU+uSMb3oi8OQQ7NPmbMmDGYupiyq/0u0remE0TD4umWJLEyESOJEV7GuhoFWaeyCJkb0ugxMpmMrT9sxXqENclXklukrQe7HyTGOoYQoxCWeC3h8cTHiciMYPgrw3H/3d0gsDh58iRKZyVF54qQW8ix8bFp8LxOCicEG12+9PWz12+rbdnZ2Zibm2PqaYp9oT2Ch1DvfoO7DqZ6bTVOfZ0I8A3A4RUH1sWvw+iYEeV9yym8WoixtTGRiyIpyywjfms8nkM8OfP1GXr91IvsPtkGgmtrb2vKMspQV6sxMm7+x2qWMgtnxY3gUBAEjr9/nB4v9cDIxIjR9qP53vl7Dpw4QP+Q/uSfySfq3Siyq7N56fpLlGpKKdYUM8VsCq/6v6ofIAKoYlX8HvA7azLX0De7L1UmVeAIc9zmEPNFDKsfX41JpkmTA+qfd/1MniyPBesW8P777+vafVLnRgbwkO1DfG/9Pas3rCbIV/d8WbhZkHYkrcFzvvPOO8THx5Nnl4efqR+laaUGqVBBvkEcqDqAsa8xEhMJeRfycO7ecBBd8747qjtyPOY4pqamN4TQRNAxr6N+BVSlUuGNN38m/slcz7mcX3ge1UJVo30AcL3qOu1N2hvc9xqdRUxpDP5qf8yczAh9OxSZQkaniZ24uvkqE/dNBJoWPaekpZCxKgNLT0umDZmG7zBfSpWleFp5Em5xI90ydGEoqnKVfmZeq2q+G1JTzlMzHWby7Z5v9W0GsPKwwsLVgqyTWXgOatpY4W4MyC8+cxGpRIrxaGN6v9EbgF6v9eLH4B+Rn5Ujt5ITxp1dQ6yVISJye9yVsscajYZff/2VpUuXsnTpUrZu3YpGo7kbl74vMXUwxSjViDFzxzBlypRbPv6jjz6ia9eu9Jf3b/V83IDlAYyOG01EZgQvHX6J8OPhuFx14eKoi4yOG03A8sZzuWsLtZEBAmiMNJSsLWnVJe3Kykq2bN9ChioDV60rxlbGTR/0P/r37887L72DU5UT56rOtUr76uNi+UUq4yp56smnyM/NJ+dsTpMrFhKJhAHBA7Bxt6Ey+/b0Os899xyPPPIIx44dIyI5gpgnY5Ai5cPOH9LOuh3/af8f5BI5v3X9jV+tfjU4dtKkSXiEevCo46O49HZp1DbUWe6M1kzL5ROX6ZLSpdmpOrXx8/OjpKQEq/ZWmKWa1dFX1HDy/ZP03t+bnnN78vBHD/PF0S/IO5DHVrutpP2VRkh4CCNWj8C2ky3nlp2jIqeChB0JhC0OY8z4MVwov4Ag3AhaLNwskBpJKU1pfrpZaWkpWdVZOMpuzNSnH00n/1I+IeEhLM9Yzt6CvYRYhJDllYVCocAxxJFM10wmXJpAniqPDGUGNodteK3za3z11VcGgu4TY06gsFcQ7hrONyO/YerwqZQodHqCwacGMy5jXLO0QWllaZSnlVNSckOLkHUyS19x29vEmw6mHbAbYkf37roaEU2tWEyaNIkFCxaQSiqdTDtRll6GpfuNe/XRhx/R3qY9PYb1aJbOokYD1cmpEy9NeYm9e/cCuoFz2O4wAoVA/aB63bp17Px6JxuPb8TMyYyQn0OYXDm50fMnJydzNPEoHjKPOtt6WvYkpixGF/hIIWimLrjqNKETKQdTqCyobJboeWnvpex9bi9OI5wY6TCSn376ien+09lTsMcg3bIyv1K/aqVV3bob0tE3jhJ0PUgv5q9tZ5semY7MWFanmvqtpEM1la6Vdjjtjr+Xaia0DvY8SLt+uskru052pH2Qxg8VP7SINq8mXbf2exFrZYiINE2rBxbx8fF07tyZp59+mi1btrBlyxaefPJJunTpQkJCQmtf/r5EIpFglW+FxllzS32kUqkYP348v/32G8eOHaOze+c7ysdtDlKZFKsnrBh+eThHLI+gslaR2DGRERdHYPWEVZPX0Gq0eqF2uGs4r2teR14mZ7ffbkrWlrSatWF8fDxPPPcEGpWGDm63Vy8kSBrEVYurLdyyhtm1fxeZUZls2bIFZbpO3Gznr9MpNfaF/MEbH2DkaIRJsUm925vi4MGD7Ny5k/LycioKK3A95Upfq776nPsB1gN42O5hXI1cqSyrpCihSH9soaaQEkkJ3VO6NyrcBrAxskEukWMeZI6JrYmBSPlWKNIUUSVUYRxv3GBgsct3Fw6POnDN8RpF6iLyvPPwKfTh7U/epnRtKXv89tBxbEdmxc1CqpAiaAX9AM7P1I8KbQU/7vmR/v3788YbbyCR6io534rOYufvOykXypk9frb+tePvH6fr/K4YWxnrB0+WMkt25e8C4K+qv/ht1W9UUom3ic6VzHi/MVKplN69dTO3c1znMFUzFZmljGd9ntUPqNsp2pFWnYYgCFh5WTHo5KBmaYMCHwhkVL9R+mKmWo2W7JhsXHq56HP2R9iN4PfCG1oFCzcLjvQ/wvKM5Q2et1pbTVJVEj4yHyrzKg1WLEAXaGardLqcpp6FGg1UUlUS/tb++PjcKMLY+dvOzLSaqf+7ffv2qK6pUHuodffN06pJAffPP//M2j/Xcm5v3YmEHhY9OFN6huFPD+dTPsXIRLdiZe1tjWOIIwk7mvcZLpFIqPKuwtzEXG9fO9h2MIlViWw/uZ2PP/6YysJKNj+0GY3qxsTcrQjEDx06xE8//cQvk39BggS1oDZwnkrYkYDPwz51HPLc+rmRfiy9WddoakDuOdjzjr+X5rjOYUrlFC6EX2C9bD2gW7U6NOAQXVd1pbqiukktya2+l8+MPxODChGRZtDqgcXzzz+Pj48PqampnD59mtOnT5OSkkL79u3FqtuN4I8/A4cMrOMW0xiXL19m69atfP7555iYmHB+1nlK1pZwYNGBFrdyFQSBqKgoOs7rSNjiMDIPZoKgq8Mh08iwnWbbrA/gy3MvGwi1+7Xrh5Av4JzkzG6/3Vyee/m229gY1dXVBA4JhCxwDm5edd/aVFZWYltiS6JP4m3NrN8Oec559L7cm+cfep78c/k4d3NGKpM2+YXsKHek2qia/Lzbs33++uuvWbZsGSEhITyc+DCV7pWMsRsD6IKOMWPGULG6AqlUioOTA0n7k/THXq28SjtFOwqOFjQq3AbdLKST3IlsVTbuA9wbTaVpjHRlOnZGdlQnVhvMgtfG+0FvDnY4iJ3cjm/Sv6FaVs3eT/dSOaSS3X678X7QG/hf6sb/PPJrBnAKqYLOZp05V3qOyMhIrl27Bty6zuLozqNoq7S0d9ZVrc45m0PqoVS6v9CdqCVRBCwPINw1nEPFh4ivjGfClgn8O/7faOVahp8dzopOK5jjOoc9e/aQn59Pz5499ecefmU4w04NM7ieWYUZ5dpyitXF+urbzaFMXkage6C+ondBXAGCIGDf2V4f/OSp8jhecpy1O9eSn5/PVrutnHriFNJ6vmKys7M5d+4c53LPYSYzwyLXAolMgpmTYc0LF4WL3hmqOQJuQRBIqkrC28Rb/5qyXEl5VjnWPjdMMPr160fsvli0jlpKNaXN6gupVIpFJwvaG7evs62DSQcUGgXZ7bO5nnWd0tIbq1Y16VDN5ffC3xlqM1Q/424psyTMIozn1zzPv//9bz4f8DnKciUFVwoIXRSKsbUxwc8EN3t1d+DAgaxatYoRu0YgICBBotflCIKgCywe8alznFs/NzKjMvXWrk1Re0D+qfxTIhdF0uPlHvR5s0+LrARkZWWxZcYW7LbqxO09T/fUid6PmJC8PZmkv5LqtQGvSfu6lRWN4GeCAdAqtUgV9ad4iYiI3KDVNRaHDx8mOjrawAHK3t6eDz74gLAwMUexIXzNfblicQVzc/NmH+Ps7MwXX3xBRUUFEokEqUTKbr/d5Ifnk7QoSZ+Pq18hkDRedbehXNmEhAQG9x1MSl4Kn372KdKnpFzJugISkCqlaBS6VKbQKU1/ANe2cQU4dfIU8aviqQyvZJ7TvFazce3Zsycvf/gyW3dubdIRqj5mzJjBlkNbCNoRRHpcOl4hXq3QyhtUa6vJtsvm/x76P+Jei+Nc9jlc+7o26wvZUmaJQlCQWdF8287aDBo0iEGDBgFwMPsglcGVDLTRiY1zc3PZtWsXiYmJrHllDeGjwvH/zp+udOWNN94gIygD9y7uFF4tbHLFAsBKY8XKTSux1lrT50gfuEX99qeffspx7XGsBllRmlba4IpF7VzzLflb6FbZjR+zfzRIC7m5b2v+BgiaEURelzw2btyoH3Bbe1tTktR8y9mefXpyKfsS0z2nA3D8g+MEzgzk/PLz+uvWbmeiVyISiYTx2eNp/117uDEJj42NjcG5C+IKsPW7YdxQWVmJp6MnwQeCuZJ7BSsvK1IPpTarnbmqXHpY3BAsZ53M0gW1RlKD9mnztLzw0wvMsp3FfrP9BC0LYup/ptY53+bNm3n22WcZ9s4wOk3pRHlGORauFgaBcVpaGnvX7EVpo+TpsU+TdykPZakShWXDerM8dR7l2nLWf7meGVNn4OHhQfH1YuQWcoNCfTKZDAeZAy4KF2IrYrHybjqweOWNV9h6ditvDn+z3u1u591oP6s9Cx5aYPCZ3WlCJ44tOkZ1cTXG1g2nW/70009cuHyB448d58tOXxpsG+M0hiOPHsFpjRNVxVUUphbqn8nS1FLkZvJmC8QlEgn5w/LJzMvkYduHOfrWUQpeKCAiM4KK3AqEdAGvoXU/y5y6OqGuUlNwtaBee+vCwkIWLFhAUlISY78fi0wiY87CORx75xiCWheMnP7iND+V/YTCXsGw08Nw6e1yWzoRgDfffJPTqtP07tsbCRJ9kFQZVkmxRzGZpzMZETaCiMwIqqqqeNb7WVZlrbqtKuYbB2/U9Z1Uglap5cibRxjwnwHNPl5E5J9Gq69YGBsbG8zg1FBWVnbLouR/Eh0dOpJvnX9LA2sXFxeef/553njjDUA3ePKM8cR+jj0nZ59Eq9LekpVrQ7my2WuyGZ43HG97b3Zrd7M+ZT0qhYqgiCAeD32c4BXB7Pbb3ayicbVtXAFGjRpFSFEIZpjhZuTWqjauyRXJGF8xvq3Aom/fvthL7DHKN+J4yvFWaJ0h1yqvYS415+FXHqbfu/3IPJ7JmW/ONGuWLyIigrL0MrZotjR7xrEhjpgfoXtGd71D0LBhw/jggw/45ZdfCLEIYaxsLBuGbCC/KJ8vv/ySvxL/wizFDOv21g1WYa6NSaUJO47uYMeZHaRHpt9yUb/t27dz5MoRTMpMKE0txcrDqsF957jOwfK4LvA4Z3Ku0aACDGdhjfcZkyJPYdKkSQQH62Y0b7VInsNjDriZu3H2P2c5+OJB4rfFI1PI6lx3juscjDDSTRZopYS3DyfndA4alcZA51GbgtgCfZocgKmpKZ6engi5AlfyrtzSisW1vGvERsfqNRa19RU17Qt3DUfqIMXzdU/2m+0n3DWcHpt61Gs5q1arcXBwwNjXmI6mHSlLL6uTBmVmZkZcdBwlRiUY2Rlh4WZB9unsRtuZXJWMOlvN2wveJi8vD4CihCJsfGzq1fYEmAVwufxys/oiuSoZU6kpLoq6q26ph1Ox/csWk6Em+Pn56S2IAWx9bbEPsCdhZ+PpUKtWrWLFkRWoi9UEmwcbbOtl1EtXzK/PaIY+NdTg2fCf4k/shlj6vNmnUTekpKQk1Go1ERkRbMjbQFfzrrzb/l0mPjCR0r2lOKoc+Un9E8lLkpGbyescL5PLcOnpQsaxjHota83MzFi1ahXnPM4RnR9NRGYEL6x6gb3avQhGume06Kcizs89j+8oXzqO64jHQF1NEa3q1lYCBEFg0MJBBPwcgJONEwICcokcAYFe+b0YLxuP3EHOqVzditnqwtX0ONXjtoKKnZN3kn85n16v9+LFqhex62zHifdP8NebfzX7HCIi/zRaPbB4+OGHeeaZZzh+/DiCICAIAtHR0YSHh/PII4+09uXvW/y8/VDL1Lz5yZtER0ff1jkEQeCpP5/C9idbjOYZsSFqA+ef+Z+VazM+XOtbsv7j2T849vYxOlt3pvub3VGGKlFZqBgdN5rAlYHIFDK6LO+iF3TfakVqhULBH4f/oPeG3nyf9j0aofVE/tcLr2OVZoV1h1uvFTJ//nwyMjIIyg/iTPmZVmidIZfLL2NVaMXp06dR2OoCckEtNEu4aWpqSnV2NRUOFVTkVNzSda9evcqBAwfIyMigWlvN2fZnGay+YR9sZ2fH66+/TteuXQGwcLagyraKb698yzfffINbHzd8s3xx7eParNxmLysvQh4M4ekZTyOVS8k+0/hg8mbmz59P39F96WjTkYrsigZXLGr4rM9nCGoBrURrkGteY2d5c9/W/E945ntyteKqQWE4K2+rW0qFylJm0bGTLpXw9Ben0aq0xPw3ps51V2auRI0uF14r1bLFagtShZTkE8m4ubkxadIkyssNB/AFcQXY+RnWCbp27Rqjeo1C5iTDysuK0tTSZmmY8jX5vPPCO+Tk5OjafVNgAbrgQi6RgxSMJEbMcZ3ToID7hRdeIDc3F5eeLviZ+dUbWNja2vLarNfw7u6NTCbDtbdrkwLuxKpE3CRuTJs2jQ4ddLqpmsDiZiIiIjj16yn+iP+jWdqY+hyhaoheEs3goMGcrzqPSlvXXarjhI5NpkM9//zzdHm8Cy47XTi+9MZEhbpKzS/Bv+Cx14Pcmbk88N4DBs+G5yBPBI1A2pG0BgXiFRUVDB06lN69e3M49zAORg5EdNS5Qs2bN4/ts7dTZlxGUGQQtv4N25PXCLhr0t9qf7YbGxvz5PoncZvnRk/LnoyKHcXR7ke5NPsS7X5sR8naEvb472F03Ghe6/8aIXNDUFgqdBMdEl2aUe0JrJuDl+TkZFatWkWJuoTHrjxGRGEEPod8SDRNJNw1nOhu0YS7hnPK6RQefTxY4LGA8ZPH84PrDwhqAYlMglSQ3lJQcWTBEeI2xNFpYicGfjAQmVzGtLPTsPWz5fj7x/nrLTG4EBGpj1YPLL788kt8fHwIDQ3FxMQEExMTwsLC8PX15Ysvvmjty9+3OHV0gnT4dsu3/PHHH03ur9VqOXDgAPn5N/LoT316iuTfkjHpoBPtahVajDRGOivXZuTjLs9YzsXZF/XBxSfSTzjzzRlsuttw4PcDlAwpYYLnBEbHjcbqCSvCFofxUvVLhC0Ow+oJK0bHjb6tVCapkZSHTB+itLKUg0UHb/n45jB8+HBO55zGVGt6WyJ2uVyORCKhi7YLV8yutEILDTmefZwTG0/QL7QfB1/W9UntvP/GePTRR3moz0P09ep7y0Xy1qxZw9ChQ3nnnXc4UnwEk0ITerXr1eD+CpmCSvtKdhrtpMuELqjsVRgfNSZmYkyzcps7OXTCxcGFwcJg2vVvR/pfhoLRplxjHn/8cdyC3eho3BGpkRQz58ZXSWJcY5AYSQxqQACEvdPwKlDowlAe/vfD2Mpt2RazjS1btlBaWnpLqVDl5eX8susXLh65SK8Fuv6sLRCvobYVaM3gKSIrgoQ3Eti7fi9ZWVmcPHkSM7Mb71Or0VJ0rahOYKFQKHAzdiNdmY6luyVajbbRInYARdVFSM2kdO/QHWdnZzRKDbnncusEFiszV6ISVLoCfIKalZkrddW3M+t3hhIEgatVusKJN1vNgi5lZ8rwKZTKSpEZyXQC7iZ0FslVyQzuMpjVq1frC4s2FFicOXOGmM0xJAqJTa5YXLp0iUURi8g9l1tnW/qxdLJOZjFq+ihMJCZ8tvUzVq1aZbBPp4mdSNyX2Gg1+UfHP4riQQUT20/UT+Soq9WsDl5N8fViHnZ+mAsdLpBbmEta2g3tkdRISqdJnYhdH9to+wsKCihyKyJFm8LyTsuRS2+sSnRx78JjFo+RZZbFi91ebHAVrEbAXdt5bFnqMkB3/y90uEC4azjBa4KRvyTHYqcFbvPc+Nzvc3b77dZ/T0QtiTJYEey/pD92nQ2rZtcOXpRKJY888ggvffMSI8+O5HrVdTzKPLg+6rrBCkTtdh3udxgjEyO2n92OxEgXVGglWv6b9t8G++lm1snXkfBGAmM2jtG/JlPImHZuGvGvx/OT8ieqS6qbfT4RkX8KrR5Y2NjYsH37dq5evcrmzZvZvHkzcXFxbN269b6sKn23MLYyxjLdkrDRYfrZ4MZISEhg6NCheHh4oFarSdyXyOGFhzn05iEqevxvlloLapm62VauNR/uF2dfRCKTUCqU8rnF5/z81c9kGmUy1mEsfX7oow8qbk4ZsXrCiuDvghu9RkP4jPbBZrUNn8Z+2uAX3e0iCAJHjx9FsBfwtvK+o3P1tOtJuks6Vdq6FadbknhVPB2EDrTXtEeqlhoEcU3dS1tbWzrYdUDwFm45sLC0tMTPzw9/f3925u7Ec7sntr6Gs5parZYjR46waNEiZjjOYFzGODQyDS8kvICpzJRjdsfY0X5Hs9IQnBROFJkWEbkoEo1SYyDgbq5rTLoyHesCa8zdzBvdt95BezNX2SQSCUFmQSz6cRETJkzg6tWrWLe3pjyrHFVl0zUREhISyKjK4PSB0xxbdAwAqUJqECjWbl9Nv000mcg46TiODj9KUuckjh07xldffWUwk16SVIIgCFi3r/v56m7sTnp1OjKFDAs3iyZTgAq0BZhKTTn6+1EsLS3Ju5iHkYmRwWC9djt3BO5AhoyIzAhOjjtJeUb9gUuWMotKTSUdTDrUu2IBukrsSkFJobpQJ+BuwhkqqdpQuA1QnFBcb2AxefJkFs9aTKV5JYKHQFl6mYHTUm2uXLlCvnE+eRfy6myLXhpN1/ldMbM3o4O6A5/v+ZxFixYZ7GPvb4+Nrw3XdzdcmyW6NBpzmTlTnp2i/5/+3Oxziq4V0efNPkx9eSqychmdJ3fmrbcMhUedp3Tm6uaraJT1t79Xr15EXYjC+11vXvF4pU4fAYQeC6XIp4gH33qQgwfrn8xxC3WjILaAyoJK5rjOYab9TFblrqJHjC7NyFpmzS85v/DSyJfYvnc7ygG6QEoj0SCXyFk8ZTFhi8NIOZhikO7nO9aXkqQS+i7sq/8sqx0krMhcgcd8D3wjfKmSVhHuGo7HZQ9GXhxZ5/Ok5jgBgczPMtnivIVwl3BO9jiJv6k/v+T8QkRGRIP3oYaEXQmoClWcmHSCVVk3AsXt27fzafynnHzsJDKpjNVBq1GW1Q0YW8rOXUTkfuSu1LEA8PX1ZcyYMYwZMwZfX9+mDxDBr8qP4D7BPPzww03um5ubi4+PD8HBwZQklLDjiR2cW3GO4tBiik2LcU90R1us5cGEB5tt5Vr7w/3CjAtE2UZht8mOMpMyZrvMZn67+U2mjNyuXeyJwhNsW7ONzLJMtidtv61zNIQgCPy450dkKhk9A3s2fUAD7Ny5k2dffxZtvpbzpbfvsNUUlZpKMsjgkUOPMFs7u8G8/8aCCye5E9Wu1bccWLz66qvExsYy7blpHC87ju9BX8xdDA0FBEFg3LhxLFmyhBMnThCqDsUxwhGloKRcU87pp0/zjMMzzUpDcJY7U25fTs+FPbn++3WSfk9C0ArNEqkXFxcTGxdLVnUW5unmjeor6hu0137emxNcBJkH4dTXib59+6LVajFzNsPIxKhZ2gVnZ2e8u3nT36Y/J94/gcJSwcvVLxvcy5uNDQ4fPoydnR0/PfYTjxU/RmlmKaGhoYwZM8bg3AVxBdj42tSpOB4fH8/P//2ZmJQYgGZpC3JUOTjJnfSBS9bJLJx7OuvtSGv3Y6/sXkweNhmTkyb4mvhysN9BtjltMzifSqVi6NChzP9wPl7GXhhLjevUsKghMzkTM40Zf136C5eeLpSklFCe3fAKS2JFIi4YrqQUJRRh42tTZ99Bgwbx4jMv4m7sTqpNKkigLL3+1ZV+/frRPqw9YZowg/+xrJgsUg+n0vPlnkQticLzrCfuQ90ZN24carWhU1yniZ2I2xxX59zV1dX8+OOP7MrcxVCboUgkEkIXhiKRSUCrCzYfeO8B3euSUKyHW5OYmGhwDrdQN+TmcgM3ttoIgsDyquV0t+nOOPtx9e6TsT0Dq9+sqBpVxYcff1jvPmaOZtj62pIZrUtJu3L1im7SRwIyZLzf/n1WdVzFb0G/sersKnoc0gn+aztPhS4MxX2gu8H/sX2APRbtLHDp6WLwnTHHdQ5zXObwQ/4PZPbMRCqX6v8fOn/RmRm2M+pt5xzXOaQdSmOr21Z6/NKDQad0xhOrOq3CSmLFyqyVTP9qer3HAlQVVbF/7n5e6P6CwefBjh07mLd7HhurN/Kk5ZPYh9hz4KEDrOyyEmX5jeAiakkUy1OWs9d/b4PXEBH5O9PqgcWECRP48MO6H1QfffQRkyZNau3L39e4S9xJVTfPuaVfv37Ex8ezf+d+to7dyuWVl8kMyaTUpJRw13CKvy1GUAhU7Kgg3DW82VaugasCCVoWxIV5F8j/Ix+FkwKX5S50/a4r0HTKyO1WWH1q2lMEWgfiedSTzZWbW3TVQiqVYh9gj02GDR496ha8ai4SiYTzl89TcaaC6LTb08E0h9jyWMxKzbCptqHfO/1uK4i7FHmJZJNk0q7enoXr3oK9+FX54WHpUSfPXCaTMXnyZJ588knMzMz4ftP3/LbyNyRqnVuLTCVjrmfzRPhOCicK1YUM/nAwJk+ZoK5U81+T/zZLpP77778T/GAwaq0a40RjLNzrzoLXcPOgvYaa4KI5KXxB5kFYhVgRFRVFr169dPVnmqmzcHZ2pkpehddeLzo83AG3UDfAMFAM/i7YoH1BQTeqps/0monve771ptcUxNbv3CMIAnt+2oPSQolKo2pWYBG5KRLj9BtuRrX1FVFLokg6lKTvR4lEwpEjR7j25TVSq1MZlD6I6nLDVJGMjAwOHDjAicwT+Jnp3LRK0+umQgEsW7aMvGt5/HrwV4ytjbHzs2tw1aJSW0mWKoshAUN49913AdCqtZQklzRa7b2LWRdiq2KxdLdsUGdh72JPsaKYYXbDDAL44+8dJ2RuCOcizhG5KJLA0kDk/nI+/+pzjIwMDRc7TexE4p5EgwEo6ILFGXNm8HuuzmYW4I/5fyBoBKRyqYH2YE7wHOwftGf7QcOJFolUgv9kf2LXxRpoE8rLy0lMTOTXvF+5UnEFLxMvVmSuqPP+1FVqkn5L4oPBH2DnYse0iGkN9leNzuK7zO8443gGiUSCTJChQcP58vN0NOuIg9yB1dmriXo0inDXcLb4bEGmkekH6Dd/Z0gkEnwf9SV+W7zBd4YgCBSpi5Cg+7yp0UBV5ldSEFeAa2jDLnOCVCBoWRAPXXqIEx+cQBAETGWm2L5ni1ap5WTFyTrBn/6evHoYh0AHAqfriipOd55ORGYEi90X4xruiuMpR57v8DyWwZYkzEvg24e+JaJLBKoKlT6ouDDvAl4DW9cpUETkXqXVA4sjR44watSoOq+PHDmSI0eOtPbl72u8LbzJMsmiuLi4TqXyt9a9xaJ1hkvuWo2W36b9xqZ3N3Gp3SVG2Y3Sf+m/9PxLeOR7oHZRN3vwVDNL/Fj1Y0g0Nz7c/8/9/1q1KjboBv8bv9rI6B2jyVBlEF3asgP36wXXMU8wxyHI4bbP0b9/fzZs2MDA1IGcKjnVgq0zZNevu7CPs+epU0/R7+1+9e7TVBC3ccVGisyKuHb12u21oWAXPRN71jv7C/DNN9/w888/07VrVzp37kzH+R0RjARkGhkauabZIn47IztQg9xJjtNIJ52ws5nVhUtLS7HuYI1RqREVqY0Lt292I6tN7SrHjdHZrDP5qnyylTcE5lbeVs3SWZRryqmUV/LgzAex8rLCPvBGINBQoGhnZ0d+fj5Xr17lbMJZjlge4c+Nf9Y5981WszV4e3uzaP4ipEZSsquzmxVYnCo+RUx0DFPCpgCQdUoXWNR8Njwc/7C+H319fVm/fj2bV2xmjP0YKq0q6bnecEXQxsaGX375hd7je9PJrBOCIFCeUY5lu7r3yt/fH7MqM4xddYGNS++GK3CnVqUiUUpQ5alwcdEFPiUpJSCh3udAEASSkpKQZ8i5WHax0b5IqkrCVGrKyFdH6oO+P579g8S9iXrnvLDFYYx7cRymMlMuVVyqcw6HLg5YeVrpK2bXoFar6Tq1KyYaEwLNA4l8J5Kz357FfYA7LysNV7DaW7Qn0DyQ/YX76/bVFH/it8eDGv0AfuPGjQQMDuDD6x/Sx7IPq7NX16txSvkzBRN7E7oN7cbCwIWsKV3TYGqnWz83tsq38l3Wd1RpdWlJJ3qcMJjZ/+bqNxwdfpSZFjOZ4zqHN+a9QfyieKSquqLvGnzH+pKwM8HgmZ/34zw2Z27Wuz7VrHpkRGdg29EWM4eG9VNLJy9lrudckn5PIvt0NulH04laEkXvX3tjv9Ee14dcKRHq3u+k/UnEbYxj2IphSCQSrlRcYV/hPgNL24KeBfwr4V+oS9UUbCjAZJ4Jx4cd50vLL/VBxa26T4mI/J1o9ToWDdnKyuVyvX2hSP34O/tTbF2MrYstV85e0fvlg27pebffblgHi6csBuDIm0dY9cQqcn1zGZwwmJf7vqzf/9FHH6XwWiGb0jehLFU260OvJs1pl+cuBJmADBkqQaUTdHP7aU7NpcOoDux9ei/jJeP5Lus7+lr2rdeV5VY5ceIEhzIOYVZghonN7VWjBt0g6bHHHqPkQAmrjFah1CpRSG/PQrmhmiGxG2I5kXWCs8lnGb1+NAcOHLitPhgROoJox2iEwuav/Fy+fJnHH38c/4f8yXwqkw7RHbDq2HB6Uc37UPopsRxlSa+NvXjw2IPEvx5PBBGkHkpleNzwRgMgqUSKs7Ezn534DPlKOelCOhKZRK89aCy4mDlzJg6POLAjbwelqaV4DWndGUNTmSm+pr5cKL+As0JXZLG5lrPHrhxDgYIHX3mQX4f9Spenuxhsb+h91tQD+uWXX9hZshPbX2wZPmu4wT4FsQUEzgysc6xcLuetN94i6mIUWZosrDytiD8b32g7Ve1VlB8s5/qx6xxddJS8i3lkRGZw6rNTdVaQzM3NefzxxwHwUfowLncc7kbuBueztrZm6tSpbLi4gU6mnajMq0Sj1NS7YjFz5kzyUvN0blOAa2/XBm1bk6qTCLANYH/Bfv1qQVF8Edbe1g3qbLp06YLUX0rfVX0Z5jWswcBi49GNODs4o1ar9e83clEkEqmEk5+cNOiHHhY9iCmNwUfwwdLyRkAjkUj0xfL8Jt74HB81ahTHOh/DwciB6KXRRL0bhamjKRN/nwhgcD2AkeEj2V2wm8ccHzNoo1NXJyzbWRJ2PAxpf90Avr2sPd7/8ca21Jad8p0NDnYTdibgM8YHiUTCMNth/JzzMxtyNjDVYWqdlZdTfU5xpOJInRW/2vVMOhV2ov+J/sxfMB+AZ555huiZ0XiVeoEb9Tr9uYW6gQQyjmXg/oA7x9OPc9z/OFK5lLC8ML586Et92l1yQTJh/ZpeCa/dd+sHrgcBHnj7AV5/+3UWJC7guQPP8a+T/yJsoe5cylIlv8/5nQEfDuDyT5eJdo1mfch62mvbkyXP0gc3k50m46Zw45DkEA6POWAjtSF2XixXZ19FK69/JVRE5J9Eq69YBAUFsWHDhjqvr1+/noCAgNa+/H2Nt4832jItJh4mJCcnG2xbPGUxo+NGs9tvN6+sfgWfdj680ukVcgNyGXR9EB9P+rjO+Qa4DyC3ey5J0UnNun7YO2FcnH2RfUH7QAPvlL6jn5m6OPvibac5NReFhYLk/yQTezaWs7lneXfduwbbm2NfWh8REREczzlOcWHzrUEbw8/JD0W1gssVt18lvL6aIVkxWex5ag95fnmUXCihuLj4tgOrTxd+CkagUDU/8Ll27RoXL17kuvN1BtsMpuJKRYMrFjVs67CN3X67GXl5JJ0+7URGdAbh3uH6Z/U3v9+avK6riSvn9pzj2NvH8BrmRcdxHZulIwHIUGbgbuJOaWrDxfFaEvtie95a9RbTp08HdEXympMK9fKSlylJLuHPP/8k/2I+DoG3tnI2YsQIBgUOwk/wq7OtPqvZ2rRTtCNDmaGznE1pXHPj5OfE8089z4vPvUj0kmgEjVBvUHEzLgoXRhiP4OSYk3XSGMs0ZaQr0+lk2omy9DKMbYzrrZ0AOs1NllKX/lRTgbu+tMiaitu2trb6AX1RQpFBxe3aSCQS/P39cVW5UqgtROgk1BtYVFRUELE9ghPbTujrMdUEbfW5eJmlmvHpzk8ZPXp0nXN1mtiJ67uvG4j7q7RVHC4+zHD74ZRllCE1kjJ+93iMjG8M6GuvYA2xHsLFkot0DOtIdvaNlTKJRILfZD9i18XqhNUuM0kMTMTMz4x8u/wGB7uCIHB953V8H9HpHqUSKc4aZ75K/oohjwwx6OsteVtYqV2JSZIJJT+VULHR0Lq6ZiXc9qgts51n618fOHAg165dY+XAlRSpi/AyqRvwS2VSfB/x5dq2a5SqS3kj7w2kCikeMR58MewLg/Pv7bKXmPExdc5RH6ELQ5EqpPC/t3H227McfOEgs/Nmk2yTzEK7hTzZ/0kEQeDIgiO6Fce8EhZ5LmJt0Fqy92RzTX6Nx00e1xs8rMlZQ6mmlIiOEfwR8gcPn34YtKCVa5EqpQSuqhvUi4j8k2j1wGLhwoUsWbKEadOm8eOPP/Ljjz/y9NNP895777Fw4cLWvvx9ja2vLbZJtqzetpqHHnqozvaa4OJQ8CGst1lDNxiYOJBPJn5S7/m06VqMKo3Yd25fs65fM0Ok/ktN6elS9m/bf8sC1zvFsbMjUYFRlFwqYXPlZpRKpUHbmrIvrQ8vLy/Mvc3pZNrpjttXWFhIZF4kkrMSTpedvu3z3CzCLs8qZ+PgjVQZV6H0VvL7yt/55ptvbvv8JlITLLEkV5XbbL1K//792b1vN+aDzXnY7mGK4usXwtbw8ccfsyZyDeZbzbF5ygZzN3OMTIy4uvmq3n643cB2TV5XdlXG2aNnCVscRrf53SiIK2i2SD1DmYGbsRulqaWNaixainbV7SiyL+LUKV0qnHX75lnOGjkaoc5RY29qT2V+JfYBdTUR9VFYWMi0adP49NNP+f7z77G/bnhcVVEVFdkVDQYWhYWFGJcacy7jnD79p7HnoUhSRO9OvZny5RSdoBgaTUuLi4vTuwDO8phF2gNpXM68EXBfuHCBvRf2Yi+zx05uV6/VbG1cFC7EX48nakkUjiGOKMuUFCUU6bfXuO8kVSXhZWw4YG3IaraGU6dOcfX8VbxNvcn3y683sCgsLMStlxuWJZb61aL9c/fr++Fmu+fe1r1RdFEQGx9bp18dQxwxdzYn+XfdJFFOTg7Hio5ha2RLR6OOZJ3IotdrvXDtVVc7UJPqaKewQzgvUB5Yzr59hp/jnad05vqe6xzNPMru/N11tAmgW1Gs3d6cszlUF1fjPtBd35ft5O0Q5AJZE7M4e/YsADvzd/JR6keoBBXqk2riv4jn8uW6EykTSifQ8f2OdBzfUf+aRCJBJpNhK7flTc83+Sj1I3KVda17fcfqAou3k9/GWmbNXNe5bJuzzWAyZZbjLEJWhWDm0XSxTdA9H1qlLpUSoMPDHVCVq9gzbA/uh9wpDi3myMAjvND/BS6tvoRJXxPe6vYWBUEFBFgFYD/GHr9YP17r/BpQ1+Dh8vuXORN1BqS6ftYqtCxPWd6qacIiIvc6rR5YjBkzhm3bthEfH8+//vUvXnnlFdLS0vjjjz8YO3Zsa1/+vsbIxAinPCdSilMa3Oe1Aa8h0UiQyCRIVBI+m/BZg/tOmTKFjL8yOFjRvNoQWkHLYyWP4WblRrAmmOeffx64NYHrnfJyn5cJjAjEsqcl5t3MiVPF1evocyu89n+vIXWQMvmByXfcvuzsbBZELODq0at3rLOoPXhe5rYMZYkS1w9ccVW40iegD3379r2j8zsqHCmxKaEyv7LpnQF7e3ss+lhgYWxBV0VXSlJK6ljN1qZHjx5krsgk6cckwhaHUZpSirJMybF3jhG2OIzFUxY3r5J6PmR0z+CC8wXs/O0ovFqIVqNtUqT+xBNPcPjyYcxKzajMq2zUFepOqRHJjug0AptgG1b+oAuyrbytOBx6uMmVtHlvzePxhx7HrsoOK28rFBbNW0mytLRk8+bNxMTEUGxVTGlaqUGtiMK4QsyczDCxrT/F78svv2TTt5s4cukIVl5WqMpVVBU0bJVc4woVtSQKQSMgMZI0WjtlyZIljB07lm3btuFu7Y7vb758l/2dfvsbb7zBv/7zL8wLdM5iZell9eorQDeb/v5r75OgSWDfon2c/OgkTl2d9ALu2vbDsUWx7F29l4iIG1aiTQUWNQPWALMAMt0y6w0I27VrR7te7Vi5eKX+mtd3X6f9qPb12j0P6TwEa1Nrdl/cXWd1sXY6FMAjjzzC/NXz6VzWmVOfnEJdpSb07cZ1RMszltPFrwsBswKYMGGCwbb1luv5fc3vvJ72Oj4KnzraBKi7MpqwIwHv4d6c/Oikvi9f7vQyXXK7YNHVgj8d/uS3gt9YmrIUlaAi3DWc983f58W+L/Lqq6/Wad+VtVfoMKpDvSmmgiAgOSPBIdOBJSlL6gRenkM82fHgDi4WXGS1/2qecX2mzjlyz+fSdU1XXgp+qdF+Agyc5Gru1aUfLmHtbc28rHm86/MuVuetcJzgSG7XXDI7ZvL+qPepcKtgtsts+ln34xnnZ1j7xFqDe1nz/Zd8ONlAU1GzonFh3gUxuBD5R9PqGguA0aNH17s0LNI0LkoXEssS691WVVnFhGMTEHwEpCopWrmWResW6TUXNxMaGsrRtKPkDcpDq9bWsaO8mbluc9n9xW42T9rM90Hf42p8YybtbuWQmtqZ8nDiw3RI6sAO7x3MiJuBgHBHeazJFcnIy+T4BPjccfs6derEQ0MfoiKmgnNl51ALaowkdf+t3lr3FjJk9d6bResWoUHD/w3/P9RV/3MqEXQzopIJEgIq7jxlcNOmTVzIv0CscyxlaWUNCh+XZyxHKrlRoXZXwS5G242mNKmUy3Mvs0ayhnDC6z128ODBbNiwAT8/P0JCQoheGo1GqWmW8Lo29u72HDh/gNXrVjNrxiwEjUBJSgk27W0aPE9VVRXr1q0j8KlAbIttyZHnYObUvFnN26GmxguuYCY3w9pXl3Kz1W4rp6edpoeqR6PHZyuzcTF2oeBywS2lQRkZGfHll1/i5uaGb4AvpwNOk3UiC99HdaksTaVBeXl5YRZnhspGhcJCgYmdCSXJJZjam9bZV6nV1ZBY99w6jH8wxkxqxqyrs7jyyxV9zv/N9yMwMJDevXtjb69bSenzRx/WP7KehMoEfEx1ugO7IDs6KHSVsUvTG15ZkkgkxJ+Mx2meEx7zPIhcFKkvlFcUX6QfNPb5vz6kx6RzftV5CrwKCA/XPZ9FCUUEzmg6LSXALIDDFodRpOoqQddY6YIuVSmtOg0fEx/9QFUilTAsYpjB+49cFMnujrvxGuhFH5s+XFBeoBc3CkmuzFyJVtDy6MRH2ThkI0X5RcQmxOLd25sHqh4gemk0jx963CAFqj6kEimXzC6hkCi4znWC0dUJejfpXXYU7MDOxQ7XP105NvQYHS50YNO0TfqJGIA5C+fo2wu6wMLK26qO69pPw39i8uXJrMldAzmABLzOejGn+xySBiTR+ZfOdOzY0aBtgiAQuzaWB95/oN6279ixg7Fjx+L2nBueT3myPX87Yx3G3uijqJWkP5NOxZ4KKtpVYONmU+cc6cfScQt1M7hH9VGfPfXNepXQhaEcFA4y7sI4rs66ytWZV0EC3VK6Ma/7vEbPP8d1Dgu1C+sItfVak3kR7IndQyjN/9wTEfm7cNfqWIjcHrZqW86VnatTFKlSU8nog6PJ98ln8LXBnOxzUp/HfrNbVA1ffvkl+77aR1XHKuLPNy7arOFo8VE8VB4GQcXdpuP4jvh97odcItfPwt1JYBObHItlmiV2nRoegDUXqVTKb/t/40nNkxhpjYitqL8Cbo3Y/uZ7s2jdInb77absehkr268kdoPu+Jo0iwPRB0g+nMyWLVvuqJ2WlpZUZVWhclI1WsuidsXbHzf/yKHCQww1H8qqrFWcm3MOmVTW6HUee+wxQkJCiFoSpQ8qmlMdvDadXTrjFuDGpEmTkMll2PjYUBBb0OgxgiCwbOUyFE4KXMtcsXS3bHLwcSfUTomwMbLhQvkFVmau5Lvi7+i6qisTSic0enzNSkD+pVvXV8yaNYuRI0dibm6Oa29XA6ekgtgC7Pwbfq6nT5/OtpXbULjpVkgac0PKVeUiqAXe+/E97EbZYdvRVh/cNZSW9sYbb3D8+HFmzZoF6PQy/fP762fM169fT58JfRjeWSc4b6g4Xg3LP9IFug++9yBhi8PIOpFFzBcxBoPGHFUOGqmGV6e9ytSpUwHd81B8vf7ieDVcvHiRsWPHsvHjjVzjGmqlmvIswzoZSVVJmMvMcZQ7otVo8R3ni1N3J4PVsJr+kGglRGRGUK2t5lTpjdXLmoF9TFkMO9vtxMTWhPzofNZfXo+LiQsFrxWQF5HHDvcdDba1hprnTiko+STtEyq1lUyPnc6Ogh2EWYXxiN0jJA5NJGNZBo7HHQ2Oqfm/rn3/sk9nc23LtXo1M5/5/G/1WwJapRbNdp3o2rWPKyXJJZRlGNb9yDqVRXl2Oe1Hta+37Y8++ihff/01Xf27opQp+SD1AzKrdc9utjKbX2x+QSqXYpNvo3f2upmMYxm49XNrsp+aW19JIpEwf8980Orep6AU+HHijyQlJTV5DfcH3Ru1rHZ/0L2BI0VE/t6IgcU9jrPCmTL7Mj7//HP90nGRuoiRh0dS5FrEA+cfwKfQhxMnThgIuhsKLpxMnHDIdeDP2Lo2lTeTHJvMoQ6H6KS8cy3CneA71pd9/vtQCSoQQCWoWJ5+66JtgAMHDvDGijcoySxpsoLzreDg74BvkW+DOoub740gCPzfL//Hbr/dBK8MJnR/KJ0mdqI4odhg6f6a0TX2LtvL4sX1r0I1l/79+zNr4iz6BPVpNLCoPQhZmrGU4gvF7MjcwUarjQw8NLBZAV19KQi3Yk/cvX13TNxMeOklXbqDrZ8thXGFjR5jamrKyCdHopAqkKfK6y241tLU9FVKdQofp36sT8/rf6R/ozqLPXv2cDL+JDF/xJB3MQ+HLrdveVwzg19DQ1aztWmnaEe+Op9KbWWjgUWOMgdpkZQQjxBcHF3wHuGt39bcApjmruYMvjCYw8WHia+MRy2oia+Mp6OZbra7sVQogNEjRuOkcKJUXmogxJXKbzioJVcl0864HUsWLdEHNBXZFajKVVh3qF+8DaDRaNi+fTtH1x2lRFMCQdTpi5c/eZmK+AqOHTtG2DthCGqBTuPrfh6GLgxlyRNLCHcN52jJUU4UneCrZV8ZpG06n3LWuRq9k8zVzVc5VHqIHok9iBoWxd7AvaQdal6NmTmucxhmOoxLFZfof6Y/FyouMNlxMl/6fonCWkG/Xf1YbL6YF1980eCY2umrnZ/ozP8kGA2uKO4u2A2AHDlShZTRy3RZB8ZWxjgGOZIRlWGwf+zaWDqO74jctH4hPsD8+fPZNW8X4a7hqAQVc6/Npby6nOlx06mmmieMn2DitxMbLFaYcSyDdv2a1mk1t75S1JIo1iSsASnIBBkShYShM4aS+XP9tsa1aQnLahGRvyNiYHGPUpPD3c+/HzIzGS+98xIqlYpMZSZjz4ylWqhmcMxgHnZ/mHnz5vHEE08ANwawGupa+tUQVBHEyaqTTbZhw4oNVIZW8tunTTv5tCbrWMeF8As8kvoIhasLqbxeyYrsFbclHr927RrVdtVos1tWH2Ljb4P5eXNOlzYs4K4dXPQ42YO9AXvpubYn7z72Ll5DvLj4/UWDWTb/N/xRuakIuBJAX4c701dYWFjg5+yHyllFWVr9X9o1zHGdwwzbGVj1t8K8iznrK9czLGYYj2Q+0uR1GkpBuJXgwlnhTIG6AKVWJ9S387ejIK7xFQuAdGU6rgpXytPK74ojFPwv9UEDgkRAppUxx3WOznK2EWeoM2fOUGlaSdLpJPIu5d3yikVtXHu7knUyC0Grm3RoasUCwNbIFhOpCRnVGU2uWAR6BXIm8Qx5f+bRfqThTHRzCmBauFlwyOYQvqa+rMpcRWqVruCnp7EnAAd7HGSP/55Gz+GicCFLmaUX4kpkErQqLccWHwP+5whl7G1wTFFCERZuFo0Ocn19ffn6669ZvWI1PqY+lIWV1emLxKpEcs7mIJFIUJYqSfo9yUCYfDNzXOfwQOEDCDKBH3r+QERmBBPsJzDBYQIjE0YStCyIfcH72GizkSNFR7h+9jonJp4gaFkQoxLq1ntqiP6J/XX3XAJGGPGah05cPNdtLjPtZ2J52pJOnQwDoJrB7rVt1/ihyw/6dMv6VhRrB0TR3XXageVZN4rvufVzI/1Yun5/rUZL7PpYAqY2nbYpkUh0zlXOM0lXpjPg4gByVDnMdpnNK11ewWugl64mx02UppdSmlqKS+/6VzNuldrF7MJdwzne/TizHWaTMy9H1EiIiNwBYmBxj1KTknLY5zDm2eY8+syjJGuSmXRxEqWyUsZox/DxnI9RKBQMHz6coUOH6o9dPGUx7015r97zhoeHs2HlBi67XEarbXxwnS3LxqjCiIl9J7boe7sVFq5dSERmBGOuj6HLsi7M6zcPK28rZjrOJCIzgoVrb81Z7PHHH6djYEeGeQxrsTaqVCoe/+5xvlv1HTGlMfX6tINODO/+oDsIIDGSIKgFIj6OwHOQZ71L95crLuNp7Ml///1fnur/1B2301HuSLlteaMrFjVMbKe75xKZBLlETs/NPbHt2PhMODQ/BaEx7IzskCEjtTQVtVqNnZ9dk6lQSUlJnEk9g7OR812zmgXdAAwZIIBGqisEaO3deC2LwaMGY2RpxJjuY1CVqZoMBBrDIcgBTbWGwms6gXtRfFGjGguAuXPnUp1WzamkU40GFtmqbJzkThTEFlCZU4n7gKZTO0pKShgwYAC+vr6o1Wos3CxQF6u5XHGZA4UHmPrVVEwLTJFJZKzMXMnxCccxsWy4lkxmZibqXDVb12zVB6zPlz6PsY0xx94+pqv+XZ2EZYUlFRU37E+LEhp3MANd3Y358+czatQoOpt1piioqM59C50QyqSwSQQGBpK4LxEbH5sm+/et4LdAo/vfkSDhQPEBhl0YxqsPv0r2U9koUhWcf+o81UI1VydcJWhZEHM9596SDimzWyYSqQSpVooatX7ALwgCnSZ2IiMqg5JUw/uqUWk49Oohdk3ehaZa0+CKYn3mGDenU7n1cyMz6sasfuqfqQiCgMcgj2a/h5HVIxFUuuBIJsiY56bTNdRU4b6ZjKgMHIIcMLYyrrPtdtjjs8dAIyGRSJjnOU8vwN7j03jAKyIiUj9iYHGPErA8gNFxo1ldvRqJWsKW1C08Hfs0lVQStieMgZEDARgwYAD79u0zcENpjKKiItKPpFNtV82VxCuN7pvjksMI4xG89eZbje7XmghSgaBlQQyMHEjKwRSeHfEsDiYOGO82JmhZEIK0+QXfAGxtbamwr2BwyOAWa6NcLse9nTuqqyo0Gg3xlTe+FDUaDcuXL2fuS3N5MeFFfkr6SZfLq9Y57Ly49UWg/qX7yxWX6WzWuVkzw80hLjqOLFkW5y6fa3Lfj1I/0r23/7nK/BHyR6OOUDU0NwWhMWQSGapcFSEPhnD27NlmrVj85z//4T/L/0P2pey7FljUHoB5m3gz0nYkEZkRHH3waKOpUC7+LhhLjOlj0wcbXxuMTG7fQ0Mml+HU3YnM4zpXI0EQsPZuOP0H4NixYxReK+RK3pUmVyyc5E4k7k3EY5BHo7P/NZibmxMVFUVCQgK5ubmYu5rTfVN3XRqOREvVoCpU11X6vgtaFsQz7nXdf2rYv38/BzcdJCo9Sh+wyk3ljPp5FEamRkQuiuTMpTNEvBOBubk5+fn5QNOOUDcTYBZAjndOnb7IN8lnYr+JWFlZcW3LNTqOa3i1ooZt6m0gQ68Jm+w4maNdj7K281re7vo21oetETS6AbVUKb3loKL2c3ey50n9gH/RiUVIpVLeePoNPAZ5ELcxTn9MaXopq3xXcS7inD6oaGhF8ebidzXUTqdyC3UjOyZbbzZxZe0V/Cf731J66QHTA0jkEiQaCRqJRh8c+TzqQ9rhNKoKDd3KmquvaC6iRkJEpHVo9cBCo9Hw3Xff8cQTTzB06FAGDx5s8CNSP1KZVO/9X+ZRxu/Vv6MUlPTe1BvPhZ63rQ94/fXXifwzErfrbhyIPdDgfqWZpVwPvs7IjiNv9y20CEsnL2Wu51xiPo/B1N6UxN2JdLzakf0p+5nrOZelk5c2eY631r2l15zk5udSZV1FUOcgQCeefmvdnQdOj619jMkzJtPdojsxZTeKN12+fJn3kt4j+tFoLiZfpNK4kj6b+3Cq5yn8c/056n2U1za9Vu85z5ecx13l3uy6E02xd/1e1BZqzqU3HliszFzJ4eLD9LLoRXS3aOY6zeXk5JPscGtaXNpSSIolKFwU5OTkYOdnR3lmOdUl1Q3uLwgCZp5muCl0NSxaW2Nx86xukHkQbsZuhLuGs6P9Dn7v8nuDx2apsnBRuNxWYbz6qBFw58fmY9vRtkm3t3fffZchIUOQOckaDSxOJZxi1Ser+L/P/4/2I+oX5N6MTCbjgw8+4Nq1a7i6umLhZkFZRhlzXOcwxngMEpmEyu6VRGRGMF0xneAfgxt0KAPw8fHBptIGG39DRzCfh33wGuqFUw8nssyzMMo10jlO/a/WRFF88wKL7OxsDh06hGm2KWkOaRQn31ixqNRWkl6djo+JD+oqNQm7EhpNg4KbUoj+Zz8akRnBL9m/4G3iTV+rvgyePVi3mqGUoFVouTj7YpPtrO/8N68m7DbajctsFw79fgi5uZzYdTojiOQ/kvmu03eUppTi1MOpyRXF5mgHbHxsUFgryD6tCy6u/nqVzlM739b7ONXrlMFqiLWXNQ5BDlzfc93gmObqK5qLqJEQEWkdWt1u9oUXXmD16tWMHj2awMDA264c/E9Db433RCREA3JACT4f+Oi/GDQaDYIgYGTU/NvYrVs3AEIuhXDKpOG6C+v3rkfwFejj1udO3kaLUNsmcO+0vah6qUh9P5U/o/9slp1fjSMT66DiegVG/YywDrDWOzKNjrtzK2RHZ0d+nfcrQSVB7C/dzxNOOs3LarPVOE5yxCTfhGL7YoKXB/Pus+8ilUr55aFfGPfnOA76HOStDW/x3uOG6WvnS87zwzM/sMlmE3/+2bTYvilG9x/Ncu1yzOXmOk/5ev4Xa77wJWoJUf+OYtv0bUwMmEjUiih+eOYHjDON74rV8IAuA5i7bC4jvUYikUgwdTClIK6g3uJhACtXruSp2KcY4ziGa2nXWn3F4uZZ3SDzIA4UHeDbjt9SllnGxZKGB4tRsVFYmViRezG3RQILl94uxPw3BpsOTafpAEyYMIHqHJ1zkZWnFZX5lSjLlSjMDWtp5GvyyYnLwTzdvI6+ojFeeeUV/e/mruaUZ5YjCALvdHmHPaf3oJFokEvkPJr3KPvc9jXq3hUWFsZXXb6qV0816ItBrOy1klLzUi4fvIxRpZH+mS5KKMJnTNN20p988gmffPIJz730HMqpSlIrU/Xb9sTswRhjStNKKbmis+R16ubU4LluHvRXV1djtM+IzqadieDGivKGqg0ELQsi5KcQzj19joh5/7OCbcb/VWOrCWqVmvgn4xnpNJKz/zmLRCbhj2f/4PyK82hV9aco1uZWVk0kEgnt+rUj41gG5VnlmDmZ4dKzedqHhoIjQG+L22VsF+K3xes1G+oqNdmns3ELbbkVCxERkdah1QOL9evXs3HjRkaNar4wTURH6MJQ9vruBbnO7k+qkFKytoTQKbovgKNHjzJixAgeeughtm/ffkvnDnMK44DtgQbrLiy/vpz8tHzWJK5h2rRpLfJ+7oTQhaG6ZXqVFuGsQIWsgs82fcZLL76EqWldD/7aLJ6yGNbBbr/dFKYWIk+W8276u/we8Duj40Y3WPfjVpjjOoezq84SPToaTaWGjNwM/p3/b65UXOFhu4dRx6kpOVbC0LyhOAbpbCAlEglPFD7B0vKlRNpHohE0yCQ6O9ccZQ7l0nKqr1XjNdGrsUs3m2dmP8Ov537FwdKB6uLqeotYaQUtY+3Hsi1pG+d3nEf7tC5vf8BfA+j3dr+7UhQRwMvai2KhWD9QrNFZNBRYAKRXp+OKKxcKLrR6YFF7NvPatWt88tYnKF9QovXVMq/9PL7+4muq363G2NowH7yqqoqPV32McTtj+pzrg8/oO6+l4trblZyzOdh1tmu2XsNd4c626m2YOphiZGpEaUop9p0Nq3jL7GUsnLSQkkslTeoVGsLc1RytSktlfiVrVGvQoNGn1/1S/Qvt3ZsOWGrE2zdj094Gz0WeGJcbYy2xRmZ1wwq5KKEIa5/GU8IA/Pz86NixI3ZWdnSQdiDZKlkfdG/4awN5Nnmsil/FwJyBdBzfsdGJsZsH/TExMcycOROFQsEHFz/gVOkpTpWduqGpqNZ9pi1ftrzZwUVjs+jzPOeBJzAQzE3MiVwUydlvzgI0GVTcCpHv6ArpufVzI+NYBhlRGXR+ojMSiUT3Ga3RNpry2FhwVLO949iOnPzoJOoqNUYmRmTHZGNia9Koy5eIiMi9QaunQikUCnx9fVv7Mn9LVmauZLffbros78KE0AkErwhmt99u/exdQkIC1dXVKBTNq9pbw+HDh4k+Fo1WpeVs9tk62wVBQN1DTeGhQkJCQlrirdwxNUGFxEiCV7UX8vNyRr81Go2mYfer2iyespiBZwdiO9QW8y7mLRpU1GB6wBQ2gMxUxpiUMVypuMJUp6m86/0uCx5cgM+HPoQuMvxyP3zwMJenXqZCU8EX6V/oX79ccZkOph0ozinmww8/bLE2OiocUXoqGxRwz3Wbi73cnv52/dmzew/9+/fXpZX42tzV9ABnhTM5yhz9301ZzpZryinWFGOVa4XMWIapQ+PBZktibGxM9JZotGhJrEzExNYEY2vjegXcBQUF2PvaIy2WUhVXdUcrFpHv6HLirTtYY2xlTML2BL3VbNSSKCLfiaz3uLKyMgqvFepn5+tLh9IKWvI0ebjFuxH2aNgtrzRfv36dF154gYWLF2JsbcyKtBVEZEYwVjKWvwL/Itw1nF8dfyVmUkyT53KRu1CsKaZSU7divMXjFtik2XB++Xn9a9Ul1VTmVTYrFWr27NlcvXqVd955h0CrQHJ8cvSV6RVeCizLLAkKDCJ+e3yT+oqbU2v69evHxIkTWbp0KbNdZuN42hHLZZaEVIfQ/d/dAd2EyVzPuQQtCyL5cHKT7W0uemteGraTvV1qqncXXC0g9XAq13dfp/MTnQ0qoTdGc1KQHIIcMHU0JfmArk/Sj6Xj1s9NzHgQEbkPaPXA4pVXXuGLL75osTzxfwo1y8Wj40YTvCIYc4U5XZZ3YXTcaH0u6syZM9m/f/8tDzw//vhjFn+wGNPzpvx5tW6KzaWkSyicFUR+HUlwcHBLvaXbpraF6SuqV3APc6f33t4U2RRhYdFwca3aqKvV9NvUD7Q6txapUtqiQQXAAw88wKjDo5AgAYlOvPmy+8sAnPzoJN7DvXEKMUyleP/993nvrfcY5zeOzbmbWfrXUh577DFW/LaCALMAzMzM2KHdwfKM26vbcTOOCkcqOlRQktKwuDi6JJqH3B5i5MiRODk5UXit8LZnrG+X8rRyziSf4eeffwZ0lrP5sfn17nv16lXGzRmHTCWDdHTF8e7iAMTV1ZVN6zfRybgTF8ovAGDlbVWv5aybmxsPjn+Qd2e/i6ARmuW01RA1A7zopdG49Hahurgae3/7Jgd4x44dY/yA8Sglusra9QUWhepCNGgo2FrQbH1FbVJSUvjyyy/59ttvOR9+np+1P5MZkcmi7ovIzc1ljuscHjrzEH8+8GeTttFfffAVQrXAFz9/UWdbiiYFQSXw7EvPErlfF0gVJRRhbGOMqd2tBZeB1oEUBRfp+8KxqyMvT36ZMLcwJFLJbQmHN23axGuvvYalpSX9Tvfjr+/+4uWfXyY7O1u/T01wMTK25fRsNda8t1Ogsilq9BgXv7tIdVE1DoEOxG2Mq2MzfSdIJBI6ju2od4dqaeG2iIhI69HqgcXRo0dZs2YNPj4+jBkzhvHjxxv8iNSPVtAyOm40Vk9YGdgC1gi6a1JShgwZQocOHW7p3CNGjGDKlCl0yOnAycq69Sx2XdmF11UvugR0QSptW+Ow+uoiTDkyhS45XUi3TGfXB7uaPIdGqWHnYzvZ+sBWkOqcWLQKbYNFBG+XkAdCyB2Yq68OrhJ07jflWeWcW36uzmoFgJWVFa+//joOxg5UC9VsN93OvrR9xGviCTAP0AeYUsmd3wetVsuuX3axU7KT65eu17tPoaqQKxVX6Gt1o25GYXxhsxyhWpK8a3nkqnNZu3YtoEuFamjF4tq1a5y4fgJ1lpqy1LK7ZjVbg1wuZ+LEiYS5hnGxQqetsPa2btAZKkeZg3GqMXZ+dsjkjVcyb4zabj7qSp07T/yO+CYHeB4eHrjauyIplZCuTK83sMhR5WCiMiE6Phqz4IbF1Q0xcOBA5s+fz+bNmzGxMWFk8kjcTrvh6uqKs7MzAH339mXM9TFNptdVVlRSnVXNudS6pgNJVUlkXs7kmOoYBz7UmVHcqiNUDQHmARR0KqAouQiAhMoEfEx8uLblGr5jfe+4oGbw88HMeWYOI0aMwNPT02BbSzm/wZ0XqGwONc+eoBXIOZvTokFFDb5jfUnYkYBWo21x4baIiEjr0eqjRhsbG8aNG8fAgQNxcHDA2tra4EekfoK/C9YHFaELQ/nhhx9YlbQK1WQVe5/Yi/dX3rd97meffZa1a9cypeMUEm0TqdBUGGyPIore1b3v8B20DPXVRZBIJcw+NBunWCfWJa0jKqrhL0ytWsuuJ3ax12cvsSNiaV/QnpN9TzZZofx22OW5i5OPn+QZx2cMHGHe2/seXsO8cO7m3OCxeitHqRa/L/ww8jPiWsW1OiLHO0EqlSIvlyN3kJMQm1DvPtGl0XhIPNj+83ZOn9YV+6tJhbqb9PTpidxezuhHdcJ6O387fa2GmwkODuapl57Cx9rnrtawuJlA88AbgUX7hmtZZCmzkMXJWkS4XTPASz2kS2s6/p/jTQ7wOnfuTFpaGoEugaRXNxBYKHXWqz9pfiIjN6OBMzWMRCLh66+/Zvjw4Yy4OIKHrzzMqVOnyMjIQCbTBVNlaWVMVk9uMr1uxowZBLUL4pFpdQs0JlcnMyFsAk/1eQrNYQ1pf6XVCSwaSwsDXTpU165dKYktQZAJXM29yva928lQZtDBpAPxW+ObdINqiqioKBYvXszXX3/N3r177+hcjV6nBQpUNpeadCtBI7R4ulXkO5GkHkpF0AhcWXuFqsIqnHvoPj+bup8iIiJtS6uLt3/44YfWvsTfkpsH1Hv27GHz5s367Yt/Xczw94ff0TW69e6GWYIZJ4tOMtBeVxfjavZVUh1SOf7dcVQzVcjlTXvXtyYNzeIpzBXYaeyIDogmdWYqR64cqbOPVqNlz9N72OW+i9NPngYNnH3rLHtVew0E3azjjtOiVmau5IeKH+j6XVfGh48HD12woCpT8V3IdzgGOzZ5jtrOKNVUsyV/S4sFFTW8OvtVfkv4jfYp9ae3RJVEYZZoxqxZs5gyZQo///gzJUkld5SyczsM7jEY2RkZE2ZMAHQDdUEjUJJcgk0HG4N9PTw88MQTb4k3pWtb32q2PmJjY0mJTSHeM55yTTlW3lakHEyps9+HX3xI+QPlnNx7krH9x7bItUMXhhK9NBqNUnNLA7x2inZkKDPw9PIkcU+iwbYcVQ4mhSZ069ANN7c7S0GpsZy9mbL0MizaNZ3K2KlTJ/yT/Ckxuqngm6AhpSqFD4Z9QObZTCKPR7Jj4g46jO6gDyxqD7Qb4vLly5w7d47r8ddxt3TnQPYBfvzmR9p/1Z74PfEoS5V4DvJs8PimqK6u5tFHHyU3N5dBgwYxZcqU2z5XUzRWoLJme0tRX7pVSwUXNWl+jt0ciVwYiXMPZ4xMjJp1P0VERNoWsUDePcrNhcYee+wxFi9ezIoVK+jWrRvf7fjujq8hd5PjctqFQ4mH9K+tOLKC8gvlXLp0qc2DiqaY0WsGlr0t0aRq2D7J0BVL0Ar8Nvs3kvcno3BQ4FXohSpKRcKJBExMdG5Ii6csZnTcaDQ0TwDeGDVOJw+eeJD8Kze0AAHLAxhwcABmrs1LJ5njOge5RNfvcom8xa1d/Z39Kbeqv/q2VtASXRJNsDSY4cOH06dPH91MtoS7vgogk8hwkDuQpdK5AcnkMmx8bRoslJehzNDVsEhrmxWLzz//nBnjZmBcYczlistYt68/Feqvi3+hqdSQdj4N+y729Zzp1olaEqUPKm4ln76dcTvSqtPqXbHIrMjEJ92H/bv24+rasBNXUxQXF7M7YTer/1xt8LpWo6Uss3mBBejE/NmqbIPXspRZqAU17YzbEbowlNC3Q6nIqeDSj5ew8bWpd/a+Pt599112797Ngw8+iI/Sh2L7YtqHtcek0ITKqEo6PNwBmeL2U9aMjY155ZVXmDlzJj169Ljt8zSHlihQ2RxaO92qZpUl90wuJckluPVza/b9FBERaVtaZcWie/fuHDhwAFtbW7p169aokLIm3UKkcSZNmqT/ffbs2XcsTp06dSpr165l8szJnKq8Uc8i2z6bbse7MfmDyXd0/rvBkMAheF/0pt+r/bj27jV+e+Y3hq8YjiAI7J+3n4QdCVQVVDHWaCxv273N1498jaSbxMDpqqUE3DXpHHs676Hgim7wW55TztllZ3n98Ou4uDXf410lqAw0Gi0ZXDgqHCkyLqo3sLhaeZUqbRUvPfIS/x77bwAS9yVi08HmjvPLbwdnhTOpZakEmwYjk8n0lrMdRhpqio4dO0aiWSKP2D5CcmpymwQWXbp0ITQ0FNdKVy6UX2CM9xiKE4vr1At5ZNojrBPW4Zbj1iKpUDcPtmr+hsbrEnz44Ydsy92G6zhXrLysKMsoQ6PS6DUfyenJWFVaNdu+tiHOnTvHx1s+BiC2ZywLFixgwoQJVORUIGgELNyaF1hUZVRxvOg4J7JP0Lu3Lk0zqSoJF5kL8bHxeHt7E/ZOGCXJJVxafYn94fubVbsBYNiwYfrf/U38ueR0iSdee4JyoZzE1xN54P0HbvPd3+D111+/43PcKzSUbgU069lrLqELQ9GoNEQviebMl2fQqpt3P0VERNqWVgksHn30UYyNdf7tY8eObY1L/KNpCccbR0ddao48S06maSa5ylxMZabEWcaxwHHBfXPfBtgMoGRGCYGnArmw8gIKCwVatZa4jXFUF1UTtjiMC9MuEFIWwgDvAeDduu2x72xPzjmdTeqpT07hOcjztgtH1fwNzSue1Ryqs6uplFayPn09M5hhsO1YyTF6WfZCLr2xUlUYf/cdoWo4vu84e2L2ELkoEl9fX53O4iYBtyAIjBgxgg57OqDOUreZxuK5557jueee45fsXzhddpqp3lNRliqpKqwycCdy8nfCJ80HN7kb1u3vTGN2JwO8a9eucfHsRYzGGmHhZoFEKqE0rRSb9jYApBWmEeIWcsefNQ888AAjHhjBvr/2ERMTQ36+bjWvLL1MV0PDpHlfQVG7o0gKSmLn4Z36wCK5OhltupaA0QFMnz6dH374gZE/jOTKmitoVdpbSgv7POFzCvIKeMThESIsI0jRphBSEUJpaikHexzkz4w/xUrM/+Nuplv1X9yfEx+cuOX7KSIi0na0SmDx9ttv1/u7yL3DG2+8wf/93/9RdaWKWddmcczzGD+u+hFjP2N69G7d5fqWZKD1QP6d+G9mrZhF2bgyYv57wxc/bHEY3d7qxsKLC1ns3bLWsjdTUzTKIciB2PWxVORWcPbbszz252PNKhrVnGq0LRFcqIvUaKu1HLc6jrJUicLyRg2U6JJoHrJ9yGCWvSi+6K7rK2qQFEtQOCnIycnB19cXWz9bLv14yWCf8vJyPLt4IjOTEWwfzLnic22isagh0DyQn7J/QtFBgYmdCcWJxQaBRY4qB8siS+w729/xKtCdDPBmzZpFn8w+LDdbjkaqwcLdQqdfqQks1Gkc/+04SVeSWLFixW23USKRsPb7tSzpvITuP3QnNFTXtubqK2roH9Cf627X6aLqon8tqSoJs1IzrKys9M54NfVubiXvv7Kykl83/0rFsApKckuQmEo4UXKCHsd7kLI0hcP5hwl3Db+Nd//3pLHPsZYe+N/O/RQREWlb7lp+w6lTp/j555/5+eefiYlpuiiSSOvi4uLCr8pf2e21G+coZ7ac38IZzqD5U0OVSxUrM1e2WO2E1iTYIpii0iL8R/jj9LYTEpluQFwzu7U7fzf2RvYYxRnx1VdfER0d3SrtqBEbpv6ZSkFcASc/Pon7AHeS9iU1q2hUY9Vow13DW6zita+vLybVJvR27U1x6g3XojJNGWfLztKuqB3W1tb06dMHQRDaxBGqhn9N/hcT5kzQD0bt/e3rrFhYWFiw/o/12BrZYlRghJGpESZ2dSuK3y38zfwpUheRqcyso7MoKyvjXOo5NEka7APvXF9xJ/n0oaGhzBw3EylSspXZWHlaUZqiS48rul5EtV012fHZFBY2XJSwuZi7muOmdmP8iPH4+OgqjZeml95SYDFr/CwEhcDICTdqPSRVJfHk0CcpKipiwYIFt533X1paysm3T5KzIoe/HP/CuMQYNWqOFRzj8IOHW9xAQaR53A3bXBERkZan1QOLtLQ0HnjgAXr37s0LL7zACy+8QK9evejfvz9paWm3fL5vvvkGb29vTExM6NOnDydOnGh0/02bNuHv74+JiQlBQUHs2bPndt/K3w6pRMqKvBXgB0nmSTgMdKDgeAHf5X3XYrUTWhsjiRG2qbZYD7Rm1+e79NaHGqWGyCWR/JLzC085P8XuXbt5/vnn+f7771ulHTViw9Nfnkar0hLz3xgsPSybLTZsTjXalsDCwoLOrp3p2rkrFRk3bIZPlp7E3did5JhkSktLkUgkSCSSNimOV0Mnx04UCAX61RNbP1vKs8qpLq422C+j+n/C7f+lQbVFdd7y8nL69euHfwd/Opp05GL5xTpF8s6fP89vJ35j12+7WkRfcafIJDJcjV3rWM5e3n8ZwVxg79q9LbLirDBXYGxtTHlGuf61srQyLNs1f2XJXGaOpcySLGWW/rWkqiS8jb2RSCScfP/kbdusOjk5sWrWKr61+pZw13DK3cpBgJiRMcy2mU3gqkDR3vQuczdtc0VERFqWVh85zp49G5VKxZUrVygoKKCgoIArV66g1WqZPXv2LZ1rw4YNvPzyy7z99tucPn2akJAQhg8fTk5OTr37Hzt2jClTpjBr1izOnDnD2LFjGTt2LBcvXmyJt3bfE7A8gNFxo7kUeokKowrMVeY89vJj/GH+B6PjRhOwPKCtm9gsZnSfQfC4YNrvb28wu7Xp4CZKikoYbjscf39/xo8fT79+/VqtHbWLRmk1Ws6vOH9Pig2d5E6ovdUGAu6okij6WfXj8ccf5+rVq3z11Vdo1VqKE4vvenG85RnLWZm5Eme5MzmqG//bpnamxL0Qx1fXvjLYP12ZTjvjdm1aw8LMzIzTp0+TnJyMt+DNhYoLdWpZVFVVYeFhgVmOGQ5d2jawUKlUnDx5EkWxok6RvEvHL6HQKBjYayCBgYEtcj1zV3PKMm9Yzt7qigWAs9yZ1PJUysrKKFWXkq/Ox8vEC2g8LSxscViTef8+Lj7EfRxH4KpApBopSECmltF1TddmrTiKtCx3ej9FRETajlb/tDx8+DDLli3Dz89P/5qfnx9fffUVR47UrT3QGJ999hlz5sxhxowZBAQEEBERgZmZWYOz0F988QUjRozgtddeo3PnzixZsoTu3bvz9ddf39F7+rsglUmxesKKQUcHoZVpKTMvY7ffbn3F7/vly9TlVxfyzPPw+9jPYHYr/a10vJd7c+q9U0yZMoVff/2V6dOnt2pbQheGIjWSgsA9JzaMfEc30+cgd6DMpYzk2GRAJ4A+lHII6x3WSCQSOnbsSK9evShJLQEBrLys7mo7pRIpEZkR/HLlF3KVuazftB7Q6VBOP32a6twbKxaLFi3i++3fU5VWRUlqSZvpKyQSCVu3biUqKore9r25UH6hTvXtwYMHY+Vlxdi0sW2+YlFZWUnv3r05vvs4SaVJ+sBCXa0m/no8jjLHFl35ubmWxa1qLADyruYx9bmpfP/99yRVJ2ElsWLSqEm8/PLLd2yzWjNgXZ6yHK1Mi1QpRWOkYXnK8ntycuDvzt2yzRUREWl5Wn3k6OHhgUqlqvO6RqO5pcJLSqWSmJgYhg4dqn9NKpUydOjQBisvR0VFGewPMHz48EYrNVdXV1NSUmLw83el5svU5QUXpEopgkxAppEZVPy+HzCuNqZjUUdKn74xA3+u7BzZDtlM7Tz1rs5uRS2JQqvW3nJNgbtBjQ7kyA9H+KPoD77Z/g0A2/+7nUJZIZ2KOhnsXxRfhHV7a12gdBep0ZUckB1AEAQ2/b5JL24femIoA44O0O/7119/kaXJQlGi0KXXtNGKBcDIkSPp27cv3W26E1cRh6m3qUEqVJmmjHJtOdal1m3aTgArKys6d+6Mi8yF5MpkfWCRfjQdlacKWYWMDRs2kJub2yLXM3c1pzyzVirUbQQWVhorjJyMuHr1KslVydhV27F//37279/fIm28OPsiF+ZdIGhZEI+HPk7QsiAuzLvAxdniCreIiIhIc2n1EcPHH3/Mc889x6lTN2olnDp1ihdeeIFPPvmk2efJy8tDo9Hg7Oxs8LqzszNZWVn1HpOVlXVL+wO8//77WFtb6388PDya3cb7kdCFoZSsLUGr+N8snUxDydqS+yaoAN3sVj+PfkQci+CRRx4B4OfsnxnvMJ5Bbwwi1iOWoqKiVm/HvS42rAkk1VFq5I5yioqKiFoSxe5Tu+lU0gmjB4148cUX+f333wHaVF8xx3UOI6tHIpFKSA5P1jtmTSybaFAkb+nSpbh3dadfp35tmgpVG3djd0ylpuR55VGcpKtlAZCjzEGhVeDq5domOpCbuXz5Mu+99B6F0kJdYJFSwvU915H1kXHx6EUmT55Menp6i1yrvhWLW11dGhQyiMfDH+err74iqSqJTtad+OGHH3jjjTfuuH21XdmCfwwGIOSnEMJdw4nIjGBl5so7voaIiIjIP4FWDyymT5/O2bNn6dOnD8bGxhgbG9OnTx9Onz7NzJkzsbOz0//cCyxYsIDi4mL9T2pqals3qVVZmbmS3X67CYrQzdIFrwhmt9/u++qLdHnGcvIl+ZS5lbHnzz2cyThDZEkkU5ym8FbUWyw8sRB/f3+qq6ubPtltcr+IDUMXhjJuxDicHJ0YnzWeyEWRVEypYFTXUezevZsvvviCL9/4EqCOI1TUkqi7KmJdGroUGTIEiYAECWMdxmLnryuSV0Pffn2pMK2gu2f3Nk2FAkhKSmLz5s0cPXqUQPNAkmySUFeoqcjVieTf/PhNVJkqSlzvnVXQvNV5JBUlYeVphaZaQ+zaWFSdVPg5+RHQLoDSrXULKd4OFm4W+hULZakSZanyllcsfG19KZYVI5FISKpKIsBOV79i6tSpd9y+Gle2wFWBBvamgasCW9SVTUREROTvTqvUsajN559/3iLncXBwQCaTkZ2dbfB6dnY2Li71FyBzcXG5pf0BffDzT6Bmlm503GisVlohU8josrwLHgM9iKBlC7O1JlKJlB2VOzDVmPLJvk/Yo9zDMNth7MjfwW8mv+Ho4Ej/Cf1b9b7ezaJRd8rwucNZcXYFAgIaUw3X7K9R+K9CvD29Gdt9LNanrYlaEkVRfBFew3Ti2NqB091iZeZKNGgwkhihFtSMuTiGZ9o/w+EHD6PKUPGM2zPkqnLRClpc5C6Uppayw20HphmmbVLMbMuWLbzyyitMnjyZwZ8N5nLVZdyd3ClJKsHcyZzTSacRHAXMvczvetsawrHakXJFOUf+ewQzZzMqcivQemjpn9mfB9MfxMioZb4izF3N9SsWpemlGJkYYWJ7a7bAzgpnslW6z/Ok6iQedXi0RdoGOle2hqqYh3H/pIWKiIiItDWtHlhMmzatRc6jUCjo0aMHBw4c0FeF1mq1HDhwgGeffbbeY0JDQzlw4AAvvvii/rX9+/frffH/6WgFrV6obfBl+kQko9eORuty7wyGG6N2Ibk/FX+SW5jLI/aP6FMbZi+dTUVFRRNnuTPuZtGoO+X6Z9fRjtCidlST55OHpdaS0EGhXPn5CgMuDcAmwIbIRZGY2JsQMi+k3tWY1qZ2aso4+TjWFK/hp+Kf+EX9C9WPVHMx6yIlJSVYZlpib2uPtlTLmclnuKC9QLikbYqZ+fn50a9fPzp16kSQeRA783cS4B1AcWIxrr1dGfP0GE5HnabbgG5t0r6b+fXXX/ls12dIH5By4IcDeBh54BbqxpHMI0h/kPL44sdb7H7XToUqS9PpK241HcxF4UJ2dTbhz4aTMiOF3PO5xDrG4uPjg1wub/oEjXAnVcxFRERERG7Q6qlQp0+f5sKFC/q/t2/fztixY3nzzTdRKpW3dK6XX36ZlStX8uOPP3LlyhXmzZtHeXk5M2bMAODpp59mwYIF+v1feOEF9u3bx6effkpsbCzvvPMOp06dajAQ+acR/F1wHaF2TfqO1RNWBH8X3MYtbD5zXOcwzn4caco0lIKSTXmb9IWtJBIJ5ub3zixxWxK1JIpTb51CViXj9NTTFD5TiP0+e5SFSp48/iRPn30a37G+KKwUVOVXsW3stjYNKi59eAlHR0eKfiki3DWcYk0xDlkOyLQy1lWs4+OLH1N8vZhlScu4MO9CmxYzGz16NJGRkbz77rt0MetChjIDWReZ3nLW0t0Sj1QPfEJ92qR9N1NUVMSxyGNIC6V4vOpBWXoZSceSyFHn0Hdc3xa93zXibUEQbstqFnQ2yVq0rIleg1arZfqY6XTu3Jn4+Pg7bp9obyoiIiLSMrR6YDF37lyuXr0KwPXr13n88ccxMzNj06ZN/Pvf/76lcz3++ON88sknLFq0iK5du3L27Fn27dunF2inpKSQmZmp379fv36sXbuWFStWEBISwubNm9m2bVuLebPf7/zdvkzf9HwTAAEBmSDD6YQTWu399R5ak9qzspJSCb+f+J3kjskM8hrElkVb2PLyFuz87HjgvQd4rvA5pHIpWqX2rtvm1q5C3r59ewAyMjL0blEd8juw+MRibKpssA6zRuml5GfNz/Te1PueSd2zNLLE28SbwpBCveVsenE61mXWmDmbtXHrdAwZMoSNGzcS7BaMxaMWyBQy4mRxKO2VrDq8qkWvZe5qjlalpTK/8rYcoQDkUjmWWkseevEhHLWOdPDugJWVFd7e3nfcPtHeVERERKRlaPVUqKtXr9K1a1dAVwV74MCBrF27lsjISCZPnnzLGoxnn322wRWHQ4cO1Xlt0qRJTJo06RZb/c/gfkrfaQ7fZX0HgFapBQWE7wpn69atrF69um0bdo9QO5Bsd7QdnV7sRKxZLE/OfJLRn43mk/9+wtc+XzN//nyi34s2ELFGLYm6a89EbX3EjBkzmDFjBlZWuloac1zncCTnCFUFVRz41wH6nO6DWqLGSGvE4JjBd6V9zSXIPIhsn2yc9jqRlpZGUkkSPeU97wlHKABvb2+8vb1JS0sjJjKGdsp25LnnIagFLNNaVgSvMFegsFJQnll+24EFgKelJ/QEH4UPe8/uRRCEe6Y/RURERETuwoqFIAj6WeM//viDUaNGAbr6Fnl5ea19eZF/CDXpM4NLB+O62BXNFg1u89xwnOHY1k27Z7j4zEW9J3+geyAFnQsINg/GUmaJZKaEduHt6Nmz5z1lm2tlZaUPKmqw89M5Q63MXIkaNXKJHLVUzclxJ+96+25m9OjReHl5cenSJQLNAkl2SKYkqYRt27aRK8vlr+t/tXUT66A8qCQ+LZ6wxWEsubIEG6UNQSeCWvx+1+gsbtVqtqYSO+h0FpcrLuNlrDMVWJW1iuUZy1u0nSIiIiIit0+rBxY9e/Zk6dKl/Pzzzxw+fJjRo0cDkJiYWKfGhIjI7VA7J//jgR+zZ88ezi49y0y7mRy0PHhfWee2JjUVrVdmrsRR7kiWMot+Vv1YmbmSsiFlvLngTVT7VPe8ba6dvx0Huh/Q3/PobtEMiR7CgT4H2vxep6WlkZKSQmpqKkHmQSQoEihMKUQj1yCzkNHesn2btu9mVv9rNceXH0cVrCJ0YSi5ylw8HT0ZuXhki9/vGsvZW9VY1H5uXRQuCAgoChX899p/iciMQCq5uwUcRUREREQa5q7YzU6dOpVt27bx1ltv4evrC8DmzZvp169fa19e5B9A7Zz82sz3no/CWCF60P+P2u5ZYVa6NLiLGRc5Ijmi779IoX6hdlva5u7cuZP169czbNgwpk+fznan7Zx+6jTKTUp2XtrJrG2z6LmlJ1aeVm1uk/zNN99gZGREly5dMDU1RZAIFLkW8fjIx1mbupb/vPafNmlXQyzevJgMswxCLEPQClpyVDk4yZ1a5X7XWM6WpZdh2a75Kxa1n9t+lrrvjCVrl+A40ZHBpYOZ0/3e0NWIiIiIiNyFwCI4ONjAFaqGjz/+GJlM1tqXF/kH0FjNgntFzHuvUHuQJggCRyRHeNLySf3r96Lu5sKFC6xduxZBEJg+fTpSEykdfujA5q83U9iuEKlUSllaGVPlU3F2dW7TQLJ///4GfweYB1Dav5SrV69iWmKKw4MObdSy+uk/oj9XE6+ikqh45rVniO8QT8/ePaFDy99vCzcLSlNKKc8qv2WNRe3nFsBxoiMZyzIIHnD/ONeJiIiI/BNo9cCiIUxMbq04koiISMswx3UO32V9hwoVgkpgYbeFHBpyiC+++KJFHHZampEjRwLwwAMPALpAUh4j56HXHsKxnyOCIOiqbntY3lOBZElJCYHmgZzudZrYS7FYWlhiamfa1s0y4KeffgJg5IWR7Du1D4WDggdVD7bKtcxdzUk9lKr//VaZ4zqHVVmrUAtqjAQj3gt9T/9MiIiIiIjcG4jJqSIi/zBWZq5EJaiQS+RI5BIsp1iyc+dObG1t27pp9dKtWzfefPNNg0Gke6A7/kb+jB07lqrCKtQVaqw8rBo5y92joKCAJ554gv79+9PZuDPZHbNZE7eGzNxMCgsL27p59eKmcOP1j1/Ht5cvPX16tso1LNwsyD2Xi5mTGTL5ra9Wr8xciVr4n1hfokYzUnNPBsIiIiIi/2TEwEJE5B9EbaF7dLdonnF6Brd5bszdORdra+u2bl6zsfWzpSCuAIDS1FIUVgoUloo2bpUOjUbD3u17uXTxEiVnS8h1yKXSs5KMlAzMzc11rlvvRLZ1Mw1oZ9wOY3djFM4K3EzdWuUaFm4WaJSaW9JX1HDzcxvuGq4XdIuIiIiI3Du0WSqUiIjI3aX24KwmZWiu+1ykMikR6AZp91IqUW0qKio4f/48FhYWBAYGcqb4DFdPXWVQySBK00qx9GjZugt3gqOjI49+/CjFZ4pxi3LDdqgtkjAJgbJAYj6MYXnKctyHuBNG2xddu3DhAvPmzUPyiIRBjw0iV5WLo6JlLZoj34lEKpPiP8UfwEBfEbUkSldfpRFtT33P7c2ai3v1uRURERH5pyGuWIiI/EO42T3r8uXLTJs2jTNLzhDuGn5Pu2f95z//ITQ0VF9Qc+n3S/k05VPOnz1Paeq9FVgAhI0LI2VeCstTluOW4obWXEu36m4sT1nOhXkX8Bro1dZNBMDIyIjIyEguH7nMybyTqAU1TnKnFr2GVCYlclEkl368BICFuy6wqKmXIpU1/jXUkOtbTSX2e/m5FREREfmn0eorFhqNhtWrV3PgwAFycnL0xfJqOHjwYGs3QUREhLruWaWlpXrxrvYb7T1dwbhr1644Oztjbm6OIAh07d4VZboSB7kDuam5t1Rw7W6gn1GfF4FDpAN0hGOlx7g271q9g+S2wtvbm/DwcH6O/pkcaQ7WMmuMpcYteo0ad6nIRZHIjGVYtrM0KMLYlPuU6PomIiIicv/Q6oHFCy+8wOrVqxk9ejSBgYH39OBFROSfRNeuXenatSuurq73/P/l+PHjmThxov7vHTt28EOXH5AXyClNLcXG16btGtcAc1znUFpaypqwNQBce/zeCioAfir8CeeZzgxXDieJJJwVN4qWrsxciVbQNjqwby61g4vIdyIR1EKzggoRERERkfuLVg8s1q9fz8aNGxk1alRrX0pEROQWMDY25syZM23djGYhldZNl7Hzt6MgtoDStFI8Bnm0QauaJnRDKL8M+wWJQgJKCFwVCAvbulU3kEqk7JTtZO7SufyQ9QOOcp2+orauoaUIXRhK1OIotGotMoVMDCpERERE/oa0usZCoVDoq22LiIiItBR2fnYUxhVSmlp6z1jN1iZqSRTLU5YjUUgwEoxAActTlhO1JKqtm6anRqewPHM5plJTnORO9YqlW4KoJTeCCo1Sc0/1g4iIiIhIy9DqgcUrr7zCF198gSAIrX0pERGRvzGbNm2id+/eSCQSAgMDOZh1kILYAsrSyvSC4HuFmqDiwrwLhLuGc7zHccJdw7kw78I9G1wUa4rZnr+91YKKGk3FS9UvEbY4jMhFkfdUP4iIiIiI3Dmtngp19OhR/vzzT/bu3UuXLl2Qy+UG27ds2dLaTRAREfkbUFlZycmTJwG4dOkSk4dPJutUFuoq9T3nCrXHZw8XRl+o3yJ1XgR7YvcQyr2TClS7qrVcIm+1oKIm/am25qL23yIiIiIi9zetHljY2Ngwbty41r6MiIjI35whQ4awYcMGsndno0HDyGkj2fnZTkxsTVCY64rjNacuwt3A/UF3wiX1W6QCaF3uLYvU2lWtVYKqRWuaaDXaeoXaNX9rNfdWX4iIiIiI3D4SQcxRapSSkhKsra0pLi7Gyurey+MWEfmnUXsG/Mw3ZzB3NmfauWm3ZGEqcoObNRWtpbEQERG5fcSxiMj9glh5W0RE5L6idhqNlZcVFu4WYlBxm4hVrUVEREREWpK7Elhs3ryZjRs3kpKSglKpNNh2+vTpu9EEERGRvwFRUVEsWLCA/v37M3rxaCIXRVKaWkrinkQxqLgNGqtqXbNdRERERESkubS6K9SXX37JjBkzcHZ25syZM/Tu3Rt7e3uuX7/OyJEjW/vyIiIifyPWrl3L4cOHee+99whdGIpUIUXQCmJdhNtkrtvcBlck5rjOaZHieCIiIiIi/xxaPbD49ttvWbFiBV999RUKhYJ///vf7N+/n+eff57i4uLWvryIiMjfiKVLlzJjxgz++OMPnVBbKdZFEBERERERuVdo9cAiJSWFfv36AWBqakppaSkATz31FOvWrWvty4uIiPyNsLa25vvvv8fsmJlYF0FEREREROQeo9U1Fi4uLhQUFODl5YWnpyfR0dGEhISQmJgoFs0TERG5ZcS6CCIiIiIiIvcmrR5YDB48mB07dtCtWzdmzJjBSy+9xObNmzl16hTjx49v7cuLiIj8zRDrIoiIiIiIiNybtHodC61Wi1arxchIF8OsX7+eY8eO0bFjR+bOnYtCoWjNy98xxcXF2NjYkJqaKnpHi4iIiIiIiNx1SkpK8PDwoKioCGtr67ZujohIg4gF8pogLS0NDw+Ptm6GiIiIiIiIyD+c1NRU3N3d27oZIiINclcCi7/++ovly5eTkJDA5s2badeuHT///DPt27enf//+rX35O0Kr1ZKRkYGlpSUSiaRVrlEzEyGuitw5Yl+2HGJftgxiP7YcYl+2HGJfthx3oy8FQaC0tBQ3Nzek0lb33RERuW1aXWPx66+/8tRTTzF16lTOnDlDdXU1oEsx+s9//sOePXtauwl3hFQqvWuzA1ZWVuIHfAsh9mXLIfZlyyD2Y8sh9mXLIfZly9HafSmmQIncD7R62Lt06VIiIiJYuXIlcrlc/3pYWJhYdVtERERERERERETkb0KrBxZxcXEMGDCgzuvW1tYUFRW19uVFRERERERERERERO4CrR5YuLi4EB8fX+f1o0eP0qFDh9a+/H2BsbExb7/9NsbGxm3dlPsesS9bDrEvWwaxH1sOsS9bDrEvWw6xL0VEbtDq4u3333+fX375he+//55hw4axZ88ekpOTeemll1i4cCHPPfdca15eREREREREREREROQu0Ori7TfeeAOtVsuQIUOoqKhgwIABGBsb8+qrr4pBhYiIiIiIiIiIiMjfhLtWx0KpVBIfH09ZWRkBAQFYWFjcjcuKiIiIiIiIiIiIiNwFxAJ5IiIiIiIiIiIiIiJ3TKulQs2cObNZ+33//fet1QQRERERERERERERkbtEq7lCrV69mj///JOioiIKCwsb/Pmn88033+Dt7Y2JiQl9+vThxIkTbd2k+4533nkHiURi8OPv79/WzbovOHLkCGPGjMHNzQ2JRMK2bdsMtguCwKJFi3B1dcXU1JShQ4dy7dq1tmnsPU5TfTl9+vQ6z+mIESPaprH3OO+//z69evXC0tISJycnxo4dS1xcnME+VVVVzJ8/H3t7eywsLJgwYQLZ2dlt1OJ7k+b044MPPljnuQwPD2+jFt+7LFu2jODgYH0RvNDQUPbu3avfLj6PIiI6Wi2wmDdvHsXFxSQmJjJo0CC+++47tm7dWufnn8yGDRt4+eWXefvttzl9+jQhISEMHz6cnJyctm7afUeXLl3IzMzU/xw9erStm3RfUF5eTkhICN9880292z/66CO+/PJLIiIiOH78OObm5gwfPpyqqqq73NJ7n6b6EmDEiBEGz+m6devuYgvvHw4fPsz8+fOJjo5m//79qFQqHnroIcrLy/X7vPTSS+zcuZNNmzZx+PBhMjIyGD9+fBu2+t6jOf0IMGfOHIPn8qOPPmqjFt+7uLu788EHHxATE8OpU6cYPHgwjz76KJcuXQLE51FERI/QilRVVQlr164Vhg4dKpiZmQmTJk0S9u3bJ2i12ta87H1D7969hfnz5+v/1mg0gpubm/D++++3YavuP95++20hJCSkrZtx3wMIW7du1f+t1WoFFxcX4eOPP9a/VlRUJBgbGwvr1q1rgxbeP9zcl4IgCNOmTRMeffTRNmnP/U5OTo4ACIcPHxYEQfccyuVyYdOmTfp9rly5IgBCVFRUWzXznufmfhQEQRg4cKDwwgsvtF2j7mNsbW2FVatWic+jiEgtWrVAnrGxMVOmTGH//v1cvnyZLl268K9//Qtvb2/Kyspa89L3PEqlkpiYGIYOHap/TSqVMnToUKKiotqwZfcn165dw83NjQ4dOjB16lRSUlLaukn3PYmJiWRlZRk8o9bW1vTp00d8Rm+TQ4cO4eTkhJ+fH/PmzSM/P7+tm3RfUFxcDICdnR0AMTExqFQqg2fT398fT09P8dlshJv7sYY1a9bg4OBAYGAgCxYsoKKioi2ad9+g0WhYv3495eXlhIaGis+jiEgtWr2ORQ1SqRSJRIIgCGg0mrt12XuWvLw8NBoNzs7OBq87OzsTGxvbRq26P+nTpw+rV6/Gz8+PzMxM3n33XR544AEuXryIpaVlWzfvviUrKwug3me0ZptI8xkxYgTjx4+nffv2JCQk8OabbzJy5EiioqKQyWRt3bx7Fq1Wy4svvkhYWBiBgYGA7tlUKBTY2NgY7Cs+mw1TXz8CPPHEE3h5eeHm5sb58+d5/fXXiYuLY8uWLW3Y2nuTCxcuEBoaSlVVFRYWFmzdupWAgADOnj0rPo8iIv+jVQOL6upqtmzZwvfff8/Ro0d5+OGH+frrrxkxYgRSaasuloj8gxg5cqT+9+DgYPr06YOXlxcbN25k1qxZbdgyEZEbTJ48Wf97UFAQwcHB+Pj4cOjQIYYMGdKGLbu3mT9/PhcvXhR1U3dIQ/34zDPP6H8PCgrC1dWVIUOGkJCQgI+Pz91u5j2Nn58fZ8+epbi4mM2bNzNt2jQOHz7c1s0SEbmnaLXR/b/+9S9cXV354IMPePjhh0lNTWXTpk2MGjVKDCoABwcHZDJZHdeI7OxsXFxc2qhVfw9sbGzo1KkT8fHxbd2U+5qa51B8RluHDh064ODgID6njfDss8+ya9cu/vzzT9zd3fWvu7i4oFQqKSoqMthffDbrp6F+rI8+ffoAiM9lPSgUCnx9fenRowfvv/8+ISEhfPHFF+LzKCJSi1Yb4UdERGBlZUWHDh04fPgwzzzzDOPHj6/z809FoVDQo0cPDhw4oH9Nq9Vy4MABQkND27Bl9z9lZWUkJCTg6ura1k25r2nfvj0uLi4Gz2hJSQnHjx8Xn9EWIC0tjfz8fPE5rQdBEHj22WfZunUrBw8epH379gbbe/TogVwuN3g24+LiSElJEZ/NWjTVj/Vx9uxZAPG5bAZarZbq6mrxeRQRqUWrpUI9/fTTSCSS1jr934KXX36ZadOm0bNnT3r37s3nn39OeXk5M2bMaOum3Ve8+uqrjBkzBi8vLzIyMnj77beRyWRMmTKlrZt2z1NWVmYwM5mYmMjZs2exs7PD09OTF198kaVLl9KxY0fat2/PwoULcXNzY+zYsW3X6HuUxvrSzs6Od999lwkTJuDi4kJCQgL//ve/8fX1Zfjw4W3Y6nuT+fPns3btWrZv346lpaU+T93a2hpTU1Osra2ZNWsWL7/8MnZ2dlhZWfHcc88RGhpK375927j19w5N9WNCwv+3dz+h8K1xHMc/88OQRow/jaGwQDZoLCwsJGqKsrBAFvKnLJAaCwvF2ClLsVNkoyys/dmMjRJSJpuR2dj4EyL/Vjx38etOV37x657rd8b1ftWpM8+ZZr7P6XTqczrP80S1tLSkpqYmZWVlKRwOa3h4WLW1taqoqLC5+vgyOjqqxsZGFRQU6O7uTktLS9rc3NT6+jrXI/BPNs9K9e3NzMyYgoIC43Q6TXV1tdne3ra7pC+nvb3deL1e43Q6TX5+vmlvbzfHx8d2l/UlhEIhI+nN1tXVZYz5OeXs+Pi48Xg8Jjk52TQ0NJhIJGJv0XHqvXP5+Pho/H6/ycnJMUlJSaawsND09fWZs7Mzu8uOS786j5LMwsJC7DtPT09mYGDAuN1uk5qaalpaWszp6al9Rcehj87jycmJqa2tNZmZmSY5OdkUFxebkZERc3t7a2/hcai3t9cUFhYap9NpcnJyTENDg9nY2Igd53oEfnIYY8yfDDIAAAAA/n8YRQ0AAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWACARd3d3axGDgD49hLtLgAA4pnD4Xj3+MTEhKanp8VaowCA745gAQDvOD09je0vLy8rGAwqEonE2lwul1wulx2lAQAQV3gVCgDekZubG9vS09PlcDhetblcrjevQtXV1WloaEiBQEBut1sej0dzc3N6eHhQT0+P0tLSVFxcrNXV1Vf/dXh4qMbGRrlcLnk8HnV2dury8vIP9xgAgH+HYAEAn2BxcVHZ2dna2dnR0NCQ+vv71draqpqaGu3v78vv96uzs1OPj4+SpJubG9XX18vn82lvb09ra2s6Pz9XW1ubzT0BAOD3ECwA4BNUVlZqbGxMJSUlGh0dVUpKirKzs9XX16eSkhIFg0FdXV0pHA5LkmZnZ+Xz+TQ5OamysjL5fD7Nz88rFArp6OjI5t4AAPAxxlgAwCeoqKiI7SckJCgrK0vl5eWxNo/HI0m6uLiQJB0cHCgUCv1yvEY0GlVpaeknVwwAgDUECwD4BElJSa8+OxyOV21/zzb18vIiSbq/v1dzc7Ompqbe/JbX6/3ESgEA+G8QLAAgDlRVVWllZUVFRUVKTOTWDAD4ehhjAQBxYHBwUNfX1+ro6NDu7q6i0ajW19fV09Oj5+dnu8sDAOBDBAsAiAN5eXna2trS8/Oz/H6/ysvLFQgElJGRoR8/uFUDAOKfw7BcLAAAAACLeAwGAAAAwDKCBQAAAADLCBYAAAAALCNYAAAAALCMYAEAAADAMoIFAAAAAMsIFgAAAAAsI1gAAAAAsIxgAQAAAMAyggUAAAAAywgWAAAAACwjWAAAAACw7C9kD33bZhzywgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -948,17 +941,7 @@ "outputs": [ { "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 24, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAADeCAYAAACHf/0PAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA7IElEQVR4nO3de3hU1b3/8c+eycwkIRcugYRIuCMoclGUNFopCuWmVKq1aj2I1OKjBzxitFX8KRe1RWuPxdsDHk8t2kpFraBHLB6LgvWIiGgErKTCoQcsJNwkN8ht9v79QZk2Muw1E3YyQ3i/nmeeJ7PXytrfWbP2nsk3a69tOY7jCAAAAAAAAEnFl+gAAAAAAAAAcCySNgAAAAAAAEmIpA0AAAAAAEASImkDAAAAAACQhEjaAAAAAAAAJCGSNgAAAAAAAEmIpA0AAAAAAEASImkDAAAAAACQhEjaAAAAAAAAJCGSNgAAAAAAAEmIpA0AAAAAAEg67777riZOnKj8/HxZlqXly5cbf2f16tU655xzFAqF1LdvXy1evLjF42xJJG0AAAAAAEDSqamp0ZAhQ/Tkk0/GVH/79u265JJLdNFFF6mkpEQzZ87Uj370I7355pstHGnLsRzHcRIdBAAAAAAAwPFYlqVly5Zp0qRJx61z5513asWKFdq8eXNk29VXX62DBw9q5cqVrRCl91ISHcCJsm1bu3btUmZmpizLSnQ4AAAAAHDKcBxHVVVVys/Pl8/Xti7kqK2tVX19faLDaHMcxznmb/dQKKRQKHTCba9du1ajR49usm3s2LGaOXPmCbedKCd90mbXrl0qKChIdBgAAAAAcMrauXOnunXrlugwPFNbW6u0zI5S4+FEh9LmZGRkqLq6usm2OXPmaO7cuSfcdllZmXJzc5tsy83NVWVlpQ4fPqy0tLQT3kdrO+mTNpmZmZIk/5nfl+UPRK3T7dyxxnb+ffr5ruUjvnrf2MbW//iNsU5KavQYj+rzb7cY23jpUA/X8vsW/cnYxoH/LTHW6T9ytGv5UzcMN7bRc+PvXcv/7xXzFLWMgi7GOl1uuM21/D+3m2dh/ecrf3YtDzeGjW2MH9XXWOfui3q5lqesftbYxsHNpa7l7QefYWxDI68zVnlx8x7X8ndK3cslqU+XTNfyKwd3NbbR19nrWh7+4iNjG5bfb6zj6zXEtbw8ZI51+8E61/KA3zwWe2Sb/8vQMXzQtdxfvd/YhpPifj6yM8zHXoVSjXWqG23X8mAMsyQ7pbrXSanYZWzDaqg11rHT27uW16bnGNv4qtb9XFEXdu8PSQr4zH2Sk+b+ER46tM/YhlV/yLXcCaYb26iLoU8qDH1SGz7xK7WDMRxbmUH3/wCnWebzvBzz+xf2ux/DtYZjQpLCtnufmFuQGmPo1wYPrpIPGI7hWN4bfwxj3nT+TImhjUZDv1bVmXu2usE8TuoNfR9LrOkB9/GaYSiXpPQU836ssPssggZf0NiG6RivajD3a30M58ag3/01t4uhT7JC7t8HUp0YZlUYjptwivmzsbLOPI6qDGMthq+mxuMvw3BelKRsQ52qqir17dcv8ndZW1FfXy81HlZw8LWS33wcIEbhelVvfF47d+5UVlZWZLMXs2zaqpM+aXN0WpXlD8g6zsHki+FLZ7sM95NMVr25jYyA+x9AkpQSdK+TldHO2Eaazz1WX9CcPbRSzAeFP+QeS0Zmlmu5JGW1c48lw9AfkpQZMp8kswwfEqntYvjCGHJ/jx2f+ZMxlJ5hrPPPJ6doUtLNH/ThVPc+yUqPIYNsiEOS0jLc/7MQSHP/g08y90lM48hxjyPcznx8xpS0yXSP9VCqOdZ2YffEQCxJm8ws8xjIMnxT81vuySMphqRNDF++bMVwvjF8WQ/G8MdLlilpY1fGEIf5I89Od3/NwXbmMdAYcH9vArH8YRJLn6QbkjZ+8xiw6t2/iDtB82dSXQx9Ygfd+ySl8cQTB6EY/jjNSpKkTTCGpI0pueBZ0sawn1iYkoxeJW1M7XiRtFEMSRvVt07SxpSAMCUhpdZL2piOcae+dZI2sSQgkiVp48SQtHEMY82LpE1mKIY+i6FfJbXZpSp8wQxZKSRtvOI0HjnGsrKyjH8XNUdeXp7Ky8ubbCsvL1dWVtZJOctGagNJGwAAAAAAWoI/ECBp4yHHatn7IBUVFemNN95osu2tt95SUVFRi+63JZG0AQAAAAAgCsvnl+Uzz9hGjOLsy+rqam3dujXyfPv27SopKVHHjh3VvXt3zZo1S3/729/03HPPSZJuuukmPfHEE/rJT36iH/7wh3r77bf14osvasWKFZ6+jNZE0gYAAAAAgCh8KQFZhkvKETsnpgt8/+Gjjz7SRRddFHleXFwsSZoyZYoWL16s3bt3a8eOHZHyXr16acWKFbrtttv06KOPqlu3bvrP//xPjR1rXuc2WZG0AQAAAAAgiiNJGy6P8kq8SZuRI0fKcVlHavHixVF/55NPPok3tKRF0gYAAAAAgCgsi8ujPGXRl/EiaQMAAAAAQBRWIChfgJk2XrHjnGmDJEjazJ07V/PmzWuyrX///tqyZUuCIgIAAAAAQPKnBOXj8ijPWA5Jm3glPGkjSQMHDtQf//jHyPOUlKQICwAAAABwCrN8Pi6P8pDl8yU6hJNOUmRHUlJSlJeXl+gwAAAAAACI8DHTxltOONERnHSSImnzxRdfKD8/X6mpqSoqKtL8+fPVvXv3qHXr6upUV1cXeV5ZWdlaYQIAAAAATiE+P0kbT9kkbeKV8KRNYWGhFi9erP79+2v37t2aN2+eLrzwQm3evFmZmZnH1J8/f/4xa+AAAAAAAOA1y++X5efyKK/Ql/FLeNJm/PjxkZ8HDx6swsJC9ejRQy+++KJuuOGGY+rPmjVLxcXFkeeVlZUqKCholVgBAAAAAKcOX0qAmTZeshsTHcFJJ+FJm69r3769Tj/9dG3dujVqeSgUUigUauWoAAAAAACnGn9KinzcKMczlk1fxivpeqy6ulrbtm3T5MmTEx0KAAAAAOAUZvksWT4r0WG0GfRl/BKetLnjjjs0ceJE9ejRQ7t27dKcOXPk9/t1zTXXJDo0AAAAAMApzOf3ye/nNtWeoS/jlvCkzZdffqlrrrlG+/fvV+fOnfXNb35TH3zwgTp37pzo0AAAAAAApzCf3ydfCokGrzhh+jJeCU/avPDCC4kOAQAAAACAY/gsSz6LS3q84tCXcUt40gYAAAAAgGTkS2GmjZeYaRM/kjYAAAAAAEThT7HkT2F2iGfC9GW8SNoAAAAAABCFZVmyuKTHM/Rl/EjaAAAAAAAQxZGZNlzS4xlm2sSNpA0AAAAAAFH4fdzy21M++jJeJG0AAAAAAIjGZ8nyMTvEM/Rl3E6JpE0sB1nA717HOVxjbKOxttFYJy0n030/GR2NbRyqCLuWZ+V0MMeR+S1jnRHnnOZantfOPHys1Hau5d0uOsfYRtqQ84119qbmuZa3C+wztvHdMf1cy/vlZhjbGNnT3PepNXtdy/0DhhnbyB3i/v4d7ny6sY3N5YeMdUIpftfy7w/rZmzj9Bz3MVCQFTC24VS5j7WUPoONbYTTzO/NgYB7nW37Dhvb2FFR61puOtdIUiCG/0AEO7ifK7Ic29iG79BXJ1QuSWnZ7u+vJO2qbnAt/8t+81g0dVufjrnGNnrlhIx10qt2uZeXf25sIzUt27W8Nivf2MbOSvc+k6RPytz7LTvVPQ5J6pLRybW8g1VnbCNU6d5nkpTrdz/Ow4Y4JOmrevfymgbzmK+oc69jpZo/11Jt83kgpbHStTw9aD5uauQ+6A/Xm1+v7TjGOqmGKf/tU90/ByTJX+v+emWbYw2H2hvrHDjs/v2nusG9PBbtYrgE4rRM8+dWMOx+7Fi2+Ri3A2mu5ZUN5vd3Z5W5Txps97EW8Jm/32YE3fstls/6QAx/x5luFVzXaB5rVXXufbKn0TwGwoZjK8Vnfn9TY/g+0CHkfvylePDHb6NtHkd7DMdelaH8ZOdP8XF5lIcc+jJup0TSBgAAAACAePn8lnwxJNkQG/oyfiRtAAAAAACIwuez5OOSHs/Ql/EjaQMAAAAAQBQ+v08+FiL2DH0ZP5I2AAAAAABE4fezpo2XHJI2cSNpAwAAAABAFH6fJT+X9HjGoS/jRtIGAAAAAIAoAik+BZhp4xmLvowbSRsAAAAAAKIIkrTxFEmb+JG0AQAAAAAgihSflMIlPZ5xyNnELam67MEHH5RlWZo5c2aiQwEAAAAAnOICKT4FeXj2aO6spSeffFI9e/ZUamqqCgsL9eGHHx637uLFi2VZVpNHampqc4dAwiXNTJv169frqaee0uDBgxMdCgAAAAAACvr9Cqb4Ex1G2+GPvy+XLl2q4uJiLVq0SIWFhVqwYIHGjh2r0tJSdenSJervZGVlqbS0NPLcsk7e2VJJkbSprq7Wtddeq6effloPPPCAa926ujrV1dVFnldWVrZ0eAAAAACAUxB3j/LW0b78+t/xoVBIoVAo6u888sgjmjZtmqZOnSpJWrRokVasWKFnnnlGd911V9TfsSxLeXl5HkaeOElxedT06dN1ySWXaPTo0ca68+fPV3Z2duRRUFDQChECAAAAAE41Qb+Ph8cPSSooKGjyd/38+fOj9n99fb02bNjQJFfg8/k0evRorV279rjvW3V1tXr06KGCggJddtll+uyzz7wdGK0o4TNtXnjhBX388cdav359TPVnzZql4uLiyPPKykoSNwAAAAAAzx1d0wbecP7elzt37lRWVlZk+/Fm2ezbt0/hcFi5ublNtufm5mrLli1Rf6d///565plnNHjwYFVUVOgXv/iFzj//fH322Wfq1q2bR6+k9SQ0abNz507deuuteuutt2JeGMht2hQAAAAAAF5J8VncPcpD4b/3ZVZWVpOkjZeKiopUVFQUeX7++efrjDPO0FNPPaX777+/RfbZkhKatNmwYYP27Nmjc845J7ItHA7r3Xff1RNPPKG6ujr5m7FQEQAAAAAAJyrITBtPOXH2ZU5Ojvx+v8rLy5tsLy8vj3nNmkAgoLPPPltbt26Na9/JIqFJm1GjRmnTpk1Ntk2dOlUDBgzQnXfeScIGAAAAAJAwAT9JGy/Z/vj6MhgMatiwYVq1apUmTZp0pA3b1qpVqzRjxoyY2giHw9q0aZMmTJgQb7hJIaFJm8zMTJ111llNtrVr106dOnU6ZjsAAAAAAK2Ju0d5qzl9WVxcrClTpujcc8/V8OHDtWDBAtXU1ETuJnXdddfptNNOiyxmfN999+kb3/iG+vbtq4MHD+rhhx/W//3f/+lHP/qRp6+ltSR8IWIAAAAAAJJRMMVipo2H7JT4kzZXXXWV9u7dq9mzZ6usrExDhw7VypUrI4sT79ixQz7fP96jr776StOmTVNZWZk6dOigYcOG6f3339eZZ57p2etoTUmXtFm9enWiQwAAAAAAgDVtPGY3sy9nzJhx3Muhvp5D+OUvf6lf/vKXzdpPMkq6pA0AAAAAAMnAx+VRnvLRl3EjaQMAAAAAQBQBn08BHzNtvNJIX8aNpA0AAAAAAFEEfJYCfmaHeKWRmTZxI2kDAAAAAEAUfsuS3yLR4BX6Mn4kbQAAAAAAiCLFZynA7BDPNNCXcSNpAwAAAABAFCl+n1L8rMPiFfoyfm0maTN507sKKvoAmLjvI+PvXzj1Adfy17t829jGI98oMNZpn53qWv5wwNzGdeWLXcvP+NMLxjbqqxuMdQb3ON+1vN1Fc4xtvJFzsWv5poZzjW30Crcz1hltKP9hp3JjG3VlH7iWW/vc3ztJCuQMN9ap7tzftXxHY7axjYOHG13LM7+qM7ZRkBUy1jk7J+Ba7qvZb2xDlnusttPB2MRXqV1cyyusHGMbtQ22sY6/Mexa3rO9eQyc2TndtTw1xZv/Lhw2vJ6dlrlfDwfbu5bbcoxtBGM4l3RIdf+ouaDAPOYdxz2W2rA51i8rzbE22J1cy/2p5rGWZvgy0q7ePBY7p5s/nrNDftfyijr38SxJX+yvdS2vC5tjzQ51NNbJMbyenON8fv+zjin1ruXtU83ntP2H3M9HWw+Yz537DG1IUnrA/b05Lcvcr10z3M+/mXUHjG0ohsUew6nu79/eGF7vgcNB932YX66yG83Hp+m46Ow7bN5Rg/uYd1Lcz+GSVK80Y529De6x1obdx4gkBRrdz2vpAfP72y3LfRxJkq/RMO5juJTB9ru/HtNnliRVGl6vJIUNnwWxzIbICLr3W6d0c79ahjhsmeOoj+HAqDd8ttXF8NlnWoolFMPtl7PcD3GlNpjH88nMb5n7EbGjL+PXZpI2AAAAAAB4KeD3KcDsEM/Ql/EjaQMAAAAAQBQB1rTxFH0ZP5I2AAAAAABEYVmWfNzxyDMWfRk3kjYAAAAAAEQR8FkKsBCLZ5hpEz+SNgAAAAAARBHw+RSIYWF3xIa+jB9JGwAAAAAAovD7jjzgDfoyfiRtAAAAAACIIsVnMTvEQylcHhW3hCdtFi5cqIULF+qvf/2rJGngwIGaPXu2xo8fn9jAAAAAAACntICfNW28RF/GL+aU4eTJk3X48GFJ0o4dOzwLoFu3bnrwwQe1YcMGffTRR7r44ot12WWX6bPPPvNsHwAAAAAAxMv397tH8fDugfjEPNOmXbt2qqurU1pamnr27KkOHTpo8ODBGjp0qIYMGaKhQ4dq4MCBCgQCcQUwceLEJs9/+tOfauHChfrggw80cODAuNoCAAAAAMArfsuSn0SDZ+jL+MWctFm0aFHk5+3bt+vTTz9VSUmJPv30U7322mv661//qpSUFA0YMECffvpps4IJh8N66aWXVFNTo6Kioqh16urqVFdXF3leWVnZrH0BAAAAAOCGhYi9RV/Gr1lr2vTo0UM9evTQd77znci2qqoqlZSUaOPGjXG3t2nTJhUVFam2tlYZGRlatmyZzjzzzKh158+fr3nz5jUnbAAAAAAAYmZZRx7wBn0ZP88WIs7MzNSFF16oCy+8MO7f7d+/v0pKSlRRUaGXX35ZU6ZM0Zo1a6ImbmbNmqXi4uLI88rKShUUFJxQ7AAAAAAAfJ2Py6M8xZo28Uv43aMkKRgMqm/fvpKkYcOGaf369Xr00Uf11FNPHVM3FAopFAq1dogAAAAAgFOM3zrygDfoy/glRdLm62zbbrJuDQAAAAAArY07HnmrrfflgQMH1L59e/l83i3ek/CkzaxZszR+/Hh1795dVVVVWrJkiVavXq0333wz0aEBAAAAAE5hfjE7xEv+RAfQAv785z/rtdde02uvvaZ169apQ4cOmjBhgi677DKNGzdO7dq1O6H2E7528549e3Tdddepf//+GjVqlNavX68333xT3/72txMdGgAAAADgFGZZFg+PH21BaWmpbr/9dvXr10/f+MY3tH79et10000qLy/XG2+8oR49eui+++5TTk6Oxo8fr4ULFzZ7X82eafOnP/1JTz31lLZt26aXX35Zp512mn7zm9+oV69e+uY3vxlzO7/61a+aGwIAAAAAAC2GW357q6305fvvv6+amho99thjGjVqlILBYKQsJydHw4cP1/3336+//vWvevXVV/XKK6/o5ptvbta+mpW0+f3vf6/Jkyfr2muv1SeffBJZf6aiokI/+9nP9MYbbzQrGAAAAAAAkoWfu0d5qq305dSpUzV16lRjvZ49e+rWW2/Vrbfe2ux9NSvP9cADD2jRokV6+umnFQgEItsvuOACffzxx80OBgAAAACAZOGzeHj9QHyalbQpLS3ViBEjjtmenZ2tgwcPnmhMAAAAAAAknM/6x22/eZz4o7lJmyeffFI9e/ZUamqqCgsL9eGHH7rWf+mllzRgwAClpqZq0KBBrXI10C9/+UtJ0meffaZwOOxZu826PCovL09bt25Vz549m2x/77331Lt3by/iAgAAAAAgofw+S36mh3imOX25dOlSFRcXa9GiRSosLNSCBQs0duxYlZaWqkuXLsfUf//993XNNddo/vz5uvTSS7VkyRJNmjRJH3/8sc466ywvXkZUQ4cOlSTdfffd2rJli9LS0jRw4EANGjRIZ511li699NJmtdusmTbTpk3TrbfeqnXr1smyLO3atUvPP/+87rjjjmYvrgMAAAAAQDKxeHj+iNcjjzyiadOmaerUqTrzzDO1aNEipaen65lnnola/9FHH9W4ceP04x//WGeccYbuv/9+nXPOOXriiSeasffju+aaa7R58+bI84suukiS9Oqrr6q0tFTvvfee/u3f/k05OTn64x//2Oz9NGumzV133SXbtjVq1CgdOnRII0aMUCgU0h133KFbbrml2cEAAAAAAJAsmGnjraN9WVlZ2WR7KBRSKBQ6pn59fb02bNigWbNmRbb5fD6NHj1aa9eujbqPtWvXqri4uMm2sWPHavny5ScYfVNLly7V22+/rVWrVkWdwdOuXTsNHDhQhYWFJ7SfZiVtLMvS//t//08//vGPtXXrVlVXV+vMM89URkbGCQUDAAAAAECysOywLNu79UlOdUf7sqCgoMn2OXPmaO7cucfU37dvn8LhsHJzc5tsz83N1ZYtW6Luo6ysLGr9srKyE4g8uqFDh+riiy/W22+/fUziZs+ePTrttNPU2Nh4QvtoVtJmx44dKigoUDAY1JlnnnlMWffu3U8oKAAAAAAAEs1ybFmOnegw2oyjfblz505lZWVFtkebZZPsLMvS4sWLddttt+niiy/WqlWrNGjQoCZ1bPvEx06zkja9evXS7t27j1n0Z//+/erVq5enKyUDAAAAAJAQdvjIA974e19mZWU1SdocT05Ojvx+v8rLy5tsLy8vV15eXtTfycvLi6t+czmOI7/fryVLlujaa6+NzLj558SNZZ34pXXNWojYcZyoO6+urlZqauoJBwUAAAAAQKIduTyqkYdnj/gSYMFgUMOGDdOqVasi22zb1qpVq1RUVBT1d4qKiprUl6S33nrruPVPlM/n0/PPP6/Ro0fr4osv1saNGz1tP66ZNkcX87EsS/fee6/S09MjZeFwWOvWrYvc5goAAAAAgJOaYx95wBvN6Mvi4mJNmTJF5557roYPH64FCxaopqZGU6dOlSRdd911Ou200zR//nxJ0q233qpvfetb+vd//3ddcskleuGFF/TRRx/pP/7jPzx9Kf88keVo4uZf/uVfNGrUKK1ateqYdXWaK66kzSeffCLpyEybTZs2KRgMRsqCwaCGDBmiO+64w5PAAAAAAABIKLvxyAPeaEZfXnXVVdq7d69mz56tsrIyDR06VCtXrowkRXbs2CGf7x8XEZ1//vlasmSJ7rnnHt19993q16+fli9fHvUOTyfCcZwmz30+n377299GEje//e1vPdlPXEmbd955R5I0depUPfroozFdgwYAAAAAwMnIshtlhUnaeMVqZgJsxowZmjFjRtSy1atXH7Ptyiuv1JVXXtmsfcVqxYoVys7ObrLtaOJm8uTJuuKKKzzZT7MWIv71r3/tyc4BAAAAAEhaXB7lrTbUl+PHj4+63efz6Te/+Y0mT56s3/3udye8n5iTNsXFxbr//vvVrl27yNo2x/PII4+ccGAAAAAAACQUd4/yVhvpy7KyMnXo0OG4tyo/OuPm1ltvlST97//+r3r37t2sfcWctPnkk0/U0NAQ+fl44r2l1fz58/XKK69oy5YtSktL0/nnn6+HHnpI/fv3j6sdAAAAAAC8dPTuUfBGvHePSlYvv/yy7rzzTo0ZM0bf+c53dOmll6pz585N6nz44Yd69dVXNXXqVO3YsUNVVVXN2lfMSZuj69l8/ecTtWbNGk2fPl3nnXeeGhsbdffdd2vMmDH685//rHbt2nm2HwAAAAAA4sLlUd5qI305Y8YMjRs3Tq+99poWL16sm266Seedd54mTJig7du36/XXX5ckXXLJJXrwwQf17W9/u9n7imtNm7Vr12r//v269NJLI9uee+45zZkzRzU1NZo0aZIef/zx404RimblypVNni9evFhdunTRhg0bNGLEiHjCAwAAAADAM5bdyEwbD7Wlvuzbt6+Ki4tVXFys/fv36/XXX9cbb7yhnj176ve//72KiorivhIpmriSNvfdd59GjhwZSdps2rRJN9xwg66//nqdccYZevjhh5Wfn6+5c+c2O6CKigpJUseOHaOW19XVqa6uLvK8srKy2fsCAAAAAOC4wuEjD3ijjfZlp06dNGXKFE2ZMsXztn3mKv9QUlKiUaNGRZ6/8MILKiws1NNPP63i4mI99thjevHFF5sdjG3bmjlzpi644ILj3kN9/vz5ys7OjjwKCgqavT8AAAAAAI7r6OVRPLx7IC5xzbT56quvlJubG3m+Zs2aJre5Ou+887Rz585mBzN9+nRt3rxZ77333nHrzJo1q8ndqyorK0ncAAAAAAA8x+VR3qIv4xdX0iY3N1fbt29XQUGB6uvr9fHHH2vevHmR8qqqKgUCgWYFMmPGDL3++ut699131a1bt+PWC4VCca2ZAwAAAABAs9iNUrgh0VG0HSRt4hZX0mbChAm666679NBDD2n58uVKT0/XhRdeGCnfuHGj+vTpE1cAjuPolltu0bJly7R69Wr16tUrrt8HAAAAAKAlOLYtx+aSHq/Ql/GLK2lz//336/LLL9e3vvUtZWRk6Nlnn1UwGIyUP/PMMxozZkxcAUyfPl1LlizRq6++qszMTJWVlUmSsrOzlZaWFldbAAAAAAB4prFeamze1SSIorE+0RGcdOJK2uTk5Ojdd99VRUWFMjIy5Pf7m5S/9NJLysjIiCuAhQsXSpJGjhzZZPuvf/1rXX/99XG1BQAAAACAV5yGBjkNXB7lFfoyfnElbY7Kzs6Ouv14t+l24zhOc0IAAAAAAKBl2bZkt83bVCcEl0fFrVlJGwAAAAAA2jon3CCnkdkhXnFY1DluJG0AAAAAAIjCaayX08ifzV5xWNMmbow+AAAAAACisW0u6fESfRk3kjYAAAAAAERxZCFiZod4hYWI40fSBgAAAACAKJzGBi6P8hDrA8WP0QcAAAAAQDR2mLtHeYm+jFubSdr8ZtAIWf5g1LI/Fl1q/P3/6FDkWj5hxx+MbfT64HljncxuHVzLe0y419jGr3Ivcy1//MLexjYa6hqNdS7p19e1/B4r1djGhH3u/TZ69xfGNtK6nG+ss1cXuJY/sz/X2MY2/2jX8n45GcY2Rma4v7+SVHBor2v5wKqdxjackHsshzucbmxj897Dxjpv7z/kWp4eiH7M/bPTc9q5lve0zKehDrVlruWd6quNbYTTzO/NwYB7nc/3mftsR0Wta3nAbxnb6NMh3Vind4eQa3mB85WxDV+9ex0naI7jcEY3Y51tX9W5lv/FMM4kydRtfTqaY+3V3r3PJCm9apdrue9whbENOy3btby2Xb6xjZ2V5v9C7T/kXic71Xxs9evkfh7vYLm/d5LkO3TAWEdOwLU4rE7GJg4Y/stZc9jcZwGf+0Dq29E8Rs7KNl+Lb9nun7F20Gdso6bBfT/VVntjG7btGOuk1rp/ee6cbh5HeT7DMeyY+yyc1t5Y58Bh91jLGsyfSZJ7nXaN5vcmO4Zvz50D7mPA8pu/h9mBNNfyygbz+/tlDOeSBtv9uAiYu0QZQff3JiOGMZ+eYv58dCz3OnWN5rFWXe9eZ+8h8x+UYce971MM5xpJSo3h+0DQUCcUQxsmsfRZRdj99VYZjs2T3ZG7R7WZP5sTjrtHxY/RBwAAAABANI0NUqM/0VG0HVweFTeSNgAAAAAAROGEw3LCbXs2UWuiL+NH0gYAAAAAgGiYaeMtZtrEjaQNAAAAAABR2I0NsknaeMYmaRM3kjYAAAAAAETh2I6csHnBZsTGiWGRfDRF0gYAAAAAgCjshkbZKcy08YrdYL57HpoiaQMAAAAAQBR2faNsP0kbr9j1JG3i5Ut0AO+++64mTpyo/Px8WZal5cuXJzokAAAAAADkhMOyeXj2aMm7Rx04cEDXXnutsrKy1L59e91www2qrq52/Z2RI0fKsqwmj5tuuqnFYmyOhM+0qamp0ZAhQ/TDH/5Ql19+eaLDAQAAAABAkmQ3NspuYKaNV+zGlptpc+2112r37t1666231NDQoKlTp+rGG2/UkiVLXH9v2rRpuu+++yLP09PTWyzG5kh40mb8+PEaP358osMAAAAAAKAJuyEs288lPV6xG1pmps3nn3+ulStXav369Tr33HMlSY8//rgmTJigX/ziF8rPzz/u76anpysvL69F4vJCwpM28aqrq1NdXV3keWVlZQKjAQAAAAC0VXbYls3dozxztC+//nd8KBRSKBRqdrtr165V+/btIwkbSRo9erR8Pp/WrVun7373u8f93eeff16//e1vlZeXp4kTJ+ree+9Nqtk2J13SZv78+Zo3b16iwwAAAAAAtHF2faNsX8KXgm0zji5EXFBQ0GT7nDlzNHfu3Ga3W1ZWpi5dujTZlpKSoo4dO6qsrOy4v/eDH/xAPXr0UH5+vjZu3Kg777xTpaWleuWVV5odi9dOuqTNrFmzVFxcHHleWVl5zBsOAAAAAMCJOrKmDUkbrxxd02bnzp3KysqKbD/eLJu77rpLDz30kGubn3/+ebPjufHGGyM/Dxo0SF27dtWoUaO0bds29enTp9nteumkS9qc6LQpAAAAAABi4YRtOVwe5ZmjfZmVldUkaXM8t99+u66//nrXOr1791ZeXp727NnTZHtjY6MOHDgQ13o1hYWFkqStW7eStAEAAAAAIJmFGxoV5vIoz4Qb4lvUuXPnzurcubOxXlFRkQ4ePKgNGzZo2LBhkqS3335btm1HEjGxKCkpkSR17do1rjhbUsKTNtXV1dq6dWvk+fbt21VSUqKOHTuqe/fuCYwMAAAAAHAqsxsaZfusRIfRZthxJm1idcYZZ2jcuHGaNm2aFi1apIaGBs2YMUNXX3115M5Rf/vb3zRq1Cg999xzGj58uLZt26YlS5ZowoQJ6tSpkzZu3KjbbrtNI0aM0ODBg1skzuZIeNLmo48+0kUXXRR5fnS9milTpmjx4sUJigoAAAAAcKpzbC6P8pJjt1xfPv/885oxY4ZGjRoln8+nK664Qo899likvKGhQaWlpTp06JAkKRgM6o9//KMWLFigmpoaFRQU6IorrtA999zTYjE2R8KTNiNHjpTjOIkOAwAAAACAJuz6RoXFTBuvHL17VEvo2LGjlixZctzynj17Nsk9FBQUaM2aNS0Wj1cSnrQBAAAAACAZ2Q2Nsi2SNl5pqcuj2jKSNgAAAAAAROGEHTlhrgzxCn0ZP5I2AAAAAABEEW4MK2xx9yivhBvDiQ7hpEPSBgAAAACAKML1tsIOiQavhBtY1DleJG0AAAAAAIjCCTtyfFzS4xUuj4ofSRsAAAAAAKII14cVdliI2CvhBmYtxYukDQAAAAAAUdiNtsLikh6v2I30ZbxOiaSNY5unYDUYpmlZae2MbaSkmruzoabWfT/VB4xtpAeyXcsr931lbGP/1o+Ndd7tmOZaXlbY3dhG79oa1/Iv3zHHkbntb8Y6uTf3cS2vaTBnx5f99xeu5Y0xZIU3jz3dWGfet91jTVm73NjGVxs/dy3vMPQsYxtDRt9grLO5vMq1/PWNu4xt9MvNdC3/wdmnGds43XG/NWDjto3GNiy/31inY5+zXcv7dDDHahLwm8dit6ygsU5mnfu5wldjPpc4KQHXcju9g7GNwzFcl5wVcu/787tlGdvISXXvt5SDXxrbsPa5n38l82s+lHuGsY0Dh93PFbXVDcY20lLM4+TsvHTX8lDNXmMbVrX7OdoJmj/76rLyjXUO1rr3yeHqE/8CF4qhz7KC7gtJpiqG25D6zOeSxoD7e1MbwxfWsOG7SyyvN5a1Hk2xlMXw3gR87q83GMN5zx/TucT9/euYFsN7Y+jXyjpzHH+rMh/D9WHDOctnPs+3a3SPNdMwniWpINP83dQK17uWN/jcPysk8zG+szKWPjP3fdDv/pozYuiTbMNnUuege39Ikhz39yackmpsoqLOfIB+ZagTyzFuOv4yDceVJHUxHFupDeZj72Rmh23ZFokGr9gxHOto6pRI2gAAAAAAEC+73pZtk2jwCjNt4kfSBgAAAACAKMKNrGnjpXCYNW3iRdIGAAAAAIAo7LAjW9zxyCs2d4+KG0kbAAAAAACisOtt2X5mh3iFNW3iR9IGAAAAAIAowg1hkWfwDpdHxY+kDQAAAAAAUXB5lLe4PCp+JG0AAAAAAIjCaQjLZnKIZxw6M25Jk7R58skn9fDDD6usrExDhgzR448/ruHDhyc6LAAAAADAKSpcbyvs4+5RXglz+/S4JUXSZunSpSouLtaiRYtUWFioBQsWaOzYsSotLVWXLl0SHR4AAAAA4BRkO45sh0t6vEJfxi8pkjaPPPKIpk2bpqlTp0qSFi1apBUrVuiZZ57RXXfdleDoAAAAAACnonrbUQpr2nim3qYv45XwpE19fb02bNigWbNmRbb5fD6NHj1aa9euPaZ+XV2d6urqIs8rKytbJU4AAAAAwKmFpI23SNrEL+FJm3379ikcDis3N7fJ9tzcXG3ZsuWY+vPnz9e8efNaKzwAAAAAwCnKdhyFuaTHM1weFb+EJ23iNWvWLBUXF0eeV1ZWqqCgIIERAQAAAADaonrHkZ/ZIZ6pJ2kTt4QnbXJycuT3+1VeXt5ke3l5ufLy8o6pHwqFFAqFWis8AAAAAMApqt6W/Nw8yjP15GzilvCkTTAY1LBhw7Rq1SpNmjRJkmTbtlatWqUZM2YkNjgAAAAAwCkr7DgKs6aNZ7jULH4JT9pIUnFxsaZMmaJzzz1Xw4cP14IFC1RTUxO5mxQAAAAAAK2twXbkt0g0eKWBpE3ckiJpc9VVV2nv3r2aPXu2ysrKNHToUK1cufKYxYkBAAAAAGgtYUcKJzqINiRMziZuSZG0kaQZM2ZwORQAAAAAIGnU25KPmTaeYU2b+CVN0gYAAAAAgGTS6DhqYE0bzzRyeVTcSNoAAAAAABAFCxF7i4WI40fSBgAAAACAKOptRxaXR3mmvgWTNj/96U+1YsUKlZSUKBgM6uDBg8bfcRxHc+bM0dNPP62DBw/qggsu0MKFC9WvX78WizNeJG0AAAAAAIiCpI23WjJpU19fryuvvFJFRUX61a9+FdPv/PznP9djjz2mZ599Vr169dK9996rsWPH6s9//rNSU1NbLNZ4kLQBAAAAACAKm7tHecpuwfzXvHnzJEmLFy+Oqb7jOFqwYIHuueceXXbZZZKk5557Trm5uVq+fLmuvvrqlgo1Lid90sb5e6bOCTcct45df8jYTk11lWt5ZY25jeqG48dwVIrfvbyyusbYxuFD7rHa9YeNbTiNdcY64Tr3WKqrKo1tVNa4x1Jdb+4z1dUbq6RVufdJbY1lbCNc5/4e243m03XdoWpjncpK935LOVRrbKOq1r1P/IfMY0CGOCTpsOG4aDhsfr11h9z7PqZx5LjvJxzD8Wn5DQefJF+V+36q6s2x1lS5H1sBv3ksVvnMYz4Qdn9v/NXm98ZJCbiW2066sY0qmY/h6kbbtTxomfskWO9eJ8Xw3kmS1WA+tuyw+8dibThkbKOq1v1cURd27w9JCvjMfRJqdI81ZPiskCTL8PnoBM2x1nnQJ7Ue3P+zPoZjS0Gfa3GDFcPXcsfcJ2G/e5/UGo4JSQobvtWaW5AaY+jXBg/+4xkwHMPBGN4bfwxj3nT+TImhjUZDv1bVmXu2usE8TuoNfR9LrHbAfbw6hnJJakwx78cKu3/mNPiCxjZMx3h1g7lf62M4Nwb9J94nVsj9+0C9Y/4MluG4CaeY26iqM48j01iL4aup+firM/eZz3DurPr793Cnja5VUu2EFWyjry0R6v/+Cfb1v4lCoZBCIfN3Ci9t375dZWVlGj16dGRbdna2CgsLtXbt2qRJ2ljOSX50ffnllyooKEh0GAAAAABwytq5c6e6deuW6DA8U1tbq169eqmsrCzRobQ5GRkZqv7aPxjnzJmjuXPnetL+4sWLNXPmTOOaNu+//74uuOAC7dq1S127do1s//73vy/LsrR06VJP4jlRJ/1Mm/z8fO3cuVOZmZmyLEuVlZUqKCjQzp07lZWVlejwcJJh/KC5GDtoLsYOmouxgxPB+EFzfX3sOI6jqqoq5efnJzo0T6Wmpmr79u2qr49h9hXi4jiOrK/N0jzeLJu77rpLDz30kGt7n3/+uQYMGOBZfMnmpE/a+Hy+qBndrKwsPoDQbIwfNBdjB83F2EFzMXZwIhg/aK5/HjvZ2dkJjqZlpKamJs1itKeq22+/Xddff71rnd69ezer7by8PElSeXl5k5k25eXlGjp0aLPabAknfdIGAAAAAAC0PZ07d1bnzp1bpO1evXopLy9Pq1atiiRpKisrtW7dOt18880tss/mMK88BQAAAAAAkMR27NihkpIS7dixQ+FwWCUlJSopKWmyfs6AAQO0bNkySZJlWZo5c6YeeOABvfbaa9q0aZOuu+465efna9KkSQl6FcdqczNtQqGQ5syZ0+orT6NtYPyguRg7aC7GDpqLsYMTwfhBczF2kKxmz56tZ599NvL87LPPliS98847GjlypCSptLRUFRUVkTo/+clPVFNToxtvvFEHDx7UN7/5Ta1cuTKpLos76e8eBQAAAAAA0BZxeRQAAAAAAEASImkDAAAAAACQhEjaAAAAAAAAJCGSNgAAAAAAAEmozSVtnnzySfXs2VOpqakqLCzUhx9+mOiQkOTmzp0ry7KaPAYMGJDosJCk3n33XU2cOFH5+fmyLEvLly9vUu44jmbPnq2uXbsqLS1No0eP1hdffJGYYJFUTGPn+uuvP+ZcNG7cuMQEi6Qyf/58nXfeecrMzFSXLl00adIklZaWNqlTW1ur6dOnq1OnTsrIyNAVV1yh8vLyBEWMZBHL2Bk5cuQx556bbropQREjWSxcuFCDBw9WVlaWsrKyVFRUpD/84Q+Rcs45QOtpU0mbpUuXqri4WHPmzNHHH3+sIUOGaOzYsdqzZ0+iQ0OSGzhwoHbv3h15vPfee4kOCUmqpqZGQ4YM0ZNPPhm1/Oc//7kee+wxLVq0SOvWrVO7du00duxY1dbWtnKkSDamsSNJ48aNa3Iu+t3vfteKESJZrVmzRtOnT9cHH3ygt956Sw0NDRozZoxqamoidW677Tb913/9l1566SWtWbNGu3bt0uWXX57AqJEMYhk7kjRt2rQm556f//znCYoYyaJbt2568MEHtWHDBn300Ue6+OKLddlll+mzzz6TxDkHaE1t6pbfhYWFOu+88/TEE09IkmzbVkFBgW655RbdddddCY4OyWru3Llavny5SkpKEh0KTjKWZWnZsmWaNGmSpCOzbPLz83X77bfrjjvukCRVVFQoNzdXixcv1tVXX53AaJFMvj52pCMzbQ4ePHjMDBzg6/bu3asuXbpozZo1GjFihCoqKtS5c2ctWbJE3/ve9yRJW7Zs0RlnnKG1a9fqG9/4RoIjRrL4+tiRjsy0GTp0qBYsWJDY4JD0OnbsqIcffljf+973OOcArajNzLSpr6/Xhg0bNHr06Mg2n8+n0aNHa+3atQmMDCeDL774Qvn5+erdu7euvfZa7dixI9Eh4SS0fft2lZWVNTkPZWdnq7CwkPMQYrJ69Wp16dJF/fv3180336z9+/cnOiQkoYqKCklH/oCSpA0bNqihoaHJuWfAgAHq3r075x408fWxc9Tzzz+vnJwcnXXWWZo1a5YOHTqUiPCQpMLhsF544QXV1NSoqKiIcw7QylISHYBX9u3bp3A4rNzc3Cbbc3NztWXLlgRFhZNBYWGhFi9erP79+2v37t2aN2+eLrzwQm3evFmZmZmJDg8nkbKyMkmKeh46WgYcz7hx43T55ZerV69e2rZtm+6++26NHz9ea9euld/vT3R4SBK2bWvmzJm64IILdNZZZ0k6cu4JBoNq3759k7qce/DPoo0dSfrBD36gHj16KD8/Xxs3btSdd96p0tJSvfLKKwmMFslg06ZNKioqUm1trTIyMrRs2TKdeeaZKikp4ZwDtKI2k7QBmmv8+PGRnwcPHqzCwkL16NFDL774om644YYERgbgVPLPl88NGjRIgwcPVp8+fbR69WqNGjUqgZEhmUyfPl2bN29m7TXE7Xhj58Ybb4z8PGjQIHXt2lWjRo3Stm3b1KdPn9YOE0mkf//+KikpUUVFhV5++WVNmTJFa9asSXRYwCmnzVwelZOTI7/ff8yq5eXl5crLy0tQVDgZtW/fXqeffrq2bt2a6FBwkjl6ruE8BC/07t1bOTk5nIsQMWPGDL3++ut655131K1bt8j2vLw81dfX6+DBg03qc+7BUccbO9EUFhZKEuceKBgMqm/fvho2bJjmz5+vIUOG6NFHH+WcA7SyNpO0CQaDGjZsmFatWhXZZtu2Vq1apaKiogRGhpNNdXW1tm3bpq5duyY6FJxkevXqpby8vCbnocrKSq1bt47zEOL25Zdfav/+/ZyLIMdxNGPGDC1btkxvv/22evXq1aR82LBhCgQCTc49paWl2rFjB+eeU5xp7ERz9MYMnHvwdbZtq66ujnMO0Mra1OVRxcXFmjJlis4991wNHz5cCxYsUE1NjaZOnZro0JDE7rjjDk2cOFE9evTQrl27NGfOHPn9fl1zzTWJDg1JqLq6usl/H7dv366SkhJ17NhR3bt318yZM/XAAw+oX79+6tWrl+69917l5+c3uUsQTk1uY6djx46aN2+errjiCuXl5Wnbtm36yU9+or59+2rs2LEJjBrJYPr06VqyZIleffVVZWZmRtaMyM7OVlpamrKzs3XDDTeouLhYHTt2VFZWlm655RYVFRVxF5dTnGnsbNu2TUuWLNGECRPUqVMnbdy4UbfddptGjBihwYMHJzh6JNKsWbM0fvx4de/eXVVVVVqyZIlWr16tN998k3MO0NqcNubxxx93unfv7gSDQWf48OHOBx98kOiQkOSuuuoqp2vXrk4wGHROO+0056qrrnK2bt2a6LCQpN555x1H0jGPKVOmOI7jOLZtO/fee6+Tm5vrhEIhZ9SoUU5paWlig0ZScBs7hw4dcsaMGeN07tzZCQQCTo8ePZxp06Y5ZWVliQ4bSSDauJHk/PrXv47UOXz4sPOv//qvTocOHZz09HTnu9/9rrN79+7EBY2kYBo7O3bscEaMGOF07NjRCYVCTt++fZ0f//jHTkVFRWIDR8L98Ic/dHr06OEEg0Gnc+fOzqhRo5z//u//jpRzzgFaj+U4jtOaSSIAAAAAAACYtZk1bQAAAAAAANoSkjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAA0MKuv/56TZo0KdFhAAAA4CSTkugAAAA4mVmW5Vo+Z84cPfroo3Icp5UiAgAAQFtB0gYAgBOwe/fuyM9Lly7V7NmzVVpaGtmWkZGhjIyMRIQGAACAkxyXRwEAcALy8vIij+zsbFmW1WRbRkbGMZdHjRw5UrfccotmzpypDh06KDc3V08//bRqamo0depUZWZmqm/fvvrDH/7QZF+bN2/W+PHjlZGRodzcXE2ePFn79u1r5VcMAACA1kLSBgCABHj22WeVk5OjDz/8ULfccotuvvlmXXnllTr//PP18ccfa8yYMZo8ebIOHTokSTp48KAuvvhinX322froo4+0cuVKlZeX6/vf/36CXwkAAABaCkkbAAASYMiQIbrnnnvUr18/zZo1S6mpqcrJydG0adPUr18/zZ49W/v379fGjRslSU888YTOPvts/exnP9OAAQN09tln65lnntE777yjv/zlLwl+NQAAAGgJrGkDAEACDB48OPKz3+9Xp06dNGjQoMi23NxcSdKePXskSZ9++qneeeedqOvjbNu2TaeffnoLRwwAAIDWRtIGAIAECAQCTZ5bltVk29G7Utm2LUmqrq7WxIkT9dBDDx3TVteuXVswUgAAACQKSRsAAE4C55xzjn7/+9+rZ8+eSknh4xsAAOBUwJo2AACcBKZPn64DBw7ommuu0fr167Vt2za9+eabmjp1qsLhcKLDAwAAQAsgaQMAwEkgPz9f//M//6NwOKwxY8Zo0KBBmjlzptq3by+fj49zAACAtshyHMdJdBAAAAAAAABoin/NAQAAAAAAJCGSNgAAAAAAAEmIpA0AAAAAAEASImkDAAAAAACQhEjaAAAAAAAAJCGSNgAAAAAAAEmIpA0AAAAAAEASImkDAAAAAACQhEjaAAAAAAAAJCGSNgAAAAAAAEmIpA0AAAAAAEAS+v91g3DEG1q4uwAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAABG0AAADeCAYAAACHf/0PAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjEsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvc2/+5QAAAAlwSFlzAAAPYQAAD2EBqD+naQAAOyBJREFUeJzt3Xt4VNW9//HPnsnMJCEXLoGESLgjKHJRlDRaKQrlplSqtWo9iNTiowc8YrRV/CkXtUVrj8XbAx5PLdpKRa2gRywei4L1iIhoBKykwqEHLCTcJDfIbfb+/UGZNjLsNRN2MkN4v55nniez18ra31mz9p7JN2uvbTmO4wgAAAAAAABJxZfoAAAAAAAAAHAskjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJiKQNAAAAAABIOu+++64mTpyo/Px8WZal5cuXG39n9erVOueccxQKhdS3b18tXry4xeNsSSRtAAAAAABA0qmpqdGQIUP05JNPxlR/+/btuuSSS3TRRReppKREM2fO1I9+9CO9+eabLRxpy7Ecx3ESHQQAAAAAAMDxWJalZcuWadKkScetc+edd2rFihXavHlzZNvVV1+tgwcPauXKla0QpfdSEh3AibJtW7t27VJmZqYsy0p0OAAAAABwynAcR1VVVcrPz5fP17Yu5KitrVV9fX2iw2hzHMc55m/3UCikUCh0wm2vXbtWo0ePbrJt7Nixmjlz5gm3nSgnfdJm165dKigoSHQYAAAAAHDK2rlzp7p165boMDxTW1urtMyOUuPhRIfS5mRkZKi6urrJtjlz5mju3Lkn3HZZWZlyc3ObbMvNzVVlZaUOHz6stLS0E95HazvpkzaZmZmSJP+Z35flD0St0+3cscZ2/n36+a7lI75639jG1v/4jbFOSmr0GI/q82+3GNt46VAP1/L7Fv3J2MaB/y0x1uk/crRr+VM3DDe20XPj713L/+8V8xS1jIIuxjpdbrjNtfw/t5tnYf3nK392LQ83ho1tjB/V11jn7ot6uZanrH7W2MbBzaWu5e0Hn2FsQyOvM1Z5cfMe1/J3St3LJalPl0zX8isHdzW20dfZ61oe/uIjYxuW32+s4+s1xLW8PGSOdfvBOtfygN88Fntkm//L0DF80LXcX73f2IaT4n4+sjPMx16FUo11qhtt1/JgDLMkO6W610mp2GVsw2qoNdax09u7ltem5xjb+KrW/VxRF3bvD0kK+Mx9kpPm/hEeOrTP2IZVf8i13AmmG9uoi6FPKgx9Uhs+8Su1gzEcW5lB9/8Ap1nm87wc8/sX9rsfw7WGY0KSwrZ7n5hbkBpj6NcGD66SDxiO4VjeG38MY950/kyJoY1GQ79W1Zl7trrBPE7qDX0fS6zpAffxmmEol6T0FPN+rLD7LIIGX9DYhukYr2ow92t9DOfGoN/9NbeLoU+yQu7fB1KdGGZVGI6bcIr5s7GyzjyOqgxjLYavpsbjL8NwXpSkbEOdqqoq9e3XL/J3WVtRX18vNR5WcPC1kt98HCBG4XpVb3xeO3fuVFZWVmSzF7Ns2qqTPmlzdFqV5Q/IOs7B5IvhS2e7DPeTTFa9uY2MgPsfQJKUEnSvk5XRzthGms89Vl/QnD20UswHhT/kHktGZpZruSRltXOPJcPQH5KUGTKfJLMMHxKp7WL4whhyf48dn/mTMZSeYazzzyenaFLSzR/04VT3PslKjyGDbIhDktIy3P+zEEhz/4NPMvdJTOPIcY8j3M58fMaUtMl0j/VQqjnWdmH3xEAsSZvMLPMYyDJ8U/Nb7skjKYakTQxfvmzFcL4xfFkPxvDHS5YpaWNXxhCH+SPPTnd/zcF25jHQGHB/bwKx/GESS5+kG5I2fvMYsOrdv4g7QfNnUl0MfWIH3fskpfHEEwehGP44zUqSpE0whqSNKbngWdLGsJ9YmJKMXiVtTO14kbRRDEkb1bdO0saUgDAlIaXWS9qYjnGnvnWSNrEkIJIlaePEkLRxDGPNi6RNZiiGPouhXyW12aUqfMEMWSkkbbziNB45xrKysox/FzVHXl6eysvLm2wrLy9XVlbWSTnLRmoDSRsAAAAAAFqCPxAgaeMhx2rZ+yAVFRXpjTfeaLLtrbfeUlFRUYvutyWRtAEAAAAAIArL55flM8/YRozi7Mvq6mpt3bo18nz79u0qKSlRx44d1b17d82aNUt/+9vf9Nxzz0mSbrrpJj3xxBP6yU9+oh/+8Id6++239eKLL2rFihWevozWRNIGAAAAAIAofCkBWYZLyhE7J6YLfP/ho48+0kUXXRR5XlxcLEmaMmWKFi9erN27d2vHjh2R8l69emnFihW67bbb9Oijj6pbt276z//8T40da17nNlmRtAEAAAAAIIojSRsuj/JKvEmbkSNHynFZR2rx4sVRf+eTTz6JN7SkRdIGAAAAAIAoLIvLozxl0ZfxImkDAAAAAEAUViAoX4CZNl6x45xpgyRI2sydO1fz5s1rsq1///7asmVLgiICAAAAAEDypwTl4/Ioz1gOSZt4JTxpI0kDBw7UH//4x8jzlJSkCAsAAAAAcAqzfD4uj/KQ5fMlOoSTTlJkR1JSUpSXl5foMAAAAAAAiPAx08ZbTjjREZx0kiJp88UXXyg/P1+pqakqKirS/Pnz1b1796h16+rqVFdXF3leWVnZWmECAAAAAE4hPj9JG0/ZJG3ilfCkTWFhoRYvXqz+/ftr9+7dmjdvni688EJt3rxZmZmZx9SfP3/+MWvgAAAAAADgNcvvl+Xn8iiv0JfxS3jSZvz48ZGfBw8erMLCQvXo0UMvvviibrjhhmPqz5o1S8XFxZHnlZWVKigoaJVYAQAAAACnDl9KgJk2XrIbEx3BSSfhSZuva9++vU4//XRt3bo1ankoFFIoFGrlqAAAAAAApxp/Sop83CjHM5ZNX8Yr6Xqsurpa27Zt0+TJkxMdCgAAAADgFGb5LFk+K9FhtBn0ZfwSnrS54447NHHiRPXo0UO7du3SnDlz5Pf7dc011yQ6NAAAAADAKczn98nv5zbVnqEv45bwpM2XX36pa665Rvv371fnzp31zW9+Ux988IE6d+6c6NAAAAAAAKcwn98nXwqJBq84YfoyXglP2rzwwguJDgEAAAAAgGP4LEs+i0t6vOLQl3FLeNIGAAAAAIBk5Ethpo2XmGkTP5I2AAAAAABE4U+x5E9hdohnwvRlvEjaAAAAAAAQhWVZsrikxzP0ZfxI2gAAAAAAEMWRmTZc0uMZZtrEjaQNAAAAAABR+H3c8ttTPvoyXiRtAAAAAACIxmfJ8jE7xDP0ZdxOiaRNLAdZwO9exzlcY2yjsbbRWCctJ9N9PxkdjW0cqgi7lmfldDDHkfktY50R55zmWp7Xzjx8rNR2ruXdLjrH2EbakPONdfam5rmWtwvsM7bx3TH9XMv75WYY2xjZ09z3qTV7Xcv9A4YZ28gd4v7+He58urGNzeWHjHVCKX7X8u8P62Zs4/Qc9zFQkBUwtuFUuY+1lD6DjW2E08zvzYGAe51t+w4b29hRUetabjrXSFIghv9ABDu4nyuyHNvYhu/QVydULklp2e7vryTtqm5wLf/LfvNYNHVbn465xjZ65YSMddKrdrmXl39ubCM1Ldu1vDYr39jGzkr3PpOkT8rc+y071T0OSeqS0cm1vINVZ2wjVOneZ5KU63c/zsOGOCTpq3r38poG85ivqHOvY6WaP9dSbfN5IKWx0rU8PWg+bmrkPugP15tfr+04xjqphin/7VPdPwckyV/r/nplm2MNh9ob6xw47P79p7rBvTwW7WK4BOK0TPPnVjDsfuxYtvkYtwNpruWVDeb3d2eVuU8abPexFvCZv99mBN37LZbP+kAMf8eZbhVc12gea1V17n2yp9E8BsKGYyvFZ35/U2P4PtAh5H78pXjwx2+jbR5HewzHXpWh/GTnT/FxeZSHHPoybqdE0gYAAAAAgHj5/JZ8MSTZEBv6Mn4kbQAAAAAAiMLns+Tjkh7P0JfxI2kDAAAAAEAUPr9PPhYi9gx9GT+SNgAAAAAAROH3s6aNlxySNnEjaQMAAAAAQBR+nyU/l/R4xqEv40bSBgAAAACAKAIpPgWYaeMZi76MG0kbAAAAAACiCJK08RRJm/iRtAEAAAAAIIoUn5TCJT2eccjZxC2puuzBBx+UZVmaOXNmokMBAAAAAJziAik+BXl49mjurKUnn3xSPXv2VGpqqgoLC/Xhhx8et+7ixYtlWVaTR2pqanOHQMIlzUyb9evX66mnntLgwYMTHQoAAAAAAAr6/Qqm+BMdRtvhj78vly5dquLiYi1atEiFhYVasGCBxo4dq9LSUnXp0iXq72RlZam0tDTy3LJO3tlSSZG0qa6u1rXXXqunn35aDzzwgGvduro61dXVRZ5XVla2dHgAAAAAgFMQd4/y1tG+/Prf8aFQSKFQKOrvPPLII5o2bZqmTp0qSVq0aJFWrFihZ555RnfddVfU37EsS3l5eR5GnjhJcXnU9OnTdckll2j06NHGuvPnz1d2dnbkUVBQ0AoRAgAAAABONUG/j4fHD0kqKCho8nf9/Pnzo/Z/fX29NmzY0CRX4PP5NHr0aK1du/a471t1dbV69OihgoICXXbZZfrss8+8HRitKOEzbV544QV9/PHHWr9+fUz1Z82apeLi4sjzyspKEjcAAAAAAM8dXdMG3nD+3pc7d+5UVlZWZPvxZtns27dP4XBYubm5Tbbn5uZqy5YtUX+nf//+euaZZzR48GBVVFToF7/4hc4//3x99tln6tatm0evpPUkNGmzc+dO3XrrrXrrrbdiXhjIbdoUAAAAAABeSfFZ3D3KQ+G/92VWVlaTpI2XioqKVFRUFHl+/vnn64wzztBTTz2l+++/v0X22ZISmrTZsGGD9uzZo3POOSeyLRwO691339UTTzyhuro6+ZuxUBEAAAAAACcqyEwbTzlx9mVOTo78fr/Ky8ubbC8vL495zZpAIKCzzz5bW7dujWvfySKhSZtRo0Zp06ZNTbZNnTpVAwYM0J133knCBgAAAACQMAE/SRsv2f74+jIYDGrYsGFatWqVJk2adKQN29aqVas0Y8aMmNoIh8PatGmTJkyYEG+4SSGhSZvMzEydddZZTba1a9dOnTp1OmY7AAAAAACtibtHeas5fVlcXKwpU6bo3HPP1fDhw7VgwQLV1NRE7iZ13XXX6bTTTossZnzffffpG9/4hvr27auDBw/q4Ycf1v/93//pRz/6kaevpbUkfCFiAAAAAACSUTDFYqaNh+yU+JM2V111lfbu3avZs2errKxMQ4cO1cqVKyOLE+/YsUM+3z/eo6+++krTpk1TWVmZOnTooGHDhun999/XmWee6dnraE1Jl7RZvXp1okMAAAAAAIA1bTxmN7MvZ8yYcdzLob6eQ/jlL3+pX/7yl83aTzJKuqQNAAAAAADJwMflUZ7y0ZdxI2kDAAAAAEAUAZ9PAR8zbbzSSF/GjaQNAAAAAABRBHyWAn5mh3ilkZk2cSNpAwAAAABAFH7Lkt8i0eAV+jJ+JG0AAAAAAIgixWcpwOwQzzTQl3EjaQMAAAAAQBQpfp9S/KzD4hX6Mn5tJmkzedO7Cir6AJi47yPj71849QHX8te7fNvYxiPfKDDWaZ+d6lr+cMDcxnXli13Lz/jTC8Y26qsbjHUG9zjftbzdRXOMbbyRc7Fr+aaGc41t9Aq3M9YZbSj/YadyYxt1ZR+4llv73N87SQrkDDfWqe7c37V8R2O2sY2DhxtdyzO/qjO2UZAVMtY5OyfgWu6r2W9sQ5Z7rLbTwdjEV6ldXMsrrBxjG7UNtrGOvzHsWt6zvXkMnNk53bU8NcWb/y4cNryenZa5Xw8H27uW23KMbQRjOJd0SHX/qLmgwDzmHcc9ltqwOdYvK82xNtidXMv9qeaxlmb4MtKu3jwWO6ebP56zQ37X8oo69/EsSV/sr3UtrwubY80OdTTWyTG8npzjfH7/s44p9a7l7VPN57T9h9zPR1sPmM+d+wxtSFJ6wP29OS3L3K9dM9zPv5l1B4xtKIbFHsOp7u/f3hhe74HDQfd9mF+ushvNx6fpuOjsO2zeUYP7mHdS3M/hklSvNGOdvQ3usdaG3ceIJAUa3c9r6QHz+9sty30cSZKv0TDuY7iUwfa7vx7TZ5YkVRperySFDZ8FscyGyAi691undHO/WoY4bJnjqI/hwKg3fLbVxfDZZ1qKJRTD7Zez3A9xpTaYx/PJzG+Z+xGxoy/j12aSNgAAAAAAeCng9ynA7BDP0JfxI2kDAAAAAEAUAda08RR9GT+SNgAAAAAARGFZlnzc8cgzFn0ZN5I2AAAAAABEEfBZCrAQi2eYaRM/kjYAAAAAAEQR8PkUiGFhd8SGvowfSRsAAAAAAKLw+4484A36Mn4kbQAAAAAAiCLFZzE7xEMpXB4Vt4QnbRYuXKiFCxfqr3/9qyRp4MCBmj17tsaPH5/YwAAAAAAAp7SAnzVtvERfxi/mlOHkyZN1+PBhSdKOHTs8C6Bbt2568MEHtWHDBn300Ue6+OKLddlll+mzzz7zbB8AAAAAAMTL9/e7R/Hw7oH4xDzTpl27dqqrq1NaWpp69uypDh06aPDgwRo6dKiGDBmioUOHauDAgQoEAnEFMHHixCbPf/rTn2rhwoX64IMPNHDgwLjaAgAAAADAK37Lkp9Eg2foy/jFnLRZtGhR5Oft27fr008/VUlJiT799FO99tpr+utf/6qUlBQNGDBAn376abOCCYfDeumll1RTU6OioqKoderq6lRXVxd5XllZ2ax9AQAAAADghoWIvUVfxq9Za9r06NFDPXr00He+853ItqqqKpWUlGjjxo1xt7dp0yYVFRWptrZWGRkZWrZsmc4888yodefPn6958+Y1J2wAAAAAAGJmWUce8AZ9GT/PFiLOzMzUhRdeqAsvvDDu3+3fv79KSkpUUVGhl19+WVOmTNGaNWuiJm5mzZql4uLiyPPKykoVFBScUOwAAAAAAHydj8ujPMWaNvFL+N2jJCkYDKpv376SpGHDhmn9+vV69NFH9dRTTx1TNxQKKRQKtXaIAAAAAIBTjN868oA36Mv4JUXS5uts226ybg0AAAAAAK2NOx55q6335YEDB9S+fXv5fN4t3pPwpM2sWbM0fvx4de/eXVVVVVqyZIlWr16tN998M9GhAQAAAABOYX4xO8RL/kQH0AL+/Oc/67XXXtNrr72mdevWqUOHDpowYYIuu+wyjRs3Tu3atTuh9hO+dvOePXt03XXXqX///ho1apTWr1+vN998U9/+9rcTHRoAAAAA4BRmWRYPjx9tQWlpqW6//Xb169dP3/jGN7R+/XrddNNNKi8v1xtvvKEePXrovvvuU05OjsaPH6+FCxc2e1/Nnmnzpz/9SU899ZS2bduml19+Waeddpp+85vfqFevXvrmN78Zczu/+tWvmhsCAAAAAAAthlt+e6ut9OX777+vmpoaPfbYYxo1apSCwWCkLCcnR8OHD9f999+vv/71r3r11Vf1yiuv6Oabb27WvpqVtPn973+vyZMn69prr9Unn3wSWX+moqJCP/vZz/TGG280KxgAAAAAAJKFn7tHeaqt9OXUqVM1depUY72ePXvq1ltv1a233trsfTUrz/XAAw9o0aJFevrppxUIBCLbL7jgAn388cfNDgYAAAAAgGThs3h4/UB8mpW0KS0t1YgRI47Znp2drYMHD55oTAAAAAAAJJzP+sdtv3mc+KO5SZsnn3xSPXv2VGpqqgoLC/Xhhx+61n/ppZc0YMAApaamatCgQa1yNdAvf/lLSdJnn32mcDjsWbvNujwqLy9PW7duVc+ePZtsf++999S7d28v4gIAAAAAIKH8Pkt+pod4pjl9uXTpUhUXF2vRokUqLCzUggULNHbsWJWWlqpLly7H1H///fd1zTXXaP78+br00ku1ZMkSTZo0SR9//LHOOussL15GVEOHDpUk3X333dqyZYvS0tI0cOBADRo0SGeddZYuvfTSZrXbrJk206ZN06233qp169bJsizt2rVLzz//vO64445mL64DAAAAAEAysXh4/ojXI488omnTpmnq1Kk688wztWjRIqWnp+uZZ56JWv/RRx/VuHHj9OMf/1hnnHGG7r//fp1zzjl64oknmrH347vmmmu0efPmyPOLLrpIkvTqq6+qtLRU7733nv7t3/5NOTk5+uMf/9js/TRrps1dd90l27Y1atQoHTp0SCNGjFAoFNIdd9yhW265pdnBAAAAAACQLJhp462jfVlZWdlkeygUUigUOqZ+fX29NmzYoFmzZkW2+Xw+jR49WmvXro26j7Vr16q4uLjJtrFjx2r58uUnGH1TS5cu1dtvv61Vq1ZFncHTrl07DRw4UIWFhSe0n2YlbSzL0v/7f/9PP/7xj7V161ZVV1frzDPPVEZGxgkFAwAAAABAsrDssCzbu/VJTnVH+7KgoKDJ9jlz5mju3LnH1N+3b5/C4bByc3ObbM/NzdWWLVui7qOsrCxq/bKyshOIPLqhQ4fq4osv1ttvv31M4mbPnj067bTT1NjYeEL7aFbSZseOHSooKFAwGNSZZ555TFn37t1PKCgAAAAAABLNcmxZjp3oMNqMo325c+dOZWVlRbZHm2WT7CzL0uLFi3Xbbbfp4osv1qpVqzRo0KAmdWz7xMdOs5I2vXr10u7du49Z9Gf//v3q1auXpyslAwAAAACQEHb4yAPe+HtfZmVlNUnaHE9OTo78fr/Ky8ubbC8vL1deXl7U38nLy4urfnM5jiO/368lS5bo2muvjcy4+efEjWWd+KV1zVqI2HGcqDuvrq5WamrqCQcFAAAAAECiHbk8qpGHZ4/4EmDBYFDDhg3TqlWrItts29aqVatUVFQU9XeKioqa1Jekt95667j1T5TP59Pzzz+v0aNH6+KLL9bGjRs9bT+umTZHF/OxLEv33nuv0tPTI2XhcFjr1q2L3OYKAAAAAICTmmMfecAbzejL4uJiTZkyReeee66GDx+uBQsWqKamRlOnTpUkXXfddTrttNM0f/58SdKtt96qb33rW/r3f/93XXLJJXrhhRf00Ucf6T/+4z88fSn/PJHlaOLmX/7lXzRq1CitWrXqmHV1miuupM0nn3wi6chMm02bNikYDEbKgsGghgwZojvuuMOTwAAAAAAASCi78cgD3mhGX1511VXau3evZs+erbKyMg0dOlQrV66MJEV27Nghn+8fFxGdf/75WrJkie655x7dfffd6tevn5YvXx71Dk8nwnGcJs99Pp9++9vfRhI3v/3tbz3ZT1xJm3feeUeSNHXqVD366KMxXYMGAAAAAMDJyLIbZYVJ2njFamYCbMaMGZoxY0bUstWrVx+z7corr9SVV17ZrH3FasWKFcrOzm6y7WjiZvLkybriiis82U+zFiL+9a9/7cnOAQAAAABIWlwe5a021Jfjx4+Put3n8+k3v/mNJk+erN/97ncnvJ+YkzbFxcW6//771a5du8jaNsfzyCOPnHBgAAAAAAAkFHeP8lYb6cuysjJ16NDhuLcqPzrj5tZbb5Uk/e///q969+7drH3FnLT55JNP1NDQEPn5eOK9pdX8+fP1yiuvaMuWLUpLS9P555+vhx56SP3794+rHQAAAAAAvHT07lHwRrx3j0pWL7/8su68806NGTNG3/nOd3TppZeqc+fOTep8+OGHevXVVzV16lTt2LFDVVVVzdpXzEmbo+vZfP3nE7VmzRpNnz5d5513nhobG3X33XdrzJgx+vOf/6x27dp5th8AAAAAAOLC5VHeaiN9OWPGDI0bN06vvfaaFi9erJtuuknnnXeeJkyYoO3bt+v111+XJF1yySV68MEH9e1vf7vZ+4prTZu1a9dq//79uvTSSyPbnnvuOc2ZM0c1NTWaNGmSHn/88eNOEYpm5cqVTZ4vXrxYXbp00YYNGzRixIh4wgMAAAAAwDOW3chMGw+1pb7s27eviouLVVxcrP379+v111/XG2+8oZ49e+r3v/+9ioqK4r4SKZq4kjb33XefRo4cGUnabNq0STfccIOuv/56nXHGGXr44YeVn5+vuXPnNjugiooKSVLHjh2jltfV1amuri7yvLKystn7AgAAAADguMLhIw94o432ZadOnTRlyhRNmTLF87Z95ir/UFJSolGjRkWev/DCCyosLNTTTz+t4uJiPfbYY3rxxRebHYxt25o5c6YuuOCC495Dff78+crOzo48CgoKmr0/AAAAAACO6+jlUTy8eyAucc20+eqrr5Sbmxt5vmbNmia3uTrvvPO0c+fOZgczffp0bd68We+9995x68yaNavJ3asqKytJ3AAAAAAAPMflUd6iL+MXV9ImNzdX27dvV0FBgerr6/Xxxx9r3rx5kfKqqioFAoFmBTJjxgy9/vrrevfdd9WtW7fj1guFQnGtmQMAAAAAQLPYjVK4IdFRtB0kbeIWV9JmwoQJuuuuu/TQQw9p+fLlSk9P14UXXhgp37hxo/r06RNXAI7j6JZbbtGyZcu0evVq9erVK67fBwAAAACgJTi2Lcfmkh6v0Jfxiytpc//99+vyyy/Xt771LWVkZOjZZ59VMBiMlD/zzDMaM2ZMXAFMnz5dS5Ys0auvvqrMzEyVlZVJkrKzs5WWlhZXWwAAAAAAeKaxXmps3tUkiKKxPtERnHTiStrk5OTo3XffVUVFhTIyMuT3+5uUv/TSS8rIyIgrgIULF0qSRo4c2WT7r3/9a11//fVxtQUAAAAAgFechgY5DVwe5RX6Mn5xJW2Oys7Ojrr9eLfpduM4TnNCAAAAAACgZdm2ZLfN21QnBJdHxa1ZSRsAAAAAANo6J9wgp5HZIV5xWNQ5biRtAAAAAACIwmmsl9PIn81ecVjTJm6MPgAAAAAAorFtLunxEn0ZN5I2AAAAAABEcWQhYmaHeIWFiONH0gYAAAAAgCicxgYuj/IQ6wPFj9EHAAAAAEA0dpi7R3mJvoxbm0na/GbQCFn+YNSyPxZdavz9/+hQ5Fo+YccfjG30+uB5Y53Mbh1cy3tMuNfYxq9yL3Mtf/zC3sY2GuoajXUu6dfXtfweK9XYxoR97v02evcXxjbSupxvrLNXF7iWP7M/19jGNv9o1/J+ORnGNkZmuL+/klRwaK9r+cCqncY2nJB7LIc7nG5sY/Pew8Y6b+8/5FqeHoh+zP2z03PauZb3tMynoQ61Za7lneqrjW2E08zvzcGAe53P95n7bEdFrWt5wG8Z2+jTId1Yp3eHkGt5gfOVsQ1fvXsdJ2iO43BGN2OdbV/VuZb/xTDOJMnUbX06mmPt1d69zyQpvWqXa7nvcIWxDTst27W8tl2+sY2dleb/Qu0/5F4nO9V8bPXr5H4e72C5v3eS5Dt0wFhHTsC1OKxOxiYOGP7LWXPY3GcBn/tA6tvRPEbOyjZfi2/Z7p+xdtBnbKOmwX0/1VZ7Yxu27RjrpNa6f3nunG4eR3k+wzHsmPssnNbeWOfAYfdYyxrMn0mSe512jeb3JjuGb8+dA+5jwPKbv4fZgTTX8soG8/v7ZQznkgbb/bgImLtEGUH39yYjhjGfnmL+fHQs9zp1jeaxVl3vXmfvIfMflGHHve9TDOcaSUqN4ftA0FAnFEMbJrH0WUXY/fVWGY7Nk92Ru0e1mT+bE467R8WP0QcAAAAAQDSNDVKjP9FRtB1cHhU3kjYAAAAAAEThhMNywm17NlFroi/jR9IGAAAAAIBomGnjLWbaxI2kDQAAAAAAUdiNDbJJ2njGJmkTN5I2AAAAAABE4diOnLB5wWbExolhkXw0RdIGAAAAAIAo7IZG2SnMtPGK3WC+ex6aImkDAAAAAEAUdn2jbD9JG6/Y9SRt4uVLdADvvvuuJk6cqPz8fFmWpeXLlyc6JAAAAAAA5ITDsnl49mjJu0cdOHBA1157rbKystS+fXvdcMMNqq6udv2dkSNHyrKsJo+bbrqpxWJsjoTPtKmpqdGQIUP0wx/+UJdffnmiwwEAAAAAQJJkNzbKbmCmjVfsxpabaXPttddq9+7deuutt9TQ0KCpU6fqxhtv1JIlS1x/b9q0abrvvvsiz9PT01ssxuZIeNJm/PjxGj9+fKLDAAAAAACgCbshLNvPJT1esRtaZqbN559/rpUrV2r9+vU699xzJUmPP/64JkyYoF/84hfKz88/7u+mp6crLy+vReLyQsKTNvGqq6tTXV1d5HllZWUCowEAAAAAtFV22JbN3aM8c7Qvv/53fCgUUigUana7a9euVfv27SMJG0kaPXq0fD6f1q1bp+9+97vH/d3nn39ev/3tb5WXl6eJEyfq3nvvTarZNidd0mb+/PmaN29eosMAAAAAALRxdn2jbF/Cl4JtM44uRFxQUNBk+5w5czR37txmt1tWVqYuXbo02ZaSkqKOHTuqrKzsuL/3gx/8QD169FB+fr42btyoO++8U6WlpXrllVeaHYvXTrqkzaxZs1RcXBx5XllZecwbDgAAAADAiTqypg1JG68cXdNm586dysrKimw/3iybu+66Sw899JBrm59//nmz47nxxhsjPw8aNEhdu3bVqFGjtG3bNvXp06fZ7XrppEvanOi0KQAAAAAAYuGEbTlcHuWZo32ZlZXVJGlzPLfffruuv/561zq9e/dWXl6e9uzZ02R7Y2OjDhw4ENd6NYWFhZKkrVu3krQBAAAAACCZhRsaFebyKM+EG+Jb1Llz587q3LmzsV5RUZEOHjyoDRs2aNiwYZKkt99+W7ZtRxIxsSgpKZEkde3aNa44W1LCkzbV1dXaunVr5Pn27dtVUlKijh07qnv37gmMDAAAAABwKrMbGmX7rESH0WbYcSZtYnXGGWdo3LhxmjZtmhYtWqSGhgbNmDFDV199deTOUX/72980atQoPffccxo+fLi2bdumJUuWaMKECerUqZM2btyo2267TSNGjNDgwYNbJM7mSHjS5qOPPtJFF10UeX50vZopU6Zo8eLFCYoKAAAAAHCqc2wuj/KSY7dcXz7//POaMWOGRo0aJZ/PpyuuuEKPPfZYpLyhoUGlpaU6dOiQJCkYDOqPf/yjFixYoJqaGhUUFOiKK67QPffc02IxNkfCkzYjR46U4ziJDgMAAAAAgCbs+kaFxUwbrxy9e1RL6Nixo5YsWXLc8p49ezbJPRQUFGjNmjUtFo9XEp60AQAAAAAgGdkNjbItkjZeaanLo9oykjYAAAAAAEThhB05Ya4M8Qp9GT+SNgAAAAAARBFuDCtscfcor4Qbw4kO4aRD0gYAAAAAgCjC9bbCDokGr4QbWNQ5XiRtAAAAAACIwgk7cnxc0uMVLo+KH0kbAAAAAACiCNeHFXZYiNgr4QZmLcWLpA0AAAAAAFHYjbbC4pIer9iN9GW8TomkjWObp2A1GKZpWWntjG2kpJq7s6Gm1n0/1QeMbaQHsl3LK/d9ZWxj/9aPjXXe7ZjmWl5W2N3YRu/aGtfyL98xx5G57W/GOrk393Etr2kwZ8eX/fcXruWNMWSFN4893Vhn3rfdY01Zu9zYxlcbP3ct7zD0LGMbQ0bfYKyzubzKtfz1jbuMbfTLzXQt/8HZpxnbON1xvzVg47aNxjYsv99Yp2Ofs13L+3Qwx2oS8JvHYresoLFOZp37ucJXYz6XOCkB13I7vYOxjcMxXJecFXLv+/O7ZRnbyEl177eUg18a27D2uZ9/JfNrPpR7hrGNA4fdzxW11Q3GNtJSzOPk7Lx01/JQzV5jG1a1+znaCZo/++qy8o11Dta698nh6hP/AheKoc+ygu4LSaYqhtuQ+sznksaA+3tTG8MX1rDhu0ssrzeWtR5NsZTF8N4EfO6vNxjDec8f07nE/f3rmBbDe2Po18o6cxx/qzIfw/VhwznLZz7Pt2t0jzXTMJ4lqSDT/N3UCte7ljf43D8rJPMxvrMylj4z933Q7/6aM2Lok2zDZ1LnoHt/SJIc9/cmnJJqbKKiznyAfmWoE8sxbjr+Mg3HlSR1MRxbqQ3mY+9kZodt2RaJBq/YMRzraOqUSNoAAAAAABAvu96WbZNo8AozbeJH0gYAAAAAgCjCjaxp46VwmDVt4kXSBgAAAACAKOywI1vc8cgrNnePihtJGwAAAAAAorDrbdl+Zod4hTVt4kfSBgAAAACAKMINYZFn8A6XR8WPpA0AAAAAAFFweZS3uDwqfiRtAAAAAACIwmkIy2ZyiGccOjNuSZO0efLJJ/Xwww+rrKxMQ4YM0eOPP67hw4cnOiwAAAAAwCkqXG8r7OPuUV4Jc/v0uCVF0mbp0qUqLi7WokWLVFhYqAULFmjs2LEqLS1Vly5dEh0eAAAAAOAUZDuObIdLerxCX8YvKZI2jzzyiKZNm6apU6dKkhYtWqQVK1bomWee0V133ZXg6AAAAAAAp6J621EKa9p4pt6mL+OV8KRNfX29NmzYoFmzZkW2+Xw+jR49WmvXrj2mfl1dnerq6iLPKysrWyVOAAAAAMCphaSNt0jaxC/hSZt9+/YpHA4rNze3yfbc3Fxt2bLlmPrz58/XvHnzWis8AAAAAMApynYchbmkxzNcHhW/hCdt4jVr1iwVFxdHnldWVqqgoCCBEQEAAAAA2qJ6x5Gf2SGeqSdpE7eEJ21ycnLk9/tVXl7eZHt5ebny8vKOqR8KhRQKhVorPAAAAADAKarelvzcPMoz9eRs4pbwpE0wGNSwYcO0atUqTZo0SZJk27ZWrVqlGTNmJDY4AAAAAMApK+w4CrOmjWe41Cx+CU/aSFJxcbGmTJmic889V8OHD9eCBQtUU1MTuZsUAAAAAACtrcF25LdINHilgaRN3JIiaXPVVVdp7969mj17tsrKyjR06FCtXLnymMWJAQAAAABoLWFHCic6iDYkTM4mbkmRtJGkGTNmcDkUAAAAACBp1NuSj5k2nmFNm/glTdIGAAAAAIBk0ug4amBNG880cnlU3EjaAAAAAAAQBQsRe4uFiONH0gYAAAAAgCjqbUcWl0d5pr4FkzY//elPtWLFCpWUlCgYDOrgwYPG33EcR3PmzNHTTz+tgwcP6oILLtDChQvVr1+/FoszXiRtAAAAAACIgqSNt1oyaVNfX68rr7xSRUVF+tWvfhXT7/z85z/XY489pmeffVa9evXSvffeq7Fjx+rPf/6zUlNTWyzWeJC0AQAAAAAgCpu7R3nKbsH817x58yRJixcvjqm+4zhasGCB7rnnHl122WWSpOeee065ublavny5rr766pYKNS4nfdLG+Xumzgk3HLeOXX/I2E5NdZVreWWNuY3qhuPHcFSK3728srrG2MbhQ+6x2vWHjW04jXXGOuE691iqqyqNbVTWuMdSXW/uM9XVG6ukVbn3SW2NZWwjXOf+HtuN5tN13aFqY53KSvd+SzlUa2yjqta9T/yHzGNAhjgk6bDhuGg4bH69dYfc+z6mceS47yccw/Fp+Q0HnyRflft+qurNsdZUuR9bAb95LFb5zGM+EHZ/b/zV5vfGSQm4lttOurGNKpmP4epG27U8aJn7JFjvXifF8N5JktVgPrbssPvHYm04ZGyjqtb9XFEXdu8PSQr4zH0SanSPNWT4rJAky/D56ATNsdZ50Ce1Htz/sz6GY0tBn2txgxXD13LH3Cdhv3uf1BqOCUkKG77VmluQGmPo1wYP/uMZMBzDwRjeG38MY950/kyJoY1GQ79W1Zl7trrBPE7qDX0fS6x2wH28OoZySWpMMe/HCrt/5jT4gsY2TMd4dYO5X+tjODcG/SfeJ1bI/ftAvWP+DJbhuAmnmNuoqjOPI9NYi+Grqfn4qzP3mc9w7qz6+/dwp42uVVLthBVso68tEer//gn29b+JQqGQQiHzdwovbd++XWVlZRo9enRkW3Z2tgoLC7V27dqkSdpYzkl+dH355ZcqKChIdBgAAAAAcMrauXOnunXrlugwPFNbW6tevXqprKws0aG0ORkZGar+2j8Y58yZo7lz53rS/uLFizVz5kzjmjbvv/++LrjgAu3atUtdu3aNbP/+978vy7K0dOlST+I5USf9TJv8/Hzt3LlTmZmZsixLlZWVKigo0M6dO5WVlZXo8HCSYfyguRg7aC7GDpqLsYMTwfhBc3197DiOo6qqKuXn5yc6NE+lpqZq+/btqq+PYfYV4uI4jqyvzdI83iybu+66Sw899JBre59//rkGDBjgWXzJ5qRP2vh8vqgZ3aysLD6A0GyMHzQXYwfNxdhBczF2cCIYP2iufx472dnZCY6mZaSmpibNYrSnqttvv13XX3+9a53evXs3q+28vDxJUnl5eZOZNuXl5Ro6dGiz2mwJJ33SBgAAAAAAtD2dO3dW586dW6TtXr16KS8vT6tWrYokaSorK7Vu3TrdfPPNLbLP5jCvPAUAAAAAAJDEduzYoZKSEu3YsUPhcFglJSUqKSlpsn7OgAEDtGzZMkmSZVmaOXOmHnjgAb322mvatGmTrrvuOuXn52vSpEkJehXHanMzbUKhkObMmdPqK0+jbWD8oLkYO2guxg6ai7GDE8H4QXMxdpCsZs+erWeffTby/Oyzz5YkvfPOOxo5cqQkqbS0VBUVFZE6P/nJT1RTU6Mbb7xRBw8e1De/+U2tXLkyqS6LO+nvHgUAAAAAANAWcXkUAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJqM0lbZ588kn17NlTqampKiws1IcffpjokJDk5s6dK8uymjwGDBiQ6LCQpN59911NnDhR+fn5sixLy5cvb1LuOI5mz56trl27Ki0tTaNHj9YXX3yRmGCRVExj5/rrrz/mXDRu3LjEBIukMn/+fJ133nnKzMxUly5dNGnSJJWWljapU1tbq+nTp6tTp07KyMjQFVdcofLy8gRFjGQRy9gZOXLkMeeem266KUERI1ksXLhQgwcPVlZWlrKyslRUVKQ//OEPkXLOOUDraVNJm6VLl6q4uFhz5szRxx9/rCFDhmjs2LHas2dPokNDkhs4cKB2794debz33nuJDglJqqamRkOGDNGTTz4ZtfznP/+5HnvsMS1atEjr1q1Tu3btNHbsWNXW1rZypEg2prEjSePGjWtyLvrd737XihEiWa1Zs0bTp0/XBx98oLfeeksNDQ0aM2aMampqInVuu+02/dd//ZdeeuklrVmzRrt27dLll1+ewKiRDGIZO5I0bdq0Jueen//85wmKGMmiW7duevDBB7VhwwZ99NFHuvjii3XZZZfps88+k8Q5B2hNbeqW34WFhTrvvPP0xBNPSJJs21ZBQYFuueUW3XXXXQmODslq7ty5Wr58uUpKShIdCk4ylmVp2bJlmjRpkqQjs2zy8/N1++2364477pAkVVRUKDc3V4sXL9bVV1+dwGiRTL4+dqQjM20OHjx4zAwc4Ov27t2rLl26aM2aNRoxYoQqKirUuXNnLVmyRN/73vckSVu2bNEZZ5yhtWvX6hvf+EaCI0ay+PrYkY7MtBk6dKgWLFiQ2OCQ9Dp27KiHH35Y3/ve9zjnAK2ozcy0qa+v14YNGzR69OjINp/Pp9GjR2vt2rUJjAwngy+++EL5+fnq3bu3rr32Wu3YsSPRIeEktH37dpWVlTU5D2VnZ6uwsJDzEGKyevVqdenSRf3799fNN9+s/fv3JzokJKGKigpJR/6AkqQNGzaooaGhyblnwIAB6t69O+ceNPH1sXPU888/r5ycHJ111lmaNWuWDh06lIjwkKTC4bBeeOEF1dTUqKioiHMO0MpSEh2AV/bt26dwOKzc3Nwm23Nzc7Vly5YERYWTQWFhoRYvXqz+/ftr9+7dmjdvni688EJt3rxZmZmZiQ4PJ5GysjJJinoeOloGHM+4ceN0+eWXq1evXtq2bZvuvvtujR8/XmvXrpXf7090eEgStm1r5syZuuCCC3TWWWdJOnLuCQaDat++fZO6nHvwz6KNHUn6wQ9+oB49eig/P18bN27UnXfeqdLSUr3yyisJjBbJYNOmTSoqKlJtba0yMjK0bNkynXnmmSopKeGcA7SiNpO0AZpr/PjxkZ8HDx6swsJC9ejRQy+++KJuuOGGBEYG4FTyz5fPDRo0SIMHD1afPn20evVqjRo1KoGRIZlMnz5dmzdvZu01xO14Y+fGG2+M/Dxo0CB17dpVo0aN0rZt29SnT5/WDhNJpH///iopKVFFRYVefvllTZkyRWvWrEl0WMApp81cHpWTkyO/33/MquXl5eXKy8tLUFQ4GbVv316nn366tm7dmuhQcJI5eq7hPAQv9O7dWzk5OZyLEDFjxgy9/vrreuedd9StW7fI9ry8PNXX1+vgwYNN6nPuwVHHGzvRFBYWShLnHigYDKpv374aNmyY5s+fryFDhujRRx/lnAO0sjaTtAkGgxo2bJhWrVoV2WbbtlatWqWioqIERoaTTXV1tbZt26auXbsmOhScZHr16qW8vLwm56HKykqtW7eO8xDi9uWXX2r//v2ciyDHcTRjxgwtW7ZMb7/9tnr16tWkfNiwYQoEAk3OPaWlpdqxYwfnnlOcaexEc/TGDJx78HW2bauuro5zDtDK2tTlUcXFxZoyZYrOPfdcDR8+XAsWLFBNTY2mTp2a6NCQxO644w5NnDhRPXr00K5duzRnzhz5/X5dc801iQ4NSai6urrJfx+3b9+ukpISdezYUd27d9fMmTP1wAMPqF+/furVq5fuvfde5efnN7lLEE5NbmOnY8eOmjdvnq644grl5eVp27Zt+slPfqK+fftq7NixCYwayWD69OlasmSJXn31VWVmZkbWjMjOzlZaWpqys7N1ww03qLi4WB07dlRWVpZuueUWFRUVcReXU5xp7Gzbtk1LlizRhAkT1KlTJ23cuFG33XabRowYocGDByc4eiTSrFmzNH78eHXv3l1VVVVasmSJVq9erTfffJNzDtDanDbm8ccfd7p37+4Eg0Fn+PDhzgcffJDokJDkrrrqKqdr165OMBh0TjvtNOeqq65ytm7dmuiwkKTeeecdR9IxjylTpjiO4zi2bTv33nuvk5ub64RCIWfUqFFOaWlpYoNGUnAbO4cOHXLGjBnjdO7c2QkEAk6PHj2cadOmOWVlZYkOG0kg2riR5Pz617+O1Dl8+LDzr//6r06HDh2c9PR057vf/a6ze/fuxAWNpGAaOzt27HBGjBjhdOzY0QmFQk7fvn2dH//4x05FRUViA0fC/fCHP3R69OjhBINBp3Pnzs6oUaOc//7v/46Uc84BWo/lOI7TmkkiAAAAAAAAmLWZNW0AAAAAAADaEpI2AAAAAAAASYikDQAAAAAAQBIiaQMAAAAAAJCESNoAAAAAAAAkIZI2AAAAAAAASYikDQAAAAAAQBIiaQMAAAAAAJCESNoAANDCrr/+ek2aNCnRYQAAAOAkk5LoAAAAOJlZluVaPmfOHD366KNyHKeVIgIAAEBbQdIGAIATsHv37sjPS5cu1ezZs1VaWhrZlpGRoYyMjESEBgAAgJMcl0cBAHAC8vLyIo/s7GxZltVkW0ZGxjGXR40cOVK33HKLZs6cqQ4dOig3N1dPP/20ampqNHXqVGVmZqpv3776wx/+0GRfmzdv1vjx45WRkaHc3FxNnjxZ+/bta+VXDAAAgNZC0gYAgAR49tlnlZOTow8//FC33HKLbr75Zl155ZU6//zz9fHHH2vMmDGaPHmyDh06JEk6ePCgLr74Yp199tn66KOPtHLlSpWXl+v73/9+gl8JAAAAWgpJGwAAEmDIkCG655571K9fP82aNUupqanKycnRtGnT1K9fP82ePVv79+/Xxo0bJUlPPPGEzj77bP3sZz/TgAEDdPbZZ+uZZ57RO++8o7/85S8JfjUAAABoCaxpAwBAAgwePDjys9/vV6dOnTRo0KDIttzcXEnSnj17JEmffvqp3nnnnajr42zbtk2nn356C0cMAACA1kbSBgCABAgEAk2eW5bVZNvRu1LZti1Jqq6u1sSJE/XQQw8d01bXrl1bMFIAAAAkCkkbAABOAuecc45+//vfq2fPnkpJ4eMbAADgVMCaNgAAnASmT5+uAwcO6JprrtH69eu1bds2vfnmm5o6darC4XCiwwMAAEALIGkDAMBJID8/X//zP/+jcDisMWPGaNCgQZo5c6bat28vn4+PcwAAgLbIchzHSXQQAAAAAAAAaIp/zQEAAAAAACQhkjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJiKQNAAAAAABAEiJpAwAAAAAAkIRI2gAAAAAAACQhkjYAAAAAAABJiKQNAAAAAABAEvr/dYNwxBtauLsAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -984,7 +967,8 @@ "plt.yticks(np.arange(L))\n", "plt.ylabel(\"Site $i$\")\n", "plt.xlabel(\"Time\")\n", - "plt.colorbar(label=\"$\\\\langle Z_i \\\\rangle$\", aspect=1.8)" + "plt.colorbar(label=\"$\\\\langle Z_i \\\\rangle$\", aspect=1.8)\n", + "plt.show()" ] }, { @@ -1010,7 +994,7 @@ { "data": { "text/html": [ - "

Version Information

SoftwareVersion
qiskit1.0.0
qiskit_algorithms0.3.0
System information
Python version3.10.0
OSDarwin
Mon Feb 19 11:25:35 2024 CET
" + "

Version Information

SoftwareVersion
qiskit1.4.1
qiskit_algorithms0.4.0
System information
Python version3.13.3
OSLinux
Mon Jun 02 14:40:54 2025 CEST
" ], "text/plain": [ "" @@ -1022,7 +1006,7 @@ { "data": { "text/html": [ - "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2024.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" + "

This code is a part of a Qiskit project

© Copyright IBM 2017, 2025.

This code is licensed under the Apache License, Version 2.0. You may
obtain a copy of this license in the LICENSE.txt file in the root directory
of this source tree or at http://www.apache.org/licenses/LICENSE-2.0.

Any modifications or derivative works of this code must retain this
copyright notice, and modified files need to carry a notice indicating
that they have been altered from the originals.

" ], "text/plain": [ "" @@ -1056,7 +1040,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.0" + "version": "3.13.3" } }, "nbformat": 4, diff --git a/qiskit_algorithms/algorithm_job.py b/qiskit_algorithms/algorithm_job.py index b1215574..0ec841bc 100644 --- a/qiskit_algorithms/algorithm_job.py +++ b/qiskit_algorithms/algorithm_job.py @@ -20,26 +20,6 @@ class AlgorithmJob(PrimitiveJob): """ This class is introduced for typing purposes and provides no additional function beyond that inherited from its parents. - - Update: :meth:`AlgorithmJob.submit()` method added. See its - documentation for more info. """ - def submit(self) -> None: - """ - Submit the job for execution. - - For V1 primitives, Qiskit ``PrimitiveJob`` subclassed JobV1 and defined ``submit()``. - ``PrimitiveJob`` was updated for V2 primitives, no longer subclasses ``JobV1``, and - now has a private ``_submit()`` method, with ``submit()`` being deprecated as of - Qiskit version 0.46. This maintains the ``submit()`` for ``AlgorithmJob`` here as - it's called in many places for such a job. An alternative could be to make - 0.46 the required minimum version and alter all algorithm's call sites to use - ``_submit()`` and make this an empty class again as it once was. For now this - way maintains compatibility with the current min version of 0.44. - """ - # TODO: Considering changing this in the future - see above docstring. - try: - super()._submit() - except AttributeError: - super().submit() + pass diff --git a/qiskit_algorithms/amplitude_amplifiers/grover.py b/qiskit_algorithms/amplitude_amplifiers/grover.py index 56fd2ad1..3ebdb34f 100644 --- a/qiskit_algorithms/amplitude_amplifiers/grover.py +++ b/qiskit_algorithms/amplitude_amplifiers/grover.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2023. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -18,16 +18,14 @@ from typing import Any import numpy as np - from qiskit import ClassicalRegister, QuantumCircuit -from qiskit.primitives import BaseSampler -from qiskit.quantum_info import Statevector +from qiskit.primitives import BaseSamplerV2 from qiskit_algorithms.exceptions import AlgorithmError from qiskit_algorithms.utils import algorithm_globals - from .amplification_problem import AmplificationProblem from .amplitude_amplifier import AmplitudeAmplifier, AmplitudeAmplifierResult +from ..custom_types import Transpiler class Grover(AmplitudeAmplifier): @@ -116,7 +114,10 @@ def __init__( iterations: list[int] | Iterator[int] | int | None = None, growth_rate: float | None = None, sample_from_iterations: bool = False, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: @@ -136,6 +137,11 @@ def __init__( powers of the Grover operator, a random integer sample between 0 and smaller value than the iteration is used as a power, see [1], Section 4. sampler: A Sampler to use for sampling the results of the circuits. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: ValueError: If ``growth_rate`` is a float but not larger than 1. @@ -165,9 +171,11 @@ def __init__( self._sampler = sampler self._sample_from_iterations = sample_from_iterations self._iterations_arg = iterations + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} @property - def sampler(self) -> BaseSampler | None: + def sampler(self) -> BaseSamplerV2 | None: """Get the sampler. Returns: @@ -176,7 +184,7 @@ def sampler(self) -> BaseSampler | None: return self._sampler @sampler.setter - def sampler(self, sampler: BaseSampler) -> None: + def sampler(self, sampler: BaseSamplerV2) -> None: """Set the sampler. Args: @@ -234,23 +242,29 @@ def amplify(self, amplification_problem: AmplificationProblem) -> "GroverResult" # sample from [0, power) if specified if self._sample_from_iterations: power = algorithm_globals.random.integers(power) + # Run a grover experiment for a given power of the Grover operator. - if self._sampler is not None: - qc = self.construct_circuit(amplification_problem, power, measurement=True) - job = self._sampler.run([qc]) - - try: - results = job.result() - except Exception as exc: - raise AlgorithmError("Sampler job failed.") from exc - - num_bits = len(amplification_problem.objective_qubits) - circuit_results: dict[str, Any] | Statevector | np.ndarray = { - np.binary_repr(k, num_bits): v for k, v in results.quasi_dists[0].items() - } - top_measurement, max_probability = max( - circuit_results.items(), key=lambda x: x[1] # type: ignore[union-attr] - ) + qc = self.construct_circuit(amplification_problem, power, measurement=True) + + if self._transpiler is not None: + qc = self._transpiler.run(qc, **self._transpiler_options) + + job = self._sampler.run([qc]) + + try: + results = job.result() + except Exception as exc: + raise AlgorithmError("Sampler job failed.") from exc + + circuit_results = getattr(results[0].data, qc.cregs[0].name) + circuit_results = { + label: value / circuit_results.num_shots + for label, value in circuit_results.get_counts().items() + } + + top_measurement, max_probability = max( + circuit_results.items(), key=lambda x: x[1] # type: ignore[union-attr] + ) all_circuit_results.append(circuit_results) diff --git a/qiskit_algorithms/amplitude_estimators/ae.py b/qiskit_algorithms/amplitude_estimators/ae.py index 6444b4b2..149267f9 100644 --- a/qiskit_algorithms/amplitude_estimators/ae.py +++ b/qiskit_algorithms/amplitude_estimators/ae.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2023. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -13,17 +13,21 @@ """The Quantum Phase Estimation-based Amplitude Estimation algorithm.""" from __future__ import annotations -from collections import OrderedDict + import warnings +from collections import OrderedDict +from typing import Any + import numpy as np -from scipy.stats import chi2, norm +from qiskit import QuantumCircuit, ClassicalRegister +from qiskit.primitives import BaseSamplerV2, StatevectorSampler from scipy.optimize import bisect +from scipy.stats import chi2, norm -from qiskit import QuantumCircuit, ClassicalRegister -from qiskit.primitives import BaseSampler, Sampler -from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .ae_utils import pdf_a, derivative_log_pdf_a, bisect_max +from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem +from ..custom_types import Transpiler from ..exceptions import AlgorithmError @@ -66,7 +70,10 @@ def __init__( num_eval_qubits: int, phase_estimation_circuit: QuantumCircuit | None = None, iqft: QuantumCircuit | None = None, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: @@ -77,6 +84,10 @@ def __init__( iqft: The inverse quantum Fourier transform component, defaults to using a standard implementation from `qiskit.circuit.library.QFT` when None. sampler: A sampler primitive to evaluate the circuits. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: ValueError: If the number of evaluation qubits is smaller than 1. @@ -94,8 +105,11 @@ def __init__( self._pec = phase_estimation_circuit self._sampler = sampler + self._transpiler = transpiler + self._transpiler_options = transpiler_options + @property - def sampler(self) -> BaseSampler | None: + def sampler(self) -> BaseSamplerV2 | None: """Get the sampler primitive. Returns: @@ -104,7 +118,7 @@ def sampler(self) -> BaseSampler | None: return self._sampler @sampler.setter - def sampler(self, sampler: BaseSampler) -> None: + def sampler(self, sampler: BaseSamplerV2) -> None: """Set sampler primitive. Args: @@ -149,6 +163,9 @@ def construct_circuit( circuit.add_register(cr) circuit.measure(list(range(self._m)), list(range(self._m))) + if self._transpiler is not None: + circuit = self._transpiler.run(circuit, **self._transpiler_options) + return circuit def evaluate_measurements( @@ -288,8 +305,10 @@ def estimate(self, estimation_problem: EstimationProblem) -> "AmplitudeEstimatio "The state_preparation property of the estimation problem must be set." ) if self._sampler is None: - warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") - self._sampler = Sampler() + warnings.warn( + "No sampler provided, defaulting to StatevectorSampler from qiskit.primitives" + ) + self._sampler = StatevectorSampler() if estimation_problem.objective_qubits is None: raise ValueError("The objective_qubits property of the estimation problem must be set.") @@ -307,23 +326,17 @@ def estimate(self, estimation_problem: EstimationProblem) -> "AmplitudeEstimatio result.post_processing = estimation_problem.post_processing # type: ignore[assignment] circuit = self.construct_circuit(estimation_problem, measurement=True) + try: - job = self._sampler.run([circuit]) - ret = job.result() + job = self._sampler.run([(circuit,)]) + ret = job.result()[0] except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc - shots = ret.metadata[0].get("shots") - exact = True + circuit_results = getattr(ret.data, next(iter(ret.data.keys()))) + shots = ret.metadata["shots"] - if shots is None: - result.circuit_results = ret.quasi_dists[0].binary_probabilities() - shots = 1 - else: - result.circuit_results = { - k: round(v * shots) for k, v in ret.quasi_dists[0].binary_probabilities().items() - } - exact = False + result.circuit_results = circuit_results.get_counts() # store shots result.shots = shots @@ -356,7 +369,7 @@ def estimate(self, estimation_problem: EstimationProblem) -> "AmplitudeEstimatio mle # type: ignore[assignment,arg-type] ) - result.confidence_interval = self.compute_confidence_interval(result, exact=exact) + result.confidence_interval = self.compute_confidence_interval(result) result.confidence_interval_processed = tuple( estimation_problem.post_processing(value) # type: ignore[assignment,arg-type] for value in result.confidence_interval @@ -369,7 +382,6 @@ def compute_confidence_interval( result: "AmplitudeEstimationResult", alpha: float = 0.05, kind: str = "likelihood_ratio", - exact: bool = False, ) -> tuple[float, float]: """Compute the (1 - alpha) confidence interval. @@ -378,7 +390,6 @@ def compute_confidence_interval( alpha: Confidence level: compute the (1 - alpha) confidence interval. kind: The method to compute the confidence interval, can be 'fisher', 'observed_fisher' or 'likelihood_ratio' (default) - exact: Whether the result comes from a statevector simulation or not Returns: The (1 - alpha) confidence interval of the specified kind. @@ -386,9 +397,6 @@ def compute_confidence_interval( Raises: NotImplementedError: If the confidence interval method `kind` is not implemented. """ - # if statevector simulator the estimate is exact - if exact: - return (result.mle, result.mle) if kind in ["likelihood_ratio", "lr"]: return _likelihood_ratio_confint(result, alpha) diff --git a/qiskit_algorithms/amplitude_estimators/fae.py b/qiskit_algorithms/amplitude_estimators/fae.py index e5639245..6e6b7750 100644 --- a/qiskit_algorithms/amplitude_estimators/fae.py +++ b/qiskit_algorithms/amplitude_estimators/fae.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2017, 2024. +# (C) Copyright IBM 2017, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -13,16 +13,17 @@ """Faster Amplitude Estimation.""" from __future__ import annotations -from typing import cast, Tuple +from typing import cast, Tuple, Any import warnings import numpy as np from qiskit.circuit import QuantumCircuit, ClassicalRegister -from qiskit.primitives import BaseSampler, Sampler +from qiskit.primitives import BaseSamplerV2, StatevectorSampler from qiskit_algorithms.exceptions import AlgorithmError from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem +from ..custom_types import Transpiler class FasterAmplitudeEstimation(AmplitudeEstimator): @@ -51,7 +52,10 @@ def __init__( delta: float, maxiter: int, rescale: bool = True, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: @@ -59,6 +63,10 @@ def __init__( maxiter: The number of iterations, the maximal power of Q is `2 ** (maxiter - 1)`. rescale: Whether to rescale the problem passed to `estimate`. sampler: A sampler primitive to evaluate the circuits. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ super().__init__() @@ -68,9 +76,11 @@ def __init__( self._maxiter = maxiter self._num_oracle_calls = 0 self._sampler = sampler + self._transpiler = transpiler + self._transpiler_options = transpiler_options @property - def sampler(self) -> BaseSampler | None: + def sampler(self) -> BaseSamplerV2 | None: """Get the sampler primitive. Returns: @@ -79,7 +89,7 @@ def sampler(self) -> BaseSampler | None: return self._sampler @sampler.setter - def sampler(self, sampler: BaseSampler) -> None: + def sampler(self, sampler: BaseSamplerV2) -> None: """Set sampler primitive. Args: @@ -90,27 +100,31 @@ def sampler(self, sampler: BaseSampler) -> None: def _cos_estimate(self, estimation_problem, k, shots): if self._sampler is None: - warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") - self._sampler = Sampler() + warnings.warn( + "No sampler provided, defaulting to StatevectorSampler from qiskit.primitives" + ) + self._sampler = StatevectorSampler() circuit = self.construct_circuit(estimation_problem, k, measurement=True) try: - job = self._sampler.run([circuit], shots=shots) - result = job.result() + pub = (circuit, None, shots) + job = self._sampler.run([pub]) + result = job.result()[0] except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc - if shots is None: - shots = 1 + circuit_results = getattr(result.data, next(iter(result.data.keys()))) + shots = result.metadata["shots"] + self._num_oracle_calls += (2 * k + 1) * shots # sum over all probabilities where the objective qubits are 1 prob = 0 - for bit, probabilities in result.quasi_dists[0].binary_probabilities().items(): + for bit, value in circuit_results.get_counts().items(): # check if it is a good state if estimation_problem.is_good_state(bit): - prob += probabilities + prob += value / shots cos_estimate = 1 - 2 * prob @@ -163,6 +177,9 @@ def construct_circuit( circuit.barrier() circuit.measure(estimation_problem.objective_qubits, c[:]) + if self._transpiler is not None: + circuit = self._transpiler.run(circuit, **self._transpiler_options) + return circuit def estimate(self, estimation_problem: EstimationProblem) -> "FasterAmplitudeEstimationResult": @@ -178,8 +195,10 @@ def estimate(self, estimation_problem: EstimationProblem) -> "FasterAmplitudeEst AlgorithmError: Sampler run error. """ if self._sampler is None: - warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") - self._sampler = Sampler() + warnings.warn( + "No sampler provided, defaulting to StatevectorSampler from qiskit.primitives" + ) + self._sampler = StatevectorSampler() self._num_oracle_calls = 0 diff --git a/qiskit_algorithms/amplitude_estimators/iae.py b/qiskit_algorithms/amplitude_estimators/iae.py index 2121103d..36a9a396 100644 --- a/qiskit_algorithms/amplitude_estimators/iae.py +++ b/qiskit_algorithms/amplitude_estimators/iae.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -13,16 +13,17 @@ """The Iterative Quantum Amplitude Estimation Algorithm.""" from __future__ import annotations -from typing import cast, Callable, Tuple +from typing import cast, Callable, Tuple, Any import warnings import numpy as np from scipy.stats import beta from qiskit import ClassicalRegister, QuantumCircuit -from qiskit.primitives import BaseSampler, Sampler +from qiskit.primitives import BaseSamplerV2, StatevectorSampler from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem +from ..custom_types import Transpiler from ..exceptions import AlgorithmError @@ -54,7 +55,9 @@ def __init__( alpha: float, confint_method: str = "beta", min_ratio: float = 2, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" The output of the algorithm is an estimate for the amplitude `a`, that with at least @@ -69,6 +72,10 @@ def __init__( Clopper-Pearson intervals (default) min_ratio: Minimal q-ratio (:math:`K_{i+1} / K_i`) for FindNextK sampler: A sampler primitive to evaluate the circuits. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: AlgorithmError: if the method to compute the confidence intervals is not supported @@ -96,9 +103,11 @@ def __init__( self._min_ratio = min_ratio self._confint_method = confint_method self._sampler = sampler + self._transpiler = transpiler + self._transpiler_options = transpiler_options @property - def sampler(self) -> BaseSampler | None: + def sampler(self) -> BaseSamplerV2 | None: """Get the sampler primitive. Returns: @@ -107,7 +116,7 @@ def sampler(self) -> BaseSampler | None: return self._sampler @sampler.setter - def sampler(self, sampler: BaseSampler) -> None: + def sampler(self, sampler: BaseSamplerV2) -> None: """Set sampler primitive. Args: @@ -231,6 +240,9 @@ def construct_circuit( circuit.barrier() circuit.measure(estimation_problem.objective_qubits, c[:]) + if self._transpiler is not None: + circuit = self._transpiler.run(circuit, **self._transpiler_options) + return circuit def _good_state_probability( @@ -271,8 +283,10 @@ def estimate( AlgorithmError: Sampler job run error. """ if self._sampler is None: - warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") - self._sampler = Sampler() + warnings.warn( + "No sampler provided, defaulting to StatevectorSampler from qiskit.primitives" + ) + self._sampler = StatevectorSampler() # initialize memory variables powers = [0] # list of powers k: Q^k, (called 'k' in paper) @@ -307,43 +321,17 @@ def estimate( # run measurements for Q^k A|0> circuit circuit = self.construct_circuit(estimation_problem, k, measurement=True) - counts = {} try: - job = self._sampler.run([circuit]) - ret = job.result() + job = self._sampler.run([(circuit,)]) + ret = job.result()[0] except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc - shots = ret.metadata[0].get("shots") - if shots is None: - circuit = self.construct_circuit(estimation_problem, k=0, measurement=True) - try: - job = self._sampler.run([circuit]) - ret = job.result() - except Exception as exc: - raise AlgorithmError("The job was not completed successfully. ") from exc - - # calculate the probability of measuring '1' - prob = 0.0 - for bit, probabilities in ret.quasi_dists[0].binary_probabilities().items(): - # check if it is a good state - if estimation_problem.is_good_state(bit): - prob += probabilities - - a_confidence_interval = [prob, prob] - a_intervals.append(a_confidence_interval) - - theta_i_interval = [ - np.arccos(1 - 2 * a_i) / 2 / np.pi for a_i in a_confidence_interval - ] - theta_intervals.append(theta_i_interval) - num_oracle_queries = 0 # no Q-oracle call, only a single one to A - break - - counts = { - k: round(v * shots) for k, v in ret.quasi_dists[0].binary_probabilities().items() - } + circuit_results = getattr(ret.data, next(iter(ret.data.keys()))) + shots = ret.metadata["shots"] + + counts = circuit_results.get_counts() # calculate the probability of measuring '1', 'prob' is a_i in the paper one_counts, prob = self._good_state_probability(estimation_problem, counts) diff --git a/qiskit_algorithms/amplitude_estimators/mlae.py b/qiskit_algorithms/amplitude_estimators/mlae.py index 44a8fb68..ad1d9d6f 100644 --- a/qiskit_algorithms/amplitude_estimators/mlae.py +++ b/qiskit_algorithms/amplitude_estimators/mlae.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2023. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,7 +14,7 @@ from __future__ import annotations from collections.abc import Sequence -from typing import Callable, List, Tuple, cast +from typing import Callable, List, Tuple, cast, Any import warnings import numpy as np @@ -22,10 +22,11 @@ from scipy.stats import norm, chi2 from qiskit import ClassicalRegister, QuantumRegister, QuantumCircuit -from qiskit.primitives import BaseSampler, Sampler +from qiskit.primitives import BaseSamplerV2, StatevectorSampler from .amplitude_estimator import AmplitudeEstimator, AmplitudeEstimatorResult from .estimation_problem import EstimationProblem +from ..custom_types import Transpiler from ..exceptions import AlgorithmError MINIMIZER = Callable[[Callable[[float], float], List[Tuple[float, float]]], float] @@ -54,7 +55,10 @@ def __init__( self, evaluation_schedule: list[int] | int, minimizer: MINIMIZER | None = None, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: @@ -68,12 +72,19 @@ def __init__( argument and a list of (float, float) tuples (as bounds) as second argument and returns a single float which is the found minimum. sampler: A sampler primitive to evaluate the circuits. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. + Raises: ValueError: If the number of oracle circuits is smaller than 1. """ super().__init__() + self._transpiler = transpiler + self._transpiler_options = transpiler_options # get parameters if isinstance(evaluation_schedule, int): @@ -101,7 +112,7 @@ def default_minimizer(objective_fn, bounds): self._sampler = sampler @property - def sampler(self) -> BaseSampler | None: + def sampler(self) -> BaseSamplerV2 | None: """Get the sampler primitive. Returns: @@ -110,7 +121,7 @@ def sampler(self) -> BaseSampler | None: return self._sampler @sampler.setter - def sampler(self, sampler: BaseSampler) -> None: + def sampler(self, sampler: BaseSamplerV2) -> None: """Set sampler primitive. Args: @@ -162,6 +173,10 @@ def construct_circuits( circuits += [qc_k] + if self._transpiler is not None: + # circuits = self._transpiler.run(circuits, **self._transpiler_options) + circuits = self._transpiler.run(circuits[0], **self._transpiler_options) + return circuits @staticmethod @@ -170,7 +185,6 @@ def compute_confidence_interval( alpha: float, kind: str = "fisher", apply_post_processing: bool = False, - exact: bool = False, ) -> tuple[float, float]: """Compute the `alpha` confidence interval using the method `kind`. @@ -184,7 +198,6 @@ def compute_confidence_interval( kind: The method to compute the confidence interval. Defaults to 'fisher', which computes the theoretical Fisher information. apply_post_processing: If True, apply post-processing to the confidence interval. - exact: Whether the result comes from a statevector simulation or not Returns: The specified confidence interval. @@ -195,11 +208,7 @@ def compute_confidence_interval( """ interval: tuple[float, float] | None = None - # if statevector simulator the estimate is exact - if exact: - interval = (result.estimation, result.estimation) - - elif kind in ["likelihood_ratio", "lr"]: + if kind in ["likelihood_ratio", "lr"]: interval = _likelihood_ratio_confint(result, alpha) elif kind in ["fisher", "fi"]: @@ -275,8 +284,10 @@ def estimate( AlgorithmError: Sampler job run error """ if self._sampler is None: - warnings.warn("No sampler provided, defaulting to Sampler from qiskit.primitives") - self._sampler = Sampler() + warnings.warn( + "No sampler provided, defaulting to StatevectorSampler from qiskit.primitives" + ) + self._sampler = StatevectorSampler() if estimation_problem.state_preparation is None: raise AlgorithmError( @@ -285,34 +296,27 @@ def estimate( result = MaximumLikelihoodAmplitudeEstimationResult() result.evaluation_schedule = self._evaluation_schedule + result.minimizer = self._minimizer result.post_processing = cast(Callable[[float], float], estimation_problem.post_processing) circuits = self.construct_circuits(estimation_problem, measurement=True) try: - job = self._sampler.run(circuits) + pubs = [(circuit,) for circuit in circuits] + job = self._sampler.run(pubs) ret = job.result() except Exception as exc: raise AlgorithmError("The job was not completed successfully. ") from exc - circuit_results = [] - shots = ret.metadata[0].get("shots") - exact = True - if shots is None: - for quasi_dist in ret.quasi_dists: - circuit_result = quasi_dist.binary_probabilities() - circuit_results.append(circuit_result) - shots = 1 - else: - # get counts and construct MLE input - for quasi_dist in ret.quasi_dists: - counts = {k: round(v * shots) for k, v in quasi_dist.binary_probabilities().items()} - circuit_results.append(counts) - exact = False - - result.shots = shots - result.circuit_results = circuit_results + pub_results_data = [ + getattr(pub_result.data, circuit.cregs[0].name) + for pub_result, circuit in zip(ret, circuits) + ] + + result.shots = self._sampler.default_shots + # get counts and construct MLE input + result.circuit_results = [prob_dist.get_counts() for prob_dist in pub_results_data] # run maximum likelihood estimation num_state_qubits = circuits[0].num_qubits - circuits[0].num_ancillas @@ -334,9 +338,7 @@ def estimate( result.num_oracle_queries = result.shots * sum(k for k in result.evaluation_schedule) # compute and store confidence interval - confidence_interval = self.compute_confidence_interval( - result, alpha=0.05, kind="fisher", exact=exact - ) + confidence_interval = self.compute_confidence_interval(result, alpha=0.05, kind="fisher") result.confidence_interval = confidence_interval result.confidence_interval_processed = tuple( # type: ignore[assignment] estimation_problem.post_processing(value) # type: ignore[arg-type] @@ -460,7 +462,6 @@ def _compute_fisher_information( # one_hits = one_hits[:num_sum_terms] # Compute the Fisher information - fisher_information = None if observed: # Note, that the observed Fisher information is very unreliable in this algorithm! d_loglik = 0 @@ -470,7 +471,6 @@ def _compute_fisher_information( d_loglik /= np.sqrt(a * (1 - a)) fisher_information = d_loglik**2 / len(all_hits) - else: fisher_information = sum( shots_k * (2 * m_k + 1) ** 2 for shots_k, m_k in zip(all_hits, evaluation_schedule) diff --git a/qiskit_algorithms/custom_types.py b/qiskit_algorithms/custom_types.py new file mode 100644 index 00000000..3d98fd3e --- /dev/null +++ b/qiskit_algorithms/custom_types.py @@ -0,0 +1,28 @@ +# This code is part of a Qiskit project. +# +# (C) Copyright IBM 2024. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +"""Types used by the qiskit-algorithms package.""" +from __future__ import annotations + +from typing import Any, Protocol, Union + +from qiskit import QuantumCircuit + +_Circuits = Union[list[QuantumCircuit], QuantumCircuit] + + +class Transpiler(Protocol): + """A Generic type to represent a transpiler.""" + + def run(self, circuits: _Circuits, **options: Any) -> _Circuits: + """Transpile a circuit or a list of quantum circuits.""" + pass diff --git a/qiskit_algorithms/eigensolvers/vqd.py b/qiskit_algorithms/eigensolvers/vqd.py index 48ba25bb..a0d4d420 100644 --- a/qiskit_algorithms/eigensolvers/vqd.py +++ b/qiskit_algorithms/eigensolvers/vqd.py @@ -25,7 +25,7 @@ import numpy as np from qiskit.circuit import QuantumCircuit -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.quantum_info import SparsePauliOp @@ -88,7 +88,7 @@ class VQD(VariationalAlgorithm, Eigensolver): updated once the VQD object has been constructed. Attributes: - estimator (BaseEstimator): The primitive instance used to perform the expectation + estimator (BaseEstimatorV2): The primitive instance used to perform the expectation estimation as indicated in the VQD paper. fidelity (BaseStateFidelity): The fidelity class instance used to compute the overlap estimation as indicated in the VQD paper. @@ -115,7 +115,7 @@ class VQD(VariationalAlgorithm, Eigensolver): def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, fidelity: BaseStateFidelity, ansatz: QuantumCircuit, optimizer: Optimizer | Minimizer | Sequence[Optimizer | Minimizer], @@ -363,9 +363,9 @@ def compute_eigenvalues( raise AlgorithmError( f"Convergence threshold is set to {self.convergence_threshold} but an " - f"average fidelity of {average_fidelity:.5f} with the previous eigenstates" - f"has been observed during the evaluation of the {step}{suffix} lowest" - f"eigenvalue." + f"average (weighted by the betas) fidelity of {average_fidelity:.5f} with " + f"the previous eigenstates has been observed during the evaluation of the " + f"{step}{suffix} lowest eigenvalue." ) logger.info( ( @@ -433,9 +433,7 @@ def evaluate_energy(parameters: np.ndarray) -> float | np.ndarray: parameters = np.reshape(parameters, (-1, num_parameters)) batch_size = len(parameters) - estimator_job = self.estimator.run( - batch_size * [self.ansatz], batch_size * [operator], parameters - ) + estimator_job = self.estimator.run([(self.ansatz, operator, parameters)]) total_cost = np.zeros(batch_size) @@ -454,18 +452,17 @@ def evaluate_energy(parameters: np.ndarray) -> float | np.ndarray: total_cost += np.real(betas[state] * cost) try: - estimator_result = estimator_job.result() + estimator_result = estimator_job.result()[0] except Exception as exc: raise AlgorithmError("The primitive job to evaluate the energy failed!") from exc - values = estimator_result.values + total_cost + values = estimator_result.data.evs + total_cost if self.callback is not None: - metadata = estimator_result.metadata - for params, value, meta in zip(parameters, values, metadata): + for params, value in zip(parameters, values): self._eval_count += 1 - self.callback(self._eval_count, params, value, meta, step) + self.callback(self._eval_count, params, value, estimator_result.metadata, step) else: self._eval_count += len(values) diff --git a/qiskit_algorithms/gradients/base/base_estimator_gradient.py b/qiskit_algorithms/gradients/base/base_estimator_gradient.py index f7ea927b..8a847ee7 100644 --- a/qiskit_algorithms/gradients/base/base_estimator_gradient.py +++ b/qiskit_algorithms/gradients/base/base_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023 +# (C) Copyright IBM 2022, 2025 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -18,14 +18,10 @@ from abc import ABC, abstractmethod from collections.abc import Sequence -from copy import copy import numpy as np - from qiskit.circuit import Parameter, ParameterExpression, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.primitives.utils import _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.transpiler.passes import TranslateParameterizedGates @@ -37,8 +33,8 @@ _make_gradient_parameters, _make_gradient_parameter_values, ) - from ...algorithm_job import AlgorithmJob +from ...utils.circuit_key import _circuit_key class BaseEstimatorGradient(ABC): @@ -46,17 +42,16 @@ class BaseEstimatorGradient(ABC): def __init__( self, - estimator: BaseEstimator, - options: Options | None = None, + estimator: BaseEstimatorV2, + precision: float | None = None, derivative_type: DerivativeType = DerivativeType.REAL, ): r""" Args: estimator: The estimator used to compute the gradients. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. derivative_type: The type of derivative. Can be either ``DerivativeType.REAL`` ``DerivativeType.IMAG``, or ``DerivativeType.COMPLEX``. @@ -68,10 +63,8 @@ def __init__( gradient and this type is the only supported type for function-level schemes like finite difference. """ - self._estimator: BaseEstimator = estimator - self._default_options = Options() - if options is not None: - self._default_options.update_options(**options) + self._estimator: BaseEstimatorV2 = estimator + self._precision = precision self._derivative_type = derivative_type self._gradient_circuit_cache: dict[ @@ -94,7 +87,8 @@ def run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter] | None] | None = None, - **options, + *, + precision: float | Sequence[float] | None = None, ) -> AlgorithmJob: """Run the job of the estimator gradient on the given circuits. @@ -107,10 +101,12 @@ def run( ``circuits``. Defaults to None, which means that the gradients of all parameters in each circuit are calculated. None in the sequence means that the gradients of all parameters in the corresponding circuit are calculated. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + precision: Precision to be used by the underlying Estimator. If a single float is + provided, this number will be used for all circuits. If a sequence of floats is + provided, they will be used on a per-circuit basis. If none is provided, the + gradient's default precision will be used for all circuits. If this number is + also set to None, the underlying primitive's default precision will be used + for all circuits. Returns: The job object of the gradients of the expectation values. The i-th result corresponds to @@ -141,15 +137,15 @@ def run( ] # Validate the arguments. self._validate_arguments(circuits, observables, parameter_values, parameters) - # The priority of run option is as follows: - # options in ``run`` method > gradient's default options > primitive's default setting. - opts = copy(self._default_options) - opts.update_options(**options) + + if precision is None: + precision = self.precision # May still be None + # Run the job. job = AlgorithmJob( - self._run, circuits, observables, parameter_values, parameters, **opts.__dict__ + self._run, circuits, observables, parameter_values, parameters, precision=precision ) - job.submit() + job._submit() return job @abstractmethod @@ -159,7 +155,8 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" raise NotImplementedError() @@ -262,7 +259,7 @@ def _postprocess( gradients.append(gradient) metadata.append({"parameters": parameters_}) return EstimatorGradientResult( - gradients=gradients, metadata=metadata, options=results.options + gradients=gradients, metadata=metadata, precision=results.precision ) @staticmethod @@ -327,37 +324,21 @@ def _validate_arguments( ) @property - def options(self) -> Options: - """Return the union of estimator options setting and gradient default options, - where, if the same field is set in both, the gradient's default options override - the primitive's default setting. + def precision(self) -> float | None: + """Return the precision used by the `run` method of the Estimator primitive. If None, + the default precision of the primitive is used. Returns: - The gradient default + estimator options. + The default precision. """ - return self._get_local_options(self._default_options.__dict__) + return self._precision - def update_default_options(self, **options): - """Update the gradient's default options setting. + @precision.setter + def precision(self, precision: float | None): + """Update the gradient's default precision setting. Args: - **options: The fields to update the default options. + precision: The new default precision. """ - self._default_options.update_options(**options) - - def _get_local_options(self, options: Options) -> Options: - """Return the union of the primitive's default setting, - the gradient default options, and the options in the ``run`` method. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - - Args: - options: The fields to update the options - - Returns: - The gradient default + estimator + run options. - """ - opts = copy(self._estimator.options) - opts.update_options(**options) - return opts + self._precision = precision diff --git a/qiskit_algorithms/gradients/base/base_qgt.py b/qiskit_algorithms/gradients/base/base_qgt.py index 2e254a8f..509c69c8 100644 --- a/qiskit_algorithms/gradients/base/base_qgt.py +++ b/qiskit_algorithms/gradients/base/base_qgt.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -18,14 +18,11 @@ from abc import ABC, abstractmethod from collections.abc import Sequence -from copy import copy import numpy as np from qiskit.circuit import Parameter, ParameterExpression, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.primitives.utils import _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 from qiskit.transpiler.passes import TranslateParameterizedGates from .qgt_result import QGTResult @@ -38,6 +35,7 @@ ) from ...algorithm_job import AlgorithmJob +from ...utils.circuit_key import _circuit_key class BaseQGT(ABC): @@ -52,10 +50,10 @@ class BaseQGT(ABC): def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, phase_fix: bool = True, derivative_type: DerivativeType = DerivativeType.COMPLEX, - options: Options | None = None, + precision: float | None = None, ): r""" Args: @@ -87,17 +85,14 @@ def __init__( \mathrm{QGT}_{ij}= [\langle \partial_i \psi | \partial_j \psi \rangle - \langle\partial_i \psi | \psi \rangle \langle\psi | \partial_j \psi \rangle]. - - options: Backend runtime options used for circuit execution. The order of priority is: - options in ``run`` method > QGT's default options > primitive's default - setting. Higher priority setting overrides lower priority setting. + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. """ - self._estimator: BaseEstimator = estimator + self._estimator: BaseEstimatorV2 = estimator + self._precision = precision self._phase_fix: bool = phase_fix self._derivative_type: DerivativeType = derivative_type - self._default_options = Options() - if options is not None: - self._default_options.update_options(**options) self._qgt_circuit_cache: dict[tuple, GradientCircuit] = {} self._gradient_circuit_cache: dict[tuple, GradientCircuit] = {} @@ -116,7 +111,8 @@ def run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter] | None] | None = None, - **options, + *, + precision: float | Sequence[float] | None = None, ) -> AlgorithmJob: """Run the job of the QGTs on the given circuits. @@ -127,10 +123,12 @@ def run( the specified parameters. Each sequence of parameters corresponds to a circuit in ``circuits``. Defaults to None, which means that the QGTs of all parameters in each circuit are calculated. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > QGT's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting. + precision: Precision to be used by the underlying Estimator. If a single float is + provided, this number will be used for all circuits. If a sequence of floats is + provided, they will be used on a per-circuit basis. If none is provided, the + gradient's default precision will be used for all circuits. If this number is + also set to None, the underlying primitive's default precision will be used + for all circuits. Returns: The job object of the QGTs of the expectation values. The i-th result corresponds to @@ -156,12 +154,12 @@ def run( ] # Validate the arguments. self._validate_arguments(circuits, parameter_values, parameters) - # The priority of run option is as follows: - # options in ``run`` method > QGT's default options > primitive's default setting. - opts = copy(self._default_options) - opts.update_options(**options) - job = AlgorithmJob(self._run, circuits, parameter_values, parameters, **opts.__dict__) - job.submit() + + if precision is None: + precision = self.precision # May still be None + + job = AlgorithmJob(self._run, circuits, parameter_values, parameters, precision=precision) + job._submit() return job @abstractmethod @@ -170,7 +168,8 @@ def _run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> QGTResult: """Compute the QGTs on the given circuits.""" raise NotImplementedError() @@ -297,7 +296,7 @@ def _postprocess( qgts=qgts, derivative_type=self.derivative_type, metadata=metadata, - options=results.options, + precision=results.precision, ) @staticmethod @@ -352,37 +351,21 @@ def _validate_arguments( ) @property - def options(self) -> Options: - """Return the union of estimator options setting and QGT default options, - where, if the same field is set in both, the QGT's default options override - the primitive's default setting. + def precision(self) -> float | None: + """Return the precision used by the `run` method of the Estimator primitive. If None, + the default precision of the primitive is used. Returns: - The QGT default + estimator options. + The default precision. """ - return self._get_local_options(self._default_options.__dict__) + return self._precision - def update_default_options(self, **options): - """Update the gradient's default options setting. + @precision.setter + def precision(self, precision: float | None): + """Update the gradient's default precision setting. Args: - **options: The fields to update the default options. + precision: The new default precision. """ - self._default_options.update_options(**options) - - def _get_local_options(self, options: Options) -> Options: - """Return the union of the primitive's default setting, - the QGT default options, and the options in the ``run`` method. - The order of priority is: options in ``run`` method > QGT's default options > primitive's - default setting. - - Args: - options: The fields to update the options - - Returns: - The QGT default + estimator + run options. - """ - opts = copy(self._estimator.options) - opts.update_options(**options) - return opts + self._precision = precision diff --git a/qiskit_algorithms/gradients/base/base_sampler_gradient.py b/qiskit_algorithms/gradients/base/base_sampler_gradient.py index 1114b5f0..c41e7499 100644 --- a/qiskit_algorithms/gradients/base/base_sampler_gradient.py +++ b/qiskit_algorithms/gradients/base/base_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023 +# (C) Copyright IBM 2022, 2025 # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -19,12 +19,9 @@ from abc import ABC, abstractmethod from collections import defaultdict from collections.abc import Sequence -from copy import copy from qiskit.circuit import Parameter, ParameterExpression, QuantumCircuit -from qiskit.primitives import BaseSampler -from qiskit.primitives.utils import _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseSamplerV2 from qiskit.transpiler.passes import TranslateParameterizedGates from .sampler_gradient_result import SamplerGradientResult @@ -36,24 +33,22 @@ ) from ...algorithm_job import AlgorithmJob +from ...utils.circuit_key import _circuit_key class BaseSamplerGradient(ABC): """Base class for a ``SamplerGradient`` to compute the gradients of the sampling probability.""" - def __init__(self, sampler: BaseSampler, options: Options | None = None): + def __init__(self, sampler: BaseSamplerV2, shots: int | None = None): """ Args: sampler: The sampler used to compute the gradients. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + shots: Number of shots to be used by the underlying Sampler. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + number of shots of the primitive is used. """ - self._sampler: BaseSampler = sampler - self._default_options = Options() - if options is not None: - self._default_options.update_options(**options) + self._sampler: BaseSamplerV2 = sampler + self._shots = shots self._gradient_circuit_cache: dict[tuple, GradientCircuit] = {} def run( @@ -61,7 +56,8 @@ def run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter] | None] | None = None, - **options, + *, + shots: int | Sequence[int] | None = None, ) -> AlgorithmJob: """Run the job of the sampler gradient on the given circuits. @@ -73,10 +69,12 @@ def run( ``circuits``. Defaults to None, which means that the gradients of all parameters in each circuit are calculated. None in the sequence means that the gradients of all parameters in the corresponding circuit are calculated. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + shots: Number of shots to be used by the underlying sampler. If a single integer is + provided, this number will be used for all circuits. If a sequence of integers is + provided, they will be used on a per-circuit basis. If none is provided, the + fidelity's default number of shots will be used for all circuits. If this number is + also set to None, the underlying primitive's default number of shots will be used + for all circuits. Returns: The job object of the gradients of the sampling probability. The i-th result corresponds to ``circuits[i]`` evaluated with parameters bound as ``parameter_values[i]``. @@ -102,12 +100,12 @@ def run( ] # Validate the arguments. self._validate_arguments(circuits, parameter_values, parameters) - # The priority of run option is as follows: - # options in `run` method > gradient's default options > primitive's default options. - opts = copy(self._default_options) - opts.update_options(**options) - job = AlgorithmJob(self._run, circuits, parameter_values, parameters, **opts.__dict__) - job.submit() + + if shots is None: + shots = self.shots + + job = AlgorithmJob(self._run, circuits, parameter_values, parameters, shots=shots) + job._submit() return job @abstractmethod @@ -116,7 +114,8 @@ def _run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + shots: int | Sequence[int] | None, ) -> SamplerGradientResult: """Compute the sampler gradients on the given circuits.""" raise NotImplementedError() @@ -213,9 +212,7 @@ def _postprocess( gradient.append(dict(grad_dist)) gradients.append(gradient) metadata.append([{"parameters": parameters_}]) - return SamplerGradientResult( - gradients=gradients, metadata=metadata, options=results.options - ) + return SamplerGradientResult(gradients=gradients, metadata=metadata, shots=results.shots) @staticmethod def _validate_arguments( @@ -264,37 +261,21 @@ def _validate_arguments( ) @property - def options(self) -> Options: - """Return the union of sampler options setting and gradient default options, - where, if the same field is set in both, the gradient's default options override - the primitive's default setting. + def shots(self) -> int | None: + """Return the number of shots used by the `run` method of the Sampler primitive. If None, + the default number of shots of the primitive is used. Returns: - The gradient default + sampler options. + The default number of shots. """ - return self._get_local_options(self._default_options.__dict__) + return self._shots - def update_default_options(self, **options): - """Update the gradient's default options setting. + @shots.setter + def shots(self, shots: int | None): + """Update the gradient's default number of shots setting. Args: - **options: The fields to update the default options. + shots: The new default number of shots. """ - self._default_options.update_options(**options) - - def _get_local_options(self, options: Options) -> Options: - """Return the union of the primitive's default setting, - the gradient default options, and the options in the ``run`` method. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - - Args: - options: The fields to update the options - - Returns: - The gradient default + sampler + run options. - """ - opts = copy(self._sampler.options) - opts.update_options(**options) - return opts + self._shots = shots diff --git a/qiskit_algorithms/gradients/base/estimator_gradient_result.py b/qiskit_algorithms/gradients/base/estimator_gradient_result.py index a01759f0..17b742ba 100644 --- a/qiskit_algorithms/gradients/base/estimator_gradient_result.py +++ b/qiskit_algorithms/gradients/base/estimator_gradient_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,12 +16,10 @@ from __future__ import annotations from dataclasses import dataclass -from typing import Any +from typing import Any, Sequence import numpy as np -from qiskit.providers import Options - @dataclass(frozen=True) class EstimatorGradientResult: @@ -31,5 +29,5 @@ class EstimatorGradientResult: """The gradients of the expectation values.""" metadata: list[dict[str, Any]] """Additional information about the job.""" - options: Options - """Primitive runtime options for the execution of the job.""" + precision: float | Sequence[float] + """Precision for the execution of the job.""" diff --git a/qiskit_algorithms/gradients/base/qgt_result.py b/qiskit_algorithms/gradients/base/qgt_result.py index f7a9d80b..543ec378 100644 --- a/qiskit_algorithms/gradients/base/qgt_result.py +++ b/qiskit_algorithms/gradients/base/qgt_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,12 +16,10 @@ from __future__ import annotations from dataclasses import dataclass -from typing import Any +from typing import Any, Sequence import numpy as np -from qiskit.providers import Options - from ..utils import DerivativeType @@ -35,5 +33,5 @@ class QGTResult: """The type of derivative.""" metadata: list[dict[str, Any]] | list[list[dict[str, Any]]] """Additional information about the job.""" - options: Options - """Primitive runtime options for the execution of the job.""" + precision: float | Sequence[float] + """Precision for the execution of the job.""" diff --git a/qiskit_algorithms/gradients/base/sampler_gradient_result.py b/qiskit_algorithms/gradients/base/sampler_gradient_result.py index 393319ab..0bf09d3d 100644 --- a/qiskit_algorithms/gradients/base/sampler_gradient_result.py +++ b/qiskit_algorithms/gradients/base/sampler_gradient_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -15,11 +15,9 @@ from __future__ import annotations -from typing import Any +from typing import Any, Sequence from dataclasses import dataclass -from qiskit.providers import Options - @dataclass(frozen=True) class SamplerGradientResult: @@ -29,5 +27,5 @@ class SamplerGradientResult: """The gradients of the sample probabilities.""" metadata: list[dict[str, Any]] | list[list[dict[str, Any]]] """Additional information about the job.""" - options: Options - """Primitive runtime options for the execution of the job.""" + shots: int | Sequence[int] + """Primitive number of shots for the execution of the job.""" diff --git a/qiskit_algorithms/gradients/finite_diff/finite_diff_estimator_gradient.py b/qiskit_algorithms/gradients/finite_diff/finite_diff_estimator_gradient.py index a2480ee2..e39d42d0 100644 --- a/qiskit_algorithms/gradients/finite_diff/finite_diff_estimator_gradient.py +++ b/qiskit_algorithms/gradients/finite_diff/finite_diff_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,8 +20,7 @@ import numpy as np from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from ..base.base_estimator_gradient import BaseEstimatorGradient @@ -40,9 +39,9 @@ class FiniteDiffEstimatorGradient(BaseEstimatorGradient): def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, epsilon: float, - options: Options | None = None, + precision: float | None = None, *, method: Literal["central", "forward", "backward"] = "central", ): @@ -50,10 +49,9 @@ def __init__( Args: estimator: The estimator used to compute the gradients. epsilon: The offset size for the finite difference gradients. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. method: The computation method of the gradients. - ``central`` computes :math:`\frac{f(x+e)-f(x-e)}{2e}`, @@ -74,7 +72,7 @@ def __init__( f"The argument method should be central, forward, or backward: {method} is given." ) self._method = method - super().__init__(estimator, options) + super().__init__(estimator, precision) def _run( self, @@ -82,14 +80,22 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" - job_circuits, job_observables, job_param_values, metadata = [], [], [], [] + metadata = [] all_n = [] + has_transformed_precision = False + + if isinstance(precision, float) or precision is None: + precision = [precision] * len(circuits) + has_transformed_precision = True + + pubs = [] - for circuit, observable, parameter_values_, parameters_ in zip( - circuits, observables, parameter_values, parameters + for circuit, observable, parameter_values_, parameters_, precision_ in zip( + circuits, observables, parameter_values, parameters, precision ): # Indices of parameters to be differentiated indices = [circuit.parameters.data.index(p) for p in parameters_] @@ -101,27 +107,21 @@ def _run( plus = parameter_values_ + self._epsilon * offset minus = parameter_values_ - self._epsilon * offset n = 2 * len(indices) - job_circuits.extend([circuit] * n) - job_observables.extend([observable] * n) - job_param_values.extend(plus.tolist() + minus.tolist()) all_n.append(n) + pubs.append((circuit, observable, plus.tolist() + minus.tolist(), precision_)) elif self._method == "forward": plus = parameter_values_ + self._epsilon * offset n = len(indices) + 1 - job_circuits.extend([circuit] * n) - job_observables.extend([observable] * n) - job_param_values.extend([parameter_values_] + plus.tolist()) all_n.append(n) + pubs.append((circuit, observable, [parameter_values_] + plus.tolist(), precision_)) elif self._method == "backward": minus = parameter_values_ - self._epsilon * offset n = len(indices) + 1 - job_circuits.extend([circuit] * n) - job_observables.extend([observable] * n) - job_param_values.extend([parameter_values_] + minus.tolist()) all_n.append(n) + pubs.append((circuit, observable, [parameter_values_] + minus.tolist(), precision_)) # Run the single job with all circuits. - job = self._estimator.run(job_circuits, job_observables, job_param_values, **options) + job = self._estimator.run(pubs) try: results = job.result() except Exception as exc: @@ -130,23 +130,30 @@ def _run( # Compute the gradients gradients = [] partial_sum_n = 0 - for n in all_n: + for n, result_n in zip(all_n, results): # Ensure gradient is always defined for the append below after the if block # otherwise lint errors out. I left the if block as it has been coded though # as the values are checked in the constructor I could have made the last elif # a simple else instead of defining this here. gradient = None + result = result_n.data.evs if self._method == "central": - result = results.values[partial_sum_n : partial_sum_n + n] gradient = (result[: n // 2] - result[n // 2 :]) / (2 * self._epsilon) elif self._method == "forward": - result = results.values[partial_sum_n : partial_sum_n + n] gradient = (result[1:] - result[0]) / self._epsilon elif self._method == "backward": - result = results.values[partial_sum_n : partial_sum_n + n] gradient = (result[0] - result[1:]) / self._epsilon partial_sum_n += n gradients.append(gradient) - opt = self._get_local_options(options) - return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_precision: + precision = precision[0] + + if precision is None: + precision = results[0].metadata["target_precision"] + else: + for i, (precision_, result) in enumerate(zip(precision, results)): + if precision_ is None: + precision[i] = results[i].metadata["target_precision"] + + return EstimatorGradientResult(gradients=gradients, metadata=metadata, precision=precision) diff --git a/qiskit_algorithms/gradients/finite_diff/finite_diff_sampler_gradient.py b/qiskit_algorithms/gradients/finite_diff/finite_diff_sampler_gradient.py index 7203c68f..7c84fae5 100644 --- a/qiskit_algorithms/gradients/finite_diff/finite_diff_sampler_gradient.py +++ b/qiskit_algorithms/gradients/finite_diff/finite_diff_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,8 +20,7 @@ import numpy as np from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseSampler -from qiskit.providers import Options +from qiskit.primitives import BaseSamplerV2 from ..base.base_sampler_gradient import BaseSamplerGradient from ..base.sampler_gradient_result import SamplerGradientResult @@ -39,9 +38,9 @@ class FiniteDiffSamplerGradient(BaseSamplerGradient): def __init__( self, - sampler: BaseSampler, + sampler: BaseSamplerV2, epsilon: float, - options: Options | None = None, + shots: int | None = None, *, method: Literal["central", "forward", "backward"] = "central", ): @@ -49,10 +48,9 @@ def __init__( Args: sampler: The sampler used to compute the gradients. epsilon: The offset size for the finite difference gradients. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + shots: Number of shots to be used by the underlying Sampler. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + number of shots of the primitive is used. method: The computation method of the gradients. - ``central`` computes :math:`\frac{f(x+e)-f(x-e)}{2e}`, @@ -73,19 +71,29 @@ def __init__( f"The argument method should be central, forward, or backward: {method} is given." ) self._method = method - super().__init__(sampler, options) + super().__init__(sampler, shots) def _run( self, circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], - parameters: Sequence[Sequence[Parameter]], - **options, + parameters: Sequence[Sequence[Parameter] | None] | None, + *, + shots: int | Sequence[int] | None, ) -> SamplerGradientResult: """Compute the sampler gradients on the given circuits.""" - job_circuits, job_param_values, metadata = [], [], [] + metadata = [] all_n = [] - for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters): + has_transformed_shots = False + + if isinstance(shots, int) or shots is None: + shots = [shots] * len(circuits) + has_transformed_shots = True + + pubs = [] + for circuit, parameter_values_, parameters_, shots_ in zip( + circuits, parameter_values, parameters, shots + ): # Indices of parameters to be differentiated indices = [circuit.parameters.data.index(p) for p in parameters_] metadata.append({"parameters": parameters_}) @@ -95,24 +103,21 @@ def _run( plus = parameter_values_ + self._epsilon * offset minus = parameter_values_ - self._epsilon * offset n = 2 * len(indices) - job_circuits.extend([circuit] * n) - job_param_values.extend(plus.tolist() + minus.tolist()) all_n.append(n) + pubs.append((circuit, plus.tolist() + minus.tolist(), shots_)) elif self._method == "forward": plus = parameter_values_ + self._epsilon * offset n = len(indices) + 1 - job_circuits.extend([circuit] * n) - job_param_values.extend([parameter_values_] + plus.tolist()) + pubs.append((circuit, [parameter_values_] + plus.tolist(), shots_)) all_n.append(n) elif self._method == "backward": minus = parameter_values_ - self._epsilon * offset n = len(indices) + 1 - job_circuits.extend([circuit] * n) - job_param_values.extend([parameter_values_] + minus.tolist()) + pubs.append((circuit, [parameter_values_] + minus.tolist(), shots_)) all_n.append(n) # Run the single job with all circuits. - job = self._sampler.run(job_circuits, job_param_values, **options) + job = self._sampler.run(pubs) try: results = job.result() except Exception as exc: @@ -120,11 +125,14 @@ def _run( # Compute the gradients. gradients = [] - partial_sum_n = 0 - for n in all_n: + + for n, result_n in zip(all_n, results): gradient = [] + result = [ + {label: value / res.num_shots for label, value in res.get_int_counts().items()} + for res in getattr(result_n.data, next(iter(result_n.data))) + ] if self._method == "central": - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] for dist_plus, dist_minus in zip(result[: n // 2], result[n // 2 :]): grad_dist: dict[int, float] = defaultdict(float) for key, value in dist_plus.items(): @@ -133,7 +141,6 @@ def _run( grad_dist[key] -= value / (2 * self._epsilon) gradient.append(dict(grad_dist)) elif self._method == "forward": - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] dist_zero = result[0] for dist_plus in result[1:]: grad_dist = defaultdict(float) @@ -142,9 +149,7 @@ def _run( for key, value in dist_zero.items(): grad_dist[key] -= value / self._epsilon gradient.append(dict(grad_dist)) - elif self._method == "backward": - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] dist_zero = result[0] for dist_minus in result[1:]: grad_dist = defaultdict(float) @@ -154,8 +159,16 @@ def _run( grad_dist[key] -= value / self._epsilon gradient.append(dict(grad_dist)) - partial_sum_n += n gradients.append(gradient) - opt = self._get_local_options(options) - return SamplerGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_shots: + shots = shots[0] + + if shots is None: + shots = results[0].metadata["shots"] + else: + for i, (shots_, result) in enumerate(zip(shots, results)): + if shots_ is None: + shots[i] = result.metadata["shots"] + + return SamplerGradientResult(gradients=gradients, metadata=metadata, shots=shots) diff --git a/qiskit_algorithms/gradients/lin_comb/lin_comb_estimator_gradient.py b/qiskit_algorithms/gradients/lin_comb/lin_comb_estimator_gradient.py index 1be05900..9ed64c7b 100644 --- a/qiskit_algorithms/gradients/lin_comb/lin_comb_estimator_gradient.py +++ b/qiskit_algorithms/gradients/lin_comb/lin_comb_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,20 +16,20 @@ from __future__ import annotations from collections.abc import Sequence +from typing import Any import numpy as np - from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.primitives.utils import init_observable, _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 +from qiskit.quantum_info import SparsePauliOp from qiskit.quantum_info.operators.base_operator import BaseOperator from ..base.base_estimator_gradient import BaseEstimatorGradient from ..base.estimator_gradient_result import EstimatorGradientResult from ..utils import DerivativeType, _make_lin_comb_gradient_circuit, _make_lin_comb_observables - +from ...custom_types import Transpiler from ...exceptions import AlgorithmError +from ...utils.circuit_key import _circuit_key class LinCombEstimatorGradient(BaseEstimatorGradient): @@ -66,9 +66,12 @@ class LinCombEstimatorGradient(BaseEstimatorGradient): def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, + precision: float | None = None, derivative_type: DerivativeType = DerivativeType.REAL, - options: Options | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ): r""" Args: @@ -80,14 +83,19 @@ def __init__( - ``DerivativeType.REAL`` computes :math:`2 \mathrm{Re}[⟨ψ(ω)|O(θ)|dω ψ(ω)〉]`. - ``DerivativeType.IMAG`` computes :math:`2 \mathrm{Im}[⟨ψ(ω)|O(θ)|dω ψ(ω)〉]`. - ``DerivativeType.COMPLEX`` computes :math:`2 ⟨ψ(ω)|O(θ)|dω ψ(ω)〉`. - - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting. + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ self._lin_comb_cache: dict[tuple, dict[Parameter, QuantumCircuit]] = {} - super().__init__(estimator, options, derivative_type=derivative_type) + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} + super().__init__(estimator, precision, derivative_type=derivative_type) @BaseEstimatorGradient.derivative_type.setter # type: ignore[attr-defined] def derivative_type(self, derivative_type: DerivativeType) -> None: @@ -100,14 +108,15 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) results = self._run_unique( - g_circuits, observables, g_parameter_values, g_parameters, **options + g_circuits, observables, g_parameter_values, g_parameters, precision=precision ) return self._postprocess(results, circuits, parameter_values, parameters) @@ -117,13 +126,29 @@ def _run_unique( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" - job_circuits, job_observables, job_param_values, metadata = [], [], [], [] + has_transformed_precision = False + + if isinstance(precision, float) or precision is None: + precision = [precision] * len(circuits) + has_transformed_precision = True + + metadata = [] all_n = [] - for circuit, observable, parameter_values_, parameters_ in zip( - circuits, observables, parameter_values, parameters + pubs = [] + + if not (len(circuits) == len(observables) == len(parameters) == len(parameter_values)): + raise ValueError( + f"circuits, observables, parameters, and parameter_values must have the same length, " + f"but have respective lengths {len(circuits)}, {len(observables)}, {len(parameters)} " + f"and {len(parameter_values)}." + ) + + for circuit, observable, parameter_values_, parameters_, precision_ in zip( + circuits, observables, parameter_values, parameters, precision ): # Prepare circuits for the gradient of the specified parameters. meta = {"parameters": parameters_} @@ -132,16 +157,18 @@ def _run_unique( # Cache the circuits for the linear combination of unitaries. # We only cache the circuits for the specified parameters in the future. self._lin_comb_cache[circuit_key] = _make_lin_comb_gradient_circuit( - circuit, add_measurement=False + circuit, self._transpiler, self._transpiler_options, add_measurement=False ) lin_comb_circuits = self._lin_comb_cache[circuit_key] gradient_circuits = [] + for param in parameters_: gradient_circuits.append(lin_comb_circuits[param]) + n = len(gradient_circuits) # Make the observable as :class:`~qiskit.quantum_info.SparsePauliOp` and # add an ancillary operator to compute the gradient. - observable = init_observable(observable) + observable = SparsePauliOp(observable) observable_1, observable_2 = _make_lin_comb_observables( observable, self._derivative_type ) @@ -151,23 +178,30 @@ def _run_unique( metadata.append(meta) # Combine inputs into a single job to reduce overhead. if self._derivative_type == DerivativeType.COMPLEX: - job_circuits.extend(gradient_circuits * 2) - job_observables.extend([observable_1] * n + [observable_2] * n) - job_param_values.extend([parameter_values_] * 2 * n) all_n.append(2 * n) + pubs.extend( + [ + (gradient_circuit, observable_1, parameter_values_, precision_) + for gradient_circuit in gradient_circuits + ] + ) + pubs.extend( + [ + (gradient_circuit, observable_2, parameter_values_, precision_) + for gradient_circuit in gradient_circuits + ] + ) else: - job_circuits.extend(gradient_circuits) - job_observables.extend([observable_1] * n) - job_param_values.extend([parameter_values_] * n) all_n.append(n) + pubs.extend( + [ + (gradient_circuit, observable_1, parameter_values_, precision_) + for gradient_circuit in gradient_circuits + ] + ) # Run the single job with all circuits. - job = self._estimator.run( - job_circuits, - job_observables, - job_param_values, - **options, - ) + job = self._estimator.run(pubs) try: results = job.result() except AlgorithmError as exc: @@ -176,19 +210,39 @@ def _run_unique( # Compute the gradients. gradients = [] partial_sum_n = 0 + for n in all_n: # this disable is needed as Pylint does not understand derivative_type is a property if # it is only defined in the base class and the getter is in the child # pylint: disable=comparison-with-callable if self.derivative_type == DerivativeType.COMPLEX: gradient = np.zeros(n // 2, dtype="complex") - gradient.real = results.values[partial_sum_n : partial_sum_n + n // 2] - gradient.imag = results.values[partial_sum_n + n // 2 : partial_sum_n + n] + gradient.real = np.array( + [result.data.evs for result in results[partial_sum_n : partial_sum_n + n // 2]] + ) + gradient.imag = np.array( + [ + result.data.evs + for result in results[partial_sum_n + n // 2 : partial_sum_n + n] + ] + ) else: - gradient = np.real(results.values[partial_sum_n : partial_sum_n + n]) + gradient = np.real( + [result.data.evs for result in results[partial_sum_n : partial_sum_n + n]] + ) + partial_sum_n += n gradients.append(gradient) - opt = self._get_local_options(options) - return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_precision: + precision = precision[0] + + if precision is None: + precision = results[0].metadata["target_precision"] + else: + for i, (precision_, result) in enumerate(zip(precision, results)): + if precision_ is None: + precision[i] = results[i].metadata["target_precision"] + + return EstimatorGradientResult(gradients=gradients, metadata=metadata, precision=precision) diff --git a/qiskit_algorithms/gradients/lin_comb/lin_comb_qgt.py b/qiskit_algorithms/gradients/lin_comb/lin_comb_qgt.py index a00c7b67..1affd43d 100644 --- a/qiskit_algorithms/gradients/lin_comb/lin_comb_qgt.py +++ b/qiskit_algorithms/gradients/lin_comb/lin_comb_qgt.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,21 +16,22 @@ from __future__ import annotations from collections.abc import Sequence +from typing import Any import numpy as np from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.primitives.utils import _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info import SparsePauliOp from ..base.base_qgt import BaseQGT from .lin_comb_estimator_gradient import LinCombEstimatorGradient from ..base.qgt_result import QGTResult from ..utils import DerivativeType, _make_lin_comb_qgt_circuit, _make_lin_comb_observables +from ...custom_types import Transpiler from ...exceptions import AlgorithmError +from ...utils.circuit_key import _circuit_key class LinCombQGT(BaseQGT): @@ -69,10 +70,13 @@ class LinCombQGT(BaseQGT): def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, phase_fix: bool = True, derivative_type: DerivativeType = DerivativeType.COMPLEX, - options: Options | None = None, + precision: float | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ): r""" Args: @@ -104,14 +108,23 @@ def __init__( \mathrm{QGT}_{ij}= [\langle \partial_i \psi | \partial_j \psi \rangle - \langle\partial_i \psi | \psi \rangle \langle\psi | \partial_j \psi \rangle]. - - options: Backend runtime options used for circuit execution. The order of priority is: - options in ``run`` method > QGT's default options > primitive's default - setting. Higher priority setting overrides lower priority setting. + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. It will also be used to instantiate the internal + gradient. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced by the internal gradient of this algorithm. If set to `None`, + these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ - super().__init__(estimator, phase_fix, derivative_type, options=options) + super().__init__(estimator, phase_fix, derivative_type, precision) self._gradient = LinCombEstimatorGradient( - estimator, derivative_type=DerivativeType.COMPLEX, options=options + estimator, + derivative_type=DerivativeType.COMPLEX, + precision=precision, + transpiler=transpiler, + transpiler_options=transpiler_options, ) self._lin_comb_qgt_circuit_cache: dict[ tuple, dict[tuple[Parameter, Parameter], QuantumCircuit] @@ -122,13 +135,16 @@ def _run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> QGTResult: """Compute the QGT on the given circuits.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) - results = self._run_unique(g_circuits, g_parameter_values, g_parameters, **options) + results = self._run_unique( + g_circuits, g_parameter_values, g_parameters, precision=precision + ) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( @@ -136,14 +152,32 @@ def _run_unique( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> QGTResult: """Compute the QGTs on the given circuits.""" - job_circuits, job_observables, job_param_values, metadata = [], [], [], [] + metadata = [] all_n, all_m = [], [] phase_fixes: list[int | np.ndarray] = [] - for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters): + has_transformed_precision = False + + if isinstance(precision, float) or precision is None: + precision = [precision] * len(circuits) + has_transformed_precision = True + + pubs = [] + + if not (len(circuits) == len(parameters) == len(parameter_values) == len(precision)): + raise ValueError( + f"circuits, parameters, parameter_values and precision must have the same length, but " + f"have respective lengths {len(circuits)}, {len(parameters)}, {len(parameter_values)} " + f"and {len(precision)}." + ) + + for circuit, parameter_values_, parameters_, precision_ in zip( + circuits, parameter_values, parameters, precision + ): # Prepare circuits for the gradient of the specified parameters. parameters_ = [p for p in circuit.parameters if p in parameters_] meta = {"parameters": parameters_} @@ -172,25 +206,32 @@ def _run_unique( n = len(qgt_circuits) if self._derivative_type == DerivativeType.COMPLEX: - job_circuits.extend(qgt_circuits * 2) - job_observables.extend([observable_1] * n + [observable_2] * n) - job_param_values.extend([parameter_values_] * 2 * n) all_m.append(len(parameters_)) all_n.append(2 * n) + pubs.extend( + [ + (qgt_circuit, observable_1, parameter_values_, precision_) + for qgt_circuit in qgt_circuits + ] + ) + pubs.extend( + [ + (qgt_circuit, observable_2, parameter_values_, precision_) + for qgt_circuit in qgt_circuits + ] + ) else: - job_circuits.extend(qgt_circuits) - job_observables.extend([observable_1] * n) - job_param_values.extend([parameter_values_] * n) all_m.append(len(parameters_)) all_n.append(n) + pubs.extend( + [ + (qgt_circuit, observable_1, parameter_values_, precision_) + for qgt_circuit in qgt_circuits + ] + ) # Run the single job with all circuits. - job = self._estimator.run( - job_circuits, - job_observables, - job_param_values, - **options, - ) + job = self._estimator.run(pubs) if self._phase_fix: # Compute the second term in the QGT if phase fix is enabled. @@ -202,7 +243,7 @@ def _run_unique( observables=phase_fix_obs, parameter_values=parameter_values, parameters=parameters, - **options, + precision=precision, ) try: @@ -223,22 +264,31 @@ def _run_unique( phase_fix = np.imag(phase_fix) phase_fixes.append(phase_fix) else: - phase_fixes = [0 for i in range(len(circuits))] + phase_fixes = [0 for _ in range(len(circuits))] # Compute the QGT qgts = [] partial_sum_n = 0 - for i, (n, m) in enumerate(zip(all_n, all_m)): + for phase_fix, n, m in zip(phase_fixes, all_n, all_m): qgt = np.zeros((m, m), dtype="complex") # Compute the first term in the QGT if self.derivative_type == DerivativeType.COMPLEX: - qgt[np.triu_indices(m)] = results.values[partial_sum_n : partial_sum_n + n // 2] - qgt[np.triu_indices(m)] += ( - 1j * results.values[partial_sum_n + n // 2 : partial_sum_n + n] + qgt[np.triu_indices(m)] = np.array( + [result.data.evs for result in results[partial_sum_n : partial_sum_n + n // 2]] + ) + qgt[np.triu_indices(m)] += 1j * np.array( + [ + result.data.evs + for result in results[partial_sum_n + n // 2 : partial_sum_n + n] + ] ) elif self.derivative_type == DerivativeType.REAL: - qgt[np.triu_indices(m)] = results.values[partial_sum_n : partial_sum_n + n] + qgt[np.triu_indices(m)] = np.real( + [result.data.evs for result in results[partial_sum_n : partial_sum_n + n]] + ) elif self.derivative_type == DerivativeType.IMAG: - qgt[np.triu_indices(m)] = 1j * results.values[partial_sum_n : partial_sum_n + n] + qgt[np.triu_indices(m)] = 1j * np.real( + [result.data.evs for result in results[partial_sum_n : partial_sum_n + n]] + ) # Add the conjugate of the upper triangle to the lower triangle qgt += np.triu(qgt, k=1).conjugate().T @@ -248,11 +298,20 @@ def _run_unique( qgt = np.imag(qgt) # Subtract the phase fix from the QGT - qgt = qgt - phase_fixes[i] + qgt = qgt - phase_fix partial_sum_n += n qgts.append(qgt / 4) - opt = self._get_local_options(options) + if has_transformed_precision: + precision = precision[0] + + if precision is None: + precision = results[0].metadata["target_precision"] + else: + for i, (precision_, result) in enumerate(zip(precision, results)): + if precision_ is None: + precision[i] = results[i].metadata["target_precision"] + return QGTResult( - qgts=qgts, derivative_type=self.derivative_type, metadata=metadata, options=opt + qgts=qgts, derivative_type=self.derivative_type, metadata=metadata, precision=precision ) diff --git a/qiskit_algorithms/gradients/lin_comb/lin_comb_sampler_gradient.py b/qiskit_algorithms/gradients/lin_comb/lin_comb_sampler_gradient.py index 30083d53..ef2fea6b 100644 --- a/qiskit_algorithms/gradients/lin_comb/lin_comb_sampler_gradient.py +++ b/qiskit_algorithms/gradients/lin_comb/lin_comb_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -17,17 +17,17 @@ from collections import defaultdict from collections.abc import Sequence +from typing import Any from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseSampler -from qiskit.primitives.utils import _circuit_key -from qiskit.providers import Options +from qiskit.primitives import BaseSamplerV2 from ..base.base_sampler_gradient import BaseSamplerGradient from ..base.sampler_gradient_result import SamplerGradientResult from ..utils import _make_lin_comb_gradient_circuit - +from ...custom_types import Transpiler from ...exceptions import AlgorithmError +from ...utils.circuit_key import _circuit_key class LinCombSamplerGradient(BaseSamplerGradient): @@ -62,30 +62,44 @@ class LinCombSamplerGradient(BaseSamplerGradient): "z", ] - def __init__(self, sampler: BaseSampler, options: Options | None = None): + def __init__( + self, + sampler: BaseSamplerV2, + shots: int | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, + ): """ Args: sampler: The sampler used to compute the gradients. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + shots: Number of shots to be used by the underlying Sampler. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + number of shots of the primitive is used. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ self._lin_comb_cache: dict[tuple, dict[Parameter, QuantumCircuit]] = {} - super().__init__(sampler, options) + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} + super().__init__(sampler, shots) def _run( self, circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + shots: int | None = None, ) -> SamplerGradientResult: """Compute the estimator gradients on the given circuits.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) - results = self._run_unique(g_circuits, g_parameter_values, g_parameters, **options) + results = self._run_unique(g_circuits, g_parameter_values, g_parameters, shots=shots) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( @@ -93,12 +107,30 @@ def _run_unique( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + shots: int | None = None, ) -> SamplerGradientResult: """Compute the sampler gradients on the given circuits.""" - job_circuits, job_param_values, metadata = [], [], [] + metadata = [] all_n = [] - for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters): + has_transformed_shots = False + + if isinstance(shots, int) or shots is None: + shots = [shots] * len(circuits) + has_transformed_shots = True + + pubs = [] + + if not (len(circuits) == len(parameters) == len(parameter_values) == len(shots)): + raise ValueError( + f"circuits, parameters, parameter_values and shots must have the same length, but " + f"have respective lengths {len(circuits)}, {len(parameters)}, {len(parameter_values)} " + f"and {len(shots)}." + ) + + for circuit, parameter_values_, parameters_, shots_ in zip( + circuits, parameter_values, parameters, shots + ): # Prepare circuits for the gradient of the specified parameters. # TODO: why is this not wrapped into another list level like it is done elsewhere? metadata.append({"parameters": parameters_}) @@ -107,7 +139,7 @@ def _run_unique( # Cache the circuits for the linear combination of unitaries. # We only cache the circuits for the specified parameters in the future. self._lin_comb_cache[circuit_key] = _make_lin_comb_gradient_circuit( - circuit, add_measurement=True + circuit, self._transpiler, self._transpiler_options, add_measurement=True ) lin_comb_circuits = self._lin_comb_cache[circuit_key] gradient_circuits = [] @@ -115,12 +147,11 @@ def _run_unique( gradient_circuits.append(lin_comb_circuits[param]) # Combine inputs into a single job to reduce overhead. n = len(gradient_circuits) - job_circuits.extend(gradient_circuits) - job_param_values.extend([parameter_values_] * n) + pubs.extend([(circ, parameter_values_, shots_) for circ in gradient_circuits]) all_n.append(n) # Run the single job with all circuits. - job = self._sampler.run(job_circuits, job_param_values, **options) + job = self._sampler.run(pubs) try: results = job.result() except Exception as exc: @@ -131,7 +162,14 @@ def _run_unique( partial_sum_n = 0 for i, n in enumerate(all_n): gradient = [] - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] + result = [] + + for result_n in results[partial_sum_n : partial_sum_n + n]: + res = result_n.data.meas + result.append( + {label: value / res.num_shots for label, value in res.get_int_counts().items()} + ) + m = 2 ** circuits[i].num_qubits for dist in result: grad_dist: dict[int, float] = defaultdict(float) @@ -144,5 +182,14 @@ def _run_unique( gradients.append(gradient) partial_sum_n += n - opt = self._get_local_options(options) - return SamplerGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_shots: + shots = shots[0] + + if shots is None: + shots = results[0].metadata["shots"] + else: + for i, (shots_, result) in enumerate(zip(shots, results)): + if shots_ is None: + shots[i] = result.metadata["shots"] + + return SamplerGradientResult(gradients=gradients, metadata=metadata, shots=shots) diff --git a/qiskit_algorithms/gradients/param_shift/param_shift_estimator_gradient.py b/qiskit_algorithms/gradients/param_shift/param_shift_estimator_gradient.py index cb3fcf90..ba1b2aaf 100644 --- a/qiskit_algorithms/gradients/param_shift/param_shift_estimator_gradient.py +++ b/qiskit_algorithms/gradients/param_shift/param_shift_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -60,14 +60,15 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the gradients of the expectation values by the parameter shift rule.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) results = self._run_unique( - g_circuits, observables, g_parameter_values, g_parameters, **options + g_circuits, observables, g_parameter_values, g_parameters, precision=precision ) return self._postprocess(results, circuits, parameter_values, parameters) @@ -77,13 +78,34 @@ def _run_unique( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" - job_circuits, job_observables, job_param_values, metadata = [], [], [], [] - all_n = [] - for circuit, observable, parameter_values_, parameters_ in zip( - circuits, observables, parameter_values, parameters + has_transformed_precision = False + + if isinstance(precision, float) or precision is None: + precision = [precision] * len(circuits) + has_transformed_precision = True + + metadata = [] + pubs = [] + + if not ( + len(circuits) + == len(observables) + == len(parameters) + == len(parameter_values) + == len(precision) + ): + raise ValueError( + f"circuits, observables, parameters, parameter_values and precision must have the same" + f"length, but have respective lengths {len(circuits)}, {len(observables)}, " + f"{len(parameters)}, {len(parameter_values)} and {len(precision)}." + ) + + for circuit, observable, parameter_values_, parameters_, precision_ in zip( + circuits, observables, parameter_values, parameters, precision ): metadata.append({"parameters": parameters_}) # Make parameter values for the parameter shift rule. @@ -91,19 +113,10 @@ def _run_unique( circuit, parameter_values_, parameters_ ) # Combine inputs into a single job to reduce overhead. - n = len(param_shift_parameter_values) - job_circuits.extend([circuit] * n) - job_observables.extend([observable] * n) - job_param_values.extend(param_shift_parameter_values) - all_n.append(n) + pubs.append((circuit, observable, param_shift_parameter_values, precision_)) # Run the single job with all circuits. - job = self._estimator.run( - job_circuits, - job_observables, - job_param_values, - **options, - ) + job = self._estimator.run(pubs) try: results = job.result() except Exception as exc: @@ -111,12 +124,21 @@ def _run_unique( # Compute the gradients. gradients = [] - partial_sum_n = 0 - for n in all_n: - result = results.values[partial_sum_n : partial_sum_n + n] - gradient_ = (result[: n // 2] - result[n // 2 :]) / 2 + + for result in results: + evs = result.data.evs + n = evs.shape[0] + gradient_ = (evs[: n // 2] - evs[n // 2 :]) / 2 gradients.append(gradient_) - partial_sum_n += n - opt = self._get_local_options(options) - return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_precision: + precision = precision[0] + + if precision is None: + precision = results[0].metadata["target_precision"] + else: + for i, (precision_, result) in enumerate(zip(precision, results)): + if precision_ is None: + precision[i] = results[i].metadata["target_precision"] + + return EstimatorGradientResult(gradients=gradients, metadata=metadata, precision=precision) diff --git a/qiskit_algorithms/gradients/param_shift/param_shift_sampler_gradient.py b/qiskit_algorithms/gradients/param_shift/param_shift_sampler_gradient.py index b27d6487..bb346c88 100644 --- a/qiskit_algorithms/gradients/param_shift/param_shift_sampler_gradient.py +++ b/qiskit_algorithms/gradients/param_shift/param_shift_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -59,13 +59,14 @@ def _run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + shots: int | None, ) -> SamplerGradientResult: """Compute the estimator gradients on the given circuits.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) - results = self._run_unique(g_circuits, g_parameter_values, g_parameters, **options) + results = self._run_unique(g_circuits, g_parameter_values, g_parameters, shots) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( @@ -73,12 +74,22 @@ def _run_unique( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + shots: int | None, ) -> SamplerGradientResult: """Compute the sampler gradients on the given circuits.""" - job_circuits, job_param_values, metadata = [], [], [] + metadata = [] all_n = [] - for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters): + has_transformed_shots = False + + if isinstance(shots, int) or shots is None: + shots = [shots] * len(circuits) + has_transformed_shots = True + + pubs = [] + + for circuit, parameter_values_, parameters_, shots_ in zip( + circuits, parameter_values, parameters, shots + ): metadata.append({"parameters": parameters_}) # Make parameter values for the parameter shift rule. param_shift_parameter_values = _make_param_shift_parameter_values( @@ -86,12 +97,11 @@ def _run_unique( ) # Combine inputs into a single job to reduce overhead. n = len(param_shift_parameter_values) - job_circuits.extend([circuit] * n) - job_param_values.extend(param_shift_parameter_values) + pubs.append((circuit, param_shift_parameter_values, shots_)) all_n.append(n) # Run the single job with all circuits. - job = self._sampler.run(job_circuits, job_param_values, **options) + job = self._sampler.run(pubs) try: results = job.result() except Exception as exc: @@ -99,10 +109,12 @@ def _run_unique( # Compute the gradients. gradients = [] - partial_sum_n = 0 - for n in all_n: + for n, result_n in zip(all_n, results): gradient = [] - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] + result = [ + {label: value / res.num_shots for label, value in res.get_int_counts().items()} + for res in getattr(result_n.data, next(iter(result_n.data))) + ] for dist_plus, dist_minus in zip(result[: n // 2], result[n // 2 :]): grad_dist: dict[int, float] = defaultdict(float) for key, val in dist_plus.items(): @@ -110,8 +122,17 @@ def _run_unique( for key, val in dist_minus.items(): grad_dist[key] -= val / 2 gradient.append(dict(grad_dist)) + gradients.append(gradient) - partial_sum_n += n - opt = self._get_local_options(options) - return SamplerGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_shots: + shots = shots[0] + + if shots is None: + shots = results[0].metadata["shots"] + else: + for i, (shots_, result) in enumerate(zip(shots, results)): + if shots_ is None: + shots[i] = result.metadata["shots"] + + return SamplerGradientResult(gradients=gradients, metadata=metadata, shots=shots) diff --git a/qiskit_algorithms/gradients/qfi.py b/qiskit_algorithms/gradients/qfi.py index 4a53b20d..71158951 100644 --- a/qiskit_algorithms/gradients/qfi.py +++ b/qiskit_algorithms/gradients/qfi.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023 +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -17,15 +17,12 @@ from abc import ABC from collections.abc import Sequence -from copy import copy from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.providers import Options from .base.base_qgt import BaseQGT from .lin_comb.lin_comb_estimator_gradient import DerivativeType from .qfi_result import QFIResult - from ..algorithm_job import AlgorithmJob from ..exceptions import AlgorithmError @@ -40,29 +37,23 @@ class QFI(ABC): - \langle\partial_i \psi | \psi \rangle \langle\psi | \partial_j \psi \rangle]. """ - def __init__( - self, - qgt: BaseQGT, - options: Options | None = None, - ): + def __init__(self, qgt: BaseQGT, precision: float | None = None): r""" Args: qgt: The quantum geometric tensor used to compute the QFI. - options: Backend runtime options used for circuit execution. The order of priority is: - options in ``run`` method > QFI's default options > primitive's default - setting. Higher priority setting overrides lower priority setting. + precision: Precision to override the BaseQGT's. If None, the BaseQGT's precision will + be used. """ self._qgt: BaseQGT = qgt - self._default_options = Options() - if options is not None: - self._default_options.update_options(**options) + self._precision = precision def run( self, circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter] | None] | None = None, - **options, + *, + precision: float | Sequence[float] | None = None, ) -> AlgorithmJob: """Run the job of the QFIs on the given circuits. @@ -73,10 +64,12 @@ def run( the specified parameters. Each sequence of parameters corresponds to a circuit in ``circuits``. Defaults to None, which means that the QFIs of all parameters in each circuit are calculated. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > QFI's - default options > QGT's default setting. - Higher priority setting overrides lower priority setting. + precision: Precision to be used by the underlying Estimator. If a single float is + provided, this number will be used for all circuits. If a sequence of floats is + provided, they will be used on a per-circuit basis. If none is provided, the + gradient's default precision will be used for all circuits. If this number is + also set to None, the underlying primitive's default precision will be used + for all circuits. Returns: The job object of the QFIs of the expectation values. The i-th result corresponds to @@ -98,12 +91,12 @@ def run( params if params is not None else circuits[i].parameters for i, params in enumerate(parameters) ] - # The priority of run option is as follows: - # options in ``run`` method > QFI's default options > QGT's default setting. - opts = copy(self._default_options) - opts.update_options(**options) - job = AlgorithmJob(self._run, circuits, parameter_values, parameters, **opts.__dict__) - job.submit() + + if precision is None: + precision = self.precision # May still be None + + job = AlgorithmJob(self._run, circuits, parameter_values, parameters, precision=precision) + job._submit() return job def _run( @@ -111,7 +104,8 @@ def _run( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> QFIResult: """Compute the QFI on the given circuits.""" # Set the derivative type to real @@ -119,7 +113,8 @@ def _run( self._qgt.derivative_type, DerivativeType.REAL, ) - job = self._qgt.run(circuits, parameter_values, parameters, **options) + + job = self._qgt.run(circuits, parameter_values, parameters, precision=precision) try: result = job.result() @@ -131,41 +126,25 @@ def _run( return QFIResult( qfis=[4 * qgt.real for qgt in result.qgts], metadata=result.metadata, - options=result.options, + precision=result.precision, ) @property - def options(self) -> Options: - """Return the union of QGT's options setting and QFI's default options, - where, if the same field is set in both, the QFI's default options override - the QGT's default setting. + def precision(self) -> float | None: + """Return the precision used by the `run` method of the BaseQGT's Estimator primitive. If + None, the default precision of the primitive is used. Returns: - The QFI default + QGT options. + The default precision. """ - return self._get_local_options(self._default_options.__dict__) + return self._precision - def update_default_options(self, **options): - """Update the gradient's default options setting. + @precision.setter + def precision(self, precision: float | None): + """Update the QFI's default precision setting. Args: - **options: The fields to update the default options. + precision: The new default precision. """ - self._default_options.update_options(**options) - - def _get_local_options(self, options: Options) -> Options: - """Return the union of the QFI default setting, - the QGT default options, and the options in the ``run`` method. - The order of priority is: options in ``run`` method > QFI's default options > QGT's - default setting. - - Args: - options: The fields to update the options - - Returns: - The QFI default + QGT default + run options. - """ - opts = copy(self._qgt.options) - opts.update_options(**options) - return opts + self._precision = precision diff --git a/qiskit_algorithms/gradients/qfi_result.py b/qiskit_algorithms/gradients/qfi_result.py index 9486c990..77a39ad2 100644 --- a/qiskit_algorithms/gradients/qfi_result.py +++ b/qiskit_algorithms/gradients/qfi_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,12 +16,10 @@ from __future__ import annotations from dataclasses import dataclass -from typing import Any +from typing import Any, Sequence import numpy as np -from qiskit.providers import Options - @dataclass(frozen=True) class QFIResult: @@ -29,7 +27,7 @@ class QFIResult: qfis: list[np.ndarray] """The QFI.""" - metadata: list[dict[str, Any]] + metadata: dict[str, Any] """Additional information about the job.""" - options: Options - """Primitive runtime options for the execution of the job.""" + precision: float | Sequence[float] + """Precision for the execution of the job.""" diff --git a/qiskit_algorithms/gradients/reverse/reverse_gradient.py b/qiskit_algorithms/gradients/reverse/reverse_gradient.py index 82654a59..cadc89e6 100644 --- a/qiskit_algorithms/gradients/reverse/reverse_gradient.py +++ b/qiskit_algorithms/gradients/reverse/reverse_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -22,7 +22,7 @@ from qiskit.circuit import QuantumCircuit, Parameter from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.quantum_info import Statevector -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from .bind import bind from .derive_circuit import derive_circuit @@ -64,7 +64,7 @@ def __init__(self, derivative_type: DerivativeType = DerivativeType.REAL): derivative_type: Defines whether the real, imaginary or real plus imaginary part of the gradient is returned. """ - dummy_estimator = Estimator() # this is required by the base class, but not used + dummy_estimator = StatevectorEstimator() # this is required by the base class, but not used super().__init__(dummy_estimator, derivative_type=derivative_type) @BaseEstimatorGradient.derivative_type.setter # type: ignore[attr-defined] @@ -78,15 +78,14 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | None = None, ) -> EstimatorGradientResult: """Compute the gradients of the expectation values by the parameter shift rule.""" g_circuits, g_parameter_values, g_parameters = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) - results = self._run_unique( - g_circuits, observables, g_parameter_values, g_parameters, **options - ) + results = self._run_unique(g_circuits, observables, g_parameter_values, g_parameters) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( @@ -95,7 +94,6 @@ def _run_unique( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, # pylint: disable=unused-argument ) -> EstimatorGradientResult: num_gradients = len(circuits) gradients = [] @@ -168,7 +166,7 @@ def _run_unique( gradient = np.array(list(grads.values())) gradients.append(self._to_derivtype(gradient)) - result = EstimatorGradientResult(gradients, metadata=metadata, options={}) + result = EstimatorGradientResult(gradients, metadata=metadata, precision=0.0) return result def _to_derivtype(self, gradient): diff --git a/qiskit_algorithms/gradients/reverse/reverse_qgt.py b/qiskit_algorithms/gradients/reverse/reverse_qgt.py index 53708b37..6cf01907 100644 --- a/qiskit_algorithms/gradients/reverse/reverse_qgt.py +++ b/qiskit_algorithms/gradients/reverse/reverse_qgt.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023, 2024. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,8 +21,7 @@ from qiskit.circuit import QuantumCircuit, Parameter from qiskit.quantum_info import Statevector -from qiskit.providers import Options -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from ..base.base_qgt import BaseQGT from ..base.qgt_result import QGTResult @@ -66,30 +65,24 @@ def __init__( derivative_type: Determines whether the complex QGT or only the real or imaginary parts are calculated. """ - dummy_estimator = Estimator() # this method does not need an estimator + dummy_estimator = StatevectorEstimator() # this method does not need an estimator super().__init__(dummy_estimator, phase_fix, derivative_type) - @property - def options(self) -> Options: - """There are no options for the reverse QGT, returns an empty options dict. - - Returns: - Empty options. - """ - return Options() - def _run( # pylint: disable=arguments-renamed self, circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | None = None, ) -> QGTResult: """Compute the QGT on the given circuits.""" g_circuits, g_parameter_values, g_parameter_sets = self._preprocess( circuits, parameter_values, parameters, self.SUPPORTED_GATES ) - results = self._run_unique(g_circuits, g_parameter_values, g_parameter_sets, **options) + results = self._run_unique( + g_circuits, g_parameter_values, g_parameter_sets, precision=precision + ) return self._postprocess(results, circuits, parameter_values, parameters) def _run_unique( @@ -97,7 +90,8 @@ def _run_unique( circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameter_sets: Sequence[Sequence[Parameter]], - **options, # pylint: disable=unused-argument + *, + precision: float | None = None, ) -> QGTResult: num_qgts = len(circuits) qgts = [] @@ -108,7 +102,6 @@ def _run_unique( circuit = circuits[k] parameters = list(parameter_sets[k]) - num_parameters = len(parameters) original_parameter_order = [p for p in circuit.parameters if p in parameters] metadata.append({"parameters": original_parameter_order}) @@ -216,7 +209,8 @@ def _run_unique( # append and cast to real/imag if required qgts.append(self._to_derivtype(qgt)) - result = QGTResult(qgts, self.derivative_type, metadata, options=None) + # Doesn't really make sense to pass the precision since it's not used + result = QGTResult(qgts, self.derivative_type, metadata, precision=precision) return result def _to_derivtype(self, qgt): diff --git a/qiskit_algorithms/gradients/spsa/spsa_estimator_gradient.py b/qiskit_algorithms/gradients/spsa/spsa_estimator_gradient.py index c0387a20..ca56143b 100644 --- a/qiskit_algorithms/gradients/spsa/spsa_estimator_gradient.py +++ b/qiskit_algorithms/gradients/spsa/spsa_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -19,8 +19,7 @@ import numpy as np from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseEstimator -from qiskit.providers import Options +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from ..base.base_estimator_gradient import BaseEstimatorGradient @@ -43,11 +42,11 @@ class SPSAEstimatorGradient(BaseEstimatorGradient): # pylint: disable=too-many-positional-arguments def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, epsilon: float, batch_size: int = 1, seed: int | None = None, - options: Options | None = None, + precision: float | None = None, ): """ Args: @@ -55,11 +54,9 @@ def __init__( epsilon: The offset size for the SPSA gradients. batch_size: The number of gradients to average. seed: The seed for a random perturbation vector. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting - + precision: Precision to be used by the underlying Estimator. If provided, this number + takes precedence over the default precision of the primitive. If None, the default + precision of the primitive is used. Raises: ValueError: If ``epsilon`` is not positive. """ @@ -69,7 +66,7 @@ def __init__( self._batch_size = batch_size self._seed = np.random.default_rng(seed) - super().__init__(estimator, options) + super().__init__(estimator, precision) def _run( self, @@ -77,16 +74,36 @@ def _run( observables: Sequence[BaseOperator], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + precision: float | Sequence[float] | None, ) -> EstimatorGradientResult: """Compute the estimator gradients on the given circuits.""" - job_circuits, job_observables, job_param_values, metadata, offsets = [], [], [], [], [] - all_n = [] - for circuit, observable, parameter_values_, parameters_ in zip( - circuits, observables, parameter_values, parameters + metadata = [] + offsets = [] + has_transformed_precision = False + + if isinstance(precision, float) or precision is None: + precision = [precision] * len(circuits) + has_transformed_precision = True + + pubs = [] + + if not ( + len(circuits) + == len(observables) + == len(parameters) + == len(parameter_values) + == len(precision) + ): + raise ValueError( + f"circuits, observables, parameters, parameter_values and precision must have the same " + f"length, but have respective lengths {len(circuits)}, {len(observables)}, " + f"{len(parameters)}, {len(parameter_values)} and {len(precision)}." + ) + + for circuit, observable, parameter_values_, parameters_, precision_ in zip( + circuits, observables, parameter_values, parameters, precision ): - # Indices of parameters to be differentiated. - indices = [circuit.parameters.data.index(p) for p in parameters_] metadata.append({"parameters": parameters_}) # Make random perturbation vectors. offset = [ @@ -98,18 +115,10 @@ def _run( offsets.append(offset) # Combine inputs into a single job to reduce overhead. - job_circuits.extend([circuit] * 2 * self._batch_size) - job_observables.extend([observable] * 2 * self._batch_size) - job_param_values.extend(plus + minus) - all_n.append(2 * self._batch_size) + pubs.append((circuit, observable, plus + minus, precision_)) # Run the single job with all circuits. - job = self._estimator.run( - job_circuits, - job_observables, - job_param_values, - **options, - ) + job = self._estimator.run(pubs) try: results = job.result() except Exception as exc: @@ -117,12 +126,10 @@ def _run( # Compute the gradients. gradients = [] - partial_sum_n = 0 - for i, n in enumerate(all_n): - result = results.values[partial_sum_n : partial_sum_n + n] - partial_sum_n += n - n = len(result) // 2 - diffs = (result[:n] - result[n:]) / (2 * self._epsilon) + for i, result in enumerate(results): + evs = result.data.evs + n = evs.shape[0] // 2 + diffs = (evs[:n] - evs[n:]) / (2 * self._epsilon) # Calculate the gradient for each batch. Note that (``diff`` / ``offset``) is the gradient # since ``offset`` is a perturbation vector of 1s and -1s. batch_gradients = np.array([diff / offset for diff, offset in zip(diffs, offsets[i])]) @@ -131,5 +138,14 @@ def _run( indices = [circuits[i].parameters.data.index(p) for p in metadata[i]["parameters"]] gradients.append(gradient[indices]) - opt = self._get_local_options(options) - return EstimatorGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_precision: + precision = precision[0] + + if precision is None: + precision = results[0].metadata["target_precision"] + else: + for i, (precision_, result) in enumerate(zip(precision, results)): + if precision_ is None: + precision[i] = results[i].metadata["target_precision"] + + return EstimatorGradientResult(gradients=gradients, metadata=metadata, precision=precision) diff --git a/qiskit_algorithms/gradients/spsa/spsa_sampler_gradient.py b/qiskit_algorithms/gradients/spsa/spsa_sampler_gradient.py index 1c25b8aa..a2a1bbce 100644 --- a/qiskit_algorithms/gradients/spsa/spsa_sampler_gradient.py +++ b/qiskit_algorithms/gradients/spsa/spsa_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,8 +20,7 @@ import numpy as np from qiskit.circuit import Parameter, QuantumCircuit -from qiskit.primitives import BaseSampler -from qiskit.providers import Options +from qiskit.primitives import BaseSamplerV2 from ..base.base_sampler_gradient import BaseSamplerGradient from ..base.sampler_gradient_result import SamplerGradientResult @@ -43,11 +42,11 @@ class SPSASamplerGradient(BaseSamplerGradient): # pylint: disable=too-many-positional-arguments def __init__( self, - sampler: BaseSampler, + sampler: BaseSamplerV2, epsilon: float, batch_size: int = 1, seed: int | None = None, - options: Options | None = None, + shots: int | None = None, ): """ Args: @@ -55,10 +54,10 @@ def __init__( epsilon: The offset size for the SPSA gradients. batch_size: number of gradients to average. seed: The seed for a random perturbation vector. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > gradient's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting + shots: Number of shots to be used by the underlying sampler. + The order of priority is: number of shots in ``run`` method > fidelity's + number of shots > primitive's default number of shots. + Higher priority setting overrides lower priority setting. Raises: ValueError: If ``epsilon`` is not positive. @@ -69,19 +68,30 @@ def __init__( self._epsilon = epsilon self._seed = np.random.default_rng(seed) - super().__init__(sampler, options) + super().__init__(sampler, shots) def _run( self, circuits: Sequence[QuantumCircuit], parameter_values: Sequence[Sequence[float]], parameters: Sequence[Sequence[Parameter]], - **options, + *, + shots: int | Sequence[int] | None = None, ) -> SamplerGradientResult: """Compute the sampler gradients on the given circuits.""" - job_circuits, job_param_values, metadata, offsets = [], [], [], [] + metadata, offsets = [], [] all_n = [] - for circuit, parameter_values_, parameters_ in zip(circuits, parameter_values, parameters): + has_transformed_shots = False + + if isinstance(shots, int) or shots is None: + shots = [shots] * len(circuits) + has_transformed_shots = True + + pubs = [] + + for circuit, parameter_values_, parameters_, shots_ in zip( + circuits, parameter_values, parameters, shots + ): # Indices of parameters to be differentiated. indices = [circuit.parameters.data.index(p) for p in parameters_] metadata.append({"parameters": parameters_}) @@ -97,12 +107,11 @@ def _run( # Combine inputs into a single job to reduce overhead. n = 2 * self._batch_size - job_circuits.extend([circuit] * n) - job_param_values.extend(plus + minus) all_n.append(n) + pubs.append((circuit, plus + minus, shots_)) # Run the single job with all circuits. - job = self._sampler.run(job_circuits, job_param_values, **options) + job = self._sampler.run(pubs) try: results = job.result() except Exception as exc: @@ -111,9 +120,12 @@ def _run( # Compute the gradients. gradients = [] partial_sum_n = 0 - for i, n in enumerate(all_n): + for i, (n, result_n) in enumerate(zip(all_n, results)): dist_diffs = {} - result = results.quasi_dists[partial_sum_n : partial_sum_n + n] + result = [ + {label: value / res.num_shots for label, value in res.get_int_counts().items()} + for res in getattr(result_n.data, next(iter(result_n.data))) + ] for j, (dist_plus, dist_minus) in enumerate(zip(result[: n // 2], result[n // 2 :])): dist_diff: dict[int, float] = defaultdict(float) for key, value in dist_plus.items(): @@ -133,5 +145,14 @@ def _run( gradients.append(gradient) partial_sum_n += n - opt = self._get_local_options(options) - return SamplerGradientResult(gradients=gradients, metadata=metadata, options=opt) + if has_transformed_shots: + shots = shots[0] + + if shots is None: + shots = results[0].metadata["shots"] + else: + for i, (shots_, result) in enumerate(zip(shots, results)): + if shots_ is None: + shots[i] = result.metadata["shots"] + + return SamplerGradientResult(gradients=gradients, metadata=metadata, shots=shots) diff --git a/qiskit_algorithms/gradients/utils.py b/qiskit_algorithms/gradients/utils.py index 53ef7fcc..5c04e9f8 100644 --- a/qiskit_algorithms/gradients/utils.py +++ b/qiskit_algorithms/gradients/utils.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,6 +20,7 @@ from collections.abc import Sequence from dataclasses import dataclass from enum import Enum +from typing import Any import numpy as np @@ -47,6 +48,8 @@ ) from qiskit.quantum_info import SparsePauliOp +from qiskit_algorithms.custom_types import Transpiler + ################################################################################ ## Gradient circuits and Enum @@ -112,7 +115,10 @@ def _make_param_shift_parameter_values( # pylint: disable=invalid-name ## Linear combination gradient and Linear combination QGT ################################################################################ def _make_lin_comb_gradient_circuit( - circuit: QuantumCircuit, add_measurement: bool = False + circuit: QuantumCircuit, + transpiler: Transpiler | None, + transpiler_options: dict[str, Any], + add_measurement: bool = False, ) -> dict[Parameter, QuantumCircuit]: """Makes a circuit that computes the linear combination of the gradient circuits.""" circuit_temp = circuit.copy() @@ -136,7 +142,14 @@ def _make_lin_comb_gradient_circuit( lin_comb_circuit.data.insert(i, lin_comb_circuit.data.pop()) lin_comb_circuit.h(qr_aux) if add_measurement: + # Measure so that cr_aux is removed by the following line lin_comb_circuit.measure(qr_aux, cr_aux) + # Merge classical registers + lin_comb_circuit.remove_final_measurements() + lin_comb_circuit.measure_all() + + if transpiler is not None: + lin_comb_circuit = transpiler.run(lin_comb_circuit, **transpiler_options) lin_comb_circuits[p] = lin_comb_circuit return lin_comb_circuits diff --git a/qiskit_algorithms/minimum_eigensolvers/adapt_vqe.py b/qiskit_algorithms/minimum_eigensolvers/adapt_vqe.py index 895a8fae..67f1f092 100644 --- a/qiskit_algorithms/minimum_eigensolvers/adapt_vqe.py +++ b/qiskit_algorithms/minimum_eigensolvers/adapt_vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -62,7 +62,7 @@ class AdaptVQE(VariationalAlgorithm, MinimumEigensolver): from qiskit_algorithms.minimum_eigensolvers import AdaptVQE, VQE from qiskit_algorithms.optimizers import SLSQP - from qiskit.primitives import Estimator + from qiskit.primitives import StatevectorEstimator from qiskit.circuit.library import EvolvedOperatorAnsatz # get your Hamiltonian @@ -71,7 +71,7 @@ class AdaptVQE(VariationalAlgorithm, MinimumEigensolver): # construct your ansatz ansatz = EvolvedOperatorAnsatz(...) - vqe = VQE(Estimator(), ansatz, SLSQP()) + vqe = VQE(StatevectorEstimator(), ansatz, SLSQP()) adapt_vqe = AdaptVQE(vqe) @@ -160,6 +160,9 @@ def _compute_gradients( # The excitations operators are applied later as exp(i*theta*excitation). # For this commutator, we need to explicitly pull in the imaginary phase. commutators = [1j * (operator @ exc - exc @ operator) for exc in self._excitation_pool] + # We have to call simplify on it since Qiskit doesn't do so from 2.1 onward, see + # Qiskit/qiskit/issues/14567 + commutators = [obs.simplify() for obs in commutators] res = estimate_observables(self.solver.estimator, self.solver.ansatz, commutators, theta) return res diff --git a/qiskit_algorithms/minimum_eigensolvers/diagonal_estimator.py b/qiskit_algorithms/minimum_eigensolvers/diagonal_estimator.py index aaabf3b8..1711e402 100644 --- a/qiskit_algorithms/minimum_eigensolvers/diagonal_estimator.py +++ b/qiskit_algorithms/minimum_eigensolvers/diagonal_estimator.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,40 +14,49 @@ from __future__ import annotations -from collections.abc import Callable, Sequence, Mapping, Iterable, MappingView +from collections.abc import Callable, Iterable from typing import Any -from dataclasses import dataclass - import numpy as np -from qiskit.circuit import QuantumCircuit -from qiskit.primitives import BaseSampler, BaseEstimator, EstimatorResult -from qiskit.primitives.utils import init_observable, _circuit_key +from qiskit.primitives import ( + BaseSamplerV2, + BaseEstimatorV2, + PubResult, + EstimatorPubLike, + DataBin, + SamplerPubLike, + PrimitiveResult, +) +from qiskit.primitives.containers.estimator_pub import EstimatorPub from qiskit.quantum_info import SparsePauliOp -from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit_algorithms.algorithm_job import AlgorithmJob -@dataclass(frozen=True) -class _DiagonalEstimatorResult(EstimatorResult): +class _DiagonalEstimatorResult(PubResult): """A result from an expectation of a diagonal observable.""" - # TODO make each measurement a dataclass rather than a dict - best_measurements: Sequence[Mapping[str, Any]] | None = None + def __init__( + self, + data: DataBin, + metadata: dict[str, Any] | None = None, + best_measurements: list[dict[str, Any]] | None = None, + ): + super().__init__(data, metadata) + # TODO make each measurement a dataclass rather than a dict + self.best_measurements: list[dict[str, Any]] | None = best_measurements -class _DiagonalEstimator(BaseEstimator): +class _DiagonalEstimator(BaseEstimatorV2): """An estimator for diagonal observables.""" def __init__( self, - sampler: BaseSampler, + sampler: BaseSamplerV2, aggregation: float | Callable[[Iterable[tuple[float, float]]], float] | None = None, - callback: Callable[[Sequence[Mapping[str, Any]]], None] | None = None, - **options, + callback: Callable[[list[dict[str, Any]]], None] | None = None, ) -> None: - r"""Evaluate the expectation of quantum state with respect to a diagonal operator. + r"""Evaluate the expectation of quantum state with respect to diagonal operators. Args: sampler: The sampler used to evaluate the circuits. @@ -55,93 +64,82 @@ def __init__( this specified the CVaR :math:`\alpha` parameter. callback: A callback which is given the best measurements of all circuits in each evaluation. - run_options: Options for the sampler. - """ - super().__init__(options=options) - self._circuits: list[QuantumCircuit] = [] # See Qiskit pull request 11051 - self._parameters: list[MappingView] = [] - self._observables: list[SparsePauliOp] = [] - self.sampler = sampler + if not callable(aggregation): aggregation = _get_cvar_aggregation(aggregation) self.aggregation = aggregation self.callback = callback - self._circuit_ids: dict[int, QuantumCircuit] = {} - self._observable_ids: dict[int, BaseOperator] = {} - def _run( - self, - circuits: Sequence[QuantumCircuit], - observables: Sequence[BaseOperator], - parameter_values: Sequence[Sequence[float]], - **run_options, - ) -> AlgorithmJob: - circuit_indices = [] - for circuit in circuits: - key = _circuit_key(circuit) - index = self._circuit_ids.get(key) - if index is not None: - circuit_indices.append(index) - else: - circuit_indices.append(len(self._circuits)) - self._circuit_ids[key] = len(self._circuits) - self._circuits.append(circuit) - self._parameters.append(circuit.parameters) - observable_indices = [] - for observable in observables: - index = self._observable_ids.get(id(observable)) - if index is not None: - observable_indices.append(index) - else: - observable_indices.append(len(self._observables)) - self._observable_ids[id(observable)] = len(self._observables) - converted_observable = init_observable(observable) - _check_observable_is_diagonal(converted_observable) # check it's diagonal - self._observables.append(converted_observable) - job = AlgorithmJob( - self._call, circuit_indices, observable_indices, parameter_values, **run_options - ) - job.submit() + # If precision is set to None, the default number of shots of the Sampler will be used. It will + # otherwise be computed as a function of the observable and the precision + def run( + self, pubs: Iterable[EstimatorPubLike], *, precision: float | None = None + ) -> AlgorithmJob[PrimitiveResult[_DiagonalEstimatorResult]]: + # Since we will convert the standalone observables to a list, this `observables` list will + # remember the shape of the original observables, either standalone or in a list. + coerced_pubs = [EstimatorPub.coerce(pub, precision) for pub in pubs] + + job = AlgorithmJob(self._run, coerced_pubs) + job._submit() return job - def _call( - self, - circuits: Sequence[int], - observables: Sequence[int], - parameter_values: Sequence[Sequence[float]], - **run_options, - ) -> _DiagonalEstimatorResult: - job = self.sampler.run( - [self._circuits[i] for i in circuits], - parameter_values, - **run_options, - ) - sampler_result = job.result() - samples = sampler_result.quasi_dists + def _run(self, pubs: list[EstimatorPub]) -> PrimitiveResult[_DiagonalEstimatorResult]: + return PrimitiveResult([self._run_pub(pub) for pub in pubs]) + + # Adapted from StatevectorEstimator, OK with the license? + def _run_pub(self, pub: EstimatorPub) -> _DiagonalEstimatorResult: + circuit = pub.circuit + observables = pub.observables + parameter_values = pub.parameter_values + bound_circuits = parameter_values.bind_all(circuit) + bc_circuits, bc_obs = np.broadcast_arrays(bound_circuits, observables) + sampler_pubs: list[SamplerPubLike] = [] + evs = np.zeros_like(bc_circuits, dtype=np.float64) + best_measurements = [] - # a list of dictionaries containing: {state: (measurement probability, value)} - evaluations: list[dict[int, tuple[float, float]]] = [ - { - state: (probability, _evaluate_sparsepauli(state, self._observables[i])) + for index in np.ndindex(*bc_circuits.shape): + bound_circuit = bc_circuits[index] + observable = bc_obs[index] + paulis, coeffs = zip(*observable.items()) + obs = SparsePauliOp(paulis, coeffs) + _check_observable_is_diagonal(obs) + + if pub.precision is None: + sampler_pubs.append((bound_circuit.measure_all(inplace=False),)) + else: + sampler_pubs.append( + ( + bound_circuit.measure_all(inplace=False), + None, + # Ensures a standard deviation of at most pub.precision + round(0.5 + (sum(obs.coeffs) / pub.precision) ** 2), + ) + ) + + job = self.sampler.run(sampler_pubs) + sampler_pubs_results = job.result() + + for sampler_pub_result, index in zip(sampler_pubs_results, np.ndindex(*bc_circuits.shape)): + observable = bc_obs[index] + paulis, coeffs = zip(*observable.items()) + obs = SparsePauliOp(paulis, coeffs) + sampled = { + label: value / sampler_pub_result.data.meas.num_shots + for label, value in sampler_pub_result.data.meas.get_int_counts().items() + } + evaluated = { + state: (probability, _evaluate_sparsepauli(state, obs)) for state, probability in sampled.items() } - for i, sampled in zip(observables, samples) - ] - - results = np.array([self.aggregation(evaluated.values()) for evaluated in evaluations]) - - # get the best measurements - best_measurements = [] - num_qubits = self._circuits[0].num_qubits - for evaluated in evaluations: + evs[index] = np.real_if_close(self.aggregation(evaluated.values())) best_result = min(evaluated.items(), key=lambda x: x[1][1]) best_measurements.append( { "state": best_result[0], - "bitstring": bin(best_result[0])[2:].zfill(num_qubits), + "bitstring": bin(best_result[0])[2:].zfill(pub.circuit.num_qubits), "value": best_result[1][1], "probability": best_result[1][0], } @@ -150,8 +148,15 @@ def _call( if self.callback is not None: self.callback(best_measurements) + data = DataBin(evs=evs, shape=evs.shape) + return _DiagonalEstimatorResult( - values=results, metadata=sampler_result.metadata, best_measurements=best_measurements + data, + metadata={ + "circuit_metadata": pub.circuit.metadata, + "target_precision": pub.precision, + }, + best_measurements=best_measurements, ) diff --git a/qiskit_algorithms/minimum_eigensolvers/qaoa.py b/qiskit_algorithms/minimum_eigensolvers/qaoa.py index 8953b795..daa80768 100644 --- a/qiskit_algorithms/minimum_eigensolvers/qaoa.py +++ b/qiskit_algorithms/minimum_eigensolvers/qaoa.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,12 +20,13 @@ from qiskit.circuit import QuantumCircuit from qiskit.circuit.library.n_local.qaoa_ansatz import QAOAAnsatz from qiskit.quantum_info.operators.base_operator import BaseOperator -from qiskit.primitives import BaseSampler +from qiskit.primitives import BaseSamplerV2 from qiskit_algorithms.utils.validation import validate_min from qiskit_algorithms.optimizers import Minimizer, Optimizer from .sampling_vqe import SamplingVQE +from ..custom_types import Transpiler class QAOA(SamplingVQE): @@ -54,7 +55,7 @@ class QAOA(SamplingVQE): the QAOA object has been constructed. Attributes: - sampler (BaseSampler): The sampler primitive to sample the circuits. + sampler (BaseSamplerV2): The sampler primitive to sample the circuits. optimizer (Optimizer | Minimizer): A classical optimizer to find the minimum energy. This can either be an :class:`.Optimizer` or a callable implementing the :class:`.Minimizer` protocol. @@ -71,6 +72,11 @@ class QAOA(SamplingVQE): that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the evaluated value, and the metadata dictionary. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. + References: [1]: Farhi, E., Goldstone, J., Gutmann, S., "A Quantum Approximate Optimization Algorithm" @@ -85,7 +91,7 @@ class QAOA(SamplingVQE): def __init__( self, - sampler: BaseSampler, + sampler: BaseSamplerV2, optimizer: Optimizer | Minimizer, *, reps: int = 1, @@ -94,6 +100,8 @@ def __init__( initial_point: np.ndarray | None = None, aggregation: float | Callable[[list[float]], float] | None = None, callback: Callable[[int, np.ndarray, float, dict[str, Any]], None] | None = None, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: @@ -117,6 +125,10 @@ def __init__( callback: A callback that can access the intermediate data at each optimization step. These data are: the evaluation count, the optimizer parameters for the ansatz, the evaluated value, the metadata dictionary. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ validate_min("reps", reps, 1) @@ -124,6 +136,8 @@ def __init__( self.mixer = mixer self.initial_state = initial_state self._cost_operator = None + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} super().__init__( sampler=sampler, @@ -136,6 +150,9 @@ def __init__( def _check_operator_ansatz(self, operator: BaseOperator): # Recreates a circuit based on operator parameter. - self.ansatz = QAOAAnsatz( + ansatz = QAOAAnsatz( operator, self.reps, initial_state=self.initial_state, mixer_operator=self.mixer - ).decompose() # TODO remove decompose once #6674 is fixed + ) + if self._transpiler is not None: + ansatz = self._transpiler.run(ansatz, **self._transpiler_options) + self.ansatz = ansatz diff --git a/qiskit_algorithms/minimum_eigensolvers/sampling_vqe.py b/qiskit_algorithms/minimum_eigensolvers/sampling_vqe.py index 0ebd7e05..5a05ae48 100644 --- a/qiskit_algorithms/minimum_eigensolvers/sampling_vqe.py +++ b/qiskit_algorithms/minimum_eigensolvers/sampling_vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -22,7 +22,7 @@ import numpy as np from qiskit.circuit import QuantumCircuit -from qiskit.primitives import BaseSampler +from qiskit.primitives import BaseSamplerV2 from qiskit.result import QuasiDistribution from qiskit.quantum_info.operators.base_operator import BaseOperator @@ -92,7 +92,7 @@ def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: the ``SamplingVQE`` object has been constructed. Attributes: - sampler (BaseSampler): The sampler primitive to sample the circuits. + sampler (BaseSamplerV2): The sampler primitive to sample the circuits. ansatz (QuantumCircuit): A parameterized quantum circuit to prepare the trial state. optimizer (Optimizer | Minimizer): A classical optimizer to find the minimum energy. This can either be an :class:`.Optimizer` or a callable implementing the @@ -116,7 +116,7 @@ def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: def __init__( self, - sampler: BaseSampler, + sampler: BaseSamplerV2, ansatz: QuantumCircuit, optimizer: Optimizer | Minimizer, *, @@ -240,7 +240,12 @@ def compute_minimum_eigenvalue( optimizer_result.x, ) - final_state = self.sampler.run([self.ansatz], [optimizer_result.x]).result().quasi_dists[0] + final_res = self.sampler.run([(self.ansatz, optimizer_result.x)]).result() + final_state = getattr(final_res[0].data, self.ansatz.cregs[0].name) + final_state = { + label: value / final_state.num_shots + for label, value in final_state.get_counts().items() + } if aux_operators is not None: aux_operators_evaluated = estimate_observables( @@ -314,18 +319,17 @@ def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float: nonlocal eval_count # handle broadcasting: ensure parameters is of shape [array, array, ...] parameters = np.reshape(parameters, (-1, num_parameters)).tolist() - batch_size = len(parameters) - - estimator_result = estimator.run( - batch_size * [ansatz], batch_size * [operator], parameters - ).result() - values = estimator_result.values + # batch_size = len(parameters) + job = estimator.run([(ansatz, operator, parameters)]) + estimator_result = job.result()[0] + values = estimator_result.data.evs + if not values.shape: + values = values.reshape(1) if self.callback is not None: - metadata = estimator_result.metadata - for params, value, meta in zip(parameters, values, metadata): + for params, value in zip(parameters, values): eval_count += 1 - self.callback(eval_count, params, value, meta) + self.callback(eval_count, params, value, estimator_result.metadata) result = values if len(values) > 1 else values[0] return np.real(result) diff --git a/qiskit_algorithms/minimum_eigensolvers/vqe.py b/qiskit_algorithms/minimum_eigensolvers/vqe.py index b0e85a67..8eb2e3a4 100644 --- a/qiskit_algorithms/minimum_eigensolvers/vqe.py +++ b/qiskit_algorithms/minimum_eigensolvers/vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -22,7 +22,7 @@ import numpy as np from qiskit.circuit import QuantumCircuit -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit_algorithms.gradients import BaseEstimatorGradient @@ -94,7 +94,7 @@ def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: the VQE object has been constructed. Attributes: - estimator (BaseEstimator): The estimator primitive to compute the expectation value of the + estimator (BaseEstimatorV2): The estimator primitive to compute the expectation value of the Hamiltonian operator. ansatz (QuantumCircuit): A parameterized quantum circuit to prepare the trial state. optimizer (Optimizer | Minimizer): A classical optimizer to find the minimum energy. This @@ -114,7 +114,7 @@ def my_minimizer(fun, x0, jac=None, bounds=None) -> OptimizerResult: def __init__( self, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, ansatz: QuantumCircuit, optimizer: Optimizer | Minimizer, *, @@ -258,22 +258,23 @@ def evaluate_energy(parameters: np.ndarray) -> np.ndarray | float: nonlocal eval_count # handle broadcasting: ensure parameters is of shape [array, array, ...] - parameters = np.reshape(parameters, (-1, num_parameters)).tolist() - batch_size = len(parameters) + parameters = np.reshape(parameters, (-1, num_parameters)) try: - job = self.estimator.run(batch_size * [ansatz], batch_size * [operator], parameters) - estimator_result = job.result() + job = self.estimator.run([(ansatz, operator, parameters)]) + estimator_result = job.result()[0] except Exception as exc: raise AlgorithmError("The primitive job to evaluate the energy failed!") from exc - values = estimator_result.values + values = estimator_result.data.evs + + if not values.shape: + values = values.reshape(1) if self.callback is not None: - metadata = estimator_result.metadata - for params, value, meta in zip(parameters, values, metadata): + for params, value in zip(parameters.reshape(-1, 1), values): eval_count += 1 - self.callback(eval_count, params, value, meta) + self.callback(eval_count, params, value, estimator_result.metadata) energy = values[0] if len(values) == 1 else values diff --git a/qiskit_algorithms/observables_evaluator.py b/qiskit_algorithms/observables_evaluator.py index ae125bfb..e61e7023 100644 --- a/qiskit_algorithms/observables_evaluator.py +++ b/qiskit_algorithms/observables_evaluator.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2021, 2023. +# (C) Copyright IBM 2021, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,7 +20,7 @@ from qiskit import QuantumCircuit from qiskit.quantum_info import SparsePauliOp -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from .exceptions import AlgorithmError @@ -28,7 +28,7 @@ def estimate_observables( - estimator: BaseEstimator, + estimator: BaseEstimatorV2, quantum_state: QuantumCircuit, observables: ListOrDict[BaseOperator], parameter_values: Sequence[float] | None = None, @@ -42,7 +42,7 @@ def estimate_observables( Args: estimator: An estimator primitive used for calculations. quantum_state: A (parameterized) quantum circuit preparing a quantum state that expectation - values are computed against. + values are computed against. It is expected to be an ISA circuit. observables: A list or a dictionary of operators whose expectation values are to be calculated. parameter_values: Optional list of parameters values to evaluate the quantum circuit on. @@ -63,21 +63,19 @@ def estimate_observables( if len(observables_list) > 0: observables_list = _handle_zero_ops(observables_list) - quantum_state = [quantum_state] * len(observables) parameter_values_: Sequence[float] | Sequence[Sequence[float]] | None = parameter_values - if parameter_values is not None: - parameter_values_ = [parameter_values] * len(observables) try: - estimator_job = estimator.run(quantum_state, observables_list, parameter_values_) - expectation_values = estimator_job.result().values + estimator_job = estimator.run([(quantum_state, observables_list, parameter_values_)]) + estimator_result = estimator_job.result()[0] + expectation_values = estimator_result.data.evs except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc - metadata = estimator_job.result().metadata + metadata = estimator_result.metadata # Discard values below threshold observables_means = expectation_values * (np.abs(expectation_values) > threshold) # zip means and metadata into tuples - observables_results = list(zip(observables_means, metadata)) + observables_results = list(zip(observables_means, [metadata] * len(observables_means))) else: observables_results = [] diff --git a/qiskit_algorithms/optimizers/qnspsa.py b/qiskit_algorithms/optimizers/qnspsa.py index 3a0ea8e0..86031d36 100644 --- a/qiskit_algorithms/optimizers/qnspsa.py +++ b/qiskit_algorithms/optimizers/qnspsa.py @@ -20,10 +20,11 @@ import numpy as np from qiskit.circuit import QuantumCircuit -from qiskit.primitives import BaseSampler +from qiskit.primitives import BaseSamplerV2 from qiskit_algorithms.state_fidelities import ComputeUncompute from .spsa import SPSA, CALLBACK, TERMINATIONCHECKER, _batch_evaluate +from ..custom_types import Transpiler # the function to compute the fidelity FIDELITY = Callable[[np.ndarray, np.ndarray], float] @@ -63,7 +64,7 @@ class QNSPSA(SPSA): import numpy as np from qiskit_algorithms.optimizers import QNSPSA from qiskit.circuit.library import PauliTwoDesign - from qiskit.primitives import Estimator, Sampler + from qiskit.primitives import StatevectorEstimator, StatevectorSampler from qiskit.quantum_info import Pauli # problem setup @@ -72,14 +73,14 @@ class QNSPSA(SPSA): initial_point = np.random.random(ansatz.num_parameters) # loss function - estimator = Estimator() + estimator = StatevectorEstimator() def loss(x): - result = estimator.run([ansatz], [observable], [x]).result() - return np.real(result.values[0]) + result = estimator.run([(ansatz, observable, x)]).result()[0] + return np.real(result.data.evs[0]) # fidelity for estimation of the geometric tensor - sampler = Sampler() + sampler = StatevectorSampler() fidelity = QNSPSA.get_fidelity(ansatz, sampler) # run QN-SPSA @@ -232,7 +233,10 @@ def settings(self) -> dict[str, Any]: @staticmethod def get_fidelity( circuit: QuantumCircuit, - sampler: BaseSampler, + sampler: BaseSamplerV2, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> Callable[[np.ndarray, np.ndarray], float]: r"""Get a function to compute the fidelity of ``circuit`` with itself. @@ -250,12 +254,19 @@ def get_fidelity( Args: circuit: The circuit preparing the parameterized ansatz. sampler: A sampler primitive to sample from a quantum state. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced by the fidelity object. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Returns: A handle to the function :math:`F`. """ - fid = ComputeUncompute(sampler) + fid = ComputeUncompute( + sampler, transpiler=transpiler, transpiler_options=transpiler_options + ) num_parameters = circuit.num_parameters diff --git a/qiskit_algorithms/optimizers/spsa.py b/qiskit_algorithms/optimizers/spsa.py index 1a13fb97..b9059e2b 100644 --- a/qiskit_algorithms/optimizers/spsa.py +++ b/qiskit_algorithms/optimizers/spsa.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -90,17 +90,17 @@ class SPSA(Optimizer): import numpy as np from qiskit_algorithms.optimizers import SPSA from qiskit.circuit.library import PauliTwoDesign - from qiskit.primitives import Estimator + from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp ansatz = PauliTwoDesign(2, reps=1, seed=2) observable = SparsePauliOp("ZZ") initial_point = np.random.random(ansatz.num_parameters) - estimator = Estimator() + estimator = StatevectorEstimator() def loss(x): - job = estimator.run([ansatz], [observable], [x]) - return job.result().values[0] + job = estimator.run([(ansatz, observable, x)]) + return job.result()[0].data.evs spsa = SPSA(maxiter=300) result = spsa.minimize(loss, x0=initial_point) diff --git a/qiskit_algorithms/optimizers/umda.py b/qiskit_algorithms/optimizers/umda.py index f420e82d..5065126b 100644 --- a/qiskit_algorithms/optimizers/umda.py +++ b/qiskit_algorithms/optimizers/umda.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2023. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -74,7 +74,7 @@ class UMDA(Optimizer): from qiskit_algorithms.optimizers import UMDA from qiskit_algorithms import QAOA from qiskit.quantum_info import Pauli - from qiskit.primitives import Sampler + from qiskit.primitives import StatevectorSampler as Sampler X = Pauli("X") I = Pauli("I") diff --git a/qiskit_algorithms/phase_estimators/hamiltonian_phase_estimation.py b/qiskit_algorithms/phase_estimators/hamiltonian_phase_estimation.py index bfb36e9a..e909bc7d 100644 --- a/qiskit_algorithms/phase_estimators/hamiltonian_phase_estimation.py +++ b/qiskit_algorithms/phase_estimators/hamiltonian_phase_estimation.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,16 +14,18 @@ from __future__ import annotations +from typing import Any from qiskit import QuantumCircuit from qiskit.circuit.library import PauliEvolutionGate -from qiskit.primitives import BaseSampler +from qiskit.primitives import BaseSamplerV2 from qiskit.quantum_info import SparsePauliOp, Statevector, Pauli from qiskit.synthesis import EvolutionSynthesis -from .phase_estimation import PhaseEstimation from .hamiltonian_phase_estimation_result import HamiltonianPhaseEstimationResult +from .phase_estimation import PhaseEstimation from .phase_estimation_scale import PhaseEstimationScale +from ..custom_types import Transpiler class HamiltonianPhaseEstimation: @@ -83,17 +85,27 @@ class HamiltonianPhaseEstimation: def __init__( self, num_evaluation_qubits: int, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: num_evaluation_qubits: The number of qubits used in estimating the phase. The phase will be estimated as a binary string with this many bits. sampler: The sampler primitive on which the circuit will be sampled. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. """ self._phase_estimation = PhaseEstimation( num_evaluation_qubits=num_evaluation_qubits, sampler=sampler, + transpiler=transpiler, + transpiler_options=transpiler_options, ) def _get_scale(self, hamiltonian, bound=None) -> PhaseEstimationScale: diff --git a/qiskit_algorithms/phase_estimators/ipe.py b/qiskit_algorithms/phase_estimators/ipe.py index bac41756..a7fa880b 100644 --- a/qiskit_algorithms/phase_estimators/ipe.py +++ b/qiskit_algorithms/phase_estimators/ipe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2021, 2024. +# (C) Copyright IBM 2021, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,17 +14,18 @@ """The Iterative Quantum Phase Estimation Algorithm.""" from __future__ import annotations +from typing import Any import numpy -from qiskit.circuit import QuantumCircuit, QuantumRegister -from qiskit.circuit.classicalregister import ClassicalRegister -from qiskit.primitives import BaseSampler +from qiskit.circuit import ClassicalRegister, QuantumCircuit, QuantumRegister +from qiskit.primitives import BaseSamplerV2 from qiskit_algorithms.exceptions import AlgorithmError from .phase_estimator import PhaseEstimator from .phase_estimator import PhaseEstimatorResult +from ..custom_types import Transpiler class IterativePhaseEstimation(PhaseEstimator): @@ -40,12 +41,20 @@ class IterativePhaseEstimation(PhaseEstimator): def __init__( self, num_iterations: int, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: num_iterations: The number of iterations (rounds) of the phase estimation to run. sampler: The sampler primitive on which the circuit will be sampled. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: ValueError: if num_iterations is not greater than zero. @@ -58,6 +67,8 @@ def __init__( raise ValueError("`num_iterations` must be greater than zero.") self._num_iterations = num_iterations self._sampler = sampler + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} # pylint: disable=too-many-positional-arguments def construct_circuit( @@ -126,9 +137,17 @@ def _estimate_phase_iteratively(self, unitary, state_preparation): qc = self.construct_circuit( unitary, state_preparation, k, -2 * numpy.pi * omega_coef, True ) + + if self._transpiler is not None: + qc = self._transpiler.run(qc, **self._transpiler_options) + try: sampler_job = self._sampler.run([qc]) - result = sampler_job.result().quasi_dists[0] + result = sampler_job.result()[0].data.c + result = { + label: value / result.num_shots + for label, value in result.get_int_counts().items() + } except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc x = 1 if result.get(1, 0) > result.get(0, 0) else 0 diff --git a/qiskit_algorithms/phase_estimators/phase_estimation.py b/qiskit_algorithms/phase_estimators/phase_estimation.py index bf84b736..f3ebb2ac 100644 --- a/qiskit_algorithms/phase_estimators/phase_estimation.py +++ b/qiskit_algorithms/phase_estimators/phase_estimation.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -15,18 +15,20 @@ from __future__ import annotations +from typing import Any + import numpy import qiskit from qiskit import circuit -from qiskit.circuit import QuantumCircuit -from qiskit.circuit.classicalregister import ClassicalRegister -from qiskit.primitives import BaseSampler +from qiskit.circuit import QuantumCircuit, ClassicalRegister +from qiskit.primitives import BaseSamplerV2 from qiskit.result import Result from qiskit_algorithms.exceptions import AlgorithmError from .phase_estimation_result import PhaseEstimationResult, _sort_phases from .phase_estimator import PhaseEstimator +from ..custom_types import Transpiler class PhaseEstimation(PhaseEstimator): @@ -82,13 +84,21 @@ class PhaseEstimation(PhaseEstimator): def __init__( self, num_evaluation_qubits: int, - sampler: BaseSampler | None = None, + sampler: BaseSamplerV2 | None = None, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: num_evaluation_qubits: The number of qubits used in estimating the phase. The phase will be estimated as a binary string with this many bits. sampler: The sampler primitive on which the circuit will be sampled. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: AlgorithmError: If a sampler is not provided @@ -101,6 +111,8 @@ def __init__( self._num_evaluation_qubits = num_evaluation_qubits self._sampler = sampler + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} def construct_circuit( self, unitary: QuantumCircuit, state_preparation: QuantumCircuit | None = None @@ -189,6 +201,9 @@ def estimate_from_pe_circuit(self, pe_circuit: QuantumCircuit) -> PhaseEstimatio AlgorithmError: Primitive job failed. """ + if self._transpiler is not None: + pe_circuit = self._transpiler.run(pe_circuit, **self._transpiler_options) + self._add_measurement_if_required(pe_circuit) try: @@ -196,11 +211,13 @@ def estimate_from_pe_circuit(self, pe_circuit: QuantumCircuit) -> PhaseEstimatio circuit_result = circuit_job.result() except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc - phases = circuit_result.quasi_dists[0] + phases = circuit_result[0].data.meas.get_counts() + # Ensure we still return the measurement strings in sorted order, which SamplerV2 doesn't + # guarantee + measurement_labels = sorted(phases.keys()) phases_bitstrings = {} - for key, phase in phases.items(): - bitstring_key = self._get_reversed_bitstring(self._num_evaluation_qubits, key) - phases_bitstrings[bitstring_key] = phase + for key in measurement_labels: + phases_bitstrings[key[::-1]] = phases[key] / circuit_result[0].data.meas.num_shots phases = phases_bitstrings return PhaseEstimationResult( diff --git a/qiskit_algorithms/phase_estimators/phase_estimation_result.py b/qiskit_algorithms/phase_estimators/phase_estimation_result.py index bf57c800..e46b4cab 100644 --- a/qiskit_algorithms/phase_estimators/phase_estimation_result.py +++ b/qiskit_algorithms/phase_estimators/phase_estimation_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -23,7 +23,7 @@ class PhaseEstimationResult(PhaseEstimatorResult): This class is instantiated by the ``PhaseEstimation`` class, not via user code. The ``PhaseEstimation`` class generates a list of phases and corresponding weights. Upon - completion it returns the results as an instance of this class. The main method for + completion, it returns the results as an instance of this class. The main method for accessing the results is `filter_phases`. The canonical phase satisfying the ``PhaseEstimator`` interface, returned by the diff --git a/qiskit_algorithms/phase_estimators/phase_estimator.py b/qiskit_algorithms/phase_estimators/phase_estimator.py index 1f0f5002..2a78f7f8 100644 --- a/qiskit_algorithms/phase_estimators/phase_estimator.py +++ b/qiskit_algorithms/phase_estimators/phase_estimator.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2024. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -38,10 +38,6 @@ def estimate( """Estimate the phase.""" raise NotImplementedError - @staticmethod - def _get_reversed_bitstring(length: int, number: int) -> str: - return f"{number:b}".zfill(length)[::-1] - class PhaseEstimatorResult(AlgorithmResult): """Phase Estimator Result.""" diff --git a/qiskit_algorithms/state_fidelities/base_state_fidelity.py b/qiskit_algorithms/state_fidelities/base_state_fidelity.py index 5c1199c4..b988a124 100644 --- a/qiskit_algorithms/state_fidelities/base_state_fidelity.py +++ b/qiskit_algorithms/state_fidelities/base_state_fidelity.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,14 +16,15 @@ from __future__ import annotations from abc import ABC, abstractmethod from collections.abc import MutableMapping -from typing import cast, Sequence, List +from typing import cast, Sequence, List, Any import numpy as np from qiskit import QuantumCircuit from qiskit.circuit import ParameterVector -from qiskit.primitives.utils import _circuit_key from ..algorithm_job import AlgorithmJob +from ..custom_types import Transpiler +from ..utils.circuit_key import _circuit_key class BaseStateFidelity(ABC): @@ -42,10 +43,24 @@ class BaseStateFidelity(ABC): """ - def __init__(self) -> None: - + def __init__( + self, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, + ) -> None: + r""" + Args: + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. + """ # use cache for preventing unnecessary circuit compositions self._circuit_cache: MutableMapping[tuple[int, int], QuantumCircuit] = {} + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} @staticmethod def _preprocess_values( @@ -195,6 +210,9 @@ def _construct_circuits( # update cache self._circuit_cache[_circuit_key(circuit_1), _circuit_key(circuit_2)] = circuit + if self._transpiler is not None: + return self._transpiler.run(circuits, **self._transpiler_options) + return circuits def _construct_value_list( @@ -245,7 +263,8 @@ def _run( circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, - **options, + *, + shots: int | Sequence[int] | None = None, ) -> AlgorithmJob: r""" Computes the state overlap (fidelity) calculation between two @@ -257,10 +276,12 @@ def _run( circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first set of circuits values_2: Numerical parameters to be bound to the second set of circuits. - options: Primitive backend runtime options used for circuit execution. The order - of priority is\: options in ``run`` method > fidelity's default - options > primitive's default setting. - Higher priority setting overrides lower priority setting. + shots: Number of shots to be used by the underlying sampler. If a single integer is + provided, this number will be used for all circuits. If a sequence of integers is + provided, they will be used on a per-circuit basis. If none is provided, the + fidelity's default number of shots will be used for all circuits. If this number is + also set to None, the underlying primitive's default number of shots will be used + for all circuits. Returns: A newly constructed algorithm job instance to get the fidelity result. @@ -273,7 +294,8 @@ def run( circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, - **options, + *, + shots: int | Sequence[int] | None = None, ) -> AlgorithmJob: r""" Runs asynchronously the state overlap (fidelity) calculation between two @@ -286,18 +308,20 @@ def run( circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first set of circuits. values_2: Numerical parameters to be bound to the second set of circuits. - options: Primitive backend runtime options used for circuit execution. The order - of priority is\: options in ``run`` method > fidelity's default - options > primitive's default setting. - Higher priority setting overrides lower priority setting. + shots: Number of shots to be used by the underlying sampler. If a single integer is + provided, this number will be used for all circuits. If a sequence of integers is + provided, they will be used on a per-circuit basis. If none is provided, the + fidelity's default number of shots will be used for all circuits. If this number is + also set to None, the underlying primitive's default number of shots will be used + for all circuits. Returns: Primitive job for the fidelity calculation. The job's result is an instance of :class:`.StateFidelityResult`. """ - job = self._run(circuits_1, circuits_2, values_1, values_2, **options) + job = self._run(circuits_1, circuits_2, values_1, values_2, shots=shots) - job.submit() + job._submit() return job @staticmethod diff --git a/qiskit_algorithms/state_fidelities/compute_uncompute.py b/qiskit_algorithms/state_fidelities/compute_uncompute.py index b16e4011..c5fc51d9 100644 --- a/qiskit_algorithms/state_fidelities/compute_uncompute.py +++ b/qiskit_algorithms/state_fidelities/compute_uncompute.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,18 +14,20 @@ """ from __future__ import annotations + from collections.abc import Sequence -from copy import copy +from typing import Any from qiskit import QuantumCircuit -from qiskit.primitives import BaseSampler +from qiskit.primitives import BaseSamplerV2 +from qiskit.primitives.containers.sampler_pub import SamplerPub from qiskit.primitives.primitive_job import PrimitiveJob -from qiskit.providers import Options -from ..exceptions import AlgorithmError from .base_state_fidelity import BaseStateFidelity from .state_fidelity_result import StateFidelityResult from ..algorithm_job import AlgorithmJob +from ..custom_types import Transpiler +from ..exceptions import AlgorithmError class ComputeUncompute(BaseStateFidelity): @@ -53,16 +55,19 @@ class ComputeUncompute(BaseStateFidelity): def __init__( self, - sampler: BaseSampler, - options: Options | None = None, + sampler: BaseSamplerV2, + shots: int | None = None, local: bool = False, + *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, ) -> None: r""" Args: sampler: Sampler primitive instance. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > fidelity's - default options > primitive's default setting. + shots: Number of shots to be used by the underlying sampler. + The order of priority is: number of shots in ``run`` method > fidelity's + number of shots > primitive's default number of shots. Higher priority setting overrides lower priority setting. local: If set to ``True``, the fidelity is averaged over single-qubit projectors @@ -75,20 +80,23 @@ def __init__( This coincides with the standard (global) fidelity in the limit of the fidelity approaching 1. Might be used to increase the variance to improve trainability in algorithms such as :class:`~.time_evolvers.PVQD`. + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. Raises: - ValueError: If the sampler is not an instance of ``BaseSampler``. + ValueError: If the sampler is not an instance of ``BaseSamplerV2``. """ - if not isinstance(sampler, BaseSampler): + if not isinstance(sampler, BaseSamplerV2): raise ValueError( - f"The sampler should be an instance of BaseSampler, " f"but got {type(sampler)}" + f"The sampler should be an instance of BaseSamplerV2, " f"but got {type(sampler)}" ) - self._sampler: BaseSampler = sampler + self._sampler: BaseSamplerV2 = sampler self._local = local - self._default_options = Options() - if options is not None: - self._default_options.update_options(**options) - super().__init__() + self._shots = shots + super().__init__(transpiler=transpiler, transpiler_options=transpiler_options) def create_fidelity_circuit( self, circuit_1: QuantumCircuit, circuit_2: QuantumCircuit @@ -119,7 +127,8 @@ def _run( circuits_2: QuantumCircuit | Sequence[QuantumCircuit], values_1: Sequence[float] | Sequence[Sequence[float]] | None = None, values_2: Sequence[float] | Sequence[Sequence[float]] | None = None, - **options, + *, + shots: int | Sequence[int] | None = None, ) -> AlgorithmJob: r""" Computes the state overlap (fidelity) calculation between two @@ -131,10 +140,12 @@ def _run( circuits_2: (Parametrized) quantum circuits preparing :math:`|\phi\rangle`. values_1: Numerical parameters to be bound to the first circuits. values_2: Numerical parameters to be bound to the second circuits. - options: Primitive backend runtime options used for circuit execution. - The order of priority is: options in ``run`` method > fidelity's - default options > primitive's default setting. - Higher priority setting overrides lower priority setting. + shots: Number of shots to be used by the underlying sampler. If a single integer is + provided, this number will be used for all circuits. If a sequence of integers is + provided, they will be used on a per-circuit basis. If none is provided, the + fidelity's default number of shots will be used for all circuits. If this number is + also set to None, the underlying primitive's default number of shots will be used + for all circuits. Returns: An AlgorithmJob for the fidelity calculation. @@ -143,7 +154,6 @@ def _run( ValueError: At least one pair of circuits must be defined. AlgorithmError: If the sampler job is not completed successfully. """ - circuits = self._construct_circuits(circuits_1, circuits_2) if len(circuits) == 0: raise ValueError( @@ -151,79 +161,88 @@ def _run( ) values = self._construct_value_list(circuits_1, circuits_2, values_1, values_2) - # The priority of run options is as follows: - # options in `evaluate` method > fidelity's default options > - # primitive's default options. - opts = copy(self._default_options) - opts.update_options(**options) + # The priority of number of shots options is as follows: + # number in `run` method > fidelity's default number of shots > + # primitive's default number of shots. + if not isinstance(shots, Sequence): + if shots is None: + shots = self.shots + coerced_pubs = [ + SamplerPub.coerce((circuit, value), shots) + for circuit, value in zip(circuits, values) + ] + else: + coerced_pubs = [ + SamplerPub.coerce((circuit, value), shots_number) + for circuit, value, shots_number in zip(circuits, values, shots) + ] - sampler_job = self._sampler.run(circuits=circuits, parameter_values=values, **opts.__dict__) + job = self._sampler.run(coerced_pubs) - local_opts = self._get_local_options(opts.__dict__) - return AlgorithmJob(ComputeUncompute._call, sampler_job, circuits, self._local, local_opts) + return AlgorithmJob(ComputeUncompute._call, job, circuits, self._local) @staticmethod def _call( - job: PrimitiveJob, circuits: Sequence[QuantumCircuit], local: bool, local_opts: Options + job: PrimitiveJob, circuits: Sequence[QuantumCircuit], local: bool ) -> StateFidelityResult: try: result = job.result() except Exception as exc: raise AlgorithmError("Sampler job failed!") from exc + pub_results_data = [ + getattr(pub_result.data, circuit.cregs[0].name) + for pub_result, circuit in zip(result, circuits) + ] + quasi_dists = [ + { + label: value / prob_dist.num_shots + for label, value in prob_dist.get_int_counts().items() + } + for prob_dist in pub_results_data + ] + if local: raw_fidelities = [ ComputeUncompute._get_local_fidelity(prob_dist, circuit.num_qubits) - for prob_dist, circuit in zip(result.quasi_dists, circuits) + for prob_dist, circuit in zip(quasi_dists, circuits) ] else: raw_fidelities = [ - ComputeUncompute._get_global_fidelity(prob_dist) for prob_dist in result.quasi_dists + ComputeUncompute._get_global_fidelity(prob_dist) for prob_dist in quasi_dists ] fidelities = ComputeUncompute._truncate_fidelities(raw_fidelities) + shots = [pub_result_data.num_shots for pub_result_data in pub_results_data] + + if len(shots) == 1: + shots = shots[0] return StateFidelityResult( fidelities=fidelities, raw_fidelities=raw_fidelities, metadata=result.metadata, - options=local_opts, + shots=shots, ) @property - def options(self) -> Options: - """Return the union of estimator options setting and fidelity default options, - where, if the same field is set in both, the fidelity's default options override - the primitive's default setting. + def shots(self) -> int | None: + """Return the number of shots used by the `run` method of the Sampler primitive. If None, + the default number of shots of the primitive is used. Returns: - The fidelity default + estimator options. + The default number of shots. """ - return self._get_local_options(self._default_options.__dict__) + return self._shots - def update_default_options(self, **options): - """Update the fidelity's default options setting. + @shots.setter + def shots(self, shots: int | None): + """Update the fidelity's default number of shots setting. Args: - **options: The fields to update the default options. + shots: The new default number of shots. """ - self._default_options.update_options(**options) - - def _get_local_options(self, options: Options) -> Options: - """Return the union of the primitive's default setting, - the fidelity default options, and the options in the ``run`` method. - The order of priority is: options in ``run`` method > fidelity's - default options > primitive's default setting. - - Args: - options: The fields to update the options - - Returns: - The fidelity default + estimator + run options. - """ - opts = copy(self._sampler.options) - opts.update_options(**options) - return opts + self._shots = shots @staticmethod def _get_global_fidelity(probability_distribution: dict[int, float]) -> float: diff --git a/qiskit_algorithms/state_fidelities/state_fidelity_result.py b/qiskit_algorithms/state_fidelities/state_fidelity_result.py index 6dc26dbf..2d9807b3 100644 --- a/qiskit_algorithms/state_fidelities/state_fidelity_result.py +++ b/qiskit_algorithms/state_fidelities/state_fidelity_result.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,10 +16,8 @@ from __future__ import annotations from collections.abc import Sequence, Mapping -from typing import Any from dataclasses import dataclass - -from qiskit.providers import Options +from typing import Any @dataclass(frozen=True) @@ -33,5 +31,5 @@ class StateFidelityResult: depending on the error mitigation method used.""" metadata: Sequence[Mapping[str, Any]] """Additional information about the fidelity calculation.""" - options: Options - """Primitive runtime options for the execution of the fidelity job.""" + shots: int | Sequence[int] + """Primitive number of shots options for the execution of the fidelity job.""" diff --git a/qiskit_algorithms/time_evolvers/pvqd/pvqd.py b/qiskit_algorithms/time_evolvers/pvqd/pvqd.py index c04d0bc3..44a461f1 100644 --- a/qiskit_algorithms/time_evolvers/pvqd/pvqd.py +++ b/qiskit_algorithms/time_evolvers/pvqd/pvqd.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2019, 2024. +# (C) Copyright IBM 2019, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,7 +20,7 @@ from qiskit.circuit import Parameter, ParameterVector, QuantumCircuit from qiskit.circuit.library import PauliEvolutionGate -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit.synthesis import EvolutionSynthesis, LieTrotter from qiskit_algorithms.utils import algorithm_globals @@ -74,14 +74,14 @@ class PVQD(RealTimeEvolver): from qiskit_algorithms.state_fidelities import ComputeUncompute from qiskit_algorithms.time_evolvers import TimeEvolutionProblem, PVQD - from qiskit.primitives import Estimator, Sampler + from qiskit.primitives import StatevectorEstimator, StatevectorSampler from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp, Pauli from qiskit_algorithms.optimizers import L_BFGS_B - sampler = Sampler() + sampler = StatevectorSampler() fidelity = ComputeUncompute(sampler) - estimator = Estimator() + estimator = StatevectorEstimator() hamiltonian = 0.1 * SparsePauliOp(["ZZ", "IX", "XI"]) observable = Pauli("ZZ") ansatz = EfficientSU2(2, reps=1) @@ -121,7 +121,7 @@ def __init__( fidelity: BaseStateFidelity, ansatz: QuantumCircuit, initial_parameters: np.ndarray, - estimator: BaseEstimator | None = None, + estimator: BaseEstimatorV2 | None = None, optimizer: Optimizer | Minimizer | None = None, num_timesteps: int | None = None, evolution: EvolutionSynthesis | None = None, diff --git a/qiskit_algorithms/time_evolvers/pvqd/utils.py b/qiskit_algorithms/time_evolvers/pvqd/utils.py index b571a792..b992ab9b 100644 --- a/qiskit_algorithms/time_evolvers/pvqd/utils.py +++ b/qiskit_algorithms/time_evolvers/pvqd/utils.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,7 +21,7 @@ from qiskit.circuit import QuantumCircuit, Parameter, ParameterExpression from qiskit.compiler import transpile from qiskit.exceptions import QiskitError -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from qiskit_algorithms.gradients import ParamShiftSamplerGradient as ParamShift @@ -75,7 +75,7 @@ def _is_gradient_supported(ansatz: QuantumCircuit) -> bool: def _get_observable_evaluator( ansatz: QuantumCircuit, observables: BaseOperator | list[BaseOperator], - estimator: BaseEstimator, + estimator: BaseEstimatorV2, ) -> Callable[[np.ndarray], float | list[float]]: """Get a callable to evaluate a (list of) observable(s) for given circuit parameters.""" @@ -91,18 +91,10 @@ def evaluate_observables(theta: np.ndarray) -> float | list[float]: Raises: AlgorithmError: If a primitive job fails. """ - if isinstance(observables, list): - num_observables = len(observables) - obs = observables - else: - num_observables = 1 - obs = [observables] - states = [ansatz] * num_observables - parameter_values = [theta] * num_observables try: - estimator_job = estimator.run(states, obs, parameter_values=parameter_values) - results = estimator_job.result().values + estimator_job = estimator.run([(ansatz, observables, theta)]) + results = estimator_job.result()[0].data.evs except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc diff --git a/qiskit_algorithms/time_evolvers/trotterization/trotter_qrte.py b/qiskit_algorithms/time_evolvers/trotterization/trotter_qrte.py index 893cd985..256c6864 100644 --- a/qiskit_algorithms/time_evolvers/trotterization/trotter_qrte.py +++ b/qiskit_algorithms/time_evolvers/trotterization/trotter_qrte.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2021, 2024. +# (C) Copyright IBM 2021, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,14 +14,17 @@ from __future__ import annotations +from typing import Any + from qiskit import QuantumCircuit from qiskit.circuit.library import PauliEvolutionGate from qiskit.circuit.parametertable import ParameterView -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.synthesis import ProductFormula, LieTrotter +from qiskit_algorithms.custom_types import Transpiler from qiskit_algorithms.time_evolvers.time_evolution_problem import TimeEvolutionProblem from qiskit_algorithms.time_evolvers.time_evolution_result import TimeEvolutionResult from qiskit_algorithms.time_evolvers.real_time_evolver import RealTimeEvolver @@ -41,14 +44,14 @@ class TrotterQRTE(RealTimeEvolver): from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit import QuantumCircuit from qiskit_algorithms import TrotterQRTE, TimeEvolutionProblem - from qiskit.primitives import Estimator + from qiskit.primitives import StatevectorEstimator operator = SparsePauliOp([Pauli("X"), Pauli("Z")]) initial_state = QuantumCircuit(1) time = 1 evolution_problem = TimeEvolutionProblem(operator, time, initial_state) # LieTrotter with 1 rep - estimator = Estimator() + estimator = StatevectorEstimator() trotter_qrte = TrotterQRTE(estimator=estimator) evolved_state = trotter_qrte.evolve(evolution_problem).evolved_state """ @@ -56,9 +59,11 @@ class TrotterQRTE(RealTimeEvolver): def __init__( self, product_formula: ProductFormula | None = None, - estimator: BaseEstimator | None = None, + estimator: BaseEstimatorV2 | None = None, num_timesteps: int = 1, *, + transpiler: Transpiler | None = None, + transpiler_options: dict[str, Any] | None = None, insert_barriers: bool = False, ) -> None: """ @@ -73,6 +78,11 @@ def __init__( ``TimeEvolutionProblem.aux_operators``. num_timesteps: The number of time-steps the full evolution time is divided into (repetitions of ``product_formula``). + transpiler: An optional object with a `run` method allowing to transpile the circuits + that are produced within this algorithm. If set to `None`, these won't be + transpiled. + transpiler_options: A dictionary of options to be passed to the transpiler's `run` + method as keyword arguments. insert_barriers: If True, insert a barrier after the initial state and after each Trotter step. """ @@ -81,6 +91,8 @@ def __init__( self.num_timesteps = num_timesteps self.estimator = estimator self._insert_barriers = insert_barriers + self._transpiler = transpiler + self._transpiler_options = transpiler_options if transpiler_options is not None else {} @property def product_formula(self) -> ProductFormula: @@ -96,14 +108,14 @@ def product_formula(self, product_formula: ProductFormula | None): self._product_formula = product_formula @property - def estimator(self) -> BaseEstimator | None: + def estimator(self) -> BaseEstimatorV2 | None: """ Returns an estimator. """ return self._estimator @estimator.setter - def estimator(self, estimator: BaseEstimator) -> None: + def estimator(self, estimator: BaseEstimatorV2) -> None: """ Sets an estimator. """ @@ -197,6 +209,10 @@ def evolve(self, evolution_problem: TimeEvolutionProblem) -> TimeEvolutionResult evolved_state = QuantumCircuit(initial_state.num_qubits) evolved_state.append(initial_state, evolved_state.qubits) + + if self._transpiler is not None: + evolved_state = self._transpiler.run(evolved_state, **self._transpiler_options) + if self._insert_barriers: evolved_state.barrier() @@ -235,6 +251,10 @@ def evolve(self, evolution_problem: TimeEvolutionProblem) -> TimeEvolutionResult synthesis=self.product_formula, ) evolved_state.append(single_step_evolution_gate, evolved_state.qubits) + + if self._transpiler is not None: + evolved_state = self._transpiler.run(evolved_state, **self._transpiler_options) + if self._insert_barriers: evolved_state.barrier() diff --git a/qiskit_algorithms/time_evolvers/variational/var_qite.py b/qiskit_algorithms/time_evolvers/variational/var_qite.py index a6f9d388..fd6fb932 100644 --- a/qiskit_algorithms/time_evolvers/variational/var_qite.py +++ b/qiskit_algorithms/time_evolvers/variational/var_qite.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023, 2024. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,7 +21,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from .solvers.ode.forward_euler_solver import ForwardEulerSolver @@ -42,7 +42,7 @@ class VarQITE(VarQTE, ImaginaryTimeEvolver): from qiskit_algorithms.time_evolvers.variational import ImaginaryMcLachlanPrinciple from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import SparsePauliOp, Pauli - from qiskit.primitives import Estimator + from qiskit.primitives import StatevectorEstimator observable = SparsePauliOp.from_list( [ @@ -68,7 +68,7 @@ class VarQITE(VarQTE, ImaginaryTimeEvolver): # evaluating auxiliary operators aux_ops = [Pauli("XX"), Pauli("YZ")] evolution_problem = TimeEvolutionProblem(observable, time, aux_operators=aux_ops) - var_qite = VarQITE(ansatz, init_param_values, var_principle, Estimator()) + var_qite = VarQITE(ansatz, init_param_values, var_principle, StatevectorEstimator()) evolution_result = var_qite.evolve(evolution_problem) """ @@ -78,7 +78,7 @@ def __init__( ansatz: QuantumCircuit, initial_parameters: Mapping[Parameter, float] | Sequence[float], variational_principle: ImaginaryVariationalPrinciple | None = None, - estimator: BaseEstimator | None = None, + estimator: BaseEstimatorV2 | None = None, ode_solver: Type[OdeSolver] | str = ForwardEulerSolver, lse_solver: Callable[[np.ndarray, np.ndarray], np.ndarray] | None = None, num_timesteps: int | None = None, diff --git a/qiskit_algorithms/time_evolvers/variational/var_qrte.py b/qiskit_algorithms/time_evolvers/variational/var_qrte.py index 12cda9a2..d2621e85 100644 --- a/qiskit_algorithms/time_evolvers/variational/var_qrte.py +++ b/qiskit_algorithms/time_evolvers/variational/var_qrte.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023, 2024. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,7 +21,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from .solvers.ode.forward_euler_solver import ForwardEulerSolver @@ -43,7 +43,7 @@ class VarQRTE(VarQTE, RealTimeEvolver): from qiskit_algorithms.time_evolvers.variational import RealMcLachlanPrinciple from qiskit.quantum_info import SparsePauliOp from qiskit.quantum_info import SparsePauliOp, Pauli - from qiskit.primitives import Estimator + from qiskit.primitives import StatevectorEstimator observable = SparsePauliOp.from_list( [ @@ -69,7 +69,7 @@ class VarQRTE(VarQTE, RealTimeEvolver): # evaluating auxiliary operators aux_ops = [Pauli("XX"), Pauli("YZ")] evolution_problem = TimeEvolutionProblem(observable, time, aux_operators=aux_ops) - var_qrte = VarQRTE(ansatz, init_param_values, var_principle, Estimator()) + var_qrte = VarQRTE(ansatz, init_param_values, var_principle, StatevectorEstimator()) evolution_result = var_qrte.evolve(evolution_problem) """ @@ -79,7 +79,7 @@ def __init__( ansatz: QuantumCircuit, initial_parameters: Mapping[Parameter, float] | Sequence[float], variational_principle: RealVariationalPrinciple | None = None, - estimator: BaseEstimator | None = None, + estimator: BaseEstimatorV2 | None = None, ode_solver: Type[OdeSolver] | str = ForwardEulerSolver, lse_solver: Callable[[np.ndarray, np.ndarray], np.ndarray] | None = None, num_timesteps: int | None = None, diff --git a/qiskit_algorithms/time_evolvers/variational/var_qte.py b/qiskit_algorithms/time_evolvers/variational/var_qte.py index bc1b2e36..88939233 100644 --- a/qiskit_algorithms/time_evolvers/variational/var_qte.py +++ b/qiskit_algorithms/time_evolvers/variational/var_qte.py @@ -22,7 +22,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import BaseEstimator +from qiskit.primitives import BaseEstimatorV2 from qiskit.quantum_info.operators.base_operator import BaseOperator from .solvers.ode.forward_euler_solver import ForwardEulerSolver @@ -77,7 +77,7 @@ def __init__( ansatz: QuantumCircuit, initial_parameters: Mapping[Parameter, float] | Sequence[float], variational_principle: VariationalPrinciple, - estimator: BaseEstimator, + estimator: BaseEstimatorV2, ode_solver: Type[OdeSolver] | str = ForwardEulerSolver, lse_solver: Callable[[np.ndarray, np.ndarray], np.ndarray] | None = None, num_timesteps: int | None = None, diff --git a/qiskit_algorithms/time_evolvers/variational/variational_principles/imaginary_mc_lachlan_principle.py b/qiskit_algorithms/time_evolvers/variational/variational_principles/imaginary_mc_lachlan_principle.py index bfa29efb..d36e175f 100644 --- a/qiskit_algorithms/time_evolvers/variational/variational_principles/imaginary_mc_lachlan_principle.py +++ b/qiskit_algorithms/time_evolvers/variational/variational_principles/imaginary_mc_lachlan_principle.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,7 +21,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info.operators.base_operator import BaseOperator from .imaginary_variational_principle import ImaginaryVariationalPrinciple @@ -69,7 +69,7 @@ def __init__( "The provided gradient instance does not contain an estimator primitive." ) from exc else: - estimator = Estimator() + estimator = StatevectorEstimator() gradient = LinCombEstimatorGradient(estimator) if qgt is None: diff --git a/qiskit_algorithms/time_evolvers/variational/variational_principles/real_mc_lachlan_principle.py b/qiskit_algorithms/time_evolvers/variational/variational_principles/real_mc_lachlan_principle.py index 822e6cc9..aa7a83ea 100644 --- a/qiskit_algorithms/time_evolvers/variational/variational_principles/real_mc_lachlan_principle.py +++ b/qiskit_algorithms/time_evolvers/variational/variational_principles/real_mc_lachlan_principle.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -22,7 +22,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit.quantum_info.operators.base_operator import BaseOperator @@ -70,7 +70,7 @@ def __init__( "The provided gradient instance does not contain an estimator primitive." ) from exc else: - estimator = Estimator() + estimator = StatevectorEstimator() gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) if qgt is None: @@ -103,8 +103,8 @@ def evolution_gradient( """ try: - estimator_job = self.gradient._estimator.run([ansatz], [hamiltonian], [param_values]) - energy = estimator_job.result().values[0] + estimator_job = self.gradient._estimator.run([(ansatz, hamiltonian, param_values)]) + energy = estimator_job.result()[0].data.evs except Exception as exc: raise AlgorithmError("The primitive job failed!") from exc diff --git a/qiskit_algorithms/utils/circuit_key.py b/qiskit_algorithms/utils/circuit_key.py new file mode 100644 index 00000000..49efe8e0 --- /dev/null +++ b/qiskit_algorithms/utils/circuit_key.py @@ -0,0 +1,78 @@ +# This code is part of a Qiskit project. +# +# (C) Copyright IBM 2025. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. +""" +_circuit_key function from Qiskit 1.4 + +This file is to be deleted once all interfaces such as the BaseStateFidelity's and gradients' accept +PUB-like inputs instead of separate arguments. +""" +from typing import Iterable + +import numpy as np +from qiskit import QuantumCircuit +from qiskit.circuit import Bit + + +def _bits_key(bits: tuple[Bit, ...], circuit: QuantumCircuit) -> tuple: + return tuple( + ( + circuit.find_bit(bit).index, + tuple((reg[0].size, reg[0].name, reg[1]) for reg in circuit.find_bit(bit).registers), + ) + for bit in bits + ) + + +def _format_params(param): + if isinstance(param, np.ndarray): + return param.data.tobytes() + elif isinstance(param, QuantumCircuit): + return _circuit_key(param) + elif isinstance(param, Iterable): + return tuple(param) + return param + + +def _circuit_key(circuit: QuantumCircuit, functional: bool = True) -> tuple: + """Private key function for QuantumCircuit. + + This is the workaround until :meth:`QuantumCircuit.__hash__` will be introduced. + If key collision is found, please add elements to avoid it. + + Args: + circuit: Input quantum circuit. + functional: If True, the returned key only includes functional data (i.e. execution related). + + Returns: + Composite key for circuit. + """ + functional_key: tuple = ( + circuit.num_qubits, + circuit.num_clbits, + circuit.num_parameters, + tuple( # circuit.data + ( + _bits_key(data.qubits, circuit), # qubits + _bits_key(data.clbits, circuit), # classical bits + data.operation.name, # operation.name + tuple(_format_params(param) for param in data.operation.params), # operation.params + ) + for data in circuit.data + ), + None if circuit._op_start_times is None else tuple(circuit._op_start_times), + ) + if functional: + return functional_key + return ( + circuit.name, + *functional_key, + ) diff --git a/qiskit_algorithms/utils/optionals.py b/qiskit_algorithms/utils/optionals.py index 472157be..b0af7341 100644 --- a/qiskit_algorithms/utils/optionals.py +++ b/qiskit_algorithms/utils/optionals.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -15,7 +15,7 @@ """ from qiskit.utils import LazyImportTester - +from qiskit.version import get_version_info HAS_NLOPT = LazyImportTester("nlopt", name="NLopt Optimizer", install="pip install nlopt") HAS_SKQUANT = LazyImportTester( @@ -24,4 +24,7 @@ install="pip install scikit-quant", ) HAS_SQSNOBFIT = LazyImportTester("SQSnobFit", install="pip install SQSnobFit") -HAS_TWEEDLEDUM = LazyImportTester("tweedledum", install="pip install tweedledum") +# From Qiskit 2.0.0 onward, tweedledum isn't required anymore to use the phase oracle +CAN_USE_PHASE_ORACLE = get_version_info() >= "2.0.0" or LazyImportTester( + "tweedledum", install="pip install tweedledum" +) diff --git a/requirements.txt b/requirements.txt index 38521bdd..9a0f3971 100644 --- a/requirements.txt +++ b/requirements.txt @@ -1,3 +1,3 @@ -qiskit>=0.44,<2.0 +qiskit>=1.0, scipy>=1.4 numpy>=1.17 diff --git a/test/eigensolvers/test_vqd.py b/test/eigensolvers/test_vqd.py index c95d798c..70f9459a 100644 --- a/test/eigensolvers/test_vqd.py +++ b/test/eigensolvers/test_vqd.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,7 +20,7 @@ from qiskit import QuantumCircuit from qiskit.circuit.library import TwoLocal, RealAmplitudes -from qiskit.primitives import Sampler, Estimator +from qiskit.primitives import StatevectorSampler, StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms.eigensolvers import VQD, VQDResult @@ -57,9 +57,8 @@ def setUp(self): ) self.ry_wavefunction = TwoLocal(rotation_blocks="ry", entanglement_blocks="cz") - self.estimator = Estimator() - self.estimator_shots = Estimator(options={"shots": 1024, "seed": self.seed}) - self.fidelity = ComputeUncompute(Sampler(options={"shots": 100_000, "seed": self.seed})) + self.estimator = StatevectorEstimator(seed=self.seed) + self.fidelity = ComputeUncompute(StatevectorSampler(seed=self.seed, default_shots=10_000)) self.betas = [3] @data(H2_SPARSE_PAULI) @@ -92,11 +91,16 @@ def test_basic_operator(self, op): with self.subTest(msg="assert return ansatz is set"): job = self.estimator.run( - result.optimal_circuits, - [op] * len(result.optimal_points), - result.optimal_points, + [ + (circuits, op, optimal_points) + for (circuits, optimal_points) in zip( + result.optimal_circuits, result.optimal_points + ) + ] ) - np.testing.assert_array_almost_equal(job.result().values, result.eigenvalues, 6) + job_result = job.result() + eigenvalues = np.array([job_result[i].data.evs for i in range(len(result.eigenvalues))]) + np.testing.assert_array_almost_equal(eigenvalues, result.eigenvalues, 6) with self.subTest(msg="assert returned values are eigenvalues"): np.testing.assert_array_almost_equal( @@ -123,9 +127,7 @@ def test_beta_autoeval(self, op): """Test beta auto-evaluation for different operator types.""" with self.assertLogs(level="INFO") as logs: - vqd = VQD( - self.estimator_shots, self.fidelity, self.ryrz_wavefunction, optimizer=L_BFGS_B() - ) + vqd = VQD(self.estimator, self.fidelity, self.ryrz_wavefunction, optimizer=L_BFGS_B()) _ = vqd.compute_eigenvalues(op) # the first log message shows the value of beta[0] @@ -179,7 +181,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata, step): wavefunction = self.ry_wavefunction vqd = VQD( - estimator=self.estimator_shots, + estimator=self.estimator, fidelity=self.fidelity, ansatz=wavefunction, optimizer=optimizer, @@ -282,7 +284,7 @@ def test_optimizer_list(self, op): result = vqd.compute_eigenvalues(operator=op) np.testing.assert_array_almost_equal( - result.eigenvalues.real, self.h2_energy_excited[:2], decimal=3 + result.eigenvalues.real, self.h2_energy_excited[:2], decimal=2 ) @data(H2_SPARSE_PAULI) @@ -455,6 +457,18 @@ def test_convergence_threshold(self): SLSQP(), k=2, betas=self.betas, + initial_point=np.array( + [ + 2.15707009, + -2.6128808, + 1.40478697, + -1.73909435, + -2.89100903, + 1.75289926, + -0.14760479, + -2.00011645, + ] + ), convergence_threshold=1e-3, ) with self.subTest("Failed convergence"): @@ -465,7 +479,7 @@ def test_convergence_threshold(self): vqd.convergence_threshold = 1e-1 result = vqd.compute_eigenvalues(operator=H2_SPARSE_PAULI) np.testing.assert_array_almost_equal( - result.eigenvalues.real, self.h2_energy_excited[:2], decimal=1 + result.eigenvalues.real, self.h2_energy_excited[:2], decimal=2 ) diff --git a/test/gradients/logging_primitives.py b/test/gradients/logging_primitives.py index e9a9f21c..442c45fa 100644 --- a/test/gradients/logging_primitives.py +++ b/test/gradients/logging_primitives.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -11,32 +11,38 @@ # that they have been altered from the originals. """Test primitives that check what kind of operations are in the circuits they execute.""" +from __future__ import annotations +from typing import Iterable -from qiskit.primitives import Estimator, Sampler +from qiskit.primitives import StatevectorEstimator, StatevectorSampler +from qiskit.primitives.containers.estimator_pub import EstimatorPub +from qiskit.primitives.containers.sampler_pub import SamplerPub -class LoggingEstimator(Estimator): +class LoggingEstimator(StatevectorEstimator): """An estimator checking what operations were in the circuits it executed.""" - def __init__(self, options=None, operations_callback=None): - super().__init__(options=options) + def __init__( + self, default_precision: float = 0.0, seed: int | None = None, operations_callback=None + ): + super().__init__(default_precision=default_precision, seed=seed) self.operations_callback = operations_callback - def _run(self, circuits, observables, parameter_values, **run_options): + def _run(self, pubs: list[EstimatorPub]): if self.operations_callback is not None: - ops = [circuit.count_ops() for circuit in circuits] + ops = [pub.circuit.count_ops() for pub in pubs] self.operations_callback(ops) - return super()._run(circuits, observables, parameter_values, **run_options) + return super()._run(pubs) -class LoggingSampler(Sampler): +class LoggingSampler(StatevectorSampler): """A sampler checking what operations were in the circuits it executed.""" - def __init__(self, operations_callback): - super().__init__() + def __init__(self, shots: int = 1024, seed: int | None = None, operations_callback=None): + super().__init__(default_shots=shots, seed=seed) self.operations_callback = operations_callback - def _run(self, circuits, parameter_values, **run_options): - ops = [circuit.count_ops() for circuit in circuits] + def _run(self, pubs: Iterable[SamplerPub]): + ops = [pub.circuit.count_ops() for pub in pubs] self.operations_callback(ops) - return super()._run(circuits, parameter_values, **run_options) + return super()._run(pubs) diff --git a/test/gradients/test_estimator_gradient.py b/test/gradients/test_estimator_gradient.py index 7719b650..1984fd7b 100644 --- a/test/gradients/test_estimator_gradient.py +++ b/test/gradients/test_estimator_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2019, 2024. +# (C) Copyright IBM 2019, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -23,9 +23,10 @@ from qiskit.circuit import Parameter from qiskit.circuit.library import EfficientSU2, RealAmplitudes from qiskit.circuit.library.standard_gates import RXXGate, RYYGate, RZXGate, RZZGate -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp, Pauli from qiskit.quantum_info.random import random_pauli_list +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_algorithms.gradients import ( FiniteDiffEstimatorGradient, @@ -55,7 +56,7 @@ class TestEstimatorGradient(QiskitAlgorithmsTestCase): @data(*gradient_factories) def test_gradient_operators(self, grad): """Test the estimator gradient for different operators""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") qc = QuantumCircuit(1) qc.h(0) @@ -74,7 +75,7 @@ def test_gradient_operators(self, grad): @data(*gradient_factories) def test_single_circuit_observable(self, grad): """Test the estimator gradient for a single circuit and observable""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") qc = QuantumCircuit(1) qc.h(0) @@ -90,7 +91,7 @@ def test_single_circuit_observable(self, grad): @data(*gradient_factories) def test_gradient_p(self, grad): """Test the estimator gradient for p""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") qc = QuantumCircuit(1) qc.h(0) @@ -108,7 +109,7 @@ def test_gradient_p(self, grad): @data(*gradient_factories) def test_gradient_u(self, grad): """Test the estimator gradient for u""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") b = Parameter("b") c = Parameter("c") @@ -129,7 +130,7 @@ def test_gradient_u(self, grad): @data(*gradient_factories) def test_gradient_efficient_su2(self, grad): """Test the estimator gradient for EfficientSU2""" - estimator = Estimator() + estimator = StatevectorEstimator() qc = EfficientSU2(2, reps=1) op = SparsePauliOp.from_list([("ZI", 1)]) gradient = grad(estimator) @@ -157,7 +158,7 @@ def test_gradient_efficient_su2(self, grad): @data(*gradient_factories) def test_gradient_2qubit_gate(self, grad): """Test the estimator gradient for 2 qubit gates""" - estimator = Estimator() + estimator = StatevectorEstimator() for gate in [RXXGate, RYYGate, RZZGate, RZXGate]: param_list = [[np.pi / 4], [np.pi / 2]] correct_results = [ @@ -182,7 +183,7 @@ def test_gradient_2qubit_gate(self, grad): @data(*gradient_factories) def test_gradient_parameter_coefficient(self, grad): """Test the estimator gradient for parameter variables with coefficients""" - estimator = Estimator() + estimator = StatevectorEstimator() qc = RealAmplitudes(num_qubits=2, reps=1) qc.rz(qc.parameters[0].exp() + 2 * qc.parameters[1], 0) qc.rx(3.0 * qc.parameters[0] + qc.parameters[1].sin(), 1) @@ -203,7 +204,7 @@ def test_gradient_parameter_coefficient(self, grad): @data(*gradient_factories) def test_gradient_parameters(self, grad): """Test the estimator gradient for parameters""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") b = Parameter("b") qc = QuantumCircuit(1) @@ -246,7 +247,7 @@ def test_gradient_parameters(self, grad): @data(*gradient_factories) def test_gradient_multi_arguments(self, grad): """Test the estimator gradient for multiple arguments""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") b = Parameter("b") qc = QuantumCircuit(1) @@ -285,7 +286,7 @@ def test_gradient_multi_arguments(self, grad): @data(*gradient_factories) def test_gradient_validation(self, grad): """Test estimator gradient's validation""" - estimator = Estimator() + estimator = StatevectorEstimator() a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) @@ -303,7 +304,7 @@ def test_gradient_validation(self, grad): def test_spsa_gradient(self): """Test the SPSA estimator gradient""" - estimator = Estimator() + estimator = StatevectorEstimator() with self.assertRaises(ValueError): _ = SPSAEstimatorGradient(estimator, epsilon=-0.1) a = Parameter("a") @@ -391,7 +392,7 @@ def test_gradient_random_parameters(self, grad): op = SparsePauliOp(random_pauli_list(num_qubits=qc.num_qubits, size=size, seed=rng)) op.coeffs = rng.normal(0, 10, size) - estimator = Estimator() + estimator = StatevectorEstimator() findiff = FiniteDiffEstimatorGradient(estimator, 1e-6) gradient = grad(estimator) @@ -407,7 +408,7 @@ def test_gradient_random_parameters(self, grad): @unpack def test_complex_gradient(self, derivative_type, expected_gradient_value): """Tests if the ``LinCombEstimatorGradient`` has the correct value.""" - estimator = Estimator() + estimator = StatevectorEstimator() lcu = LinCombEstimatorGradient(estimator, derivative_type=derivative_type) reverse = ReverseEstimatorGradient(derivative_type=derivative_type) @@ -424,54 +425,54 @@ def test_complex_gradient(self, derivative_type, expected_gradient_value): LinCombEstimatorGradient, SPSAEstimatorGradient, ) - def test_options(self, grad): - """Test estimator gradient's run options""" + def test_precision(self, grad): + """Test estimator gradient's precision""" a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) op = SparsePauliOp.from_list([("Z", 1)]) - estimator = Estimator(options={"shots": 100}) + estimator = StatevectorEstimator(default_precision=0.2) with self.subTest("estimator"): if grad is FiniteDiffEstimatorGradient or grad is SPSAEstimatorGradient: gradient = grad(estimator, epsilon=1e-6) else: gradient = grad(estimator) - options = gradient.options + precision = gradient.precision result = gradient.run([qc], [op], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.2) + self.assertEqual(precision, None) with self.subTest("gradient init"): if grad is FiniteDiffEstimatorGradient or grad is SPSAEstimatorGradient: - gradient = grad(estimator, epsilon=1e-6, options={"shots": 200}) + gradient = grad(estimator, epsilon=1e-6, precision=0.3) else: - gradient = grad(estimator, options={"shots": 200}) - options = gradient.options + gradient = grad(estimator, precision=0.3) + precision = gradient.precision result = gradient.run([qc], [op], [[1]]).result() - self.assertEqual(result.options.get("shots"), 200) - self.assertEqual(options.get("shots"), 200) + self.assertEqual(result.precision, 0.3) + self.assertEqual(precision, 0.3) with self.subTest("gradient update"): if grad is FiniteDiffEstimatorGradient or grad is SPSAEstimatorGradient: - gradient = grad(estimator, epsilon=1e-6, options={"shots": 200}) + gradient = grad(estimator, epsilon=1e-6, precision=0.4) else: - gradient = grad(estimator, options={"shots": 200}) - gradient.update_default_options(shots=100) - options = gradient.options + gradient = grad(estimator, precision=0.4) + gradient.precision = 0.5 + precision = gradient.precision result = gradient.run([qc], [op], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.5) + self.assertEqual(precision, 0.5) with self.subTest("gradient run"): if grad is FiniteDiffEstimatorGradient or grad is SPSAEstimatorGradient: - gradient = grad(estimator, epsilon=1e-6, options={"shots": 200}) + gradient = grad(estimator, epsilon=1e-6, precision=0.6) else: - gradient = grad(estimator, options={"shots": 200}) - options = gradient.options - result = gradient.run([qc], [op], [[1]], shots=300).result() - self.assertEqual(result.options.get("shots"), 300) + gradient = grad(estimator, precision=0.6) + precision = gradient.precision + result = gradient.run([qc], [op], [[1]], precision=0.7).result() + self.assertEqual(result.precision, 0.7) # Only default + estimator options. Not run. - self.assertEqual(options.get("shots"), 200) + self.assertEqual(precision, 0.6) @data( FiniteDiffEstimatorGradient, @@ -524,6 +525,26 @@ def test_product_rule_check(self): with self.assertRaises(NotImplementedError): _ = derive_circuit(qc, p) + def test_transpiler(self): + """Test that the transpiler is called for the LinCombEstimatorGradient""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + a = Parameter("a") + qc = QuantumCircuit(1) + qc.rx(a, 0) + op = SparsePauliOp.from_list([("Z", 1)]) + estimator = StatevectorEstimator(default_precision=0.2) + gradient = LinCombEstimatorGradient( + estimator, transpiler=pass_manager, transpiler_options={"callback": callback} + ) + gradient.run([qc], [op], [[1]]).result() + + self.assertGreater(counts[0], 0) + if __name__ == "__main__": unittest.main() diff --git a/test/gradients/test_qfi.py b/test/gradients/test_qfi.py index ad4f5cdb..17ba279e 100644 --- a/test/gradients/test_qfi.py +++ b/test/gradients/test_qfi.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -22,7 +22,7 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter from qiskit.circuit.parametervector import ParameterVector -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit_algorithms.gradients import LinCombQGT, ReverseQGT, QFI, DerivativeType @@ -33,7 +33,7 @@ class TestQFI(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self.estimator = Estimator() + self.estimator = StatevectorEstimator() self.lcu_qgt = LinCombQGT(self.estimator, derivative_type=DerivativeType.REAL) self.reverse_qgt = ReverseQGT(derivative_type=DerivativeType.REAL) @@ -111,41 +111,41 @@ def expiz(qubit0, qubit1): qfi_result = qfi.run([ansatz], [param]).result().qfis np.testing.assert_array_almost_equal(qfi_result[0], reference, decimal=3) - def test_options(self): - """Test QFI's options""" + def test_precision(self): + """Test QFI's precision option""" a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) - qgt = LinCombQGT(estimator=self.estimator, options={"shots": 100}) + qgt = LinCombQGT(estimator=self.estimator, precision=0.1) with self.subTest("QGT"): qfi = QFI(qgt=qgt) - options = qfi.options + precision = qfi.precision result = qfi.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.1) + self.assertEqual(precision, None) with self.subTest("QFI init"): - qfi = QFI(qgt=qgt, options={"shots": 200}) + qfi = QFI(qgt=qgt, precision=0.2) result = qfi.run([qc], [[1]]).result() - options = qfi.options - self.assertEqual(result.options.get("shots"), 200) - self.assertEqual(options.get("shots"), 200) + precision = qfi.precision + self.assertEqual(result.precision, 0.2) + self.assertEqual(precision, 0.2) with self.subTest("QFI update"): - qfi = QFI(qgt, options={"shots": 200}) - qfi.update_default_options(shots=100) - options = qfi.options + qfi = QFI(qgt, precision=0.2) + qfi.precision = 0.1 + precision = qfi.precision result = qfi.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.1) + self.assertEqual(precision, 0.1) with self.subTest("QFI run"): - qfi = QFI(qgt=qgt, options={"shots": 200}) - result = qfi.run([qc], [[0]], shots=300).result() - options = qfi.options - self.assertEqual(result.options.get("shots"), 300) - self.assertEqual(options.get("shots"), 200) + qfi = QFI(qgt=qgt, precision=0.2) + result = qfi.run([qc], [[0]], precision=0.3).result() + precision = qfi.precision + self.assertEqual(result.precision, 0.3) + self.assertEqual(precision, 0.2) if __name__ == "__main__": diff --git a/test/gradients/test_qgt.py b/test/gradients/test_qgt.py index 905f4142..ee5d6042 100644 --- a/test/gradients/test_qgt.py +++ b/test/gradients/test_qgt.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -19,10 +19,10 @@ from ddt import ddt, data import numpy as np -from qiskit import QuantumCircuit +from qiskit import QuantumCircuit, generate_preset_pass_manager from qiskit.circuit import Parameter from qiskit.circuit.library import RealAmplitudes -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit_algorithms.gradients import DerivativeType, LinCombQGT, ReverseQGT @@ -35,7 +35,7 @@ class TestQGT(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self.estimator = Estimator() + self.estimator = StatevectorEstimator() @data(LinCombQGT, ReverseQGT) def test_qgt_derivative_type(self, qgt_type): @@ -241,41 +241,41 @@ def test_qgt_validation(self, qgt_type): with self.assertRaises(ValueError): qgt.run([qc], parameter_values, parameters=[[a], [a]]) - def test_options(self): - """Test QGT's options""" + def test_precision(self): + """Test QGT's precision option""" a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) - estimator = Estimator(options={"shots": 100}) + estimator = StatevectorEstimator(default_precision=0.1) with self.subTest("estimator"): qgt = LinCombQGT(estimator) - options = qgt.options + precision = qgt.precision result = qgt.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.1) + self.assertEqual(precision, None) with self.subTest("QGT init"): - qgt = LinCombQGT(estimator, options={"shots": 200}) + qgt = LinCombQGT(estimator, precision=0.2) result = qgt.run([qc], [[1]]).result() - options = qgt.options - self.assertEqual(result.options.get("shots"), 200) - self.assertEqual(options.get("shots"), 200) + precision = qgt.precision + self.assertEqual(result.precision, 0.2) + self.assertEqual(precision, 0.2) with self.subTest("QGT update"): - qgt = LinCombQGT(estimator, options={"shots": 200}) - qgt.update_default_options(shots=100) - options = qgt.options + qgt = LinCombQGT(estimator, precision=0.2) + qgt.precision = 0.1 + precision = qgt.precision result = qgt.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.precision, 0.1) + self.assertEqual(precision, 0.1) with self.subTest("QGT run"): - qgt = LinCombQGT(estimator, options={"shots": 200}) - result = qgt.run([qc], [[0]], shots=300).result() - options = qgt.options - self.assertEqual(result.options.get("shots"), 300) - self.assertEqual(options.get("shots"), 200) + qgt = LinCombQGT(estimator, precision=0.2) + result = qgt.run([qc], [[0]], precision=0.3).result() + precision = qgt.precision + self.assertEqual(result.precision, 0.3) + self.assertEqual(precision, 0.2) def test_operations_preserved(self): """Test non-parameterized instructions are preserved and not unrolled.""" @@ -305,6 +305,25 @@ def operations_callback(op): with self.subTest(msg="assert result is correct"): np.testing.assert_allclose(result.qgts[0], expect, atol=1e-5) + def test_transpiler(self): + """Test that the transpiler is called for the LinCombQGT""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + a = Parameter("a") + qc = QuantumCircuit(1) + qc.rx(a, 0) + estimator = StatevectorEstimator(default_precision=0.1) + qgt = LinCombQGT( + estimator, transpiler=pass_manager, transpiler_options={"callback": callback} + ) + qgt.run([qc], [[1]]).result() + + self.assertGreater(counts[0], 0) + if __name__ == "__main__": unittest.main() diff --git a/test/gradients/test_sampler_gradient.py b/test/gradients/test_sampler_gradient.py index a038d712..8a818da7 100644 --- a/test/gradients/test_sampler_gradient.py +++ b/test/gradients/test_sampler_gradient.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2019, 2024. +# (C) Copyright IBM 2019, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -15,17 +15,14 @@ import unittest from test import QiskitAlgorithmsTestCase -from typing import List import numpy as np -from ddt import ddt, data - -from qiskit import QuantumCircuit +from ddt import ddt, data, unpack +from qiskit import QuantumCircuit, generate_preset_pass_manager from qiskit.circuit import Parameter from qiskit.circuit.library import EfficientSU2, RealAmplitudes from qiskit.circuit.library.standard_gates import RXXGate -from qiskit.primitives import Sampler -from qiskit.result import QuasiDistribution +from qiskit.primitives import StatevectorSampler from qiskit_algorithms.gradients import ( FiniteDiffSamplerGradient, @@ -33,15 +30,29 @@ ParamShiftSamplerGradient, SPSASamplerGradient, ) - from .logging_primitives import LoggingSampler gradient_factories = [ - lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-6, method="central"), - lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-6, method="forward"), - lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-6, method="backward"), - ParamShiftSamplerGradient, - LinCombSamplerGradient, + ( + lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-2, method="central"), + 3_000_000, + 1e-1, + 1e-1, + ), + ( + lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-2, method="forward"), + 3_000_000, + 1e-1, + 1e-1, + ), + ( + lambda sampler: FiniteDiffSamplerGradient(sampler, epsilon=1e-2, method="backward"), + 3_000_000, + 1e-1, + 1e-1, + ), + (ParamShiftSamplerGradient, 1_000_000, 1e-2, 1e-2), + (LinCombSamplerGradient, 1_000_000, 1e-2, 1e-2), ] @@ -49,10 +60,17 @@ class TestSamplerGradient(QiskitAlgorithmsTestCase): """Test Sampler Gradient""" + def setUp(self): + super().setUp() + self.seed = 42 + @data(*gradient_factories) - def test_single_circuit(self, grad): + @unpack + def test_single_circuit(self, grad, shots, atol, rtol): """Test the sampler gradient for a single circuit""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) a = Parameter("a") qc = QuantumCircuit(1) qc.h(0) @@ -70,12 +88,15 @@ def test_single_circuit(self, grad): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(expected[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, rtol=rtol, atol=atol) @data(*gradient_factories) - def test_gradient_p(self, grad): + @unpack + def test_gradient_p(self, grad, shots, atol, rtol): """Test the sampler gradient for p""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) a = Parameter("a") qc = QuantumCircuit(1) qc.h(0) @@ -87,18 +108,21 @@ def test_gradient_p(self, grad): expected = [ [{0: -0.5 / np.sqrt(2), 1: 0.5 / np.sqrt(2)}], [{0: 0, 1: 0}], - [{0: -0.499999, 1: 0.499999}], + [{0: -0.5, 1: 0.5}], ] for i, param in enumerate(param_list): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(expected[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_u(self, grad): + @unpack + def test_gradient_u(self, grad, shots, atol, rtol): """Test the sampler gradient for u""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) a = Parameter("a") b = Parameter("b") c = Parameter("c") @@ -117,30 +141,33 @@ def test_gradient_u(self, grad): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(expected[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_efficient_su2(self, grad): + @unpack + def test_gradient_efficient_su2(self, grad, shots, atol, rtol): """Test the sampler gradient for EfficientSU2""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) qc = EfficientSU2(2, reps=1) qc.measure_all() gradient = grad(sampler) param_list = [ - [np.pi / 4 for param in qc.parameters], - [np.pi / 2 for param in qc.parameters], + [np.pi / 4 for _ in qc.parameters], + [np.pi / 2 for _ in qc.parameters], ] expected = [ [ { 0: -0.11963834764831836, 1: -0.05713834764831845, - 2: -0.21875000000000003, + 2: -0.21875, 3: 0.39552669529663675, }, { 0: -0.32230339059327373, - 1: -0.031250000000000014, + 1: -0.03125, 2: 0.2339150429449554, 3: 0.11963834764831843, }, @@ -159,7 +186,7 @@ def test_gradient_efficient_su2(self, grad): { 0: -0.11963834764831838, 1: 0.11963834764831838, - 2: -0.21875000000000003, + 2: -0.21875, 3: 0.21875, }, { @@ -173,37 +200,37 @@ def test_gradient_efficient_su2(self, grad): ], [ { - 0: -4.163336342344337e-17, - 1: 2.7755575615628914e-17, - 2: -4.163336342344337e-17, + 0: 0.0, + 1: 0.0, + 2: 0.0, 3: 0.0, }, - {0: 0.0, 1: -1.3877787807814457e-17, 2: 4.163336342344337e-17, 3: 0.0}, + {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0}, { - 0: -0.24999999999999994, - 1: 0.24999999999999994, - 2: 0.24999999999999994, - 3: -0.24999999999999994, + 0: -0.25, + 1: 0.25, + 2: 0.25, + 3: -0.25, }, { - 0: 0.24999999999999994, - 1: 0.24999999999999994, - 2: -0.24999999999999994, - 3: -0.24999999999999994, + 0: 0.25, + 1: 0.25, + 2: -0.25, + 3: -0.25, }, { - 0: -4.163336342344337e-17, - 1: 4.163336342344337e-17, - 2: -4.163336342344337e-17, - 3: 5.551115123125783e-17, + 0: 0.0, + 1: 0.0, + 2: 0.0, + 3: 0.0, }, { - 0: -0.24999999999999994, - 1: 0.24999999999999994, - 2: 0.24999999999999994, - 3: -0.24999999999999994, + 0: -0.25, + 1: 0.25, + 2: 0.25, + 3: -0.25, }, - {0: 0.0, 1: 2.7755575615628914e-17, 2: 0.0, 3: 2.7755575615628914e-17}, + {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0}, {0: 0.0, 1: 0.0, 2: 0.0, 3: 0.0}, ], ] @@ -211,12 +238,15 @@ def test_gradient_efficient_su2(self, grad): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=2) array2 = _quasi2array(expected[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_2qubit_gate(self, grad): + @unpack + def test_gradient_2qubit_gate(self, grad, shots, atol, rtol): """Test the sampler gradient for 2 qubit gates""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) for gate in [RXXGate]: param_list = [[np.pi / 4], [np.pi / 2]] correct_results = [ @@ -232,12 +262,15 @@ def test_gradient_2qubit_gate(self, grad): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=2) array2 = _quasi2array(correct_results[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_parameter_coefficient(self, grad): + @unpack + def test_gradient_parameter_coefficient(self, grad, shots, atol, rtol): """Test the sampler gradient for parameter variables with coefficients""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) qc = RealAmplitudes(num_qubits=2, reps=1) qc.rz(qc.parameters[0].exp() + 2 * qc.parameters[1], 0) qc.rx(3.0 * qc.parameters[0] + qc.parameters[1].sin(), 1) @@ -306,12 +339,15 @@ def test_gradient_parameter_coefficient(self, grad): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=2) array2 = _quasi2array(correct_results[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_parameters(self, grad): + @unpack + def test_gradient_parameters(self, grad, shots, atol, rtol): """Test the sampler gradient for parameters""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) a = Parameter("a") b = Parameter("b") qc = QuantumCircuit(1) @@ -327,7 +363,7 @@ def test_gradient_parameters(self, grad): gradients = gradient.run([qc], [param], parameters=[[a]]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(expected[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) # parameter order with self.subTest(msg="The order of gradients"): @@ -363,12 +399,15 @@ def test_gradient_parameters(self, grad): gradients = gradient.run([qc], param_values, parameters=[p]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(expected[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_multi_arguments(self, grad): + @unpack + def test_gradient_multi_arguments(self, grad, shots, atol, rtol): """Test the sampler gradient for multiple arguments""" - sampler = Sampler() + sampler = StatevectorSampler( + default_shots=shots, seed=np.random.default_rng(seed=self.seed) + ) a = Parameter("a") b = Parameter("b") qc = QuantumCircuit(1) @@ -381,13 +420,13 @@ def test_gradient_multi_arguments(self, grad): param_list = [[np.pi / 4], [np.pi / 2]] correct_results = [ [{0: -0.5 / np.sqrt(2), 1: 0.5 / np.sqrt(2)}], - [{0: -0.499999, 1: 0.499999}], + [{0: -0.5, 1: 0.5}], ] gradients = gradient.run([qc, qc2], param_list).result().gradients for i, q_dists in enumerate(gradients): array1 = _quasi2array(q_dists, num_qubits=1) array2 = _quasi2array(correct_results[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) # parameters with self.subTest(msg="Different parameters"): @@ -410,12 +449,14 @@ def test_gradient_multi_arguments(self, grad): for i, q_dists in enumerate(gradients): array1 = _quasi2array(q_dists, num_qubits=1) array2 = _quasi2array(correct_results[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=atol, rtol=rtol) @data(*gradient_factories) - def test_gradient_validation(self, grad): + @unpack + # pylint: disable=unused-argument + def test_gradient_validation(self, grad, shots, atol, rtol): """Test sampler gradient's validation""" - sampler = Sampler() + sampler = StatevectorSampler() a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) @@ -431,7 +472,7 @@ def test_gradient_validation(self, grad): def test_spsa_gradient(self): """Test the SPSA sampler gradient""" - sampler = Sampler() + sampler = StatevectorSampler(default_shots=3_000_000, seed=np.random.default_rng(self.seed)) with self.assertRaises(ValueError): _ = SPSASamplerGradient(sampler, epsilon=-0.1) @@ -449,12 +490,12 @@ def test_spsa_gradient(self): {0: -0.2273244, 1: 0.6480598, 2: -0.2273244, 3: -0.1934111}, ], ] - gradient = SPSASamplerGradient(sampler, epsilon=1e-6, seed=123) + gradient = SPSASamplerGradient(sampler, epsilon=1e-2, seed=123) for i, param in enumerate(param_list): gradients = gradient.run([qc], [param]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=2) array2 = _quasi2array(correct_results[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=1e-1, rtol=1e-1) # multi parameters with self.subTest(msg="Multiple parameters"): @@ -472,19 +513,19 @@ def test_spsa_gradient(self): {0: 0.0141129, 1: 0.0564471, 2: 0.3642884, 3: -0.4348484}, ], ] - gradient = SPSASamplerGradient(sampler, epsilon=1e-6, seed=123) + gradient = SPSASamplerGradient(sampler, epsilon=1e-2, seed=123) gradients = ( gradient.run([qc] * 3, param_list2, parameters=[None, [b], None]).result().gradients ) for i, result in enumerate(gradients): array1 = _quasi2array(result, num_qubits=2) array2 = _quasi2array(correct_results2[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=1e-1, rtol=1e-1) # batch size with self.subTest(msg="Batch size"): param_list = [[1, 1]] - gradient = SPSASamplerGradient(sampler, epsilon=1e-6, batch_size=4, seed=123) + gradient = SPSASamplerGradient(sampler, epsilon=1e-2, batch_size=4, seed=123) gradients = gradient.run([qc], param_list).result().gradients correct_results3 = [ [ @@ -505,7 +546,7 @@ def test_spsa_gradient(self): for i, q_dists in enumerate(gradients): array1 = _quasi2array(q_dists, num_qubits=2) array2 = _quasi2array(correct_results3[i], num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=1e-1, rtol=1e-1) # parameter order with self.subTest(msg="The order of gradients"): @@ -537,12 +578,16 @@ def test_spsa_gradient(self): ], ] for i, p in enumerate(param): # pylint: disable=invalid-name - gradient = SPSASamplerGradient(sampler, epsilon=1e-6, seed=123) + gradient = SPSASamplerGradient(sampler, epsilon=1e-2, seed=123) gradients = gradient.run([qc], param_list, parameters=[p]).result().gradients[0] array1 = _quasi2array(gradients, num_qubits=1) array2 = _quasi2array(correct_results[i], num_qubits=1) - np.testing.assert_allclose(array1, array2, atol=1e-3) + np.testing.assert_allclose(array1, array2, atol=1e-1, rtol=1e-1) + @unittest.skip( + "Should pass in approximately 3 hours and 20 minutes, and we're not sure to see the point " + "of this test?" + ) @data(ParamShiftSamplerGradient, LinCombSamplerGradient) def test_gradient_random_parameters(self, grad): """Test param shift and lin comb w/ random parameters""" @@ -569,8 +614,10 @@ def test_gradient_random_parameters(self, grad): qc.global_phase = params[0] * params[1] + params[2].cos().exp() qc.measure_all() - sampler = Sampler() - findiff = FiniteDiffSamplerGradient(sampler, 1e-6) + sampler = StatevectorSampler( + default_shots=1_000_000, seed=np.random.default_rng(seed=self.seed) + ) + findiff = FiniteDiffSamplerGradient(sampler, 1e-2) gradient = grad(sampler) num_qubits = qc.num_qubits @@ -582,7 +629,7 @@ def test_gradient_random_parameters(self, grad): for res1, res2 in zip(result1, result2): array1 = _quasi2array(res1, num_qubits) array2 = _quasi2array(res2, num_qubits) - np.testing.assert_allclose(array1, array2, rtol=1e-4) + np.testing.assert_allclose(array1, array2, rtol=1e-1, atol=1e-1) @data( FiniteDiffSamplerGradient, @@ -590,54 +637,54 @@ def test_gradient_random_parameters(self, grad): LinCombSamplerGradient, SPSASamplerGradient, ) - def test_options(self, grad): - """Test sampler gradient's run options""" + def test_shots(self, grad): + """Test sampler gradient's shots options""" a = Parameter("a") qc = QuantumCircuit(1) qc.rx(a, 0) qc.measure_all() - sampler = Sampler(options={"shots": 100}) + sampler = StatevectorSampler(default_shots=100) with self.subTest("sampler"): if grad is FiniteDiffSamplerGradient or grad is SPSASamplerGradient: gradient = grad(sampler, epsilon=1e-6) else: gradient = grad(sampler) - options = gradient.options + shots = gradient.shots result = gradient.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.shots, 100) + self.assertEqual(shots, None) with self.subTest("gradient init"): if grad is FiniteDiffSamplerGradient or grad is SPSASamplerGradient: - gradient = grad(sampler, epsilon=1e-6, options={"shots": 200}) + gradient = grad(sampler, epsilon=1e-6, shots=200) else: - gradient = grad(sampler, options={"shots": 200}) - options = gradient.options + gradient = grad(sampler, shots=200) + shots = gradient.shots result = gradient.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 200) - self.assertEqual(options.get("shots"), 200) + self.assertEqual(result.shots, 200) + self.assertEqual(shots, 200) with self.subTest("gradient update"): if grad is FiniteDiffSamplerGradient or grad is SPSASamplerGradient: - gradient = grad(sampler, epsilon=1e-6, options={"shots": 200}) + gradient = grad(sampler, epsilon=1e-6, shots=200) else: - gradient = grad(sampler, options={"shots": 200}) - gradient.update_default_options(shots=100) - options = gradient.options + gradient = grad(sampler, shots=200) + gradient.shots = 300 + shots = gradient.shots result = gradient.run([qc], [[1]]).result() - self.assertEqual(result.options.get("shots"), 100) - self.assertEqual(options.get("shots"), 100) + self.assertEqual(result.shots, 300) + self.assertEqual(shots, 300) with self.subTest("gradient run"): if grad is FiniteDiffSamplerGradient or grad is SPSASamplerGradient: - gradient = grad(sampler, epsilon=1e-6, options={"shots": 200}) + gradient = grad(sampler, epsilon=1e-6, shots=200) else: - gradient = grad(sampler, options={"shots": 200}) - options = gradient.options - result = gradient.run([qc], [[1]], shots=300).result() - self.assertEqual(result.options.get("shots"), 300) - # Only default + sampler options. Not run. - self.assertEqual(options.get("shots"), 200) + gradient = grad(sampler, shots=200) + shots = gradient.shots + result = gradient.run([qc], [[1]], shots=400).result() + self.assertEqual(result.shots, 400) + # Only default + sampler shots. Not run. + self.assertEqual(shots, 200) @data( FiniteDiffSamplerGradient, @@ -661,10 +708,10 @@ def test_operations_preserved(self, gradient_cls): def operations_callback(op): ops.append(op) - sampler = LoggingSampler(operations_callback=operations_callback) + sampler = LoggingSampler(shots=3_000_000, operations_callback=operations_callback) if gradient_cls in [SPSASamplerGradient, FiniteDiffSamplerGradient]: - gradient = gradient_cls(sampler, epsilon=0.01) + gradient = gradient_cls(sampler, epsilon=1e-2) else: gradient = gradient_cls(sampler) @@ -677,10 +724,29 @@ def operations_callback(op): with self.subTest(msg="assert result is correct"): array1 = _quasi2array(result.gradients[0], num_qubits=2) array2 = _quasi2array(expect, num_qubits=2) - np.testing.assert_allclose(array1, array2, atol=1e-5) + np.testing.assert_allclose(array1, array2, atol=1e-1, rtol=1e-1) + + def test_transpiler(self): + """Test that the transpiler is called for the LinCombSamplerGradient""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + a = Parameter("a") + qc = QuantumCircuit(1) + qc.rx(a, 0) + sampler = StatevectorSampler() + gradient = LinCombSamplerGradient( + sampler, transpiler=pass_manager, transpiler_options={"callback": callback} + ) + gradient.run([qc], [[1]]).result() + + self.assertGreater(counts[0], 0) -def _quasi2array(quasis: List[QuasiDistribution], num_qubits: int) -> np.ndarray: +def _quasi2array(quasis: list[dict], num_qubits: int) -> np.ndarray: ret = np.zeros((len(quasis), 2**num_qubits)) for i, quasi in enumerate(quasis): ret[i, list(quasi.keys())] = list(quasi.values()) diff --git a/test/minimum_eigensolvers/test_adapt_vqe.py b/test/minimum_eigensolvers/test_adapt_vqe.py index 4a13c9ca..3081384e 100644 --- a/test/minimum_eigensolvers/test_adapt_vqe.py +++ b/test/minimum_eigensolvers/test_adapt_vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,7 +21,7 @@ from qiskit.circuit import QuantumCircuit, QuantumRegister from qiskit.circuit.library import EvolvedOperatorAnsatz -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms.minimum_eigensolvers import VQE @@ -83,7 +83,7 @@ def setUp(self): def test_default(self): """Default execution""" - calc = AdaptVQE(VQE(Estimator(), self.ansatz, self.optimizer)) + calc = AdaptVQE(VQE(StatevectorEstimator(), self.ansatz, self.optimizer)) res = calc.compute_minimum_eigenvalue(operator=self.h2_op) @@ -98,7 +98,7 @@ def test_with_quantum_info(self): self.excitation_pool, initial_state=self.initial_state, ) - calc = AdaptVQE(VQE(Estimator(), ansatz, self.optimizer)) + calc = AdaptVQE(VQE(StatevectorEstimator(), ansatz, self.optimizer)) res = calc.compute_minimum_eigenvalue(operator=self.h2_op) @@ -110,7 +110,7 @@ def test_with_quantum_info(self): def test_converged(self): """Test to check termination criteria""" calc = AdaptVQE( - VQE(Estimator(), self.ansatz, self.optimizer), + VQE(StatevectorEstimator(), self.ansatz, self.optimizer), gradient_threshold=1e-3, ) res = calc.compute_minimum_eigenvalue(operator=self.h2_op) @@ -120,7 +120,7 @@ def test_converged(self): def test_maximum(self): """Test to check termination criteria""" calc = AdaptVQE( - VQE(Estimator(), self.ansatz, self.optimizer), + VQE(StatevectorEstimator(), self.ansatz, self.optimizer), max_iterations=1, ) res = calc.compute_minimum_eigenvalue(operator=self.h2_op) @@ -144,7 +144,7 @@ def test_eigenvalue_threshold(self): ) calc = AdaptVQE( - VQE(Estimator(), ansatz, self.optimizer), + VQE(StatevectorEstimator(), ansatz, self.optimizer), eigenvalue_threshold=1, ) res = calc.compute_minimum_eigenvalue(operator) @@ -185,14 +185,14 @@ def test_cyclicity(self, seq, is_cycle): def test_vqe_solver(self): """Test to check if the VQE solver remains the same or not""" - solver = VQE(Estimator(), self.ansatz, self.optimizer) + solver = VQE(StatevectorEstimator(), self.ansatz, self.optimizer) calc = AdaptVQE(solver) _ = calc.compute_minimum_eigenvalue(operator=self.h2_op) self.assertEqual(solver.ansatz, calc.solver.ansatz) def test_gradient_calculation(self): """Test to check if the gradient calculation""" - solver = VQE(Estimator(), QuantumCircuit(1), self.optimizer) + solver = VQE(StatevectorEstimator(), QuantumCircuit(1), self.optimizer) calc = AdaptVQE(solver) calc._excitation_pool = [SparsePauliOp("X")] res = calc._compute_gradients(operator=SparsePauliOp("Y"), theta=[]) @@ -201,7 +201,7 @@ def test_gradient_calculation(self): def test_supports_aux_operators(self): """Test that auxiliary operators are supported""" - calc = AdaptVQE(VQE(Estimator(), self.ansatz, self.optimizer)) + calc = AdaptVQE(VQE(StatevectorEstimator(), self.ansatz, self.optimizer)) res = calc.compute_minimum_eigenvalue(operator=self.h2_op, aux_operators=[self.h2_op]) expected_eigenvalue = -1.85727503 diff --git a/test/minimum_eigensolvers/test_qaoa.py b/test/minimum_eigensolvers/test_qaoa.py index 17a15773..23e94237 100644 --- a/test/minimum_eigensolvers/test_qaoa.py +++ b/test/minimum_eigensolvers/test_qaoa.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -19,18 +19,18 @@ import numpy as np import rustworkx as rx from ddt import ddt, idata, unpack -from scipy.optimize import minimize as scipy_minimize - from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import Sampler +from qiskit.primitives import StatevectorSampler from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit.result import QuasiDistribution +from scipy.optimize import minimize as scipy_minimize from qiskit_algorithms.minimum_eigensolvers import QAOA from qiskit_algorithms.optimizers import COBYLA, NELDER_MEAD from qiskit_algorithms.utils import algorithm_globals + W1 = np.array([[0, 1, 0, 1], [1, 0, 1, 0], [0, 1, 0, 1], [1, 0, 1, 0]]) P1 = 1 M1 = SparsePauliOp.from_list( @@ -65,9 +65,9 @@ class TestQAOA(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self.seed = 10598 + self.seed = 123 algorithm_globals.random_seed = self.seed - self.sampler = Sampler() + self.sampler = StatevectorSampler(seed=42) @idata( [ @@ -85,8 +85,7 @@ def test_qaoa(self, w, reps, mixer, solutions): qaoa = QAOA(self.sampler, COBYLA(), reps=reps, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - x = self._sample_most_likely(result.eigenstate) - graph_solution = self._get_graph_solution(x) + graph_solution = self._sample_most_likely(result.eigenstate) self.assertIn(graph_solution, solutions) @idata( @@ -114,8 +113,7 @@ def test_qaoa_qc_mixer(self, w, prob, solutions): qaoa = QAOA(self.sampler, optimizer, reps=prob, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - x = self._sample_most_likely(result.eigenstate) - graph_solution = self._get_graph_solution(x) + graph_solution = self._sample_most_likely(result.eigenstate) self.assertIn(graph_solution, solutions) def test_qaoa_qc_mixer_many_parameters(self): @@ -131,9 +129,9 @@ def test_qaoa_qc_mixer_many_parameters(self): qaoa = QAOA(self.sampler, optimizer, reps=2, mixer=mixer) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - x = self._sample_most_likely(result.eigenstate) - self.log.debug(x) - graph_solution = self._get_graph_solution(x) + + graph_solution = self._sample_most_likely(result.eigenstate) + self.log.debug(graph_solution) self.assertIn(graph_solution, S1) def test_qaoa_qc_mixer_no_parameters(self): @@ -157,8 +155,7 @@ def test_change_operator_size(self): ) qaoa = QAOA(self.sampler, COBYLA(), reps=1) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - x = self._sample_most_likely(result.eigenstate) - graph_solution = self._get_graph_solution(x) + graph_solution = self._sample_most_likely(result.eigenstate) with self.subTest(msg="QAOA 4x4"): self.assertIn(graph_solution, {"0101", "1010"}) @@ -175,12 +172,13 @@ def test_change_operator_size(self): ) ) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - x = self._sample_most_likely(result.eigenstate) - graph_solution = self._get_graph_solution(x) + graph_solution = self._sample_most_likely(result.eigenstate) with self.subTest(msg="QAOA 6x6"): self.assertIn(graph_solution, {"010101", "101010"}) - @idata([[W2, S2, None], [W2, S2, [0.0, 0.0]], [W2, S2, [1.0, 0.8]]]) + # Can't start from [0.0, 0.0] with a seed, otherwise all initially tested points return the same + # value and the optimizer gets stuck + @idata([[W2, S2, None], [W2, S2, [0.1, 0.1]], [W2, S2, [1.0, 0.8]]]) @unpack def test_qaoa_initial_point(self, w, solutions, init_pt): """Check first parameter value used is initial point as expected""" @@ -200,9 +198,7 @@ def cb_callback(eval_count, parameters, mean, metadata): callback=cb_callback, ) result = qaoa.compute_minimum_eigenvalue(operator=qubit_op) - - x = self._sample_most_likely(result.eigenstate) - graph_solution = self._get_graph_solution(x) + graph_solution = self._sample_most_likely(result.eigenstate) with self.subTest("Initial Point"): # If None the preferred random initial point of QAOA variational form @@ -276,22 +272,15 @@ def _get_graph_solution(self, x: np.ndarray) -> str: return "".join([str(int(i)) for i in 1 - x]) - def _sample_most_likely(self, state_vector: QuasiDistribution) -> np.ndarray: + def _sample_most_likely(self, state_vector: QuasiDistribution) -> str: """Compute the most likely binary string from state vector. Args: state_vector: Quasi-distribution. Returns: - Binary string as numpy.ndarray of ints. + Binary string. """ - values = list(state_vector.values()) - n = int(np.log2(len(values))) - k = np.argmax(np.abs(values)) - x = np.zeros(n) - for i in range(n): - x[i] = k % 2 - k >>= 1 - return x + return max(state_vector.items(), key=lambda x: x[1])[0][::-1] if __name__ == "__main__": diff --git a/test/minimum_eigensolvers/test_sampling_vqe.py b/test/minimum_eigensolvers/test_sampling_vqe.py index 35b84a3a..7e406ac7 100644 --- a/test/minimum_eigensolvers/test_sampling_vqe.py +++ b/test/minimum_eigensolvers/test_sampling_vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -23,12 +23,12 @@ from qiskit.circuit import ParameterVector, QuantumCircuit from qiskit.circuit.library import RealAmplitudes, TwoLocal -from qiskit.primitives import Sampler +from qiskit.primitives import StatevectorSampler from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit_algorithms import AlgorithmError from qiskit_algorithms.minimum_eigensolvers import SamplingVQE -from qiskit_algorithms.optimizers import L_BFGS_B, QNSPSA, SLSQP, OptimizerResult +from qiskit_algorithms.optimizers import SPSA, QNSPSA, SLSQP, OptimizerResult from qiskit_algorithms.state_fidelities import ComputeUncompute from qiskit_algorithms.utils import algorithm_globals @@ -73,13 +73,15 @@ def test_exact_sampler(self, op): ansatz.ry(thetas[2], 0) ansatz.ry(thetas[3], 1) - optimizer = L_BFGS_B() + optimizer = SPSA() # start in maximal superposition initial_point = np.zeros(ansatz.num_parameters) initial_point[-ansatz.num_qubits :] = np.pi / 2 - vqe = SamplingVQE(Sampler(), ansatz, optimizer, initial_point=initial_point) + vqe = SamplingVQE( + StatevectorSampler(seed=42), ansatz, optimizer, initial_point=initial_point + ) result = vqe.compute_minimum_eigenvalue(operator=op) with self.subTest(msg="test eigenvalue"): @@ -107,7 +109,7 @@ def test_invalid_initial_point(self, op): ansatz = RealAmplitudes(2, reps=1) initial_point = np.array([1]) - vqe = SamplingVQE(Sampler(), ansatz, SLSQP(), initial_point=initial_point) + vqe = SamplingVQE(StatevectorSampler(), ansatz, SLSQP(), initial_point=initial_point) with self.assertRaises(ValueError): _ = vqe.compute_minimum_eigenvalue(operator=op) @@ -116,7 +118,7 @@ def test_invalid_initial_point(self, op): def test_ansatz_resize(self, op): """Test the ansatz is properly resized if it's a blueprint circuit.""" ansatz = RealAmplitudes(1, reps=1) - vqe = SamplingVQE(Sampler(), ansatz, SLSQP()) + vqe = SamplingVQE(StatevectorSampler(seed=42), ansatz, SPSA()) result = vqe.compute_minimum_eigenvalue(operator=op) self.assertAlmostEqual(result.eigenvalue, self.optimal_value, places=5) @@ -125,7 +127,7 @@ def test_invalid_ansatz_size(self, op): """Test an error is raised if the ansatz has the wrong number of qubits.""" ansatz = QuantumCircuit(1) ansatz.compose(RealAmplitudes(1, reps=2)) - vqe = SamplingVQE(Sampler(), ansatz, SLSQP()) + vqe = SamplingVQE(StatevectorSampler(), ansatz, SLSQP()) with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=op) @@ -134,15 +136,18 @@ def test_invalid_ansatz_size(self, op): def test_missing_varform_params(self, op): """Test specifying a variational form with no parameters raises an error.""" circuit = QuantumCircuit(op.num_qubits) - vqe = SamplingVQE(Sampler(), circuit, SLSQP()) + vqe = SamplingVQE(StatevectorSampler(), circuit, SLSQP()) with self.assertRaises(AlgorithmError): vqe.compute_minimum_eigenvalue(operator=op) + @unittest.skip("SLSQP returns wrong results because of shot noise") @data(PAULI_OP) def test_batch_evaluate_slsqp(self, op): """Test batching with SLSQP (as representative of SciPyOptimizer).""" optimizer = SLSQP(max_evals_grouped=10) - vqe = SamplingVQE(Sampler(), RealAmplitudes(), optimizer) + vqe = SamplingVQE( + StatevectorSampler(default_shots=1_000_000, seed=42), RealAmplitudes(), optimizer + ) result = vqe.compute_minimum_eigenvalue(operator=op) self.assertAlmostEqual(result.eigenvalue, self.optimal_value, places=5) @@ -150,14 +155,14 @@ def test_batch_evaluate_with_qnspsa(self): """Test batch evaluating with QNSPSA works.""" ansatz = TwoLocal(2, rotation_blocks=["ry", "rz"], entanglement_blocks="cz") - wrapped_sampler = Sampler() - inner_sampler = Sampler() + wrapped_sampler = StatevectorSampler(seed=42) + inner_sampler = StatevectorSampler(seed=43) callcount = {"count": 0} def wrapped_run(*args, **kwargs): kwargs["callcount"]["count"] += 1 - return inner_sampler.run(*args, **kwargs) + return inner_sampler.run(*args) wrapped_sampler.run = partial(wrapped_run, callcount=callcount) @@ -183,7 +188,7 @@ def fidelity_callable(left, right): def test_optimizer_scipy_callable(self): """Test passing a SciPy optimizer directly as callable.""" vqe = SamplingVQE( - Sampler(), + StatevectorSampler(), RealAmplitudes(), partial(scipy_minimize, method="COBYLA", options={"maxiter": 2}), ) @@ -193,7 +198,7 @@ def test_optimizer_scipy_callable(self): def test_optimizer_callable(self): """Test passing a optimizer directly as callable.""" ansatz = RealAmplitudes(1, reps=1) - vqe = SamplingVQE(Sampler(), ansatz, _mock_optimizer) + vqe = SamplingVQE(StatevectorSampler(), ansatz, _mock_optimizer) result = vqe.compute_minimum_eigenvalue(Pauli("Z")) self.assertTrue(np.all(result.optimal_point == np.zeros(ansatz.num_parameters))) @@ -201,7 +206,7 @@ def test_optimizer_callable(self): def test_auxops(self, op): """Test passing auxiliary operators.""" ansatz = RealAmplitudes(2, reps=1) - vqe = SamplingVQE(Sampler(), ansatz, SLSQP()) + vqe = SamplingVQE(StatevectorSampler(seed=42), ansatz, SPSA()) as_list = [Pauli("ZZ"), Pauli("II")] with self.subTest(auxops=as_list): @@ -220,7 +225,7 @@ def test_auxops(self, op): def test_nondiag_observable_raises(self): """Test passing a non-diagonal observable raises an error.""" - vqe = SamplingVQE(Sampler(), RealAmplitudes(), SLSQP()) + vqe = SamplingVQE(StatevectorSampler(), RealAmplitudes(), SLSQP()) with self.assertRaises(ValueError): _ = vqe.compute_minimum_eigenvalue(Pauli("X")) @@ -242,7 +247,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata): history["metadata"].append(metadata) sampling_vqe = SamplingVQE( - Sampler(), + StatevectorSampler(), RealAmplitudes(2, reps=1), SLSQP(), callback=store_intermediate_result, @@ -250,7 +255,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata): sampling_vqe.compute_minimum_eigenvalue(operator=op) self.assertTrue(all(isinstance(count, int) for count in history["eval_count"])) - self.assertTrue(all(isinstance(mean, complex) for mean in history["mean"])) + self.assertTrue(all(isinstance(mean, float) for mean in history["mean"])) self.assertTrue(all(isinstance(metadata, dict) for metadata in history["metadata"])) for params in history["parameters"]: self.assertTrue(all(isinstance(param, float) for param in params)) @@ -271,7 +276,9 @@ def best_measurement(measurements): for aggregation in [alpha, best_measurement]: with self.subTest(aggregation=aggregation): - vqe = SamplingVQE(Sampler(), ansatz, _mock_optimizer, aggregation=best_measurement) + vqe = SamplingVQE( + StatevectorSampler(), ansatz, _mock_optimizer, aggregation=best_measurement + ) result = vqe.compute_minimum_eigenvalue(Pauli("Z")) # evaluation at x0=0 samples -1 and 1 with 50% probability, and our aggregation diff --git a/test/minimum_eigensolvers/test_vqe.py b/test/minimum_eigensolvers/test_vqe.py index 053cfd05..de449489 100644 --- a/test/minimum_eigensolvers/test_vqe.py +++ b/test/minimum_eigensolvers/test_vqe.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2024. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -23,7 +23,7 @@ from qiskit import QuantumCircuit from qiskit.circuit.library import RealAmplitudes, TwoLocal from qiskit.quantum_info import SparsePauliOp, Operator, Pauli -from qiskit.primitives import Estimator, Sampler +from qiskit.primitives import StatevectorEstimator, StatevectorSampler from qiskit_algorithms import AlgorithmError from qiskit_algorithms.gradients import ParamShiftEstimatorGradient @@ -83,7 +83,7 @@ def setUp(self): @data(L_BFGS_B(), COBYLA()) def test_using_ref_estimator(self, optimizer): """Test VQE using reference Estimator.""" - vqe = VQE(Estimator(), self.ryrz_wavefunction, optimizer) + vqe = VQE(StatevectorEstimator(seed=42), self.ryrz_wavefunction, optimizer) result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) @@ -109,9 +109,9 @@ def test_using_ref_estimator(self, optimizer): self.assertAlmostEqual(result.optimizer_result.fun, self.h2_energy, places=5) with self.subTest(msg="assert return ansatz is set"): - estimator = Estimator() - job = estimator.run(result.optimal_circuit, self.h2_op, result.optimal_point) - np.testing.assert_array_almost_equal(job.result().values, result.eigenvalue, 6) + estimator = StatevectorEstimator(seed=42) + job = estimator.run([(result.optimal_circuit, self.h2_op, result.optimal_point)]) + np.testing.assert_array_almost_equal(job.result()[0].data.evs, result.eigenvalue, 6) def test_invalid_initial_point(self): """Test the proper error is raised when the initial point has the wrong size.""" @@ -119,7 +119,7 @@ def test_invalid_initial_point(self): initial_point = np.array([1]) vqe = VQE( - Estimator(), + StatevectorEstimator(seed=42), ansatz, SLSQP(), initial_point=initial_point, @@ -131,7 +131,7 @@ def test_invalid_initial_point(self): def test_ansatz_resize(self): """Test the ansatz is properly resized if it's a blueprint circuit.""" ansatz = RealAmplitudes(1, reps=1) - vqe = VQE(Estimator(), ansatz, SLSQP()) + vqe = VQE(StatevectorEstimator(seed=42), ansatz, SLSQP()) result = vqe.compute_minimum_eigenvalue(self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @@ -139,7 +139,7 @@ def test_invalid_ansatz_size(self): """Test an error is raised if the ansatz has the wrong number of qubits.""" ansatz = QuantumCircuit(1) ansatz.compose(RealAmplitudes(1, reps=2)) - vqe = VQE(Estimator(), ansatz, SLSQP()) + vqe = VQE(StatevectorEstimator(), ansatz, SLSQP()) with self.assertRaises(AlgorithmError): _ = vqe.compute_minimum_eigenvalue(operator=self.h2_op) @@ -147,7 +147,7 @@ def test_invalid_ansatz_size(self): def test_missing_ansatz_params(self): """Test specifying an ansatz with no parameters raises an error.""" ansatz = QuantumCircuit(self.h2_op.num_qubits) - vqe = VQE(Estimator(), ansatz, SLSQP()) + vqe = VQE(StatevectorEstimator(), ansatz, SLSQP()) with self.assertRaises(AlgorithmError): vqe.compute_minimum_eigenvalue(operator=self.h2_op) @@ -155,7 +155,7 @@ def test_max_evals_grouped(self): """Test with SLSQP with max_evals_grouped.""" optimizer = SLSQP(maxiter=50, max_evals_grouped=5) vqe = VQE( - Estimator(), + StatevectorEstimator(seed=42), self.ryrz_wavefunction, optimizer, ) @@ -171,7 +171,7 @@ def test_max_evals_grouped(self): ) def test_with_gradient(self, optimizer): """Test VQE using gradient primitive.""" - estimator = Estimator() + estimator = StatevectorEstimator(seed=42) vqe = VQE( estimator, self.ry_wavefunction, @@ -184,7 +184,7 @@ def test_with_gradient(self, optimizer): def test_gradient_passed(self): """Test the gradient is properly passed into the optimizer.""" inputs = {} - estimator = Estimator() + estimator = StatevectorEstimator(seed=42) vqe = VQE( estimator, RealAmplitudes(), @@ -197,7 +197,7 @@ def test_gradient_passed(self): def test_gradient_run(self): """Test using the gradient to calculate the minimum.""" - estimator = Estimator() + estimator = StatevectorEstimator(seed=42) vqe = VQE( estimator, RealAmplitudes(), @@ -220,7 +220,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata): optimizer = COBYLA(maxiter=3) wavefunction = self.ry_wavefunction - estimator = Estimator() + estimator = StatevectorEstimator(seed=42) vqe = VQE( estimator, @@ -239,7 +239,7 @@ def store_intermediate_result(eval_count, parameters, mean, metadata): def test_reuse(self): """Test re-using a VQE algorithm instance.""" ansatz = TwoLocal(rotation_blocks=["ry", "rz"], entanglement_blocks="cz") - vqe = VQE(Estimator(), ansatz, SLSQP(maxiter=300)) + vqe = VQE(StatevectorEstimator(seed=42), ansatz, SLSQP(maxiter=300)) with self.subTest(msg="assert VQE works once all info is available"): result = vqe.compute_minimum_eigenvalue(operator=self.h2_op) self.assertAlmostEqual(result.eigenvalue.real, self.h2_energy, places=5) @@ -254,7 +254,7 @@ def test_reuse(self): def test_vqe_optimizer_reuse(self): """Test running same VQE twice to re-use optimizer, then switch optimizer""" vqe = VQE( - Estimator(), + StatevectorEstimator(seed=42), self.ryrz_wavefunction, SLSQP(), ) @@ -276,14 +276,14 @@ def test_default_batch_evaluation_on_spsa(self): """Test the default batching works.""" ansatz = TwoLocal(2, rotation_blocks=["ry", "rz"], entanglement_blocks="cz") - wrapped_estimator = Estimator() - inner_estimator = Estimator() + wrapped_estimator = StatevectorEstimator(seed=42) + inner_estimator = StatevectorEstimator(seed=43) callcount = {"estimator": 0} def wrapped_estimator_run(*args, **kwargs): kwargs["callcount"]["estimator"] += 1 - return inner_estimator.run(*args, **kwargs) + return inner_estimator.run(*args) wrapped_estimator.run = partial(wrapped_estimator_run, callcount=callcount) @@ -305,24 +305,24 @@ def test_batch_evaluate_with_qnspsa(self): """Test batch evaluating with QNSPSA works.""" ansatz = TwoLocal(2, rotation_blocks=["ry", "rz"], entanglement_blocks="cz") - wrapped_sampler = Sampler() - inner_sampler = Sampler() + wrapped_sampler = StatevectorSampler(seed=42) + inner_sampler = StatevectorSampler(seed=43) - wrapped_estimator = Estimator() - inner_estimator = Estimator() + wrapped_estimator = StatevectorEstimator(seed=44) + inner_estimator = StatevectorEstimator(seed=45) callcount = {"sampler": 0, "estimator": 0} - def wrapped_estimator_run(*args, **kwargs): - kwargs["callcount"]["estimator"] += 1 - return inner_estimator.run(*args, **kwargs) + def wrapped_estimator_run(*args): + callcount["estimator"] += 1 + return inner_estimator.run(*args) - def wrapped_sampler_run(*args, **kwargs): - kwargs["callcount"]["sampler"] += 1 - return inner_sampler.run(*args, **kwargs) + def wrapped_sampler_run(*args): + callcount["sampler"] += 1 + return inner_sampler.run(*args) - wrapped_estimator.run = partial(wrapped_estimator_run, callcount=callcount) - wrapped_sampler.run = partial(wrapped_sampler_run, callcount=callcount) + wrapped_estimator.run = wrapped_estimator_run + wrapped_sampler.run = wrapped_sampler_run fidelity = ComputeUncompute(wrapped_sampler) @@ -353,7 +353,7 @@ def fidelity_callable(left, right): def test_optimizer_scipy_callable(self): """Test passing a SciPy optimizer directly as callable.""" vqe = VQE( - Estimator(), + StatevectorEstimator(seed=42), self.ryrz_wavefunction, partial(scipy_minimize, method="L-BFGS-B", options={"maxiter": 10}), ) @@ -363,13 +363,13 @@ def test_optimizer_scipy_callable(self): def test_optimizer_callable(self): """Test passing a optimizer directly as callable.""" ansatz = RealAmplitudes(1, reps=1) - vqe = VQE(Estimator(), ansatz, _mock_optimizer) + vqe = VQE(StatevectorEstimator(seed=42), ansatz, _mock_optimizer) result = vqe.compute_minimum_eigenvalue(SparsePauliOp("Z")) self.assertTrue(np.all(result.optimal_point == np.zeros(ansatz.num_parameters))) def test_aux_operators_list(self): """Test list-based aux_operators.""" - vqe = VQE(Estimator(), self.ry_wavefunction, SLSQP(maxiter=300)) + vqe = VQE(StatevectorEstimator(seed=42), self.ry_wavefunction, SLSQP(maxiter=300)) with self.subTest("Test with an empty list."): result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators=[]) @@ -408,7 +408,7 @@ def test_aux_operators_list(self): def test_aux_operators_dict(self): """Test dictionary compatibility of aux_operators""" - vqe = VQE(Estimator(), self.ry_wavefunction, SLSQP(maxiter=300)) + vqe = VQE(StatevectorEstimator(seed=42), self.ry_wavefunction, SLSQP(maxiter=300)) with self.subTest("Test with an empty dictionary."): result = vqe.compute_minimum_eigenvalue(self.h2_op, aux_operators={}) diff --git a/test/optimizers/test_optimizer_aqgd.py b/test/optimizers/test_optimizer_aqgd.py index a2d4a1f0..81f06d89 100644 --- a/test/optimizers/test_optimizer_aqgd.py +++ b/test/optimizers/test_optimizer_aqgd.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2019, 2024. +# (C) Copyright IBM 2019, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -17,7 +17,7 @@ import numpy as np from ddt import ddt, data from qiskit.circuit.library import RealAmplitudes -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms import AlgorithmError @@ -43,7 +43,7 @@ def setUp(self): ("XX", 0.18093119978423156), ] ) - self.estimator = Estimator() + self.estimator = StatevectorEstimator() self.gradient = LinCombEstimatorGradient(self.estimator) @slow_test diff --git a/test/optimizers/test_optimizer_nft.py b/test/optimizers/test_optimizer_nft.py index a99163d8..da00ecae 100644 --- a/test/optimizers/test_optimizer_nft.py +++ b/test/optimizers/test_optimizer_nft.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -15,7 +15,7 @@ import unittest from test import QiskitAlgorithmsTestCase from qiskit.circuit.library import RealAmplitudes -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms.optimizers import NFT @@ -40,7 +40,7 @@ def setUp(self): def test_nft(self): """Test NFT optimizer by using it""" - vqe = VQE(Estimator(), ansatz=RealAmplitudes(), optimizer=NFT()) + vqe = VQE(StatevectorEstimator(), ansatz=RealAmplitudes(), optimizer=NFT()) result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op) diff --git a/test/optimizers/test_optimizers.py b/test/optimizers/test_optimizers.py index 273ceb34..44fc63b0 100644 --- a/test/optimizers/test_optimizers.py +++ b/test/optimizers/test_optimizers.py @@ -13,6 +13,7 @@ """Test Optimizers""" import unittest + from test import QiskitAlgorithmsTestCase from typing import Optional, List, Tuple @@ -22,8 +23,9 @@ from qiskit.circuit.library import RealAmplitudes from qiskit.exceptions import MissingOptionalLibraryError +from qiskit.primitives import StatevectorSampler +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit.utils import optionals -from qiskit.primitives import Sampler from qiskit_algorithms.optimizers import ( ADAM, @@ -409,7 +411,12 @@ def steps(): def test_qnspsa(self): """Test QN-SPSA optimizer is serializable.""" ansatz = RealAmplitudes(1) - fidelity = QNSPSA.get_fidelity(ansatz, sampler=Sampler()) + fidelity = QNSPSA.get_fidelity( + ansatz, + sampler=StatevectorSampler(seed=123), + transpiler=generate_preset_pass_manager(optimization_level=1, seed_transpiler=42), + transpiler_options={"callable": lambda x: x}, + ) options = { "fidelity": fidelity, "maxiter": 100, diff --git a/test/optimizers/test_optimizers_scikitquant.py b/test/optimizers/test_optimizers_scikitquant.py index 37f257db..0ac2a206 100644 --- a/test/optimizers/test_optimizers_scikitquant.py +++ b/test/optimizers/test_optimizers_scikitquant.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2020, 2023. +# (C) Copyright IBM 2020, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,7 +20,7 @@ import numpy from qiskit.circuit.library import RealAmplitudes from qiskit.exceptions import MissingOptionalLibraryError -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp from qiskit_algorithms.minimum_eigensolvers import VQE @@ -49,7 +49,7 @@ def setUp(self): def _optimize(self, optimizer): """launch vqe""" - vqe = VQE(Estimator(), ansatz=RealAmplitudes(), optimizer=optimizer) + vqe = VQE(StatevectorEstimator(), ansatz=RealAmplitudes(), optimizer=optimizer) result = vqe.compute_minimum_eigenvalue(operator=self.qubit_op) self.assertAlmostEqual(result.eigenvalue.real, -1.857, places=1) diff --git a/test/optimizers/test_spsa.py b/test/optimizers/test_spsa.py index dca054e4..09bcfa2a 100644 --- a/test/optimizers/test_spsa.py +++ b/test/optimizers/test_spsa.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2021, 2024. +# (C) Copyright IBM 2021, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -18,7 +18,8 @@ import numpy as np from qiskit.circuit.library import PauliTwoDesign -from qiskit.primitives import Estimator, Sampler +from qiskit.primitives import StatevectorEstimator, StatevectorSampler + from qiskit.quantum_info import SparsePauliOp, Statevector from qiskit_algorithms.optimizers import SPSA, QNSPSA @@ -57,7 +58,9 @@ def objective(x): settings["regularization"] = 0.01 expected_nfev = settings["maxiter"] * 5 + 1 elif method == "qnspsa": - settings["fidelity"] = QNSPSA.get_fidelity(circuit, sampler=Sampler()) + settings["fidelity"] = QNSPSA.get_fidelity( + circuit, sampler=StatevectorSampler(seed=123) + ) settings["regularization"] = 0.001 settings["learning_rate"] = 0.05 settings["perturbation"] = 0.05 @@ -204,7 +207,7 @@ def test_qnspsa_fidelity_primitives(self): initial_point = np.random.random(ansatz.num_parameters) with self.subTest(msg="pass as kwarg"): - fidelity = QNSPSA.get_fidelity(ansatz, sampler=Sampler()) + fidelity = QNSPSA.get_fidelity(ansatz, sampler=StatevectorSampler(seed=123)) result = fidelity(initial_point, initial_point) self.assertAlmostEqual(result[0], 1) @@ -212,21 +215,21 @@ def test_qnspsa_fidelity_primitives(self): def test_qnspsa_max_evals_grouped(self): """Test using max_evals_grouped with QNSPSA.""" circuit = PauliTwoDesign(3, reps=1, seed=1) - num_parameters = circuit.num_parameters obs = SparsePauliOp("ZZI") # Z^Z^I - estimator = Estimator(options={"seed": 12}) + estimator = StatevectorEstimator(seed=12) initial_point = np.array( [0.82311034, 0.02611798, 0.21077064, 0.61842177, 0.09828447, 0.62013131] ) def objective(x): - x = np.reshape(x, (-1, num_parameters)).tolist() - n = len(x) - return estimator.run(n * [circuit], n * [obs], x).result().values.real + results = estimator.run([(circuit, obs, x)]).result() + return np.array([res.data.evs for res in results]).real.reshape(-1) - fidelity = QNSPSA.get_fidelity(circuit, sampler=Sampler()) + fidelity = QNSPSA.get_fidelity( + circuit, sampler=StatevectorSampler(seed=12, default_shots=10_000) + ) optimizer = QNSPSA(fidelity) optimizer.maxiter = 1 optimizer.learning_rate = 0.05 diff --git a/test/state_fidelities/test_compute_uncompute.py b/test/state_fidelities/test_compute_uncompute.py index a8cfe8f3..fa705d92 100644 --- a/test/state_fidelities/test_compute_uncompute.py +++ b/test/state_fidelities/test_compute_uncompute.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2022, 2023. +# (C) Copyright IBM 2022, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,14 +16,16 @@ from test import QiskitAlgorithmsTestCase import numpy as np - +from ddt import ddt from qiskit.circuit import QuantumCircuit, ParameterVector from qiskit.circuit.library import RealAmplitudes -from qiskit.primitives import Sampler +from qiskit.primitives import StatevectorSampler +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_algorithms.state_fidelities import ComputeUncompute +@ddt class TestComputeUncompute(QiskitAlgorithmsTestCase): """Test Compute-Uncompute Fidelity class""" @@ -49,7 +51,7 @@ def setUp(self): rx_rotation.h(1) self._circuit = [rx_rotations, ry_rotations, plus, zero, rx_rotation] - self._sampler = Sampler() + self._sampler = StatevectorSampler(seed=123, default_shots=10_000) self._left_params = np.array([[0, 0], [np.pi / 2, 0], [0, np.pi / 2], [np.pi, np.pi]]) self._right_params = np.array([[0, 0], [0, 0], [np.pi / 2, 0], [0, 0]]) @@ -80,7 +82,7 @@ def test_local(self): job = fidelity.run(self._circuit[2], self._circuit[3]) result = job.result() fidelities.append(result.fidelities[0]) - np.testing.assert_allclose(fidelities, np.array([0.25, 0.5]), atol=1e-16) + np.testing.assert_allclose(fidelities, np.array([0.25, 0.5]), atol=1e-2, rtol=1e-2) def test_4param_pairs(self): """test for fidelity with four pairs of parameters""" @@ -90,7 +92,9 @@ def test_4param_pairs(self): [self._circuit[0]] * n, [self._circuit[1]] * n, self._left_params, self._right_params ) results = job.result() - np.testing.assert_allclose(results.fidelities, np.array([1.0, 0.5, 0.25, 0.0]), atol=1e-16) + np.testing.assert_allclose( + results.fidelities, np.array([1.0, 0.5, 0.25, 0.0]), atol=1e-2, rtol=1e-2 + ) def test_symmetry(self): """test for fidelity with the same circuit""" @@ -111,11 +115,11 @@ def test_no_params(self): fidelity = ComputeUncompute(self._sampler) job = fidelity.run([self._circuit[2]], [self._circuit[3]]) results = job.result() - np.testing.assert_allclose(results.fidelities, np.array([0.25]), atol=1e-16) + np.testing.assert_allclose(results.fidelities, np.array([0.25]), atol=1e-2, rtol=1e-2) job = fidelity.run([self._circuit[2]], [self._circuit[3]], [], []) results = job.result() - np.testing.assert_allclose(results.fidelities, np.array([0.25]), atol=1e-16) + np.testing.assert_allclose(results.fidelities, np.array([0.25]), atol=1e-2, rtol=1e-2) def test_left_param(self): """test for fidelity with only left parameters""" @@ -125,7 +129,9 @@ def test_left_param(self): [self._circuit[1]] * n, [self._circuit[3]] * n, values_1=self._left_params ) results = job.result() - np.testing.assert_allclose(results.fidelities, np.array([1.0, 0.5, 0.5, 0.0]), atol=1e-16) + np.testing.assert_allclose( + results.fidelities, np.array([1.0, 0.5, 0.5, 0.0]), atol=1e-2, rtol=1e-2 + ) def test_right_param(self): """test for fidelity with only right parameters""" @@ -135,7 +141,9 @@ def test_right_param(self): [self._circuit[3]] * n, [self._circuit[1]] * n, values_2=self._left_params ) results = job.result() - np.testing.assert_allclose(results.fidelities, np.array([1.0, 0.5, 0.5, 0.0]), atol=1e-16) + np.testing.assert_allclose( + results.fidelities, np.array([1.0, 0.5, 0.5, 0.0]), atol=1e-2, rtol=1e-2 + ) def test_not_set_circuits(self): """test for fidelity with no circuits.""" @@ -173,7 +181,9 @@ def test_asymmetric_params(self): [self._circuit[0]] * n, [self._circuit[4]] * n, self._left_params, right_params ) result = job.result() - np.testing.assert_allclose(result.fidelities, np.array([0.5, 0.25, 0.25, 0.0]), atol=1e-16) + np.testing.assert_allclose( + result.fidelities, np.array([0.5, 0.25, 0.25, 0.0]), atol=1e-2, rtol=1e-2 + ) def test_input_format(self): """test for different input format variations""" @@ -217,48 +227,63 @@ def test_input_measurements(self): result = job.result() np.testing.assert_allclose(result.fidelities, np.array([1.0])) - def test_options(self): - """Test fidelity's run options""" - sampler_shots = Sampler(options={"shots": 1024}) + def test_shots(self): + """Test fidelity's run shots setting""" + sampler_shots = StatevectorSampler(default_shots=1024) with self.subTest("sampler"): # Only options in sampler fidelity = ComputeUncompute(sampler_shots) - options = fidelity.options + shots = fidelity.shots job = fidelity.run(self._circuit[2], self._circuit[3]) result = job.result() - self.assertEqual(options.__dict__, {"shots": 1024}) - self.assertEqual(result.options.__dict__, {"shots": 1024}) + self.assertEqual(shots, None) + self.assertEqual(result.shots, 1024) with self.subTest("fidelity init"): # Fidelity default options override sampler # options and add new fields - fidelity = ComputeUncompute(sampler_shots, options={"shots": 2048, "dummy": 100}) - options = fidelity.options + fidelity = ComputeUncompute(sampler_shots, shots=2048) + shots = fidelity.shots job = fidelity.run(self._circuit[2], self._circuit[3]) result = job.result() - self.assertEqual(options.__dict__, {"shots": 2048, "dummy": 100}) - self.assertEqual(result.options.__dict__, {"shots": 2048, "dummy": 100}) + self.assertEqual(shots, 2048) + self.assertEqual(result.shots, 2048) with self.subTest("fidelity update"): # Update fidelity options - fidelity = ComputeUncompute(sampler_shots, options={"shots": 2048, "dummy": 100}) - fidelity.update_default_options(shots=100) - options = fidelity.options + fidelity = ComputeUncompute(sampler_shots, shots=2048) + fidelity.shots = 100 + shots = fidelity.shots job = fidelity.run(self._circuit[2], self._circuit[3]) result = job.result() - self.assertEqual(options.__dict__, {"shots": 100, "dummy": 100}) - self.assertEqual(result.options.__dict__, {"shots": 100, "dummy": 100}) + self.assertEqual(shots, 100) + self.assertEqual(result.shots, 100) with self.subTest("fidelity run"): # Run options override fidelity options - fidelity = ComputeUncompute(sampler_shots, options={"shots": 2048, "dummy": 100}) - job = fidelity.run(self._circuit[2], self._circuit[3], shots=50, dummy=None) - options = fidelity.options + fidelity = ComputeUncompute(sampler_shots, shots=2048) + job = fidelity.run(self._circuit[2], self._circuit[3], shots=50) + shots = fidelity.shots result = job.result() # Only default + sampler options. Not run. - self.assertEqual(options.__dict__, {"shots": 2048, "dummy": 100}) - self.assertEqual(result.options.__dict__, {"shots": 50, "dummy": None}) + self.assertEqual(shots, 2048) + self.assertEqual(result.shots, 50) + + def test_transpiler(self): + """Test that the transpiler is called""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + fidelity = ComputeUncompute( + StatevectorSampler(), transpiler=pass_manager, transpiler_options={"callback": callback} + ) + fidelity._construct_circuits(QuantumCircuit(1), QuantumCircuit(1)) + + self.assertGreater(counts[0], 0) if __name__ == "__main__": diff --git a/test/test_amplitude_estimators.py b/test/test_amplitude_estimators.py index 0969ddb9..f75b0013 100644 --- a/test/test_amplitude_estimators.py +++ b/test/test_amplitude_estimators.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -16,10 +16,10 @@ from test import QiskitAlgorithmsTestCase import numpy as np from ddt import ddt, idata, data, unpack -from qiskit import QuantumRegister, QuantumCircuit +from qiskit import QuantumRegister, QuantumCircuit, generate_preset_pass_manager from qiskit.circuit.library import QFT, GroverOperator from qiskit.quantum_info import Operator, Statevector -from qiskit.primitives import Sampler +from qiskit.primitives import StatevectorSampler from qiskit_algorithms import ( AmplitudeEstimation, @@ -92,55 +92,22 @@ class TestBernoulli(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self._sampler = Sampler(options={"seed": 2}) - - def sampler_shots(shots=100): - return Sampler(options={"shots": shots, "seed": 2}) + def sampler_shots(shots=10_000): + return StatevectorSampler(default_shots=shots, seed=42) self._sampler_shots = sampler_shots @idata( [ - [0.2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2}], - [0.49, AmplitudeEstimation(3), {"estimation": 0.5, "mle": 0.49}], - [0.2, MaximumLikelihoodAmplitudeEstimation([0, 1, 2]), {"estimation": 0.2}], - [0.49, MaximumLikelihoodAmplitudeEstimation(3), {"estimation": 0.49}], - [0.2, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2}], - [0.49, IterativeAmplitudeEstimation(0.001, 0.01), {"estimation": 0.49}], - [0.2, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.199}], - [0.12, FasterAmplitudeEstimation(0.1, 2, rescale=False), {"estimation": 0.12}], - ] - ) - @unpack - def test_sampler(self, prob, qae, expect): - """sampler test""" - qae.sampler = self._sampler - problem = EstimationProblem(BernoulliStateIn(prob), 0, BernoulliGrover(prob)) - - result = qae.estimate(problem) - for key, value in expect.items(): - self.assertAlmostEqual( - value, getattr(result, key), places=3, msg=f"estimate `{key}` failed" - ) - - @idata( - [ - [0.2, 100, AmplitudeEstimation(4), {"estimation": 0.14644, "mle": 0.198783}], - [0.0, 1000, AmplitudeEstimation(2), {"estimation": 0.0, "mle": 0.0}], - [ - 0.2, - 100, - MaximumLikelihoodAmplitudeEstimation([0, 1, 2, 4, 8]), - {"estimation": 0.200308}, - ], - [0.8, 10, IterativeAmplitudeEstimation(0.1, 0.05), {"estimation": 0.811711}], - [0.2, 1000, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.198640}], - [ - 0.12, - 100, - FasterAmplitudeEstimation(0.01, 3, rescale=False), - {"estimation": 0.120017}, - ], + [0.2, 100_000, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2}], + [0.49, 1_000_000, AmplitudeEstimation(3), {"estimation": 0.5, "mle": 0.49}], + [0.2, 100_000, MaximumLikelihoodAmplitudeEstimation([0, 1, 2]), {"estimation": 0.2}], + [0.49, 100_000, MaximumLikelihoodAmplitudeEstimation(3), {"estimation": 0.49}], + [0.2, 1_000_000, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2}], + [0.49, 100_000, IterativeAmplitudeEstimation(0.001, 0.01), {"estimation": 0.49}], + # Number of shots for Sampler is not used in FasterAmplitudeEstimation + [0.2, 1, FasterAmplitudeEstimation(0.01, 5, rescale=False), {"estimation": 0.2}], + [0.12, 1, FasterAmplitudeEstimation(0.1, 3, rescale=False), {"estimation": 0.12}], ] ) @unpack @@ -302,41 +269,17 @@ class TestSineIntegral(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self._sampler = Sampler(options={"seed": 123}) - def sampler_shots(shots=100): - return Sampler(options={"shots": shots, "seed": 7192}) + return StatevectorSampler(default_shots=shots, seed=42) self._sampler_shots = sampler_shots @idata( [ - [2, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2702}], - [4, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.2725}], - [3, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2721}], - [3, FasterAmplitudeEstimation(0.01, 1), {"estimation": 0.2792}], - ] - ) - @unpack - def test_sampler(self, n, qae, expect): - """sampler end-to-end test""" - # construct factories for A and Q - # qae.state_preparation = SineIntegral(n) - qae.sampler = self._sampler - estimation_problem = EstimationProblem(SineIntegral(n), objective_qubits=[n]) - - result = qae.estimate(estimation_problem) - for key, value in expect.items(): - self.assertAlmostEqual( - value, getattr(result, key), places=3, msg=f"estimate `{key}` failed" - ) - - @idata( - [ - [4, 1000, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2636}], - [3, 10, MaximumLikelihoodAmplitudeEstimation(2), {"estimation": 0.2904}], - [3, 1000, IterativeAmplitudeEstimation(0.01, 0.01), {"estimation": 0.2706}], - [3, 1000, FasterAmplitudeEstimation(0.1, 4), {"estimation": 0.2764}], + [2, 1_000_000, AmplitudeEstimation(2), {"estimation": 0.5, "mle": 0.2702}], + [4, 100_000, MaximumLikelihoodAmplitudeEstimation(4), {"estimation": 0.2725}], + [3, 1_000_000, IterativeAmplitudeEstimation(0.1, 0.1), {"estimation": 0.2721}], + [3, 1, FasterAmplitudeEstimation(0.01, 6), {"estimation": 0.2721}], ] ) @unpack @@ -379,18 +322,6 @@ def test_confidence_intervals(self, qae, key, expect): """End-to-end test for all confidence intervals.""" n = 3 - estimation_problem = EstimationProblem(SineIntegral(n), objective_qubits=[n]) - qae.sampler = self._sampler - result = qae.estimate(estimation_problem) - - methods = ["lr", "fi", "oi"] # short for likelihood_ratio, fisher, observed_fisher - alphas = [0.1, 0.00001, 0.9] # alpha shouldn't matter in statevector - for alpha, method in zip(alphas, methods): - confint = qae.compute_confidence_interval(result, alpha, method, exact=True) - # confidence interval based on statevector should be empty, as we are sure of the result - self.assertAlmostEqual(confint[1] - confint[0], 0.0) - self.assertAlmostEqual(confint[0], getattr(result, key)) - # shots shots = 100 alpha = 0.01 @@ -407,26 +338,16 @@ def test_confidence_intervals(self, qae, key, expect): def test_iqae_confidence_intervals(self): """End-to-end test for the IQAE confidence interval.""" n = 3 - # expected_confint = (0.1984050, 0.3511015) + # Careful, changes according to the seed expected_confint = ( - 0.263977, - 0.3511015, - ) # change from qasm to shot-based statevector simulation + 0.26, + 0.32, + ) estimation_problem = EstimationProblem(SineIntegral(n), objective_qubits=[n]) - qae = IterativeAmplitudeEstimation(0.1, 0.01, sampler=self._sampler) - - result = qae.estimate(estimation_problem) - - confint = result.confidence_interval - # confidence interval based on statevector should be empty, as we are sure of the result - self.assertAlmostEqual(confint[1] - confint[0], 0.0) - self.assertAlmostEqual(confint[0], result.estimation) - - # shots shots = 100 - qae.sampler = self._sampler_shots(shots) + qae = IterativeAmplitudeEstimation(0.1, 0.01, sampler=self._sampler_shots(shots)) result = qae.estimate(estimation_problem) confint = result.confidence_interval @@ -434,6 +355,63 @@ def test_iqae_confidence_intervals(self): self.assertTrue(confint[0] <= result.estimation <= confint[1]) +@ddt +class TestTranspiler(QiskitAlgorithmsTestCase): + """Tests to check that the transpiler is indeed called.""" + + def setUp(self): + super().setUp() + + self.pm = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + self.counts = [0] + + # pylint: disable=unused-argument + def callback(**kwargs): + self.counts[0] += 1 + + self.callback = callback + + circuit = QuantumCircuit(1) + self.problem = EstimationProblem( + circuit, objective_qubits=[0], is_good_state=lambda x: True + ) + + @idata( + [ + [AmplitudeEstimation, {"num_eval_qubits": 1}], + [IterativeAmplitudeEstimation, {"epsilon_target": 0.1, "alpha": 0.1}], + ] + ) + @unpack + def test_transpiler_ae_iae(self, qae_class, kwargs): + """Test that the transpiler is called on AE and IAE""" + qae = qae_class( + transpiler=self.pm, transpiler_options={"callback": self.callback}, **kwargs + ) + qae.construct_circuit(self.problem) + + self.assertGreater(self.counts[0], 0) + + @unittest.skip("Won't pass until Qiskit/qiskit#14250 is fixed") + def test_transpiler_mlae(self): + """Test that the transpiler is called on MLAE""" + mlae = MaximumLikelihoodAmplitudeEstimation( + [0, 1], transpiler=self.pm, transpiler_options={"callback": self.callback} + ) + mlae.construct_circuits(self.problem) + + self.assertGreater(self.counts[0], 0) + + def test_transpiler_fae(self): + """Test that the transpiler is called on FAE""" + fae = FasterAmplitudeEstimation( + 0.1, 1, transpiler=self.pm, transpiler_options={"callback": self.callback} + ) + fae.construct_circuit(self.problem, k=1) + + self.assertGreater(self.counts[0], 0) + + class TestAmplitudeEstimation(QiskitAlgorithmsTestCase): """Specific tests for canonical AE.""" @@ -442,7 +420,7 @@ def test_warns_if_good_state_set(self): circuit = QuantumCircuit(1) problem = EstimationProblem(circuit, objective_qubits=[0], is_good_state=lambda x: True) - qae = AmplitudeEstimation(num_eval_qubits=1, sampler=Sampler()) + qae = AmplitudeEstimation(num_eval_qubits=1, sampler=StatevectorSampler()) with self.assertWarns(Warning): _ = qae.estimate(problem) @@ -453,7 +431,7 @@ class TestFasterAmplitudeEstimation(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self._sampler = Sampler(options={"seed": 2}) + self._sampler = StatevectorSampler(default_shots=10_000, seed=2) def test_rescaling(self): """Test the rescaling.""" diff --git a/test/test_grover.py b/test/test_grover.py index 966c69a6..513c091e 100644 --- a/test/test_grover.py +++ b/test/test_grover.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -12,20 +12,20 @@ """Test Grover's algorithm.""" -import itertools import unittest +from itertools import product from test import QiskitAlgorithmsTestCase import numpy as np -from ddt import data, ddt, idata, unpack - +from ddt import data, ddt from qiskit import QuantumCircuit from qiskit.circuit.library import GroverOperator, PhaseOracle -from qiskit.primitives import Sampler +from qiskit.primitives import StatevectorSampler from qiskit.quantum_info import Operator, Statevector -from qiskit.utils.optionals import HAS_TWEEDLEDUM +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_algorithms import AmplificationProblem, Grover +from qiskit_algorithms.utils.optionals import CAN_USE_PHASE_ORACLE @ddt @@ -72,9 +72,7 @@ def is_good_state(bitstr): # same as ``bitstr in ['01', '11']`` return bitstr[1] == "1" - possible_states = [ - "".join(list(map(str, item))) for item in itertools.product([0, 1], repeat=2) - ] + possible_states = ["".join(list(map(str, item))) for item in product([0, 1], repeat=2)] oracle = QuantumCircuit(2) problem = AmplificationProblem(oracle, is_good_state=is_good_state) @@ -91,50 +89,51 @@ class TestGrover(QiskitAlgorithmsTestCase): def setUp(self): super().setUp() - self._sampler = Sampler() - self._sampler_with_shots = Sampler(options={"shots": 1024, "seed": 123}) + self._sampler = StatevectorSampler(seed=123) - @unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test") - @data("ideal", "shots") - def test_implicit_phase_oracle_is_good_state(self, use_sampler): + @unittest.skipUnless( + CAN_USE_PHASE_ORACLE, "tweedledum or qiskit >= 2.0.0 required for this test" + ) + def test_implicit_phase_oracle_is_good_state(self): """Test implicit default for is_good_state with PhaseOracle.""" - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() oracle = PhaseOracle("x & y") problem = AmplificationProblem(oracle) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "11") - @idata(itertools.product(["ideal", "shots"], [[1, 2, 3], None, 2])) - @unpack - def test_iterations_with_good_state(self, use_sampler, iterations): + @data([1, 2, 3], None, 2) + def test_iterations_with_good_state(self, iterations): """Test the algorithm with different iteration types and with good state""" - grover = self._prepare_grover(use_sampler, iterations) + grover = self._prepare_grover(iterations) problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"]) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "111") - @idata(itertools.product(["shots"], [[1, 2, 3], None, 2])) - @unpack - def test_iterations_with_good_state_sample_from_iterations(self, use_sampler, iterations): + @unittest.skip( + "Skipped until " + "https://github.com/qiskit-community/qiskit-algorithms/issues/136#issuecomment-2291169158 is " + "resolved" + ) + @data([1, 2, 3], None, 2) + def test_iterations_with_good_state_sample_from_iterations(self, iterations): """Test the algorithm with different iteration types and with good state""" - grover = self._prepare_grover(use_sampler, iterations, sample_from_iterations=True) + grover = self._prepare_grover(iterations, sample_from_iterations=True) problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"]) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "111") - @data("ideal", "shots") - def test_fixed_iterations_without_good_state(self, use_sampler): + def test_fixed_iterations_without_good_state(self): """Test the algorithm with iterations as an int and without good state""" - grover = self._prepare_grover(use_sampler, iterations=2) + grover = self._prepare_grover(iterations=2) problem = AmplificationProblem(Statevector.from_label("111")) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "111") - @idata(itertools.product(["ideal", "shots"], [[1, 2, 3], None])) - @unpack - def test_iterations_without_good_state(self, use_sampler, iterations): + @data([1, 2, 3], None) + def test_iterations_without_good_state(self, iterations): """Test the correct error is thrown for none/list of iterations and without good state""" - grover = self._prepare_grover(use_sampler, iterations=iterations) + grover = self._prepare_grover(iterations=iterations) problem = AmplificationProblem(Statevector.from_label("111")) with self.assertRaisesRegex( @@ -142,8 +141,7 @@ def test_iterations_without_good_state(self, use_sampler, iterations): ): grover.amplify(problem) - @data("ideal", "shots") - def test_iterator(self, use_sampler): + def test_iterator(self): """Test running the algorithm on an iterator.""" # step-function iterator @@ -155,63 +153,57 @@ def iterator(): if count % wait == 0: value += 1 - grover = self._prepare_grover(use_sampler, iterations=iterator()) + grover = self._prepare_grover(iterations=iterator()) problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"]) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "111") - @data("ideal", "shots") - def test_growth_rate(self, use_sampler): + def test_growth_rate(self): """Test running the algorithm on a growth rate""" - grover = self._prepare_grover(use_sampler, growth_rate=8 / 7) + grover = self._prepare_grover(growth_rate=8 / 7) problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"]) result = grover.amplify(problem) self.assertEqual(result.top_measurement, "111") - @data("ideal", "shots") - def test_max_num_iterations(self, use_sampler): + def test_max_num_iterations(self): """Test the iteration stops when the maximum number of iterations is reached.""" def zero(): while True: yield 0 - grover = self._prepare_grover(use_sampler, iterations=zero()) + grover = self._prepare_grover(iterations=zero()) n = 5 problem = AmplificationProblem(Statevector.from_label("1" * n), is_good_state=["1" * n]) result = grover.amplify(problem) self.assertEqual(len(result.iterations), 2**n) - @data("ideal", "shots") - def test_max_power(self, use_sampler): + def test_max_power(self): """Test the iteration stops when the maximum power is reached.""" lam = 10.0 - grover = self._prepare_grover(use_sampler, growth_rate=lam) + grover = self._prepare_grover(growth_rate=lam) problem = AmplificationProblem(Statevector.from_label("111"), is_good_state=["111"]) result = grover.amplify(problem) self.assertEqual(len(result.iterations), 0) - @data("ideal", "shots") - def test_run_circuit_oracle(self, use_sampler): + def test_run_circuit_oracle(self): """Test execution with a quantum circuit oracle""" oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=["11"]) - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() result = grover.amplify(problem) self.assertIn(result.top_measurement, ["11"]) - @data("ideal", "shots") - def test_run_state_vector_oracle(self, use_sampler): + def test_run_state_vector_oracle(self): """Test execution with a state vector oracle""" mark_state = Statevector.from_label("11") problem = AmplificationProblem(mark_state, is_good_state=["11"]) - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() result = grover.amplify(problem) self.assertIn(result.top_measurement, ["11"]) - @data("ideal", "shots") - def test_run_custom_grover_operator(self, use_sampler): + def test_run_custom_grover_operator(self): """Test execution with a grover operator oracle""" oracle = QuantumCircuit(2) oracle.cz(0, 1) @@ -219,7 +211,7 @@ def test_run_custom_grover_operator(self, use_sampler): problem = AmplificationProblem( oracle=oracle, grover_operator=grover_op, is_good_state=["11"] ) - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() result = grover.amplify(problem) self.assertIn(result.top_measurement, ["11"]) @@ -230,7 +222,7 @@ def test_optimal_num_iterations(self): amplitude = np.sqrt(num_solutions / 2**num_qubits) expected = round(np.arccos(amplitude) / (2 * np.arcsin(amplitude))) actual = Grover.optimal_num_iterations(num_solutions, num_qubits) - self.assertEqual(actual, expected) + self.assertEqual(actual, expected) def test_construct_circuit(self): """Test construct_circuit""" @@ -247,14 +239,13 @@ def test_construct_circuit(self): self.assertTrue(Operator(constructed).equiv(Operator(expected))) - @data("ideal", "shots") - def test_circuit_result(self, use_sampler): + def test_circuit_result(self): """Test circuit_result""" oracle = QuantumCircuit(2) oracle.cz(0, 1) # is_good_state=['00'] is intentionally selected to obtain a list of results problem = AmplificationProblem(oracle, is_good_state=["00"]) - grover = self._prepare_grover(use_sampler, iterations=[1, 2, 3, 4]) + grover = self._prepare_grover(iterations=[1, 2, 3, 4]) result = grover.amplify(problem) @@ -267,23 +258,23 @@ def test_circuit_result(self, use_sampler): self.assertTupleEqual(keys, ("00", "01", "10", "11")) np.testing.assert_allclose(values, [0.25, 0.25, 0.25, 0.25], atol=0.2) - @data("ideal", "shots") - def test_max_probability(self, use_sampler): + def test_max_probability(self): """Test max_probability""" oracle = QuantumCircuit(2) oracle.cz(0, 1) problem = AmplificationProblem(oracle, is_good_state=["11"]) - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() result = grover.amplify(problem) self.assertAlmostEqual(result.max_probability, 1.0) - @unittest.skipUnless(HAS_TWEEDLEDUM, "tweedledum required for this test") - @data("ideal", "shots") - def test_oracle_evaluation(self, use_sampler): + @unittest.skipUnless( + CAN_USE_PHASE_ORACLE, "tweedledum or qiskit >= 2.0.0 required for this test" + ) + def test_oracle_evaluation(self): """Test oracle_evaluation for PhaseOracle""" oracle = PhaseOracle("x1 & x2 & (not x3)") problem = AmplificationProblem(oracle, is_good_state=oracle.evaluate_bitstring) - grover = self._prepare_grover(use_sampler) + grover = self._prepare_grover() result = grover.amplify(problem) self.assertTrue(result.oracle_evaluation) self.assertEqual("011", result.top_measurement) @@ -294,27 +285,41 @@ def test_sampler_setter(self): grover.sampler = self._sampler self.assertEqual(grover.sampler, self._sampler) + def test_transpiler(self): + """Test that the transpiler is called""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + oracle = QuantumCircuit(2) + oracle.cz(0, 1) + # is_good_state=['00'] is intentionally selected to obtain a list of results + problem = AmplificationProblem(oracle) + + Grover( + iterations=1, + sampler=StatevectorSampler(seed=42), + transpiler=pass_manager, + transpiler_options={"callback": callback}, + ).amplify(problem) + + self.assertGreater(counts[0], 0) + def _prepare_grover( - self, use_sampler, iterations=None, growth_rate=None, sample_from_iterations=False + self, + iterations=None, + growth_rate=None, + sample_from_iterations=False, ): """Prepare Grover instance for test""" - if use_sampler == "ideal": - grover = Grover( - sampler=self._sampler, - iterations=iterations, - growth_rate=growth_rate, - sample_from_iterations=sample_from_iterations, - ) - elif use_sampler == "shots": - grover = Grover( - sampler=self._sampler_with_shots, - iterations=iterations, - growth_rate=growth_rate, - sample_from_iterations=sample_from_iterations, - ) - else: - raise RuntimeError("Unexpected `use_sampler` value {use_sampler}") - return grover + return Grover( + sampler=self._sampler, + iterations=iterations, + growth_rate=growth_rate, + sample_from_iterations=sample_from_iterations, + ) if __name__ == "__main__": diff --git a/test/test_phase_estimator.py b/test/test_phase_estimator.py index d2edad1a..22cf4851 100644 --- a/test/test_phase_estimator.py +++ b/test/test_phase_estimator.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -11,22 +11,23 @@ # that they have been altered from the originals. """Test phase estimation""" - import unittest from test import QiskitAlgorithmsTestCase -from ddt import ddt, data, unpack + import numpy as np -from qiskit.circuit.library import ZGate, XGate, HGate, IGate -from qiskit.quantum_info import Pauli, SparsePauliOp, Statevector, Operator -from qiskit.synthesis import MatrixExponential, SuzukiTrotter -from qiskit.primitives import Sampler +from ddt import ddt, data, unpack from qiskit import QuantumCircuit +from qiskit.circuit.library import HGate, XGate, IGate, ZGate +from qiskit.primitives import StatevectorSampler, BaseSamplerV2 +from qiskit.quantum_info import SparsePauliOp, Pauli, Statevector, Operator +from qiskit.synthesis import MatrixExponential, SuzukiTrotter +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager -from qiskit_algorithms import PhaseEstimationScale -from qiskit_algorithms.phase_estimators import ( - PhaseEstimation, +from qiskit_algorithms import ( HamiltonianPhaseEstimation, IterativePhaseEstimation, + PhaseEstimation, + PhaseEstimationScale, ) @@ -45,9 +46,10 @@ def hamiltonian_pe_sampler( bound=None, ): """Run HamiltonianPhaseEstimation and return result with all phases.""" - sampler = Sampler() + sampler = StatevectorSampler(default_shots=10_000, seed=42) phase_est = HamiltonianPhaseEstimation( - num_evaluation_qubits=num_evaluation_qubits, sampler=sampler + num_evaluation_qubits=num_evaluation_qubits, + sampler=sampler, ) result = phase_est.estimate( hamiltonian=hamiltonian, @@ -102,6 +104,24 @@ def test_single_pauli_op_sampler(self): with self.subTest("Second eigenvalue"): self.assertAlmostEqual(eigv, -0.98, delta=0.01) + def test_single_pauli_op_sampler_with_transpiler(self): + """Check that the transpilation does happen""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + phase_est = HamiltonianPhaseEstimation( + 1, + StatevectorSampler(), + transpiler=pass_manager, + transpiler_options={"callback": callback}, + ) + phase_est.estimate(hamiltonian=SparsePauliOp(Pauli("Z"))) + + self.assertGreater(counts[0], 0) + @data( (Statevector(QuantumCircuit(2).compose(IGate()).compose(HGate()))), (QuantumCircuit(2).compose(IGate()).compose(HGate())), @@ -164,11 +184,11 @@ def one_phase_sampler( """Run phase estimation with operator, eigenvalue pair `unitary_circuit`, `state_preparation`. Return the estimated phase as a value in :math:`[0,1)`. """ + if shots is not None: - options = {"shots": shots} + sampler = StatevectorSampler(default_shots=shots, seed=42) else: - options = {} - sampler = Sampler(options=options) + sampler = StatevectorSampler(seed=42) if phase_estimator is None: phase_estimator = IterativePhaseEstimation if phase_estimator == IterativePhaseEstimation: @@ -211,11 +231,7 @@ def test_qpe_Z_sampler(self, state_preparation, expected_phase, shots, phase_est def test_qpe_X_plus_minus_sampler(self, state_preparation, expected_phase, phase_estimator): """eigenproblem X, (|+>, |->)""" unitary_circuit = QuantumCircuit(1).compose(XGate()) - phase = self.one_phase_sampler( - unitary_circuit, - state_preparation, - phase_estimator, - ) + phase = self.one_phase_sampler(unitary_circuit, state_preparation, phase_estimator) self.assertEqual(phase, expected_phase) @data( @@ -230,11 +246,7 @@ def test_qpe_RZ_sampler(self, state_preparation, expected_phase, phase_estimator alpha = np.pi / 2 unitary_circuit = QuantumCircuit(1) unitary_circuit.rz(alpha, 0) - phase = self.one_phase_sampler( - unitary_circuit, - state_preparation, - phase_estimator, - ) + phase = self.one_phase_sampler(unitary_circuit, state_preparation, phase_estimator) self.assertEqual(phase, expected_phase) @data( @@ -265,11 +277,7 @@ def test_qpe_two_qubit_unitary(self, state_preparation, expected_phase, phase_es unitary_circuit = QuantumCircuit(2) unitary_circuit.t(0) unitary_circuit.t(1) - phase = self.one_phase_sampler( - unitary_circuit, - state_preparation, - phase_estimator, - ) + phase = self.one_phase_sampler(unitary_circuit, state_preparation, phase_estimator) self.assertEqual(phase, expected_phase) def test_check_num_iterations_sampler(self): @@ -286,11 +294,40 @@ def test_phase_estimation_scale_from_operator(self): scale = PhaseEstimationScale.from_pauli_sum(op) self.assertEqual(scale._bound, 4.0) + @data(PhaseEstimation, IterativePhaseEstimation) + def test_transpiler(self, phase_estimator): + """Test that the transpiler is called""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + if phase_estimator == IterativePhaseEstimation: + p_est = IterativePhaseEstimation( + num_iterations=6, + sampler=StatevectorSampler(), + transpiler=pass_manager, + transpiler_options={"callback": callback}, + ) + elif phase_estimator == PhaseEstimation: + p_est = PhaseEstimation( + num_evaluation_qubits=6, + sampler=StatevectorSampler(), + transpiler=pass_manager, + transpiler_options={"callback": callback}, + ) + else: + raise ValueError("Unrecognized phase_estimator") + + p_est.estimate(unitary=QuantumCircuit(1), state_preparation=None) + self.assertGreater(counts[0], 0) + # pylint: disable=too-many-positional-arguments def phase_estimation_sampler( self, unitary_circuit, - sampler: Sampler, + sampler: BaseSamplerV2, state_preparation=None, num_evaluation_qubits=6, construct_circuit=False, @@ -313,7 +350,7 @@ def test_qpe_Zplus_sampler(self, construct_circuit): """superposition eigenproblem Z, |+>""" unitary_circuit = QuantumCircuit(1).compose(ZGate()) state_preparation = QuantumCircuit(1).compose(HGate()) # prepare |+> - sampler = Sampler() + sampler = StatevectorSampler(default_shots=10_000, seed=42) result = self.phase_estimation_sampler( unitary_circuit, sampler, @@ -326,7 +363,7 @@ def test_qpe_Zplus_sampler(self, construct_circuit): self.assertEqual(list(phases.keys()), [0.0, 0.5]) with self.subTest("test phases has correct probabilities"): - np.testing.assert_allclose(list(phases.values()), [0.5, 0.5]) + np.testing.assert_allclose(list(phases.values()), [0.5, 0.5], atol=1e-2, rtol=1e-2) with self.subTest("test bitstring representation"): phases = result.filter_phases(1e-15, as_float=False) diff --git a/test/time_evolvers/test_pvqd.py b/test/time_evolvers/test_pvqd.py index 740ac69f..4ff1e40b 100644 --- a/test/time_evolvers/test_pvqd.py +++ b/test/time_evolvers/test_pvqd.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2018, 2024. +# (C) Copyright IBM 2018, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -20,7 +20,7 @@ from qiskit.circuit import Gate, Parameter, QuantumCircuit from qiskit.circuit.library import EfficientSU2 -from qiskit.primitives import Estimator, Sampler +from qiskit.primitives import StatevectorEstimator, StatevectorSampler from qiskit.quantum_info import Pauli, SparsePauliOp from qiskit_algorithms import AlgorithmError @@ -81,8 +81,8 @@ def test_pvqd(self, hamiltonian_type, gradient, num_timesteps): else: optimizer = L_BFGS_B(maxiter=1) - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) # run pVQD keeping track of the energy and the magnetization @@ -110,8 +110,8 @@ def test_pvqd(self, hamiltonian_type, gradient, num_timesteps): def test_step(self): """Test calling the step method directly.""" - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( fidelity_primitive, @@ -137,8 +137,8 @@ def test_step(self): def test_get_loss(self): """Test getting the loss function directly.""" - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( @@ -165,8 +165,8 @@ def test_get_loss(self): def test_invalid_num_timestep(self): """Test raises if the num_timestep is not positive.""" - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( fidelity_primitive, @@ -186,8 +186,8 @@ def test_invalid_num_timestep(self): def test_initial_guess_and_observables(self): """Test doing no optimizations stays at initial guess.""" initial_guess = np.zeros(self.ansatz.num_parameters) - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( @@ -212,7 +212,7 @@ def test_initial_guess_and_observables(self): def test_zero_parameters(self): """Test passing an ansatz with zero parameters raises an error.""" problem = TimeEvolutionProblem(self.hamiltonian, time=0.02) - sampler = Sampler() + sampler = StatevectorSampler() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( @@ -236,7 +236,7 @@ def test_initial_state_raises(self): initial_state=initial_state, ) - sampler = Sampler() + sampler = StatevectorSampler() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( @@ -256,7 +256,7 @@ def test_aux_ops_raises(self): self.hamiltonian, time=0.02, aux_operators=[self.hamiltonian, self.observable] ) - sampler = Sampler() + sampler = StatevectorSampler() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( @@ -310,8 +310,8 @@ def test_gradient_supported(self): info = {"has_gradient": None} optimizer = partial(gradient_supplied, info=info) - sampler = Sampler() - estimator = Estimator() + sampler = StatevectorSampler() + estimator = StatevectorEstimator() fidelity_primitive = ComputeUncompute(sampler) pvqd = PVQD( diff --git a/test/time_evolvers/test_trotter_qrte.py b/test/time_evolvers/test_trotter_qrte.py index 3dda5710..293839aa 100644 --- a/test/time_evolvers/test_trotter_qrte.py +++ b/test/time_evolvers/test_trotter_qrte.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2021, 2024. +# (C) Copyright IBM 2021, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -14,6 +14,7 @@ import unittest from test import QiskitAlgorithmsTestCase + from ddt import ddt, data, unpack import numpy as np from scipy.linalg import expm @@ -23,8 +24,9 @@ from qiskit.circuit.library import ZGate from qiskit.quantum_info import Statevector, Pauli, SparsePauliOp from qiskit.circuit import Parameter -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.synthesis import SuzukiTrotter, QDrift +from qiskit.transpiler.preset_passmanagers import generate_preset_pass_manager from qiskit_algorithms import TimeEvolutionProblem, TrotterQRTE from qiskit_algorithms.utils import algorithm_globals @@ -80,7 +82,7 @@ def test_trotter_qrte_trotter(self, operator, t_param): evolution_problem = TimeEvolutionProblem( operator, time, initial_state, aux_ops, t_param=t_param ) - estimator = Estimator() + estimator = StatevectorEstimator() expected_psi, expected_observables_result = self._get_expected_trotter_qrte( operator, @@ -239,6 +241,28 @@ def test_barriers(self, insert_barrier): expected_circuit.decompose(reps=3), evolution_result.evolved_state.decompose(reps=5) ) + def test_transpiler(self): + """Test that the transpiler is called""" + pass_manager = generate_preset_pass_manager(optimization_level=1, seed_transpiler=42) + counts = [0] + + def callback(**kwargs): + counts[0] = kwargs["count"] + + operator = SparsePauliOp([Pauli("X"), Pauli("Z")]) + initial_state = QuantumCircuit(1) + time = 1 + evolution_problem = TimeEvolutionProblem(operator, time, initial_state) + + trotter_qrte = TrotterQRTE( + estimator=StatevectorEstimator(), + transpiler=pass_manager, + transpiler_options={"callback": callback}, + ) + trotter_qrte.evolve(evolution_problem) + + self.assertGreater(counts[0], 0) + # pylint: disable=too-many-positional-arguments @staticmethod def _run_error_test(initial_state, operator, aux_ops, estimator, t_param, param_value_dict): diff --git a/test/time_evolvers/variational/test_var_qite.py b/test/time_evolvers/variational/test_var_qite.py index 8ec64f54..109cb6f4 100644 --- a/test/time_evolvers/variational/test_var_qite.py +++ b/test/time_evolvers/variational/test_var_qite.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023, 2024. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -19,16 +19,14 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp, Pauli from qiskit.circuit.library import EfficientSU2 from qiskit.quantum_info import Statevector from qiskit_algorithms.gradients import LinCombQGT, LinCombEstimatorGradient from qiskit_algorithms import TimeEvolutionProblem, VarQITE -from qiskit_algorithms.time_evolvers.variational import ( - ImaginaryMcLachlanPrinciple, -) +from qiskit_algorithms.time_evolvers.variational import ImaginaryMcLachlanPrinciple from qiskit_algorithms.utils import algorithm_globals @@ -80,19 +78,23 @@ def test_run_d_1_with_aux_ops(self): ] thetas_expected_shots = [ - 0.9392668013702317, - 1.8756706968454864, - 2.6915067128662398, - 2.655420131540562, - 2.174687086978046, - 1.6997059390911056, - 1.8056912289547045, - 1.939353810908912, + 0.87665726, + 2.04313234, + 2.67702257, + 2.74971934, + 2.38728532, + 1.78404205, + 2.11388396, + 1.92959433, ] - with self.subTest(msg="Test exact backend."): + # SHould be roughly the same in both Exact and shot-based backends + expected_aux_ops = (-0.2177982985749799, 0.2556790598588627) + + with self.subTest(msg="Test exact backend"): algorithm_globals.random_seed = self.seed - estimator = Estimator() + + estimator = StatevectorEstimator(seed=self.seed) qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator) var_principle = ImaginaryMcLachlanPrinciple(qgt, gradient) @@ -106,8 +108,6 @@ def test_run_d_1_with_aux_ops(self): parameter_values = evolution_result.parameter_values[-1] - expected_aux_ops = (-0.2177982985749799, 0.2556790598588627) - for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected[i], decimal=2 @@ -117,10 +117,11 @@ def test_run_d_1_with_aux_ops(self): [result[0] for result in aux_ops], expected_aux_ops ) - with self.subTest(msg="Test shot-based backend."): + with self.subTest(msg="Test non-zero precision backend."): algorithm_globals.random_seed = self.seed - estimator = Estimator(options={"shots": 4096, "seed": self.seed}) + # A precision of pow(2, -6) roughly corresponds to 4096 shots + estimator = StatevectorEstimator(default_precision=pow(2, -6), seed=self.seed) qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator) var_principle = ImaginaryMcLachlanPrinciple(qgt, gradient) @@ -134,15 +135,13 @@ def test_run_d_1_with_aux_ops(self): parameter_values = evolution_result.parameter_values[-1] - expected_aux_ops = (-0.24629853310903974, 0.2518122871921184) - for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected_shots[i], decimal=2 ) np.testing.assert_array_almost_equal( - [result[0] for result in aux_ops], expected_aux_ops + [result[0] for result in aux_ops], expected_aux_ops, decimal=1 ) def test_run_d_1_t_7(self): @@ -258,21 +257,23 @@ def test_run_d_1_time_dependent(self): thetas_expected = [1.83881002737137e-18, 2.43224994794434, -3.05311331771918e-18] - thetas_expected_shots = [1.83881002737137e-18, 2.43224994794434, -3.05311331771918e-18] - state_expected = Statevector([0.34849948 + 0.0j, 0.93730897 + 0.0j]).to_dict() # the expected final state is Statevector([0.34849948+0.j, 0.93730897+0.j]) with self.subTest(msg="Test exact backend."): algorithm_globals.random_seed = self.seed - estimator = Estimator() + + estimator = StatevectorEstimator(seed=self.seed) var_principle = ImaginaryMcLachlanPrinciple() var_qite = VarQITE( ansatz, init_param_values, var_principle, estimator, num_timesteps=100 ) + evolution_result = var_qite.evolve(evolution_problem) + evolved_state = evolution_result.evolved_state + parameter_values = evolution_result.parameter_values[-1] for key, evolved_value in Statevector(evolved_state).to_dict().items(): @@ -284,10 +285,11 @@ def test_run_d_1_time_dependent(self): float(parameter_value), thetas_expected[i], decimal=2 ) - with self.subTest(msg="Test shot-based backend."): + with self.subTest(msg="Test non-zero precision backend."): algorithm_globals.random_seed = self.seed - estimator = Estimator(options={"shots": 4 * 4096, "seed": self.seed}) + # A precision of pow(2, -6) roughly corresponds to 4096 shots + estimator = StatevectorEstimator(default_precision=pow(2, -6), seed=self.seed) var_principle = ImaginaryMcLachlanPrinciple() var_qite = VarQITE( @@ -306,7 +308,7 @@ def test_run_d_1_time_dependent(self): for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( - float(parameter_value), thetas_expected_shots[i], decimal=2 + float(parameter_value), thetas_expected[i], decimal=2 ) # pylint: disable=too-many-positional-arguments diff --git a/test/time_evolvers/variational/test_var_qrte.py b/test/time_evolvers/variational/test_var_qrte.py index 3dc026e1..d25d06b0 100644 --- a/test/time_evolvers/variational/test_var_qrte.py +++ b/test/time_evolvers/variational/test_var_qrte.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -21,14 +21,12 @@ from qiskit import QuantumCircuit from qiskit.circuit import Parameter, ParameterVector from qiskit.circuit.library import EfficientSU2 -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit.quantum_info import SparsePauliOp, Pauli, Statevector from qiskit_algorithms.gradients import LinCombQGT, DerivativeType, LinCombEstimatorGradient from qiskit_algorithms import TimeEvolutionProblem, VarQRTE -from qiskit_algorithms.time_evolvers.variational import ( - RealMcLachlanPrinciple, -) +from qiskit_algorithms.time_evolvers.variational import RealMcLachlanPrinciple from qiskit_algorithms.utils import algorithm_globals @@ -60,7 +58,7 @@ def expected_state(time): final_time = 0.75 evolution_problem = TimeEvolutionProblem(hamiltonian, t_param=t_param, time=final_time) - estimator = Estimator() + estimator = StatevectorEstimator() varqrte = VarQRTE(circuit, initial_parameters, estimator=estimator) result = varqrte.evolve(evolution_problem) @@ -110,20 +108,11 @@ def test_run_d_1_with_aux_ops(self): 1.53853696496673, ] - thetas_expected_shots = [ - 0.886975892820015, - 1.53822607733397, - 1.57058096749141, - 1.59023223608564, - 1.60105707043745, - 1.57018042397236, - 1.64010900210835, - 1.53959523034133, - ] + expected_aux_ops = [0.06836996703935797, 0.7711574493422457] with self.subTest(msg="Test exact backend."): algorithm_globals.random_seed = self.seed - estimator = Estimator() + estimator = StatevectorEstimator(seed=self.seed) qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) var_principle = RealMcLachlanPrinciple(qgt, gradient) @@ -137,8 +126,6 @@ def test_run_d_1_with_aux_ops(self): parameter_values = evolution_result.parameter_values[-1] - expected_aux_ops = [0.06836996703935797, 0.7711574493422457] - for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( float(parameter_value), thetas_expected[i], decimal=2 @@ -148,10 +135,10 @@ def test_run_d_1_with_aux_ops(self): [result[0] for result in aux_ops], expected_aux_ops ) - with self.subTest(msg="Test shot-based backend."): + with self.subTest(msg="Test non-zero precision backend."): algorithm_globals.random_seed = self.seed - - estimator = Estimator(options={"shots": 4 * 4096, "seed": self.seed}) + # A precision of pow(2, -7) roughly corresponds to 4 * 4096 shots + estimator = StatevectorEstimator(seed=self.seed, default_precision=pow(2, -7)) qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) var_principle = RealMcLachlanPrinciple(qgt, gradient) @@ -165,14 +152,9 @@ def test_run_d_1_with_aux_ops(self): parameter_values = evolution_result.parameter_values[-1] - expected_aux_ops = [ - 0.070436, - 0.777938, - ] - for i, parameter_value in enumerate(parameter_values): np.testing.assert_almost_equal( - float(parameter_value), thetas_expected_shots[i], decimal=2 + float(parameter_value), thetas_expected[i], decimal=2 ) np.testing.assert_array_almost_equal( @@ -199,7 +181,7 @@ def test_run_d_2(self): init_param_values = np.zeros(len(parameters)) for i in range(len(parameters)): init_param_values[i] = np.pi / 4 - estimator = Estimator() + estimator = StatevectorEstimator() qgt = LinCombQGT(estimator) gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) @@ -251,51 +233,23 @@ def test_run_d_1_time_dependent(self): evolution_problem = TimeEvolutionProblem(observable, time, t_param=t_param) - thetas_expected = [1.27675647831902e-18, 1.5707963267949, 0.990000000000001] - - thetas_expected_shots = [0.00534345821469238, 1.56260960200375, 0.990017403734316] + thetas_expected = [0.0, 1.5707963267949, 0.99] # the expected final state is Statevector([0.62289306-0.33467034j, 0.62289306+0.33467034j]) - with self.subTest(msg="Test exact backend."): - algorithm_globals.random_seed = self.seed - estimator = Estimator() - qgt = LinCombQGT(estimator) - gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) - var_principle = RealMcLachlanPrinciple(qgt, gradient) - - var_qrte = VarQRTE( - ansatz, init_param_values, var_principle, estimator, num_timesteps=100 - ) - evolution_result = var_qrte.evolve(evolution_problem) - - parameter_values = evolution_result.parameter_values[-1] - - for i, parameter_value in enumerate(parameter_values): - np.testing.assert_almost_equal( - float(parameter_value), thetas_expected[i], decimal=2 - ) - - with self.subTest(msg="Test shot-based backend."): - algorithm_globals.random_seed = self.seed - - estimator = Estimator(options={"shots": 4 * 4096, "seed": self.seed}) - qgt = LinCombQGT(estimator) - gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) - var_principle = RealMcLachlanPrinciple(qgt, gradient) - - var_qrte = VarQRTE( - ansatz, init_param_values, var_principle, estimator, num_timesteps=100 - ) + algorithm_globals.random_seed = self.seed + estimator = StatevectorEstimator() + qgt = LinCombQGT(estimator) + gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) + var_principle = RealMcLachlanPrinciple(qgt, gradient) - evolution_result = var_qrte.evolve(evolution_problem) + var_qrte = VarQRTE(ansatz, init_param_values, var_principle, estimator, num_timesteps=100) + evolution_result = var_qrte.evolve(evolution_problem) - parameter_values = evolution_result.parameter_values[-1] + parameter_values = evolution_result.parameter_values[-1] - for i, parameter_value in enumerate(parameter_values): - np.testing.assert_almost_equal( - float(parameter_value), thetas_expected_shots[i], decimal=2 - ) + for i, parameter_value in enumerate(parameter_values): + np.testing.assert_almost_equal(float(parameter_value), thetas_expected[i], decimal=2) def _test_helper(self, observable, thetas_expected, time, var_qrte): evolution_problem = TimeEvolutionProblem(observable, time) diff --git a/test/time_evolvers/variational/variational_principles/imaginary/test_imaginary_mc_lachlan_principle.py b/test/time_evolvers/variational/variational_principles/imaginary/test_imaginary_mc_lachlan_principle.py index 9d8c54fa..df60c3f2 100644 --- a/test/time_evolvers/variational/variational_principles/imaginary/test_imaginary_mc_lachlan_principle.py +++ b/test/time_evolvers/variational/variational_principles/imaginary/test_imaginary_mc_lachlan_principle.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -23,7 +23,7 @@ from qiskit.quantum_info import SparsePauliOp from qiskit.circuit.library import EfficientSU2 -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit_algorithms.gradients import LinCombEstimatorGradient, DerivativeType from qiskit_algorithms.time_evolvers.variational import ( @@ -103,7 +103,7 @@ def test_calc_calc_evolution_gradient(self): def test_gradient_setting(self): """Test reactions to wrong gradient settings..""" - estimator = Estimator() + estimator = StatevectorEstimator(seed=123) gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.IMAG) with self.assertWarns(Warning): diff --git a/test/time_evolvers/variational/variational_principles/real/test_real_mc_lachlan_principle.py b/test/time_evolvers/variational/variational_principles/real/test_real_mc_lachlan_principle.py index 40195d16..a65eab8c 100644 --- a/test/time_evolvers/variational/variational_principles/real/test_real_mc_lachlan_principle.py +++ b/test/time_evolvers/variational/variational_principles/real/test_real_mc_lachlan_principle.py @@ -1,6 +1,6 @@ # This code is part of a Qiskit project. # -# (C) Copyright IBM 2023. +# (C) Copyright IBM 2023, 2025. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory @@ -24,12 +24,10 @@ from qiskit.quantum_info import SparsePauliOp from qiskit.circuit.library import EfficientSU2 -from qiskit.primitives import Estimator +from qiskit.primitives import StatevectorEstimator from qiskit_algorithms.gradients import LinCombEstimatorGradient, DerivativeType -from qiskit_algorithms.time_evolvers.variational import ( - RealMcLachlanPrinciple, -) +from qiskit_algorithms.time_evolvers.variational import RealMcLachlanPrinciple class TestRealMcLachlanPrinciple(QiskitAlgorithmsTestCase): @@ -108,7 +106,7 @@ def test_calc_evolution_gradient(self): def test_gradient_setting(self): """Test reactions to wrong gradient settings..""" - estimator = Estimator() + estimator = StatevectorEstimator(seed=123) gradient = LinCombEstimatorGradient(estimator, derivative_type=DerivativeType.REAL) with self.assertWarns(Warning):