Skip to content

tu-vit_base_patch16_224 not supported #1184

Open
@isaaccorley

Description

@isaaccorley

The following code using a plain ViT-B/16 as a backbone for a U-Net/DeepLabv3+/SegFormer/UPerNet returns the following trace:

model = smp.create_model("unet", "tu-vit_base_patch16_224", encoder_weights=None)
Traceback (most recent call last):
  File "<input>", line 1, in <module>
    model = smp.create_model("unet", "tu-vit_base_patch16_224", encoder_weights=None, in_chann
els=5, classes=2)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/__init__.py", line 63, in create_model
    return model_class(
           ^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/base/hub_mixin.py", line 153, in wrapper
    return func(self, *args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/decoders/unet/model.py", line 132, in __init__
    self.encoder = get_encoder(
                   ^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/encoders/__init__.py", line 87, in get_encoder
    encoder = TimmUniversalEncoder(
              ^^^^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/encoders/timm_universal.py", line 121, in __init__
    raise ValueError("Unsupported model downsampling pattern.")
ValueError: Unsupported model downsampling pattern.
>>> model = smp.create_model("unet", "tu-vit_base_patch16_224", encoder_weights=None)
Traceback (most recent call last):
  File "<input>", line 1, in <module>
    model = smp.create_model("unet", "tu-vit_base_patch16_224", encoder_weights=None)
             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/__init__.py", line 63, in create_model
    return model_class(
           ^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/base/hub_mixin.py", line 153, in wrapper
    return func(self, *args, **kwargs)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/decoders/unet/model.py", line 132, in __init__
    self.encoder = get_encoder(
                   ^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/encoders/__init__.py", line 87, in get_encoder
    encoder = TimmUniversalEncoder(
              ^^^^^^^^^^^^^^^^^^^^^
  File "/Users/isaaccorley/miniconda3/envs/torchgeo/lib/python3.11/site-packages/segmentation_
models_pytorch/encoders/timm_universal.py", line 121, in __init__
    raise ValueError("Unsupported model downsampling pattern.")
ValueError: Unsupported model downsampling pattern.

However this was made to work in TorchSeg https://github.com/isaaccorley/torchseg.

Any solution here?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions