Skip to content

Commit 225384e

Browse files
authored
2 parents f921948 + 199ae4c commit 225384e

32 files changed

+143
-142
lines changed

algebra/CMonoids.v

Lines changed: 39 additions & 39 deletions
Original file line numberDiff line numberDiff line change
@@ -253,12 +253,12 @@ Proof.
253253
astepl ((Inv f iso_imp_bij) (f a' [+] f b')).
254254
astepl ((Inv f iso_imp_bij) ( f ( a'[+] b'))).
255255
set (H3:= (inv2 M1 M2 f iso_imp_bij (a'[+]b'))).
256-
astepl (a'[+]b'). astepr (a'[+] b'). intuition.
256+
astepl (a'[+]b'). astepr (a'[+] b'). intuition; auto with *.
257257
set (H4:=(inv2 M1 M2 f iso_imp_bij a')).
258258
apply csbf_wd.
259-
astepr (Inv f iso_imp_bij (f a')); intuition.
260-
astepr (Inv f iso_imp_bij (f b')). set (H5:= (inv2 M1 M2 f iso_imp_bij b')); intuition.
261-
intuition.
259+
astepr (Inv f iso_imp_bij (f a')); intuition; auto with *.
260+
astepr (Inv f iso_imp_bij (f b')). set (H5:= (inv2 M1 M2 f iso_imp_bij b')); intuition; auto with *.
261+
intuition; auto with *.
262262
apply Inv_bij.
263263
Qed.
264264

@@ -335,11 +335,11 @@ Proof.
335335
induction s.
336336
simpl.
337337
replace (k+0) with k.
338-
intuition.
338+
intuition; auto with *.
339339
intuition.
340340
simpl.
341341
replace (k+((l-k)+s*(l-k))) with (l + s*(l-k)).
342-
2:intuition.
342+
2:intuition; auto with *.
343343
set (H1:= (power_plus M u l (s*(l-k)))).
344344
astepr (csbf_fun (csg_crr (cm_crr M)) (csg_crr (cm_crr M))
345345
(csg_crr (cm_crr M)) (csg_op (c:=cm_crr M)) (power_CMonoid u l) (power_CMonoid u (s * (l - k)))).
@@ -374,7 +374,7 @@ Proof.
374374
intros H4.
375375
set (H6:=(Z_div_mod_eq_full (n-k)(l-k))).
376376
cut (((n - k) mod (l - k))= (n-k)%Z -((l - k) * ((n - k) / (l - k))))%Z.
377-
2:intuition.
377+
2:intuition; auto with *.
378378
set (H7:=(mod_nat_correct (n-k) (l-k) H2)).
379379
intro H8.
380380
cut {s:nat | (mod_nat (n-k)(l-k) H2)=(n-k)-s*(l-k) and s*(l-k)<=(n-k)}.
@@ -391,7 +391,7 @@ Proof.
391391
rewrite -> (power_plus M u (k+(s*(l-k))) ((n-k)-s*(l-k))).
392392
rewrite -> (power_plus M u k (n-k-s*(l-k))).
393393
setoid_replace (power_CMonoid u (k + s * (l - k))) with (power_CMonoid u k). now reflexivity.
394-
unfold canonical_names.equiv. now intuition.
394+
unfold canonical_names.equiv. now intuition; auto with *.
395395
cut (n=k+(n-k)).
396396
intro H10.
397397
cut (n=((k+(n-k))+(s*(l-k)-s*(l-k)))).
@@ -408,18 +408,18 @@ Proof.
408408
intro H11.
409409
rewrite H11.
410410
now intuition.
411-
now intuition.
411+
now intuition; auto with *.
412412
cut (n=n+(k-k)).
413413
intro H10.
414414
cut (n+(k-k)=k+(n-k)).
415415
intro H11.
416416
now rewrite<- H10 in H11.
417417
apply minus3.
418-
split; now intuition.
418+
split; now intuition; auto with *.
419419
cut ((k-k)=0).
420420
intro H10.
421421
now rewrite H10.
422-
now intuition.
422+
now intuition; auto with *.
423423
simpl.
424424
cut (l-k>0).
425425
intro H9.
@@ -435,17 +435,17 @@ Proof.
435435
elim H10'.
436436
clear H10'.
437437
intros H10' H10''.
438-
3:intuition.
438+
3:intuition; auto with *.
439439
cut ((n-k)= q*(l-k)+ (mod_nat (n-k)(l-k) H2)).
440440
intro H11.
441-
intuition.
441+
intuition; auto with *.
442442
cut (r= (mod_nat (n-k)(l-k)H2)).
443443
intro H11.
444444
now rewrite<- H11.
445445
simpl.
446446
cut ((Z_of_nat r)=(mod_nat (n - k) (l - k) H2)).
447447
intro H11.
448-
intuition.
448+
intuition; auto with *.
449449
rewrite<- H7.
450450
apply nat_Z_div with (n-k) q (l-k) ((Z_of_nat n - Z_of_nat k) / (Z_of_nat l - Z_of_nat k))%Z.
451451
exact H10'.
@@ -459,17 +459,17 @@ Proof.
459459
set (H16:=(inj_minus1 n k H14)).
460460
rewrite H16.
461461
exact H6.
462-
intuition.
463-
intuition.
462+
intuition; auto with *.
463+
intuition; auto with *.
464464
set (H17:=(Z_mod_lt (Z_of_nat (n-k)) (Z_of_nat (l-k)))).
465-
intuition.
465+
intuition; auto with *.
466466
elim H10.
467467
clear H10.
468468
intros r H10.
469469
elim H10.
470470
clear H10.
471471
intros H10 H10'.
472-
intuition.
472+
intuition; auto with *.
473473
Qed.
474474

475475
Lemma cyc_imp_comm: forall (M:CMonoid)(H:(cyclic M)), (commutes (@csg_op M)).
@@ -491,7 +491,7 @@ Proof.
491491
replace (nx+ny) with (ny+nx).
492492
rewrite -> (power_plus M c0 ny nx).
493493
now apply eq_reflexive.
494-
intuition.
494+
intuition; auto with *.
495495
Qed.
496496

497497
Lemma weakly_inj1:
@@ -544,12 +544,12 @@ Proof.
544544
split.
545545
intuition.
546546
right.
547-
intuition.
548-
intuition.
547+
intuition; auto with *.
548+
intuition; auto with *.
549549
clear orex.
550550
intro orex.
551-
intuition.
552-
intuition.
551+
intuition; auto with *.
552+
intuition auto with *.
553553
clear H5.
554554
intro H5.
555555
cut False.
@@ -587,13 +587,13 @@ Proof.
587587
split.
588588
intuition.
589589
right.
590-
intuition.
591-
intuition.
590+
intuition auto with *.
591+
intuition auto with *.
592592
clear orex.
593593
intro orex.
594-
intuition.
595-
intuition.
596-
intuition.
594+
intuition; auto with *.
595+
intuition auto with *.
596+
intuition; auto with *.
597597

598598
Qed.
599599

@@ -716,14 +716,14 @@ Proof.
716716
simpl.
717717
split.
718718
split.
719-
intuition.
719+
intuition; auto with *.
720720
intros a b.
721721
case a.
722722
intros a0 a1.
723723
case b.
724724
intros b0 b1.
725725
simpl.
726-
intuition.
726+
intuition; auto with *.
727727
unfold bijective.
728728
split.
729729
unfold injective.
@@ -741,7 +741,7 @@ Proof.
741741
intros a0 a1.
742742
exists (pairT a1 a0).
743743
simpl.
744-
intuition.
744+
intuition; auto with *.
745745
Qed.
746746

747747
End p71E2b2.
@@ -768,7 +768,7 @@ Proof.
768768
unfold eq_fun in |- *.
769769
unfold id_un_op in |- *.
770770
simpl in |- *.
771-
intuition.
771+
intuition; auto with *.
772772
Qed.
773773

774774
Lemma id_is_lft_unit :
@@ -781,7 +781,7 @@ Proof.
781781
unfold eq_fun in |- *.
782782
unfold id_un_op in |- *.
783783
simpl in |- *.
784-
intuition.
784+
intuition; auto with *.
785785
Qed.
786786

787787
Definition FS_is_CMonoid (A : CSetoid) :=
@@ -813,7 +813,7 @@ Proof.
813813
induction a.
814814
apply eq_fm_reflexive.
815815
simpl.
816-
intuition.
816+
intuition; auto with *.
817817
Qed.
818818

819819
Section Th12.
@@ -835,7 +835,7 @@ Proof.
835835
simpl.
836836
intuition.
837837
simpl.
838-
intuition.
838+
intuition; auto with *.
839839
Qed.
840840

841841
Lemma nil_is_lft_unit: (is_lft_unit (app_as_csb_fun A) (empty_word A)).
@@ -847,7 +847,7 @@ Proof.
847847
simpl.
848848
intuition.
849849
simpl.
850-
intuition.
850+
intuition; auto with *.
851851
Qed.
852852

853853
Definition free_monoid_is_CMonoid:
@@ -943,7 +943,7 @@ Proof.
943943
unfold Dbrack.
944944
exists (@nil M).
945945
simpl.
946-
intuition.
946+
intuition; auto with *.
947947
Qed.
948948

949949

@@ -958,7 +958,7 @@ Proof.
958958
simpl.
959959
astepr (a [+] ( (cm_Sum k)[+](cm_Sum l))).
960960
apply csbf_wd_unfolded.
961-
intuition.
961+
intuition; auto with *.
962962
exact IHk.
963963
Qed.
964964

@@ -986,7 +986,7 @@ Qed.
986986
Lemma cm_Sum_units (a: list M): (forall x, In x a -> x [=] [0]) -> cm_Sum a [=] [0].
987987
Proof with intuition.
988988
clear D.
989-
induction a. intuition.
989+
induction a. intuition; auto with *.
990990
intros E.
991991
simpl.
992992
rewrite IHa...

algebra/COrdFields2.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -739,7 +739,7 @@ Proof.
739739
astepr ((Two:R)[^]S n).
740740
astepl (([1]:R)[^]S n).
741741
apply nexp_resp_less.
742-
intuition.
742+
intuition; auto with *.
743743
apply less_leEq.
744744
apply pos_one.
745745
apply one_less_two.

algebra/CSemiGroups.v

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -378,7 +378,7 @@ Proof.
378378
intros x y.
379379
apply eq_fm_reflexive.
380380
simpl.
381-
intuition.
381+
intuition; auto with *.
382382
Qed.
383383

384384
Definition Astar_as_CSemiGroup:=

algebra/CSetoidFun.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -231,7 +231,7 @@ Proof.
231231
simpl in |- *.
232232
unfold eq_fun in |- *.
233233
simpl in |- *.
234-
intuition.
234+
intuition; auto with *.
235235
Qed.
236236

237237
Section unary_and_binary_function_composition.
@@ -579,7 +579,7 @@ Proof.
579579
simpl.
580580
intuition.
581581
simpl.
582-
intuition.
582+
intuition; auto with *.
583583
Qed.
584584

585585
End p66E2b4.

liouville/Liouville.v

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -239,8 +239,8 @@ Proof.
239239
unfold Z.abs.
240240
destruct p.
241241
destruct Hap; reflexivity.
242-
simpl; unfold Qle; simpl; intuition.
243-
simpl; unfold Qle; simpl; intuition.
242+
simpl; unfold Qle; simpl; intuition; auto with *.
243+
simpl; unfold Qle; simpl; intuition; auto with *.
244244
Qed.
245245

246246
Lemma Liouville_lemma5 : forall (p : Z_as_CRing) (q : positive), (zx2qx P) ! (p#q)%Q [#] [0] ->

logic/CLogic.v

Lines changed: 12 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -1610,7 +1610,7 @@ Lemma CForall_indexed {A} (P: A -> Type) (l: list A): CForall P l ->
16101610
Proof.
16111611
intros X i.
16121612
revert l X.
1613-
induction i; destruct l; simpl in *; intuition; exfalso; inversion H.
1613+
induction i; destruct l; simpl in *; intuition; auto with *; exfalso; inversion H.
16141614
Qed.
16151615

16161616
Lemma CForall_map {A B} (P: B -> Type) (f: A -> B) (l: list A):
@@ -1639,24 +1639,24 @@ Qed.
16391639

16401640
Lemma CNoDup_indexed {T} (R: T -> T -> Type) (Rsym: Csymmetric _ R) (l: list T) (d: T): CNoDup R l ->
16411641
forall i j, (i < length l)%nat -> (j < length l)%nat -> i <> j -> R (nth i l d) (nth j l d).
1642-
Proof with intuition.
1643-
induction l; simpl...
1644-
exfalso...
1642+
Proof.
1643+
induction l; simpl; intuition.
1644+
exfalso; auto with *.
16451645
destruct i.
1646-
destruct j...
1647-
apply (CForall_indexed (R a) l)...
1648-
destruct j...
1646+
destruct j; intuition.
1647+
apply (CForall_indexed (R a) l); auto with *.
1648+
destruct j; auto with *.
16491649
apply Rsym.
1650-
apply (CForall_indexed (R a) l)...
1650+
apply (CForall_indexed (R a) l); auto with *.
16511651
Qed.
16521652

16531653
Lemma CNoDup_map {A B: Type} (R: B -> B -> Type) (f: A -> B):
16541654
forall l, CNoDup (fun x y => R (f x) (f y)) l IFF CNoDup R (map f l).
1655-
Proof with auto; intuition.
1656-
induction l; simpl...
1655+
Proof.
1656+
induction l; simpl; auto; intuition; auto with *.
16571657
split; intro; split.
16581658
apply IHl, X.
1659-
apply CForall_map...
1659+
apply CForall_map; auto; intuition.
16601660
apply IHl, X.
1661-
apply CForall_map...
1661+
apply CForall_map; auto; intuition.
16621662
Qed.

0 commit comments

Comments
 (0)