Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
154 changes: 89 additions & 65 deletions tutorials/00_getting_started.ipynb

Large diffs are not rendered by default.

52 changes: 1 addition & 51 deletions tutorials/01_gaussian_amortized.ipynb

Large diffs are not rendered by default.

108 changes: 1 addition & 107 deletions tutorials/02_multiround_inference.ipynb

Large diffs are not rendered by default.

10 changes: 1 addition & 9 deletions tutorials/03_density_estimators.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -32,15 +32,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"\n",
Expand Down
64 changes: 3 additions & 61 deletions tutorials/04_embedding_networks.ipynb

Large diffs are not rendered by default.

25,875 changes: 2 additions & 25,873 deletions tutorials/05_conditional_distributions.ipynb

Large diffs are not rendered by default.

59 changes: 1 addition & 58 deletions tutorials/06_restriction_estimator.ipynb

Large diffs are not rendered by default.

21 changes: 0 additions & 21 deletions tutorials/09_sampler_interface.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -24,13 +24,6 @@
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -141,20 +134,6 @@
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
" 0%| | 0/2000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down
10 changes: 1 addition & 9 deletions tutorials/10_diagnostics_posterior_predictive_checks.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -62,15 +62,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"\n",
Expand Down
198 changes: 3 additions & 195 deletions tutorials/11_diagnostics_simulation_based_calibration.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -70,15 +70,7 @@
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"WARNING (pytensor.tensor.blas): Using NumPy C-API based implementation for BLAS functions.\n"
]
}
],
"outputs": [],
"source": [
"import torch\n",
"from torch import eye, ones\n",
Expand Down Expand Up @@ -276,36 +268,7 @@
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"# run SBC: for each inference we draw 1000 posterior samples.\n",
"num_posterior_samples = 1_000\n",
Expand Down Expand Up @@ -526,34 +489,6 @@
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -621,34 +556,6 @@
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -718,34 +625,6 @@
"execution_count": 21,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -813,34 +692,6 @@
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -894,34 +745,6 @@
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Calculating ranks for 200 sbc samples.: 0%| | 0/200 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"name": "stdout",
"output_type": "stream",
Expand Down Expand Up @@ -1012,22 +835,7 @@
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "",
"version_major": 2,
"version_minor": 0
},
"text/plain": [
"Drawing 1000 posterior samples: 0%| | 0/1000 [00:00<?, ?it/s]"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"outputs": [],
"source": [
"# the tarp method returns the ECP values for a given set of alpha coverage levels.\n",
"ecp, alpha = run_tarp(\n",
Expand Down
Loading