@@ -1019,8 +1019,7 @@ def __init__(
1019
1019
self .global_num_experts = num_experts + self .global_redundant_expert_num
1020
1020
# static eplb initializing with expert_map_path
1021
1021
if self .expert_map_path and os .path .exists (
1022
- self .expert_map_path ) and os .access (
1023
- self .expert_map_path , os .R_OK ):
1022
+ self .expert_map_path ) and os .access (self .expert_map_path , os .R_OK ):
1024
1023
self .expert_load_balancer = ExpertLoadBalancer (
1025
1024
self .expert_map_path , self .global_num_experts )
1026
1025
self .local_num_experts , self .expert_map = (
@@ -1029,8 +1028,7 @@ def __init__(
1029
1028
self .log2phy = self .expert_load_balancer .get_rank_log2phy_map (
1030
1029
self .moe_instance_id , self .ep_rank ).npu ()
1031
1030
self .global_redundant_expert_num = (
1032
- self .expert_load_balancer .get_global_redundant_expert_num (
1033
- ))
1031
+ self .expert_load_balancer .get_global_redundant_expert_num ())
1034
1032
else :
1035
1033
# init moe.
1036
1034
self .local_num_experts , self .expert_map = determine_expert_map (
@@ -1044,9 +1042,10 @@ def __init__(
1044
1042
self .log2phy = determine_default_log2phy_map (
1045
1043
self .global_num_experts , self .ep_size , self .ep_rank ,
1046
1044
self .global_redundant_expert_num )
1047
- local_num_experts = (torch .sum (self .expert_map != - 1 ) if
1048
- self .expert_map is not None else num_experts )
1049
- self .moe_load = torch .zeros (local_num_experts , dtype = torch .int64 )
1045
+ local_num_experts = (torch .sum (self .expert_map != - 1 )
1046
+ if self .expert_map is not None else num_experts )
1047
+ if self .dynamic_eplb :
1048
+ self .moe_load = torch .zeros (local_num_experts , dtype = torch .int64 )
1050
1049
1051
1050
self .torchair_graph_enabled = ascend_config .torchair_graph_config .enabled
1052
1051
self .enable_multistream_moe = \
0 commit comments