Skip to content

add wrapper to handle 1-D pytorch distributions as priors.  #1283

@paarth-dudani

Description

@paarth-dudani

Describe the bug
I am implementing SNRE and SNLE (from implemented algorithms) on a simple exponential simulator model with noise and a prior. The algorithms work just fine for a uniform prior but give the following error: 'number of categories cannot exceed 2^24', with the exponential prior.

To Reproduce

  1. Versions
    Python version: 3.9.13
    SBI version: 0.23.1

  2. Code for SNLE implementation but I get the same error for SNRE implementation as well (with Inference object: NRE)

## Function to introduce noise into the exponential:
def noisy_exponential(scale, input):
    x_noise = np.zeros((len(input)),)
    for i in range(len(input)):
        value = 1/(scale)*np.exp(-input[i]/scale) + 0.05*np.random.normal(0,0.5)
        if value < 0:
            x_noise[i] = 0
        else:
            x_noise[i] = value
    return x_noise
n = 200
t = np.linspace(0,8,n)
# Define the prior
num_dims = 1
num_sims = 100
num_rounds = 2
theta_true = torch.tensor([2.0])


# prior = BoxUniform(low=0*torch.zeros(num_dims), high=4*torch.ones(num_dims))
exp_prior = Exponential(torch.tensor([2.0]))
simulator = lambda theta: ((1/theta)*np.exp(-t/theta) + 0.05*np.random.normal(0,0.5)).float()
x_o = torch.tensor(noisy_exponential(theta_true,t)).float()
# Inference 
inference = NLE(exp_prior)
proposal = exp_prior
for _ in range(num_rounds):
    theta = proposal.sample((num_sims,))
    x = simulator(theta)
    _ = inference.append_simulations(theta, x).train()
    posterior = inference.build_posterior(mcmc_method="slice_np_vectorized",
                                          mcmc_parameters={"num_chains": 2,
                                                           "thin": 5})
    proposal = posterior.set_default_x(x_o)

  1. RuntimeError: Number of categories cannot exceed 2^24. (after the neural network successfully converges)
RuntimeError                              Traceback (most recent call last)
Input [In [43]](vscode-notebook-cell:?execution_count=43), in <cell line: 17>()
     [16](vscode-notebook-cell:?execution_count=43&line=16) proposal = exp_prior
     [17](vscode-notebook-cell:?execution_count=43&line=17) for _ in range(num_rounds):
---> [18](vscode-notebook-cell:?execution_count=43&line=18)     theta = proposal.sample((num_sims,))
     [19](vscode-notebook-cell:?execution_count=43&line=19)     x = simulator(theta)
     [20](vscode-notebook-cell:?execution_count=43&line=20)     _ = inference.append_simulations(theta, x).train()

File ~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:306, in MCMCPosterior.sample(self, sample_shape, x, method, thin, warmup_steps, num_chains, init_strategy, init_strategy_parameters, init_strategy_num_candidates, mcmc_parameters, mcmc_method, sample_with, num_workers, mp_context, show_progress_bars)
    [303](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:303) init_strategy = _maybe_use_dict_entry(init_strategy, "init_strategy", m_p)
    [304](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:304) self.potential_ = self._prepare_potential(method)  # type: ignore
--> [306](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:306) initial_params = self._get_initial_params(
    [307](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:307)     init_strategy,  # type: ignore
    [308](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:308)     num_chains,  # type: ignore
    [309](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:309)     num_workers,
    [310](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:310)     show_progress_bars,
    [311](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:311)     **init_strategy_parameters,
    [312](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:312) )
    [313](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:313) num_samples = torch.Size(sample_shape).numel()
    [315](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:315) track_gradients = method in ("hmc_pyro", "nuts_pyro", "hmc_pymc", "nuts_pymc")

File ~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:618, in MCMCPosterior._get_initial_params(self, init_strategy, num_chains, num_workers, show_progress_bars, **kwargs)
    [615](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:615)     initial_params = torch.cat(initial_params)  # type: ignore
    [616](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/inference/posteriors/mcmc_posterior.py:616) else:
...
--> [112](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/samplers/mcmc/init_strategy.py:112) idxs = torch.multinomial(probs, 1, replacement=False)
    [113](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/samplers/mcmc/init_strategy.py:113) # Return transformed sample.
    [114](https://file+.vscode-resource.vscode-cdn.net/Users/paarthdudani/Desktop/All%20folders/Python%20files/Thesis%20Code/Pilot_code/~/anaconda3/lib/python3.9/site-packages/sbi/samplers/mcmc/init_strategy.py:114) return transform(init_param_candidates[idxs, :])

RuntimeError: number of categories cannot exceed 2^24

Expected behavior
I expect the network to undergo multiple rounds of training (2 in this example) or give me a pairplot after one round of training (not shown above).

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions