-
Notifications
You must be signed in to change notification settings - Fork 23
Home
FlameSky edited this page Jan 14, 2022
·
32 revisions
MMSA-Feature Extraction Tool extracts multimodal features for Multimodal Sentiment Analysis Datasets. It integrates several commonly used tools for visual, acoustic and text modality. The extracted features are compatible with the MMSA Framework and thus can be used directly. The tool can also extract features for single videos.
$ pip install MMSA-FET
from MSA_FET import FeatureExtractionTool
# initialize with config file
fet = FeatureExtractionTool("config.json")
# extract features for single video
feature = fet.run_single("input.mp4")
print(feature)
# extract for dataset & save features to file
feature = fet.run_dataset(dataset_dir="~/MOSI", out_file="output/feature.pkl")
For more details, please read Wiki.
The tool comes with a few example configs which can be used like below.
# Every tool has an example config
fet = FeatureExtractionTool(config="openface")
fet = FeatureExtractionTool(config="bert")
fet = FeatureExtractionTool(config="librosa")
...
For customized features, you'll have to provide a config file which is in the following format.
{
"audio": {
"tool": "librosa",
"sample_rate": null,
"args": {
"mfcc": {
"n_mfcc": 20,
"htk": true
},
"rms": {},
"zero_crossing_rate": {},
"spectral_rolloff": {},
"spectral_centroid": {}
}
},
"video": {
"tool": "openface",
"fps": 25,
"average_over": 3,
"args": {
"hogalign": false,
"simalign": false,
"nobadaligned": false,
"landmark_2D": true,
"landmark_3D": false,
"pdmparams": false,
"head_pose": true,
"action_units": true,
"gaze": true,
"tracked": false
}
},
"text": {
"model": "bert",
"device": "cpu",
"pretrained": "models/bert_base_uncased",
"args": {}
}
}