Skip to content

Commit fd958ee

Browse files
Update mlpaths.md
1 parent 3ec34b5 commit fd958ee

File tree

1 file changed

+12
-64
lines changed

1 file changed

+12
-64
lines changed

docs/mlpaths.md

Lines changed: 12 additions & 64 deletions
Original file line numberDiff line numberDiff line change
@@ -3,17 +3,6 @@
33

44
We present 12 topics in the data science learning path, providing learning objectives, related skills, subtopics, and references/resources for each. The goal is to give graduate students a structured and comprehensive program to acquire data science expertise, including hands-on experience with real-world open-source tools and libraries.
55

6-
```mermaid
7-
timeline
8-
title History of Social Media Platform
9-
2002 : LinkedIn
10-
2004 : Facebook
11-
: Google
12-
2005 : Youtube
13-
2006 : Twitter
14-
click Youtube href "http://www.youtube.com" "Open" _blank
15-
```
16-
176
```mermaid
187
timeline
198
title Machine Learning Learning Path
@@ -32,71 +21,30 @@ timeline
3221
3322
```
3423

35-
```mermaid
36-
flowchart TB
37-
subgraph ds ["`**General Data Science**`"]
38-
introds["`**Intro to Data Science and Machine Learning**`"] --> pyds["`**Python for Data Science**`"]
39-
end
40-
subgraph C ["`**Classical Machine Learning**`"]
41-
class["`**4.Classification Algorithms**`"] --> ensemble["`**5. Ensemble Methods**`"] --> UL["`**6. Unsupervised Learning**`"]
42-
end
43-
subgraph D ["`**Deep Learning**`"]
44-
introdl["`**Intro to Deep Learning**`"] --> RNN["`**Recurrent Neural Networks and Sequence Models**`"] --> Gen["`**Generative Models**`"] --> TL["`**Transfer Learning and Fine Tuning**`"]
45-
end
46-
47-
```
48-
49-
50-
```mermaid
51-
flowchart TB
52-
subgraph ds
53-
introds-->pyds
54-
end
55-
subgraph C ["`**Classical Machine Learning**`"]
56-
class["`**4.Classification Algorithms**`"]-->ensemble["`**5. Ensemble Methods**`"]-->UL["`**6. Unsupervised Learning**`"]
57-
end
58-
subgraph D ["`**Deep Learning**`"]
59-
introdl["`**Intro to Deep Learning**`"]-->RNN["`**Recurrent Neural Networks and Sequence Models**`"]-->Gen["`**Generative Models**`"]-->TL["`**Transfer Learning and Fine Tuning**`"]
60-
end
61-
62-
```
63-
64-
6524
A: General Data Science
66-
67-
1. Introduction to Data Science and Machine Learning
68-
69-
2. Python for Data Science
25+
- Introduction to Data Science and Machine Learning
26+
- Python for Data Science
27+
- Ethical Considerations in Data Science
7028

7129
B: Statistics
72-
73-
3. Statistical Learning and Regression Models
30+
- Statistical Learning and Regression Models
7431

7532
C: Classical Machine Learning
76-
77-
4. Classification Algorithms
78-
79-
5. Ensemble Methods
80-
81-
6. Unsupervised Learning
33+
- Classification Algorithms
34+
- Ensemble Methods
35+
- Unsupervised Learning
8236

8337
D: Deep Learning
84-
85-
7. Introduction to Deep Learning
86-
87-
8. Recurrent Neural Networks and Sequence Models
88-
89-
9. Generative Models
90-
91-
10. Transfer Learning and Fine-tuning
38+
- Introduction to Deep Learning
39+
- Recurrent Neural Networks and Sequence Models
40+
- Generative Models
41+
- Transfer Learning and Fine-tuning
9242

9343
E: Continuous Development / Continuous Integration
9444

95-
11. Model Deployment and Productionization
45+
- Model Deployment and Productionization
9646

97-
F: Ethics
9847

99-
12. Ethical Considerations in Data Science
10048

10149

10250

0 commit comments

Comments
 (0)