Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
95 changes: 95 additions & 0 deletions tests/ut/torchair/test_torchair_attention.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,95 @@
from unittest.mock import MagicMock, patch

import torch
from vllm.attention.backends.abstract import AttentionType
from vllm.distributed.parallel_state import GroupCoordinator

from tests.ut.base import TestBase
from vllm_ascend.attention.attention_v1 import AscendAttentionState
from vllm_ascend.torchair.torchair_attention import \
AscendAttentionTorchairBackendImpl


class TestAscendAttentionTorchairBackendImpl(TestBase):

@patch("torch.zeros")
@patch('vllm.distributed.parallel_state._TP',
new_callable=lambda: MagicMock(spec=GroupCoordinator)) # TODO
@patch("vllm.distributed.get_tensor_model_parallel_world_size",
return_value=2) # TODO
@patch("vllm.config.get_current_vllm_config") # TODO
@patch("vllm_ascend.torchair.torchair_mla.get_ascend_config") # TODO
def setUp(self, ascend_config, vllm_config, mock_get_tp_size, mock_tp,
mock_zeros):
mock_tp.world_size = 2 # TODO
ascend_config.torchair_graph_config.enabled = True # TODO
ascend_config.torchair_graph_config.enable_kv_nz = False # TODO
speculative_config = MagicMock()
speculative_config.num_speculative_tokens = 4
vllm_config.speculative_config = speculative_config

num_heads = 32
head_size = 128 # TODO
scale = 0.1 # TODO
num_kv_heads = 4
kv_cache_dtype = "auto"
attn_type = AttentionType.DECODER
mock_zeros.return_value = torch.ones((),
device='cpu',
dtype=torch.int32)

self.impl = AscendAttentionTorchairBackendImpl(
num_heads=num_heads,
head_size=head_size,
scale=scale,
num_kv_heads=num_kv_heads,
alibi_slopes=None,
sliding_window=None,
kv_cache_dtype=kv_cache_dtype,
blocksparse_params=None,
logits_soft_cap=None,
attn_type=attn_type,
kv_sharing_target_layer_name=None)

@patch("torch_npu.npu_scatter_nd_update_")
@patch("torch_npu.npu_fused_infer_attention_score")
def test_forward_with_decode_only(self, mock_fused, _):
layer = MagicMock()
layer._k_scale_float = 1.0
layer._v_scale_float = 1.0

seq_len = 1
num_tokens = 100
num_blocks = 256
block_size = 4

query = torch.randn(num_tokens, seq_len,
self.impl.num_heads * self.impl.head_size)
key = torch.randn(num_tokens, seq_len,
self.impl.num_kv_heads * self.impl.head_size)
value = torch.randn(num_tokens, seq_len,
self.impl.num_kv_heads * self.impl.head_size)
kv_cache = (torch.randn(num_blocks, block_size,
self.impl.num_heads * self.impl.head_size),
torch.randn(num_blocks, block_size,
self.impl.num_heads * self.impl.head_size))
output = torch.randn(num_tokens, self.impl.num_heads,
self.impl.head_size)

decode = MagicMock() # TODO
decode.seq_lens_list = [2] * num_tokens
decode.block_table = torch.ones(num_tokens, 8, dtype=torch.int32)
decode.attn_mask = None

metadata = MagicMock()
metadata.attn_state = AscendAttentionState.DecodeOnly
metadata.slot_mapping = torch.arange(num_tokens, dtype=torch.int32)
metadata.decode = decode

mock_fused.return_value = (torch.ones(num_tokens, self.impl.num_heads,
self.impl.head_size),
torch.ones(1))

result = self.impl.forward(layer, query, key, value, kv_cache,
metadata, output, False)
self.assertEqual(result.shape[0], num_tokens)
25 changes: 16 additions & 9 deletions vllm_ascend/torchair/torchair_attention.py
Original file line number Diff line number Diff line change
Expand Up @@ -436,17 +436,24 @@ def forward(
block_size = key_cache.shape[1]
query = query.view(num_tokens, 1,
self.num_heads * self.head_size).contiguous()
output = torch_npu.npu_incre_flash_attention(
query,
key_cache,
value_cache,
num_key_value_heads=self.num_kv_heads,
output, _ = torch_npu.npu_fused_infer_attention_score(
query=query,
key=key_cache,
value=value_cache,
query_rope=None,
key_rope=None,
num_heads=self.num_heads,
actual_seq_lengths=seq_lens,
scale_value=self.scale,
block_table=block_table,
num_key_value_heads=self.num_kv_heads,
input_layout='BSH',
block_size=block_size)
atten_mask=decode_meta.attn_mask,
sparse_mode=0,
scale=self.scale,
antiquant_mode=0,
antiquant_scale=None,
block_table=block_table,
block_size=block_size,
actual_seq_lengths_kv=seq_lens,
)
else:
raise NotImplementedError(
"Torchair graph mode with non-MLA attention backend is still experimental."
Expand Down
Loading