-
Notifications
You must be signed in to change notification settings - Fork 0
chat integration
Mile Shi edited this page May 26, 2025
·
1 revision
The Intelligent IDE includes a comprehensive chat system that facilitates communication between students, instructors, and teaching assistants through various channels including course discussions, direct messaging, and real-time collaboration chat.
The Chat Integration system provides:
- Multi-channel Communication: Course-wide, assignment-specific, and direct messaging
- Real-time Messaging: Instant message delivery and notifications
- Rich Content Support: Code snippets, file sharing, and multimedia
- Integration with Course Tools: Assignment discussions and collaboration sessions
- Moderation Tools: Content filtering and administrative controls
- AI Assistant Integration: Automated help and guidance
interface CourseChat {
courseId: string;
participants: CourseMember[];
channels: {
general: Channel; // General discussion
announcements: Channel; // Instructor announcements
qanda: Channel; // Questions and answers
random: Channel; // Off-topic discussions
};
settings: CourseSettings;
}
- Threaded Discussions: Organize conversations by topic
- Pinned Messages: Important announcements stay visible
- Message Search: Full-text search across chat history
- File Sharing: Upload and share course materials
**@everyone** New assignment posted! 📚
Assignment 3: Data Structures Implementation
Due: March 20, 2025, 11:59 PM
Key points:
- Implement BST with all required methods
- Include unit tests for your implementation
- Document time complexity for each operation
Questions? Ask in #qanda channel!
#announcement #assignment #datastructures
{
"assignmentChat": {
"assignmentId": "hw-003",
"title": "Binary Search Trees - Q&A",
"participants": ["instructor", "tas", "students"],
"threads": [
{
"id": "thread-001",
"topic": "Understanding tree rotation",
"messages": 15,
"participants": 8,
"status": "active"
},
{
"id": "thread-002",
"topic": "Test case clarification",
"messages": 6,
"participants": 3,
"status": "resolved"
}
]
}
}
# Example: Student asking for help with code
def insert_node(self, root, value):
if root is None:
return TreeNode(value)
if value < root.val:
root.left = self.insert_node(root.left, value)
elif value > root.val:
root.right = self.insert_node(root.right, value)
return root
# Question: Is this the correct implementation for BST insertion?
# Getting stack overflow for large inputs 🤔
# TA Response with explanation
def insert_node(self, root, value):
if root is None:
return TreeNode(value)
if value < root.val:
root.left = self.insert_node(root.left, value)
elif value > root.val:
root.right = self.insert_node(root.right, value)
# Add this line to handle duplicates:
# else:
# return root # Don't insert duplicates
return root
# Your implementation looks correct! The stack overflow might be due to
# unbalanced input. Try implementing a balanced BST like AVL tree for
# better performance with large datasets.
interface DirectMessage {
chatId: string;
participants: [UserId, UserId];
messages: Message[];
settings: {
notifications: boolean;
encryption: boolean;
messageRetention: '30days' | '1year' | 'forever';
};
}
- Private Conversations: Secure one-on-one messaging
- File Sharing: Share documents, code files, and images
- Message History: Persistent message storage
- Status Indicators: Online/offline status and typing indicators
interface CollaborationChat {
sessionId: string;
participants: SessionParticipant[];
features: {
voiceChat: boolean;
screenShare: boolean;
codePointing: boolean; // Point to specific code lines
sessionRecording: boolean;
};
}
# Chat message linked to specific code line
class CodeDiscussion:
def __init__(self, file_path, line_number, message):
self.file_path = file_path
self.line_number = line_number
self.message = message
self.timestamp = datetime.now()
def create_annotation(self):
return {
'type': 'code_comment',
'location': f'{self.file_path}:{self.line_number}',
'content': self.message,
'author': self.get_current_user()
}
# Example usage in chat:
# "Line 25 in algorithm.py - shouldn't this be <= instead of <? 🤔"
# Creates clickable link that jumps to the specific line
Can someone help with this error?
```python
def binary_search(arr, target):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
Getting IndexError on line 6. Array is [1, 3, 5, 7, 9] and target is 7.
#### Mathematical Expressions
```markdown
The time complexity of this algorithm is **O(log n)**.
For a balanced binary search tree:
- Search: $$T(n) = O(\log n)$$
- Insert: $$T(n) = O(\log n)$$
- Delete: $$T(n) = O(\log n)$$
But for an unbalanced tree (worst case):
$$T(n) = O(n)$$
interface FileAttachment {
fileName: string;
fileSize: number;
fileType: string;
downloadUrl: string;
preview?: FilePreview;
scanResults?: SecurityScanResult;
}
// Example attachment types
const supportedTypes = [
'code': ['.py', '.js', '.java', '.cpp', '.c'],
'documents': ['.pdf', '.doc', '.md', '.txt'],
'images': ['.png', '.jpg', '.gif', '.svg'],
'data': ['.csv', '.json', '.xml', '.xlsx']
];
{
"messageReactions": {
"👍": ["user1", "user2", "user3"],
"❤️": ["user4"],
"🤔": ["user5", "user6"],
"✅": ["instructor"]
}
}
interface ThreadedMessage {
id: string;
parentId?: string; // null for top-level messages
replies: Message[];
content: string;
author: User;
timestamp: Date;
reactions: Reaction[];
}
class ChatAI:
def __init__(self):
self.knowledge_base = CourseKnowledgeBase()
self.response_patterns = ResponsePatterns()
def analyze_question(self, message):
"""Analyze student question and provide automated help"""
intent = self.classify_intent(message.content)
if intent == 'code_error':
return self.debug_code_error(message.code_snippet)
elif intent == 'concept_question':
return self.explain_concept(message.topic)
elif intent == 'assignment_clarification':
return self.clarify_assignment(message.assignment_ref)
else:
return self.general_help_response()
def debug_code_error(self, code_snippet):
"""Provide debugging suggestions for code errors"""
errors = self.static_analysis(code_snippet)
suggestions = self.generate_suggestions(errors)
return {
'type': 'debug_help',
'errors_found': errors,
'suggestions': suggestions,
'helpful_resources': self.find_relevant_resources(errors)
}
**AI Assistant** detected you're asking about binary search implementation:
**Common Issues:**
1. ✅ **Boundary conditions**: Check `left <= right` vs `left < right`
2. ✅ **Integer overflow**: Use `left + (right - left) // 2` instead of `(left + right) // 2`
3. ✅ **Array indexing**: Ensure array is 0-indexed
**Helpful Resources:**
- 📖 [Binary Search Visualization](link)
- 🎥 [Video Tutorial: Binary Search](link)
- 💻 [Practice Problems](link)
Would you like me to review your specific code?
interface ModerationSettings {
profanityFilter: boolean;
spamDetection: boolean;
academicIntegrityCheck: boolean;
inappropriateContentFilter: boolean;
autoModeration: {
enabled: boolean;
actions: ('warn' | 'mute' | 'flag')[];
};
}
class ContentModerator {
checkMessage(message: Message): ModerationResult {
const checks = [
this.checkProfanity(message.content),
this.checkSpam(message),
this.checkAcademicIntegrity(message),
this.checkInappropriateContent(message)
];
return this.aggregateResults(checks);
}
}
interface ChatDashboard {
activeDiscussions: Discussion[];
participationMetrics: ParticipationStats;
moderationQueue: ModerationItem[];
analytics: ChatAnalytics;
}
interface ParticipationStats {
totalMessages: number;
activeUsers: number;
responseRate: number;
averageResponseTime: string;
topContributors: User[];
}
class ChatModerator:
def __init__(self, course_id):
self.course_id = course_id
self.permissions = self.get_moderator_permissions()
def moderate_message(self, message_id, action):
"""Take moderation action on a message"""
actions = {
'delete': self.delete_message,
'edit': self.edit_message,
'flag': self.flag_message,
'pin': self.pin_message,
'lock_thread': self.lock_thread
}
if action in actions and self.has_permission(action):
return actions[action](message_id)
def bulk_operations(self, operation, criteria):
"""Perform bulk operations on messages"""
messages = self.find_messages(criteria)
results = []
for message in messages:
result = self.moderate_message(message.id, operation)
results.append(result)
return results
{
"taWorkspace": {
"assignedChannels": ["#qanda", "#assignment-help"],
"pendingQuestions": 12,
"averageResponseTime": "8 minutes",
"dailyMessageQuota": 50,
"escalationRules": {
"complexQuestions": "forward_to_instructor",
"gradeDisputes": "escalate_immediately",
"technicalIssues": "forward_to_support"
}
}
}
def route_student_question(question):
"""Route student questions to appropriate TA or instructor"""
classification = classify_question(question.content)
routing_rules = {
'basic_concept': 'any_available_ta',
'advanced_concept': 'senior_ta_or_instructor',
'assignment_specific': 'assignment_ta',
'grade_inquiry': 'instructor_only',
'technical_issue': 'tech_support'
}
assignment = routing_rules.get(classification, 'general_queue')
available_responders = get_available_responders(assignment)
return assign_to_responder(question, available_responders[0])
// Link chat messages to specific assignments
interface AssignmentQuestion {
id: string;
assignmentId: string;
studentId: string;
question: string;
response?: string;
responderId?: string;
status: 'open' | 'answered' | 'escalated';
timestamp: Date;
relatedCode?: CodeSnippet;
}
**Assignment Progress Update** 📊
**Binary Search Tree Implementation (HW-03)**
- **Due**: March 20, 2025, 11:59 PM ⏰
- **Submitted**: 32/45 students (71%) ✅
- **Average Progress**: 78% 📈
**Common Questions This Week:**
1. Tree rotation implementation (8 questions)
2. Handling duplicate values (5 questions)
3. Test case interpretation (3 questions)
**Office Hours**: Tomorrow 2-4 PM, Room 204 🏢
class GradeDiscussion:
def create_grade_inquiry(self, student_id, assignment_id, inquiry):
"""Create a private discussion about a grade"""
discussion = {
'type': 'grade_inquiry',
'participants': [student_id, 'instructor'],
'assignment': assignment_id,
'student_inquiry': inquiry,
'status': 'pending_review',
'created_at': datetime.now()
}
# Automatically include relevant context
discussion['context'] = {
'original_submission': self.get_submission(assignment_id, student_id),
'rubric': self.get_rubric(assignment_id),
'grade_breakdown': self.get_grade_breakdown(assignment_id, student_id)
}
return self.create_private_channel(discussion)
interface ChatAnalytics {
messageVolume: {
daily: number[];
weekly: number[];
monthly: number[];
};
participation: {
activeUsers: number;
lurkers: number;
responseRate: number;
averageResponseTime: number;
};
contentAnalysis: {
topTopics: string[];
questionTypes: QuestionTypeStats[];
resolutionRate: number;
escalationRate: number;
};
engagement: {
peakHours: number[];
channelPopularity: ChannelStats[];
fileShareFrequency: number;
};
}
def analyze_chat_sentiment(course_id, time_period):
"""Analyze overall sentiment in course communications"""
messages = get_course_messages(course_id, time_period)
sentiment_scores = []
for message in messages:
sentiment = sentiment_analyzer.analyze(message.content)
sentiment_scores.append({
'message_id': message.id,
'sentiment': sentiment.polarity, # -1 to 1
'confidence': sentiment.confidence,
'emotions': sentiment.emotions
})
return {
'overall_sentiment': np.mean([s['sentiment'] for s in sentiment_scores]),
'sentiment_trend': calculate_trend(sentiment_scores),
'emotional_indicators': aggregate_emotions(sentiment_scores),
'concern_flags': identify_concerns(sentiment_scores)
}
def correlate_chat_participation_with_grades(course_id):
"""Analyze relationship between chat participation and academic performance"""
students = get_course_students(course_id)
correlation_data = []
for student in students:
chat_metrics = calculate_student_chat_metrics(student.id)
academic_performance = get_student_grades(student.id, course_id)
correlation_data.append({
'student_id': student.id,
'messages_sent': chat_metrics.messages_sent,
'questions_asked': chat_metrics.questions_asked,
'help_provided': chat_metrics.help_provided,
'response_time': chat_metrics.avg_response_time,
'final_grade': academic_performance.final_grade,
'assignment_average': academic_performance.assignment_average
})
return calculate_correlations(correlation_data)
- Be Respectful: Maintain professional communication
- Search First: Check previous discussions before asking
- Provide Context: Include relevant code and error messages
- Use Appropriate Channels: Post in the right chat channel
- Help Others: Contribute to peer learning
- Set Clear Guidelines: Establish communication expectations
- Monitor Regularly: Stay active in course discussions
- Encourage Participation: Prompt shy students to engage
- Model Good Behavior: Demonstrate proper chat etiquette
- Use Analytics: Leverage data to improve course communication
# TA best practices implementation
class TABestPractices:
def respond_to_question(self, question):
# Always acknowledge the question quickly
self.send_acknowledgment(question)
# Provide helpful guidance, not direct answers
if question.is_assignment_related():
return self.provide_guidance_not_solution(question)
else:
return self.provide_direct_help(question)
def encourage_peer_learning(self, question):
# Check if other students can help
if self.has_potential_peer_helpers(question):
self.prompt_peer_assistance(question)
# Wait reasonable time before providing answer
time.sleep(self.peer_response_window)
if not self.question_answered_by_peer(question):
self.provide_ta_response(question)
interface MessageSecurity {
encryption: {
algorithm: 'AES-256';
keyRotation: 'weekly';
endToEnd: boolean;
};
dataRetention: {
generalChat: '2years';
directMessages: '1year';
assignmentDiscussions: 'course_duration';
};
access: {
instructorAccess: 'full';
taAccess: 'assigned_channels';
studentAccess: 'enrolled_courses_only';
};
}
{
"privacySettings": {
"messageHistory": "course_participants_only",
"directMessageAccess": "participants_only",
"searchability": "course_scoped",
"dataExport": "student_own_data_only",
"administrativeAccess": {
"instructors": ["view", "moderate", "export"],
"tas": ["view", "moderate"],
"students": ["view_own", "participate"]
}
}
}
🏠 Home
- Getting Started
- Installation Guide
- Authentication
- Course Management
- Collaborative Editing
- Assignments
- Notebook Features
- File Management
- Troubleshooting
- Setup & Development
- Architecture Overview
- Backend Development
- Frontend Development
- API Reference
- Contributing
- Deployment