Skip to content

Commit b928a91

Browse files
committed
docs: strip nbs output except plots and prints
1 parent 5093331 commit b928a91

17 files changed

+30
-26983
lines changed

tutorials/01_gaussian_amortized.ipynb

Lines changed: 1 addition & 51 deletions
Large diffs are not rendered by default.

tutorials/02_multiround_inference.ipynb

Lines changed: 1 addition & 107 deletions
Large diffs are not rendered by default.

tutorials/03_density_estimators.ipynb

Lines changed: 1 addition & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -32,15 +32,7 @@
3232
"cell_type": "code",
3333
"execution_count": 1,
3434
"metadata": {},
35-
"outputs": [
36-
{
37-
"name": "stderr",
38-
"output_type": "stream",
39-
"text": [
40-
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
41-
]
42-
}
43-
],
35+
"outputs": [],
4436
"source": [
4537
"import torch\n",
4638
"\n",

tutorials/04_embedding_networks.ipynb

Lines changed: 3 additions & 61 deletions
Large diffs are not rendered by default.

tutorials/05_conditional_distributions.ipynb

Lines changed: 2 additions & 25873 deletions
Large diffs are not rendered by default.

tutorials/06_restriction_estimator.ipynb

Lines changed: 1 addition & 58 deletions
Large diffs are not rendered by default.

tutorials/09_sampler_interface.ipynb

Lines changed: 0 additions & 21 deletions
Original file line numberDiff line numberDiff line change
@@ -24,13 +24,6 @@
2424
"execution_count": 1,
2525
"metadata": {},
2626
"outputs": [
27-
{
28-
"name": "stderr",
29-
"output_type": "stream",
30-
"text": [
31-
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
32-
]
33-
},
3427
{
3528
"name": "stdout",
3629
"output_type": "stream",
@@ -141,20 +134,6 @@
141134
"execution_count": 4,
142135
"metadata": {},
143136
"outputs": [
144-
{
145-
"data": {
146-
"application/vnd.jupyter.widget-view+json": {
147-
"model_id": "",
148-
"version_major": 2,
149-
"version_minor": 0
150-
},
151-
"text/plain": [
152-
" 0%| | 0/2000 [00:00<?, ?it/s]"
153-
]
154-
},
155-
"metadata": {},
156-
"output_type": "display_data"
157-
},
158137
{
159138
"name": "stdout",
160139
"output_type": "stream",

tutorials/10_diagnostics_posterior_predictive_checks.ipynb

Lines changed: 1 addition & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -62,15 +62,7 @@
6262
"cell_type": "code",
6363
"execution_count": 1,
6464
"metadata": {},
65-
"outputs": [
66-
{
67-
"name": "stderr",
68-
"output_type": "stream",
69-
"text": [
70-
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
71-
]
72-
}
73-
],
65+
"outputs": [],
7466
"source": [
7567
"import torch\n",
7668
"\n",

tutorials/11_diagnostics_simulation_based_calibration.ipynb

Lines changed: 3 additions & 195 deletions
Original file line numberDiff line numberDiff line change
@@ -70,15 +70,7 @@
7070
"cell_type": "code",
7171
"execution_count": 1,
7272
"metadata": {},
73-
"outputs": [
74-
{
75-
"name": "stderr",
76-
"output_type": "stream",
77-
"text": [
78-
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
79-
]
80-
}
81-
],
73+
"outputs": [],
8274
"source": [
8375
"import torch\n",
8476
"from torch import eye, ones\n",
@@ -276,36 +268,7 @@
276268
"cell_type": "code",
277269
"execution_count": 9,
278270
"metadata": {},
279-
"outputs": [
280-
{
281-
"data": {
282-
"application/vnd.jupyter.widget-view+json": {
283-
"model_id": "",
284-
"version_major": 2,
285-
"version_minor": 0
286-
},
287-
"text/plain": [
288-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
289-
]
290-
},
291-
"metadata": {},
292-
"output_type": "display_data"
293-
},
294-
{
295-
"data": {
296-
"application/vnd.jupyter.widget-view+json": {
297-
"model_id": "",
298-
"version_major": 2,
299-
"version_minor": 0
300-
},
301-
"text/plain": [
302-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
303-
]
304-
},
305-
"metadata": {},
306-
"output_type": "display_data"
307-
}
308-
],
271+
"outputs": [],
309272
"source": [
310273
"# run SBC: for each inference we draw 1000 posterior samples.\n",
311274
"num_posterior_samples = 1_000\n",
@@ -526,34 +489,6 @@
526489
"execution_count": 16,
527490
"metadata": {},
528491
"outputs": [
529-
{
530-
"data": {
531-
"application/vnd.jupyter.widget-view+json": {
532-
"model_id": "",
533-
"version_major": 2,
534-
"version_minor": 0
535-
},
536-
"text/plain": [
537-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
538-
]
539-
},
540-
"metadata": {},
541-
"output_type": "display_data"
542-
},
543-
{
544-
"data": {
545-
"application/vnd.jupyter.widget-view+json": {
546-
"model_id": "",
547-
"version_major": 2,
548-
"version_minor": 0
549-
},
550-
"text/plain": [
551-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
552-
]
553-
},
554-
"metadata": {},
555-
"output_type": "display_data"
556-
},
557492
{
558493
"name": "stdout",
559494
"output_type": "stream",
@@ -621,34 +556,6 @@
621556
"execution_count": 18,
622557
"metadata": {},
623558
"outputs": [
624-
{
625-
"data": {
626-
"application/vnd.jupyter.widget-view+json": {
627-
"model_id": "",
628-
"version_major": 2,
629-
"version_minor": 0
630-
},
631-
"text/plain": [
632-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
633-
]
634-
},
635-
"metadata": {},
636-
"output_type": "display_data"
637-
},
638-
{
639-
"data": {
640-
"application/vnd.jupyter.widget-view+json": {
641-
"model_id": "",
642-
"version_major": 2,
643-
"version_minor": 0
644-
},
645-
"text/plain": [
646-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
647-
]
648-
},
649-
"metadata": {},
650-
"output_type": "display_data"
651-
},
652559
{
653560
"name": "stdout",
654561
"output_type": "stream",
@@ -718,34 +625,6 @@
718625
"execution_count": 21,
719626
"metadata": {},
720627
"outputs": [
721-
{
722-
"data": {
723-
"application/vnd.jupyter.widget-view+json": {
724-
"model_id": "",
725-
"version_major": 2,
726-
"version_minor": 0
727-
},
728-
"text/plain": [
729-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
730-
]
731-
},
732-
"metadata": {},
733-
"output_type": "display_data"
734-
},
735-
{
736-
"data": {
737-
"application/vnd.jupyter.widget-view+json": {
738-
"model_id": "",
739-
"version_major": 2,
740-
"version_minor": 0
741-
},
742-
"text/plain": [
743-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
744-
]
745-
},
746-
"metadata": {},
747-
"output_type": "display_data"
748-
},
749628
{
750629
"name": "stdout",
751630
"output_type": "stream",
@@ -813,34 +692,6 @@
813692
"execution_count": 23,
814693
"metadata": {},
815694
"outputs": [
816-
{
817-
"data": {
818-
"application/vnd.jupyter.widget-view+json": {
819-
"model_id": "",
820-
"version_major": 2,
821-
"version_minor": 0
822-
},
823-
"text/plain": [
824-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
825-
]
826-
},
827-
"metadata": {},
828-
"output_type": "display_data"
829-
},
830-
{
831-
"data": {
832-
"application/vnd.jupyter.widget-view+json": {
833-
"model_id": "",
834-
"version_major": 2,
835-
"version_minor": 0
836-
},
837-
"text/plain": [
838-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
839-
]
840-
},
841-
"metadata": {},
842-
"output_type": "display_data"
843-
},
844695
{
845696
"name": "stdout",
846697
"output_type": "stream",
@@ -894,34 +745,6 @@
894745
"execution_count": 25,
895746
"metadata": {},
896747
"outputs": [
897-
{
898-
"data": {
899-
"application/vnd.jupyter.widget-view+json": {
900-
"model_id": "",
901-
"version_major": 2,
902-
"version_minor": 0
903-
},
904-
"text/plain": [
905-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
906-
]
907-
},
908-
"metadata": {},
909-
"output_type": "display_data"
910-
},
911-
{
912-
"data": {
913-
"application/vnd.jupyter.widget-view+json": {
914-
"model_id": "",
915-
"version_major": 2,
916-
"version_minor": 0
917-
},
918-
"text/plain": [
919-
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
920-
]
921-
},
922-
"metadata": {},
923-
"output_type": "display_data"
924-
},
925748
{
926749
"name": "stdout",
927750
"output_type": "stream",
@@ -1012,22 +835,7 @@
1012835
"cell_type": "code",
1013836
"execution_count": 27,
1014837
"metadata": {},
1015-
"outputs": [
1016-
{
1017-
"data": {
1018-
"application/vnd.jupyter.widget-view+json": {
1019-
"model_id": "",
1020-
"version_major": 2,
1021-
"version_minor": 0
1022-
},
1023-
"text/plain": [
1024-
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
1025-
]
1026-
},
1027-
"metadata": {},
1028-
"output_type": "display_data"
1029-
}
1030-
],
838+
"outputs": [],
1031839
"source": [
1032840
"# the tarp method returns the ECP values for a given set of alpha coverage levels.\n",
1033841
"ecp, alpha = run_tarp(\n",

0 commit comments

Comments
 (0)