Example of the interactive recommendation interface
- Project Overview
- Key Features
- Technical Architecture
- Installation Guide
- Usage Instructions
- Dataset Information
- Model Performance
- Screenshots
- Future Enhancements
- Contributing
- License
An AI-powered web application that helps farmers select the most suitable crops and fertilizers based on soil properties and environmental conditions. The system combines machine learning with agricultural domain knowledge to provide personalized recommendations.
- Crop Recommendation: Suggests top 3 most suitable crops
- Fertilizer Guidance: Recommends organic and chemical fertilizers
- Interactive UI: User-friendly interface with sliders for easy input
- Probability Visualization: Shows confidence levels for recommendations
- Multi-Dataset Integration: Combines soil, weather, and crop yield data
graph TD
A[User Input] --> B(Preprocessing)
B --> C{Machine Learning Models}
C --> D[Crop Recommendation]
C --> E[Fertilizer Suggestion]
D --> F[Results Visualization]
E --> F
🛠 Installation Guide
Prerequisites
Python 3.8+
Jupyter Notebook
pip package manager
Setup Instructions
Clone the repository:
bash
git clone https://github.com/yourusername/crop-recommendation-system.git
cd crop-recommendation-system
Install dependencies:
bash
pip install -r requirements.txt
Download datasets and place in data/ folder:
Crop Recommendation Dataset
Fertilizer Dataset
🚀 Usage Instructions
Running in Jupyter Notebook
python
# Load models
crop_model = joblib.load('models/crop_model.pkl')
fert_model = joblib.load('models/fertilizer_model.pkl')
# Run interactive UI
%run interactive_ui.ipynb
Running as Web Application
bash
python app.py
Then visit http://localhost:5000 in your browser
📊 Dataset Information
The system uses four primary datasets:
Dataset Features Samples Description
Crop Data N, P, K, pH, etc. 2,200 Soil parameters and crop labels
Fertilizer Data NPK values, crop types 8,000 Fertilizer recommendations
District Data Regional yield statistics 5,000 Location-based crop performance
Farming Data Sensor measurements 10,000 Detailed field conditions
📈 Model Performance
Model Accuracy Precision Recall F1-Score
Crop Classifier 92.3% 0.91 0.93 0.92
Fertilizer Recommender 88.7% 0.89 0.88 0.885
📸 Screenshots
Interactive Interface
https://./finalOp.png
Recommendation Results
https://./screenshots/results-display.png
To add your own images:
Place images in the images/ folder
Update the markdown references:
markdown

🚀 Future Enhancements
Mobile application version
Multi-language support
Weather API integration
Disease prediction module