|
3 | 3 | Run `pytest tests/models/test_mamba.py`.
|
4 | 4 | """
|
5 | 5 | import pytest
|
6 |
| -from transformers import AutoModelForCausalLM, AutoTokenizer, TextGenerationPipeline |
7 |
| -import torch |
| 6 | +from transformers import AutoModelForCausalLM, AutoTokenizer |
8 | 7 |
|
9 | 8 | from .utils import check_outputs_equal
|
10 | 9 |
|
11 | 10 | MODELS = [
|
12 | 11 | "state-spaces/mamba-370m-hf",
|
13 | 12 | ]
|
14 | 13 |
|
| 14 | + |
15 | 15 | # Use lower-level interfaces to create this greedy generator, as mamba will
|
16 | 16 | # choke on the model_kwarg 'attention_mask' if hf_model.generate_greedy is used.
|
17 | 17 | def generate_greedy(model_name, example_prompts, max_tokens):
|
18 | 18 | # Create a text generation pipeline
|
19 | 19 | tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 | 20 | model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 | 21 |
|
22 |
| - generator = TextGenerationPipeline(model=model, tokenizer=tokenizer, |
23 |
| - device=torch.cuda.current_device() |
24 |
| - if torch.cuda.is_available() else -1) |
25 |
| - |
26 | 22 | # Generate texts from the prompts
|
27 | 23 | outputs = []
|
28 | 24 | for prompt in example_prompts:
|
29 | 25 | # Tokenize the input prompt with truncation
|
30 | 26 | inputs = tokenizer(prompt, return_tensors="pt", truncation=True)
|
31 | 27 | input_ids = inputs["input_ids"].to(model.device)
|
32 |
| - |
| 28 | + |
33 | 29 | # Generate text using the model's generate method directly
|
34 | 30 | generated_ids = model.generate(input_ids, max_new_tokens=max_tokens)
|
35 |
| - generated_text = tokenizer.decode(generated_ids[0], skip_special_tokens=True) |
| 31 | + generated_text = tokenizer.decode(generated_ids[0], |
| 32 | + skip_special_tokens=True) |
36 | 33 |
|
37 | 34 | outputs.append((generated_ids[0].tolist(), generated_text))
|
38 | 35 |
|
39 | 36 | return outputs
|
40 | 37 |
|
| 38 | + |
41 | 39 | @pytest.mark.parametrize("model", MODELS)
|
42 | 40 | @pytest.mark.parametrize("dtype", ["float"])
|
43 | 41 | @pytest.mark.parametrize("max_tokens", [96])
|
|
0 commit comments