Skip to content

Commit 669a730

Browse files
Conchylicultorcopybara-github
authored andcommitted
Automated documentation update
PiperOrigin-RevId: 300826885
1 parent cd0d858 commit 669a730

File tree

22 files changed

+5996
-25
lines changed

22 files changed

+5996
-25
lines changed

docs/catalog/_toc.yaml

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,8 @@ toc:
1212
title: ljspeech
1313
- path: /datasets/catalog/nsynth
1414
title: nsynth
15+
- path: /datasets/catalog/savee
16+
title: savee (manual)
1517
- path: /datasets/catalog/speech_commands
1618
title: speech_commands
1719
title: Audio
@@ -98,6 +100,8 @@ toc:
98100
title: flic
99101
- path: /datasets/catalog/food101
100102
title: food101
103+
- path: /datasets/catalog/geirhos_conflict_stimuli
104+
title: geirhos_conflict_stimuli
101105
- path: /datasets/catalog/horses_or_humans
102106
title: horses_or_humans
103107
- path: /datasets/catalog/i_naturalist2017
Lines changed: 70 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,70 @@
1+
<div itemscope itemtype="http://schema.org/Dataset">
2+
<div itemscope itemprop="includedInDataCatalog" itemtype="http://schema.org/DataCatalog">
3+
<meta itemprop="name" content="TensorFlow Datasets" />
4+
</div>
5+
6+
<meta itemprop="name" content="geirhos_conflict_stimuli" />
7+
<meta itemprop="description" content="Shape/texture conflict stimuli from &quot;ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness.&quot;&#10;&#10;Note that, although the dataset source contains images with matching shape and&#10;texture and we include them here, they are ignored for most evaluations in the&#10;original paper.&#10;&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;geirhos_conflict_stimuli&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
8+
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/geirhos_conflict_stimuli" />
9+
<meta itemprop="sameAs" content="https://github.com/rgeirhos/texture-vs-shape" />
10+
<meta itemprop="citation" content="@inproceedings{&#10; geirhos2018imagenettrained,&#10; title={ImageNet-trained {CNN}s are biased towards texture; increasing shape&#10; bias improves accuracy and robustness.},&#10; author={Robert Geirhos and Patricia Rubisch and Claudio Michaelis and&#10; Matthias Bethge and Felix A. Wichmann and Wieland Brendel},&#10; booktitle={International Conference on Learning Representations},&#10; year={2019},&#10; url={https://openreview.net/forum?id=Bygh9j09KX},&#10;}&#10;" />
11+
</div>
12+
13+
# `geirhos_conflict_stimuli`
14+
15+
* **Description**:
16+
17+
Shape/texture conflict stimuli from "ImageNet-trained CNNs are biased towards
18+
texture; increasing shape bias improves accuracy and robustness."
19+
20+
Note that, although the dataset source contains images with matching shape and
21+
texture and we include them here, they are ignored for most evaluations in the
22+
original paper.
23+
24+
* **Homepage**:
25+
[https://github.com/rgeirhos/texture-vs-shape](https://github.com/rgeirhos/texture-vs-shape)
26+
* **Source code**:
27+
[`tfds.image.geirhos_conflict_stimuli.GeirhosConflictStimuli`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/image/geirhos_conflict_stimuli.py)
28+
* **Versions**:
29+
* **`1.0.0`** (default): No release notes.
30+
* **Download size**: `153.96 MiB`
31+
* **Dataset size**: `130.44 MiB`
32+
* **Auto-cached**
33+
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
34+
Only when `shuffle_files=False` (test)
35+
* **Splits**:
36+
37+
Split | Examples
38+
:----- | -------:
39+
'test' | 1,280
40+
41+
* **Features**:
42+
43+
```python
44+
FeaturesDict({
45+
'file_name': Text(shape=(), dtype=tf.string),
46+
'image': Image(shape=(None, None, 3), dtype=tf.uint8),
47+
'shape_imagenet_labels': Sequence(ClassLabel(shape=(), dtype=tf.int64, num_classes=1000)),
48+
'shape_label': ClassLabel(shape=(), dtype=tf.int64, num_classes=16),
49+
'texture_imagenet_labels': Sequence(ClassLabel(shape=(), dtype=tf.int64, num_classes=1000)),
50+
'texture_label': ClassLabel(shape=(), dtype=tf.int64, num_classes=16),
51+
})
52+
```
53+
54+
* **Supervised keys** (See
55+
[`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):
56+
`('image', 'shape_label')`
57+
* **Citation**:
58+
59+
```
60+
@inproceedings{
61+
geirhos2018imagenettrained,
62+
title={ImageNet-trained {CNN}s are biased towards texture; increasing shape
63+
bias improves accuracy and robustness.},
64+
author={Robert Geirhos and Patricia Rubisch and Claudio Michaelis and
65+
Matthias Bethge and Felix A. Wichmann and Wieland Brendel},
66+
booktitle={International Conference on Learning Representations},
67+
year={2019},
68+
url={https://openreview.net/forum?id=Bygh9j09KX},
69+
}
70+
```

docs/catalog/libritts.md

Lines changed: 13 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -29,16 +29,23 @@ The main differences from the LibriSpeech corpus are listed below:
2929
* **Source code**:
3030
[`tfds.audio.libritts.Libritts`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/audio/libritts.py)
3131
* **Versions**:
32-
* **`1.0.0`** (default): No release notes.
33-
* **Download size**: `Unknown size`
34-
* **Dataset size**: `Unknown size`
32+
* **`1.0.1`** (default): No release notes.
33+
* **Download size**: `78.42 GiB`
34+
* **Dataset size**: `271.41 GiB`
3535
* **Auto-cached**
3636
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
37-
Unknown
37+
No
3838
* **Splits**:
3939

40-
Split | Examples
41-
:---- | -------:
40+
Split | Examples
41+
:--------------- | -------:
42+
'dev_clean' | 5,736
43+
'dev_other' | 4,613
44+
'test_clean' | 4,837
45+
'test_other' | 5,120
46+
'train_clean100' | 33,236
47+
'train_clean360' | 116,500
48+
'train_other500' | 205,044
4249

4350
* **Features**:
4451

docs/catalog/overview.md

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -40,6 +40,7 @@ np_datasets = tfds.as_numpy(datasets)
4040
* [`libritts`](libritts.md)
4141
* [`ljspeech`](ljspeech.md)
4242
* [`nsynth`](nsynth.md)
43+
* [`savee`](savee.md)
4344
* [`speech_commands`](speech_commands.md)
4445
* `Image`
4546
* [`abstract_reasoning`](abstract_reasoning.md)
@@ -83,6 +84,7 @@ np_datasets = tfds.as_numpy(datasets)
8384
* [`fashion_mnist`](fashion_mnist.md)
8485
* [`flic`](flic.md)
8586
* [`food101`](food101.md)
87+
* [`geirhos_conflict_stimuli`](geirhos_conflict_stimuli.md)
8688
* [`horses_or_humans`](horses_or_humans.md)
8789
* [`i_naturalist2017`](i_naturalist2017.md)
8890
* [`image_label_folder`](image_label_folder.md)

docs/catalog/robonet.md

Lines changed: 18 additions & 15 deletions
Original file line numberDiff line numberDiff line change
@@ -51,15 +51,16 @@ from 113 unique camera viewpoints.
5151
## robonet/robonet_sample_64 (default config)
5252

5353
* **Config description**: 64x64 RoboNet Sample.
54-
* **Download size**: `Unknown size`
55-
* **Dataset size**: `Unknown size`
54+
* **Download size**: `119.80 MiB`
55+
* **Dataset size**: `183.01 MiB`
5656
* **Auto-cached**
5757
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
58-
Unknown
58+
Only when `shuffle_files=False` (train)
5959
* **Splits**:
6060

61-
Split | Examples
62-
:---- | -------:
61+
Split | Examples
62+
:------ | -------:
63+
'train' | 700
6364

6465
* **Features**:
6566

@@ -74,15 +75,16 @@ FeaturesDict({
7475
## robonet/robonet_sample_128
7576

7677
* **Config description**: 128x128 RoboNet Sample.
77-
* **Download size**: `Unknown size`
78-
* **Dataset size**: `Unknown size`
78+
* **Download size**: `119.80 MiB`
79+
* **Dataset size**: `638.95 MiB`
7980
* **Auto-cached**
8081
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
81-
Unknown
82+
No
8283
* **Splits**:
8384

84-
Split | Examples
85-
:---- | -------:
85+
Split | Examples
86+
:------ | -------:
87+
'train' | 700
8688

8789
* **Features**:
8890

@@ -121,15 +123,16 @@ FeaturesDict({
121123
## robonet/robonet_128
122124

123125
* **Config description**: 128x128 RoboNet.
124-
* **Download size**: `Unknown size`
125-
* **Dataset size**: `Unknown size`
126+
* **Download size**: `36.20 GiB`
127+
* **Dataset size**: `144.90 GiB`
126128
* **Auto-cached**
127129
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
128-
Unknown
130+
No
129131
* **Splits**:
130132

131-
Split | Examples
132-
:---- | -------:
133+
Split | Examples
134+
:------ | -------:
135+
'train' | 162,417
133136

134137
* **Features**:
135138

docs/catalog/savee.md

Lines changed: 75 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,75 @@
1+
<div itemscope itemtype="http://schema.org/Dataset">
2+
<div itemscope itemprop="includedInDataCatalog" itemtype="http://schema.org/DataCatalog">
3+
<meta itemprop="name" content="TensorFlow Datasets" />
4+
</div>
5+
6+
<meta itemprop="name" content="savee" />
7+
<meta itemprop="description" content="&#10;SAVEE (Surrey Audio-Visual Expressed Emotion) is an emotion recognition&#10;dataset. It consists of recordings from 4 male actors in 7 different emotions,&#10;480 British English utterances in total. The sentences were chosen from the&#10;standard TIMIT corpus and phonetically-balanced for each emotion.&#10;This release contains only the audio stream from the original audio-visual&#10;recording.&#10;The data is split so that the training set consists of 2 speakers, and both the&#10;validation and test set consists of samples from 1 speaker, respectively.&#10;&#10;&#10;To use this dataset:&#10;&#10;```python&#10;import tensorflow_datasets as tfds&#10;&#10;ds = tfds.load(&#x27;savee&#x27;, split=&#x27;train&#x27;)&#10;for ex in ds.take(4):&#10; print(ex)&#10;```&#10;&#10;See [the guide](https://www.tensorflow.org/datasets/overview) for more&#10;informations on [tensorflow_datasets](https://www.tensorflow.org/datasets).&#10;&#10;" />
8+
<meta itemprop="url" content="https://www.tensorflow.org/datasets/catalog/savee" />
9+
<meta itemprop="sameAs" content="http://kahlan.eps.surrey.ac.uk/savee/" />
10+
<meta itemprop="citation" content="&#10;@inproceedings{Vlasenko_combiningframe,&#10;author = {Vlasenko, Bogdan and Schuller, Bjorn and Wendemuth, Andreas and Rigoll, Gerhard},&#10;year = {2007},&#10;month = {01},&#10;pages = {2249-2252},&#10;title = {Combining frame and turn-level information for robust recognition of emotions within speech},&#10;journal = {Proceedings of Interspeech}&#10;}&#10;" />
11+
</div>
12+
13+
# `savee`
14+
15+
Warning: Manual download required. See instructions below.
16+
17+
* **Description**:
18+
19+
SAVEE (Surrey Audio-Visual Expressed Emotion) is an emotion recognition dataset.
20+
It consists of recordings from 4 male actors in 7 different emotions, 480
21+
British English utterances in total. The sentences were chosen from the standard
22+
TIMIT corpus and phonetically-balanced for each emotion. This release contains
23+
only the audio stream from the original audio-visual recording. The data is
24+
split so that the training set consists of 2 speakers, and both the validation
25+
and test set consists of samples from 1 speaker, respectively.
26+
27+
* **Homepage**:
28+
[http://kahlan.eps.surrey.ac.uk/savee/](http://kahlan.eps.surrey.ac.uk/savee/)
29+
* **Source code**:
30+
[`tfds.audio.savee.Savee`](https://github.com/tensorflow/datasets/tree/master/tensorflow_datasets/audio/savee.py)
31+
* **Versions**:
32+
* **`1.0.0`** (default): No release notes.
33+
* **Download size**: `Unknown size`
34+
* **Dataset size**: `Unknown size`
35+
* **Manual download instructions**: This dataset requires you to download the
36+
source data manually into `download_config.manual_dir`
37+
(defaults to `~/tensorflow_datasets/manual/savee/`):<br/>
38+
manual_dir should contain the file AudioData.zip. This file should be under
39+
Data/Zip/AudioData.zip in the dataset folder provided upon registration.
40+
You need to register at
41+
http://personal.ee.surrey.ac.uk/Personal/P.Jackson/SAVEE/Register.html in
42+
order to get the link to download the dataset.
43+
* **Auto-cached**
44+
([documentation](https://www.tensorflow.org/datasets/performances#auto-caching)):
45+
Unknown
46+
* **Splits**:
47+
48+
Split | Examples
49+
:---- | -------:
50+
51+
* **Features**:
52+
53+
```python
54+
FeaturesDict({
55+
'audio': Audio(shape=(None,), dtype=tf.int64),
56+
'label': ClassLabel(shape=(), dtype=tf.int64, num_classes=7),
57+
'speaker_id': tf.string,
58+
})
59+
```
60+
61+
* **Supervised keys** (See
62+
[`as_supervised` doc](https://www.tensorflow.org/datasets/api_docs/python/tfds/load#args)):
63+
`('audio', 'label')`
64+
* **Citation**:
65+
66+
```
67+
@inproceedings{Vlasenko_combiningframe,
68+
author = {Vlasenko, Bogdan and Schuller, Bjorn and Wendemuth, Andreas and Rigoll, Gerhard},
69+
year = {2007},
70+
month = {01},
71+
pages = {2249-2252},
72+
title = {Combining frame and turn-level information for robust recognition of emotions within speech},
73+
journal = {Proceedings of Interspeech}
74+
}
75+
```

0 commit comments

Comments
 (0)