|
250 | 250 | "outputs": [],
|
251 | 251 | "source": [
|
252 | 252 | "from sbi.inference import NLE\n",
|
| 253 | + "from sbi.inference.posteriors.posterior_parameters import MCMCPosteriorParameters\n", |
253 | 254 | "\n",
|
254 | 255 | "inference = NLE(prior)\n",
|
255 | 256 | "proposal = prior\n",
|
256 | 257 | "for _ in range(num_rounds):\n",
|
257 | 258 | " theta = proposal.sample((num_sims,))\n",
|
258 | 259 | " x = simulator(theta)\n",
|
259 | 260 | " _ = inference.append_simulations(theta, x).train()\n",
|
260 |
| - " posterior = inference.build_posterior(mcmc_method=\"slice_np_vectorized\",\n", |
261 |
| - " mcmc_parameters={\"num_chains\": 20,\n", |
262 |
| - " \"thin\": 5})\n", |
| 261 | + " posterior = inference.build_posterior(posterior_parameters=MCMCPosteriorParameters(method=\"slice_np_vectorized\", num_chains=20,\n", |
| 262 | + " thin=5))\n", |
| 263 | + "\n", |
263 | 264 | " proposal = posterior.set_default_x(x_o)"
|
264 | 265 | ]
|
265 | 266 | },
|
|
279 | 280 | "outputs": [],
|
280 | 281 | "source": [
|
281 | 282 | "from sbi.inference import NLE\n",
|
| 283 | + "from sbi.inference.posteriors.posterior_parameters import VIPosteriorParameters\n", |
282 | 284 | "\n",
|
283 | 285 | "inference = NLE(prior)\n",
|
284 | 286 | "proposal = prior\n",
|
285 | 287 | "for _ in range(num_rounds):\n",
|
286 | 288 | " theta = proposal.sample((num_sims,))\n",
|
287 | 289 | " x = simulator(theta)\n",
|
288 | 290 | " _ = inference.append_simulations(theta, x).train()\n",
|
289 |
| - " posterior = inference.build_posterior(sample_with=\"vi\",\n", |
290 |
| - " vi_method=\"fKL\").set_default_x(x_o)\n", |
| 291 | + " posterior = inference.build_posterior(posterior_parameters=VIPosteriorParameters(vi_method=\"fKL\")).set_default_x(x_o)\n", |
291 | 292 | " proposal = posterior.train() # Train VI posterior on given x_o."
|
292 | 293 | ]
|
293 | 294 | },
|
|
364 | 365 | "outputs": [],
|
365 | 366 | "source": [
|
366 | 367 | "from sbi.inference import NRE\n",
|
| 368 | + "from sbi.inference.posteriors.posterior_parameters import MCMCPosteriorParameters\n", |
367 | 369 | "\n",
|
368 | 370 | "inference = NRE(prior)\n",
|
369 | 371 | "proposal = prior\n",
|
370 | 372 | "for _ in range(num_rounds):\n",
|
371 | 373 | " theta = proposal.sample((num_sims,))\n",
|
372 | 374 | " x = simulator(theta)\n",
|
373 | 375 | " _ = inference.append_simulations(theta, x).train()\n",
|
374 |
| - " posterior = inference.build_posterior(mcmc_method=\"slice_np_vectorized\",\n", |
375 |
| - " mcmc_parameters={\"num_chains\": 20,\n", |
376 |
| - " \"thin\": 5})\n", |
| 376 | + " posterior = inference.build_posterior(posterior_parameters=MCMCPosteriorParameters(method=\"slice_np_vectorized\", num_chains=20,\n", |
| 377 | + " thin=5))\n", |
| 378 | + "\n", |
377 | 379 | " proposal = posterior.set_default_x(x_o)"
|
378 | 380 | ]
|
379 | 381 | },
|
|
0 commit comments