|
| 1 | +//! # SPI Bus example |
| 2 | +//! |
| 3 | +//! This application demonstrates how to construct a simple Spi Driver, |
| 4 | +//! and configure rp2040-hal's Spi peripheral to access it by utilising |
| 5 | +//! `ExclusiveDevice`` from `embedded_hal_bus` |
| 6 | +//! |
| 7 | +//! |
| 8 | +//! It may need to be adapted to your particular board layout and/or pin |
| 9 | +//! assignment. |
| 10 | +//! |
| 11 | +//! See the top-level `README.md` file for Copyright and license details. |
| 12 | +
|
| 13 | +#![no_std] |
| 14 | +#![no_main] |
| 15 | + |
| 16 | +use embedded_hal::spi::Operation; |
| 17 | +use embedded_hal::spi::SpiDevice; |
| 18 | +use embedded_hal_bus::spi::ExclusiveDevice; |
| 19 | +// Ensure we halt the program on panic (if we don't mention this crate it won't |
| 20 | +// be linked) |
| 21 | +use panic_halt as _; |
| 22 | + |
| 23 | +use rp2040_hal::gpio::PinState; |
| 24 | +use rp2040_hal::uart::{DataBits, StopBits, UartConfig}; |
| 25 | +// Alias for our HAL crate |
| 26 | +use rp2040_hal as hal; |
| 27 | + |
| 28 | +// Some traits we need |
| 29 | +use core::fmt::Write; |
| 30 | +use hal::clocks::Clock; |
| 31 | +use hal::fugit::RateExtU32; |
| 32 | + |
| 33 | +// A shorter alias for the Peripheral Access Crate, which provides low-level |
| 34 | +// register access |
| 35 | +use hal::pac; |
| 36 | + |
| 37 | +/// The linker will place this boot block at the start of our program image. We |
| 38 | +/// need this to help the ROM bootloader get our code up and running. |
| 39 | +/// Note: This boot block is not necessary when using a rp-hal based BSP |
| 40 | +/// as the BSPs already perform this step. |
| 41 | +#[link_section = ".boot2"] |
| 42 | +#[used] |
| 43 | +pub static BOOT2: [u8; 256] = rp2040_boot2::BOOT_LOADER_GENERIC_03H; |
| 44 | + |
| 45 | +/// External high-speed crystal on the Raspberry Pi Pico board is 12 MHz. Adjust |
| 46 | +/// if your board has a different frequency |
| 47 | +const XTAL_FREQ_HZ: u32 = 12_000_000u32; |
| 48 | + |
| 49 | +/// Our Spi device driver |
| 50 | +/// We need to use a generic here (SPI), because we want our driver to work for any other |
| 51 | +/// microcontroller that implements the embedded-hal Spi traits |
| 52 | +struct MySpiDriver<SPI> { |
| 53 | + spi: SPI, |
| 54 | +} |
| 55 | + |
| 56 | +/// When things go wrong, we could return Error(()) but that wouldn't help anyone troubleshoot |
| 57 | +/// so we'll create an error type with additional info to return. |
| 58 | +#[derive(Copy, Clone, Debug)] |
| 59 | +enum MyError<SPI> { |
| 60 | + Spi(SPI), |
| 61 | + // Add other errors for your driver here. |
| 62 | +} |
| 63 | + |
| 64 | +/// Implementation of the business logic for the remote Spi IC |
| 65 | +impl<SPI> MySpiDriver<SPI> |
| 66 | +where |
| 67 | + SPI: SpiDevice, |
| 68 | +{ |
| 69 | + /// Construct a new instance of Spi device driver |
| 70 | + pub fn new(spi: SPI) -> Self { |
| 71 | + Self { spi } |
| 72 | + } |
| 73 | + |
| 74 | + /// Our hypothetical Spi device has a register at 0x20, that accepts a u8 value |
| 75 | + pub fn set_value(&mut self, value: u8) -> Result<(), MyError<SPI::Error>> { |
| 76 | + self.spi |
| 77 | + .transaction(&mut [Operation::Write(&[0x20, value])]) |
| 78 | + .map_err(MyError::Spi)?; |
| 79 | + |
| 80 | + Ok(()) |
| 81 | + } |
| 82 | + |
| 83 | + /// Our hypothetical Spi device has a register at 0x90, that we can read a 2 byte value from |
| 84 | + pub fn get_value(&mut self) -> Result<[u8; 2], MyError<SPI::Error>> { |
| 85 | + let mut buf = [0; 2]; |
| 86 | + self.spi |
| 87 | + .transaction(&mut [Operation::Write(&[0x90]), Operation::Read(&mut buf)]) |
| 88 | + .map_err(MyError::Spi)?; |
| 89 | + |
| 90 | + Ok(buf) |
| 91 | + } |
| 92 | +} |
| 93 | + |
| 94 | +/// Entry point to our bare-metal application. |
| 95 | +/// |
| 96 | +/// The `#[rp2040_hal::entry]` macro ensures the Cortex-M start-up code calls this function |
| 97 | +/// as soon as all global variables and the spinlock are initialised. |
| 98 | +/// |
| 99 | +/// The function configures the RP2040 peripherals, then performs some example |
| 100 | +/// SPI transactions, then goes to sleep. |
| 101 | +#[rp2040_hal::entry] |
| 102 | +fn main() -> ! { |
| 103 | + // Grab our singleton objects |
| 104 | + let mut pac = pac::Peripherals::take().unwrap(); |
| 105 | + |
| 106 | + // Set up the watchdog driver - needed by the clock setup code |
| 107 | + let mut watchdog = hal::Watchdog::new(pac.WATCHDOG); |
| 108 | + |
| 109 | + // Configure the clocks |
| 110 | + let clocks = hal::clocks::init_clocks_and_plls( |
| 111 | + XTAL_FREQ_HZ, |
| 112 | + pac.XOSC, |
| 113 | + pac.CLOCKS, |
| 114 | + pac.PLL_SYS, |
| 115 | + pac.PLL_USB, |
| 116 | + &mut pac.RESETS, |
| 117 | + &mut watchdog, |
| 118 | + ) |
| 119 | + .unwrap(); |
| 120 | + |
| 121 | + // The single-cycle I/O block controls our GPIO pins |
| 122 | + let sio = hal::Sio::new(pac.SIO); |
| 123 | + |
| 124 | + // Set the pins to their default state |
| 125 | + let pins = hal::gpio::Pins::new( |
| 126 | + pac.IO_BANK0, |
| 127 | + pac.PADS_BANK0, |
| 128 | + sio.gpio_bank0, |
| 129 | + &mut pac.RESETS, |
| 130 | + ); |
| 131 | + |
| 132 | + let timer = rp2040_hal::Timer::new(pac.TIMER, &mut pac.RESETS, &clocks); |
| 133 | + |
| 134 | + let uart_pins = ( |
| 135 | + // UART TX (characters sent from RP2040) on pin 1 (GPIO0) |
| 136 | + pins.gpio0.into_function(), |
| 137 | + // UART RX (characters received by RP2040) on pin 2 (GPIO1) |
| 138 | + pins.gpio1.into_function(), |
| 139 | + ); |
| 140 | + |
| 141 | + // Set up a uart so we can print out the values from our Spi peripheral |
| 142 | + let mut uart = hal::uart::UartPeripheral::new(pac.UART0, uart_pins, &mut pac.RESETS) |
| 143 | + .enable( |
| 144 | + UartConfig::new(9600.Hz(), DataBits::Eight, None, StopBits::One), |
| 145 | + clocks.peripheral_clock.freq(), |
| 146 | + ) |
| 147 | + .unwrap(); |
| 148 | + |
| 149 | + // Set up our SPI pins so they can be used by the SPI driver |
| 150 | + let spi_mosi = pins.gpio7.into_function::<hal::gpio::FunctionSpi>(); |
| 151 | + let spi_miso = pins.gpio4.into_function::<hal::gpio::FunctionSpi>(); |
| 152 | + let spi_sclk = pins.gpio6.into_function::<hal::gpio::FunctionSpi>(); |
| 153 | + let spi_cs = pins.gpio8.into_push_pull_output_in_state(PinState::High); |
| 154 | + let spi = hal::spi::Spi::<_, _, _, 8>::new(pac.SPI0, (spi_mosi, spi_miso, spi_sclk)); |
| 155 | + |
| 156 | + // Exchange the uninitialised SPI driver for an initialised one |
| 157 | + let spi = spi.init( |
| 158 | + &mut pac.RESETS, |
| 159 | + clocks.peripheral_clock.freq(), |
| 160 | + 16.MHz(), |
| 161 | + embedded_hal::spi::MODE_0, |
| 162 | + ); |
| 163 | + |
| 164 | + // We are the only task talking to this SPI peripheral, so we can use ExclusiveDevice here. |
| 165 | + // If we had multiple tasks accessing this, you would need to use a different interface to |
| 166 | + // ensure that we have exclusive access to this bus (via AtomicDevice or CriticalSectionDevice, for example) |
| 167 | + // We can safely unwrap here, because the only possible failure is CS assertion failure, but our CS pin is infallible |
| 168 | + let spi_bus = ExclusiveDevice::new(spi, spi_cs, timer).unwrap(); |
| 169 | + |
| 170 | + // Now that we've constructed a SpiDevice for our driver to use, we can finally construct our Spi driver |
| 171 | + let mut driver = MySpiDriver::new(spi_bus); |
| 172 | + |
| 173 | + match driver.set_value(10) { |
| 174 | + Ok(_) => { |
| 175 | + // Do something on success |
| 176 | + } |
| 177 | + Err(_) => { |
| 178 | + // Do something on failure |
| 179 | + } |
| 180 | + } |
| 181 | + |
| 182 | + match driver.get_value() { |
| 183 | + Ok(value) => { |
| 184 | + // Do something on success |
| 185 | + writeln!(uart, "Read value was {} {}\n", value[0], value[1]).unwrap(); |
| 186 | + } |
| 187 | + Err(_) => { |
| 188 | + // Do something on failure |
| 189 | + } |
| 190 | + } |
| 191 | + |
| 192 | + loop { |
| 193 | + cortex_m::asm::wfi(); |
| 194 | + } |
| 195 | +} |
| 196 | + |
| 197 | +// End of file |
0 commit comments