|
| 1 | +# |
| 2 | +# Copyright (c) 2025 Huawei Technologies Co., Ltd. All Rights Reserved. |
| 3 | +# Copyright 2023 The vLLM team. |
| 4 | +# |
| 5 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | +# you may not use this file except in compliance with the License. |
| 7 | +# You may obtain a copy of the License at |
| 8 | +# |
| 9 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | +# |
| 11 | +# Unless required by applicable law or agreed to in writing, software |
| 12 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | +# See the License for the specific language governing permissions and |
| 15 | +# limitations under the License. |
| 16 | +# This file is a part of the vllm-ascend project. |
| 17 | +# Adapted from vllm-project/vllm/examples/offline_inference/data_parallel.py |
| 18 | + |
| 19 | +# Note: This script is designed to run with e2e test, |
| 20 | +# please be careful to modify it. |
| 21 | +""" |
| 22 | +Usage: |
| 23 | +Single node: |
| 24 | + Dense models: |
| 25 | + python examples/offline_weight_load.py \ |
| 26 | + --model="Qwen/Qwen2.5-0.5B-Instruct" \ |
| 27 | + --tp-size=1 \ |
| 28 | + --proc-per-node=2 |
| 29 | + MOE models: |
| 30 | + python examples/offline_weight_load.py \ |
| 31 | + --model="Qwen/Qwen3-30B-A3B" \ |
| 32 | + --tp-size=2 \ |
| 33 | + --proc-per-node=2 \ |
| 34 | + --enable-expert-parallel |
| 35 | + |
| 36 | +Multi-node: |
| 37 | + Node 0 (assume the node has ip of 10.99.48.128): |
| 38 | + python examples/offline_weight_load.py \ |
| 39 | + --model="Qwen/Qwen3-30B-A3B" \ |
| 40 | + --tp-size=2 \ |
| 41 | + --node-size=2 \ |
| 42 | + --node-rank=0 \ |
| 43 | + --proc-per-node=2 \ |
| 44 | + --enable-expert-parallel \ |
| 45 | + --master-addr=10.99.48.128 \ |
| 46 | + --master-port=13345 |
| 47 | + Node 1: |
| 48 | + python examples/offline_weight_load.py \ |
| 49 | + --model="Qwen/Qwen3-30B-A3B" \ |
| 50 | + --tp-size=2 \ |
| 51 | + --node-size=2 \ |
| 52 | + --node-rank=1 \ |
| 53 | + --enable-expert-parallel \ |
| 54 | + --master-addr=10.99.48.128 \ |
| 55 | + --master-port=13345 |
| 56 | +""" |
| 57 | + |
| 58 | +import argparse |
| 59 | +import contextlib |
| 60 | +import gc |
| 61 | +import os |
| 62 | +from multiprocessing import Process |
| 63 | +from time import sleep |
| 64 | + |
| 65 | +import torch |
| 66 | +from vllm import LLM, SamplingParams |
| 67 | +from vllm.distributed.parallel_state import ( # noqa E402 |
| 68 | + destroy_distributed_environment, destroy_model_parallel, get_tp_group) |
| 69 | +from vllm.utils import get_open_port, GiB_bytes |
| 70 | +from safetensors.torch import load_file |
| 71 | + |
| 72 | +os.environ["VLLM_USE_MODELSCOPE"] = "True" |
| 73 | +os.environ["VLLM_WORKER_MULTIPROC_METHOD"] = "spawn" |
| 74 | + |
| 75 | +def patch_vllm_moe_model_weight_loader(model): |
| 76 | + # Define MLP attribute mapping for different model types |
| 77 | + |
| 78 | + model = getattr(model, "model", None) or getattr(model, "language_model", None) |
| 79 | + if model is None: |
| 80 | + raise ValueError("The provided model does not have a valid 'model' or 'language_model' attribute.") |
| 81 | + |
| 82 | + for layer in model.layers: |
| 83 | + mlp_attr = "mlp" |
| 84 | + mlp = getattr(layer, mlp_attr) |
| 85 | + |
| 86 | + param_dict = dict(mlp.named_parameters()) |
| 87 | + for name, param in param_dict.items(): |
| 88 | + if "w13_weight" in name or "w2_weight" in name: |
| 89 | + param.weight_loader = mlp.experts.weight_loader |
| 90 | + |
| 91 | +def load_and_merge_safetensors(directory): |
| 92 | + merged_dict = {} |
| 93 | + |
| 94 | + if not os.path.isdir(directory): |
| 95 | + raise ValueError(f"directory is not exist : {directory}") |
| 96 | + |
| 97 | + for filename in os.listdir(directory): |
| 98 | + if filename.endswith('.safetensors'): |
| 99 | + file_path = os.path.join(directory, filename) |
| 100 | + print(f"loading file: {file_path}") |
| 101 | + |
| 102 | + f = load_file(file_path) |
| 103 | + merged_dict.update(f) |
| 104 | + |
| 105 | + return merged_dict |
| 106 | + |
| 107 | +def parse_args(): |
| 108 | + |
| 109 | + parser = argparse.ArgumentParser(description="External launcher Inference") |
| 110 | + parser.add_argument( |
| 111 | + "--model", |
| 112 | + type=str, |
| 113 | + default="Qwen/Qwen3-0.6B", |
| 114 | + help="Model name or path", |
| 115 | + ) |
| 116 | + parser.add_argument("--tp-size", |
| 117 | + type=int, |
| 118 | + default=1, |
| 119 | + help="Tensor parallel size") |
| 120 | + parser.add_argument("--node-size", |
| 121 | + type=int, |
| 122 | + default=1, |
| 123 | + help="Total number of nodes") |
| 124 | + parser.add_argument("--node-rank", |
| 125 | + type=int, |
| 126 | + default=0, |
| 127 | + help="Rank of the current node") |
| 128 | + parser.add_argument("--proc-per-node", |
| 129 | + type=int, |
| 130 | + default=1, |
| 131 | + help="Number of processes per node") |
| 132 | + parser.add_argument("--master-addr", |
| 133 | + type=str, |
| 134 | + default="", |
| 135 | + help="Master node IP address") |
| 136 | + parser.add_argument("--master-port", |
| 137 | + type=int, |
| 138 | + default=0, |
| 139 | + help="Master node port") |
| 140 | + parser.add_argument("--enforce-eager", |
| 141 | + action="store_true", |
| 142 | + help="Enforce eager mode execution.") |
| 143 | + parser.add_argument("--trust-remote-code", |
| 144 | + action="store_true", |
| 145 | + help="Trust remote code.") |
| 146 | + parser.add_argument("--enable-expert-parallel", |
| 147 | + action="store_true", |
| 148 | + help="Enable expert parallel, used in MOE models.") |
| 149 | + parser.add_argument("--enable-sleep-mode", |
| 150 | + action="store_true", |
| 151 | + help="Enable sleep mode for the engine.") |
| 152 | + parser.add_argument("--temperature", |
| 153 | + type=float, |
| 154 | + default=0.8, |
| 155 | + help="Float that controls the randomness of the sampling.") |
| 156 | + parser.add_argument("--model-weight-gib", |
| 157 | + type=float, |
| 158 | + default=None, |
| 159 | + help="Model weight memory usage in GiB (e.g., 1.0 for 0.5B model).") |
| 160 | + |
| 161 | + args = parser.parse_args() |
| 162 | + if args.enable_sleep_mode: |
| 163 | + if args.model_weight_gib is None or args.temperature != 0: |
| 164 | + parser.error("model-weight-gib must be provided, and temperature must be zero when enable-sleep-mode is set.") |
| 165 | + if args.model_weight_gib <= 0: |
| 166 | + parser.error("model-weight-gib must be greater than 0 when enable-sleep-mode is set.") |
| 167 | + if args.model == parser.get_default("model") and args.model_weight_gib is None: |
| 168 | + parser.error("model-weight-gib must be provided for default model when enable-sleep-mode is set.") |
| 169 | + |
| 170 | + return args |
| 171 | + |
| 172 | + |
| 173 | +def main( |
| 174 | + local_rank: int, |
| 175 | + rank: int, |
| 176 | + master_addr: str, |
| 177 | + master_port: int, |
| 178 | + model_weight_gib: float, |
| 179 | + model: str = "Qwen/Qwen3-30B-A3B", |
| 180 | + world_size: int = 4, |
| 181 | + tensor_parallel_size: int = 2, |
| 182 | + enable_expert_parallel: bool = False, |
| 183 | + enforce_eager: bool = True, |
| 184 | + trust_remote_code: bool = True, |
| 185 | + enable_sleep_mode: bool = False, |
| 186 | + temperature: float = 0.8, |
| 187 | +): |
| 188 | + os.environ["MASTER_ADDR"] = master_addr |
| 189 | + os.environ["MASTER_PORT"] = str(master_port) |
| 190 | + os.environ["RANK"] = str(rank) |
| 191 | + os.environ["LOCAL_RANK"] = str(local_rank) |
| 192 | + os.environ["WORLD_SIZE"] = str(world_size) |
| 193 | + if not torch.distributed.is_initialized(): |
| 194 | + torch.distributed.init_process_group( |
| 195 | + backend="cpu:gloo,npu:hccl", |
| 196 | + world_size=world_size, |
| 197 | + rank=rank, |
| 198 | + ) |
| 199 | + prompts = [ |
| 200 | + "Hello, my name is", |
| 201 | + "The president of the United States is", |
| 202 | + "The capital of France is", |
| 203 | + "The future of AI is", |
| 204 | + ] * 10 |
| 205 | + sampling_params = SamplingParams( |
| 206 | + temperature=temperature, |
| 207 | + top_p=0.95, |
| 208 | + max_tokens=10, |
| 209 | + ) |
| 210 | + llm = LLM( |
| 211 | + model=model, |
| 212 | + tensor_parallel_size=tensor_parallel_size, |
| 213 | + enable_expert_parallel=enable_expert_parallel, |
| 214 | + enforce_eager=enforce_eager, |
| 215 | + trust_remote_code=trust_remote_code, |
| 216 | + distributed_executor_backend="external_launcher", |
| 217 | + seed=0, |
| 218 | + gpu_memory_utilization = 0.95, |
| 219 | + enable_sleep_mode=enable_sleep_mode, |
| 220 | + ) |
| 221 | + model_path = model |
| 222 | + runmodel = llm.llm_engine.model_executor.driver_worker.worker.model_runner.model |
| 223 | + patch_vllm_moe_model_weight_loader(runmodel) |
| 224 | + sd = load_and_merge_safetensors(model_path) |
| 225 | + runmodel.load_weights(sd.items()) |
| 226 | + print('load state dict done') |
| 227 | + tp_ranks = get_tp_group().ranks |
| 228 | + print(f'TP RANKS: {tp_ranks}') |
| 229 | + |
| 230 | + outputs = llm.generate(prompts, sampling_params) |
| 231 | + |
| 232 | + if enable_sleep_mode: |
| 233 | + if rank == 0: |
| 234 | + free_bytes_before_sleep, total = torch.npu.mem_get_info() |
| 235 | + llm.sleep(level=1) |
| 236 | + if rank == 0: |
| 237 | + free_bytes_after_sleep, total = torch.npu.mem_get_info() |
| 238 | + freed_bytes = free_bytes_after_sleep - free_bytes_before_sleep |
| 239 | + print(f"Freed memory: {freed_bytes / 1024 ** 3:.2f} GiB") |
| 240 | + # now the freed memory should be larger than the model weights |
| 241 | + assert freed_bytes >= model_weight_gib / tensor_parallel_size * GiB_bytes |
| 242 | + |
| 243 | + llm.wake_up() |
| 244 | + outputs_after_wakeup = llm.generate(prompts, sampling_params) |
| 245 | + if rank == 0: |
| 246 | + # cmp output |
| 247 | + assert outputs[0].outputs[0].text == outputs_after_wakeup[0].outputs[0].text |
| 248 | + print("Sleep and wake up successfully!!") |
| 249 | + |
| 250 | + for i, output in enumerate(outputs): |
| 251 | + if i >= 5: |
| 252 | + # print only 5 outputs |
| 253 | + break |
| 254 | + prompt = output.prompt |
| 255 | + generated_text = output.outputs[0].text |
| 256 | + print(f"Global rank: {rank}, Prompt: {prompt!r}, " |
| 257 | + f"Generated text: {generated_text!r}") |
| 258 | + |
| 259 | + # Give engines time to pause their processing loops before exiting. |
| 260 | + sleep(5) |
| 261 | + del llm |
| 262 | + cleanup_env_and_memory() |
| 263 | + |
| 264 | + |
| 265 | +def cleanup_env_and_memory(): |
| 266 | + destroy_model_parallel() |
| 267 | + destroy_distributed_environment() |
| 268 | + with contextlib.suppress(AssertionError): |
| 269 | + torch.distributed.destroy_process_group() |
| 270 | + gc.collect() |
| 271 | + torch.npu.empty_cache() |
| 272 | + torch.npu.reset_peak_memory_stats() |
| 273 | + |
| 274 | + |
| 275 | +if __name__ == "__main__": |
| 276 | + args = parse_args() |
| 277 | + |
| 278 | + tp_size = args.tp_size |
| 279 | + node_size = args.node_size |
| 280 | + proc_per_node = args.proc_per_node |
| 281 | + node_rank = args.node_rank |
| 282 | + |
| 283 | + if node_size == 1: |
| 284 | + master_addr = "127.0.0.1" |
| 285 | + master_port = get_open_port() |
| 286 | + else: |
| 287 | + master_addr = args.master_addr |
| 288 | + master_port = args.master_port |
| 289 | + |
| 290 | + world_size = node_size * proc_per_node |
| 291 | + |
| 292 | + procs = [] |
| 293 | + for local_rank, rank in enumerate( |
| 294 | + range(proc_per_node * node_rank, proc_per_node * (node_rank + 1))): |
| 295 | + proc = Process(target=main, |
| 296 | + args=( |
| 297 | + local_rank, |
| 298 | + rank, |
| 299 | + master_addr, |
| 300 | + master_port, |
| 301 | + args.model_weight_gib, |
| 302 | + args.model, |
| 303 | + world_size, |
| 304 | + tp_size, |
| 305 | + args.enable_expert_parallel, |
| 306 | + args.enforce_eager, |
| 307 | + args.trust_remote_code, |
| 308 | + args.enable_sleep_mode, |
| 309 | + args.temperature, |
| 310 | + )) |
| 311 | + |
| 312 | + proc.start() |
| 313 | + procs.append(proc) |
| 314 | + exit_code = 0 |
| 315 | + for proc in procs: |
| 316 | + proc.join(timeout=600) |
| 317 | + if proc.exitcode is None: |
| 318 | + print( |
| 319 | + f"Killing process {proc.pid} that didn't stop within 30 minutes." |
| 320 | + ) |
| 321 | + proc.kill() |
| 322 | + exit_code = 1 |
| 323 | + elif proc.exitcode: |
| 324 | + exit_code = proc.exitcode |
| 325 | + |
| 326 | + exit(exit_code) |
0 commit comments