|
| 1 | +<!-- |
| 2 | +
|
| 3 | +@license Apache-2.0 |
| 4 | +
|
| 5 | +Copyright (c) 2025 The Stdlib Authors. |
| 6 | +
|
| 7 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | +you may not use this file except in compliance with the License. |
| 9 | +You may obtain a copy of the License at |
| 10 | +
|
| 11 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | +
|
| 13 | +Unless required by applicable law or agreed to in writing, software |
| 14 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 15 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 16 | +See the License for the specific language governing permissions and |
| 17 | +limitations under the License. |
| 18 | +
|
| 19 | +--> |
| 20 | + |
| 21 | +<!-- lint disable maximum-heading-length --> |
| 22 | + |
| 23 | +# covarmtk |
| 24 | + |
| 25 | +> Calculate the [covariance][covariance] of two strided arrays provided known means and using a one-pass textbook algorithm. |
| 26 | +
|
| 27 | +<section class="intro"> |
| 28 | + |
| 29 | +The population [covariance][covariance] of two finite size populations of size `N` is given by |
| 30 | + |
| 31 | +<!-- <equation class="equation" label="eq:population_covariance" align="center" raw="\operatorname{\mathrm{cov_N}} = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu_x)(y_i - \mu_y)" alt="Equation for the population covariance."> --> |
| 32 | + |
| 33 | +```math |
| 34 | +\mathop{\mathrm{cov_N}} = \frac{1}{N} \sum_{i=0}^{N-1} (x_i - \mu_x)(y_i - \mu_y) |
| 35 | +``` |
| 36 | + |
| 37 | +<!-- </equation> --> |
| 38 | + |
| 39 | +where the population means are given by |
| 40 | + |
| 41 | +<!-- <equation class="equation" label="eq:population_mean_for_x" align="center" raw="\mu_x = \frac{1}{N} \sum_{i=0}^{N-1} x_i" alt="Equation for the population mean for first array."> --> |
| 42 | + |
| 43 | +```math |
| 44 | +\mu_x = \frac{1}{N} \sum_{i=0}^{N-1} x_i |
| 45 | +``` |
| 46 | + |
| 47 | +<!-- </equation> --> |
| 48 | + |
| 49 | +and |
| 50 | + |
| 51 | +<!-- <equation class="equation" label="eq:population_mean_for_y" align="center" raw="\mu_y = \frac{1}{N} \sum_{i=0}^{N-1} y_i" alt="Equation for the population mean for second array."> --> |
| 52 | + |
| 53 | +```math |
| 54 | +\mu_y = \frac{1}{N} \sum_{i=0}^{N-1} y_i |
| 55 | +``` |
| 56 | + |
| 57 | +<!-- </equation> --> |
| 58 | + |
| 59 | +Often in the analysis of data, the true population [covariance][covariance] is not known _a priori_ and must be estimated from samples drawn from population distributions. If one attempts to use the formula for the population [covariance][covariance], the result is biased and yields a **biased sample covariance**. To compute an **unbiased sample covariance** for samples of size `n`, |
| 60 | + |
| 61 | +<!-- <equation class="equation" label="eq:unbiased_sample_covariance" align="center" raw="\operatorname{\mathrm{cov_n}} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n)" alt="Equation for computing an unbiased sample variance."> --> |
| 62 | + |
| 63 | +```math |
| 64 | +\mathop{\mathrm{cov_n}} = \frac{1}{n-1} \sum_{i=0}^{n-1} (x_i - \bar{x}_n)(y_i - \bar{y}_n) |
| 65 | +``` |
| 66 | + |
| 67 | +<!-- </equation> --> |
| 68 | + |
| 69 | +where sample means are given by |
| 70 | + |
| 71 | +<!-- <equation class="equation" label="eq:sample_mean_for_x" align="center" raw="\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i" alt="Equation for the sample mean for first array."> --> |
| 72 | + |
| 73 | +```math |
| 74 | +\bar{x} = \frac{1}{n} \sum_{i=0}^{n-1} x_i |
| 75 | +``` |
| 76 | + |
| 77 | +<!-- </equation> --> |
| 78 | + |
| 79 | +and |
| 80 | + |
| 81 | +<!-- <equation class="equation" label="eq:sample_mean_for_y" align="center" raw="\bar{y} = \frac{1}{n} \sum_{i=0}^{n-1} y_i" alt="Equation for the sample mean for second array."> --> |
| 82 | + |
| 83 | +```math |
| 84 | +\bar{y} = \frac{1}{n} \sum_{i=0}^{n-1} y_i |
| 85 | +``` |
| 86 | + |
| 87 | +<!-- </equation> --> |
| 88 | + |
| 89 | +The use of the term `n-1` is commonly referred to as Bessel's correction. Depending on the characteristics of the population distributions, other correction factors (e.g., `n-1.5`, `n+1`, etc) can yield better estimators. |
| 90 | + |
| 91 | +</section> |
| 92 | + |
| 93 | +<!-- /.intro --> |
| 94 | + |
| 95 | +<section class="usage"> |
| 96 | + |
| 97 | +## Usage |
| 98 | + |
| 99 | +```javascript |
| 100 | +var covarmtk = require( '@stdlib/stats/strided/covarmtk' ); |
| 101 | +``` |
| 102 | + |
| 103 | +#### covarmtk( N, correction, meanx, x, strideX, meany, y, strideY ) |
| 104 | + |
| 105 | +Computes the [covariance][covariance] of two strided arrays provided known means and using a one-pass textbook algorithm. |
| 106 | + |
| 107 | +```javascript |
| 108 | +var x = [ 1.0, -2.0, 2.0 ]; |
| 109 | +var y = [ 2.0, -2.0, 1.0 ]; |
| 110 | + |
| 111 | +var v = covarmtk( x.length, 1, 1.0/3.0, x, 1, 1.0/3.0, y, 1 ); |
| 112 | +// returns ~3.8333 |
| 113 | +``` |
| 114 | + |
| 115 | +The function has the following parameters: |
| 116 | + |
| 117 | +- **N**: number of indexed elements. |
| 118 | +- **correction**: degrees of freedom adjustment. Setting this parameter to a value other than `0` has the effect of adjusting the divisor during the calculation of the [covariance][covariance] according to `N-c` where `c` corresponds to the provided degrees of freedom adjustment. When computing the population [covariance][covariance], setting this parameter to `0` is the standard choice (i.e., the provided arrays contain data constituting entire populations). When computing the unbiased sample [covariance][covariance], setting this parameter to `1` is the standard choice (i.e., the provided arrays contain data sampled from larger populations; this is commonly referred to as Bessel's correction). |
| 119 | +- **meanx**: mean of `x`. |
| 120 | +- **x**: first input [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. |
| 121 | +- **strideX**: stride length for `x`. |
| 122 | +- **meany**: mean of `y`. |
| 123 | +- **y**: second input [`Array`][mdn-array] or [`typed array`][mdn-typed-array]. |
| 124 | +- **strideY**: stride length for `y`. |
| 125 | + |
| 126 | +The `N` and stride parameters determine which elements in the strided arrays are accessed at runtime. For example, to compute the [covariance][covariance] of every other element in `x` and `y`, |
| 127 | + |
| 128 | +```javascript |
| 129 | +var x = [ 1.0, 2.0, 2.0, -7.0, -2.0, 3.0, 4.0, 2.0 ]; |
| 130 | +var y = [ 2.0, 1.0, 2.0, 1.0, -2.0, 2.0, 3.0, 4.0 ]; |
| 131 | + |
| 132 | +var v = covarmtk( 4, 1, 1.25, x, 2, 1.25, y, 2 ); |
| 133 | +// returns 5.25 |
| 134 | +``` |
| 135 | + |
| 136 | +Note that indexing is relative to the first index. To introduce an offset, use [`typed array`][mdn-typed-array] views. |
| 137 | + |
| 138 | +<!-- eslint-disable stdlib/capitalized-comments --> |
| 139 | + |
| 140 | +```javascript |
| 141 | +var Float64Array = require( '@stdlib/array/float64' ); |
| 142 | + |
| 143 | +var x0 = new Float64Array( [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ] ); |
| 144 | +var y0 = new Float64Array( [ 2.0, -2.0, 2.0, 1.0, -2.0, 4.0, 3.0, 2.0 ] ); |
| 145 | + |
| 146 | +var x1 = new Float64Array( x0.buffer, x0.BYTES_PER_ELEMENT*1 ); // start at 2nd element |
| 147 | +var y1 = new Float64Array( y0.buffer, y0.BYTES_PER_ELEMENT*1 ); // start at 2nd element |
| 148 | + |
| 149 | +var v = covarmtk( 4, 1, 1.25, x1, 2, 1.25, y1, 2 ); |
| 150 | +// returns ~1.9167 |
| 151 | +``` |
| 152 | + |
| 153 | +#### covarmtk.ndarray( N, correction, meanx, x, strideX, offsetX, meany, y, strideY, offsetY ) |
| 154 | + |
| 155 | +Computes the [covariance][covariance] of two strided arrays provided known means and using a one-pass textbook algorithm and alternative indexing semantics. |
| 156 | + |
| 157 | +```javascript |
| 158 | +var x = [ 1.0, -2.0, 2.0 ]; |
| 159 | +var y = [ 2.0, -2.0, 1.0 ]; |
| 160 | + |
| 161 | +var v = covarmtk.ndarray( x.length, 1, 1.0/3.0, x, 1, 0, 1.0/3.0, y, 1, 0 ); |
| 162 | +// returns ~3.8333 |
| 163 | +``` |
| 164 | + |
| 165 | +The function has the following additional parameters: |
| 166 | + |
| 167 | +- **offsetX**: starting index for `x`. |
| 168 | +- **offsetY**: starting index for `y`. |
| 169 | + |
| 170 | +While [`typed array`][mdn-typed-array] views mandate a view offset based on the underlying buffer, the offset parameters support indexing semantics based on starting indices. For example, to calculate the [covariance][covariance] for every other element in `x` and `y` starting from the second element |
| 171 | + |
| 172 | +```javascript |
| 173 | +var x = [ 2.0, 1.0, 2.0, -2.0, -2.0, 2.0, 3.0, 4.0 ]; |
| 174 | +var y = [ -7.0, 2.0, 2.0, 1.0, -2.0, 2.0, 3.0, 4.0 ]; |
| 175 | + |
| 176 | +var v = covarmtk.ndarray( 4, 1, 1.25, x, 2, 1, 1.25, y, 2, 1 ); |
| 177 | +// returns 6.0 |
| 178 | +``` |
| 179 | + |
| 180 | +</section> |
| 181 | + |
| 182 | +<!-- /.usage --> |
| 183 | + |
| 184 | +<section class="notes"> |
| 185 | + |
| 186 | +## Notes |
| 187 | + |
| 188 | +- If `N <= 0`, both functions return `NaN`. |
| 189 | +- If `N - c` is less than or equal to `0` (where `c` corresponds to the provided degrees of freedom adjustment), both functions return `NaN`. |
| 190 | +- Both functions support array-like objects having getter and setter accessors for array element access (e.g., [`@stdlib/array/base/accessor`][@stdlib/array/base/accessor]). |
| 191 | +- Depending on the environment, the typed versions ([`dcovarmtk`][@stdlib/stats/strided/dcovarmtk], [`scovarmtk`][@stdlib/stats/strided/scovarmtk], etc.) are likely to be significantly more performant. |
| 192 | + |
| 193 | +</section> |
| 194 | + |
| 195 | +<!-- /.notes --> |
| 196 | + |
| 197 | +<section class="examples"> |
| 198 | + |
| 199 | +## Examples |
| 200 | + |
| 201 | +<!-- eslint no-undef: "error" --> |
| 202 | + |
| 203 | +```javascript |
| 204 | +var discreteUniform = require( '@stdlib/random/array/discrete-uniform' ); |
| 205 | +var covarmtk = require( '@stdlib/stats/strided/covarmtk' ); |
| 206 | + |
| 207 | +var opts = { |
| 208 | + 'dtype': 'generic' |
| 209 | +}; |
| 210 | +var x = discreteUniform( 10, -50, 50, opts ); |
| 211 | +console.log( x ); |
| 212 | + |
| 213 | +var y = discreteUniform( 10, -50, 50, opts ); |
| 214 | +console.log( y ); |
| 215 | + |
| 216 | +var v = covarmtk( x.length, 1, 0.0, x, 1, 0.0, y, 1 ); |
| 217 | +console.log( v ); |
| 218 | +``` |
| 219 | + |
| 220 | +</section> |
| 221 | + |
| 222 | +<!-- /.examples --> |
| 223 | + |
| 224 | +* * * |
| 225 | + |
| 226 | +<section class="references"> |
| 227 | + |
| 228 | +</section> |
| 229 | + |
| 230 | +<!-- /.references --> |
| 231 | + |
| 232 | +<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. --> |
| 233 | + |
| 234 | +<section class="related"> |
| 235 | + |
| 236 | +</section> |
| 237 | + |
| 238 | +<!-- /.related --> |
| 239 | + |
| 240 | +<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. --> |
| 241 | + |
| 242 | +<section class="links"> |
| 243 | + |
| 244 | +[covariance]: https://en.wikipedia.org/wiki/Covariance |
| 245 | + |
| 246 | +[mdn-typed-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/TypedArray |
| 247 | + |
| 248 | +[mdn-array]: https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array |
| 249 | + |
| 250 | +[@stdlib/array/base/accessor]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/array/base/accessor |
| 251 | + |
| 252 | +[@stdlib/stats/strided/dcovarmtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/dcovarmtk |
| 253 | + |
| 254 | +[@stdlib/stats/strided/scovarmtk]: https://github.com/stdlib-js/stdlib/tree/develop/lib/node_modules/%40stdlib/stats/strided/scovarmtk |
| 255 | + |
| 256 | +</section> |
| 257 | + |
| 258 | +<!-- /.links --> |
0 commit comments