Skip to content

assignment system

Mile Shi edited this page May 26, 2025 · 1 revision

Assignment System

The Intelligent IDE Assignment System provides a comprehensive platform for creating, distributing, completing, and grading educational assignments with built-in code execution, automated testing, and collaborative features.

Overview

The Assignment System features:

  • Multi-format Support: Code, notebooks, essays, and mixed assignments
  • Automated Testing: Real-time code validation and testing
  • Plagiarism Detection: Academic integrity monitoring
  • Collaborative Features: Group assignments and peer review
  • Advanced Grading: Rubric-based and automated grading
  • Analytics: Detailed performance and engagement metrics

Assignment Types

1. Code Assignments

Structure

# Assignment template structure
class CodeAssignment:
    def __init__(self):
        self.title = "Data Structures Implementation"
        self.description = "Implement a binary search tree"
        self.starter_code = "template.py"
        self.test_cases = "test_bst.py"
        self.requirements = ["time_complexity.md"]
        self.rubric = "grading_rubric.json"

Features

  • Starter Code: Pre-written templates and scaffolding
  • Unit Tests: Comprehensive test suites for validation
  • Performance Testing: Time and space complexity analysis
  • Code Quality: Style and best practices checking

Example Assignment

"""
Assignment: Binary Search Tree Implementation
Due: March 15, 2025
Points: 100

Instructions:
Implement a Binary Search Tree with the following methods:
- insert(value): Add a new node
- search(value): Find a node
- delete(value): Remove a node
- inorder(): Return inorder traversal
"""

class BinarySearchTree:
    def __init__(self):
        self.root = None
    
    def insert(self, value):
        """
        Insert a value into the BST.
        
        Args:
            value: The value to insert
            
        Returns:
            None
        """
        # TODO: Implement this method
        pass
    
    def search(self, value):
        """
        Search for a value in the BST.
        
        Args:
            value: The value to search for
            
        Returns:
            bool: True if found, False otherwise
        """
        # TODO: Implement this method
        pass

# Test cases (do not modify)
def test_bst():
    bst = BinarySearchTree()
    
    # Test insertion
    bst.insert(50)
    bst.insert(30)
    bst.insert(70)
    
    # Test search
    assert bst.search(30) == True
    assert bst.search(100) == False
    
    print("All tests passed!")

if __name__ == "__main__":
    test_bst()

2. Notebook Assignments

Interactive Learning

{
  "assignment": {
    "type": "notebook",
    "title": "Data Analysis with Pandas",
    "cells": [
      {
        "type": "markdown",
        "content": "# Data Analysis Assignment\n\nAnalyze the provided dataset..."
      },
      {
        "type": "code",
        "content": "import pandas as pd\nimport matplotlib.pyplot as plt\n\n# Load the dataset\ndf = pd.read_csv('student_data.csv')",
        "editable": false
      },
      {
        "type": "exercise",
        "content": "# TODO: Calculate the mean GPA by major\nmean_gpa_by_major = # Your code here",
        "points": 10,
        "test_cases": ["assert abs(mean_gpa_by_major['CS'] - 3.45) < 0.01"]
      }
    ]
  }
}

Rich Content Support

  • Data Visualizations: Interactive charts and graphs
  • Mathematical Notation: LaTeX support for equations
  • Multimedia: Embedded images, videos, and audio
  • Interactive Widgets: Sliders, buttons, and input controls

3. Essay Assignments

Text Analysis Features

interface EssayAssignment {
  title: string;
  prompt: string;
  wordLimit: { min: number; max: number };
  format: 'markdown' | 'html' | 'plain';
  citations: {
    required: boolean;
    style: 'APA' | 'MLA' | 'Chicago';
    minSources: number;
  };
  rubric: EssayRubric;
}

Writing Support

  • Word Count: Real-time word and character counting
  • Grammar Check: Built-in grammar and spell checking
  • Citation Management: Automatic citation formatting
  • Plagiarism Detection: Content originality verification

4. Mixed Assignments

Comprehensive Projects

mixed_assignment:
  title: "Machine Learning Project"
  components:
    - type: "code"
      file: "model.py"
      points: 40
      description: "Implement the ML algorithm"
    
    - type: "notebook"
      file: "analysis.ipynb"
      points: 30
      description: "Data analysis and visualization"
    
    - type: "essay"
      file: "report.md"
      points: 20
      description: "Written analysis of results"
    
    - type: "presentation"
      file: "slides.pdf"
      points: 10
      description: "Project presentation"

Assignment Creation Workflow

For Instructors

1. Assignment Planning

// Assignment planning template
interface AssignmentPlan {
  learningObjectives: string[];
  difficulty: 'beginner' | 'intermediate' | 'advanced';
  estimatedTime: number; // in hours
  prerequisites: string[];
  resources: Resource[];
  assessment: AssessmentCriteria;
}

2. Template Creation

# Create assignment template
def create_assignment_template():
    template = {
        "metadata": {
            "title": "Assignment Title",
            "description": "Detailed description",
            "due_date": "2025-03-15T23:59:59Z",
            "points": 100,
            "attempts_allowed": 3
        },
        "content": {
            "instructions": "instruction_file.md",
            "starter_files": ["template.py", "data.csv"],
            "test_files": ["test_suite.py"],
            "rubric": "rubric.json"
        },
        "settings": {
            "auto_grade": True,
            "late_submission": True,
            "collaboration": False,
            "plagiarism_check": True
        }
    }
    return template

3. Testing and Validation

  • Test Run: Execute assignment as a student would
  • Automated Testing: Verify all test cases work correctly
  • Peer Review: Have colleagues review assignment quality
  • Student Feedback: Pilot with small group if possible

Distribution and Management

Automatic Distribution

// Distribute assignment to enrolled students
async function distributeAssignment(assignmentId: string, courseId: string) {
  const students = await courseService.getEnrolledStudents(courseId);
  
  for (const student of students) {
    await assignmentService.assignToStudent({
      assignmentId,
      studentId: student.id,
      dueDate: assignment.dueDate,
      maxAttempts: assignment.maxAttempts
    });
    
    await notificationService.sendAssignmentNotification(student.id, assignmentId);
  }
}

Progress Monitoring

{
  "assignmentProgress": {
    "assignmentId": "hw-005",
    "totalStudents": 45,
    "started": 42,
    "submitted": 38,
    "graded": 35,
    "averageScore": 87.5,
    "averageTimeSpent": "3h 20m",
    "commonErrors": [
      "Index out of bounds",
      "Incorrect loop condition",
      "Missing return statement"
    ]
  }
}

Student Experience

Assignment Discovery and Access

Student Dashboard

interface StudentAssignmentView {
  upcoming: Assignment[];
  inProgress: Assignment[];
  submitted: Assignment[];
  graded: Assignment[];
  overdue: Assignment[];
}

Assignment Details

  • Instructions: Clear, step-by-step guidance
  • Resources: Links to relevant course materials
  • Rubric: Detailed grading criteria
  • Examples: Sample solutions or demonstrations
  • Help: Access to instructor and TA support

Working on Assignments

Development Environment

# Integrated development features
class AssignmentWorkspace:
    def __init__(self, assignment_id):
        self.assignment = self.load_assignment(assignment_id)
        self.auto_save = True
        self.version_control = True
        self.collaboration = self.assignment.allows_collaboration
        
    def run_tests(self):
        """Run assignment test cases"""
        results = test_runner.execute(self.assignment.test_cases)
        return {
            'passed': results.passed,
            'failed': results.failed,
            'errors': results.errors,
            'coverage': results.coverage
        }
    
    def check_style(self):
        """Check code style and quality"""
        return style_checker.analyze(self.code_files)

Real-time Feedback

  • Syntax Checking: Immediate error highlighting
  • Test Results: Live test execution and results
  • Performance Metrics: Runtime and memory usage
  • Progress Tracking: Completion percentage

Submission Process

Pre-submission Validation

def validate_submission(submission):
    """Validate submission before final submit"""
    checks = {
        'files_present': check_required_files(submission),
        'syntax_valid': check_syntax(submission),
        'tests_pass': run_basic_tests(submission),
        'size_limit': check_file_sizes(submission),
        'format_correct': check_file_formats(submission)
    }
    
    return {
        'valid': all(checks.values()),
        'issues': [k for k, v in checks.items() if not v]
    }

Submission History

{
  "submissionHistory": [
    {
      "id": "sub-001",
      "timestamp": "2025-03-14T15:30:00Z",
      "files": ["solution.py", "report.md"],
      "status": "draft",
      "score": null,
      "feedback": null
    },
    {
      "id": "sub-002", 
      "timestamp": "2025-03-15T22:45:00Z",
      "files": ["solution.py", "report.md", "test_results.txt"],
      "status": "submitted",
      "score": 95,
      "feedback": "Excellent work! Well-documented code."
    }
  ]
}

Grading System

Automated Grading

Test-based Grading

class AutoGrader:
    def __init__(self, assignment):
        self.assignment = assignment
        self.test_suite = TestSuite(assignment.test_cases)
        
    def grade_submission(self, submission):
        results = {
            'correctness': self.test_correctness(submission),
            'style': self.check_code_style(submission),
            'performance': self.analyze_performance(submission),
            'documentation': self.check_documentation(submission)
        }
        
        total_score = self.calculate_weighted_score(results)
        return GradingResult(
            score=total_score,
            breakdown=results,
            feedback=self.generate_feedback(results)
        )

Rubric-based Grading

{
  "rubric": {
    "criteria": [
      {
        "name": "Correctness",
        "weight": 50,
        "levels": [
          {"score": 100, "description": "All test cases pass"},
          {"score": 80, "description": "Most test cases pass"},
          {"score": 60, "description": "Some test cases pass"},
          {"score": 20, "description": "Few test cases pass"},
          {"score": 0, "description": "No test cases pass"}
        ]
      },
      {
        "name": "Code Quality",
        "weight": 30,
        "levels": [
          {"score": 100, "description": "Excellent style and documentation"},
          {"score": 80, "description": "Good style with minor issues"},
          {"score": 60, "description": "Acceptable style"},
          {"score": 40, "description": "Poor style"},
          {"score": 0, "description": "Very poor or no style"}
        ]
      }
    ]
  }
}

Manual Grading Interface

Grading Workspace

interface GradingInterface {
  submission: StudentSubmission;
  rubric: GradingRubric;
  previousSubmissions: Submission[];
  classAverage: number;
  
  // Grading tools
  addComment(lineNumber: number, comment: string): void;
  setScore(criterion: string, score: number): void;
  generateFeedback(): string;
  compareWithSample(): ComparisonResult;
}

Feedback Tools

  • Inline Comments: Add comments directly to code lines
  • General Feedback: Overall assignment commentary
  • Audio Feedback: Voice comments for complex explanations
  • Video Feedback: Screen recordings for demonstrations

Advanced Features

Plagiarism Detection

Code Similarity Analysis

class PlagiarismDetector:
    def __init__(self):
        self.similarity_threshold = 0.85
        self.ignore_patterns = ['imports', 'basic_syntax']
        
    def analyze_submission(self, submission, class_submissions):
        similarities = []
        
        for other_submission in class_submissions:
            if other_submission.id != submission.id:
                similarity = self.calculate_similarity(
                    submission.code, 
                    other_submission.code
                )
                
                if similarity > self.similarity_threshold:
                    similarities.append({
                        'student': other_submission.student_id,
                        'similarity': similarity,
                        'matched_sections': self.find_matches(
                            submission.code, 
                            other_submission.code
                        )
                    })
        
        return PlagiarismReport(
            suspected_cases=similarities,
            confidence_score=self.calculate_confidence(similarities)
        )

Performance Analytics

Assignment Analytics Dashboard

interface AssignmentAnalytics {
  performance: {
    averageScore: number;
    medianScore: number;
    standardDeviation: number;
    gradeDistribution: number[];
  };
  
  engagement: {
    averageTimeSpent: number;
    submissionPattern: TimePattern[];
    helpRequestsCount: number;
  };
  
  difficulty: {
    commonErrors: ErrorAnalysis[];
    strugglingConcepts: string[];
    successRate: number;
  };
}

Predictive Analytics

def predict_student_performance(student_history, assignment_difficulty):
    """Predict student performance on upcoming assignment"""
    features = extract_features(student_history)
    difficulty_factor = calculate_difficulty_factor(assignment_difficulty)
    
    model = load_performance_model()
    prediction = model.predict([features + [difficulty_factor]])
    
    return {
        'predicted_score': prediction[0],
        'confidence': model.predict_proba([features + [difficulty_factor]])[0].max(),
        'risk_level': 'high' if prediction[0] < 70 else 'low',
        'recommendations': generate_recommendations(features, prediction[0])
    }

Collaboration Features

Group Assignments

group_assignment:
  title: "Team Software Project"
  group_size: 
    min: 3
    max: 5
  formation: "instructor_assigned" # or "self_selected"
  roles:
    - "Project Manager"
    - "Lead Developer" 
    - "QA Engineer"
    - "Documentation Lead"
  deliverables:
    - type: "code"
      weight: 60
    - type: "documentation"
      weight: 25
    - type: "presentation"
      weight: 15

Peer Review System

interface PeerReview {
  reviewerId: string;
  submissionId: string;
  criteria: ReviewCriteria[];
  comments: ReviewComment[];
  score: number;
  submitted: Date;
  anonymous: boolean;
}

class PeerReviewManager {
  assignReviewers(submissions: Submission[]): ReviewAssignment[] {
    // Implement reviewer assignment algorithm
    // Ensure no self-review and balanced distribution
  }
  
  aggregateReviews(reviews: PeerReview[]): AggregatedScore {
    // Calculate final score from multiple peer reviews
  }
}

Integration and Extensibility

LMS Integration

// Export grades to external LMS
class LMSIntegration {
  async exportGrades(assignmentId: string, lms: 'canvas' | 'blackboard' | 'moodle') {
    const grades = await gradeService.getAssignmentGrades(assignmentId);
    
    switch (lms) {
      case 'canvas':
        return await canvasAPI.uploadGrades(grades);
      case 'blackboard':
        return await blackboardAPI.uploadGrades(grades);
      case 'moodle':
        return await moodleAPI.uploadGrades(grades);
    }
  }
}

Custom Graders

# Custom grader plugin interface
class CustomGrader:
    def __init__(self, config):
        self.config = config
        
    def grade(self, submission):
        """
        Custom grading logic
        
        Args:
            submission: Student submission object
            
        Returns:
            GradingResult: Score and feedback
        """
        raise NotImplementedError
        
class MLModelGrader(CustomGrader):
    def grade(self, submission):
        # Use machine learning model for grading
        features = self.extract_features(submission.code)
        score = self.model.predict([features])[0]
        
        return GradingResult(
            score=score,
            feedback=self.generate_ml_feedback(features, score)
        )

Best Practices

Assignment Design

  1. Clear Objectives: Define specific learning outcomes
  2. Appropriate Difficulty: Match difficulty to student level
  3. Comprehensive Testing: Cover edge cases and common errors
  4. Detailed Rubrics: Provide clear grading criteria
  5. Timely Feedback: Return graded work promptly

Student Success Strategies

# Student support features
class StudentSupport:
    def provide_hints(self, student_progress):
        if student_progress.stuck_time > 30:  # minutes
            return self.generate_hint(student_progress.current_problem)
        return None
    
    def suggest_resources(self, error_pattern):
        return {
            'tutorials': self.find_relevant_tutorials(error_pattern),
            'examples': self.find_similar_examples(error_pattern),
            'office_hours': self.get_next_office_hours()
        }

Academic Integrity

  • Honor Code Integration: Built-in honor code acknowledgment
  • Time-based Submissions: Prevent last-minute copying
  • Variation in Problems: Multiple versions of assignments
  • Monitoring Tools: Track unusual submission patterns
Clone this wiki locally