-
Notifications
You must be signed in to change notification settings - Fork 0
assignment system
Mile Shi edited this page May 26, 2025
·
1 revision
The Intelligent IDE Assignment System provides a comprehensive platform for creating, distributing, completing, and grading educational assignments with built-in code execution, automated testing, and collaborative features.
The Assignment System features:
- Multi-format Support: Code, notebooks, essays, and mixed assignments
- Automated Testing: Real-time code validation and testing
- Plagiarism Detection: Academic integrity monitoring
- Collaborative Features: Group assignments and peer review
- Advanced Grading: Rubric-based and automated grading
- Analytics: Detailed performance and engagement metrics
# Assignment template structure
class CodeAssignment:
def __init__(self):
self.title = "Data Structures Implementation"
self.description = "Implement a binary search tree"
self.starter_code = "template.py"
self.test_cases = "test_bst.py"
self.requirements = ["time_complexity.md"]
self.rubric = "grading_rubric.json"
- Starter Code: Pre-written templates and scaffolding
- Unit Tests: Comprehensive test suites for validation
- Performance Testing: Time and space complexity analysis
- Code Quality: Style and best practices checking
"""
Assignment: Binary Search Tree Implementation
Due: March 15, 2025
Points: 100
Instructions:
Implement a Binary Search Tree with the following methods:
- insert(value): Add a new node
- search(value): Find a node
- delete(value): Remove a node
- inorder(): Return inorder traversal
"""
class BinarySearchTree:
def __init__(self):
self.root = None
def insert(self, value):
"""
Insert a value into the BST.
Args:
value: The value to insert
Returns:
None
"""
# TODO: Implement this method
pass
def search(self, value):
"""
Search for a value in the BST.
Args:
value: The value to search for
Returns:
bool: True if found, False otherwise
"""
# TODO: Implement this method
pass
# Test cases (do not modify)
def test_bst():
bst = BinarySearchTree()
# Test insertion
bst.insert(50)
bst.insert(30)
bst.insert(70)
# Test search
assert bst.search(30) == True
assert bst.search(100) == False
print("All tests passed!")
if __name__ == "__main__":
test_bst()
{
"assignment": {
"type": "notebook",
"title": "Data Analysis with Pandas",
"cells": [
{
"type": "markdown",
"content": "# Data Analysis Assignment\n\nAnalyze the provided dataset..."
},
{
"type": "code",
"content": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the dataset\ndf = pd.read_csv('student_data.csv')",
"editable": false
},
{
"type": "exercise",
"content": "# TODO: Calculate the mean GPA by major\nmean_gpa_by_major = # Your code here",
"points": 10,
"test_cases": ["assert abs(mean_gpa_by_major['CS'] - 3.45) < 0.01"]
}
]
}
}
- Data Visualizations: Interactive charts and graphs
- Mathematical Notation: LaTeX support for equations
- Multimedia: Embedded images, videos, and audio
- Interactive Widgets: Sliders, buttons, and input controls
interface EssayAssignment {
title: string;
prompt: string;
wordLimit: { min: number; max: number };
format: 'markdown' | 'html' | 'plain';
citations: {
required: boolean;
style: 'APA' | 'MLA' | 'Chicago';
minSources: number;
};
rubric: EssayRubric;
}
- Word Count: Real-time word and character counting
- Grammar Check: Built-in grammar and spell checking
- Citation Management: Automatic citation formatting
- Plagiarism Detection: Content originality verification
mixed_assignment:
title: "Machine Learning Project"
components:
- type: "code"
file: "model.py"
points: 40
description: "Implement the ML algorithm"
- type: "notebook"
file: "analysis.ipynb"
points: 30
description: "Data analysis and visualization"
- type: "essay"
file: "report.md"
points: 20
description: "Written analysis of results"
- type: "presentation"
file: "slides.pdf"
points: 10
description: "Project presentation"
// Assignment planning template
interface AssignmentPlan {
learningObjectives: string[];
difficulty: 'beginner' | 'intermediate' | 'advanced';
estimatedTime: number; // in hours
prerequisites: string[];
resources: Resource[];
assessment: AssessmentCriteria;
}
# Create assignment template
def create_assignment_template():
template = {
"metadata": {
"title": "Assignment Title",
"description": "Detailed description",
"due_date": "2025-03-15T23:59:59Z",
"points": 100,
"attempts_allowed": 3
},
"content": {
"instructions": "instruction_file.md",
"starter_files": ["template.py", "data.csv"],
"test_files": ["test_suite.py"],
"rubric": "rubric.json"
},
"settings": {
"auto_grade": True,
"late_submission": True,
"collaboration": False,
"plagiarism_check": True
}
}
return template
- Test Run: Execute assignment as a student would
- Automated Testing: Verify all test cases work correctly
- Peer Review: Have colleagues review assignment quality
- Student Feedback: Pilot with small group if possible
// Distribute assignment to enrolled students
async function distributeAssignment(assignmentId: string, courseId: string) {
const students = await courseService.getEnrolledStudents(courseId);
for (const student of students) {
await assignmentService.assignToStudent({
assignmentId,
studentId: student.id,
dueDate: assignment.dueDate,
maxAttempts: assignment.maxAttempts
});
await notificationService.sendAssignmentNotification(student.id, assignmentId);
}
}
{
"assignmentProgress": {
"assignmentId": "hw-005",
"totalStudents": 45,
"started": 42,
"submitted": 38,
"graded": 35,
"averageScore": 87.5,
"averageTimeSpent": "3h 20m",
"commonErrors": [
"Index out of bounds",
"Incorrect loop condition",
"Missing return statement"
]
}
}
interface StudentAssignmentView {
upcoming: Assignment[];
inProgress: Assignment[];
submitted: Assignment[];
graded: Assignment[];
overdue: Assignment[];
}
- Instructions: Clear, step-by-step guidance
- Resources: Links to relevant course materials
- Rubric: Detailed grading criteria
- Examples: Sample solutions or demonstrations
- Help: Access to instructor and TA support
# Integrated development features
class AssignmentWorkspace:
def __init__(self, assignment_id):
self.assignment = self.load_assignment(assignment_id)
self.auto_save = True
self.version_control = True
self.collaboration = self.assignment.allows_collaboration
def run_tests(self):
"""Run assignment test cases"""
results = test_runner.execute(self.assignment.test_cases)
return {
'passed': results.passed,
'failed': results.failed,
'errors': results.errors,
'coverage': results.coverage
}
def check_style(self):
"""Check code style and quality"""
return style_checker.analyze(self.code_files)
- Syntax Checking: Immediate error highlighting
- Test Results: Live test execution and results
- Performance Metrics: Runtime and memory usage
- Progress Tracking: Completion percentage
def validate_submission(submission):
"""Validate submission before final submit"""
checks = {
'files_present': check_required_files(submission),
'syntax_valid': check_syntax(submission),
'tests_pass': run_basic_tests(submission),
'size_limit': check_file_sizes(submission),
'format_correct': check_file_formats(submission)
}
return {
'valid': all(checks.values()),
'issues': [k for k, v in checks.items() if not v]
}
{
"submissionHistory": [
{
"id": "sub-001",
"timestamp": "2025-03-14T15:30:00Z",
"files": ["solution.py", "report.md"],
"status": "draft",
"score": null,
"feedback": null
},
{
"id": "sub-002",
"timestamp": "2025-03-15T22:45:00Z",
"files": ["solution.py", "report.md", "test_results.txt"],
"status": "submitted",
"score": 95,
"feedback": "Excellent work! Well-documented code."
}
]
}
class AutoGrader:
def __init__(self, assignment):
self.assignment = assignment
self.test_suite = TestSuite(assignment.test_cases)
def grade_submission(self, submission):
results = {
'correctness': self.test_correctness(submission),
'style': self.check_code_style(submission),
'performance': self.analyze_performance(submission),
'documentation': self.check_documentation(submission)
}
total_score = self.calculate_weighted_score(results)
return GradingResult(
score=total_score,
breakdown=results,
feedback=self.generate_feedback(results)
)
{
"rubric": {
"criteria": [
{
"name": "Correctness",
"weight": 50,
"levels": [
{"score": 100, "description": "All test cases pass"},
{"score": 80, "description": "Most test cases pass"},
{"score": 60, "description": "Some test cases pass"},
{"score": 20, "description": "Few test cases pass"},
{"score": 0, "description": "No test cases pass"}
]
},
{
"name": "Code Quality",
"weight": 30,
"levels": [
{"score": 100, "description": "Excellent style and documentation"},
{"score": 80, "description": "Good style with minor issues"},
{"score": 60, "description": "Acceptable style"},
{"score": 40, "description": "Poor style"},
{"score": 0, "description": "Very poor or no style"}
]
}
]
}
}
interface GradingInterface {
submission: StudentSubmission;
rubric: GradingRubric;
previousSubmissions: Submission[];
classAverage: number;
// Grading tools
addComment(lineNumber: number, comment: string): void;
setScore(criterion: string, score: number): void;
generateFeedback(): string;
compareWithSample(): ComparisonResult;
}
- Inline Comments: Add comments directly to code lines
- General Feedback: Overall assignment commentary
- Audio Feedback: Voice comments for complex explanations
- Video Feedback: Screen recordings for demonstrations
class PlagiarismDetector:
def __init__(self):
self.similarity_threshold = 0.85
self.ignore_patterns = ['imports', 'basic_syntax']
def analyze_submission(self, submission, class_submissions):
similarities = []
for other_submission in class_submissions:
if other_submission.id != submission.id:
similarity = self.calculate_similarity(
submission.code,
other_submission.code
)
if similarity > self.similarity_threshold:
similarities.append({
'student': other_submission.student_id,
'similarity': similarity,
'matched_sections': self.find_matches(
submission.code,
other_submission.code
)
})
return PlagiarismReport(
suspected_cases=similarities,
confidence_score=self.calculate_confidence(similarities)
)
interface AssignmentAnalytics {
performance: {
averageScore: number;
medianScore: number;
standardDeviation: number;
gradeDistribution: number[];
};
engagement: {
averageTimeSpent: number;
submissionPattern: TimePattern[];
helpRequestsCount: number;
};
difficulty: {
commonErrors: ErrorAnalysis[];
strugglingConcepts: string[];
successRate: number;
};
}
def predict_student_performance(student_history, assignment_difficulty):
"""Predict student performance on upcoming assignment"""
features = extract_features(student_history)
difficulty_factor = calculate_difficulty_factor(assignment_difficulty)
model = load_performance_model()
prediction = model.predict([features + [difficulty_factor]])
return {
'predicted_score': prediction[0],
'confidence': model.predict_proba([features + [difficulty_factor]])[0].max(),
'risk_level': 'high' if prediction[0] < 70 else 'low',
'recommendations': generate_recommendations(features, prediction[0])
}
group_assignment:
title: "Team Software Project"
group_size:
min: 3
max: 5
formation: "instructor_assigned" # or "self_selected"
roles:
- "Project Manager"
- "Lead Developer"
- "QA Engineer"
- "Documentation Lead"
deliverables:
- type: "code"
weight: 60
- type: "documentation"
weight: 25
- type: "presentation"
weight: 15
interface PeerReview {
reviewerId: string;
submissionId: string;
criteria: ReviewCriteria[];
comments: ReviewComment[];
score: number;
submitted: Date;
anonymous: boolean;
}
class PeerReviewManager {
assignReviewers(submissions: Submission[]): ReviewAssignment[] {
// Implement reviewer assignment algorithm
// Ensure no self-review and balanced distribution
}
aggregateReviews(reviews: PeerReview[]): AggregatedScore {
// Calculate final score from multiple peer reviews
}
}
// Export grades to external LMS
class LMSIntegration {
async exportGrades(assignmentId: string, lms: 'canvas' | 'blackboard' | 'moodle') {
const grades = await gradeService.getAssignmentGrades(assignmentId);
switch (lms) {
case 'canvas':
return await canvasAPI.uploadGrades(grades);
case 'blackboard':
return await blackboardAPI.uploadGrades(grades);
case 'moodle':
return await moodleAPI.uploadGrades(grades);
}
}
}
# Custom grader plugin interface
class CustomGrader:
def __init__(self, config):
self.config = config
def grade(self, submission):
"""
Custom grading logic
Args:
submission: Student submission object
Returns:
GradingResult: Score and feedback
"""
raise NotImplementedError
class MLModelGrader(CustomGrader):
def grade(self, submission):
# Use machine learning model for grading
features = self.extract_features(submission.code)
score = self.model.predict([features])[0]
return GradingResult(
score=score,
feedback=self.generate_ml_feedback(features, score)
)
- Clear Objectives: Define specific learning outcomes
- Appropriate Difficulty: Match difficulty to student level
- Comprehensive Testing: Cover edge cases and common errors
- Detailed Rubrics: Provide clear grading criteria
- Timely Feedback: Return graded work promptly
# Student support features
class StudentSupport:
def provide_hints(self, student_progress):
if student_progress.stuck_time > 30: # minutes
return self.generate_hint(student_progress.current_problem)
return None
def suggest_resources(self, error_pattern):
return {
'tutorials': self.find_relevant_tutorials(error_pattern),
'examples': self.find_similar_examples(error_pattern),
'office_hours': self.get_next_office_hours()
}
- Honor Code Integration: Built-in honor code acknowledgment
- Time-based Submissions: Prevent last-minute copying
- Variation in Problems: Multiple versions of assignments
- Monitoring Tools: Track unusual submission patterns
🏠 Home
- Getting Started
- Installation Guide
- Authentication
- Course Management
- Collaborative Editing
- Assignments
- Notebook Features
- File Management
- Troubleshooting
- Setup & Development
- Architecture Overview
- Backend Development
- Frontend Development
- API Reference
- Contributing
- Deployment