|
| 1 | +"""TFT package container.""" |
| 2 | + |
| 3 | +from pytorch_forecasting.models.base import _BasePtForecasterV2 |
| 4 | + |
| 5 | + |
| 6 | +class TFT_pkg_v2(_BasePtForecasterV2): |
| 7 | + """TFT package container.""" |
| 8 | + |
| 9 | + _tags = { |
| 10 | + "info:name": "TFT", |
| 11 | + "authors": ["phoeenniixx"], |
| 12 | + "capability:exogenous": True, |
| 13 | + "capability:multivariate": True, |
| 14 | + "capability:pred_int": True, |
| 15 | + "capability:flexible_history_length": False, |
| 16 | + } |
| 17 | + |
| 18 | + @classmethod |
| 19 | + def get_model_cls(cls): |
| 20 | + """Get model class.""" |
| 21 | + from pytorch_forecasting.models.temporal_fusion_transformer._tft_v2 import TFT |
| 22 | + |
| 23 | + return TFT |
| 24 | + |
| 25 | + @classmethod |
| 26 | + def _get_test_datamodule_from(cls, trainer_kwargs): |
| 27 | + """Create test dataloaders from trainer_kwargs - following v1 pattern.""" |
| 28 | + from pytorch_forecasting.data.data_module import ( |
| 29 | + EncoderDecoderTimeSeriesDataModule, |
| 30 | + ) |
| 31 | + from pytorch_forecasting.tests._data_scenarios import ( |
| 32 | + data_with_covariates_v2, |
| 33 | + make_datasets_v2, |
| 34 | + ) |
| 35 | + |
| 36 | + data_with_covariates = data_with_covariates_v2() |
| 37 | + |
| 38 | + data_loader_default_kwargs = dict( |
| 39 | + target="target", |
| 40 | + group_ids=["agency_encoded", "sku_encoded"], |
| 41 | + add_relative_time_idx=True, |
| 42 | + ) |
| 43 | + |
| 44 | + data_loader_kwargs = trainer_kwargs.get("data_loader_kwargs", {}) |
| 45 | + data_loader_default_kwargs.update(data_loader_kwargs) |
| 46 | + |
| 47 | + datasets_info = make_datasets_v2( |
| 48 | + data_with_covariates, **data_loader_default_kwargs |
| 49 | + ) |
| 50 | + |
| 51 | + training_dataset = datasets_info["training_dataset"] |
| 52 | + validation_dataset = datasets_info["validation_dataset"] |
| 53 | + training_max_time_idx = datasets_info["training_max_time_idx"] |
| 54 | + |
| 55 | + max_encoder_length = data_loader_kwargs.get("max_encoder_length", 4) |
| 56 | + max_prediction_length = data_loader_kwargs.get("max_prediction_length", 3) |
| 57 | + add_relative_time_idx = data_loader_kwargs.get("add_relative_time_idx", True) |
| 58 | + batch_size = data_loader_kwargs.get("batch_size", 2) |
| 59 | + |
| 60 | + train_datamodule = EncoderDecoderTimeSeriesDataModule( |
| 61 | + time_series_dataset=training_dataset, |
| 62 | + max_encoder_length=max_encoder_length, |
| 63 | + max_prediction_length=max_prediction_length, |
| 64 | + add_relative_time_idx=add_relative_time_idx, |
| 65 | + batch_size=batch_size, |
| 66 | + train_val_test_split=(0.8, 0.2, 0.0), |
| 67 | + ) |
| 68 | + |
| 69 | + val_datamodule = EncoderDecoderTimeSeriesDataModule( |
| 70 | + time_series_dataset=validation_dataset, |
| 71 | + max_encoder_length=max_encoder_length, |
| 72 | + max_prediction_length=max_prediction_length, |
| 73 | + min_prediction_idx=training_max_time_idx, |
| 74 | + add_relative_time_idx=add_relative_time_idx, |
| 75 | + batch_size=batch_size, |
| 76 | + train_val_test_split=(0.0, 1.0, 0.0), |
| 77 | + ) |
| 78 | + |
| 79 | + test_datamodule = EncoderDecoderTimeSeriesDataModule( |
| 80 | + time_series_dataset=validation_dataset, |
| 81 | + max_encoder_length=max_encoder_length, |
| 82 | + max_prediction_length=max_prediction_length, |
| 83 | + min_prediction_idx=training_max_time_idx, |
| 84 | + add_relative_time_idx=add_relative_time_idx, |
| 85 | + batch_size=1, |
| 86 | + train_val_test_split=(0.0, 0.0, 1.0), |
| 87 | + ) |
| 88 | + |
| 89 | + train_datamodule.setup("fit") |
| 90 | + val_datamodule.setup("fit") |
| 91 | + test_datamodule.setup("test") |
| 92 | + |
| 93 | + train_dataloader = train_datamodule.train_dataloader() |
| 94 | + val_dataloader = val_datamodule.val_dataloader() |
| 95 | + test_dataloader = test_datamodule.test_dataloader() |
| 96 | + |
| 97 | + return { |
| 98 | + "train": train_dataloader, |
| 99 | + "val": val_dataloader, |
| 100 | + "test": test_dataloader, |
| 101 | + "data_module": train_datamodule, |
| 102 | + } |
| 103 | + |
| 104 | + @classmethod |
| 105 | + def get_test_train_params(cls): |
| 106 | + """Return testing parameter settings for the trainer. |
| 107 | +
|
| 108 | + Returns |
| 109 | + ------- |
| 110 | + params : dict or list of dict, default = {} |
| 111 | + Parameters to create testing instances of the class |
| 112 | + Each dict are parameters to construct an "interesting" test instance, i.e., |
| 113 | + `MyClass(**params)` or `MyClass(**params[i])` creates a valid test instance. |
| 114 | + `create_test_instance` uses the first (or only) dictionary in `params` |
| 115 | + """ |
| 116 | + return [ |
| 117 | + {}, |
| 118 | + dict( |
| 119 | + hidden_size=25, |
| 120 | + attention_head_size=5, |
| 121 | + ), |
| 122 | + dict( |
| 123 | + data_loader_kwargs=dict(max_encoder_length=5, max_prediction_length=3) |
| 124 | + ), |
| 125 | + dict( |
| 126 | + hidden_size=24, |
| 127 | + attention_head_size=8, |
| 128 | + data_loader_kwargs=dict( |
| 129 | + max_encoder_length=5, |
| 130 | + max_prediction_length=3, |
| 131 | + add_relative_time_idx=False, |
| 132 | + ), |
| 133 | + ), |
| 134 | + dict( |
| 135 | + hidden_size=12, |
| 136 | + data_loader_kwargs=dict(max_encoder_length=7, max_prediction_length=10), |
| 137 | + ), |
| 138 | + dict(attention_head_size=2), |
| 139 | + ] |
0 commit comments