Skip to content

[Bug]: decoding output parsing error #18376

@gohar94

Description

@gohar94

Your current environment

The output of python collect_env.py
INFO 05-20 02:37:02 [__init__.py:239] Automatically detected platform cuda.
Collecting environment information...
PyTorch version: 2.6.0+cu124
Is debug build: False
CUDA used to build PyTorch: 12.4
ROCM used to build PyTorch: N/A

OS: Ubuntu 20.04.6 LTS (x86_64)
GCC version: (Ubuntu 9.4.0-1ubuntu1~20.04.2) 9.4.0
Clang version: Could not collect
CMake version: version 3.16.3
Libc version: glibc-2.31

Python version: 3.12.7 | packaged by Anaconda, Inc. | (main, Oct  4 2024, 13:27:36) [GCC 11.2.0] (64-bit runtime)
Python platform: Linux-5.15.0-1087-azure-x86_64-with-glibc2.31
Is CUDA available: True
CUDA runtime version: 12.6.85
CUDA_MODULE_LOADING set to: LAZY
GPU models and configuration:
GPU 0: NVIDIA A100-SXM4-80GB
GPU 1: NVIDIA A100-SXM4-80GB
GPU 2: NVIDIA A100-SXM4-80GB
GPU 3: NVIDIA A100-SXM4-80GB
GPU 4: NVIDIA A100-SXM4-80GB
GPU 5: NVIDIA A100-SXM4-80GB
GPU 6: NVIDIA A100-SXM4-80GB
GPU 7: NVIDIA A100-SXM4-80GB

Nvidia driver version: 560.35.03
cuDNN version: Could not collect
HIP runtime version: N/A
MIOpen runtime version: N/A
Is XNNPACK available: True

CPU:
Architecture:                         x86_64
CPU op-mode(s):                       32-bit, 64-bit
Byte Order:                           Little Endian
Address sizes:                        48 bits physical, 48 bits virtual
CPU(s):                               96
On-line CPU(s) list:                  0-95
Thread(s) per core:                   1
Core(s) per socket:                   48
Socket(s):                            2
NUMA node(s):                         4
Vendor ID:                            AuthenticAMD
CPU family:                           23
Model:                                49
Model name:                           AMD EPYC 7V12 64-Core Processor
Stepping:                             0
CPU MHz:                              3293.865
BogoMIPS:                             4890.88
Hypervisor vendor:                    Microsoft
Virtualization type:                  full
L1d cache:                            3 MiB
Vulnerability Gather data sampling:   Not affected
Vulnerability Itlb multihit:          Not affected
Vulnerability L1tf:                   Not affected
Vulnerability Mds:                    Not affected
Vulnerability Meltdown:               Not affected
Vulnerability Mmio stale data:        Not affected
Vulnerability Reg file data sampling: Not affected
Vulnerability Retbleed:               Mitigation; untrained return thunk; SMT disabled
Vulnerability Spec rstack overflow:   Mitigation; safe RET, no microcode
Vulnerability Spec store bypass:      Mitigation; Speculative Store Bypass disabled via prctl and seccomp
Vulnerability Spectre v1:             Mitigation; usercopy/swapgs barriers and __user pointer sanitization
Vulnerability Spectre v2:             Mitigation; Retpolines; STIBP disabled; RSB filling; PBRSB-eIBRS Not affected; BHI Not affected
Vulnerability Srbds:                  Not affected
Vulnerability Tsx async abort:        Not affected
Flags:                                fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl tsc_reliable nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 sse4_1 sse4_2 movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw topoext perfctr_core ssbd vmmcall fsgsbase bmi1 avx2 smep bmi2 rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 xsaves clzero xsaveerptr rdpru arat umip rdpid

Versions of relevant libraries:
[pip3] mypy-extensions==1.0.0
[pip3] numpy==1.26.4
[pip3] nvidia-cublas-cu12==12.4.5.8
[pip3] nvidia-cuda-cupti-cu12==12.4.127
[pip3] nvidia-cuda-nvrtc-cu12==12.4.127
[pip3] nvidia-cuda-runtime-cu12==12.4.127
[pip3] nvidia-cudnn-cu12==9.1.0.70
[pip3] nvidia-cufft-cu12==11.2.1.3
[pip3] nvidia-cufile-cu12==1.11.1.6
[pip3] nvidia-curand-cu12==10.3.5.147
[pip3] nvidia-cusolver-cu12==11.6.1.9
[pip3] nvidia-cusparse-cu12==12.3.1.170
[pip3] nvidia-cusparselt-cu12==0.6.2
[pip3] nvidia-ml-py==12.560.30
[pip3] nvidia-nccl-cu12==2.21.5
[pip3] nvidia-nvjitlink-cu12==12.4.127
[pip3] nvidia-nvtx-cu12==12.4.127
[pip3] pyzmq==26.2.0
[pip3] torch==2.6.0
[pip3] torchaudio==2.6.0
[pip3] torchvision==0.21.0
[pip3] transformers==4.51.3
[pip3] triton==3.2.0
[pip3] zmq==0.0.0
[conda] numpy                     1.26.4                   pypi_0    pypi
[conda] nvidia-cublas-cu12        12.4.5.8                 pypi_0    pypi
[conda] nvidia-cuda-cupti-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-nvrtc-cu12    12.4.127                 pypi_0    pypi
[conda] nvidia-cuda-runtime-cu12  12.4.127                 pypi_0    pypi
[conda] nvidia-cudnn-cu12         9.1.0.70                 pypi_0    pypi
[conda] nvidia-cufft-cu12         11.2.1.3                 pypi_0    pypi
[conda] nvidia-cufile-cu12        1.11.1.6                 pypi_0    pypi
[conda] nvidia-curand-cu12        10.3.5.147               pypi_0    pypi
[conda] nvidia-cusolver-cu12      11.6.1.9                 pypi_0    pypi
[conda] nvidia-cusparse-cu12      12.3.1.170               pypi_0    pypi
[conda] nvidia-cusparselt-cu12    0.6.2                    pypi_0    pypi
[conda] nvidia-ml-py              12.560.30                pypi_0    pypi
[conda] nvidia-nccl-cu12          2.21.5                   pypi_0    pypi
[conda] nvidia-nvjitlink-cu12     12.4.127                 pypi_0    pypi
[conda] nvidia-nvtx-cu12          12.4.127                 pypi_0    pypi
[conda] pyzmq                     26.2.0                   pypi_0    pypi
[conda] torch                     2.6.0                    pypi_0    pypi
[conda] torchaudio                2.6.0                    pypi_0    pypi
[conda] torchvision               0.21.0                   pypi_0    pypi
[conda] transformers              4.51.3                   pypi_0    pypi
[conda] triton                    3.2.0                    pypi_0    pypi
[conda] zmq                       0.0.0                    pypi_0    pypi
ROCM Version: Could not collect
Neuron SDK Version: N/A
vLLM Version: 0.8.5
vLLM Build Flags:
CUDA Archs: Not Set; ROCm: Disabled; Neuron: Disabled
GPU Topology:
        GPU0    GPU1    GPU2    GPU3    GPU4    GPU5    GPU6    GPU7    NIC0    NIC1    NIC2    NIC3    NIC4    NIC5    NIC6    NIC7    NIC8    CPU Affinity    NUMA Affinity   GPU NUMA ID
GPU0     X      NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     SYS     24-47   1               N/A
GPU1    NODE     X      SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     SYS     24-47   1               N/A
GPU2    SYS     SYS      X      NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     NODE    0-23    0               N/A
GPU3    SYS     SYS     NODE     X      SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     NODE    0-23    0               N/A
GPU4    SYS     SYS     SYS     SYS      X      NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     72-95   3               N/A
GPU5    SYS     SYS     SYS     SYS     NODE     X      SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     72-95   3               N/A
GPU6    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     48-71   2               N/A
GPU7    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     48-71   2               N/A
NIC0    NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS     SYS     SYS     SYS     SYS     SYS     SYS
NIC1    NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS     SYS     SYS     SYS     SYS     SYS
NIC2    SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS     SYS     SYS     SYS     NODE
NIC3    SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS     SYS     SYS     NODE
NIC4    SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS     SYS     SYS
NIC5    SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      SYS     SYS     SYS
NIC6    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS      X      NODE    SYS
NIC7    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE     X      SYS
NIC8    SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS     SYS     SYS     NODE    NODE    SYS     SYS     SYS     SYS      X

Legend:

  X    = Self
  SYS  = Connection traversing PCIe as well as the SMP interconnect between NUMA nodes (e.g., QPI/UPI)
  NODE = Connection traversing PCIe as well as the interconnect between PCIe Host Bridges within a NUMA node
  PHB  = Connection traversing PCIe as well as a PCIe Host Bridge (typically the CPU)
  PXB  = Connection traversing multiple PCIe bridges (without traversing the PCIe Host Bridge)
  PIX  = Connection traversing at most a single PCIe bridge
  NV#  = Connection traversing a bonded set of # NVLinks

NIC Legend:

  NIC0: mlx5_0
  NIC1: mlx5_1
  NIC2: mlx5_2
  NIC3: mlx5_3
  NIC4: mlx5_4
  NIC5: mlx5_5
  NIC6: mlx5_6
  NIC7: mlx5_7
  NIC8: mlx5_8

LD_LIBRARY_PATH=:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64:/usr/local/cuda/lib64
NCCL_CUMEM_ENABLE=0
PYTORCH_NVML_BASED_CUDA_CHECK=1
TORCHINDUCTOR_COMPILE_THREADS=1
CUDA_MODULE_LOADING=LAZY

🐛 Describe the bug

Why is the following an incorrect request format? It works with OpenAI gpt-4o but when using google/gemma-3-27b-it (and likely other models too) on vLLM, it fails.

{'method': 'post', 'url': '/chat/completions', 'headers': {'X-Stainless-Helper-Method': 'beta.chat.completions.parse'}, 'files': None, 'idempotency_key': 'stainless-python-retry-42a16cd2-93af-4312-90d1-567a3acf2f8a', 'post_parser': <function AsyncCompletions.parse.<locals>.parser at 0x7f12b471dbc0>, 'json_data': {'messages': [{'role': 'system', 'content': 'You are a mathematical assistant.'}, {'role': 'user', 'content': 'Calculate 10 raised to the power of 7.'}], 'model': 'google/gemma-3-27b-it', 'frequency_penalty': 0.0, 'max_tokens': 2000, 'response_format': {'type': 'json_schema', 'json_schema': {'schema': {'properties': {'explanation': {'description': 'Explanation of the answer. If you cannot answer the question, please return null.', 'title': 'Explanation', 'type': 'string'}, 'answer': {'description': 'Only the final mathematical solution to the question without any explanation. Put your final answer within \\boxed{}. If you cannot answer the question, please return null.', 'title': 'Answer', 'type': 'string'}}, 'required': ['explanation', 'answer'], 'title': 'MathAnswer', 'type': 'object', 'additionalProperties': False}, 'name': 'MathAnswer', 'strict': True}}, 'stream': False, 'temperature': 0.2, 'top_p': 0.95}, 'extra_json': {}}
[2025-05-20 02:34:18 - openai._base_client:1480 - DEBUG] Sending HTTP Request: POST http://10.0.0.4:8000/v1/chat/completions

I get the following error with xgrammar backend:

ERROR 05-20 02:34:53 [backend_xgrammar.py:167] Failed to advance FSM for request chatcmpl-38e0c975fd1e45c2b01973993919c150 for tokens 0. Please file an issue.

And with guidance backend:

[backend_guidance.py:128] LLMatcher error: Parser Error: token "_[0]" doesn't satisfy the grammar; forced bytes: got '{'; applying '_'

Before submitting a new issue...

  • Make sure you already searched for relevant issues, and asked the chatbot living at the bottom right corner of the documentation page, which can answer lots of frequently asked questions.

Metadata

Metadata

Assignees

Labels

Type

No type

Projects

Status

Done

Milestone

No milestone

Relationships

None yet

Development

No branches or pull requests

Issue actions