-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path6.3_lang_model_dataset.py
83 lines (69 loc) · 3.96 KB
/
6.3_lang_model_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import random
import zipfile
with zipfile.ZipFile('./data/jaychou_lyrics.txt.zip') as zin:
with zin.open('jaychou_lyrics.txt') as f:
corpus_chars = f.read().decode('utf-8')
print(corpus_chars[:40])
corpus_chars = corpus_chars.replace('\n', ' ').replace('\r', ' ')
corpus_chars = corpus_chars[0:10000] # 仅使用前1万个字符
print(corpus_chars)
# 建立字符索引
idx_to_char = list(set(corpus_chars)) # set()转换成无序不重复的元素集,再转换为list
print(idx_to_char)
char_to_idx = dict([(char, i) for i, char in enumerate(idx_to_char)]) # 词典:(char, i)
vocab_size = len(char_to_idx)
print(vocab_size) # 1027
# 将训练数据集中每个字符转化为索引,空格也有索引
corpus_indices = [char_to_idx[char] for char in corpus_chars]
sample = corpus_indices[:20]
print('chars:', ''.join([idx_to_char[idx] for idx in sample])) # .join将序列中的元素以指定的字符连接生成一个新的字符串
print('indices:', sample)
# 时序数据的采样
# 随机采样
# 在随机采样中,每个样本是原始序列上任意截取的一段序列。相邻的两个随机小批量在原始序列上的位置不一定相毗邻。
# 无法用一个小批量最终时间步的隐藏状态来初始化下一个小批量的隐藏状态。在训练模型时,每次随机采样前都需要重新初始化隐藏状态。
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def data_iter_random(corpus_indices, batch_size, num_steps, device=None):
# 减1是因为输出的索引x是相应输入的索引y加1
num_examples = (len(corpus_indices) - 1) // num_steps
# 双斜杠(//)表示地板除,即先做除法(/),然后向下取整(floor)。至少有一方是float型时,结果为float型;两个数都是int型时,结果为int型。
epoch_size = num_examples // batch_size
example_indices = list(range(num_examples))
random.shuffle(example_indices)
# 返回从pos开始的长为num_steps的序列
def _data(pos):
return corpus_indices[pos: pos + num_steps]
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
for i in range(epoch_size):
# 每次读取batch_size个随机样本
i = i * batch_size
batch_indices = example_indices[i: i + batch_size]
X = [_data(j * num_steps) for j in batch_indices]
Y = [_data(j * num_steps + 1) for j in batch_indices]
yield torch.tensor(X, dtype=torch.float32, device=device), torch.tensor(Y, dtype=torch.float32, device=device)
my_seq = list(range(30))
for X, Y in data_iter_random(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y, '\n')
# 相邻采样
# 可以用一个小批量最终时间步的隐藏状态来初始化下一个小批量的隐藏状态,从而使下一个小批量的输出也取决于当前小批量的输入,并如此循环下去。
# 1.只需在每一个迭代周期开始时初始化隐藏状态
# 2.当多个相邻小批量通过传递隐藏状态串联起来时,模型参数的梯度计算将依赖所有串联起来的小批量序列。
# 同一迭代周期中,随着迭代次数的增加,梯度的计算开销会越来越大
# 本函数已保存在d2lzh_pytorch包中方便以后使用
def data_iter_consecutive(corpus_indices, batch_size, num_steps, device=None):
if device is None:
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
corpus_indices = torch.tensor(corpus_indices, dtype=torch.float32, device=device)
data_len = len(corpus_indices)
batch_len = data_len // batch_size
indices = corpus_indices[0: batch_size*batch_len].view(batch_size, batch_len)
epoch_size = (batch_len - 1) // num_steps
for i in range(epoch_size):
i = i * num_steps
X = indices[:, i: i + num_steps]
Y = indices[:, i + 1: i + num_steps + 1]
yield X, Y
for X, Y in data_iter_consecutive(my_seq, batch_size=2, num_steps=6):
print('X: ', X, '\nY:', Y, '\n')