Skip to content

implementations of nearest-neighbor approximations for 1d Cosserat solids #25

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 7 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions pystokes/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import pystokes.interface
import pystokes.periodic
import pystokes.nearest_neighbors
import pystokes.twoWalls
import pystokes.unbounded
import pystokes.utils
Expand Down
4 changes: 4 additions & 0 deletions pystokes/forceFields.pxd
Original file line number Diff line number Diff line change
Expand Up @@ -60,6 +60,8 @@ cdef class Forces:

cpdef membraneSurface(self, int Nmx, int Nmy, double [:] F, double [:] r, double bondLength, double springModulus, double bendModulus )

cpdef Cosserat(self, double [:] F, double [:] r, double [:] e1, double [:] e2, double [:] e3, double Lambda, double d)




Expand All @@ -73,3 +75,5 @@ cdef class Torques:
cpdef bottomHeaviness(self, double [:] T, double [:] p, double bh=?)

cpdef magnetic(self, double[:] T, double [:] p, double m0, double Bx, double By, double Bz)

cpdef Cosserat(self, double [:] T, double [:] r, double [:] e1, double [:] e2, double [:] e3, double Lambda, double mu, double d)
146 changes: 146 additions & 0 deletions pystokes/forceFields.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -984,7 +984,62 @@ cdef class Forces:
return


cpdef Cosserat(self, double [:] F, double [:] r, double [:] e1, double [:] e2, double [:] e3, double Lambda, double d):
"""
The force for the Cosserat solids

...

Parameter
----------
r: np.array
An array of positions
An array of size 3*N,
F: np.array
An array of forces
An array of size 3*N,
e1, e2, e3: np.array
Arrays of Orientations
Arrays of size 3*N
Lambda: float
Strength of the force
d: float
particle distance
"""
cdef int N = self.N, i, k, xx = 2*N, ip, im
cdef double L = N*d
cdef double dxp, dxm, dyp, dym, dzp, dzm

for i in prange(N,nogil=True):
ip = (i + 1) % N
im = (i - 1 + N) % N

dxp = r[ip] - r[i]
dxm = r[i] - r[im]
dyp = r[N + ip] - r[N + i]
dym = r[N + i] - r[N + im]
dzp = r[xx + ip] - r[xx + i]
dzm = r[xx + i] - r[xx + im]

if i == 0:
dxm = r[i] - r[im] + L
elif i == N - 1:
dxp = r[ip] - r[i] + L

for k in range(3):
F[i+k*N] += 0.5 * Lambda * ((e1[i] * dxp + e1[N+i] * dyp + e1[xx+i] * dzp - d) * e1[i+k*N] \
+ (e2[i] * dxp + e2[N+i] * dyp + e2[xx+i] * dzp) * e2[i+k*N] \
+ (e3[i] * dxp + e3[N+i] * dyp + e3[xx+i] * dzp) * e3[i+k*N])
F[i+k*N] -= 0.5 * Lambda * ((e1[i] * dxm + e1[N+i] * dym + e1[xx+i] * dzm - d) * e1[i+k*N] \
+ (e2[i] * dxm + e2[N+i] * dym + e2[xx+i] * dzm) * e2[i+k*N] \
+ (e3[i] * dxm + e3[N+i] * dym + e3[xx+i] * dzm) * e3[i+k*N])
F[i+k*N] += 0.5 * Lambda * ((e1[ip] * dxp + e1[N+ip] * dyp + e1[xx+ip] * dzp - d) * e1[ip+k*N] \
+ (e2[ip] * dxp + e2[N+ip] * dyp + e2[xx+ip] * dzp) * e2[ip+k*N] \
+ (e3[ip] * dxp + e3[N+ip] * dyp + e3[xx+ip] * dzp) * e3[ip+k*N])
F[i+k*N] -= 0.5 * Lambda * ((e1[im] * dxm + e1[N+im] * dym + e1[xx+im] * dzm - d) * e1[im+k*N] \
+ (e2[im] * dxm + e2[N+im] * dym + e2[xx+im] * dzm) * e2[im+k*N] \
+ (e3[im] * dxm + e3[N+im] * dym + e3[xx+im] * dzm) * e3[im+k*N])
return

@cython.boundscheck(False)
@cython.cdivision(True)
Expand Down Expand Up @@ -1067,3 +1122,94 @@ cdef class Torques:
T[i+Z] += m0*(p[i]*By -p[i+N]*Bx)
return


cpdef Cosserat(self, double [:] T, double [:] r, double [:] e1, double [:] e2, double [:] e3, double Lambda, double mu, double d):
"""
The torque for the Cosserat solids

...

Parameter
----------
r: np.array
An array of positions
An array of size 3*N,
T: np.array
An array of torques
An array of size 3*N,
e1, e2, e3: np.array
Arrays of Orientations
Arrays of size 3*N
Lambda: float
Strength of the force
mu: float
Strength of the torque
d: float
particle distance
"""
cdef int N = self.N, i, j, k, xx = 2*N, ip, im
cdef double L = N*d
cdef double drp[3], drm[3], e[3][3], ep[3][3], em[3][3]
cdef double e_dot_r, e_dot_e
cdef double cross[3]

for i in prange(N,nogil=True):
ip = (i + 1) % N
im = (i - 1 + N) % N

drp[0] = r[ip] - r[i]
drp[1] = r[N+ip] - r[N+i]
drp[2] = r[xx + ip] - r[xx + i]

drm[0] = r[i] - r[im]
drm[1] = r[N + i] - r[N + im]
drm[2] = r[xx + i] - r[xx + im]

if i == 0:
drm[0] += L
elif i == N - 1:
drp[0] += L

for k in range(3):
e[0][k] = e1[k*N+i]
e[1][k] = e2[k*N+i]
e[2][k] = e3[k*N+i]

ep[0][k] = e1[k*N+ip]
ep[1][k] = e2[k*N+ip]
ep[2][k] = e3[k*N+ip]

em[0][k] = e1[k*N+im]
em[1][k] = e2[k*N+im]
em[2][k] = e3[k*N+im]

for j in range(3):
e_dot_r = e[j][0] * drp[0] + e[j][1] * drp[1] + e[j][2] * drp[2]
cross[0] = e[j][1] * drp[2] - e[j][2] * drp[1]
cross[1] = e[j][2] * drp[0] - e[j][0] * drp[2]
cross[2] = e[j][0] * drp[1] - e[j][1] * drp[0]
for k in range(3):
T[i+k*N] -= 0.5 * Lambda * (e_dot_r - (d if j == 0 else 0)) * cross[k]

e_dot_r = e[j][0] * drm[0] + e[j][1] * drm[1] + e[j][2] * drm[2]
cross[0] = e[j][1] * drm[2] - e[j][2] * drm[1]
cross[1] = e[j][2] * drm[0] - e[j][0] * drm[2]
cross[2] = e[j][0] * drm[1] - e[j][1] * drm[0]
for k in range(3):
T[i+k*N] -= 0.5 * Lambda * (e_dot_r - (d if j == 0 else 0)) * cross[k]

for j in range(3):
e_dot_e = e[j][0] * ep[(j+1)%3][0] + e[j][1] * ep[(j+1)%3][1] + e[j][2] * ep[(j+1)%3][2]
cross[0] = e[j][1] * ep[(j+1)%3][2] - e[j][2] * ep[(j+1)%3][1]
cross[1] = e[j][2] * ep[(j+1)%3][0] - e[j][0] * ep[(j+1)%3][2]
cross[2] = e[j][0] * ep[(j+1)%3][1] - e[j][1] * ep[(j+1)%3][0]
for k in range(3):
T[i+k*N] -= 0.5 * mu * (e_dot_e) * cross[k]

e_dot_e = e[j][0] * em[(j+2)%3][0] + e[j][1] * em[(j+2)%3][1] + e[j][2] * em[(j+2)%3][2]
cross[0] = e[j][1] * em[(j+2)%3][2] - e[j][2] * em[(j+2)%3][1]
cross[1] = e[j][2] * em[(j+2)%3][0] - e[j][0] * em[(j+2)%3][2]
cross[2] = e[j][0] * em[(j+2)%3][1] - e[j][1] * em[(j+2)%3][0]
for k in range(3):
T[i+k*N] -= 0.5 * mu * (e_dot_e) * cross[k]
return
41 changes: 41 additions & 0 deletions pystokes/nearest_neighbors.pxd
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
cimport cython
from libc.math cimport sqrt
from cython.parallel import prange
import numpy as np
cimport numpy as np
cdef double PI = 3.14159265359

@cython.wraparound(False)
@cython.boundscheck(False)
@cython.cdivision(True)
@cython.nonecheck(False)
cdef class Rbm:
cdef double a, eta, L, mu, muv, mur
cdef int N
cdef readonly np.ndarray Mobility

cpdef mobilityTT(self, double [:] v, double [:] r, double [:] F)

cpdef mobilityTR(self, double [:] v, double [:] r, double [:] T)

cpdef propulsionT2s(self, double [:] v, double [:] r, double [:] S)

cpdef propulsionT3t(self, double [:] v, double [:] r, double [:] D)

cpdef propulsionT3a(self, double [:] v, double [:] r, double [:] V)

cpdef propulsionT4a(self, double [:] v, double [:] r, double [:] M)


## Angular velocities


cpdef mobilityRT(self, double [:] o, double [:] r, double [:] F)

cpdef mobilityRR( self, double [:] o, double [:] r, double [:] T)

cpdef propulsionR2s(self, double [:] o, double [:] r, double [:] S)

cpdef propulsionR3a(self, double [:] v, double [:] r, double [:] V)

cpdef propulsionR4a( self, double [:] o, double [:] r, double [:] M)
Loading