Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
-
Updated
Dec 30, 2024 - Python
Differentiable SDE solvers with GPU support and efficient sensitivity analysis.
Generate realizations of stochastic processes in python.
Quant Option Pricing - Exotic/Vanilla: Barrier, Asian, European, American, Parisian, Lookback, Cliquet, Variance Swap, Swing, Forward Starting, Step, Fader
Option pricing function for the Heston model based on the implementation by Christian Kahl, Peter Jäckel and Roger Lord. Includes Black-Scholes-Merton option pricing and implied volatility estimation. No Financial Toolbox required.
DRIP Fixed Income is a collection of Java libraries for Instrument/Trading Conventions, Treasury Futures/Options, Funding/Forward/Overnight Curves, Multi-Curve Construction/Valuation, Collateral Valuation and XVA Metric Generation, Calibration and Hedge Attributions, Statistical Curve Construction, Bond RV Metrics, Stochastic Evolution and Optio…
Source code and data for the tutorial: "Getting started with particle Metropolis-Hastings for inference in nonlinear models"
Monte Carlo option pricing algorithms for vanilla and exotic options
Quantitative finance and derivative pricing
Numerical experiments with stochastic differential equations
A list (quite disorganized for now) of papers tackling the Bayesian estimation of Ito processes (and their discrete time version)
R Code to accompany "A Note on Efficient Fitting of Stochastic Volatility Models"
Bayesian optimisation for fast approximate inference in state-space models with intractable likelihoods
Stochastic volatility models and their application to Deribit crypro-options exchange
Bayer, Friz, Gassiat, Martin, Stemper (2017). A regularity structure for finance.
This is a collection of Stochastic indicators. It's developed in PineScript for the technical analysis platform of TradingView.
Demonstrates how to price derivatives in a Heston framework, using successive approximations of the invariant distribution of a Markov ergodic diffusion with decreasing time discretization steps. The framework is that of G. Pagès & F. Panloup.
Comparison of different implementations of the same stochastic volatility model (stochvol, JAGS, Stan)
A Python implementation of E. Robert Fernholz's Stochastic Portfolio Theory framework. This library provides tools for researchers, quantitative analysts, and portfolio managers to analyze, optimize, and simulate equity portfolios using the mathematical framework of Stochastic Portfolio Theory.
Add a description, image, and links to the stochastic-volatility-models topic page so that developers can more easily learn about it.
To associate your repository with the stochastic-volatility-models topic, visit your repo's landing page and select "manage topics."