Skip to content

[Misc] Cherry pick #1749 #1755 from v0.9.1-dev #1826

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 5 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 0 additions & 32 deletions vllm_ascend/models/deepseek_dbo.py
Original file line number Diff line number Diff line change
Expand Up @@ -170,38 +170,6 @@ def __init__(
ascend_config = get_ascend_config()
self.torchair_graph_enabled = ascend_config.torchair_graph_config.enabled

def forward(
self,
hidden_states: torch.Tensor,
attn_metadata: Optional[AttentionMetadata] = None) -> torch.Tensor:
forward_context = get_forward_context()
# when profile runs, force experts to load balanced tokens
# to avoid high memory consumption on a single rank.
enable_force_load_balance = forward_context.in_profile_run

is_prefill = forward_context.with_prefill

old_hidden_states = hidden_states.clone()

# router_logits: (num_tokens, n_experts)
router_logits, _ = self.gate(hidden_states)

hidden_states = self.experts(
hidden_states=hidden_states,
router_logits=router_logits,
is_prefill=is_prefill,
top_k=CustomDeepseekDBOMoE.top_k,
enable_force_load_balance=enable_force_load_balance,
) * self.routed_scaling_factor

if self.n_shared_experts is not None:
shared_output = self.shared_experts(old_hidden_states)

if shared_output is not None:
hidden_states = hidden_states + shared_output

return hidden_states

# ----------------------------------------- TBO-related --------------------------------------------
def _forward_ms_op_shared_expert(
self,
Expand Down
93 changes: 93 additions & 0 deletions vllm_ascend/models/qwen2_5_vl_without_padding.py
Original file line number Diff line number Diff line change
Expand Up @@ -202,6 +202,66 @@ def cal_cos_sin(self, rotary_pos_emb):
self.hidden_size_per_attention_head)
return cos_new, sin_new

def rot_pos_emb(self, grid_thw: torch.Tensor) -> torch.Tensor:
pos_ids = []
for t, h, w in grid_thw:
hpos_ids = torch.arange(h).unsqueeze(1).expand(-1, w)
wpos_ids = torch.arange(w).unsqueeze(0).expand(h, -1)
hpos_ids = hpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
wpos_ids = wpos_ids.reshape(
h // self.spatial_merge_size,
self.spatial_merge_size,
w // self.spatial_merge_size,
self.spatial_merge_size,
).permute(0, 2, 1, 3).flatten()
pos_ids.append(
torch.stack([hpos_ids, wpos_ids], dim=-1).repeat(t, 1))
pos_ids = torch.cat(pos_ids, dim=0)
max_grid_size = grid_thw[:, 1:].max()
rotary_pos_emb_full = self.rotary_pos_emb(max_grid_size)
rotary_pos_emb = rotary_pos_emb_full[pos_ids].flatten(1)
return rotary_pos_emb

def get_window_index(self, grid_thw):
window_index: list = []
cu_window_seqlens: list = [0]
window_index_id = 0
vit_merger_window_size = (self.window_size //
self.spatial_merge_size // self.patch_size)

for grid_t, grid_h, grid_w in grid_thw:
llm_grid_h = grid_h // self.spatial_merge_size
llm_grid_w = grid_w // self.spatial_merge_size
index = torch.arange(grid_t * llm_grid_h * llm_grid_w).reshape(
grid_t, llm_grid_h, llm_grid_w)
pad_h = vit_merger_window_size - llm_grid_h % vit_merger_window_size
pad_w = vit_merger_window_size - llm_grid_w % vit_merger_window_size
num_windows_h = (llm_grid_h + pad_h) // vit_merger_window_size
num_windows_w = (llm_grid_w + pad_w) // vit_merger_window_size
index_padded = F.pad(index, (0, pad_w, 0, pad_h), 'constant', -100)
index_padded = index_padded.reshape(grid_t, num_windows_h,
vit_merger_window_size,
num_windows_w,
vit_merger_window_size)
index_padded = index_padded.permute(0, 1, 3, 2, 4).reshape(
grid_t, num_windows_h * num_windows_w, vit_merger_window_size,
vit_merger_window_size)
seqlens = (index_padded != -100).sum([2, 3]).reshape(-1)
index_padded = index_padded.reshape(-1)
index_new = index_padded[index_padded != -100]
window_index.append(index_new + window_index_id)
cu_seqlens_tmp = seqlens.cumsum(
0) * self.spatial_merge_unit + cu_window_seqlens[-1]
cu_window_seqlens.extend(cu_seqlens_tmp.tolist())
window_index_id += (grid_t * llm_grid_h * llm_grid_w).item()
window_index = torch.cat(window_index, dim=0)
return window_index, cu_window_seqlens

def forward(
self,
x: torch.Tensor,
Expand Down Expand Up @@ -253,6 +313,39 @@ def forward(
x = x[reverse_indices, :]
return x

def _process_image_input(self, image_input) -> tuple[torch.Tensor, ...]:

grid_thw = image_input["image_grid_thw"]
assert grid_thw.ndim == 2

if image_input["type"] == "image_embeds":
image_embeds = image_input["image_embeds"].type(self.visual.dtype)
else:
pixel_values = image_input["pixel_values"].type(self.visual.dtype)
image_embeds = self.visual(pixel_values, grid_thw=grid_thw)

# Split concatenated embeddings for each image item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return image_embeds.split(sizes.tolist())

def _process_video_input(self, video_input) -> tuple[torch.Tensor, ...]:

grid_thw = video_input["video_grid_thw"]
assert grid_thw.ndim == 2

if video_input["type"] == "video_embeds":
video_embeds = video_input["video_embeds"].type(self.visual.dtype)
else:
pixel_values_videos = video_input["pixel_values_videos"].type(
self.visual.dtype)
video_embeds = self.visual(pixel_values_videos, grid_thw=grid_thw)

# Split concatenated embeddings for each video item.
merge_size = self.visual.spatial_merge_size
sizes = grid_thw.prod(-1) // merge_size // merge_size
return video_embeds.split(sizes.tolist())


@MULTIMODAL_REGISTRY.register_processor(
Qwen2_5_VLMultiModalProcessor,
Expand Down
10 changes: 2 additions & 8 deletions vllm_ascend/quantization/quantizer.py
Original file line number Diff line number Diff line change
Expand Up @@ -46,14 +46,8 @@ def get_quantizer(cls,
if quantization_algorithm in CUSTOMIZED_QUANTIZER_TYPE:
return

try:
module = importlib.import_module("mindie_turbo")
MindIETurboQuantizer = module.MindIETurboQuantizer
return MindIETurboQuantizer.get_quantizer(quant_config, prefix,
packed_modules_mapping)
except ImportError:
return VLLMAscendQuantizer.get_quantizer(quant_config, prefix,
packed_modules_mapping)
return VLLMAscendQuantizer.get_quantizer(quant_config, prefix,
packed_modules_mapping)

def build_linear_method(self):
raise NotImplementedError
Expand Down
Loading