|
2 | 2 | "cells": [
|
3 | 3 | {
|
4 | 4 | "cell_type": "markdown",
|
5 |
| - "id": "mental-deployment", |
| 5 | + "id": "directed-vessel", |
6 | 6 | "metadata": {},
|
7 | 7 | "source": [
|
8 | 8 | "# Automated Post-integration Report - Signaux Faibles\n",
|
|
12 | 12 | {
|
13 | 13 | "cell_type": "code",
|
14 | 14 | "execution_count": null,
|
15 |
| - "id": "stock-shame", |
| 15 | + "id": "electoral-joining", |
16 | 16 | "metadata": {},
|
17 | 17 | "outputs": [],
|
18 | 18 | "source": [
|
|
51 | 51 | " \"paydex_nb_jours_past_12\",\n",
|
52 | 52 | "]\n",
|
53 | 53 | "# ces variables sont toujours requêtées\n",
|
54 |
| - "VARIABLES += [\"outcome\", \"periode\", \"siret\", \"siren\", \"time_til_outcome\", \"code_naf\"]" |
| 54 | + "VARIABLES += [\"outcome\", \"periode\", \"siret\", \"siren\", \"time_til_outcome\", \"code_naf\"]\n", |
| 55 | + "\n", |
| 56 | + "# période actuelle\n", |
| 57 | + "LATEST_PERIODE = \"2021-02-01\"" |
55 | 58 | ]
|
56 | 59 | },
|
57 | 60 | {
|
58 | 61 | "cell_type": "markdown",
|
59 |
| - "id": "adjustable-arkansas", |
| 62 | + "id": "athletic-adams", |
60 | 63 | "metadata": {},
|
61 | 64 | "source": [
|
62 | 65 | "## Fetch a random sample of the data"
|
|
65 | 68 | {
|
66 | 69 | "cell_type": "code",
|
67 | 70 | "execution_count": null,
|
68 |
| - "id": "false-shield", |
| 71 | + "id": "tutorial-congress", |
69 | 72 | "metadata": {},
|
70 | 73 | "outputs": [],
|
71 | 74 | "source": [
|
|
76 | 79 | {
|
77 | 80 | "cell_type": "code",
|
78 | 81 | "execution_count": null,
|
79 |
| - "id": "formed-salvation", |
| 82 | + "id": "mighty-feelings", |
80 | 83 | "metadata": {},
|
81 | 84 | "outputs": [],
|
82 | 85 | "source": [
|
|
86 | 89 | {
|
87 | 90 | "cell_type": "code",
|
88 | 91 | "execution_count": null,
|
89 |
| - "id": "suspended-london", |
| 92 | + "id": "extra-panama", |
90 | 93 | "metadata": {},
|
91 | 94 | "outputs": [],
|
92 | 95 | "source": [
|
93 | 96 | "dataset = SFDataset(\n",
|
94 | 97 | " fields = VARIABLES,\n",
|
95 |
| - " sample_size=10_000\n", |
| 98 | + " sample_size=100_000\n", |
96 | 99 | ")\n",
|
97 | 100 | "dataset.fetch_data();"
|
98 | 101 | ]
|
99 | 102 | },
|
100 | 103 | {
|
101 | 104 | "cell_type": "markdown",
|
102 |
| - "id": "pediatric-drama", |
| 105 | + "id": "headed-aurora", |
103 | 106 | "metadata": {},
|
104 | 107 | "source": [
|
105 | 108 | "## Temporal Coverage and NA values"
|
|
108 | 111 | {
|
109 | 112 | "cell_type": "code",
|
110 | 113 | "execution_count": null,
|
111 |
| - "id": "theoretical-density", |
| 114 | + "id": "comic-shift", |
112 | 115 | "metadata": {},
|
113 | 116 | "outputs": [],
|
114 | 117 | "source": [
|
|
118 | 121 | {
|
119 | 122 | "cell_type": "code",
|
120 | 123 | "execution_count": null,
|
121 |
| - "id": "promotional-heritage", |
| 124 | + "id": "optional-corner", |
122 | 125 | "metadata": {},
|
123 | 126 | "outputs": [],
|
124 | 127 | "source": [
|
|
129 | 132 | {
|
130 | 133 | "cell_type": "code",
|
131 | 134 | "execution_count": null,
|
132 |
| - "id": "included-industry", |
| 135 | + "id": "proof-horse", |
133 | 136 | "metadata": {},
|
134 | 137 | "outputs": [],
|
135 | 138 | "source": [
|
|
140 | 143 | },
|
141 | 144 | {
|
142 | 145 | "cell_type": "markdown",
|
143 |
| - "id": "logical-bailey", |
| 146 | + "id": "numerous-senate", |
144 | 147 | "metadata": {},
|
145 | 148 | "source": [
|
146 | 149 | "## Coverage over time for selected variables"
|
|
149 | 152 | {
|
150 | 153 | "cell_type": "code",
|
151 | 154 | "execution_count": null,
|
152 |
| - "id": "fiscal-samoa", |
| 155 | + "id": "pretty-memorabilia", |
153 | 156 | "metadata": {},
|
154 | 157 | "outputs": [],
|
155 | 158 | "source": [
|
|
160 | 163 | {
|
161 | 164 | "cell_type": "code",
|
162 | 165 | "execution_count": null,
|
163 |
| - "id": "handled-tuning", |
| 166 | + "id": "constitutional-audience", |
164 | 167 | "metadata": {},
|
165 | 168 | "outputs": [],
|
166 | 169 | "source": [
|
167 |
| - "def count_na_prop(series):\n", |
168 |
| - " return (1 - series.isna().sum() / len(series)) * 100\n", |
169 |
| - "\n", |
170 |
| - "\n", |
171 | 170 | "fig, axs = plt.subplots(len(VARIABLES), figsize=(10, 100))\n",
|
172 | 171 | "fig.tight_layout()\n",
|
173 | 172 | "for i, variable in enumerate(VARIABLES):\n",
|
|
178 | 177 | " axs[i].set(adjustable='box')"
|
179 | 178 | ]
|
180 | 179 | },
|
| 180 | + { |
| 181 | + "cell_type": "markdown", |
| 182 | + "id": "aboriginal-dominican", |
| 183 | + "metadata": {}, |
| 184 | + "source": [ |
| 185 | + "## Average over time" |
| 186 | + ] |
| 187 | + }, |
181 | 188 | {
|
182 | 189 | "cell_type": "code",
|
183 | 190 | "execution_count": null,
|
184 |
| - "id": "critical-category", |
| 191 | + "id": "local-beijing", |
185 | 192 | "metadata": {},
|
186 | 193 | "outputs": [],
|
187 |
| - "source": [] |
| 194 | + "source": [ |
| 195 | + "from pandas.api.types import is_numeric_dtype" |
| 196 | + ] |
188 | 197 | },
|
189 | 198 | {
|
190 | 199 | "cell_type": "code",
|
191 | 200 | "execution_count": null,
|
192 |
| - "id": "super-arabic", |
| 201 | + "id": "purple-helicopter", |
193 | 202 | "metadata": {},
|
194 | 203 | "outputs": [],
|
195 |
| - "source": [] |
| 204 | + "source": [ |
| 205 | + "VARIABLES_TO_AVERAGE = [var for var in VARIABLES if is_numeric_dtype(dataset.data[var])]\n", |
| 206 | + "fig, axs = plt.subplots(len(VARIABLES_TO_AVERAGE), figsize=(10, 100))\n", |
| 207 | + "fig.tight_layout()\n", |
| 208 | + "for i, variable in enumerate(VARIABLES_TO_AVERAGE):\n", |
| 209 | + " grouped = dataset.data.groupby(pd.Grouper(key=\"periode\", freq=\"M\")).agg({f\"{variable}\": \"mean\"})\n", |
| 210 | + " axs[i].set_title(f\"{variable}\")\n", |
| 211 | + " #axs[i].set_ylim([0, 100])\n", |
| 212 | + " axs[i].plot_date(grouped.index, grouped[f\"{variable}\"], \"-\");\n", |
| 213 | + " axs[i].set(adjustable='box')" |
| 214 | + ] |
| 215 | + }, |
| 216 | + { |
| 217 | + "cell_type": "markdown", |
| 218 | + "id": "guided-launch", |
| 219 | + "metadata": {}, |
| 220 | + "source": [ |
| 221 | + "## Codes NAF" |
| 222 | + ] |
| 223 | + }, |
| 224 | + { |
| 225 | + "cell_type": "code", |
| 226 | + "execution_count": null, |
| 227 | + "id": "crude-wesley", |
| 228 | + "metadata": {}, |
| 229 | + "outputs": [], |
| 230 | + "source": [ |
| 231 | + "import seaborn as sns\n", |
| 232 | + "grouped = dataset.data.groupby(\"code_naf\", as_index=False).agg({\"outcome\": \"count\"})\n", |
| 233 | + "sns.barplot(x = grouped.code_naf, y = grouped.outcome);" |
| 234 | + ] |
| 235 | + }, |
| 236 | + { |
| 237 | + "cell_type": "markdown", |
| 238 | + "id": "distinguished-router", |
| 239 | + "metadata": {}, |
| 240 | + "source": [ |
| 241 | + "## Codes NAF over time" |
| 242 | + ] |
| 243 | + }, |
| 244 | + { |
| 245 | + "cell_type": "code", |
| 246 | + "execution_count": null, |
| 247 | + "id": "satisfactory-selling", |
| 248 | + "metadata": {}, |
| 249 | + "outputs": [], |
| 250 | + "source": [ |
| 251 | + "grouped = dataset.data.groupby([pd.Grouper(key = \"periode\", freq = \"2Q\"), \"code_naf\"]).agg({\"outcome\": \"count\"}).reset_index()\n", |
| 252 | + "plt.figure(figsize = (15, 10))\n", |
| 253 | + "sns.lineplot(x = grouped.periode, y = grouped.outcome, hue = grouped.code_naf);" |
| 254 | + ] |
| 255 | + }, |
| 256 | + { |
| 257 | + "cell_type": "markdown", |
| 258 | + "id": "wanted-retrieval", |
| 259 | + "metadata": {}, |
| 260 | + "source": [ |
| 261 | + "## Analysis for latest period only" |
| 262 | + ] |
| 263 | + }, |
| 264 | + { |
| 265 | + "cell_type": "code", |
| 266 | + "execution_count": null, |
| 267 | + "id": "structural-bridal", |
| 268 | + "metadata": {}, |
| 269 | + "outputs": [], |
| 270 | + "source": [ |
| 271 | + "dataset = SFDataset(\n", |
| 272 | + " fields = VARIABLES,\n", |
| 273 | + " date_min = LATEST_PERIODE,\n", |
| 274 | + " sample_size=100_000\n", |
| 275 | + ")\n", |
| 276 | + "dataset.fetch_data();" |
| 277 | + ] |
| 278 | + }, |
| 279 | + { |
| 280 | + "cell_type": "code", |
| 281 | + "execution_count": null, |
| 282 | + "id": "continuing-minnesota", |
| 283 | + "metadata": {}, |
| 284 | + "outputs": [], |
| 285 | + "source": [ |
| 286 | + "na_rates_df = (dataset.data.isna().sum() / len(dataset) * 100).sort_values(ascending = False).to_frame()\n", |
| 287 | + "na_rates_df.columns = [\"NA rate\"]\n", |
| 288 | + "na_rates_df" |
| 289 | + ] |
196 | 290 | },
|
197 | 291 | {
|
198 | 292 | "cell_type": "code",
|
199 | 293 | "execution_count": null,
|
200 |
| - "id": "desperate-button", |
| 294 | + "id": "friendly-appearance", |
201 | 295 | "metadata": {},
|
202 | 296 | "outputs": [],
|
203 | 297 | "source": []
|
|
0 commit comments