@@ -253,12 +253,12 @@ Proof.
253
253
astepl ((Inv f iso_imp_bij) (f a' [+] f b')).
254
254
astepl ((Inv f iso_imp_bij) ( f ( a'[+] b'))).
255
255
set (H3:= (inv2 M1 M2 f iso_imp_bij (a'[+]b'))).
256
- astepl (a'[+]b'). astepr (a'[+] b'). intuition.
256
+ astepl (a'[+]b'). astepr (a'[+] b'). intuition; auto with * .
257
257
set (H4:=(inv2 M1 M2 f iso_imp_bij a')).
258
258
apply csbf_wd.
259
- astepr (Inv f iso_imp_bij (f a')); intuition.
260
- astepr (Inv f iso_imp_bij (f b')). set (H5:= (inv2 M1 M2 f iso_imp_bij b')); intuition.
261
- intuition.
259
+ astepr (Inv f iso_imp_bij (f a')); intuition; auto with * .
260
+ astepr (Inv f iso_imp_bij (f b')). set (H5:= (inv2 M1 M2 f iso_imp_bij b')); intuition; auto with * .
261
+ intuition; auto with * .
262
262
apply Inv_bij.
263
263
Qed .
264
264
@@ -335,11 +335,11 @@ Proof.
335
335
induction s.
336
336
simpl.
337
337
replace (k+0) with k.
338
- intuition.
338
+ intuition; auto with * .
339
339
intuition.
340
340
simpl.
341
341
replace (k+((l-k)+s*(l-k))) with (l + s*(l-k)).
342
- 2:intuition.
342
+ 2:intuition; auto with * .
343
343
set (H1:= (power_plus M u l (s*(l-k)))).
344
344
astepr (csbf_fun (csg_crr (cm_crr M)) (csg_crr (cm_crr M))
345
345
(csg_crr (cm_crr M)) (csg_op (c:=cm_crr M)) (power_CMonoid u l) (power_CMonoid u (s * (l - k)))).
@@ -374,7 +374,7 @@ Proof.
374
374
intros H4.
375
375
set (H6:=(Z_div_mod_eq_full (n-k)(l-k))).
376
376
cut (((n - k) mod (l - k))= (n-k)%Z -((l - k) * ((n - k) / (l - k))))%Z.
377
- 2:intuition.
377
+ 2:intuition; auto with * .
378
378
set (H7:=(mod_nat_correct (n-k) (l-k) H2)).
379
379
intro H8.
380
380
cut {s:nat | (mod_nat (n-k)(l-k) H2)=(n-k)-s*(l-k) and s*(l-k)<=(n-k)}.
@@ -391,7 +391,7 @@ Proof.
391
391
rewrite -> (power_plus M u (k+(s*(l-k))) ((n-k)-s*(l-k))).
392
392
rewrite -> (power_plus M u k (n-k-s*(l-k))).
393
393
setoid_replace (power_CMonoid u (k + s * (l - k))) with (power_CMonoid u k). now reflexivity.
394
- unfold canonical_names.equiv. now intuition.
394
+ unfold canonical_names.equiv. now intuition; auto with * .
395
395
cut (n=k+(n-k)).
396
396
intro H10.
397
397
cut (n=((k+(n-k))+(s*(l-k)-s*(l-k)))).
@@ -408,18 +408,18 @@ Proof.
408
408
intro H11.
409
409
rewrite H11.
410
410
now intuition.
411
- now intuition.
411
+ now intuition; auto with * .
412
412
cut (n=n+(k-k)).
413
413
intro H10.
414
414
cut (n+(k-k)=k+(n-k)).
415
415
intro H11.
416
416
now rewrite<- H10 in H11.
417
417
apply minus3.
418
- split; now intuition.
418
+ split; now intuition; auto with * .
419
419
cut ((k-k)=0).
420
420
intro H10.
421
421
now rewrite H10.
422
- now intuition.
422
+ now intuition; auto with * .
423
423
simpl.
424
424
cut (l-k>0).
425
425
intro H9.
@@ -435,17 +435,17 @@ Proof.
435
435
elim H10'.
436
436
clear H10'.
437
437
intros H10' H10''.
438
- 3:intuition.
438
+ 3:intuition; auto with * .
439
439
cut ((n-k)= q*(l-k)+ (mod_nat (n-k)(l-k) H2)).
440
440
intro H11.
441
- intuition.
441
+ intuition; auto with * .
442
442
cut (r= (mod_nat (n-k)(l-k)H2)).
443
443
intro H11.
444
444
now rewrite<- H11.
445
445
simpl.
446
446
cut ((Z_of_nat r)=(mod_nat (n - k) (l - k) H2)).
447
447
intro H11.
448
- intuition.
448
+ intuition; auto with * .
449
449
rewrite<- H7.
450
450
apply nat_Z_div with (n-k) q (l-k) ((Z_of_nat n - Z_of_nat k) / (Z_of_nat l - Z_of_nat k))%Z.
451
451
exact H10'.
@@ -459,17 +459,17 @@ Proof.
459
459
set (H16:=(inj_minus1 n k H14)).
460
460
rewrite H16.
461
461
exact H6.
462
- intuition.
463
- intuition.
462
+ intuition; auto with * .
463
+ intuition; auto with * .
464
464
set (H17:=(Z_mod_lt (Z_of_nat (n-k)) (Z_of_nat (l-k)))).
465
- intuition.
465
+ intuition; auto with * .
466
466
elim H10.
467
467
clear H10.
468
468
intros r H10.
469
469
elim H10.
470
470
clear H10.
471
471
intros H10 H10'.
472
- intuition.
472
+ intuition; auto with * .
473
473
Qed .
474
474
475
475
Lemma cyc_imp_comm: forall (M:CMonoid)(H:(cyclic M)), (commutes (@csg_op M)).
@@ -491,7 +491,7 @@ Proof.
491
491
replace (nx+ny) with (ny+nx).
492
492
rewrite -> (power_plus M c0 ny nx).
493
493
now apply eq_reflexive.
494
- intuition.
494
+ intuition; auto with * .
495
495
Qed .
496
496
497
497
Lemma weakly_inj1:
@@ -544,12 +544,12 @@ Proof.
544
544
split.
545
545
intuition.
546
546
right.
547
- intuition.
548
- intuition.
547
+ intuition; auto with * .
548
+ intuition; auto with * .
549
549
clear orex.
550
550
intro orex.
551
- intuition.
552
- intuition.
551
+ intuition; auto with * .
552
+ intuition auto with * .
553
553
clear H5.
554
554
intro H5.
555
555
cut False.
@@ -587,13 +587,13 @@ Proof.
587
587
split.
588
588
intuition.
589
589
right.
590
- intuition.
591
- intuition.
590
+ intuition auto with * .
591
+ intuition auto with * .
592
592
clear orex.
593
593
intro orex.
594
- intuition.
595
- intuition.
596
- intuition.
594
+ intuition; auto with * .
595
+ intuition auto with * .
596
+ intuition; auto with * .
597
597
598
598
Qed .
599
599
@@ -716,14 +716,14 @@ Proof.
716
716
simpl.
717
717
split.
718
718
split.
719
- intuition.
719
+ intuition; auto with * .
720
720
intros a b.
721
721
case a.
722
722
intros a0 a1.
723
723
case b.
724
724
intros b0 b1.
725
725
simpl.
726
- intuition.
726
+ intuition; auto with * .
727
727
unfold bijective.
728
728
split.
729
729
unfold injective.
@@ -741,7 +741,7 @@ Proof.
741
741
intros a0 a1.
742
742
exists (pairT a1 a0).
743
743
simpl.
744
- intuition.
744
+ intuition; auto with * .
745
745
Qed .
746
746
747
747
End p71E2b2.
@@ -768,7 +768,7 @@ Proof.
768
768
unfold eq_fun in |- *.
769
769
unfold id_un_op in |- *.
770
770
simpl in |- *.
771
- intuition.
771
+ intuition; auto with * .
772
772
Qed .
773
773
774
774
Lemma id_is_lft_unit :
@@ -781,7 +781,7 @@ Proof.
781
781
unfold eq_fun in |- *.
782
782
unfold id_un_op in |- *.
783
783
simpl in |- *.
784
- intuition.
784
+ intuition; auto with * .
785
785
Qed .
786
786
787
787
Definition FS_is_CMonoid (A : CSetoid) :=
@@ -813,7 +813,7 @@ Proof.
813
813
induction a.
814
814
apply eq_fm_reflexive.
815
815
simpl.
816
- intuition.
816
+ intuition; auto with * .
817
817
Qed .
818
818
819
819
Section Th12.
@@ -835,7 +835,7 @@ Proof.
835
835
simpl.
836
836
intuition.
837
837
simpl.
838
- intuition.
838
+ intuition; auto with * .
839
839
Qed .
840
840
841
841
Lemma nil_is_lft_unit: (is_lft_unit (app_as_csb_fun A) (empty_word A)).
@@ -847,7 +847,7 @@ Proof.
847
847
simpl.
848
848
intuition.
849
849
simpl.
850
- intuition.
850
+ intuition; auto with * .
851
851
Qed .
852
852
853
853
Definition free_monoid_is_CMonoid:
@@ -943,7 +943,7 @@ Proof.
943
943
unfold Dbrack.
944
944
exists (@nil M).
945
945
simpl.
946
- intuition.
946
+ intuition; auto with * .
947
947
Qed .
948
948
949
949
@@ -958,7 +958,7 @@ Proof.
958
958
simpl.
959
959
astepr (a [+] ( (cm_Sum k)[+](cm_Sum l))).
960
960
apply csbf_wd_unfolded.
961
- intuition.
961
+ intuition; auto with * .
962
962
exact IHk.
963
963
Qed .
964
964
986
986
Lemma cm_Sum_units (a: list M): (forall x, In x a -> x [=] [0]) -> cm_Sum a [=] [0].
987
987
Proof with intuition.
988
988
clear D.
989
- induction a. intuition.
989
+ induction a. intuition; auto with * .
990
990
intros E.
991
991
simpl.
992
992
rewrite IHa...
0 commit comments