|
| 1 | +import unittest |
| 2 | +from unittest.mock import MagicMock, patch |
| 3 | + |
| 4 | +import torch |
| 5 | +import torch.nn as nn |
| 6 | +from vllm_ascend.models.qwen3_moe import AscendQwen3MoeSparseMoeBlock |
| 7 | + |
| 8 | + |
| 9 | +class TestAscendQwen3MoeSparseMoeBlock(unittest.TestCase): |
| 10 | + |
| 11 | + def setUp(self): |
| 12 | + # Create a mock config |
| 13 | + self.mock_config = MagicMock() |
| 14 | + self.mock_config.hidden_size = 512 |
| 15 | + self.mock_config.num_experts = 8 |
| 16 | + self.mock_config.num_experts_per_tok = 2 |
| 17 | + self.mock_config.moe_intermediate_size = 1024 |
| 18 | + self.mock_config.norm_topk_prob = True |
| 19 | + |
| 20 | + # Mock all the distributed and environment dependencies |
| 21 | + self.patchers = [ |
| 22 | + patch('vllm.distributed.get_tensor_model_parallel_world_size', |
| 23 | + return_value=1), |
| 24 | + patch('vllm_ascend.ascend_config.get_ascend_config', |
| 25 | + return_value=MagicMock(torchair_graph_config=MagicMock( |
| 26 | + enabled=True, enable_multistream_moe=True))), |
| 27 | + patch('vllm.distributed.parallel_state.get_dp_group', |
| 28 | + return_value=MagicMock(world_size=1)), |
| 29 | + patch('vllm.distributed.get_tp_group', |
| 30 | + return_value=MagicMock(device_group=None, rank_in_group=0)), |
| 31 | + patch('vllm_ascend.distributed.parallel_state.get_ep_group', |
| 32 | + return_value=None), |
| 33 | + patch('vllm.forward_context.get_forward_context', |
| 34 | + return_value=MagicMock(attn_metadata=None)), |
| 35 | + patch('torch.get_default_dtype', return_value=torch.float32) |
| 36 | + ] |
| 37 | + |
| 38 | + for patcher in self.patchers: |
| 39 | + patcher.start() |
| 40 | + |
| 41 | + # Mock the ReplicatedLinear and AscendFusedMoE classes |
| 42 | + self.mock_replicated_linear = MagicMock(spec=nn.Linear) |
| 43 | + self.mock_fused_moe = MagicMock() |
| 44 | + |
| 45 | + with patch('vllm.model_executor.layers.linear.ReplicatedLinear', return_value=self.mock_replicated_linear), \ |
| 46 | + patch('vllm_ascend.ops.fused_moe.AscendFusedMoE', return_value=self.mock_fused_moe): |
| 47 | + |
| 48 | + self.block = AscendQwen3MoeSparseMoeBlock(config=self.mock_config, |
| 49 | + quant_config=None, |
| 50 | + prefix="moe") |
| 51 | + |
| 52 | + def tearDown(self): |
| 53 | + for patcher in self.patchers: |
| 54 | + patcher.stop() |
| 55 | + |
| 56 | + def test_initialization(self): |
| 57 | + # Test initialization values |
| 58 | + self.assertEqual(self.block.top_k, |
| 59 | + self.mock_config.num_experts_per_tok) |
| 60 | + self.assertEqual(self.block.params_dtype, torch.float32) |
| 61 | + self.assertTrue(self.block.torchair_graph_enabled) |
| 62 | + self.assertTrue(self.block.enable_multistream_moe) |
| 63 | + |
| 64 | + # Check if submodules were created |
| 65 | + self.mock_replicated_linear.assert_called_once() |
| 66 | + self.mock_fused_moe.assert_called_once() |
| 67 | + |
| 68 | + def test_forward_with_attn_metadata(self): |
| 69 | + # Setup mock return values |
| 70 | + mock_router_logits = torch.randn(10, self.mock_config.num_experts) |
| 71 | + self.mock_replicated_linear.return_value = (mock_router_logits, None) |
| 72 | + |
| 73 | + mock_hidden_states = torch.randn(10, self.mock_config.hidden_size) |
| 74 | + mock_output = torch.randn(10, self.mock_config.hidden_size) |
| 75 | + self.mock_fused_moe.return_value = mock_output |
| 76 | + |
| 77 | + # Mock attention metadata |
| 78 | + mock_attn_metadata = MagicMock() |
| 79 | + mock_attn_metadata.with_prefill_across_dp = False |
| 80 | + |
| 81 | + # Test forward pass |
| 82 | + output = self.block(mock_hidden_states, mock_attn_metadata) |
| 83 | + |
| 84 | + # Verify calls |
| 85 | + self.mock_replicated_linear.assert_called_once_with(mock_hidden_states) |
| 86 | + self.mock_fused_moe.assert_called_once_with( |
| 87 | + hidden_states=mock_hidden_states, |
| 88 | + router_logits=mock_router_logits, |
| 89 | + is_prefill=False, |
| 90 | + top_k=self.mock_config.num_experts_per_tok, |
| 91 | + enable_force_load_balance=False, |
| 92 | + shared_experts=None) |
| 93 | + self.assertTrue(torch.equal(output, mock_output)) |
| 94 | + |
| 95 | + def test_forward_without_attn_metadata(self): |
| 96 | + # Setup mock return values |
| 97 | + mock_router_logits = torch.randn(10, self.mock_config.num_experts) |
| 98 | + self.mock_replicated_linear.return_value = (mock_router_logits, None) |
| 99 | + |
| 100 | + mock_hidden_states = torch.randn(10, self.mock_config.hidden_size) |
| 101 | + mock_output = torch.randn(10, self.mock_config.hidden_size) |
| 102 | + self.mock_fused_moe.return_value = mock_output |
| 103 | + |
| 104 | + # Test forward pass without attention metadata |
| 105 | + output = self.block(mock_hidden_states) |
| 106 | + |
| 107 | + # Verify calls - should use default values when no metadata |
| 108 | + self.mock_replicated_linear.assert_called_once_with(mock_hidden_states) |
| 109 | + self.mock_fused_moe.assert_called_once_with( |
| 110 | + hidden_states=mock_hidden_states, |
| 111 | + router_logits=mock_router_logits, |
| 112 | + is_prefill=True, |
| 113 | + top_k=self.mock_config.num_experts_per_tok, |
| 114 | + enable_force_load_balance=True, |
| 115 | + shared_experts=None) |
| 116 | + self.assertTrue(torch.equal(output, mock_output)) |
| 117 | + |
| 118 | + def test_tp_size_greater_than_experts(self): |
| 119 | + # Test the validation for TP size vs number of experts |
| 120 | + with patch('vllm.distributed.get_tensor_model_parallel_world_size', |
| 121 | + return_value=10): |
| 122 | + with self.assertRaises(ValueError) as context: |
| 123 | + self.block = AscendQwen3MoeSparseMoeBlock( |
| 124 | + config=self.mock_config, quant_config=None, prefix="moe") |
| 125 | + self.assertIn("Tensor parallel size 10 is greater than", |
| 126 | + str(context.exception)) |
0 commit comments