Skip to content

feat: add blas/base/ndarray/gdot #7740

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Jul 27, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
133 changes: 133 additions & 0 deletions lib/node_modules/@stdlib/blas/base/ndarray/gdot/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
<!--

@license Apache-2.0

Copyright (c) 2025 The Stdlib Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

-->

# gdot

> Calculate the dot product of two one-dimensional ndarrays.

<section class="intro">

The [dot product][dot-product] (or scalar product) is defined as

<!-- <equation class="equation" label="eq:dot_product" align="center" raw="\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}" alt="Dot product definition."> -->

```math
\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}
```

<!-- <div class="equation" align="center" data-raw-text="\mathbf{x}\cdot\mathbf{y} = \sum_{i=0}^{N-1} x_i y_i = x_0 y_0 + x_1 y_1 + \ldots + x_{N-1} y_{N-1}" data-equation="eq:dot_product">
<img src="https://cdn.jsdelivr.net/gh/stdlib-js/stdlib@6cf4829ce9c06ba9fa207a2ea3b395266f86a259/lib/node_modules/@stdlib/blas/base/ndarray/gdot/docs/img/equation_dot_product.svg" alt="Dot product definition.">
<br>
</div> -->

<!-- </equation> -->

</section>

<!-- /.intro -->

<section class="usage">

## Usage

```javascript
var gdot = require( '@stdlib/blas/base/ndarray/gdot' );
```

#### gdot( arrays )

Computes the dot product of two one-dimensional ndarrays.

```javascript
var ndarray = require( '@stdlib/ndarray/base/ctor' );

var xbuf = [ 4.0, 2.0, -3.0, 5.0, -1.0 ];
var x = new ndarray( 'generic', xbuf, [ 5 ], [ 1 ], 0, 'row-major' );

var ybuf = [ 2.0, 6.0, -1.0, -4.0, 8.0 ];
var y = new ndarray( 'generic', ybuf, [ 5 ], [ 1 ], 0, 'row-major' );

var z = gdot( [ x, y ] );
// returns -5.0
```

The function has the following parameters:

- **arrays**: array-like object containing two one-dimensional input ndarrays.

</section>

<!-- /.usage -->

<section class="notes">

</section>

<!-- /.notes -->

<section class="examples">

## Examples

<!-- eslint no-undef: "error" -->

```javascript
var discreteUniform = require( '@stdlib/random/array/discrete-uniform' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var ndarray2array = require( '@stdlib/ndarray/to-array' );
var gdot = require( '@stdlib/blas/base/ndarray/gdot' );

var opts = {
'dtype': 'generic'
};

var xbuf = discreteUniform( 10, 0, 500, opts );
var x = new ndarray( opts.dtype, xbuf, [ xbuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( x ) );

var ybuf = discreteUniform( 10, 0, 255, opts );
var y = new ndarray( opts.dtype, ybuf, [ ybuf.length ], [ 1 ], 0, 'row-major' );
console.log( ndarray2array( y ) );

var out = gdot( [ x, y ] );
console.log( out );
```

</section>

<!-- /.examples -->

<!-- Section for related `stdlib` packages. Do not manually edit this section, as it is automatically populated. -->

<section class="related">

</section>

<!-- /.related -->

<!-- Section for all links. Make sure to keep an empty line after the `section` element and another before the `/section` close. -->

<section class="links">

[dot-product]: https://en.wikipedia.org/wiki/Dot_product

</section>

<!-- /.links -->
113 changes: 113 additions & 0 deletions lib/node_modules/@stdlib/blas/base/ndarray/gdot/benchmark/benchmark.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,113 @@
/**
* @license Apache-2.0
*
* Copyright (c) 2025 The Stdlib Authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

'use strict';

// MODULES //

var bench = require( '@stdlib/bench' );
var uniform = require( '@stdlib/random/array/uniform' );
var isnan = require( '@stdlib/math/base/assert/is-nan' );
var pow = require( '@stdlib/math/base/special/pow' );
var ndarray = require( '@stdlib/ndarray/base/ctor' );
var pkg = require( './../package.json' ).name;
var gdot = require( './../lib' );


// VARIABLES //

var options = {
'dtype': 'generic'
};


// FUNCTIONS //

/**
* Creates a benchmark function.
*
* @private
* @param {PositiveInteger} len - array length
* @returns {Function} benchmark function
*/
function createBenchmark( len ) {
var xbuf;
var ybuf;
var x;
var y;

xbuf = uniform( len, -100.0, 100.0, options );
x = new ndarray( options.dtype, xbuf, [ len ], [ 1 ], 0, 'row-major' );

ybuf = uniform( len, -100.0, 100.0, options );
y = new ndarray( options.dtype, ybuf, [ len ], [ 1 ], 0, 'row-major' );

return benchmark;

/**
* Benchmark function.
*
* @private
* @param {Benchmark} b - benchmark instance
*/
function benchmark( b ) {
var z;
var i;

b.tic();
for ( i = 0; i < b.iterations; i++ ) {
z = gdot( [ x, y ] );
if ( isnan( z ) ) {
b.fail( 'should not return NaN' );
}
}
b.toc();
if ( isnan( z ) ) {
b.fail( 'should not return NaN' );
}
b.pass( 'benchmark finished' );
b.end();
}
}


// MAIN //

/**
* Main execution sequence.
*
* @private
*/
function main() {
var len;
var min;
var max;
var f;
var i;

min = 1; // 10^min
max = 6; // 10^max

for ( i = min; i <= max; i++ ) {
len = pow( 10, i );
f = createBenchmark( len );
bench( pkg+':len='+len, f );
}
}

main();
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
34 changes: 34 additions & 0 deletions lib/node_modules/@stdlib/blas/base/ndarray/gdot/docs/repl.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@

{{alias}}( arrays )
Computes the dot product of two one-dimensional ndarrays.

If provided an empty input ndarray, the function returns `0.0`.

Parameters
----------
arrays: ArrayLikeObject<ndarray>
Array-like object containing two one-dimensional input ndarrays.

Returns
-------
out: number
The dot product.

Examples
--------
// Standard usage:
> var xbuf = [ 4.0, 2.0, -3.0, 5.0, -1.0 ];
> var ybuf = [ 2.0, 6.0, -1.0, -4.0, 8.0 ];
> var dt = 'generic';
> var sh = [ xbuf.length ];
> var st = [ 1 ];
> var oo = 0;
> var ord = 'row-major';
> var x = new {{alias:@stdlib/ndarray/ctor}}( dt, xbuf, sh, st, oo, ord );
> var y = new {{alias:@stdlib/ndarray/ctor}}( dt, ybuf, sh, st, oo, ord );
> {{alias}}( [ x, y ] )
-5.0

See Also
--------

Loading