@@ -591,7 +591,7 @@ def simulator(theta):
591
591
592
592
593
593
@pytest .mark .slow
594
- @pytest .mark .parametrize ("vector_field_type" , ["ve" , "fmpe" ])
594
+ @pytest .mark .parametrize ("vector_field_type" , ["ve" , "vp" , " fmpe" ])
595
595
@pytest .mark .parametrize ("prior_type" , ["gaussian" ])
596
596
@pytest .mark .parametrize ("iid_batch_size" , [1 , 2 ])
597
597
def test_iid_log_prob (vector_field_type , prior_type , iid_batch_size ):
@@ -624,7 +624,7 @@ def test_iid_log_prob(vector_field_type, prior_type, iid_batch_size):
624
624
625
625
# Prior Gaussian
626
626
prior = vector_field_trained_model ["prior" ]
627
- vf_estimator = vector_field_trained_model ["score_estimator " ]
627
+ vf_estimator = vector_field_trained_model ["estimator " ]
628
628
inference = vector_field_trained_model ["inference" ]
629
629
likelihood_shift = vector_field_trained_model ["likelihood_shift" ]
630
630
likelihood_cov = vector_field_trained_model ["likelihood_cov" ]
@@ -644,9 +644,7 @@ def test_iid_log_prob(vector_field_type, prior_type, iid_batch_size):
644
644
x_o , likelihood_shift , likelihood_cov , prior_mean , prior_cov
645
645
)
646
646
647
- proposal_posterior = inference .build_posterior (
648
- vf_estimator = vf_estimator , prior = prior
649
- )
647
+ proposal_posterior = inference .build_posterior (vf_estimator , prior = prior )
650
648
651
649
proposal_posterior .set_default_x (x_o )
652
650
proposal_samples = proposal_posterior .sample ((num_posterior_samples ,))
0 commit comments