@@ -38,17 +38,17 @@ Section contents.
38
38
Let lifted_normal := @op_type_equiv (sorts σ) v ve.
39
39
40
40
Instance lifted_e_proper o: Proper ((=) ==> (=) ==> iff) (lifted_e o).
41
- Proof with intuition .
41
+ Proof .
42
42
induction o; simpl. intuition.
43
43
repeat intro.
44
44
unfold respectful.
45
45
split; intros.
46
- assert (x x1 = y x1). apply H0.. .
47
- assert (x0 y1 = y0 y1). apply H1.. .
48
- apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5).. .
49
- assert (x x1 = y x1). apply H0.. .
50
- assert (x0 y1 = y0 y1). apply H1.. .
51
- apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5).. .
46
+ assert (x x1 = y x1). apply H0; auto with * .
47
+ assert (x0 y1 = y0 y1). apply H1; auto with * .
48
+ apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5); auto with * .
49
+ assert (x x1 = y x1). apply H0; auto with * .
50
+ assert (x0 y1 = y0 y1). apply H1; auto with * .
51
+ apply (IHo (x x1) (y x1) H4 (x0 y1) (y0 y1) H5); auto with * .
52
52
Qed . (* todo: clean up *)
53
53
54
54
(* With that out of the way, we show that there are two equivalent ways of stating compatibility with the
@@ -85,8 +85,8 @@ Section contents.
85
85
clearbody f.
86
86
induction (σ o)...
87
87
simpl in *...
88
- apply IHo0.. .
89
- apply H1.. .
88
+ apply IHo0; intuition; auto with * .
89
+ apply H1; auto with * .
90
90
Qed . (* todo: clean up *)
91
91
92
92
Lemma eSub_eAlgebra: eSub → eAlgebra.
@@ -110,7 +110,7 @@ Section contents.
110
110
simpl in *.
111
111
repeat intro.
112
112
unfold respectful in H0.
113
- apply (IHo0 (λ b, f b (if b then x else y))).. .
113
+ apply (IHo0 (λ b, f b (if b then x else y))); auto with * .
114
114
Qed . (* todo: clean up *)
115
115
116
116
Lemma back_and_forth: iffT eSub eAlgebra.
@@ -231,7 +231,7 @@ Section first_iso.
231
231
exists o1...
232
232
destruct X.
233
233
apply (@op_closed_proper σ B _ _ _ image image_proper _ (o1 z) (o1 (f _ x))).
234
- apply H3.. .
234
+ apply H3; auto with * .
235
235
apply IHo0 with (o2 x)...
236
236
apply _.
237
237
Qed .
0 commit comments