Skip to content

Add UT for Patches #1766

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 23, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 89 additions & 4 deletions tests/ut/patch/worker/patch_common/test_patch_distributed.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,15 +13,100 @@
# This file is a part of the vllm-ascend project.
#

from unittest.mock import MagicMock, patch

import torch
from vllm.distributed.parallel_state import GroupCoordinator

from tests.ut.base import TestBase
from vllm_ascend.patch.worker.patch_common.patch_distributed import \
GroupCoordinatorPatch


class TestPatchDistributed(TestBase):

def test_GroupCoordinator_patched(self):
from vllm.distributed.parallel_state import GroupCoordinator
def setUp(self):
self.mock_group_ranks = [[0, 1]]
self.mock_local_rank = 0
self.mock_backend = "hccl"
self.mock_use_device_comm = True

patcher_get_rank = patch("torch.distributed.get_rank", return_value=0)
patcher_new_group = patch("torch.distributed.new_group",
return_value=MagicMock())
patcher_is_cuda_alike = patch(
"vllm.platforms.current_platform.is_cuda_alike", return_value=True)
patcher_device_comm_cls = patch(
"vllm.distributed.parallel_state.resolve_obj_by_qualname",
return_value=MagicMock())

self.mock_get_rank = patcher_get_rank.start()
self.mock_new_group = patcher_new_group.start()
self.mock_is_cuda_alike = patcher_is_cuda_alike.start()
self.mock_resolve_obj = patcher_device_comm_cls.start()

from vllm_ascend.patch.worker.patch_common.patch_distributed import \
GroupCoordinatorPatch
self.addCleanup(patcher_get_rank.stop)
self.addCleanup(patcher_new_group.stop)
self.addCleanup(patcher_is_cuda_alike.stop)
self.addCleanup(patcher_device_comm_cls.stop)

self.group_coordinator = GroupCoordinatorPatch(
group_ranks=self.mock_group_ranks,
local_rank=self.mock_local_rank,
torch_distributed_backend=self.mock_backend,
use_device_communicator=self.mock_use_device_comm)

def test_GroupCoordinator_patched(self):
self.assertIs(GroupCoordinator, GroupCoordinatorPatch)

def test_all_to_all_returns_input_when_world_size_1(self):
self.group_coordinator.world_size = 1
input_tensor = torch.randn(2, 3)
output = self.group_coordinator.all_to_all(input_tensor)
self.assertTrue(torch.equal(output, input_tensor))

def test_all_to_all_raises_assertion_on_invalid_scatter_dim(self):
input_tensor = torch.randn(2, 3)
with self.assertRaises(AssertionError) as cm:
self.group_coordinator.all_to_all(input_tensor, scatter_dim=2)
self.assertIn("Invalid scatter dim", str(cm.exception))

def test_all_to_all_raises_assertion_on_invalid_gather_dim(self):
input_tensor = torch.randn(2, 3)
with self.assertRaises(AssertionError) as cm:
self.group_coordinator.all_to_all(input_tensor, gather_dim=2)
self.assertIn("Invalid gather dim", str(cm.exception))

def test_all_to_all_calls_device_communicator_with_correct_args(self):
mock_communicator = MagicMock()
self.group_coordinator.device_communicator = mock_communicator

input_tensor = torch.randn(2, 3)
scatter_dim = 0
gather_dim = 1
scatter_sizes = [1, 1]
gather_sizes = [1, 1]

self.group_coordinator.all_to_all(input_tensor,
scatter_dim=scatter_dim,
gather_dim=gather_dim,
scatter_sizes=scatter_sizes,
gather_sizes=gather_sizes)

mock_communicator.all_to_all.assert_called_once_with(
input_tensor, scatter_dim, gather_dim, scatter_sizes, gather_sizes)

def test_all_to_all_calls_device_communicator_without_sizes(self):
mock_communicator = MagicMock()
self.group_coordinator.device_communicator = mock_communicator

input_tensor = torch.randn(2, 3)
scatter_dim = 0
gather_dim = 1

self.group_coordinator.all_to_all(input_tensor,
scatter_dim=scatter_dim,
gather_dim=gather_dim)

mock_communicator.all_to_all.assert_called_once_with(
input_tensor, scatter_dim, gather_dim, None, None)
77 changes: 77 additions & 0 deletions tests/ut/patch/worker/patch_common/test_patch_minicpm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,77 @@
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#

from unittest.mock import MagicMock

import torch

from tests.ut.base import TestBase
from vllm_ascend.patch.worker.patch_common.patch_minicpm import forward


class TestPatchMiniCPM(TestBase):

def setUp(self):
self.mock_self = MagicMock()

self.mock_self.q_size = 128
self.mock_self.kv_size = 128

self.mock_self.qkv_proj = MagicMock()
self.mock_self.rotary_emb = MagicMock()
self.mock_self.attn = MagicMock()
self.mock_self.o_proj = MagicMock()

self.positions = torch.tensor([1, 2, 3])
self.hidden_states = torch.randn(3, 256)

self.mock_qkv = torch.randn(3, 384)
self.mock_q = self.mock_qkv[:, :128]
self.mock_k = self.mock_qkv[:, 128:256]
self.mock_v = self.mock_qkv[:, 256:]

self.mock_self.qkv_proj.return_value = (self.mock_qkv, None)
self.mock_self.rotary_emb.return_value = (self.mock_q, self.mock_k)
self.mock_self.attn.return_value = torch.randn(3, 256)
self.mock_self.o_proj.return_value = (torch.randn(3, 256), None)

def test_forward_patched(self):
from vllm.model_executor.models.minicpm import MiniCPMAttention

self.assertIs(MiniCPMAttention.forward, forward)

def test_forward_function(self):
result = forward(self.mock_self, self.positions, self.hidden_states)

self.mock_self.qkv_proj.assert_called_once_with(self.hidden_states)

args, _ = self.mock_self.rotary_emb.call_args
self.assertEqual(len(args), 3)
self.assertTrue(torch.equal(args[0], self.positions))
self.assertTrue(torch.equal(args[1], self.mock_q))
self.assertTrue(torch.equal(args[2], self.mock_k))

args, _ = self.mock_self.attn.call_args
self.assertEqual(len(args), 3)
self.assertTrue(torch.equal(args[0], self.mock_q))
self.assertTrue(torch.equal(args[1], self.mock_k))
self.assertTrue(torch.equal(args[2], self.mock_v))

self.mock_self.o_proj.assert_called_once_with(
self.mock_self.attn.return_value)

self.assertEqual(result.shape, (3, 256))
self.assertTrue(
torch.equal(result, self.mock_self.o_proj.return_value[0]))
104 changes: 104 additions & 0 deletions tests/ut/patch/worker/patch_common/test_patch_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# This file is a part of the vllm-ascend project.
#

from typing import List, Optional
from unittest.mock import MagicMock, patch

import torch
from torch.library import Library

from tests.ut.base import TestBase
from vllm_ascend.patch.worker.patch_common.patch_utils import \
ascend_direct_register_custom_op


class TestPatchUtils(TestBase):

def setUp(self):
super().setUp()

self.mock_op_func = MagicMock()
self.mock_op_func.__annotations__ = {
'param1': list[int],
'param2': Optional[list[int]],
'param3': str
}

self.mock_fake_impl = MagicMock()
self.mock_lib = MagicMock(spec=Library)

self.op_name = "test_op"
self.mutates_args = ["arg1"]
self.dispatch_key = "NPU"
self.tags = (torch.Tag.pt2_compliant_tag, )

self.patch_infer_schema = patch(
'vllm_ascend.patch.worker.patch_common.patch_utils.torch.library.infer_schema'
)
self.patch_vllm_lib = patch(
'vllm_ascend.patch.worker.patch_common.patch_utils.vllm_lib')

self.mock_infer_schema = self.patch_infer_schema.start()
self.mock_vllm_lib = self.patch_vllm_lib.start()

self.addCleanup(self.patch_infer_schema.stop)
self.addCleanup(self.patch_vllm_lib.stop)

def test_utils_patched(self):
from vllm import utils

self.assertIs(utils.direct_register_custom_op,
ascend_direct_register_custom_op)

def test_register_with_default_lib(self):
self.mock_infer_schema.return_value = "(Tensor self) -> Tensor"

ascend_direct_register_custom_op(op_name=self.op_name,
op_func=self.mock_op_func,
mutates_args=self.mutates_args,
fake_impl=self.mock_fake_impl,
dispatch_key=self.dispatch_key,
tags=self.tags)

self.assertEqual(self.mock_op_func.__annotations__['param1'],
List[int])
self.assertEqual(self.mock_op_func.__annotations__['param2'],
Optional[List[int]])
self.assertEqual(self.mock_op_func.__annotations__['param3'], str)

self.mock_infer_schema.assert_called_once_with(
self.mock_op_func, mutates_args=self.mutates_args)

self.mock_vllm_lib.define.assert_called_once_with(
f"{self.op_name}(Tensor self) -> Tensor", tags=self.tags)
self.mock_vllm_lib.impl.assert_called_once_with(
self.op_name, self.mock_op_func, dispatch_key=self.dispatch_key)
self.mock_vllm_lib._register_fake.assert_called_once_with(
self.op_name, self.mock_fake_impl)

def test_register_with_custom_lib(self):
self.mock_infer_schema.return_value = "(Tensor a, Tensor b) -> Tensor"

ascend_direct_register_custom_op(op_name=self.op_name,
op_func=self.mock_op_func,
mutates_args=self.mutates_args,
target_lib=self.mock_lib)

self.mock_lib.define.assert_called_once_with(
f"{self.op_name}(Tensor a, Tensor b) -> Tensor", tags=())
self.mock_lib.impl.assert_called_once_with(self.op_name,
self.mock_op_func,
dispatch_key="CUDA")
self.mock_lib._register_fake.assert_not_called()
Loading